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• * "'. Introduction.

This paper has two main themes. It tries to model early vision processes

in terms of minimizing energy functions. Secondly it examines methods of

minimizing these functions, in particular analog style networks.

The first section gives some background on the use of energy functions

and neural networks in vision. The next few sections describe work done

SI by the author and collaborators on a number of vision problems. The final

sections discusses limitations to this approach.

1. Energy Functions and Networks.

It is convenient to divide vision up into two stages. In the first stage the

visual scene is analysed, segmented, and properties such as depth, colour and

texture are extracted. In the second stage objects are recognized and high

level information is used. The output of the first stage is a representation of

the scene in terms of depth values, colour and so on. This representation can

be called a 2 - 1/2 D sketch (Marr 1982) or an Intrinsic Image (Barrow and

Tennenbaum 1981). It is generally assumed (Marr 1982, Horn 1986, Ullman

1979) that the construction of such n representation does not involve any

knowledge of the world (or of the task bcing performed) more sophisticated

than low level assumptions, such as the rigidity of objects. This representation

is produced by a number of independent modules, such as stereo, structure

- __ . ...)



from motion, shape from shading. This paper will confine itself entirely to

the modules of early vision.

A number of these modules have been modelled in terms of energy func-

tions. Ullman (1979) described a theory of motion involving solving the cor-

respondence problem between image frames by minimizing a cost function.

Ikeuchi and Horn (1981) describe a theory of shape from shading using a

variational principle and Ikeuchi (1980) uses a similar technique for shape

from texture. Ikeuchi (1980) describes how this technique is able to impose

smoothness constraints on the object and draws the analogy with imposing

constraints in Artificial Intelligence. These methods can be illustrated by
work on optical flow by Horn and Schunk (1981). Let the brightness function

be I(x I, x 2 , t). Then, assuming that points with the same image intensity over

time correspond, the velocity field (vI, v2 ) obeys

, 8 1 O 9I( 1 )ZT- -Vi + =t 0 (1. 1)

where we use the summation convention over repeated indices (for example

aibi = alb, + a2b2 ). Now (1.1) is a single equation for the two unknowns

(V1, v2 ) and does not specify them uniquely. To obtain a unique solution Horn

and Schunk assume continuity of the velocity field and minimize a function

6Jcw
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x (v- a + -) . (1.2)

Here the first term corresponds to requiring smoothness of the velocity

field and the second to enforcing (1.1) . They define an iterative algorithm to

minimize (1.2) and obtain good results.

Many other vision problems have been treated in a similar way and we

mention a few examples. Hildreth (1984) used a similar method to solve the

aperture problem for motion based on zero crosssing contours. Grimson (1981)

uses a similar approach to interpolate a surface through sparse stereo data.
.'4

Terzopoulos (1984) extended Grimson's work using more sophisticated tech-

niques. Poggio and Torre (1984) descovered the similarity of these methods

to a branch of mathematics called regularization theory (Tikhonov 1977) and

proposed a unified framework. These methods all had an important property

that was both a weakness and a strength; they usually imposed continuous

solutions and smoothed over discontinuities. Regularization theory (Poggio

and Torre 1984) indeed required that the solution to a problem depended

smoothly on the data. Inserting a discontinuity in the solution would require

a yes/no decision, and hence could not depend continuously on the data. *

* Terzopoulos (1984) suggested the surface could be interpolated smoothly and

then the boundaries found by an edge detection operation measuring the "tension"

in the smoothed surface.

Ih



* 4

This inability to deal with discontinuities however had important practical ad-

vantages, the energy functions tended to be convex and not have local minima.

Thus they could be minimized by simple methods such as gradient descent.

More sophisticated techniques could be used to speed up the convergence. For

example, Terzopoulos (1984) adapted a multi-layer algorithm due to Brandt

(1977).

To deal with discontinuities a new approach was needed. Genan and Ge-

man (1984) did work on image segmentation using line processors. These are

illustrated in figure 1. There are two lattices, the standard space lattice and

an additional line processor lattice. The line processor elements are either on

or off. When a line processor is on it breaks the constraints between the ad-

jacent space pixels. Similar work was reported by Blake (1983) who used the

idea of weak constraints * , that is to say constraints which must be satisfied

almost everywhere but which can be broken at a cost. The binary nature of

the line processors means that discontinuities can be dealt with. However the
u-P

* energy functions are no longer convex and new strategies are needed to mini-

mize them. Various methods have been tried. Geman and Geman (1984) use

simulated annealing while Blake (1983) uses a method which systematically

approximates the energy function by a convex one, graduated non-convexity..

* Based on work by Hinton (1979).
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, ' MNarroquin, (1985) Marroquin et al (1987) interpret the energy functions in

terms of probability theory using the Clifford Hamersley theorem, a connec-

tion described in Geman and Geman (1984). Instead of minimizing the energy

function they use probabilistic algorithms to estimate the maximum a pos-

teriori Bayesian estimate of the solution. Apart from simulated annealing,

which takes a long time, none of these methods are guaranteed to converge

to the correct result.

In this paper we will describe an alternative approach to minimizing

these energy functions based on analog networks of the Hopfield type. Math-
U

* ematically this gives a method of smoothing the energy function reducing the

number of local minima. It is also implemented by a network which could be

a,.

a.a built in V.L.S.I. and which could possibly be implemented by real neurons.

The V.L.S.I. network would be massively parallel and could minimize the en-

ergy function orders of magnitude faster than serial, or parallel computers.

Hopfield networks were originally designed to be an associative parallel mem-

ory (1982, 1984). In Appendix (1) we give a simple introduction to Hopfield

networks and then show how their formalism can be extended to allow some

generalizations. Although the Hopfield networks are nonlinear we can usu-

ally write analytic closed forms for the solutions they converge to. There is

enpirical evidence that they often converge to the correct result. Moreover

'. " f OllV('rge e
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we can prove mathematically that they will always converge to a solution of

the mean field theory equations and thus represent a deterministic method

to approach the probabilistic solutions (see also Marroquin 1987). There are

also similarities with the graduated non-convexity approach of Blake (1983).

