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_:: Introduction.

X
,n

o This paper has two main themes. It tries to model early vision processes
\ in terms of minimizing energy functions. Secondly it examines methods of

sy minimizing these functions, in particular analog style networks.

The first section gives some background on the use of energy functions
and neural networks in vision. The next few sections describe work done
A by the author and collaborators on a number of vision problems. The final

{ sections discusses limitations to this approach.
- 1. Energy Functions and Networks.

e It is convenient to divide vision up into two stages. In the first stage the

v visual scene is analysed, segmented, and properties such as depth, colour and
texture are extracted. In the second stage objects are recognized and high
(0 level information is used. The output of the first stage is a representation of
o the scene in terms of depth values, colour and so on. This representation can
be called a 2 — 1/2 D sketch (Marr 1982) or an Intrinsic Image (Barrow and
]
A Tennenbaum 1981). It is generally assumed (Marr 1982, Horn 1986, Ullman ‘#___‘
1979) that the construction of such a representation does not involve any

1 knowledge of the world (or of the task Leing performed) more sophisticated v

than low level assumptions, such as the rigidity of objects. This representation

oy . .
w @'ﬁ is produced by a number of independent modules, such as stereo, structure
" = P RN

LRI NS )

R G N A A S A D At

- - - A « ™
EAENE -
AR L RN




% % S

-
-

)
\

2

from motion, shape from shading. This paper will confine itself entirely to

the modules of early vision.

A number of these modules have been modelled in terms of energy func-
tions. Ullman (1979) described a theory of motion involving solving the cor-
respondence problem between image frames by minimizing a cost function.
Ikeuchi and Horn (1981) describe a theory of shape from shading using a
variational principle and Ikeuchi (1980) uses a similar technique for shape
from texture. Ikeuchi (1980) describes how this technique is able to impose
smoothness constraints on the object and draws the analogy with imposing
constraints in Artificial Intelligence. These methods can be illustrated by
work on optical flow by Horn and Schunk (1981). Let the brightness function
be I(z,,z2,t). Then, assuming that points with the same image intensity over

time correspond, the velocity field (v, v;) obeys

oI o1

—vi+—=—=0 1.1

5z T Bt (1.1)
where we use the summation convention over repeated indices (for example
a;b; = a)b; + azb;). Now (1.1) is a single equation for the two unknowns
(v1,v2) and does not specify them uniquely. To obtain a unique solution Horn

and Schunk assume continuity of the velocity field and ininimize a function
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g Here the first term corresponds to requiring smoothness of the velocity
l‘q
" field and the second to enforcing (1.1) . They define an iterative algorithm to
D, minimize (1.2) and obtain good results.
LY .
P Many other vision problems have been treated in a similar way and we
: mention a few examples. Hildreth (1984) used a similar method to solve the
s : : ,
: aperture problem for motion based on zero crosssing contours. Grimson (1981)
%
' uses a similar approach to interpolate a surface through sparse stereo data.
y
" Terzopoulos (1984) extended Grimson’s work using more sophisticated tech-
’ -
' .
. f.‘ niques. Poggio and Torre (1984) descovered the similarity of these methods
i
:‘, to a branch of mathematics called regularization theory (Tikhonov 1977) and
]
Q:, proposed a unified framework. These methods all had an important property
rf: that was both a weakness and a strength; they usually imposed continuous
! solutions and smoothed over discontinuities. Regularization theory (Poggio
.'{’
(., and Torre 1984) indeed required that the solution to a problem depended
D)
]
3: smoothly on the data. Inserting a discontinuity in the solution would require
()
L
L)
"' a ycs/no decision, and hence could not depend continuously on the data. *
N * Terzopoulos (1984) suggested the surface could be interpolated smoothly and
)
)
’ then the boundaries found by an edge detection operation measuring the “tension”
:‘: .ﬁ@-. in the smoothed surface.
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This inability to deal with discontinuities however had important practical ad-
vantages, the energy functions tended to be convex and not have local minima.
Thus they could be minimized by simple methods such as gradient descent.
More sophisticated techniques could be used to speed up the convergence. For
example, Terzopoulos (1984) adapted a multi-layer algorithm due to Brandt

(1977).

To deal with discontinuities a new approach was needed. Geman and Ge-
man (1984) did work on image segmentation using line processors. These are
illustrated in figure 1. There are two lattices, the ;tandard space lattice and
an additional line processor lattice. The line processor elements are either on
or off. When a line processor is on it breaks the constraints between the ad-
jacent space pixels. Similar work was reported by Blake (1983) who used the
idea of weak constraints * , that is to say constraints which must be satisfied

almost everywhere but which can be broken at a cost. The binary nature of

the line processors means that discontinuities can be dealt with. However the

energy functions are no longer convex and new strategies are needed to mini-
mize them. Various methods have been tried. Geman and Geman (1984) use
simulated annealing while Blake (1983) uses a method which systematically

approximates the energy function by a convex one, graduated non-convezity..

* Based on work by Hinton (1979). ™
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- {:-:'_.: Marroquin, (1985) Marroquin et al (1987) interpret the energy functions in
o) L
terms of probability theory using the Clifford Hamersley theorem, a connec-
.
. tion described in Geman and Geman (1984). Instead of minimizing the cnergy
‘ -
¢ function they use probabilistic algorithms to estimate the maximum a pos-
.
: teriori Bayesian estimate of the solution. Apart from simulated annecaling,
b
“ which takes a long time, none of these methods are guaranteed to converge
" to the correct result.
#
£ In this paper we will describe an alternative approach to minimizing
ko
‘ these energy functions based on analog networks of the Hopfield type. Math-
e “- cmatically this gives a method of smoothing the energy function reducing the
i 4
" number of local minima. It is also implemented by a network which could be
v,
- built in V.L.S.I1. and which could possibly be implemented by real neurons.
1 The V.L.S.I. network would be massively parallel and could minimize the en-
]
3 ergy function orders of magnitude faster than serial, or parallel computers.
Hopficld networks were originally designed to be an associative parallel mem-
o3 ory (1982, 1984). In Appendix (1) we give a simple introduction to Hopfield
e
- . .
networks and then show how their formalism can be extended to allow some
i: generalizations. Although the Hopfield networks are nonlinear we can usu-
;
D
. ally write analytic closed forms for the solutions they converge to. There is
<
" @ cmpirical evidence that they often converge to the correct result. Moreover
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we can prove mathematically that they will always converge to a solution of
the mean field theory equations and thus represent a deterministic method
to approach the probabilistic solutions (see also Marroquin 1987). There are

also similarities with the graduated non-convexity approach of Blake (1983).

