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Abstract

MultiScheme is a fully operational parallel-programming system based upon
the Scheme dialect of Lisp. Like its Lisp ancestors, MultiScheme provides
a conducive environment for prototyping and testing new linguistic struc-
tures and programming methodologies. MultiScheme supports a diverse
community of users who have a wide range of interests in parallel pro-
gramming. MultiScheme's flexible support for system-based experiments
in parallel processing has enabled it to serve as a development vehicle for
university and industrial research. At the same time, MultiScheme is suffi-
ciently robust, and supports a sufficiently wide range of parallel-processing
applications, that it has become the base for a commercial product, the
Butterfly Lisp System produced by BBN Advanced Computers, Inc.

. 4
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Chapter 1

Introduction

MultiScheme is a fully operational parallel-programming system based upon
the Scheme dialect of Lisp. Like its Lisp ancestors, MultiScheme provides
a conducive environment for prototyping and testing new linguistic struc-
tures and programming methodologies. MultiScheme supports a diverse
community of users who have a wide range of interests in parallel pro-
gramming. MultiScheme's flexible support for system-based experiments
in parallel processing has enabled it to serve as a development vehicle for

*' university and industrial research. At the same time, MultiScheme is suffi-
ciently robust, and supports a sufficiently wide range of parallel-processing
applications, that it has become the base for a commercial product, the
Butterfly Lisp System produced by BBN Advanced Computers, Inc.

This report pursues three interrelated topics that are elucidated by the
MultiScheme work. First, we describe extensions that suffice to transform
sequential Scheme into a powerful vehicle for multiprocessing. Gratifyingly,
only a few extensions are needed. The two most important extensions are
the inclusion of placeholders - data types used for representing values that
have not yet been computed -- and the use of the garbage collector as a
Jvisible part of the language. Placeholders are the implementation base for
the future construct of Halstead's Multilisp[26 language. In MultiScheme,
however, they are strictly a data type rather than a combination of data
type. task. and syntax as in Multilisp. Most of the other extensions have
been familiar as "folklore" within the Lisp community. Our essential contri-
bution here is to present carefully-documented, robust implementations and
to demonstrate the synergy of including these within one coherent system.

jIpSP '44~ Ar r r..
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10 CHAPTER 1. INTRODUCTION

III particular, the combination of plach4olders, controlled garbage co dlec -
tion, and a few operations for handling processor synchronization foriiis it

sufficienit base for implementing the MultiSchemne schieduler.

Secondly, we argue that even in the sequentijal context. adding thc'-S.e con-
Strlicts signiificantly extend~s the expressive power of the Schiemre lanlguage.

Piaccholders. for exaixiple. allow one to eII1l1e(Z logic valal~es witlbi Stall-

(l(I Scljeixie (lat a st ruct ures. They also provide at inecliaiisiii for iiigliicg
iiOrxinal- ()ir(l(- evalitat ion with all otherwise api;Ilicat ive-order lilt er-prc tcr.

Tlhe vil t1c a,,1ect; of thle g~caag collector provide it c c)livelit 'ut ise o

tit ilii1)leiliCit ttol iif poi iillat lolls [4 S' (also known ats '-we'lk sets '),.as)i

itiq l tachle, (ani extetisioli of Lisp's "property lists" to objects othter thanl
"VIiilcols . and ndc' -ocnue links (vi1tal to autoixiat ic (lealiceilt 1011

of tasks)

0 Finally, we demionstrate howv MultiSchiene allowvs one to at tack a wide

range of p)roblemn domnains and to investigate miany differenlt methodologies
for parallel pro~grammling. For example, by measuring the time required to
comnpute the future state of an 8-body gravitational systemn we demionstrate

ho apropIatl adiding fultures can convert a serial solutio' oaprle

soluitioni that runs 6.6 tlimes faster (onl a 16 processor inachine). By study-
* iiigthe utilization of the processors in this solution we are led to a variant

- - oh the ivlani (ataflow methodology for solving the samie p)roblem. By

expressing the samne p~roblem in this new methodology we icr17(7 over
hea in itin th ataflow processor, but are at)l solve the iproi i'ii

6.9 timles faster than the original serial solution. Other methodogies that

- 'canI be conveniently expressed within MultiScheine include fork/join struc-
tures, Gabriel and McCarthy's QLambda[23), and the Butterfly Uniform
System[56].

1. 1 Engineering Notes

Building MultiScheme was an exercise in both research and nuts-and- bolts
eniginleering. For people who are interested in the engineering asp~ects of

Jparallel-p~rograininihng systems, a number of important lessons are describedl

5' hirouighout this report. This section surveys these lessons In the hiopes that

5'it will alert interested readlers to points that mnight otherwise be overlooked.

%'5 ', ' '.s % %'5. %



1.1. ENGINEERING NOTES 11

Garbage Collection
Perhaps the most interesting engineering result comes from attempt-
ing to implement a system for garbage collecting useless tasks. The
intention was to provide support for speculative computation - try-
ing a number of alternative ways of solving the same problem and
selecting the result of the first method to succeed. The idea of ex-
tending the garbage collector to collect useless tasks is not new (see,
for example, [9]), but to our knowledge, MultiScheme provides the
first working implementation of this idea. In the process of building
such a garbage collector several small discoveries were made. Most
importantly, the choice of the root for garbage collection is critical to
the success of such a system (Section 3.5). MultiScheme uses a root
that combines the global name space (the ordinary root for garbage
collection) and those tasks created explicitly to report a value back
to the user (i.e. tasks running the standard read-eval-print loop).