Many vision algorithms were designed to be implemented on neuronally

plausible networks. For example Horn's work on colour (1973) was partially

intended as a possible model of the human colour system. Cooperative stereo

algorithms by Arbib and Dev (1975) and Marr and Poggio (1977) were also

implemented by simple neural-like elements. * Terzopoulos (1984) suggested

the use of analog networks for surface interpolation, but did not implement

them. Poggio et al (1985) developed analog networks for quadratic regulariza-

tion energy functions. They note that, supposing we are considering motion

smoothing, minimizing the energy function E(vi, OvOxj) given by (1.2) is

* equivalent to solving the associated Euler Lagrange equations (Courant and

Hilbert 1953)

* Interestingly the Marr and Poggio network can be considered as of discrete Hop-

field network. Discrete Hopfield networks, however, are less effective than con-

tinuous networks for minimizing functions since the continuous networks smooth

the energy function removing local minima.

O-Iis
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_,EOO'/ 3  _x 0 E(1.3)
a(Ot, i/Oaxj) COxj at,"

Since E(vi, OviOxj) is quadratic in vi, OviOxj the equations (1.3) are linear

in vi and its derivatives. Any system of linear equations can be modelled by

an analog network involving resistances, capacitors and inductances (Kaplus
-j

1958) * and hence (1.3) can be solved for such a network.

Hopfield style networks could also be adapted to minimize (1.2) and it

is interesting to consider the differences with the networks described above.

Hopfield networks have a dynamical update rule, which for this problem cor-

responds directly to a continuous form of steepest descent,

", dvi OE, - e9E(1.4)

dt ti

It follows from the chain rule of differentiation that the energy function

E(t) will continuously decrease with time

dE OEOE
dt r-, 0 (

E is bounded below, by 0, and so with this dynamics the system has to

S
(oivc('fwg to a, ininiilini of E. Thus E is a Lyaponov frunction.

.'a The analog networks of Poggi, et al (19S5), and the' networks of Hopfield,

*Spe, al tricks are ,,,.ed,'ol 1(, o-,' ,,'g ati,' resistors

%
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can all be constructed out of simple electronic elements (resistors, operational

amplifiers, etc). They are also compatible with the existing knowledge of the

electrical behaviour of the dendrites and axons of neurons. Thus neural hard-

ware would be capable of implementing such networks, although the evidence

suggests that neurons are considerably more complicated.

:Nf 2. Surface Interpolation
.

Surface interpolation is a good example for illustrating the difference

/.

between energy functions requiring smoothness and those allowing disconti-

nuities. Following the work of Geman and Geman for image restoration, an

energy function for surface interpolation can be written (Marroquin 1985), *

E(f,)=E(fy- f+,)2(1 - 1)+Cd Z(f - d) 2 +ct j1. (2.1)

Here the di correspond to the depth data, the fi to the desired answer and

~0, the 1i to the line process elements. Cd and C are constants. The line process

'N.

* For simplicity of the mathematics we write the energy function in one dimension.
o.,

*, All the results described also hold for two-dimensional surfaces. "

r,0

.. . . . S ,. - , h, .. , -.. .. - .,-,-. -: "-:.:.",..',::'/
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lattice is interposed with the space lattice, see figure 1. The 1i can take values

0 or 1. If the Ij are all set equal to zero then E reduces to standard surface

interpolation with a membrane * This formulation allows the smoothness

constraint, enforced by the first term of (2.1), to be broken at a cost. If the

surface gradient. fi - fi+, becomes too large the line process term 1i cau

switch on at a cost of C1 in the third term. See figure 1.

This energy function can be generalized to two dimensions in a straight-

forward manner (Marroquin 1985, Blake 1983, Koch. Marroquin and Yuille

19S6). Additional terms can be added to the energy function to impose con-

tinuity of lines. The interpolation can be generalized from membranes to thin

plates by including terms with second order derivatives. This will require in-

troducing surface gradient processors corresponding to discontinuities in the

surface gradient.

There has been much work on surface interpolation and several peo-

ple have used energy functions of form (2.1). Different strategies were used

to minimize (2.1), Blake uses a technique called graduated non-convexity in

,.which a non-convex energy function is gradually transforned into a convex

one. This method is not guaranteed to find the global minima of the original

energy function and may only work for dense data, nethertheless it gives good

* Membranes and thin plates correspond to minimizing the first and second deriva-

tives of a surface respectively.

%*.%~ % N. *r~ . .. ~****.%
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' ,Since there are no guaranteed methods to find the minima of (2.1) we

would like a technique that may not always suceed but which is very fast. In

a series of papers Hopfield (1982, 1984, 1985) describes networks made up of

simple analog devices. These networks have two important properties. Firstly

they could be implemented in V.L.S.I. and perform parallel computations at

speeds orders of magnitude faster than existing parallel (or serial) computers.

Secondly the networks may be biologically plausible.

From our viewpoint these networks have a third advantage; they are able

to find good estimates of the global minima of non-convex energy functions.

Hopfield and Tank (1985) demonstrated that they could find close solutions

to the Travelling salesman problem (to within a few percent of the optimum

length) for up to thirty cities. The work described below was first reported

in Koch, Marroquin, Yuille (1986). We now show how to design a network to

minimize (2.1).

The key point of the Hopfield approach is to replace the binary variables

1, by continuous variables V lying in the region [0, 1]. Each V is related to an

internal variable Ui, which is unbounded, by a gain function g, Vi = g(Ui). A

typical choice for g is

* 1

g(ui)= e2Aui. (2.2)~1 +

%0
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I ~ 1This is a sigmoid function monotonically increasing from 0 as ui ' -oo

to 1 as ui -p 00. The parameter A controls its "sharpness". As A '-, oo it

becomes a Heaviside (step-edge) function. The energy function can now be

written

E(f,V) = Z(f,_f,+,) 2 (1 )+Cd Z(f,-d2)+C , 1+ ±C g Z: V(i

. (2.3)

5_ where the last term is a gain function term. The dynamical equations are

. .,dUi aEd", =- (2.4a)

dr OE (2.4b)

Observe that since Ui is related to i by the gain function (2.2) the Vs

will always lie in [0, 11. This type of dynamics is gradient descent for the f,.