Many vision algorithms were designed to be implemented on neuronally
plausible networks. For example Horn’s work on colour (1973) was partially
intended as a possible model of the human colour system. Cooperative stereo
algorithms by Arbib and Dev (1975) and Marr and Poggio (1977) were also
implemented by simple neural-like elements. * Terzopoulos (1984) suggested
the use of analog networks for surface interpolation, but did not implement
them. Poggio et al (1985) developed analog networks for quadratic regulariza-
tion energy functions. They note that, supposing we are considering motion
smoothing, minimizing the energy function E(v;,0v;0z;) given by (1.2) is
equivalent to solving the associated Euler Lagrange equations (Courant and

Hilbert 1953)

* Interestingly the Marr and Poggio network can be considered as of discrete Hop-
field network. Discrete Hopfield networks, however, are less effective than con-
tinuous networks for minimizing functions since the continuous networks smooth

the energy function removing local minima.
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Since E(v;, Ov;0x ) is quadratic in v;, Qv;0z ; the equations (1.3) are linear
in v; and its derivatives. Any system of linear equations can be modelled by

an analog network involving resistances, capacitors and inductances (Kaplus
1958) * and hence (1.3) can be solved for such a network.

Hopfield style networks could also be adapted to minimize (1.2) and it
is interesting to consider the differences with the networks described above.
Hopfield networks have a dynamical update rule, which for this problem cor-

responds directly to a continuous form of steepest descent,

dv; OFE
i —aT,i. (1.4)
It follows from the chain rule of differentiation that the energy function

E(t) will continuously decrease with time

dE  JEOJE
717:*517.5179)' (1.5)

E 1s bounded below, by 0, and so with this dynamics the system has to

converge to a minimum of E. Thus E 1s a Lyaponov function.

The analog networks of Poggio ot al (1985), and the networks of Hopfield.,

*Spedial tricks are needed to get negative resistors
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can all be constructed out of simple electronic elements (resistors, operational
amplifiers, etc). They are also compatible with the existing knowledge of the
electrical behaviour of the dendrites and axons of neurons. Thus neural hard-
ware would be capable of implementing such networks, although the evidence

suggests that neurons are considerably more complicated.

2. Surface Interpolation

Surface interpolation is a good example for illustrating the difference
between energy functions requiring smoothness and those allowing disconti-
nuities. Following the work of Geman and Geman for image restoration, an

energy function for surface interpolation can be written (Marroquin 1985), *

E(f,)=) (fi— fr)? (A= 1)+ Ca)_(fi—di) +C1Y_ L. (21)
Here the d; correspond to the depth data, the f; to the desired answer and

the /; to the line process elements. Cy and C; are constants. The line process

* For simplicity of the mathematics we write the energy function in one dimension.

All the results described also hold for two-dimensional surfaces.
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lattice is interposed with the space lattice, see figure 1. The [/; can take values
0 or 1. If the I; are all set equal to zero then F reduces to standard surface
interpolation with a membrane * . This formulation allows the smoothness
counstraint, enforced by the first term of (2.1), to be broken at a cost. If the
surface gradient, f; — fiy;. becomes too large the line process term [; can
switch on at a cost of C; in the third term. See figure 1.

This energy function can be generalized to two dimensions in a straight-
forward manner (Marroquin 1985, Blake 1983, Koch. Marroquin and Yuille
1986). Additional terms can be added to the energy function to impose con-
tinuity of lines. The interpolation can be generalized from membranes to thin
plates by including terms with second order derivatives. This will require in-
troducing surface gradient processors corresponding to discontinuities in the
surface gradient.

There has been much work on surface interpolation and several peo-
ple have used energy functions of form (2.1). Different strategies were used
to minimize (2.1), Blake uses a technique called graduated non-convexity in
which a non-convex energy function is gradually transforned into a convex
one. This method is not guaranteed to find the global minima of the original

cnergy function and may only work for dense data, nethertheless it gives good

¥ Membranes and thin plates correspond to minimizing the first and second deriva-

tives of a surface respectively.
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:: Figure 1 The line processors. In (a) there are no line processes and the

SN
interpolation process assumes that the points lie on a single surface. In

o (b) the line processes switch on and break the surface where the gradient
®

Mt is large.

empirical results. Marroquin used simulated annealing and a number of other

statistical and deterministic algorithms. Again these were not guaranteed to

W always succeed but give good results. j
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Since there are no guaranteed methods to find the minima of (2.1) we
would like a technique that may 1.0t always suceed but which is very fast. In
a series of papers Hopfield (1982, 1984, 1985) describes networks made up of
simple analog devices. These networks have two important properties. Firstly
they could be implemented in V.L.S.I. and perform parallel computations at
speeds orders of magnitude faster than existing parallel (or serial) computers.

Sccondly the networks may be biologically plausible.

From our viewpoint these networks have a third advantage; they are able
to find good estimates of the global minima of non-convex energy functions.
Hopfield and Tank (1985) demonstrated that they could find close solutions
to the Travelling salesman problem (to within a few percent of the optimum
length) for up to thirty cities. The work described below was first reported
in Koch, Marroquin, Yuille (1986). We now show how to design a network to

minimize (2.1).

The key point of the Hopfield approach is to replace the binary variables
I; by continuous variables V; lying in the region [0, 1]. Each V; is related to an
internal variable U;, which is unbounded, by a gain function ¢, V; = ¢(U;). A

typical choice for g is

9(ui) = T

'h.':‘




VT

e

S 3

<22 %%
e
e W Wy

12
This is a sigmoid function monotonically increasing from 0 as u; — —oo

to 1 as u; — oo. The parameter A controls its “sharpness”. As A — o0 it

T
’.

becomes a Heaviside (step-edge) function. The energy function can now be

o

 FAS

&

written

-~

ls b“) Ed

o

’

V=V,
E(f,V) =Z(f.-—f.~+1)2(1—V.-)+Ca Y (fimdi+CiY_Vi+Cy Y /V . g~ (V)dV

(2.3)

LR
e e

LNLNEA

where the last term is a gain function term. The dynamical equations are

oF

LT,
'-'_",_\ N

dU; _ OE
dt oV,

Y

(2.4a)

-
.
A
»
%

LALLS
";'.'.'J /7

R

F A e g

)
dt —  8f;

A

(2.4b)

Observe that since U; is related to V; by the gain function (2.2) the V;*

XX L

X

will always lie in [0,1]. This type of dynamics is gradient descent for the f;.

If we substitute for U; in (2.4a) it becomes

DyiY

dv; OE

puldS (1 — V. 2=
v It 22vi(1 ")BV,- (2.5)
2
:Ei and so is a form of gradient descent for the V; with a weight factor. It can
g

easily be checked that E is a Lyaponov function for the system 21
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dE OE OE ,2dV;
@~ LGp) - Ly @0

Since V; is a monotonic function of U; the right hand side of (2.6) is
Thus E always decreases and is bounded below, so the

always negative.

system coverges to a minima.