Furthermore, the data structures of the system must be carefully
crafted so that the garbage collector "sees" only tasks that are per-
forming useful work. In MultiScheme, this required the introduction
of weak cons cells (Section 2.2.2) to allow the producer of a value to
locate dhe consumers of that value without retaining the consumers
after a garbage collection. Even with all of this support in place, the
garbage collector doesn't always "do the right thing" since some tasks
operate by side-effect and I have not found a mechanism for detecting
when they are no longer needed (see the example of Section 5.3).

One additional result related to garbage collection deserves mention
here but will not be described in the body of the report itself. A pair
of memory management strategies were developed. Each of these
includes a parallel stop-and-copy garbage collection algorithm along
with related decisions dealing with the mechanism for distributing
the physical memory across the shared address space and the area
of nielnory available to each processor for allocating to user tasks.
The initial MultiScheme memory management system is described
1)v Cotrtemanche[14], including details of the garbage collection al-
gorithin and measurements of its performance. Based on this work,
Jolison[34] wrote and tested a different memory management sys-
temn designed to repair some of the problems encountered by Courte-

% %a
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12 CHAPTER 1. INTRODUCTION

manche.

Weak Cons Cells and Object Finalization
Weak cons cells (cons cells wvhose car becomes 1() rather than retain
ain object no longer needed elsewhere) and object finalization (retain-
ing an object for one garbage collection cycle after it would normally
disappear), or similar mechanisms, have long been known to Lisp im-

* plementors. They have been employed internally in Lisp systems for
at least twenty years. The particular form they take in MultiSchemne
has two unusual properties: it is safe enough for use by "application

.4 programmers" who have little knowledge of the internals of the Lisp
implementation, and its implementation consisting of a modification
to the garbage collector and a post-garbage collection update pass
is clearly documented (in this report). Similarly, the notion of ob-
ject finalization (Section 2.2.3) has been around the implementation
community for a long time. Again, the implementation described
here is safe, and the use of an additional garbage- collection root to
accomplish the goal is described here.

Processor Synchronization
The author was surprised by the discovery that MultiScheme needed
a pair of low-level operations for synchronizing processing elements.
This is true even though MultiScheme presents no notion of individual
processing elements to the user. However, operations such as starting
a garbage collection flip (see Section 3.1.1), pausing all tasks when an
error is encountered (Section 3.1.3), and interrupting a task that is

currently running on another processor (Section 3.1.4) inherently re-
quire the cooperation of the processors in the system. The particular
choice of synchronization operations (synchronizers and global inter-

* rupts) is not profound, but the fact that even this simple set provides
an adequate base for implementation of the higher-level constructs
demonstrates that only small extensions are needed to convert Scheme
into a convenient systems programming base for a parallel processor.

Error and Exception Handling
When Hanson and Lamping[281 showed how Stallman's dynamic-
wind operation521 could be seen as a convenient packaging for the

two independent notions of a dynamic-state space and a control-state
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space (continuations), they argued that this provides the base needed
for both error and exception handling. In extending Scheme into a
parallel-processing environment it was important to understand the
ranifications this would have on these same issues. Appendix D docu-
ments the analysis of this area and provides a more detailed argument
in support of their original claim. As a result of this analysis, no new
exception-handling facility was added to MultiScheme. Instead, the
dynarnic-state space implementation was modified to operate without
side-effects to the runtime data structures.

A

1.2 Origin

The MultiScheme effort began as an attempt to merge the best parts of
two existing systems. Loaiza and Halstead had developed the Multilisp
system[26] as a means of testing ideas about parallelism in Lisp. Their
system had already been implemented and tested on the MIT Concert
parallel processor and served as a vehicle for ongoing research into parallel
processing.

In addition, a group of hackers had developed MIT Scheme, a system
lUsed in teaching undergraduate courses. Led by Chris Hanson, this group
was constantly revising and refining both the local Scheme language dialect
and the system implementation. Chris is responsible for a large number of
th, svsteim ideas that ultimately made their way into MultiScheme. His
g.,,imls for taking a passing comment, studying it, and producing a beauti-
fully worked out and elegantly abstracted implementation of the key idea
is a truly rare gift.

In attempting to integrate the ideas from these two systems the ad-
vice,, help. and support of Guillermo (Jinx) Rozas was invaluable. Jinx has
contributed to the MultiScheme effort a wide variety of ideas at all lev-

*(,ls. frton implementation details to overall system structures. His untiring
effOrts and his blasted perfectionisn have helped move both MIT Scheme
ammd NklltiSclicnie from toys to robust. reliable systems.

J.d '.

1% % 1®rd W



14 CHAPTER 1. INTRODUCTION

1.3 Initial Conditions

13v wvav of backgi-ouiit to thle reliialiiter of t his report. this sect iOu serve'(s

to p)osit ion thle Mnllt iSclieiiie project withi respect to ot her wotrk ~in tihe fieldl
of parallel compu~lt at ion. Althbough it Is temipt ing to provide ;U1 overIvie1W of

that enltire field. thle thlixe of ii'rasedl comiput at ional speed thbrough thle

UsC,( of iiiiilt ile coiiiplut,'t io u nitSs e\xcited( so imuch work in thle last five
* - y~ears, thliit it would1( take several b~ooks to pirovide such an overview. Tli(

-~ 5li1\e 1 ~t hook )f Fliiiim 1811iii Friediiiari[20O, is all excellent lilt rodiict lonl to thle

P E-lit tat( adlopttttlihere. iuisteadl. is to provult. a de scriptiloll of the

1ive iiiajt)l mi iidilry etudi i it bin which thle wvoik has jptoceed(l:

Parallel Computation
NI ilt i sclieie. f Il t lit ouitset, was initenlded to he it systemi for i amUYl-

1cl rat her t han a di1,4tributed, comnput ing environment . There is a fine
dlividing linle between these two; and the dlistinlction I dIraw betwveen

them centers atromund their abiilitN to share objects. This boundary
condition has rainifications for computer architectures that sup~port

NlultiSchemie, and the mnatter is discussed further in Section 1.3.1.