If we substitute for U, in (2.4a) it becomes

dV
dT - -2AV,(1 - 1) l--, (2.5)

and so is a form of gradient descent for the V. with a weight factor. It can

easily be checked that E is a Lyaponov function for the system
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dE Z &E 2 ( 2 dV(-- = (2.6)
dt g-I a -" .

Since Vi is a monotonic function of Ui the right hand side of (2.6) is

always negative. Thus E always decreases and is bounded below, so the

system coverges to a minima.

Koch, Marroquin and Yuille (1986) describe the implementation details.

The system was simulated on a Symbolics 3600 LISP machine. The system

was tested first in 1-D and then in 2-D. Some experimentation was needed

to find suitable values for the parameters Cd, C1, Cg. The system performed

well even with noisy data and with sparse sampling (sometimes as low as five

percent of the points were sampled).

The A parameter controls the degree of smoothing of the gain function.

For high A the Vi are essentially forced to be either 0 or 1 and the continuous

system (2.3) is close to the discrete system (2.1). For small A the energy func-

tion becomes convex (this can be verified by calculating the Hessian of (2.2)).

Thus A corresponds to the degree of smoothing of the problem. Altering the

S., value of A to change the degree of convexity of the energy function is analogous

to graduated non-convexity (Blake 1983). For our simulations the only differ-

ence in running the networks with small or large A was the convergence time.

The smaller A, the longer it took to converge, without any significant effect

O'F
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on the final solution. The convergence time of the networks was usually a few

time constants (using the adiabatic expansion it can be shown that networks

obeying equations (2.4) reach a final state after a few time constants).

The fact that the network converges even with high A suggests a hybrid

strategy to minimize (2.1). The fi are continuous and are updated by gra-

dient descent while the Vi are discrete. The Vi are sampled at random and

4:. changed if this reduces the energy. Some experimental success is reported
.,

with this (Koch, Marroquin and Yuille 1986). For further work see Hutchin-

son and Koch (1986), Marroquin (1985), Marroquin et al (1987). Clearly such

a strategy will only work if the energy function (2.1) has few local minima.

We now perform a new analysis of the network and prove results showing

that it converges to a solution of the mean field theory equations. If we use

a probabilistic algorithm, like the Metropolis algorithm, in the final state of

the system each line process 1i will be on with a certain probability pi(T),

where T is the temperature. The network will converge to a state where the

. line process elements take deterministic values pi(T) where T is inversely pro-

portional to A. It is in this sense that the network is a solution of the mean
0.

field theory equations. Note that, because of the coupling with the depth

field f,, there will be several solutions to the mean field theory equations and

0. we cannot guaurantee that we will find the one with least energy. Another

0
.1o



v.: . deterministic method, based on probabilistic considerations, of finding solu-

tions of the mean field theory equations for this problem has been proposed

by Marroquin (1987).

Using (2.6) and substituting for V we see that the energy function E

decrcases at the rate

dE OE 2 OE.2dU- (2.7)

The energy is bounded below so the system converges to a state with

dE/dt = 0. From (2.7) we see that this implies (note that dUi/dV is always

positive and non-zero)

*OE

-f 0, (2.8a)

Ou 0. (2.8b)

Note that

O V , 2 A ( 2 .9)
OU= (eAUi + e-U)2 (2.9)

We calculate

.= 2A (_(f,+, _ f,) 2 + C1 + 2ACgU). (2.10)
CU (A Ui + eA hi)2

04i&gd



This function has zeros at CgUi = (fi+i - fi)2 
- C1 and at +oo. Cal-

culating the second derivatives of E with respect to Ui we see that the zeros

at ± inf are maxima and the zero at CgUi = (fi+I - fi)2 - C1 is a minimum.

Thus although E is not convex with respect to U it has a unique minimum.

Note that none of the Vi will be exactly 0 or 1. Tile true energy minima will

therefore have

CgUi = (fi+i - f.) - C1 . (2.11)

* Recall that, for large A, the sign of U determines whether Vi = 0 or 1.

Thus a discontinuity will be imposed only if

(f,- f,) 2  C1. (2.12)

The depth terms f, will obey

A

(fi - fi+ )(1- V) + fi - fi-i)(1 - Vi- 1 ) + (fi - d,) = 0. (2.13)

0.1 We rewrite (2.11) in terms of Ii as

0.I= 1 + exp-2A((fi+i - fi)2 - CI)/Cg (2.14)

X V
54,i~
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1 17e have shown that if the interpolated surface gradient exceeds a thresh-

old then a discontinuity will be inserted. It is not clear however that the

discontinuity will be inserted at exactly the correct place. Observe, however,

that in the absence of depth data there is no clear criterion for where the edge

should be.

A stochastic algorithm (for example Marroquin 1985) would use gradient

descent for the fi, as in (2.4a), and a probabilistic update rule for the line pro-

cessors. The line processors are examined seperately and updated as follows:

(i) Calculate the change in energy AE(I) resulting from changing the state

-. of the line process 1,. (ii) If AE(I) < 0 make the change. (iii) If AE(I) > 0

make the change with probability 1/(1 + exp-2AE/T).

This system will converge to a state of thermal equilibrium with

p(li = 0) = Aexp(-(fi+l - fi)2 /T), (2 .15a)

p(l, = 1) = Aexp(-Cj/T), (2.15b)

where A is a normalization factor to ensure p(l, = 0) + p(li 1) = 1. Thus

- J, =(2.16)
p lr=,,,, 1 + Lrp-((f.+, - f,) - c)/T (1

04
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Comparing (2.16) with (2.14) we see that the network indeed finds a

solution satisfying the mean field theory equations.

