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Abstract: Before corresponding points in images taken with two cameras can be

used to recover distances to objects in a scene, one has to determine the position and

orientation of one camera relative to the other. This is the classic photogrammetric

problem of relative orientation, central to the interpretation of binocular stereo

information. Iterative methods for determining relative orientation were developed

long ago; without them we would not have most of the topographic maps we do
today. Relative orientation is also of importance in the recovery of motion and

shape from an image sequence when successive frames are widely separated in time.
Vorkers in motion vision are rediscovering some of the methods of photogrammetry.

Described here is a particularly simple iterative scheme for recovering relative

orientation that, unlike existing methods, does not require a good initial guess for
the baseline and the rotation. The data required is a set of pairs of corresponding

rays from the two projection centers to points in the scene. It is well known that at
least five pairs of rays are needed. Less appears to be known about the existence of

multiple solutions and their interpretation. These issues are discussed here in detail.

The unambiguous determination of all of the parameters of relative orientation is

not possible when the observed points lie on a critical surface. These surfaces and

their degenerate forms are analysed here as well.
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in the recovery of motion and shape from an image sequence when successive

frames are widely separated in time. Workers in motion vision are redis-

covering some of the methods of photogrammetry.

Described here is a particularly simple iterative scheme for recovering

relative orientation that, unlike existing methods, does not require a good

initial guess for the baseline and the rotation. The data required is a set

of pairs of corresponding rays from the two projection centers to points

in the scene. It is well known that at least five pairs of rays are needed.

Less appears to be known about the existence of multiple solutions and their

interpretation. These issues are discussed here in detail. The unambiguous

determination of all of the parameters of relative orientation is not

possible when the observed points lie on a critical surface. These surfaces

and their degenerate forms are analysed here as well.
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Relative Orientation

1. Introduction

The positions of corresponding points in two images can be used to determine
the positions of points in the environment, provided that the position and
orientation of one camera with respect to the other is known. Given the

internal geometry of the camera, including its focal length and the location of
the principal point, rays can be constructed by connecting the points in the
images to their corresponding projection centers. These rays, when extended,
intersect at the point in the scene that gave rise to the image points. This is
how binocular stereo data is used to determine the positions of points in the
environment after the correspondence problem has been solved.

It is also the method used in motion vision when feature points are tracked
and the image displacements that occur in the time between two successive
frames are relatively large (see for example [Ullman 1979] and [Tsai &: Huang
1984]). The connection between these two problems has not attracted much
attention before, nor has the relationship of motion vision to some aspects
of photogrammetry (but see [Longuet-Higgins 1981]). It turns out, for exam-
ple, that the well known motion field equations [Longuet-Higgins & Prazdny
1980, Bruss & Horn 1983] are just the parallax equations of photogrammetry
[Hallert 1960, Moffit & Mikhail 1980] that occur in the incremental adjust-
ment of relative orientation. Most papers on relative orientation only give the
equation for y-parallax, corresponding to the equation for the y-component of
the motion field (see for example the first equation in [Gill 1964], equation (1)
in [Jochmann 1965], and equation (6) in [Oswal 1967]). Some papers actually
give equations for both x- and y-parallax (see for example equation (9) in
[Bender 1967]).

In both binocular stereo and large displacement motion vision analysis,
it is necessary to first determine the relative orientation of one camera with
respect to the other. The relative orientation can be found if a sufficiently large
set of pairs of corresponding image points have been identified [Thompson
1959b, Thompson 1968, Ghosli 1972, Schwidefsky 1973, Slama et al. 1980,
Moffit & Mikhail 1980, Wolf 1983, Horn 19861.

Let us use the terms left and right to distinguish the two cameras (in the
case of the application to motion vision these will be the camera positions and
orientations corrsponding to the earlier and the later frames respectively).'

The ray from the center of projection of the left camera to the center of £-

)projection of the right camera is called the baseline (see Fig. 1). A coordinate
system can be erected at each projection center, with one axis along the

.n what follows we use the coordinate system of the right (or later) camera as

the reference. One can simply interchange left and right if it happens to be more Iy (X>es

,cveivit. to use the coordinate system of the left (or earlier) camera.
I '40
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2

optical axis, that is, perpendicular to the image plane. The other two axes
are in each case parallel to two convenient orthogonal directions in the image
plane (such as the edges of the image, or lines connecting pairs of fiducial

marks). The rotation of the left camera coordinate system with respect to
the right is called the orientation.
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Figure 1. Points in the environment are viewed from two camera positions.
The relative orientation is the direction of the baseline b, and the rotation
R relating the left and right coordinate systems. The directions of rays
to at least five scene points must be known in both camera coordinate
systems.

Note that we cannot determine the length of the baseline without knowledge
about the length of a line in the scene, since the ray directions are unchanged

* if we scale all of the distances in the scene and the baseline by the same
positive scale-factor. This means that we should treat the baseline as a unit
vector, and that there are really only five unknowns-three for the rotation
and two for the direction of the baseline. 2

2. Existing Solution Methods

Various empirical procedures have been devised for determining the relative
orientation in an analog fashion. Most commonly used are stereoplotters, op-

2 1f we treat the baseline as a unit vector, its actual length becomes the unit of
length for all other quantities.
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Relative Orientation 3

tical devices that permit viewing of image pairs and superimposed synthetic
features called floating marks. Differences in ray direction parallel to the
baseline are called horizontal disparities (or x-parallaxes), while differences in

ray direction orthogonal to the baseline are called vertical disparities (or y-
parallaxes).' Horizontal disparities encode distances to points on the surface
and are the quantities sought after in measurement of the underlying topogra-
phy. There should be no vertical disparities when the device is adjusted to the
correct relative orientation, since the rays from the left and right projection
center must lie in a plane that contains the baseline if they are to intersect.

The methods used in practice to determine the correct relative orien-
tation depend on successive adjustments to eliminate the vertical disparity

at each of five or six carefully chosen points [Sailor 1960, Thompson 1964,
Slama et al. 1980, Moffit & Mikhail 1980, Wolf 19741. In each of the ad-
justments a single parameter of the relative orientation is varied in order to

remove the vertical disparity at one of the points. Which adjustment is made
to eliminate the vertical disparity at a particular point depends on the partic-
ular method is chosen. In each case, however, one of the adjustments, rather
than being guided visually, is made by an amount that is calculated, using
the measured values of earlier adjustments. The calculation is based on the

oassumptions that the surface being viewed can be approximated by a plane,
that the baseline is roughly parallel to this plane, and that the optical axes of
the two cameras are roughly perpendicular to this plane. The whole process
is iterative in nature, since the reduction of vertical disparity at one point
by means of an adjustment of a single parameter of the relative orientation
disturbs the vertical disparity at the other points. Convergence is usually
rapid if a good initial guess is available. It can be slow, however, when the
assumptions on which the calculation is based are violated, such as in "acci-
dented" or hilly terrain [Van Der Weele 1959-601. These methods typically
use Euler angles to represent three-dimensional rotations [Korn & Korn 1968]
(traditionally denoted by the greek letters K, 0, and w). Euler angles have
a number of short-comings for describing rotations that become particularly

noticable when these angles become large.