Event-Driven Coniputation
-4 The prinmary inethod for ensuring precedence constraints between user

tasks is based onl an event-driven mechanism. Section 1.3.2 compares
this mechanismn to two commnon alternatives, busy waiting and pollin ,.
The twin acts of touching a placeholder and( p)roviding a value for a

piaceholder are the means used to express p~recedlence constraints and
thierebv realize the event-driven model in NMultiSchiemie.

Explicit Parallelismi-
MiultiSclie was intended as at base for a wide range of exp~erimients

in parallel programming inethods. As such, it allows the programmiler
to Indlica te exp)icitly howv the par'allelism of thle undierlying hiardware
I, ts to be exploited. This point is elaboratedl upon inl Section 1.3.3.

* Automzatedl Resource Allocation
Vi t i u 1t' ait pr Igralis is at difficulmt task. Niult iSchli c 1)lto\i(ies ;i

-. dt 1(fi ut ilt tlia ii iui t hat miitoiimt s rcsoUrce allo cat ion. iiakiiig thlit

4 , 
N
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p)rogramnier's job significantliy easier. MultiSclicre's app~roachi
priocessor' allocation is discussed in Section 1.3.4.

Schemie as a Base Language
The Schemne dialect of Lisp was chosen as a base language for- Muli-
Scheme because of its conceptual simplicity. This simiplicity ahllows
a large iimber of sequential-programming models to be expr(~ssedl
wN ithin the language; _MultiScheme is intended to extend this expres-
sive power into the p arallel- programming domain. This point is (dis-
cuissedl in Section 1.3.5

1.3.1 Parallel Computation

% MultiSchemne was intended from the outset to run in an environment coil-
smstnj& of mnany' computation units operating independently but efficiently
shla1r aCCess to a set of (mutable) objects. As a result, the progranmners'
imiodel of the systemi need not include the notion of explicit cornorunica-

N Itlun lbetweeni tasks. Rather, the programmer thinks about objects and~
operations on ob~jects without an externally imposed constraint that each
ol)jcct have a p~artic~ular task or processor as its "owner." I take these to
Ibe the (listiligilishing features of a parallel system: in a distributed systemi
the prograilier's paradigm is one of communication between tasks, withi a
comiconlitant nmotion of copying; in a parallel system the paradligmi is sharing
bvrweem potent ially concurreint computations.

Fundamnitally. this is a constraint on the class of architectures con-
(liuilve to a MultiSchemne implementation. An architecture must possess5
two-( critical features in order to make an acceptable implementation base:

1. A large port ion of the address space must be shared by (accessible
to) all processors in the system.

2. The speed of reference to all portions of the address space muiist Ie
comp a rable.

b ( )1., f t he other initial conmditions is the choice of thle Schemne laniguage
51 'it (ii 1 .3.5). Schemne and~ other Lisps sippoi-t a large- va n-ety o f

"11- () .cs ~v('11loi.~ pointers to objects. rather thaiu thec oliJects
-1%. ;I.s thei fluudaimmeiitaI mits of data transfer. .Any pr oedie- with

U-N'
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,wc- ,to ilc itpolitl , either by recei ving it as anliillivl rb
. I,,'t il>- ti v;l i i f it lex ically V Isil te varial e. 11u11t iiav' ('oiiii't e a tccS,

tit tIw&ll)Jt.ct jt~.tl. Bnt ttfljient imInhdleetatlrim ()f ts.i t111,11. Dt(11tii I

Q~t :titr>-.~t~c cIqt;IIIiiiui all Ifrenl-iceci ihI jiet-. It i, a lilittcI 4 ft'lk

;11Chi like the Intel SOSO) suiffer IiIiifli.;IIt 1 i(Ift)Iillilce p)tilalitit'5

I ii ilt~ I 1111islatiit v(mhgh to hldi thle (lit ire hecap or tw l al 1 -

;1> 1.1 Th" Mult its MaliIsp liipiiicliiitatiloll).

I i l1t I t -1 )l( ,t 1t ,l rt h[Ii, sIll pr 0ia Ii eeic p icc Xvln tn a i 1(1 list i(liet( t

ft D I'll Ii t 0a , i S refc'rt-iices wvill le'ad tot frti perft rxnaice. MoItreover,

it it~t' t I Iiili kili(15 of t ibjects inl Scheme an. first -class, the VIs ~l '

ii, , ;iial I IIi ini is to ( ,(lec xwiere to allocate 1 Ii ,tt s ftor niaxiiniiiii I()-

C;ta h vtf refeo itt setlils miilikeiy to succeed lil general. Thius, equaiiv rahut I
;wcltoI all t cI iects 5I" ret uiretI for suichit a ystemi to have anl ikel~hit ttl otf

Siaro' 1 addt ress space ullaclles1  such as the 13137 Biut t<rfly['501. MIT
Ci ( i t 12. and( IBM R P3[47] systemis coiiie cioset a syll u ltt

tlit r ia Thtev have bot~h "local"'anti "reniote" miemory, but the hiartlwmvr
is. ft ilr rslpoilsjld for detectinug re eferences to each and( reacting accord-
inlv\- As a result, ()il the largest such systems ( roughly 1000 prcssr).
loil mxenory is no more thani o01 order of Imagnitude faster to referenice
tianiI'it0 reeiiemt ry i .ncluding distinguishing the two forms olf reference.