3. Motion Smoothing and Segmentation

We now briefly describe some work on motion smoothing and segmenta-

tion. This work was done in collaboration with C. Koch. Mathematically it

is very similar to the work on surface interpolation.

The problem we are tackling involves segmenting an image using motion

flow (with correspondence based on image intensity). For example, detecting

an object moving over a textured background.

A method for obtaining the motion field was described in section 1. This

assumes continuity of the motion field and therefore would break down at the

boundaries of the object. It is straightforward, however, to modify the energy

function to include line processes. The line processes should switch on at the

boundaries of the object thereby both segmenting the scene and preventing

the velocity field being distorted by smoothing over the boundaries. Inside

these boundaries the energy function should give the velocity field as before.

"4
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> .. The energy function can be written as

E(v" 0.v, , h,,3 , , = 2.d (, j(I,+ ,,j - I",,) + 1Y-
,,)

i, i ( ij l -lj)

+- v,) 2 + (,Y - t,,r,) 2 )(1 - h,1
j) + ((-,j+,: -

zj

+(v'1F -vY ,)I ' I ) 2 )(- + V(h, v). (3.1)

The horizontal and vertical line processors are given by hi,., and vj,j

respectively. The V(h, v) term corresponds to the cost for the vertical and

horizontal line processes including the terms enforcing local continuity.

. This energy function is very similar to that for surface interpolation.

-: Once again the line processes produce local minima in the energy function

and no algorithms are guaranteed to converge.

It is straightforward to design a Hopfield network to minimize (3.1). The

hjj and i'i become continuous variables related to new variables pi,j and qi,j

by Iij = g(p.,j) and tvi,j = g(qi,.) respectively. Gain function terms for h

and r are added to the energy. The dynamics are defined as in the previous
O.9

section

dvz OE (3.2a)

04
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'I%.

dvY aE (-bd'-"0 t = - v 3.b

dp,, - aE (3.2c)

dt Oh,,j

dq,, OvE (3.2d)

.Ji

it

Figure 2 An example of an object moving relative to a fixed background

This network is still being tested but preliminary results are encouraging. It

is able to segment a textured object moving over a textured background field.

It can be mathematically analysed, as for surface interpolation, and similar

results hold.

04



-.. . - -= . _ . ._ . .- . - 7 - -,- 7.: ., ' W, s. W T V Ir J

21

%." 4 Motion correspondence

We now consider a rather different type of vision problem namely motion

correspondence and the recovery of structure. This work is described in detail

in Grzywacz and Yuille (1986).

Ullman (1979) proposed dividing the structure from motion process up

into two different stages. The first consists of matching tokens, such as points

or straight lines, between different image frames; solving the so called cor-

respondence problem. Once this matching is done the second stage assumes

rigidity to recover the structure of the object. Ullman1984 later suggested an

.' ,"alternative method of finding the structure (see also Grzywacz and HildrethV
1987) capable of dealing with non-rigid motion. He again used psychophysics

to argue that the three dimensional structure of an object was not perceived

immeadiately but developed gradually over time. He proposed that the vi-

sual system constructed an internal model of the object, initially flat, which

was updated over time by assuming the minimal change of rigidity between

sucessive image frames, the so called incremental rigidity scheme.

It is natural to ask whether errors are caused by dividing the process

into two stages. Both are solved using different assumptions and it is possible

a... thit these conflict for some stimuli. It is also interesting to see if iigidity

alone is sufficient to solve the correspondence problem. To investigate this

%. NO'~ ' ~ a'~ ~'~~ '.~~-/ /. ~**~
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we define a cost function that minimizes incremental rigidity and solves the

correspondence problem simultaneously.

The incremental rigidity scheme maintains a model of the object at any

given time M(t) = (xi(t), yi(t), zi(t)) , i = 1, ... , N. At the next time frame, at

t + bt, the model is updated taking into account the new information available

(we are assuming orthographic projection onto the x, y plane). The model is

updated to M(t + ,t) = ((xi(t + bt), yi(t + bt), zi(t + bt))) , i = 1,..., N where

z,(t+6t) is determined by minimizing the change in rigidity between Af(t) and

M(t + bt). The object is initially assumed flat, i.e. M(O) = ((x,(O), yi(O), 0))
!i = 1, ..,N.

I!. ~ We first investigate using rigidity to solve the correspondence problem

a,,z

and determine the structure simultaneously. A measure of rigidity is

Li(t) = (X,(t) -x2 (t))2 + (y1 (t) - y(t))2 + (zi(t) - z(t))'. (4.1)

The zi(t + bt) are defined to minimize the change in rigidity AR between

frames
a--

N
A0= Z((Li(t) - Lij(t + bt))) 2 . (4.2)

We now define a set of binary correspondence variables (V,,). If point
9-.

in the first frame goes to point a in the second frame then Va = 1, otherwise

k

I,,,
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0. We can define a matching cost ER by

N

ER = ((L~j(t) - Lab(t + 6t))l~I~(4.3)

To find the correspondence and structure we minimize ER with respect to

(z, (t + 6t)) and (VI') requiring that all points in the first frame ale matched

to exactly one point in the second.

We use a method developed by Hopfield and Tank (1985) for the Travel-

ling Salesman Problem. Again we first define a new array of variables, (Uil).

These, are internal variables of the new problem and have a monotonically

'4 iincreasing relationship to Vi.:

ia a + e2AUio (4.4)

where \ is again a parameter of the problem. We next define the full energy

function to be:

E N N N ' N N N

a=1 s=1 j=-1 i=1 a=1 b=1

c D
" N) )2 + DER (4.5)

i=1 a=l

F N N

((V a log(1,a)+ (( - IM)) 1og((l - V;o)))),
t=1-- a =]--

where A, B, C, D, F are positive parameters of the problem. (We will infor-

, 'rally identify each of the terms of the right hand side of Eq. 4.5 byv the

. "-".
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parameter leading it.). Minimization of the A term forces each feature in the

second frame to maintain correspondence with as few features as possible in

the first frame, (and vice versa for the B term). Minimization of the C term,

forces the total amount of correspondences to be N. Thus the terms A and

C will force N correspondences of strength 1 to be established in such a way

that each feature of the first frame will tend to have a correspondence with

a feature in the second frame and so that the correspondences will be evenly

distributed among the features of the second frame. It follows that the process

. will tend not to leave any feature unmatched.