There also exist related digital procedures that converge rapidly when a
good initial guess of the relative orientation is available, as is usually the case
when one is interpreting aerial photography [Slama et al. 1980]. Not all of
these methods use Euler angles. Thompson [1959b], for example, uses twice
the Gibb's vector [Korn & Korn 1968] to represent rotations. These proce-

3 This naming convention stems from the observation that, roughly speaking, in

the usual viewing arrangement, horizontal disparities correspond to left-right

displacements in the image, whereas vertical disparities correspond to up-down
displacements.

I
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dures may fail to converge to the correct solution when the initial guess is fark
off the mark. In the application to motion vision, approximate translational
and rotational components of the motion are often not known initially, so a
procedure that depends on good initial guesses is not particularly useful.

Normally, the directions of the rays are obtained from points in images
generated by projection onto a planar surface. In this case the directions are
confined to the field of view as determined by the active area of the image plane
and the distance to the center of projection. The field of view is always less
than a hemi-sphere, since only points in front of the camera can be imaged. 4

The method described here applies, however, no matter how the directions
to points in the scene are determined. There is no restriction on the possible

directions of the rays. We do assume, however, that we can tell which of two
opposite semi-infinite line-segments the point lies on. If a point lies on the
correct line-segment we will say that it lies in front of the camera, otherwiseit will be considered to be behind the camera.

The problem of relative orientation is generally considered solved, and

so has received little attention in the photogrammetric literature in recent
times [Van Der Weele 1959-60]. In the annual index of Photogrammetric
Engineering, for example, there is only one reference to the subject in the last
ten years [Ghilani 1983] and six in the decade before that. This is very little

in comparison to the large number of papers on this subject in the fifties,
as well as the sixties, including [Gill 1964], [Sailor 1965], [Jochmann 1965],

[Ghosh 1966], [Forrest 19661 and [Oswal 1967].

N. In this paper we discuss the relationship of relative orientation to the
problem of motion vision in the situation where the motion between the ex-

posure of successive frames is relatively large. Also, a new iterative algorithm
is described here, as well as a way of dealing with the situation when there
is no initial guess available for the rotation or the direction of the baseline.
The advantages of the unit quaternion notation for representing rotations are
illustrated as well. Finplly, we discuss critical surfaces, surface shapes that

.lead to difficulties in establishing a unique relative orientation.

Po 3. Coplanarity Condition

If the ray from the left camera and the corresponding ray from the right

camera are to intersect, they must to lie in a plane that also contains the
baseline. Thus, if b is the vector respresenting the baseline, r, the ray from
the right projection center to the point in the scene and ri the ray from the

4 The field of view is larger than a hemi-sphere in some fish-eye lenses, where there
is significant radial distortion.
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Relative Orientation 5

left projection center to the point in the scene, then the triple product

[b r' rr]

equals zero, where r' = Rot(rl) is the left ray rotated into the right camera's

coordinate system.- This is the coplanarity condition (see Fig. 2).

N
x /

/

tKr

L R

Figure 2. Two rays approach closest where they are intersected by a
line perpendicular to both. If there is no measurement error, and the
relative orientation has been recovered correctly, then the two rays actually

intersect. In this case the two rays and the baseline lie in a common plane.

We obtain one such constraint from each pair of rays. There will be an infinite

number of solutions for the baseline and the rotation when there are fewer
)than five pairs of rays, since there are five unknowns and each pair of rays

yields only one constraint. Conversely, if there are more than five pairs of
rays, the constraints are likely to be inconsistent as the result of small errors

in the measurements. In this case, no exact solution of the set of constraint
0equations exists, and it makes sense instead to minimize the sum of squares of

errors in the constraint equations. In practice, one should use more than five
pairs of rays in order to reduce the influence of measurement errors [Jochmann

1965, Ghosh 1966]. We shall see later that the added information also allows
one to eliminate spurious solutions.

. , 5The baseline vector b is here also measured in the coordinate system of the right
cainera.

I.



4. What is the Appropriate Error Term?

The triple product [b r' r, is zero when the left and right ray are coplanar
with the baseline. It is not immediately apparent, however, that the triple
product itself is necessarily the ideal measure of departure from best fit. It is
worthwhile exploring the geometry of the two rays more carefully. Consider
the points on the rays where they approach each other the closest (see Fig. 2).
The line connecting these points will be perpendicular to both rays, and hence

parallel to (r' x r,). As a consequence, we can write

a , - (',x rr) = b+ #rr,

where a and /3 are proportional to the distances along the left and the right ray
to the points where they approach most closely, while -f is proportional to the
shortest distance between the rays. We can find -y by taking the dot-product
of the equality above with r, x r,. We obtain

11~r' x r,11 [b r' rrl.

Similarly, taking the dot-products with r, x (r' x r,) and r' x (r' x r,), we
obtain

a 1r' x ri11 (b x r,) (r', x rr),

/3 11r' x r, 1 (b x r1) (r' x r,).

The magnitudes of a and /3 are the distances along the rays to the point of
closest approach when r, and r', are unit vectors. It turns out, however, that
we are more interested here in the signs than in the magnitudes of a and #3.

Normally, the points where the two rays approach the closest will be in
front of both cameras, that is, both a and /3 will be positive. If the estimated
baseline or rotation is in error, however, then it is possible for one or both of
the calculated parameters a and #3 to be negative. We will use this observation

later to distinguish amongst different apparent solutions.

We have shown that the perpendicular distance between the left and the
0 right ray is equal to ratio of the triple product [b r' rl to the magnitude

squared of (r' x rr). But the measurement errors are in the image, riot in
the scene. Thus a least-squares procedure should be based on an error in
determining the direction of the rays, not on the distance of closest approach.