By contrast. the Intel iPSC is estimiated to have a two- to three-order-
of- iii~tgiitiite dififerente lin reference speeds because software dhetectionl of
rem ot e references is reqjuired.

* This thiflereiice In reclative access speeds is exp~ected to be significant

III at parallel etlvroninelt as definled here. Since the plrogrammiling iriodel

(1lo(,s not include the njotion of local and remiote objects corresp)onding to

th, st t art of tie N! tltiSchemce project, a class of machinies kccowu as "itessage

pacsing nilachiieS" lhas hee4.i piroposedi of wich the shared addtress machines are a spe-
Adcajse. Thc'Se tiacltnes, spani hi wtidi ranige of arrhltct tires, andi those, with mtttemory

t.ittitewS that iftt Ith twi criteria Ililt oiiecl above formt atl appropriate base for

-~P * .I-- -. *.
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t~wi ctual iniiiorv coxi figurat ion, it is reasonalble to considler how t t.-;e

ayTis pc-f trill undier coniion bs of uniiformnly distrib~uted access pat terns~
a' u111(l(Iworsew vet) tot ally remoi(te access operations. Unider these kinds of

tijli i JSt lie effective niumbier of processors is reduced linearly by the
pa ati((f b ical totremnote accessspeeols. Thus, a Butterfly (or Concert or RP3)

* withi 1000 phiysical processors should be cap~able of performing roughly two
r~ tmof-naiii tdefaster than a single processor from which the system

maii~de. Ali iPSC of the sane size could be expected to perform at best

tlW I trder-( f- iniagonit uoe faster.
Ini add~itioni to these shiaredI memory architectures, there are two addi-

t ial 1 inachiiiies that satisfy the two criteria listed above: the original (lesigl
4 thle Connect ion Machine, and the Monarch computer. The original pro-

pislfor the Connection Machine[32] had a large number of' processors,
a'ili with at very small amount of local state, interconnected by a sophis-

* T Iatt 1 rt witinig net work. Froini a programmer's point of view the machine
apperedto have at very large address space and most of it was equally ac-

>I e ithI oilvy a small amiount of state information more easily reached.
i. i rtuntev.the fact that the machine had a single instruction strealn

::ike itilcoliptillewith the system design discussed here.
The BBN Monarcli[11] hats a large address space supported solely at

/the, remote end of a switching network. The goal is to make the miemory
4 iithte;ir to be at single. thousand-way interleaved, memory unit. In acldi-
-. tl(io. the syste ii supports tagged data mraking it extremely well suited to

thit iiiileniiit atioui of a Mtilt iScheme system as described in this rep~ort.
Um'if~lrt iinatelv. the ma -hill( is stiltl in the design stages.

1.3.2 Event-Driven Computation

The a ;ili ltv to sviichroniize tasks is extremely important in any kind of
nii~lt i-taskling systeimn anld it becomies mi-ore import ant as the interaction

lttwcc entasks becouieics tigh'lter. In a parallel processing systenil such ats
t tii et1( cIiisit uied fori MultiSchemle this problem is at the heart of thle

l~tt iii dcesigi i. Thetre' are three co mmnon synchronization niethlodologies
1a i gto tl Ii re vtr dv(iffereint kindIs of system structures: ibusy-wait ilig.

* p ami ti evteit - t rivemi. Niult iSchiue, like mlost real systemls, list'11al

-'ijt acw ui~riae ft assiiiit-I alcce'ss patterns tur Out to be(. ill jrart irt is siihjtct
i ii iir-'iw*ijt fr any givn ell ti N1i111[.431 describes one inv~estigation int, tia rea

% %%
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"': three tchniques but the emphasis at the language (as opposed to system)
level has been placed on the third.

Busy-waiting
Busy-waiting is a very simple mechanism used to serialize access to a

* critical resource. There is a lock for the resource and a task repeatedly
tries to acquire the lock in order to obtain access to the resource. This
organization is useful when the likelihood of contention for a lock is
vVry small and the lock is released rapidly. MultiScheme employs
I sy-waiting for some operations such as locking a placeholder (see

Section 4.2.1) and to compensate for some unfortunate defects of the
current hardware (it lacks atomic 32-bit swap operations). In most
cases it is possible to include a lock with the individual object to be
locked so contention only occurs if two tasks attempt to access the

* saime resource simultaneously. Where this is not possible because the
numlber of objects requiring locks is large (for example, it is possible to
atomically swap a value with the value of a variable), the objects are
grouped together and locks are provided for relatively small numbers
(,f objects. In addition, of course, the critical regions (where the lock
is held by one task) are kept as short as possible.