Koch, Marroquin and Yuille (1986) describe the implementation details.
The system was simulated on a Symbolics 3600 LISP machine. The system
was tested first in 1-D and then in 2-D. Some experimentation was needed
to find suitable values for the parameters Cq,Ci, Cy. The system performed
well even with noisy data and with sparse sampling (sometimes as low as five

percent of the points were sampled).

The A parameter controls the degree of smoothing of the gain function.
For high A the V; are essentially forced to be either 0 or 1 and the continuous
system (2.3) is close to the discrete system (2.1). For small A the energy func-
tion becomes convex (this can be verified by calculating the Hessian of (2.2)).
Thus ) corresponds to the degree of smoothing of the problem. Altering the
value of A to change the degree of convexity of the energy function is analogous
to graduated non-convexity (Blake 1983). For our simulations the only differ-
ence in running the networks with small or large A was the convergence time.

,';}-\ The smaller A, the longer it took to converge, without any significant effect
Ed

NN
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on the final solution. The convergence time of the networks was usually a few
time constants (using the adiabatic expansion it can be shown that networks

obeying equations (2.4) reach a final state after a few time constants).

The fact that the network converges even with high A suggests a hybrid
strategy to minimize (2.1). The f; are continuous and are updated by gra-
dient descent while the V; are discrete. The V; are sampled at random and
changed if this reduces the energy. Some experimental success is repcrted
with this (Koch, Marroquin and Yuille 1986). For further work see Hutchin-
son and Koch (1986), Marroquin (1985), Marroquin et al (1987). Clearly such

a strategy will only work if the energy function (2.1) has few local minima.

We now perform a new analysis of the network and prove results showing
that it converges to a solution of the mean field theory equations. If we use
a probabilistic algorithm, like the Metropolis algorithm, in the final state of
the system each line process l; will be on with a certain probability p;(T),
where T is the temperature. The network will converge to a state where the
line process elements take deterministic values p;(T) where T is inversely pro-
portional to A. It is in this sense that the network is a solution of the mean
field theory equations. Note that, because of the coupling with the depth
field f;, there will be several solutions to the mean field theory equations and

we cannot guaurantee that we will find the one with least energy. Another

-
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q-::: o deterministic method, based on probabilistic considerations, of finding solu-
\ ‘1’. .: -::'

tions of the mean field theory equations for this problem has been proposed

RN

e
:}f: by Marroquin (1987).
B Using (2.6) and substituting for V' we see that the energy function E
D
N
A "-’ decreases at the rate
3 %:

\

dE OE OE .2 dU,
N g=—2(5f—i)2—2(w ) (2.7)

L The energy is bounded below so the system converges to a state with
,{ - dE/dt = 0. From (2.7) we see that this implies (note that dU;/dV; is always

positive and non-zero)

OF
25 37, =0 (2.8a)

o o8 _
g a0 =© (2.8b)

N Note that

',0'\:. 6V, _ 2/\
o ou; (eAUi 4 e—AUi)2"

(2.9)

3 We calculate

e OE 2 e o2 . 0
e & o0, = @Oy eup i T GERGU). (210
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This function has zeros at CyU; = (fiy1 — fi)? — Ci and at +oo. Cal-

culating the second derivatives of E with respect to U; we see that the zeros

at % inf are maxima and the zero at CyU; = (fiy1 — f:)? — C; is a minimum.

Thus although F is not convex with respect to U, it has a unique minimum.

Note that none of the V; will be exactly 0 or 1. The true energy minima will

therefore have

CyUi = (fit1 = fI)* = Cu.

(2.11)

Recall that, for large A, the sign of U; determines whether V; = 0 or 1.

Thus a discontinuity will be imposed only if

(fis1 — fi)? > Cu.

The depth terms f; will obey

(fi—fix)A=-VO)+(fi - imr )X =Vis))+ (fi—di) =0.

We rewrite (2.11) in termns of [; as

1
1.‘ = .
1+ exp=2X((fis1 — fi)2 = C1)/C,

g o a”

o Py P s P s
el I MAEN

4 )
'y . Tk

S T PRIy I W S SN S o N L L A
SNl o A 2 R N A
» $og V09 A A R A AL M o WP L N LN

(2.12)

(2.13)

(2.14)
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SN &N We have shown that if the interpolated surface gradient exceeds a thresh-
old then a discontinuity will be inserted. It is not clear however that the

:*: discontinuity will be inserted at exactly the correct place. Observe, however,

.o‘_.o
25

that in the absence of depth data there is no clear criterion for where the edge

should be.

. ,._
AANAAAS.

A stochastic algorithm (for example Marroquin 1985) would use gradient

x

ARl ol

descent for the f;, as in (2.4a), and a probabilistic update rule for the line pro-

[

cessors. The line processors are examined seperately and updated as follows:

N N, o, >

@

(1) Calculate the change in energy AE(!;) resulting from changing the state

of the line process {;. (ii) If AE(!;) < 0 make the change. (iii) If AE(l;) > 0

LV

make the change with probability 1/(1 + exp—2AE/T).

e This system will converge to a state of thermal equilibrium with
)

- p(li = 0) = dexp(—(fiz1 — £:)*/T), (2.15a)

p(l; =1) = Aexp(~Cy/T), (2.15b)

p 37 where A is a normalization factor to ensure p(l, = 0) + p(/; = 1) = 1. Thus

N 1
e I =1)= , . (2.16
2 "éfi“ " T3 exp—((fisr = f)2 = )/T )

AT AT AT A TS TN O 0 _
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2
";_': Comparing (2.16) with (2.14) we see that the network indeed finds a
“h'. .
d solution satisfying the mean field theory equations.
"".'
s )
s
B
\".
o
)
i
;
Nt
Y
:."0.
fi: 3. Motion Smoothing and Segmentation
:‘.a'
R We now briefly describe some work on motion smoothing and segmenta-
( [3
j : tion. This work was done in collaboration with C. Koch. Mathematically it
: is very similar to the work on surface interpolation.
o The problem we are tackling involves segmenting an image using motion
' {J
A
7 ! flow (with correspondence based on image intensity). For example, detecting
' () )
e
) an object moving over a textured background.
' "3
'_1’:{- A method for obtaining the motion field was described in section 1. This
J "
0ots assumes continuity of the motion field and therefore would break down at the
®
::?u boundaries of the object. It is straightforward, however, to modify the energy
l"_
n:.;l..
‘ot function to include line processes. The line processes should switch on at the
9.
:‘,' W boundaries of the object thereby both segmenting the scene and preventing
N
:::‘\ , the velocity field being distorted by smoothing over the boundaries. Inside
!
ey
L3 these boundaries the energy function should give the velocity field as before. o
l:.:l‘ ‘:
Ry
PN
e
o
I;\.
e
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N The energy function can be written as

E(vfjvf ) higovig) = O (0f (s y = Ly) + o (i = Lij))

1,)

+ Z((Uit-}—l,j —vf )+ (o~ oE ) = ki) + (v 4, — 0] ))
1y

+(o¥ 4 — 0P ) A = vi,) + D V(R,v). (3.1)
1,J
The horizontal and vertical line processors are given by h;; and v, ;
respectively. The V(h,v) term corresponds to the cost for the vertical and
e horizontal line processes including the terms enforcing local continuity.
This energy function is very similar to that for surface interpolation.