* To arrive at such a measure, we can look at the angle, 9 say, between the
projections of the left and right ray into a plane perpendicular to b (see
Fig. 3). This angle will be zero when the vertical disparity is zero, that is,
V-1 en the left and right rays are coplanar with the baseline.

The projections of r, and r, into a plane perpendicular to b are given by

1r6 (r' b)b =(b x r') x b,

Fr r. (r, b)b =(b x rr) x< b,
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Figure 3. One measure of the departure from the coplanarity condition
is the angle 0 between the planes formed by the left ray and the baseline
and the plane formed by the right ray and the baseline. The angle may
be found by projection the two rays onto a plane perpendicular to the
baseline.

where we have used the fact that b is a unit vector. It is easy to show that

JI'1= 11b x r'Ii and 11~i1 = 11b x r,1il
keeping in mind again that b is a unit vector, and that b x r', and b x r, are
perpendicular to b. The cross-product of the two projected vectors F' and F,

will be parallel to the baseline and have magnitude proportional to the sine

of the angle between the projected vectors, and so,

sn9 [b V, F,] _ [b r' r

where we have used the fact that [b F, -fr] = (b, r, r,], something that can

easily be verified.

4



We could use the sine of the angle between the projected vectors directly
as a measure of departure from best fit. This is not as good an idea as it may
appear at first sight, because of what happens when one of the rays becomes
nearly parallel to the baseline. In this case the angle will vary rapidly with
small changes in the direction of the ray. Correspondingly, one of the terms

in the denominator in the expression for the sine of the angle becomes small.
It is better to normalize the expression by multiplying by the lengths of the

projected vectors. Then we obtain the area of the parallelogram formed by
the projections of the rays into a plane perpendicular to the baseline, namely,

11if111 IF,l sin 0 = [b V, F,J = [b r' r,].

This discussion confirms that the triple product itself is a good measure of the
departure from best fit. This is convenient, since it makes the least squares

analysis reasonably straightforward. If one desires to use a different error
measure, one can weight the terms in the sums to follow accordingly.

5. Least Squares Solution for the Baseline

If the rotation is known, it is easy to find the best fit baseline, as we show next.

This is useful, despite the fact that we do not usually know the rotation. The
reason is that the ability to find the best baseline, given a rotation, reduces
the dimensionality of the search space from five to three.

Let {r,,i} and {rr,i, for i = 1... n, be corresponding sets of left and
right rays. We wish to minimize

E = Zb rj, ri12  E(b. ×(ri x
i=1 i=1

subject to the condition 11b11 2 = 1, where r', is the rotated left ray ri, as
before. If we let ci = r x rr,i, we can rewrite the sum in the simpler form

whr w a E e teZ(b c3=b T (br  b
,.)2 = b cici b,

where we have used the equivalence b ci= bTC, which depends on the
interpretation of column vectors as 3 x 1 matrices. The term cicT is a dyadic
product, a 3 x 3 matrix obtained by multiplying a 3 x 1 matrix by a 1 x 3
matrix.

The error sum is a quadratic form involving the real symmetric matrix

TkC = E ic

The minimum of such a quadratic form is the smallest eigenvalue of the matrixC, attaired when b is the corresponding unit eigenvector (see, for example,

0i
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Relative Orientation

the discussion of Rayleigh's quotient in [Korn & Korn 1968]). This can be

verified by introducing a Lagra igian multiplier A and minimizing

E' = bTCb + A(1 - b'b),

subject to the condition bTb = 1. Differentiating with respect to b and
setting the result equal to zero yields:

Cb = Ab.

The error corresponding to a particular solution of this equation is found by
premultiplying by bT:

E =b'C b :A bT b =A.
The three eigenvalues of the real symmetric matrix C are non-negative, and
can be found in closed form by solving a cubic equation, while each of the
corresponding eigenvectors has components that are the solution of hree ho-
inogeneous equations in three unknowns [Korn & Korn 196S]. If the data
are relatively free of measurement error, then the smallest eigenvalue will

• be much smaller than the other two, and a reasonable approximation to the
sought-after result can be obtained by solving for the eigenvector using the

assumption that the smallest eigenvalue is actually zero. This way one need

.J-. not even solve the cubic equation (see also [Horn & Weldon 1988]).

If b is a unit eigenvector, so is -b. Changing the sense of the baseline
does not change the magnitude of the error term [b r' r,]. It does, however,
change the signs of a, fi and y. One can decide which sense of the baseline
direction is appropriate by determining the signs of ai and fi for i 1 . ... n.

Ideally, they should all be positive. The solution for the optimal baseline is
not unique unless there are at least two pairs of corresponding rays. The

reason is that the eigenvector we are looking for is not uniquely determined

if more than one of the eigenvalues is zero, and the matrix has rank less than
two if it is the sum of fewer than two dyadic products of independent vectors.
This is not a significant restriction, however, since we need at least five pairs

* of rays to solve for the rotation anyway.

%,. 6. Iterative Inprovement of Relative Orientation.

If oile ignores the orthonormality of the rotation matrix, a set of nine homnoge-

neous linear equations can tbe obtained by a transformation of the coplanarity

conditions that was first described in [Thompson 1959b]. These equations

can be solved when eight pairs of corresponding ray directions are known
[Longuet-Higgins 1981]. This is not a least-squares method that can make

0 O. use of redundant measurements. nor can it be applied when fewer than eight

" '.. points are given. The inethod is also strongly affected by measurement errors
and fails for certain configurations of points [Longuet-Higgins 1984].

0.i
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No true closed-form solution of the least-squares problem has been found
for the general case, where both baseline and rotation are unknown. However,
it is possible to determine how the overall error is affected by small changes
in +he baseline and small changes in the rotation. This allows one to make
iterative adjustments to the baseline and the rotation that reduce the sum of
squares of errors.

We can represent a small change in the baseline by an infinitesimal quan-
tity 6b. If this change is to leave the length of the baseline unaltered, then

lib + 6b11 2 = 11b112

or

I1b,1 2 + 2b bb + 116b11 2 = 11b112 .
If we ignore quantities of second-order, we obtain

6b. b = 0,

that is, bb must be perpendicular to b.

A small change in the rotation can be represented by an infinitesimal
rotation vector 6w. The direction of this vector is parallel to the axis of rota-
tion, while its magnitude is the angle of rotation. This incremental rotation
takes the rotated left ray, r', into

r '= r' + (6w x rl).