Polling
Polling is a oi sophisticated system structure involving a periodic
test for events requiring service. This is a common technique in mi-
Cr, (oded machine architectures for implementing interrupts. It is
also found in higher-level software to allow interrupting of poten-
tially long loops (for example, the search loop in many editors checks
for user interrupts). Unfortunately, polling-based systems, such as
the Pliribus[45], are difficult to write and maintain. The software
is forced into a model of short program strips, each of which polls
for am event. services that event, saves its new state so that it can
1w, resiiie(l, and then returns to poll again. Writing such a system
with an eve toward efficiency is tricky; information ordinarily avail-
;Ll, from the location in the code and the contents of 'he stack must
Iw ,'oinvrte(d into a data structure used to dispatch on events. This
1_j iqivaleit to converting the program into a finite state machine
- wit I randoim access memory), a representation that is hard to 1both
imd(c ,r.ta ml and modify.

L wwu!A'-.



1.3. INITIAL CONDITIONS 19

While contention is generally less of a problem in a polling-based
system than in one with busy-waiting, contention for the next avail-
alble event becomes a problem as the number of processors increases.
Slt i Scheme employs pulling for servicing interrupt condit ions and an
early version of MultiScheme dramatically demonstrated the existence
of this form of contention within the system. Combining networks[16]
provide a hardware mechanism for removing this contention, but the
hardware on which MultiScheme was running did not support this
mechanism. Instead, a software solution has proven to be quite effec-
tive: rather than provide one centralized location polled by all proces-
sors. MultiScheme provides a location for each processor. Signalling
an interrupt requires either choosing to alert a particular processor or
writing the flag separately for each processor. Signalling all proces-
sors is clearly much slower, but it happens infrequently. The polling

0that must occur often to reduce interrupt latency, however, no longer
generates contention.

%W,

Event-Driven
A third organization can be used when a resource, once allocated, is
likely to be in use for a relatively large amount of time. In this case
it is reasonable to expect the task using the resource to alert other
tasks when the resource becomes available. Tasks suspend themselves
and release the processor to a different task when they discover that a
'',resource they need is unavailable. It is this system organization that

both Multilisp and MultiScheme attempt to make readily available
through the use of futures and placeholders, respectively.

One common imiplementation of an event-driven system is the mailbox
or inbox approach. In this organization (see, for example, the CMOS
operatig svsteln4[3]) each task has a specific location (the mailbox)
where it call be notified of events as they occur. Tasks poll this mail-

box but unlike the polling organization, they are suspended if no
event is availabdle for processing. Two variations on this theme are
the ability to wait for a specific set of events to occur and the abil-
ity to have multiple mailboxes (such as the events of the Chrysalis
If vyst,,n[2] ). MultiSchene differs from this approach by augmenting
the ('x)iit polling with the automatic touch supplied for placehold-
(,rs (see Section 2.1.1) and by using ain outbox rather than an inbox.

N"
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20 CHAPTER 1. INTRODUCTION

Each task in MultiSchene has an associated placeholder, the goal it
is trying to compute (see Section 3.4). Thus a task has a unique loca-
tion where it can store a result but it can await the result computed
by any other task. The "events" in MultiScheme are occurrences of
the determine! operation (see Section 4.5) used to store a result into
a placeholder.

1.3.3 Explicit Parallelism

The .IultiScheme language enables programmers to annotate programs. in-
diating where the programs are permitted to execute in parallel with an
existing computation task. The decision to make parallel execution visi-
ble and under the control of the programmer reflects two major language

* (lesigni concerns: the language should encompass both functional and non-
functional progranminig styles, and it must also provide program analysis
tools (themselves MultiScheme programs) a mechanism to express oppor-
tunities for parallelism.

% Scheme includes side-effecting operations designed to enhance the mod-
iiarity of many common programming styles. As a result, the automated

(l..t('tectiol of potentially parallel computations is quite difficult. Katz[35]
41, and Knight [36] describe rather elaborate architectures designed specifically

to make such a system feasible. Rather than require this form of sup-
port from the underlying architecture, MultiScheme relies on the program
to 1it 1ic'ite explicitly where opportunities for parallel computation can be
ex1l(ite(d without affecting the semantics of the program. It is entirely pos-
>ihle. in MultiScheme. to request parallelism in a manner that makes the
.I-0-.:ts inc-()isistent with the serial execution of a program -- a reflection
(f the fact that the ad(litional expressive power must be used with care.

Furtlirinore. if the language is to serve as the output language of auto-
1i ;I ted pli)' a ii a;,ilysis tools, the l it must allow those tools solle way to

,)jpprt 1iti, foi- parallMl execution. The MultiSchene )roject
1;t, Iitt .'at a(l i" sllch tols,. but Gray[25] and Wang[59] have undertaken
-,i,, pj't>, for the Muiltilisp language. The job of these tools is to make
(',12iLt, tiiie r te-i 4s 1t,, wtwen the t imie required to create, dislatch, and
1hil t;tk ;11 1  t1hi tiu t rc'(plred to cmlhte the conli itatioll represented
"" a " -"" -"l t-"k-
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1.3.4 Automated Resource Allocation

* . >xt lA- Ii uN11t siSlue Slupport, ; 1tutomiated schiedulinig of ta-,k., jilt(

X%''1 ar. > il 8 thle dletect ion and r1( emoaval of nto longer use'ftill tasks.

lit huh il suppo rt for schedutiliig discussed iin Chiapt er 4, is
> l ta ilit w users a large degree of flexibi] ity'in controlling thle. scltedl-

ln-_ jll. The pio(bleiii of prog-rammiiing a multi-processor Call h e divided
iiit( r\%-()1ptarts: sui1vidling it problem into components for parallel 1 xect u-

ii 11*c ~ uIngl thlese components onto the available processors. Tia.