Once again the line processes produce local minima in the energy function

and no algorithms are guaranteed to converge.

It is straightforward to design a Hopfield network to minimize (3.1). The
h; ; and v; ; become continuous variables related to new variables p; ; and ¢; ;
by hi, = ¢(pi;) and v;; = g(qi ;) respectively. Gain function terms for h

and v are added to the energy. The dynamics are defined as in the previous

section

dv* oF
R dt ~ Ou* (3.2a)

|>‘-,

ALl
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dvY OF
t.':v —(iT = —aj (3-2b)

"'\ dp,"j aE
il = o (3.2¢)

:.~ dq,"j _ OE
dt 6v.-,,»'

(3.2d)

" x N
; \ \
s N

o Figure 2 An ezample of an object moving relative to a fized background

This network is still being tested but preliminary results are encouraging. It

N is able to segment a textured object moving over a textured background field.
Ay EIn: &r

e It can be mathematically analysed, as for surface interpolation, and similar

o results hold. .’:]‘

Bty
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N _
k.: -;?\.- 4 Motion correspondence
"hta Q}
o, W,
::: We now consider a rather different type of vision problem namely motion
o
*-i:. correspondence and the recovery of structure. This work is described in detail
A
v
1 in Grzywacz and Yuille (1986).
PRy
:; BN
: -.-': Ullman (1979) proposed dividing the structure from motion process up
L
w into two different stages. The first consists of matching tokens, such as points
* ‘\' -
A - . . .
e or straight lines, between different image frames; solving the so called cor-
e
o
respondence problem. Once this matching is done the second stage assumes
N
RN
:::\_ rigidity to recover the structure of the object. Ullman1984 later suggested an
~
L% e
! ‘»J."-
e i alternative method of finding the structure (see also Grzywacz and Hildreth
: :::‘ 1987) capable of dealing with non-rigid motion. He again used psychophysics
-
's$\'
.:j:'. to argue that the three dimensional structure of an object was not perceived
‘ \.
.,)- immeadiately but developed gradually over time. He proposed that the vi-
i
v
v ;: sual system constructed an internal model of the object, initially flat, which
s
was updated over time by assuming the minimal change of rigidity between
i
:::"., sucessive image frames, the so called incremental rigidity scheme.
)
|.:::::
. ,. ‘
0. It is natural to ask whether errors are caused by dividing the process
:‘-:
! :::_’: into two stages. Both are solved using different assumptions and it is possible
b I
CON that these conflict for some stimuli. It is also interesting to see if rigidity
| X
; G . . . . .
- N :} alone is sufficient to solve the correspondence problem. To investigate this

-.
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o

we define a cost function that minimizes incremental rigidity and solves the

correspondence problem simultaneously.

The incremental rigidity scheme maintains a model of the object at any
\ given time M(t) = (z,(¢), yi(t), 2i(t)) ,i = 1,..., N. At the next time frame, at
o8 t+ét, the model is updated taking into account the new information available
(we are assuming orthographic projection onto the z,y plane). The model is
Y updated to M(t + 6t) = ((z;(t + 6t),yi(t + 6t), z;(t + 6t))) ,i = 1,..., N where
e zi(t+6t) is determined by minimizing the change in rigidity between M(t) and
M(t + 6t). The object is initially assumed flat, i.e. AM(0) = ((z:(0), vi(0),0))

}\‘ 1= 1,...,N.

We first investigate using rigidity to solve the correspondence problem

€ e

ClAA Ao

and determine the structure simultaneously. A measure of rigidity is

-
Az s s

P

-

’.

Lii(t) = (zi(t) = 2;(1))* + (5i(t) — y;(8))* + (2i(t) — z,(1))*. (4.1)

4 'iI{‘li

The z;(t + 6t) are defined to minimize the change in rigidity AR between

frames

N
AR = ((Lij(t) — Lij(t + 61))). (4.2)
i

We now define a set of binary correspondence variables (Vo). If point

’ . A
@3 300 @ 'i"'"" S

in the first frame goes to point a in the sccond frame then V,, = 1, otherwise

A
".ﬁ-
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V. = 0. We can define a matcling cost Eg by

'a‘ 'n. ‘.
» 1)
e

" QOO o o s X
’

. N
A Er= Y ((Li;(t) = Lap(t + 61)))*Via Vs (4.3)

i,j.a,b

To find the correspondence and structure we minimize Er with respect to

£

L9 W

(za(t +6t)) and (Vi,) requiring that all points in the first frame aie matched

i b
AL O

[

to exactly one point in the second.

We use a method developed by Hopfield and Tank (1985) for the Travel-

R N

ling Salesman Problem. Again we first define a new array of variables, (U;,).

These, arc internal variables of the new problem and have a monotonically

(XA "- "\Jl ﬂ

increasing relationship to Vi,:

i

.

Ve

&S

1

T30 (4.4)

",ia =

AUy

where A is again a parameter of the problem. We next define the full energy

function to be:

Dt

o
t

I
o e
™=
g
iM™
i
ol
Mz
M=
™
=

°

_+_
/I_\ )
]
™~
:l
"
+N
l
o
~
™~
)

N N
[y, F
..‘ QZZ Vialog(Via) + (1 = Via)) log((1 = Via))))s
o where 4, B,C, D, F are positive parameters of the problem. (We will infor-

—

. -"" mally identify each of the terms of the right hand side of Eq. 4.5 by the

- o
PSS

.. A A et ke

» ..f.. -f\f J“’J‘.'I '\"-‘. ~ S T T T WO UL SRR SR '.-- W e Tt et Y N T TN

PRI ST Nl \-." Ry 4‘.; - \-f.-’._f\-r. ra J-,_.r SIS :\ \., e e x‘ RO "n\-r,':-l‘: ~ \
)

?.5.*‘ e .




A A A B
,\..'-.‘.“-"-'\l‘.)