This follows from Rodrigues' formula for the rotation of a vector r:

cos9 r + sinO (w x r) + (1 - cos0)(w , r)w,

if we let 9 = 116w11, w = 6w/ 116w1l, and note that 6w is an infinitesimal
quantity. Finally then, we see that [b r' r,] becomes

[(b+6b) (r'+6wxr') r,],

or,

(b rri + (bb r' ri + [b (bw x r) rr],
if we ignore the term [bb (6w x r,) r,], because it contains the product of
two infinitesimal quantities. We can expand two of the triple products in the
expression above and obtain

[b r' ri] + (r' x r,). bb + (r, x b) . (&w x r'),

or

t + c Sb + d • 6w,
for short, where

t=[br r], c=r'x r, and d= rx(rxb).

Now, we are trying to minimize
n

E=(t+c,.6b+di w)
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. _ 0subject to the condition b bb 0- 0. This constrained minimization problem
can be transformed into an equivalent unconstrained form by introduction
of a Lagrangian multiplier. Instead of minimizing E itself, we then have to
minimize:

E' = E + A(b. 6b).

Differentiating E' with respect to bb, and setting the result equal to zero
yields,

n

1 (ti + ci • 6b + di" 6w) ci + Ab = 0.
t=1

Before we can proceed, we need to eliminate the unknown Lagrangian multi-

plier A. The dot-product of the expression with b leads to
n

Z(ti + c, • bb + di .6w) c, b + A(b . b) = 0,

which, since b b = 1, gives us a value for A that we can use to compute the

term
n

Ab = -b Z(ti + i • bb + di - bw) ci • b,: - i=1

or

lb = -(bbT) Z(ti + ci 6b + di " 6w)ci.

Finally, substituting for Ab in the equation above we obtain

B (ti + ci • bb + di .6w)ci = 0,

where
B =(I-bbT)

is the projection operator that removes components of vectors parallel to the

baseline, and I is just the 3 x 3 identity matrix. We can conclude that the

equation above relates quantities in a plane perpendicular to the baseline.

Finally, if we differentiate E' with respect to 6w and set this result also
equal to zero, we obtain

S(ti + ci Sb + di • ,w) di = 0.

Together, the two vector equations constitute six linear scalar equations in
the six unknown components of bb and bw. We can rewrite them in the more

compact form:

FT 6b + D 6w = -d
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or
(BC BF) (bb) (B)

where
, 3 1 13

C~c~TF= cid7, and D=ZdidT
t= =l 3=l

while
nn

i=-tici and d=Ztdi.

The matrix B is singular, as can be seen by noting that b is an eigenvector with
zero eigenvalue. Thus the first three equations above are not independent.
One of them will have to be removed. Fortunately, we also still have to
incorporate the condition that bb be perpendicular to b. We can do this by
replacing one of the first three equations with the linear equation b • bb = 0.
For the best numerical accuracy one should eliminate the equation with the

*Q smallest coefficients.
The above gives us a way of finding small changes in the baseline and

rotation that reduce the overall error sum. This method can be applied itera-
tively to locate a minimum. Numerical experiments confirm that it converges
rapidly when a good initial guess is available. Incremental adjustments can-
not be computed if the six-by-six coefficient matrix becomes singular. This
will happen when there are fewer than five pairs of rays, and for certain rare
configurations of points in the scene (see the discussion of critical surfaces
later on).

7. Adjusting the Baseline and the Rotation

The iterative adjustment of the baseline is straightforward:

* b -
+ l = b1= + 6b n,

where b n is the baseline estimate at the beginning of the n-th iteration, while
6b" is the adjustment computed during the n-th iteration, as discussed in
the previous section. If 6b n is not infinitesimal, the result will not be a unit

* O.vector. We can, and should, normalize the result by dividing by its magnitude.

7.1. Adjustment of Rotation using Unit Quaternions

Adjusting the rotation is a little harder. Rotations are conveniently repre-
sented by unit quaternions [Stuelpnagle 1964, Salamin 1979, Taylor 1982,
Horn 1986, Horn 1987a]. The groundwork for the application of the unit

04
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% . quaternion notation in photogrammetry was laid by Thompson [1959a] and

Schut [1958-59]. A positive rotation about the axis w through an angle 9 is
represented by the unit quaternion

4 = cos(0/2) + sin(9/2) w,

where w is assumed to be a unit vector. Composition of rotations corresponds

to multiplication of the corresponding unit quaternions. The rotated version
of a vector r is computed using

r =qr

where 4* is the conjugate of the quaternion 4, that is, the quaternion obtained

by changing the sign of the vector part. Here, i is a purely imaginary quater-
nion with vector part r, while F is a purely imaginary quaternion with vector
part r'.

The infinitesimal rotation 6w corresponds to the quaternion
& = 1 + 6W.

We can adjust the rotation 4 by premultiplying with &2, that is,

If bwn is not infinitesimal, &" will not be a unit quaternion, and so the result
of the adjustment will not be a unit quaternion either. This undesirable state
of affairs can be avoided by using either of the two unit quaternions

&2= 1 -IIw II+6w,

or

= (1 + 6w)/ 1 + 11bWl.
Alternatively, one can simply normalize the product by dividing by its mag-
nitude.

7.2. Adjustment of Rotation using Orthonormal Matrices

The adjustment of rotation is a little trickier if orthonormal matrices are used
to represent rotations. We can write the relationship

- r + (6w x r),

in the form

r =r+Wr,

where the skew-symnietric matrix W is defined by( 0 -6w2  6WYW = 6fw2  0 -6wx)

-bWY bw, 0

-6w1  qw

Q0=01111
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in terms of the components of rotation vector 6w = (6w,, 6w1, 6w.)T. Conse-
quently we may write r' = Q r, where Q = I + W, or

6W -6w 6W_

One could then attempt to adjust the rotation by multiplication of the ma-
trices Q and R as folows:

R -+ l = Q'Rn

The problem is that Q is not orthonormal unless 6w is infinitesimal. In prac-
tice this means that the rotation matrix will depart more and more from
orthonormality as more and more iterative adjustments are made. It is pos-
sible to re-normalize this matrix by finding the nearest orthonormal matrix,
but this is complicated, involving the determination of the square-root of a
symmetric matrix [Horn, Hilden & Negahdaripour 1988]. This is one place
where the unit quaternion representation has a distinct advantage: it is trivial
to find the nearest unit quaternion to a quaternion that does not have unit
magnitude.