The F term is necessary to give a time constant for convergence of the

network. We define the usual update laws

dUt, DE 1 < i < N, 1 < a < N, (4.6)

dt 1< N N

Provided that A is large enough the variables Via will tend to be either 0

or 1 and thus it will tend to force a binary decision to determine whether a

correspondence is to be established or not.

We simulated this network on a Symbolics 3600 LISP machine. The

V.. results are described in detail in Grzywacz and Yuille (1986). To summa-

rize them: despite extensive experimentation with the parameters the sys-

I tern rarely converged to the correct answer unless given a hint of the correct -

%%.



25

matches. Tie system made some interesting mistakes, it would sometinmes

choose matches which were alnost rigid but which corresponded to compli-
p,

icated motion of the object between different frames. This suggested that

rigidity alone was not a strong enough constraint and we should introduce

2. another term in the energy function corresponding to smoothness of motion

between frames. After some experimentation we fell back on the energy func-

tion E,%[.%f used by Ullman (1979) to solve the correspondence problem.

AN N
E = T,,di. (4.7)

i=1 a=1

When we added the EAIAA term to the energy E the network gave con-

sistently good results for a wide range of data Grzywacz and Yuille (1986). It

gave a high percent of correct matches for systems of up to thirty points.

To see what contribution the rigidity term made to the matching we

removed it and ran the system using the minimal mapping term. The system

gave identical results suggesting that the rigidity term was usually uneccessary

for matching. A possible exception is at the occluding boundary of an object.

Here the order of points can reverse between frames and the minimal mapping

V scheme gave incorrect results. For small angles and for some values of the1..

parameters the rigidity term obtained the correct matching.

In fact it is easy to see that, with the correct matching, the minimal

V %
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mapping energy will be zero for rigid motion in a straight line. This supports

the idea that rigidity may be important for corrspondence for rotational

motions. We plan psychophysical experiments to investigate this case.

In our simulations using the EA1.%I term we did not try to optimize the

parameters A, B, C, F, .11 and A in any sense. Instead we found that the

asymptotic beha\ ior of the system was the same for a large range of parameter

values (few orders of magnitude). Typical values used during the course of

this research were A = B = 50000, C = 500000, F = 1,M = 50 and A = 1,

where the distances between features in a given frame ranged from 1 to 10.

We used homogeneous initial conditions for our simulations, i.e.:

1
V"a(t = 0) = N. (4.8)

We also tested our network on simple situations such as dot splitting,

when there are two dots in the second frame equidistant from a dot in the

first. Interestingly our network gave the correct psychophysical result; the

dots split into two with Vai = 1/2. This suggests psychophysical experiments

comparing the predictions of the networks to that of observers for other simple

stimuli.

There is an important practical advantage for V.L.S.I. circuits in only

using the minimal mapping term for matching. It can be shown (Grzywacz

,%- ',,_ ** . , . . , %
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and Yuille 1986) that the MI term can be choosen to be linear in the matching

term,i.e.

6/

i=1 a=1

This gives an energy function

%A 
N NN N N N

E=TZ Z ialra + - 1ZE1 1Za I'
• " a l i= i= = 1 a=l 6,= 1

C N N
[ 1 (( 'a - N))2 + E,,., (4.10)

i=1 a=1

,+ TA ((O'l 1o(V) + ((1 - Va)) log((1 - I)))
i=1 a=

This means that the dia's do not affect the connection strengths between

elements. Thus the connection strengths will not have to be changed with

4 each time frame.

The energy function described above is rather different from those in the

,. previous two sections. It looks considerably more complicated and a lot more

care is needed to find the correct parameters. Unlike the previous problems the

value of A is important, it has to be small compared to the other parameters

of the problem. Finally the similarity of the energy function to that used by

Hopfield and Tank for the Travelling Salesman Problem suggests it contains

i1iany local minima. Given all this, the success of Hopfield style networks

: , for this problem is encouraging. Hopfield networks give progressively worse

"A %
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results for T.S.P.'s with more than thirty cities. We can prove, however,

(Grzywacz and Yuille 1986) that our network will always yield the correct

answer if the motion between frames is sufficiently small compared to the

seperation of the dots. Thus if time between frames is small enough the

/. correct matching will be made. Other ways of dealing with large numbers of

points will be discussed in section 6.

As for surface interpolation we can derive an analytic expression for the

solution. Using the chain rule for differentiation we find

dE _ 9Uia O9E E
dE= _ U41 a E 6 E . (4.11)d..,t . o9v o&ri oui.

From (4.4) we calculate

,I

' OUg,, _cosh
2 AUia

alli 2A (4.12)

This term is always positive definite as it is bounded below by 1/2A. The

energy is bounded below and so the system reaches a final state with dE/dt =

.0 0. Using (4.11) and (4.12) we see that a necessary and sufficient condition for

2such a state is

i -0. (4.13)

Inverting (4.4)

I
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2A1 Va
Uja = -log .(.4

Differentiating (4.10)

___ 2 A (4.15): OV---- = osh 2 U . d( iC° + VP0°W-2I)V )+C(V-n )+d k + F U ia)" 4.5

aUia ;oh2AUia (A(Z G C~.~

Here we have introduced new notation. V = Z-i, It, ViCOL =E

and VrROW = -i V. We have also absorbed the constant ./2 into the

definition of dia.