T e

s, ‘n 5
“."‘. 's 'I. "l <

0

_—

4

L) A
PO AR R

U8

>

y -
PR
Shl -"' i

»

e @

L L S B

> s
i 8, .

>

L]
"
DI
> \':'- "‘-' "‘*‘. Pad

24
parameter leading it.). Minimization of the A term forces each feature in the
second frame to maintain correspondence with as few features as possible in
the first frame, (and vice versa for the B term). Minimization of the C term,
forces the total amount of correspondences to be N. Thus the terms A and
C will force N correspondences of strength 1 to be established in such a way
that each feature of the first frame will tend to have a correspondence with
a feature in the second frame and so that the correspondences will be evenly
distributed among the features of the second frame. It follows that the process

will tend not to leave any feature unmatched.

The F term is necessary to give a time constant for convergence of the

network. We define the usual update laws

dUi,  OFE
dt ~— 9V’

1<i<N, 1<a<N, (4.6)

Provided that X is large enough the variables V;, will tend to be either 0
or 1 and thus it will tend to force a binary decision to determine whether a

correspondence is to be established or not.

We simulated this network on a Symbolics 3600 LISP machine. The
results are described in detail in Grzywacz and Yuille (198G). To summa-

rize them: despite extensive experimentation with the parameters the sys-

tem rarely converged to the correct answer unless given a hint of the correct

(N
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o ‘.:. . matches. The system made some interesting mistakes, it would somectimes
choose matches which were almost rigid but which corresponded to compli-
o
o cated motion of the object between different frames. This suggested that
i
Ll
\ rigidity alone was not a strong enough constraint and we should introduce
v
o
o~ another term in the energy function corresponding to smoothness of motion
.‘l
) between frames. After some experimentation we fell back on the encrgy func-
:- tion Eyrar used by Ullman (1979) to solve the correspondence problem.
)
7
-
e
s N N
N M 2 12
: ':: Enrar = ’5‘ Z Z Vta dla (47)
N,‘ = =
P4
N
‘r" .. When we added the Ejrpy term to the energy E the network gave con-
W qe
;’,Q sistently good results for a wide range of data Grzywacz and Yuille (1986). It
b\
_:: gave a high percent of correct matches for systems of up to thirty points.
W
J
o To see what contribution the rigidity term made to the matching we
1 \."
\"
A removed it and ran the system using the minimal mapping term. The system
o
,ﬂ gave identical results suggesting that the rigidity term was usually uneccessary
o
3 ; . . . . .
o for matching. A possible exception is at the occluding boundary of an object.
o, Here the order of points can reverse between frames and the minimal mapping
b %]
»j scheme gave incorrect results. For small angles and for some values of the
.
o
N . e qe . .
hot parameters the rigidity term obtained the correct matching.
9.
e .
:;:-" Q'{ﬁ} In fact it is easy to see that, with the correct matching, the minimal
Qo
(N
¥
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P
N
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e
K mapping energy will be zero for rigid motion in a straight line. This supports
w ‘4::)
) the idea that rigidity may be important for correspondence for rotational .
~ motions. We plan psychophysical experiments to investigate this case.
o
\.
: In our simulations using the Easys term we did not try to optimize the
W parameters 4, B,C, F,M and X in any sense. Instead we found that the
N
N
o asymptotic behav ,or of the system was the same for a large range of parameter
)
- values (few orders of magnitude). Typical values used during the course of
L)
e
"
> this research were A = B = 50000,C = 500000,F = 1,M = 50 and )\ = 1,
oy
N
{ where the distances between features in a given frame ranged from 1 to 10.
o We used homogeneous initial conditions for our simulations, i.e.:
- _
{ ‘ f
": et =0) = . 4.8
::‘. ia\t = = N ( . )
N
- We also tested our network on simple situations such as dot splitting,
i when there are two dots in the second fraine equidistant from a dot in the
[
¢
y first. Interestingly our network gave the correct psychophysical result; the
)
¢ . : : . :
dots split into two with Vg; = 1/2. This suggests psychophysical experiments
.
- comparing the predictions of the networks to that of observers for other simple
‘u . .
t stimuli.
L
o]
v
i~ There is an important practical advantage for V.L.S.I. circuits in only
N
" nsing the minimal mapping term for matching. It can be shown (Grzywacz ]
TR
- o)
f 5.
-l'
'
"
i)
e
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j- o and Yuille 1986) that the MM term can be choosen te be linear in the matching

term,i.e.

- )
J'.{‘r {

N N

Exipm = ——ZZ‘ (4.9)

i=1 a=1

LA

4 - -
a

This gives an energy function

NN

. A N N N B N N N
2 T2 22 ViVt 3200 Vils
: :: a=1 i=1 J);: “ isle=1 :
;‘t C N N
Y c Y 4.10
‘ +3 (A‘Z‘xa N))? + Emn (4.10)
o 1=1a=1
.:_: A
+ax 2 2 ((Vielog(Via) + (1= Via)) log((1 = Via) ).
s =la=
: Q"". This means that the d;,’s do not affect the connection strengths between
:i:\ i
. elements. Thus the connection strengths will not have to be changed with
0
o :
Wy each time frame.
)
- The energy function described above is rather different from those in the
1 o,
.
| ;‘_‘ previous two sections. It looks considerably more complicated and a lot more
o
" carc is needed to find the correct parameters. Unlike the previous problems the
K
“\,
"‘ value of A is important, it has to be small compared to the other parameters
13
'
)
°. of the problem. Finally the similarity of the energy function to that used by
3\
'} Hopfield and Tank for the Travelling Salesman Problem suggests it contains
f
v
. "_" many local minima. Given all this, the success of Hopfield style networks
o.
..:: {?_‘::C‘ for this problem is encouraging. Hopfield networks give progressively worse
.
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b -f:
- results for T.S.P.’s with more than thirty cities. We can prove, however,
' (Grzywacz and Yuille 1986) that our network will always yield the correct
..:: answer if the motion between frames is sufficiently small compared to the
b seperation of the dots. Thus if time between frames is small enough the
?
I correct matching will be made. Other ways of dealing with large numbers of
¥, -,
4
- points will be discussed in section 6. L
. As for surface interpolation we can derive an analytic expression for the
\"
::: solution. Using the chain rule for differentiation we find
\! '\
e
L dE U, OE OE
g = = _ 14 . (4.11)
. dt ia avvia a(fia ana
{ . From (4.4) we calculate @
‘-'_-J’
I
".
(L
" oU; cosh?\U;
)y ta = ta . .
V. o) (4.12)
L~
N This term is always positive definite as it is bounded below by 1/2)X. The
\
\
N energy is bounded below and so the system reaches a final state with dE/dt =
q
N 0. Using (4.11) and (4.12) we see that a necessary and sufficient condition for
Y such a state is
&
4
v OF
. =0.
¢ Eli (4.13)
v
] Inverting (4.4) T
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4
3
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1 V.
r' — —I 1a ]
Vie = 55097

(4.14)

N Differentiating (4.10)

o OE 2\

\ = -COL , yyROW _ o1/, . 2 T
'«.: OU,, coshzx\U,-,,(A(" +Va Vi) +C(V —n)+di+ FUa). (4.15)

[

oL
LL,

o G T
l.l-{‘.