To avoid this problem, we should really start with an orthonormal ma-
trix to represent the incremental rotation. We can use either of the unit
quaternions

E, -V 1 - 12wl + w

or
-(1 + 6w)+ 1 + 11641l2,

to construct the corresponding orthonormal matrix
/ 2 2q0 + q_ -q -q 2(qxqy - qoqz) 2(qzqz + qoq:)
2(qyq, + qoq.) q2- q2 + q - q2 2 (qyqz - qoq,) ,

2(qzqx -qoqy) 2(qzqy +qoq.) q -q Y -q +q.

where qo is the scalar part of the quaternion &, while q , q1,, q. are the com-
ponents of the vector part. Then the adjustment of rotation is accomplished
using

Rn+1Q'' , = Q"R'.

Note, however, that the resulting matrices will still tend to depart somewhat
*from orthonormality due to numerical inaccuracies. This may be a problem

if many iterations are required.

8. Inherent Ambiguities

The iterative adjustment described above may arrive at a number of appar-
ently different solutions. Some of these are just different representations of

0
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the same solution, while others are related to the correct solution by a simple

transformation. First of all, nc-e that -4 represents the same rotation as 4,
since

That is, antipodal points on the unit sphere in four dimensions represent the

same rotation. We can prevent any confusion by ensuring that the first non-
zero component of the resulting unit quaternion is positive, or that the largest

component is positive.
Next, note that the triple product, [b r, rr], changes sign, but not mag-

nitude, when we replace b with -b. Thus the two possible senses of the
baseline yield the same sum of squares of errors. However, changing the sign
of b does change the signs of both a and i. All scene points imaged are in

front of the camera, so the distances should all be positive. In the presence
of noise, it is possible that some of the distances turn out to be negative, but

with reasonable data almost all of them should be positive. This allows us to

easily pick the correct sense for the baseline.

Not so obvious is another possibility: Suppose we turn all of the left mea-
surements through 7r radians about the baseline, in addition to the rotation

already determined. That is, replace r' with

r,: 2(b. r)b -r

This follows from Rodrigues' formula for the rotation of a vector r:

cos9 r + sin9 (w x r) + (1 - cos 0)(w -r) w,

with 0 = 7r and w = b. Then the triple product [b r' rr] turns into

2(b. r')[b b r,] - [b r' r,] = -[b r' r].

This, once again, reverses the sign of the error term, but not its magnitude.

Thus the sum of squares of errors is unaltered. The signs of a and 3 are

affected, however, although this time not in as simple a way as when the
sense of the baseline was reversed.

S If [b r' r,] = 0, we find that exactly one of ae and /3 changes sign. This
can be shown as follows: The triple product will be zero when the left and

right rays are coplanar with the baseline. In this case we have yf = 0, and so

a = b + /3 r,

, Taking the cross-product with b we obtain

a(r' x b) =/3(rr x b),

If we now replace r' by r' = 2(b . r')b - r,, we have for the new distances a'

and 0' along the rays:

.. -a' (r' x b) =/'(r x b),

, J1.We conclude that the product W/3' has sign opposite to that of the product
a/I. So if a and /3 are both positive, one of a' or /3' must be negative.
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In the presence of measurement error the triple product will not be ex-
actly equal to zero. If the rays are nearly coplanar with the baseline, however,
we find that one of a and 13 almost always changes sign. With very poor data,

it is possible that both change sign. (Even with totally random ray directions,
however, this only happens 27.3% of the time, as determined by Monte Carlo
methods). In any case, we can reject a solution in which roughly half the
distances are negative. Moreover, we can find the correct solution directly by
introducing an additional rotation of 7r radians about the baseline.

9. Remaining Ambiguity

If we take care of the three apparent two-way ambiguities discussed in the
previous section, we find that in practice a unique solution is found, provided
that a sufficiently large number of ray pairs are available. That is, the method
converges to the unique global minimum from every possibly starting point

*in parameter space.

Local minima in the sum of squares of errors appear when only a few
more than the minimum of five ray pairs are available (as is common in prac-
tice). This means that one has to repeat the iteration with different starting
values for the rotation in order to locate the global minimum. A starting
value for the baseline can be found in each case using the closed-form method
described in section 5. To search the parameter space effectively, one needs
a way of efficiently sampling the space of rotations. The space of rotations

is isomorphic to the unit sphere in four dimensions, with antipodal points
identified. The rotation groups of the regular polyhedra provide convenient
means of uniformly sampling the space of rotations. The group of rotations of

wthe tetrahedron has 12 elements, that of the hexahedron and the octahedron
has 24, and that of the icosahedron and the dodecahedron has 60 (representa-
tions of these groups are given in Appendix A for convenience). One can use

0 these as starting values for the rotation. Alternatively, one can just generate
a number of randomly placed points on the unit sphere in four dimensions as
starting values for the rotation.

When there are only five pairs of rays, the situation is different again. In
. this case, we have five non-linear equations in five unknowns and so in general

expect to find a finite number of exact solutions. That is, it is possible to

find baselines and rotations that satisfy the coplanarity conditions exactly
and reduce the sum of squares of errors to zero. If we ignore the three types
of ambiguities discussed above (incuding the rotation by 7r radians about the
baseline), then there are generally four distinct sets of baselines and rotations
that yield an exact solution. Typically only one of these yields positive signt
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for all of the distances. These are empirical observations; I have not been able

to prove that there are generlly four solutions that satisfy the coplanarity

conditions.

10. Summary of the Algorithm

Consider first the case where we have an initial guess for the rotation. We
start by finding the best-fit baseline direction using the closed-forni method
described in section 5. We determine the correct sense of the baseline by

choosing the one that makes most of the signs of the distances positive. Then
we proceed as follows:

* For each pair of corresponding image points, we compute r', the left
ray direction rl,, rotated into the right camera coordinate system,
using the present guess for the rotation.

* We then compute the cross-product ci = r', x rr,,, the double cross-
product di = r,, x (r,, x b) and the triple-product t, = [b rt r,iI.

* We accumulate the dyadic products ccT, cdT and ddT, as well
as the vectors tiei and tidi. The totals of these quantities over all

image point pairs give us the matrices C, F, D and the vectors
CO and d.

* We can now solve for the increment in the baseline bb and the in-
crement in the rotation bw using the method derived in section 6.

* We adjust the baseline and the rotation using the methods discussed
in section 7, and recompute the sum of the squares of the error terms.

The new orientation parameters are then used in the next iteration of the
above sequence of steps. As is the case with most iterative procedures, it is

hard to decide when to stop. Typically, the total error becomes small after a

few iterations and no longer decreases at each step, because of limited accuracy
in the arithmetic operations. One can stop the iteration the first time the error

increases. Alternatively, one can stop after either a fixed number of iterations

or after the error becomes less then sonic predetermined threshold.