Observe that (4.15) vanishes at UTia = ±00. But we can show that these

(. roots do not correspond to minima and hence are not solutions. To prove this

we must show that the Hessian of E with respect to the Uia is not positive

definite there. We calculate

0 2 E 2Ak 4 F)
,a -cosh AUia ((cosh ',\ + F)

-2AtanhAUia(A(VfOL + Va ° W - 2V) + C(V - n) + dk + FUa)). (4.16)

For large Uia the dominant term inside the bracket is -2AFUiatanlAUia.

Thus 0 2 E/&U? will tend to zero from below as Uia -±00. Hence the Hessian

cannot be positive definite there and the roots at infinity are not minima.

Now consider the other roots of (4.15). These obey



30

A(V§L + V.ROW - 2V,.) + C(V - n) + d k + FU,. = 0 (4.17)

and are also roots of OE/OV = 0. At such points

N 82 E _ 82 E OVia OVjb (4.18)
iaOU iaUjb = iaolIb OUi. OUib

and so the Hessian of E with respect to Uia will be positive definite if and

only if the Hessian of E with respect to V,, is positive definite. We calculate

a2_EC+ F (4.19a)
OV O091 = c vk(1 - vYck)

OiOVa_= A + 2C (4.19b)

,92 - A + C (4.19c)

,N Vjb =C. ij,a b. (4.19d)

4 which is positive definite.

Thus the system will converge to a minima of the energy function which

are given by

._ U =2C(n - V) - dk - A(1[OL + aJ° w - 21'ta)
= F (4.20)F

O %



31

Unlike the surface interpolation case we have found no simple interpre-

4 tation of these equations in general, although results can be obtained for

a.," particular cases (Grzywacz and Yuille 1986). Again notice that the final v,'

must lie between the limits 0 and 1.

a- a

5 Stereo.

Anatural way of writing stereo in the form of an energy function is as

" " follows (Barnard 1986, Horn 1986, Gennert 1987)

'e"E(d) = yE(Li -Ri+d(il) + p -(d(i+ ) - d(i) .  (5.1)

• _ Here d(i) is the disparity between the images. Li and Ri are measures of

72, . the left and right images and can be continuous or discrete. For example they

2. " could be the image intensities, or they could be the positions of zero Crossings.

The first term in (5.1) matches the left and right images in Such a way as

2+0, 2 ! to minimize the disparity gradlient represented by the second term. LinV

-a.".a,

, q, processors can be introduced to prevent the" disparity gradients from bco+ming,

-"4a-li.N.N
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too large and allows distinct objects to influence each others matching. *. This

yields

E(d,1) (Li- Ri+d(i)) 2 (l -1) + p -(d(i + 1)- d(i)) 2 (1 -1) + T- i i.

(5.2)

The 1i performs two functions in (5.2). It prevents the disparity gradient

from becoming too large but it also prevents matching in the first term if the

difference between the images is too great. This latter effect may hell) deal

with occluding situations when one eye sees a region which the other cannot.

It is simple to generalize this energy function to two dimensions.

4.
It is straightforward to design a Hopfield net for this problem in the usual .

manner. We simulated this on two types of examples (in two dimensions). The

first consisted on a sine wave with the central square displaced and the second

was a standard random dot stereogram. The results were disappointing in

both cases. Although it was possible to get roughly the right answer for the

sine wave the random dot pattern gave consistently poor results. This occured

despite filtering the images with a variety of filters, gaussians and difference

. of gaussiarLs at various scales.

We believe that this bad behaviour is due to the complicated structure

* This work was done in collaboration with T. Poggio

If%

0.%.
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. of the energy as a function of d. The behaviour of this function is crucially

dependent on the structure of R. For example if R is a linear function of its

arguments the energy will be quadratic in d and therefore well behaved. If R

is more complex, in particular if it arises from a random dot stereogram, the

energy function can be a complicated function of d with many local miiiiina.

To apply this method to a general scene would require smoothing the images

(by an amount determined by pre-processing) until the function R was suffi-

ciently well behaved, avoiding smoothing the image too much to destroy its

interesting features. While this is conceivable it seems that alternative stereo

algorithms are likely to be more sucessful.

.

A possible approach is to attempt to minimize (5.2) using other algo-

rithms. Some success (Barnard 1986) has been reported for using simulated

annealing for (5.1) (in two dimensions). So far attempts to use simulated

annealing, and other stochastic methods, to mininize (5.2) have not been

sucessful. Although it has been possible to hand tune the parameters to get

the correct result for one class of stimuli, sign waves with displaced centres,

S. it will not work on others, such as random (lots. Various refinements of the

methods have been tried including a coarse to fine strategy of convolving the

inlage with a large scale galissia i, mininizing the energy at this scale and

-': using this to guide the matching at smaller scales.

.0.
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This result is negative and by no means conclusive. More sophisticated

algorithms could be tried including perhaps methods of estimating the pa-

rameters of the energy function directly from the image. Alternative energy

functions could be tried. We believe, however, that this may represent a limit

for the practical use of energy functions. If an energy function is too compli-

cated for straightforward algorithms to solve then the problem is badly posed

and more heuristic methods should be used. This will be discussed further in

the next section.

-- ! 6 Limitations of the energy function approach.

a.

.'.- "The previous four sections described attempts at modelling problems in

:- - iterms of energy functions using analog nets, The first three attempts were

~reasonably sucessful and the last one failed. We argued that this reflected the

~relative complexities of the energy functions being minimized.

.0--:-It is clearly possible to write any vision problem in terms of minimiizing an

', energy function *It is less clear that this is a good strategy. For non-trivial

• * In the samne way that all the laws of physics can be sumnmarized in one equlation ,i

%1
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,.'problems it often leads to energy functions with many local minima depending

on large numbers of parameters. These parameters will often depend on the

41 image being viewed and might even have different values in different regions

of the image * As yet there is no reliable way to estimate these parameters,

or of minimizing energy functions with many local minima.