'

Here we have introduced new notation. V = Y. Vi, VCOL = 3 V7,

and VaROW = ) ;Vis. We have also absorbed the constant A[/2 into the

[

2

-
A b Y ‘:‘-‘
P AR
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o
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definition of dj,.

Observe that (4.15) vanishes at U;, = oo. But we can show that these

roots do not correspond to minima and hence are not solutions. To prove this

.
«

we must show that the Hessian of E with respect to the U, is not positive

definite there. We calculate

, 3’E 2 4\

;§ OU?Z, ~ cosh?\U;, ((cosh"’)\U.'a +F)
U

%)

o —2Mtanh AU (A(VEOL + VEOW _ oV )+ C(V —n) + d% + FUi,)). (4.16)

For large U, the dominant term inside the bracket is —2AF U, tanhAUy,.
Thus §2E U}, will tend to zero from below as U;, — too. Hence the Hessian
cannot be positive definite there and the roots at infinity are not minima.

;:',:» Now consider the other roots of (4.15). These obey

W e LTRSS
ooy -\.*". L




A(VEOL 4 VEOW _ oV, )+ C(V —n) + &% + FU;, = 0 (4.17)

> and are also roots of E/dV;, = 0. At such points

PE__ PE Vi Vi
B U, 0Uj, — 0V;,0Vy4 OU;, OU s

(4.18)

and so the Hessian of E with respect to U;, will be positive definite if and

only if the Hessian of E with respect to V;, is positive definite. We calculate

Pl e n,

O*E F

% ViadVa T Varll = Ver) (4.190)
&

- O°E a
14
s e _A+2C 4.19b
;‘ ~ a‘/ia thb ( )
£

N 0*E

" TZ _ _A+C 4.19

), WViadVq (4.19¢)
!

4]

‘J_..
o &’E

- =———=C. i#ja#b 4.19d

VudVy #J,a# ( )

¥ ",

'“ﬁ which is positive definite.

‘

i Thus the system will converge to a minima of the energy function which

0.
Y are given by

)
s
T
o

L0

Y 2€(n -V - d?, — A V('OL VROW _ V‘a
.. Uia = (n )~ (F' + 2V, ) (4.20) PR
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Culike the surface interpolation case we Lhave found no simple interpre-
tation of these equations in general, although results can be obtained for
particular cases (Grzywacz and Yuille 1986). Again notice that the final 17,

must lie between the limits 0 and 1.

5 Stereo.

'@ A natural way of writing stereo in the form of an energy function is as
YeRr

follows (Barnard 1986, Horn 1986, Gennert 1987)

E(d) =Y (Li - Rigan)” +p Y (d(i +1) - d(2))". (5.1)

i

Here d(2) is the disparity between the images. L; and R; are measures of
the left and right images and can be continuous or discrete. For example they
could be the image intensitics, or they could be the positions of zero crossings.
The first term in (5.1) matches the left and right imnages in such a way as
to minimize the disparity gradient represented by the second termn. Line

;:w'_ processors can be introduced to prevent the disparity gradients from becoming
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too large and allows distinct objects to influence each others matching. *. This

vields

E(d1) =Y (Li=Ripa) (1= 1)+ p > (d(i +1) = d(i))* (1= 1) + TZI
' | (5.2)
The I; performs two functions in (5.2). It prevents the disparity gradient
from becoming too large but it also prevents matching in the first term if the
difference between the images is too great. This latter effect may help deal

with occluding situations when one eye sees a region which the other cannot.

It is simple to generalize this energy function to two dimensions.

It is straightforward to design a Hopfield net for this problem in the usual
manner. We simulated this on two types of examples (in two dimensions). The
first consisted on a sine wave with the central square displaced and the second
was a standard random dot stereogram. The results were disappointing in
both cases. Although it was possible to get roughly the right answer for the
sine wave the random dot pattern gave consistently poor results. This occured
despite filtering the images with a variety of filters, gaussians and difference

of gaussians at various scales.

We believe that this bad behaviour is due to the complicated structure

* This work was done in collaboration with T. Poggio
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of the energy as a function of d. The behaviour of this function is crucially
dependent on the structure of R. For example if R is a linear function of its
arguments the energy will be quadratic in d and therefore well behaved. If R
is more complex, in particular if it arises from a random dot stereogram, the
cnergy function can be a complicated function of d with many local minima.
To apply this method to a general scene would require smoothing the images
(by an amount determined by pre-processing) until the function R was suffi-
ciently well behaved, avoiding smoothing the image too much to destroy its
interesting features. While this is conceivable it seems that alternative sterco

algorithms are likely to be more sucessful.

A possible approach is to attempt to minimize (5.2) using other algo-
rithms. Some success (Barnard 1986) has been reported for using simulated
annealing for (5.1) (in two dimensions). So far attempts to use simulated
anncaling, and other stochastic methods, to minimze (5.2) have not been
sucessful. Although it has been possible to hand tune the parameters to get
the correct result for one class of stimuli, sign waves with displaced centres,
it will not work on others, such as random dots. Various refinements of the
methods have been tried including a coarse to fine strategy of convolving the
mage with a large scale gaussian, minimizing the energy at this scale and

using this to guide the matching at smaller scales.

na R AR T LA S BAE EPP A AP O P
.,‘oﬁ.".:'l.-. q‘! s -.l. .w.‘l -.I ) .t...i O“ t. ﬂ' - .‘ ‘ \ N [} ~ ” N .

L at




34

OO This result is negative and by no means conclusive. More sophisticated

algorithms could be tried including perhaps methods of estimating the pa-

rameters of the energy function directly from the image. Alternative energy

¥
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functions could be tried. We believe, however, that this may represent a limit

I

for the practical use of energy functions. If an energy function is too compli-
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cated for straightforward algorithms to solve then the problem is badly posed

and more heuristic methods should be used. This will be discussed further in

l’..
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the next section.
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6 Limitations of the energy function approach.
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CaA ]

:::: The previous four sections described attempts at modelling problems in

> terms of energy functions using analog nets, The first three attempts were
)

[ )

p {: reasonably sucessful and the last one failed. We argued that this reflected the

-":

"‘ . relative complexities of the energy functions being minimized.