When the decision has been made to stop the iteration, a check of the

signs of the( distances along the rays is in order. If most of them are negative,
the baseline direction should be reversed. If neither sense of the baseline
direction yields mostly positive distances, one needs to consider the possibility

of a rotation through 7r radians about the baseline b. If this also yields mixed
signs, one is dealing with a local extreinum of the error function; something

, that will only happen if the, initial guess is in fact not. adequate.

If an initial guess is not available, one proceeds as follows:

IP
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* For each rotation in the chosen group of rotations, perform the above
iteration to obtain a candidate baseline and rotation.

* Choose the solution that yields the smallest total error.

When there are many pairs of rays, the iterative algorithm will converge to
the global minimum error solution from any initial guess for the rotation.

There is no need to sample the space of rotations in this case. Also, instead
of sampling the space of rotations in a systematic way using a finite group
of rotations, one can generate points randomly distributed on the surface of

the unit sphere in four-dimensional space. This provides a simpler means of

generating initial guesses, although more initial guesses may have to be tried

than when a systematic procedure is used to sample the space of rotations.

The method given minimizes the sum of the squares of the triple products

[b rrr].

If desired, one can modify it to use some multiple of the triple product as an
error term by weighting the contribution to the overall sum. This can lead to a

considerably more complex optimization problem if the weights depend on the
unknown baseline and the unknown rotation. This happens, for example, if
we try to minimize the sum of squares of the sines of the angles corresponding
to vertical disparity:

si _ [b r _rr]

5 11b x r'lx I1b x r"

If we assume that the weighting factors vary slowly during the iterative pro-
cess, however, we can to use the current estimates of the baseline and rotation
in computing the weighting factors, and not take into account the small vari-
ations in the error sum due to changes in the weighting factors. That is, when
taking derivatives, the weighting factors are considered constant. This is a
good approximation when the parameters vary slowly, as they will when one

is close to an extremum.
6!

11. Critical Surfaces

In certain rare cases, relative orientation cannot be recovered fully, even when

there are five or more pairs of rays. Normally, each error term varies linearly
with distance in parameter space from the location of an extremum, and so the

sum of squares of errors varies quadratically. There are situations, however,
where the error terms to not vary linearly with distance, but quadratically or

higher order, in certain special directions in parameter space. In this case, the
sum of squares of errors does not vary quadratically with distance from the
extreinum, but as a function of the fourth or higher power of this distance.

I"



Relative Orientption 19

This makes it very difficult to accurately locate the extremum. In an extreme
situation, the total error may Tiot vary at all along some curve in parameter
space. In this case, the total error is unaffected by a small change in the

rotation, as long as this change is accompanied by a corresponding small
change in the baseline. There is no localized extreinuin and consequently
the solution for relative orientation is not unique. It turns out that this
problem arises only when the observed scene points lie on certain surfaces
called Gefdhrliche Fldchen or critical surfaces [Brandenberger 1947, tofinann
1949, Zeller 1952, Schwidefsky 1973]. We show next that only points on
certain hyperboloids of one sheet and their degenerate forms can lead to this
kind of problem (see also [Horn 1987b]).

We could try to find a direction of movement in parameter space (6b, bw)
that leaves the total error unaffected when given a particular surface. Instead,
we will take the critical direction of motion in the parameter space as given,
and try to find a surface for which the total error is unchanged.

Let R be a point on the surface, measured in the right camera co.w)rdinate
system. Then

,3r,=R and art'=b+R,

for some positive a and/3. In the absence of measurement errors,

1[b r, r ] = - [b (b + R) R] = 0.
ai

We noted earlier that when we change the baseline and the rotation slightly,

the triple product [b r' r,] becomes

[(b + 6b) (r', + 6w x rj) r,],

or, if we ignore higher-order terms,

[b r' ri] + (r' x r,) 6b + (r, x b).(6w x r').

The problem we are focusing on here arises when this error term is unchanged
for small movement in some direction in the parameter space. That is when

(r, x r,) 6b + (r, x b). (bw x r') = 0,

for some 6b and bw. Introducing the coordinates of the imaged points we

obtain:

1 (((b + R) x R) b (R x b). (6w x (b + R)) 0,

or

(R x b) . (6w x R) + (R x b). (6w x b) + [b R 6b] 0.

If we expand the first of the dot-products of the cross-products, we can write
this equation in the form

(R. b)(bw R) - (b . 6w)(R. R) + L. R = 0,A/i
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where. ',

w L= x b, while t-=bxbw+6b.

The expression on the left-hand side contains a part that is quadratic in R
and a part that is linear. The expression is clearly quadratic in X, Y, and
Z, the components of the vector R = (X, Y, Z)T. Thus a surface leading to

the kind of problem described above nmust be a quadric surface [Korn & Korn
1968].

Note that there is no constant term in the equation of the surface, so
R = 0 satisfies the equation. This means that the surface passes through the
right projection center. It is easy to verify that R = -b satisfies the equation
also, which means that the surface passes through the left projection center
as well. In fact, the whole baseline (and its extensions), R = kb, lies in the
surface. This means that we must be dealing with a ruled quadric surface. It

can consequently not be an ellipsoid or hyperboloid of two sheets, or one of
their degenerate forms. The surface must be a hyperboloid of one sheet, or

one of its degenerate forms. Additional information about the properties of
these surfaces is given in Appendix B, while the degenerate forms are explored

in Appendix C.

It should be apparent that this kind of ambiguity is quite rare. This is

nevertheless an issue of practical importance, however, since the accuracy of
the solution is reduced if the points lie near some critical surface. A textbook
case of this occurs in aerial photography of a roughly U-shaped valley taken
along a flight line parallel to the axis of the valley from a height above the
valley floor approximately equal to the width of the valley. In this case the

baseline lies on a circular cylinder that also lies close to the surface on which

the imaged points lie. This means that it is close to one of the degenerate
forms of the hyperboloid of one sheet (see Appendix C).