Energy function methods seem a natural idea for matching representa-

tions of images containing a large number of similar primitives. Random Dot

stereograms (introduced by Julesz 1971) are ideally suited for this type of

*algorithm. Realistic images, however, contain many different features of vary-

ing sizes. A good strategy for stereo could involve matching the most salient

-features and using this to guide the ambiguous features. The work on stereo

by Mitchison and McKee (1987) shows that for one-dimensional sterograms

the positions of the endpoints have an important effect on the matching of

the interior points. Another interesting example of this type is psychophysics

for motion correspondence illustated by Ramachandran's analogy of a mov-

ing leopard (Ramachandran 1985, Ramachandran and Anstis 1983). If the

,4 outline of the leopard is not visible the leopard's spots are matched to nearby

neighbours and no motion is seen. If the outline is also visible then its mo-

by summing the squares of all the individual laws (Feynman 1963).

* For example in the way the noise thresholds are determined locally for the Canny

Iedge detector.

0°
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tion "captures" the spots and they are matched correctly. This suggests that

random dot stereograms are a limited paradigm and that although humans

have the capacity to match them correctly they may not be the strategy used

for real images when more information is available.

Moreover the energy function approach, at least in its most naive form,

tends to ignore some of the structure of the problem. For example, the motion

smoothing and segmentation algorithm described in section 3 would, in theory,

be able to detect the boundaries of the leopard but it would not be able to

use the speed of the boundary directly to influence the internal matching.

There would certainly be an indirect influence, since the motion is required

to be smooth, but this would be weak and depend on the distance from the

boundary. One can contrast this with a more heuristic approach which would

analyse the scene, detect the object boundaries, estimate their velocities and

use this as initial data for matching the interior of the object. The algorithm

C ._could be designed in terms of several different networks connected together

and certainly individual parts of this method could be implemented by energy

functions. For example Grzywacz (private communication) has shown that the

0. network described in section 4 will correctly match the leopard's spots if the

estimated motion is available as initial data.

The stereo energy function (5.2) also does not capture some of the ia-

II
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portant fcaturos of the problem. Places where the line-processors should be

on correspond to boundaries of objects, and therefore should correspond to

edges in the image. Thus it would be more sensible to find these edges by

simple processing of the image rather than by minimizing (5.2).

For any given module, such as stereo, there are many possible algorithms

some matching image intensity, others matching edge-like features. The rcla-

tive effectiveness of these different algoritluns will depend on the images being

viewed, an edge-based stereo algorithm would be ineffective in a scene con-
44

taining few or weak edges. For some scenes it would be natural to try to find

and then match salient features, such as the occluding boundaries of objects

or regions of high texture density. Heuristics like coarse to fine matching ,as

used by Marr and Poggio (1979) for stereo, could also be used. For realistic

images a stereo system might have to use a number of different algorithms, or

submodules, interacting with one another and combining to give the solution.

These submodules might each be implemented in terms of networks minimiz-

ing energy functions but the most important part of the calculation, and the

hardest part of designing such as system, would lie in the control strategy for

combining the different submodules.

Thus although minimizing energy functions is a useful technique for early

, vision it has definite limitations. If the encrgy has too many local minima it

4%%

%4%

0aN ,7.L



- 38

may be better to try heuristic methods to avoid them rather than to use

complicated search techniques. Minimizing an energy function is only one of

the many different search strategies used in Artificial Intelligence research and

is only effective for certain problems.

0-

7 Conclusion.

We described how a number of problems in early vision could be de-

scribed in terms of minimizing energy functions. We showed that Hopfield

style networks were able to give fast reliable answers for some of these. We

discussed the limitations of this approach.

.4--

.
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A.1. Hopfleld's Forialism

-4.,

% .

Hopfield describes a system of n neurons with output's I i and an external

input Ii, where i runs from 1 to n. He defines an update rule by

dui u

.- R

Here Tij is a measure of the strength of the connection between neuron

i and neuron j. A priori, every T,, can be positive, negative or zero. C, is

a capacitance and Ri = 1/ j Ti3 a resistance associated with every neuron.

ui represents some internal function of the neuron i, for example its somatic

potential, and is given by

= g'(Vi) (.4.1.2)

where g(x) is a monotonic increasing, but bounded function. This model

is deterministic, its final state will depend on the initial conditions and the

inputs Ii. Hopfield argues that it embodies a content addressable memory.
S.'

To (1o this he defines an "energy" function

V" V %'V

"p.%
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E(V1) = VT iVVj + Z g'(V)dV + IV, (A.1.3)
2, Rif0

with the restrictions Tij = Tji and Tii = 0. Differentiating (A.1.3) using

the chain rule and substituting (A.1.1) and (A.1.2) we have

SdE - E Cigd-(,)( ) (A.1.4)

which is always negative. E is hence a Lyaponov function and by standard

results of Statistical Mechanics any solution to (A.1.1) will converge to one of

: ., a fixed number of stable points, provided E is bounded below. The precise

fixed point (A.1.1) converges to will depend on the initial conditions and the

external inputs. The potential of the system contains a large number of local

5% :- minima and tile minimna the system ends up in is determined by the initial

conditions. The system can therefore be thought of as a content addressable

memory. The requirements that the connectivity matrix T is symmetric is

needed in order to assure that the update of u, has the form of equation

(A.1.1).

A.2 Extending Hopfleld's networks: We will now proceed to propose

a more general class of networks and update rules, The essence of Hopfield's

networks can be described as follows. First we define an "energx" function

IW
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,.. ~E = (V .(A .2. 1)4

\e should emphasize the quotation marks round "energy". It is not

.ecessarilY tile energy of the physical system but merely a Lyapunov function.

It is bounded below. We will reformulate our update rule as

a._ d Z 4 DE- ~j(A,2.2)

Jj (,,22
O

This is a generalization of (A.1.1). In order for E to be a Lyapunov

function, its temporal derivative must be everywhere negative or zero. In

0 other words, the "energy" must always decrease or at most remain constant,

but never increase. Differentiating (A.2.1) using (A.2.2) yields

'a

dt dt _ a VE", a'. -E _ ' dV A,, OEO, (.4.23)

* E is a Lyapunov function (and hence the system has a content addressible
'

%,.. memory) if and only if Ai) is positive definite, i.e. xTAz > 0 for all vectors x.