AN »

.". It is clearly possible to write any vision problem in terms of minimizing an

.l

!

! energy function * . It is less clear that this is a good strategy. For non-trivial

* In the same way that all the laws of physics can be summarized in one equation v
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problems it often leads to energy functions with many local minima depending
on large numbers of parameters. These parameters will often depend on the
image being viewed and might even have different values in different regions
of the image * . As yet there is no reliable way to estimate these parameters,
or of minimizing energy functions with many local minima.

Energy function methods seem a natural idea for matching representa-
tions of images containing a large number of similar primitives. Random Dot
stercograms (introduced by Julesz 1971) are ideally suited for this tvpe of
algorithm. Realistic images, however, contain many different features of vary-
ing sizes. A good strategy for stereo could involve matching the most salient
features and using this to guide the ambiguous features. The work on stereo
by Mitchison and McKee (1987) shows that for one-dimensional sterograms
the positions of the endpoints have an important effect on the matching of
the interior points. Another interesting example of this type is psychophysics
for motion correspondence illustated by Ramachandran’s analogy of a mov-
ing leopard (Ramachandran 1985, Ramachandran and Anstis 1983). If the
outline of the leopard is not visible the leopard’s spots are matched to nearby

neighbours and no motion is seen. If the outline is also visible then its mo-

by summing the squares of all the individual laws (Feynman 1963).

* For example in the way the noise thresholds are determined locally for the Canny

cdge detector.
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tion “captures” the spots and they are matched correctly. This suggests that
random dot stereograms are a limited paradigm and that although humans
have the capacity to match them correctly they may not be the strategy used

for real images when more information is available.

Moreover the energy function approach, at least in its most naive form,
tends to ignore some of the structure of the problem. For example, the motion
smoothing and segmentation algorithm described in section 3 would, in theory,
be able to detect the boundaries of the leopard but it would not be able to
use the speed of the boundary directly to influence the internal matching.
There would certainly be an indirect influence, since the motion is required
to be smooth, but this would be weak and depend on the distance from the
boundary. One can contrast this with a more heuristic approach which would
analyse the scene, detect the object boundaries, estimate their velocities and
use this as initial data for matching the interior of the object. The algorithm
could be designed in terms of several different networks connected together
and certainly individual parts of this method could be implemented by energy
functions. For example Grzywacz (private communication) has shown that the
network described in section 4 will correctly match the leopard’s spots if the

estimated motion is available as initial data.

The stereo energy function (5.2) also does not capture some of the im-
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"' s portant features of the problem. Places where the line-processors should be
1 . “')‘N
" on correspond to boundaries of ubjects, and therefore should correspond to
O
o edges in the image. Thus it would be more sensible to find these edges by
s
. simple processing of the image rather than by minimizing (5.2).
"
]
. A
h .
. For any given module, such as stereo, there are many possible algorithms
\.
some matching image intensity, others matching edge-like features. The rela-
N tive effectiveness of these different algoritluns will depend on the images being
viewed, an edge-based sterco algorithm would be ineffective in a scene con-
K, < .« .
(- taining few or weak edges. For some scenes it would be natural to try to find
o
o . . . .
" and then match salient features, such as the occluding boundaries of objects

P

,‘.
.
e

" g

or regions of high texture density. Heuristics like coarse to fine matching .as

L)
..
L
4 used by Marr and Poggio (1979) for stereo. could also be used. For realistic
-
images a stereo system might have to use a number of different algorithins, or
N
; ’ submodules, interacting with one anotlier and combining to give the solution.
b4
J
S These submodules might each be implemented in terms of networks minimiz-
N ing energy functions but the most important part of the calculation, and the
:, hardest part of designing such as system, would lie in the control strategy for

-

combining the different submodules.

Thus although minimizing energy functions is a useful technique for early

3 il
I AARKANAT

e

vision it has definite limitations. If the energy has too many local minima it
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may be better to try heuristic methods to avoid them rather than to use
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complicated search techniques. Minimizing an energy function is only one of

| %
.)l "&

the many different search strategies used in Artificial Intelligence research and
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is only effective for certain problems.
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7 Conclusion.
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We described how a number of problems in early vision could be de-

i

0

scribed in terms of minimizing energy functions. We showed that Hopfield

A
g

style networks were able to give fast reliable answers for some of these. We
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discussed the limitations of this approach.
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A.1. Hopfield’s Formalism
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Hopfield describes a system of n neurons with output’s 15 and an external

LA
A

2

input I;, where ¢ runs from 1 to n. He defines an update rule by

.
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'du,- _
Ydt
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ZTU‘J_E;*-IL (4.1.1)
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Here T;, is a measure of the strength of the connection between neuron

[ N Y
g
.\:i‘

. .
.
.
b
/

i . . A .. . .

S o ¢ and neuron j. A priori, every T;; can be positive, negative or zero. C; is
a capacitance and R; = 1/ 3. T;; a resistance associated with every neuron.
. u; represents some internal function of the neuron i, for example its somatic

potential, and is given by

o u = g7 (Vi) (4.1.2)

where ¢g(r) is a monotonic increasing, but bounded function. This model

-
e ¢
S E

is deterministic, its final state will depend on the initial conditions and the

—

inputs I;. Hopfield argues that it embodies a content addressable memory.
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To do this he defines an “energy” function
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::

; with the restrictions T;; = T); and Tj; = 0. Differentiating (A.1.3) using
\
P the chain rule and substituting (A.1.1) and (A.1.2) we have
.
e
i
R~

- =- Z Cig7"(Vi) dv) (4.1.4)
-
L which is always negative. E is hence a Lyaponov function and by standard
¢

. results of Statistical Mechanics any solution to (A.1.1) will converge to one of
.