Note that hyperboloids of one sheet and their degenerate forms are ex-
actly the surfaces that lead to ambiguity in the case of motion vision. The
coordinate systems and symbols have been chosen here to make the correspon-
dence between the two problems more obvious. The relationship between the
two situations is nevertheless not quite as transparent as I had thought earlier

[Horn 1987b]. In the case of the ambiguity of the motion field, for example, we
are dealing with a two-way ambiguity arising from infinitesimal displacements.
Here we are dealing with an infinite number of solutions arising from images
taken with cameras that have large differences in position and orientation.
Also note that the symbol bw stands for a small change in a finite rotation

here. while it refers to a difference in instantaneous rotational velocities in the

motion vision case.
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12. Conclusions

Methods for recovering the relative orientation of two (a!l( ra. a" ic mi,,,
tance in both binocular stereo and motion vision. A new It crat ivxe ili'tfI ( f )r

finding the relative orientation has been described( he're. It c';II ,c 1ii ,.e .n
when there is no initial guess available for the rotation (or the easeiiie. The

new method does not use Euler angles to represent the orientatioti.

When there are many pairs of corres)onding image points, thl(i t ,rat ie

4, method finds the global minimum from any starting point in t ratlit. p),Ic.

Local minima in the sum of squares of errors occur, however. wh,,ii ther,
are relatively few pairs of corresponding image points available. Ic h()d fun

efficiently locating the global minimum in this case were discussed. Wen uilv

five pairs of corresponding image points are given, several exact s ,,h tions of

the coplanarity equations can be found. Typically only onIe of the, e viels
positive distances to the points in the scene, however This allows on, to p)ick

*the correct solution even when there is no initial guess available.

All of these methods fail in the rare case that the scene points lie on a

critical surface.
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Appendix A-Rotation Groups of Regular Polyhedra

Each of the rotation groups of the regular polyhedra call be generated from
two judiciously chosen elements. For convenience, however, an explicit rep-

resentation .ff all of the elements of each of the groups is given here. The
itnumber of differelit component values occuring in the unit quateriiols r(,-

resenting the rotations can be kept low by careful choice of the alignment of

the polyhedron with the coordiinate axes. The attitudes of the polyhedra hecre

were selected to iiinimize the number of different numerical values that occur

in the components of the unit quaternions. A different representation of the
group is obtained if the vector parts of each of the unit quaternions is rotated
in the same way. This just corresponds to the rotation group of the polyhe-

dron in a different attitude with respect to the underlying coordinate systelm.
N 4This observation leads to a convenient way of generating finer systematic sam-

pling patterns of the space of rotations than the ones provided directly by tle
* rotation group of a regular polyhedron in a )articular alignment with the

coordinate axes (see also [Brou 1983]).

4 5 The components of the unit quaternions here may take on the values 0
and 1, as well as the following:

V

"-' x5 11 1 v15-+ 1
1"- 1- ,and d="4 b b 2- V2 d 4

Here are the unit quater-nios for the twelve elements of the rotatiol

group of the tetrahedron:

(1. 0, 0. 0) (0, 1.0.O) (0, 1. 0) (0, 0, 0, 1)
(b, b, b, b) (b, b. b.-b) (b, b,-b, b) (b, h,-b.,-b)
(b,-b, b. b) (b.-b. b.-b) (b,-b,.-b, b) (b,-b,-b. -b)

Here are the unit quaternions for the twenty-four elemnts of the rotation
group of the octahedron and the hexahedron (cube):

(1. , 0, 0 ) (0, 1, 0, 0) (0. , 1, 0) (0, 0, 0, 1)

(0, 0, c, c) (0, 0, c,-c) (0, c, 0. c) (0, c, 0,-c)

(0, c, c, 0) (0, c,-c, 0) (c, 0. 0, C) (c, 0, 0,-c)m. (c, 0, c, 0) (c, 0,-c, 0) (c, c, 0, 0) (c,-c, 0, 0)
(b, b, b, b) (b, b, b,-b) (b, b,-b, b) (b, b,-b,-b)
(b. ,b, b, b) (h,-b, b,-,) (b,-b,-b, b) (b,-b,-b,-b)

Here are the unit quaternions for the sixty elements of tile rotation group of

the icosahedon and the dodecahledron:

S. #% % '
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(1, 0, 0,0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(0, a, b, d) (0, a, b, -d) (0, a, -b, d) (0, a, -b, -d)
(0, b, d, a) (0, b, d, -a) (0, b, -d, a) (0, b,-_d, -a)
(0, d, a, b) (0, d, a, -b) (0, d, -a, b) (0, d, -a, -b)
(a, 0, d, b) (a, 0, d, -b) (a, 0, -d, b) (a, 0, -d, -b)
(b, 0, a, d) (b, 0, a, -d) (b, 0, -a, d) (b, 0, -a, -d)
(d, 0, b, a) (d, 0, b, -a) (d, 0, -b, a) (d, 0, -, -a)
(a, b, 0, d) (a, b, 0, -d) (a, -b, 0, d) (a,-b, 0,-d)
(b, d, 0, a ) (b, d, 0, -a) (b, -d, 0, a) (b, -d, 0, -a)
(d, a, 0, b) (d, a, 0, -b) (d, -a, 0, b) (d, -a, 0, -b)
(a, d, b, 0) (a, d, -b, 0) (a, -d, b, 0) (a,-d,-b, 0)
(b, a, d, 0) (b, a, -d, 0) (b, -a, d, 0) (b,-a,-d, 0)
(d, b, a, 0) (d, b, -a, 0) (d, -b, a, 0) (d,-b,-a, 0)
(b, b, b, b) (b, b, b, -b) (b, b?, b, b) (b, b, -b, -b)
(b, -b, b, b) (b, -b, b, -b) (b,-b,-b, b) (b, -b?,-b, -b)

Remember that changing the signs of all the components of a unit quaternion
does not change the rotation that it represents.

Appendix B-Some Properties of Critical Surfaces A

In this appendix we develop some more of the properties of the critical sur-
faces. The equation of a critical surface can be written in the form

(R xb)-(bw x R)±+L -R =0,

or
(R.- b)(bw -R) - (b -6w)(R.- R) + L -R = 0,

where
L=Ixb, while t=bx6w±Sb.

4 It is helpful to first establish some simple relationships between the quantities

appearing in the formula above. We start with the observations that t -b = 0,
that t -bw = b*6w, and t x bb = -(bb. - w)b.

We can also expand L to yield,

4L =bw - (b. 6w)b + 6b x b.

It follows that L - b = 0, that L - b = 6w -bb, and

L x b = -(b x bw + bb) = -1,

L xbw = (bbw)b -(b - w)f.