For any arbitrary function E there are therefore an infinite number of possible

"a. updating rules and so an infinite number of possible systems.
-. 4-..

It is straightforward to check that Hopfields network defined by (A.1.1),

(A.1.2) and (A.1.3) can be obtained by setting

W " ~W a' . %. .. .aa~~,.~a % '
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A- 1 = Cjg-ljrj)6j. (A.2.4)

We will show in A.3 that Hopfield's energy function will still be a Lya-

punov function if we set

A-' = Cig- (11 )l6:j, (A.2.5)

where the 1i are an arbitrary set of positive numbers. This enables us to

relax the symmetry constraint on the Tij to

Ti Til1j , (A.2.6)

where there is no summation over the indices. We prove in the next

section that for an n x n matrix this gives us an additional n - 1 degrees of

"* freedom.

It is important to note that the number of constraints is less important

than the form of the constraints. In general, the matrix Ti, will be sparse,

since most connections do not exist. This become6 especially true if n is
'V

large. The 1i's can then be applied to the remaining non-zero Ti,. Hopfield's

qsymmetry conditions implies, that once the top left half of T, is specified,

the bottom half will be completely determined, since Tij = Tjj, independent

of the number of zeros in Tij. In our extension, however, n - 1 of the non-

II
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zero entries can be specified at will, as long as T3 and Tj have the s-aniw

sign. This condition prohibits thte use local inhibitory intcrneurons, thlat is

neCtonlS which arc excited (T,, > 0) but which inhibit in turi (Ti, < 0). If the

networ-k is used as a content addressible network without allowing too mnany

errors during "recall", only -_ 6% of the possible ni2 - 71 entries are different

fromn zero (Hopfield, 1982). Thus, for n =30 and using I-opfield's syninmetrI(

network, only about 26 Tij's can be specified while the remaining oii",, are

fixed. Our extension implies, however, that all Tjj can take on arbitrary

values -- as long as the sign of transposed elements is the same. Notice that

these conditions in no way constrain the diagonal terms Ti,.*

f. A.3 The full extension:

Formally, the integrability condition (A.2.1) in E is analogous to the ex-

istence of potentials, or state functions, in Thermodynamics. If this condition

is aot met, then the value of E depends on the path taken in Vi space and

hience cannot be a Lyapunov function.

There are many other ways of constructing Lyapunov functions for a

system with a given update rule.

In order to study the class of connectivity matrices T31 leading to con-

verging behaviour, we will now express Hopfield's update rule as

*An alternative to our proof is scaling u, aind Vj independently (flopfield, Private
coininri ca lion).
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dV _ 1 (ITSg,($,i) Ii) (A.3.1)

By inverting equation (A.2.2) we can define the appropriate Lyapunov

function

OEZ A -.. dVt (A.3.2)

or,

E(. .1ddVi. (A.3.3)
E(Vi)=-f A) dt '

Substituting from (A.3.1) gives an integrand I

I=1 (- T.V gk"(V) -Ii)dV. (A.3.4)
= ,,1 (V)

If this expression is integrable, that is its value is independent of the

*path along which the integral was evaluated, then E is well-defined and a

Lyapunov function. A function I is integrable if, and only if, dI = 0 where

d is the exterior derivative operator (Misner, Thorne, Wheeler, 1977). Define

Bij and hi by A ' Cgi"(V)Bji and hi = g 1(V)/Ri. The integrand is

then

I = BiTikVkdV - 1 BijhidV - E B,3 IdVj. (A.3.5)
i~~ 3,)j

%

* *~.~%



S"-If /, and T,, are independent of the V 's then I is integrable pr(r.ilc ,

(I Z BkTkdl', xdl, - B(-d', xdi = 0. (A.3. )
tj,k Ijl

Since (I x ( W) is antisviiiiiietric in 1*and j this will hld pr-ovided .B¢ TA

Bi (M is svinmetric in i and j. If hi is non-linear this will only be possible

provided B,) does not contain off-diagonal terms. Thus. with

: B,j 1= l, , (-4.3.7)

where tile I,*s are positive imiluiirs, equation (A.3.4) changes into

, -' /~,6 , (E ' T, k 14 R ,(;) I) (.4.8)

" 3 &

If 1,T,, is symmetric, then (A.3.8) can be integrated since it consists only

of terms like d( 1 l', ) and g- 1(1 )dV, which are well-defined. Thus, we can

generalize Hopfields's result to all matrices T,,, provided 1,T,) is synmnetric

amtid A, 3 is positive definite. Following (A.3.7), matrix A must be diagonal

and therefore its eigenvectors are equal to the l,'s, each of which can be any

%'. arbitrary positive numbers. Whatever the values of the l,'s there are d(efinite

relations which must hold between the T,3 . In particular, for all ij,k, we

C%% N%
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Ti Tk, T, -. (A.3.9a)
Tj, Tk Tk1

with the auxiliary conditions

Ti T3, > 0. (A.3.9b)

" More complicated relations can be deduced but they can all be obtained

by combining relations of type (A.3.9).

We now examine the constraints in more detail. Suppose we specify the

values Tij, i < j in the upper right half of the matrix. Then the values in the

lower left half are given by
.4'

T. To (A.3.10)

We will ignore the case when all elements in colunn j are zero (and

therefore also all elements in row j), since the order of the matrix will simply

A be reduced by one. Otherwise the lower left half of the matrix is determined

by the li/I. Now all the lI/is can be determined from a basic n - 1 elements
-... 4-.

'1 12 i n- (A.3.11)

dE OE dVj < 0, (4.3.12)

4Vj

V.
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for all motions. Peqi iiring tie update rule to be related to E by (A.3.2)

will ensure (A.3.6). There are many other ways of enforcing (A .3.12). For

. Hopfield's updating rule, howev'r, we have leeii u1ahle to tie I aiN. ()tlr

integrable Lyapunov funct ion.
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