N a fixed number of stable points, provided E is bounded below. The precise
<

-
.
. f
v

fixed point (A.1.1) converges to will depend on the initial conditions and the

»
N external inputs. The potential of the system contains a large number of local
N
- minima and the minima the system ends up in is determined by the initial
A
VS
. conditions. The system can therefore be thought of as a content addressable
: .
3 memory. The requirements that the connectivity matrix T is symmetric is
: necded in order to assure that the update of u; has the form of equation
-
5 (A.1.1).
A
S A.2 Extending Hopfield’s networks: We will now proceed to propose
: a more general class of networks and update rules, The essence of Hopfield’s
o
. 1
, networks can be described as follows. First we define an “encrgy” function A
). '~<_:~'
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;- E = E(V;). (4.2.1)
.. .‘
-
~'\-f
=
::" We should emphasize the quotation marks round “energy”. It is not
)
e necessarily the energy of the physical system but merely a Lyapunov function.
AR
~ .
‘:: It is bounded below. We will reformulate our update rule as
e
o
o —_—= - Aij=— 4.2.2
'-:.' dt - i 0"]
A J
.
S0 This is a generalization of (A.1.1). In order for E to be a Lyapunov
:'_::
e function, its temporal derivative must be everywherc negative or zero. In
.ll “
: L 2
{ o other words, the “energy” must always decrease or at most remain constant,.
15
23 N
o but never increase. Diffcrentiating (A.2.1) using (A.2.2) yields
Leor
ey
p)
o dE dv; dv, OF OE
~
¥ _ - JV.
NN D DY i’ R Pl (4.2.3)
‘NN dt — Y dt dt — av; av;
1,7 %)
s
Nt
[ ] E is a Lyapunov function (and hence the system has a content addressible
-3
u.'{t.
:; memory) if and only if A;; is positive definite, i.e. z7 Az > 0 for all vectors .
B
3 ‘1;‘-
' For any arbitrary function E there are therefore an infinite number of possible
e
‘.‘
?}. updating rules and so an infinite number of possible systems.
t;‘\-‘
_'.f',::
e It is straightforward to check that Hopfields network defined by (A.1.1),
'|." . .
W (A.1.2) and (A.1.3) can be obtained by setting
..l:"l
N
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= Cig7 "' (V))6i;. (A.2.4)

We will show in A.3 that Hopfield’s energy function will still be a Lya-

punov function if we set

Aj = Cigl M (Vlisij, (4.2.5)

where the [; are an arbitrary set of positive numbers. This enables us to

relax the symmetry constraint on the T;; to

Tl = Tjil;, (4.2.6)
J 8%

where there is no summation over the indices. We prove in the next
section that for an n x n matrix this gives us an additional n — 1 degrees of

freedom.

It is important to note that the number of constraints is less important
than the form of the constraints. In general, the matrix T;; will be sparse,
since most connections do not exist. This becomes especially true if n is
large. The I;’s can then be applied to the remaining non-zero T;,. Hopfield’s
symmetry conditions implies, that once the top left half of T;; is specified,
the bottom half will be completely determined, since T;; = T};, independent

of the number of zeros in T;;. In our extension, however, n — 1 of the non-
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zero cutries can be specified at will, as long as T; and T, have the same
sign. This condition prohibits the use local inhibitory interneurons, that is
neurons which are excited (7,5 > 0) but which inhibit in turn (T); < 0). If the
network is used as a content addressible network without allowing too many
errors during “recall”, only ~ 6% of the possible n? — n entries are different
from zero (Hopfield, 1982). Thus, for n = 30 and using Hopfield's symnetric
network, only about 26 Tj;'s can be specified while the remaining ones are
fixed. Qur extension implies, however, that all T}; can take on arbitrary
¢

values — as long as the sign of transposed elements is the same. Notice that
these conditions in no way constrain the diagonal terms T;;. *

A.3 The full extension:

Formally, the integrability condition (A.2.1) in E is analogous to the ex-
istence of potentials, or state functions, in Thermodynamics. If this condition
is not met, then the value of E depends on the path taken in V| space and
hence cannot be a Lyapunov function.

There are many other ways of constructing Lyapunov functions for a
system with a given update rule.

In order to study the class of connectivity matrices T;; leading to con-

verging behaviour, we will now express Hopfield's update rule as

* An alternative to our proof is scaling u,; and V; independently (Hopfield, private

cofitnunication).
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dv; "V
T=C -“(V ZT,,x, 2 )-1) (A.3.1)

By inverting equation (A.2.2) we can define the appropriate Lyapunov

function

E(V)= —/ZA;,.‘ %dvj. (A.3.3)
0

Substituting from (A.3.1) gives an integrand [

ZA,, G _1,(V) ZTka % R(V)—I)dV-. (A3.4)

If this expression is integrable, that is its value is independent of the
path along which the integral was evaluated, then E is well-defined and a
Lyapunov function. A function I is integrable if, and only if, dI = 0 where
d is the exterior derivative operator (Misner, Thorne, Wheeler, 1977). Define
B;; and h; by A;'jl = Cig; "'(V:)Bij and h; = ¢;"(V;)/R:. The integrand is

then

I=Y" BijTuVidV; = Y BijhidV; - Y B;;LdV;. (A.3.5) =
i, 5.k ij i,] Ry
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; If B,, and T,; are independent of the Vi's then [ is integrable provided

“w

. . dh, .. .

dl =Y BiyTidVixdV, = By, grdVixdVy = 0. (4.3.6)
v. 1.k 1)

Since dV} xdV, is antisymimetric in ¢ and j this will hold provided Z,‘ By, T,

B,]%'e{- is symmetric in ¢ and J. If A; is non-linear this will only be possible

provided B,, does not contain off-diagonal terms. Thus. with

B, = L4, (43.7)

where the [;'s are positive numbers, equation (A.3.4) changes into

—1,v-
» .oy, (V) .
S 16,03 Tuvi - 220 nav,. (4.3.8)
R,
Y] k

If I,T,, is symmetric, then (A.3.8) can be integrated since it consists only
of terms like d(17V]) and g,—l(V,)(H', which are well-defined. Thus, we can
generalize Hopfields's result to all matrices T, provided I, T,, is symmetric
and A, is positive definite. Following (A.3.7), matrix 4 must be diagonal
and therefore its eigenvectors are equal to the I's, each of which can be any

arbitrary positive numbers. Whatever the values of the [,'s there are definite

relations which must hold between the T,,. In particular. for all 7+, j k. we
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L R L Y (4.3.90)

- with the auxiliary conditions

Ti; - Ty > 0. (4.3.9b)
L More complicated relations can be deduced but they can all be obtained
s by combining relations of type (A.3.9).

We now examine the constraints in more detail. Suppose we specify the

L
A
oy 4 e

values T};, i < j in the upper right half of the matrix. Then the values in the

A
"

L
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lower left half are given by
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We will ignore the case when all elements in column j are zero (and
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therefore also all elements in row j), since the order of the matrix will simply

’

\E

be reduced by one. Otherwise the lower left half of the matrix is determined

L'
)
l“l.‘.
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LA ®

by the l;/1;. Now all the [;/!; can be determined from a basic n — 1 elements

]
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(A4.3.11)

e dE OE dV;
° — =Ny, (4.3.12)
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o
NS o for all motions. Reqguiring the update rule to be related to E by (A.3.2)
’lh"n ‘;.\l\."
N will ensure (A.3.6). There are many other ways of enforcing (A.3.12). For
\.;’
L) “ . .
X Hopfield's updating rule, however, we have been unable to find any other
O
s"‘_':
D) mtegrable Lyapunov function.
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