t: p~tict aafltlhiii c(oust ruct s support this first task, and thle at t latcit
111:1rce Ia 111 2illt lit suppoIrts5 thle sec(onid. Is()latig thlese t wo. ~ cIIm) ileiit s

~1%"(1 PY0 itii -ies thle freedom to desig-ii and test their - rog-ralus iIl

ti1,4tcIt ot £ tI~w lv' trce alloceat ion considerations by relying on thle default
-ilt'roi strategies of the standard scheduler. Later, when these alloca-

:t)il t rate(-ies beconme a p)erfornmance concern, the schieduler can be inolded

4 toN fit the p~articular appllicationi.
Ii allj intoa lxilesheduler for handling allocation of processors

ti , t iks. NiultiScheine extends the Lisp garbage collector to remove useless

ta1sks,- ill addition to its traditional role of recycling memory. This allowed

the MliltiScheine work to explore the area of demand-driven compu)Jtationl

withini Lisp. as dliscuissedI in Section 3.4.

1.3.5 Schem-e as a Base Language

01r1 iiux est if ttol inlito 0 parallel1-pu ograiiingii system s inight have begiiii by
d"t 71.,)1o ci ut ilt tion of a langutage for expressiig parallel comlpilt atiiis.

Nv .1 e chose to uise anl existing language. Scheme (a d~ialect of Lisp.
;1a inl hr jse. A mnumber of import ant considerat ions went linto thischie

* Sd iie is aii excellent mnedium in which to exp~erimnt with 't widle

1;1111(1(e of sequen(-itial-programiniiig methodologies (see. for examplq e.
4Al elst to am1 ~ Silssiinan[7] ) .Ai import ant goal of MulltiSchemile is to

providle t his santle rich mediumr for exp~eriment at ion ini thle parallel-

* Ii . 1 l1t Schli o ill part jet lar, leid thleitiselves to a aritlvfiic-

1(111 .tl o ~to.raimiuilg.Thuns. the introductio)n of 1wtall 11

a.'>ii:. ttlld Iw expiatis to be a stralightfor-ward cluaiug-e Nvi-ld-

I 1ctIc w d

I * *
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* The Lisp community's staple domains, symbolic computation and ar-
tificial intelligence, have been relatively unaffected by the availability
of hardware capable of extremely high speed (even parallel) arithmetic
conput at ions. Parallel processing appears to be a good candidate for
spee(ling up computations in these domains.

In comparison to CommonLisp (the other likely candidate Lisp sys-
tem). Scheme is a simpler language, with far fewer special forms and
required procedures. Furthermore, because of its first-class continu-
ation objects (see Section A.4), Scheme has a more powerful control
structure.

* A language extension for parallelism (the futures of Multilisp, which
became the placeholders of MultiScheme) consistent with Scheme had
already been developed and demonstrated. A trio of alternative con-
structs (the qlambda, qlet, and qcatch of QLisp[23]) had been ana-
lyzed arid was readily implemented in MultiScheme, suggesting that
the placeholders were an important data structure in any case.

1.4 Overview of the Thesis

The main body of this document is structured to reflect the three major
topics mentioned at the outset: extensions to the Scheme language (Chap-
ters 2 and 3), the use of these extensions within the sequential language
(second half of Chapter 2), and their use within the parallel-programming

(lomain (Chapters 4 and 5).
Chapter 2 discusses the extended sequential Scheme language, derived

from the MIT Scheme system by adding placeholders to represent uncom-
puted valaes and modifying the garbage collector to provide several services
dir ectly visible to the programmer. The latter half of the chapter consists of
three examples. each of which uses this extended language to demonstrate
a sohition to some problem of current interest to the Lisp and functional
lanrguges comnunity. These examples cover a range of topics: embedding
logic variables in Lisp (Sect ion 2.3), combining normal and applicative order
evaluation (Section 2.4). and higher-order and non-determlinistic streams
processing (Section 2.5).

72%%
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Chapters 3 and 4 demonstrate that extended sequential Scheme is very
-lose to a language suitable for systems programming of parallel processors.
Th, extensioiis needed for creating this systems-programming language are
lotscrile( lrinmarily in Chapter 3. They comprise two distinct changes.

* The addition of a few new primitive operations for processor coordi-
.. nation (Sect ion 3.1), task distribution, and miscellaneous processor-

oriented operations (both in Section 3.2).

* The re-inlplenlentation of two existing mechanisms for use on a paral-
lel processor. The first mechanism, fluid variables, is used to provide
private storage for tasks (Section 3.3). The second, dynamic state
spaces, provides hooks for users to write exception and error han-
dling facilities (Appendix D).

* In order to demonstrate that the resulting language does, in fact, make a
0'00(d systems programming language, Chapter 4 documents the implenen-
tation of the MultiScheme scheduler in detail. The scheduler is respolsible
for creating, swapping, and terminating tasks.

Chapter 3 concentrates on expressiveness of the MultiScheme system.
It provides three different example programs implemented in MultiScheme.
The first of these, a simple rule-based system, demonstrates how Multi-
Scheme can be used for speculative computation. The second is a program
to solve the n-body problem of classical mechanics, derived from a serial
program by the addition of future constructs. The third is a more elabo-
rate example showing how a vector pipeline similar to a dynamic dataflow
1)rogramming style can be used to solve the same n-body problem. These
examples demon.;trate a variety of ways in which MultiScheme's facilities
can be combined to provide prototype implementations in different lirallM

'r programimming paradigms. Each example is fully worked out, and measure-
* mijents of its l)erformance relative to the serial version are supl)Iied.