We have already established that R = k b is an equation for one of the rulings
passing through the origin. A hyperboloid of one sheet has two intersectinkg

4
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families of rulings, so there should be a second ruling passing through the
origin. Consider the vector S defined by

S = (L x 6w) x L,

which can be written in the form

S = (L. L)6w - (L.w)L,

or

S = (6w .6b)f + (b -6w)(f . )b,
so that S. b = (b.6w)( . f) and S* 6w = (6w-b) 2 + (b. w) 2( . ).

If we substitute R = k S into the formula

(R x b). (6w x R) + L. R,
we obtain zero, since L • S = 0 and

S x b = (6w . b)L

is orthogonal to

S x 6w = -(L - w)L x 6w.
We conclude that R = kS is an equation for the other ruling that passs
through the right projection center.

There are two families of parallel planes that cut an ellipsoid in circular
cross-sections [Hilbert & Cohn-Vossen 1953]. Similarly, there are two families
of parallel planes that cut a hyperboloid of one sheet in circular cross-sections.
One of these families consists of planes perpendicular to the baseline, that is,
with common normal b. We can see this by substituting R b = k in the
equation of the critical surface. We obtain

k(6w. R) - (b. 6w)(R • R) + L. R = 0,

or

(b-6w)(R. R) - (k w + L). R = O.

This is the equation of a sphere, since the only second-order term in R is a
multiple of

R. R = X 2 + Y 2 Z2 .

We can conclude that the intersection of the critical surface and the plane is
also the intersection of this sphere and the plane, and so must be a circle.
The same applies to the intersection of the critical surface and the family of
planes with common normal 6w, since we get

(b. 6w)(R. R) - (k b + L) . R = 0,

when we substitute R 6w = k into the equation of the critical surface.
The equation of the critical surface is given in the implicit form f(R) =

0. The equation of a tangent plane to such a surface can be obtained by
differentiating with respect to R:

N=(Rx w) xb+(Rxb)x6w+L
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- or

N = (R. b)bw + (R. 6w)b - 2(b. -w)R + L

The tangent plane at the origin has normal L. This tangent plane contains
- the baseline (since L b = 0), as well as the other ruling passing through the

origin (since L S = 0). Note that the normal to the tangent plane is not
constant along either of these rulings, as they would be if we were dealing
with a developable surface.

In the above we have not considered a large number of degenerate situ-
ations that can occur. The reader is referred to Appendix C for a detailed
analysis of these.

Appendix C-Degenerate Critical Surfaces

There are a number of special alignments of the infinitesimal change in the
rotation, 6w, with the baseline, b, and the infinitesimal change in the baseline

~ 6b that lead to degenerate forms of the hyperboloid of one sheet.
One of the rulings passing through the origin is given by R = k b, while

the other is given by R = k S. If these two rulings become parallel, we are
dealing with a degenerate form that has only one set of rulings, that is a
conical surface. Now

S = (6w 6b)l + (b -6w)(1. t)b,
is parallel to b only when (6w 6b) = 0, since t is perpendicular to b. In this

1% case
6b.6w=0 and b-b=0,

so bb = k(b x 6w) for some constant k. Consequently t = (k + 1)(b x bw),
The vertex of the conical surface must lie on the baseline since the baseline
is a ruling, and every ruling passes through the vertex. It can be shown that
the vertex actually lies at R = -(k + 1)b.

* We also know that cross-sections in planes perpendicular to the baseline
are circles. This tells us that we are dealing with elliptical cones. Right
circular cones cannot be critical surfaces. It can be shown that the main axis
of the elliptical cone lies in the direction b + 6w.

A special case of the special case above occurs when

lib x 6w11 = 0,
that is bw 1 b. Here bw = k b for some constant k and so t 6b and
L = 6b x b. The equation of the surface becomes

k(R. b) 2 - k(b. b)(R. R) + L R = 0,

or
k lilt x b12 + (6b x b) R 0.

•4
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This is the equation of a circular cylinder with axis parallel to the baseline.
In essence, the vertex of the c( ne has receded to infinity along the baseline.

Another special case arises when the radius of the circular cross-sections
with planes perpendicular to the baseline becomes infinite. In this case we
obtain straight lines, and hence rulings, in these planes. The hyperbolic
paraboloid is the degenerate form that has the property that each of its two
sets of rulings can be obtained by cutting the surface with a set of parallel

planes [Hilbert & Cohn-Vossen 1953]. This happens when 6w is perp(ndicular
to b, that is, b . 6w = 0. The equation of the surface in this case simplifies to

(R. b)(bw. R) + L. R = 0.

The intersection of this surface with any plane perpendicular to the baselihe
is a straight line. We can show this by substituting

Rb= k,

into the equation of the surface. We obtain

(k 6w + L) . R = 0,

that is, the equation of another plane. Now the intersection of two planes is
a straight line. So we may conclude that the intersection of the surface and
the original plane is a straight line. We can show in the same way that the
intersection of the surface with any plane perpendicular to bw is a straight
line by substituting

R 6w = k
into the equation of the surface. It can be shown that the saddle point of the
hyperbolic paraboloid surface lies on the baseline.

A special case of particular interest arises when 6w is perpendicular to
both b and bb, that is,

b.6w=0 and 6b-6w=0,

and so bw = k(6b x b), for some constant k. Then t = (k + 1)Sb and
. L = (k + 1)(bb x b). The equation of the surface becomes

k(R. b)((6b x b) . R) + (k + 1)((6b x b) - R) = 0,

or just
(k(R. b) + (k + 1)) ((6b x b) . R) = 0.

so either

(bbxb)-R=0 or k(R.b)+(k+1)=0.
The first of these is the equation of a plane containing the baseline b and
the vector 6b. The second is the equation of a plane perpendicular to the

O. , ,baseline. So the solution degenerates in this case into a surface consisting of
two intersecting l)lanes. One of these planes appears only as a line in each of
the two images, since it passes through both projection centers, and so does
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not really contribute to the image. It is fortunate that planes can only I.
degenerate surfaces if they are perpendicular to the baseline, since surfaces

that are almost planar occur frequently in aerial photography.'

To summarize then, we have the following degenerate cases:

, elliptical cones when 6w ± bb,

0 circular cylinders when 6w 11 b,

* hyperbolic parabloids when bw I b,

0 intersecting planes when 6w ± bb and w -L b.

For further details, and a proof that not all hyperboloids of one sheet passing
through the origin lead to critical surfaces, see [Horn 1987b].

M

1The baseline was nearly perpendicular to the surface in the sequence of pho-
tographs obtained by the Ranger spacecraft as it crashed into the lunar surface.
This made photograinetric analysis difficult.
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