In addition to the main body of the report, there are tliree apIeml(ices.
Ti,' first of these contains background material for readers vho nmay not
he familiar with the MIT Scheme system. The text of the report ass1lume1s
that the reader is familiar with the details of the standard Scheme language
ldescri,bed in [49] and the M IT extensions to that language. Appendix A i>

11itelmed foi- readers who are either somewhat rusty in their knowleI(ge ,f
Lisp0 or who are faimiliar with a different dialect or implle ntatlil.

6.
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24 CHAPTER 1. INTRODUCTION

Appendix B contains the implementation details of the dataflow (vector
jpipeiir) sltm described as part of the example of Section 5.3. It is

s.pplied for those readers who are interested in understanding how such
a radically different programming model can be implemented using the
facilities of NhiltiScheme.

The final appendix contains a variety of performance measurements
taken from a number of different versions of the MultiScheme system.

1.5 Summary

The MultiScheme work centers around three major topics:

1. A few extensions were made to the Scheme language in order to pro-
ide a 1itse for experiments in parallel processing. The most impor-

tant of these are:

* A new data type, placeholders, can be used to represent values
not yet computed (Section 2.1).

* The garbage collector provides services that are directly visible
to programs (Section 2.2).

, Primitive are provided for coordinating the activities of the sys-
tem's processors (Section 3.1).

2. This extended Scheme language exhibits new expressive power for
,wrial cmniptations. Sections 2.3, 2.4, and 2.5 provide illustrative
e,.xamiples.

.3. The extended language provides a base for implementing a range of
" im raill-programnining methodologies (Chapter 5). It also serves as an
,leg;mint systemixs programming language for parallel processing (Chap-
ter 4).

III tlie process of builing MultiScheme a number of interesting engineer-
i,1,, Fs ,Ilt, were discovered. These discoveries center around four topics.
"I ,1111 iariz, ,l in Section 1.1 and repeated here:

%( iairhame collectit)n (Section 3.4).

I,

Ia
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2. Weak cons cells and finalization (Section 2.2).

3. Processor coordination (Section 3.1).

4. Error and exception handling (Appendix D).

Section 1.3 describes the five major constraints imposed on the Multi-
Scheme project at the outset:

1. The area of exploration is parallel, not distributed, systems (Sec-
tion 1.3.1). This requires that the underlying machine support an
address space shared across all of the processors with comparable
access times to all parts of the space.

2. Most user synchronization is based on an event-driven model of com-
putation (Section 1.3.2). Programs use the automatically supplied

_ touch for placeholders to augment explicit requests for synchroniza-
tion. The determine! operation is the source of the "events" in the
system. Busy waiting and event polling are also employed.

3. User programs explicitly specify where parallelism is to be employed
(Section 1.3.3).

4. Users do not deal with the allocation of tasks to processors (Sec-
tion 1.3.4). The system detects and removes no longer useful tasks
and supplies a structure that makes it straightforward for users to

specify scheduling policies.

5. Scheme. a dialect of Lisp, serves as the language base. The MIT
Scheme system serves as the implementation base. (Section 1.3.5.)
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Chapter 2

Extended Sequential Scheme

This chapter describes two extensions to the MIT Scheme system that pro-
vide additional expressive power on a sequential processor. This "Extended
Sequential Scheme" is the base from which MultiScheme is derived. But it
is an interesting language in its own right.

The first extension, described in Section 2.1, is the addition of an object
to represent values that have not yet been computed. These placeholders
are similar to the delayed objects of standard Scheme, but (unlike thunks
or delayed objects) they appear to be replaced by the value they represent
once it has been computed. They also form the implementation base on
which the future construct of Multilisp[26] is built in MultiScheme.

The second extension, described in Section 2.2, is more of a change in
spirit. In standard Scheme the garbage collector is a completely invisible
system service. Programmers are completely unaware of its operation, and
have no way of interacting with it. In extended sequential Scheme, however,
the garbage collector can be used as an active partner in the computation.
The addition of weak cons cells allowvs programmers to create data struc-
tures without implying that the objects in them must be maintained when
thle g-arlbaoe collector next recycles memory. The addition of a user-specified
garb age collection root allows users to ask the garbage collector to indicate
when the useful lifetime of specific objects has passed.

The remnainder of the chapter uses extended sequential Scheme to solve
three probleiiis. These Iprolleis have been raised by other researchers and
are not conveniently solved using the initial MIT Scheme system . The first
1)rol~lein (Section 2.3) is the embedding of logic variables in Scheme data
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2S CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

structures. The goal is to allow unification of expressions containing logic
variables to produce ordinary Scheme values in completely independent
data structures through the sharing of these variables. Since a placeholder
becomes the object it represents (once its value is known), they provide a
siiple solution to this problem.

The second problem (Section 2.4) is the introduction of limited aniounts
of normal order evaluation into an otherwise applicative order language. By*1'

using placeholders for selected arguments to procedures, a very fine degree
of control can be exercised over the time vs. space trade-off inherent in
the choice of evaluation order. Finally, section 2.5 solves a collection of
difficulties that crop up when dealing with stream processing in either an
applicative order language (higher-order stream functions are difficult to
write) or in a functional language (fair merge is not a function). The
placeholder is a convenient mechanism for solving both of these problems.

2.1 Placeholders: A New Data Type

The first and most pervasive extension made to the original MIT Scheme
system was the addition of a new data type with some unusual proper-
ties. This type, for historical reasons called future in the MultiSch me
implementation 1, is best described as a placeholder; it provides a way to
represent an object whose value is not known yet or may be subject to

A,'- change later. It provides a form of sharing difficult to obtain without di-

rect language support: the sane object can occur in many data structures.
but the actual choice of object can be altered without knowing the data
structures containing the object'.

An alternative view (more related to the implementation than to lan-
guage design goals) is to consider a placeholder as an "invisible indirect
reference" to another object. Yet another view (helpful in explaining to
people faniliar with Scheme) is that a placeholder is very similar to a de-
layed object (or a promise) except that the force operat' ,equired to access

'Futires were described by Baker and flewitt[9] and formed the basis for the iniple-
nient at ion of tie M ultilisp system described by tlalstead[26]. Placeholders in MultiScheme
are directly based on these concepts but differ in a number of ways.

2As will he discuss,.d in Section '2,3 this form of sharing appears t.o he the critical id,'a
bhilid ti, "logic variable'" f lrolog. This form of variable, in turn, provides a great deal
of t li, power md fl-.xibilil of I lie logic programming languages.

ca* ,



2.1. PLACEHOLDERS: A NEW DATA TYPE 29

the value is performed automatically when needed. Accessing the value of
a placeholder is called touching the placeholder.

This last view points up two important notions. The first is that, just
as in stream processing in Scheme, the placeholder can be used to denote
an object whose value is not yet known. Thus a placeholder object has at
least two states. A placeholder is said to be undetermined when the ob-
ject it references is not yet known. Unlike the delayed object, however, a
placeholder need not have an unchanging value. Thus, a placeholder ac-

,- .- tually has three states: undetermined, determined, and mutably determined.
A iutably dleterinied Iplaceliolder may have the object to which it refers
changed by re-(leteriiining the placeholder, while a deteriniled llacehll(l'r
,' caii(it change its value. Notice, also, that delay is a special form in Schemen

whose evaluation results in a delayed object. The placeholder being dis-
cussed here is a data type and not a special form. That is, "delay" refers to

* a 1,rograniIning construct, while "delayed object" and "lplaceholder" refer
to data objects manipulated by programs.

Since a placeholder can represent an object before the object even ex-
ists, it is logical to ask what happens when a program touches such a
1laceh,,lder. This is controlled by the scheduler, a portion of the system
code written in MultiScheme and hence under programmer control. This
ipo)rtion of the scheduler is discussed in detail in Section 4.4, but in general
the idea is that the task performing the touch is suspended until the value
of the placeholder has been determined.

The second point raised by the comparison with Scheme's delayed ob-
jcts, exl)lore(l in detail in Section 2.1.1, is the fact that a tplaceholh'r oh-
j,,ct is auitomatically touched by certain primitive operations and language
constructs. In strean processing it is important that the use of force to
retriee the value of a delayed object be deferred as long as possil)le. This
leads to a --lazy evaluator" where stream processing can be used as a iiodel
for call-by-ne,'d computations. The question of when an object can reinaiin
it ilacc.holhhr anld when it must take on an actual value is the topic of the
n1ext subsect ion.a' . The scheduler is also inv(olved in the creation of i)laceholder objects

s descril,,'I in Section 4.3). It deterrniines how aiid when Cl ]-
0. 1( ','s s hl e dvo'V'ted to fini(lilg the value of the placehhlder. When

tile jlacehold,.r obj,,,t is 1isc,1 to i hiiLlIcilelit the equivalent of a Schemc
.,,lvd ,,,j1ct , rosoires ar, all cated at the time the placel'h her is

4,0-
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3(1 CHAPTER 2. EXTENDED SEQUETA SH1I

CleaIttccl. Int cad, t hey, are allocatedI when it is t ouched. Parallel execu-
t~in~ III Mlt i Schemle is Closely related1 to thle uise of placelwiciders.. and it

is, Iiii-cv the act ion) of thle scheduler wlieii a jplacelioldier Is n ciu that

41ut i nI ,uisi is st reaml processinig ( lazv evalunat ion ) fro iii parallel prc cssi iig
'p(,t er (,valuiat ion). A parallel coinput at ion Is initiated by cre'atinug anI 1in-

itt-rinliedl placelilder to contain ( eventually ) thle valuie iet uiiecl hyc t hat
cc in1pit at ion. The scheduler also creates a task to performn thle coniput a -

tic cii aiil prlovides it it conitiination that ca'cises thle task to) det ermine thle

)lccli c~lrand~ thlen t eruiniate. The (unidet erii ned ) plc 'cdrIS thu is
nin iec~iately availab~le to the initiating task, which coiit inues its, coliilita-

cI(ii ixcl s though it had receivedl the final valuec of thle cc niputat uccu.
Nleaiiwiile, the scheduler has released the task for poteiitial siiiiltaneolis
executioli onl another processor.

2.1.1 What Does "Invisible" Mean?

III cctl tc a ~llow an undetermnined Placeliolder to act as anl Invisible place-
hl lr it a" itti s possible (and, therefore, permnit ats inucli parailelisiii as
j)tcSS11lle) it is. nIIeeSsary to define a set of rules for decidiiig when the place-
l~ it IIcr canl Ibe used anti whein the object it references inust actually be oh-

setc.A linlIlar 1101 lein arises when creating a noriiial order liliterjpret er
a ci c 1i<secIhv Alwleici and Siissiinan [7] (sect ion 4.2.1 ) aiio a soluition si-

1ii1 "(t c t 1cc c)~ ciitctline'I t here sovsthle problemn very iiicely.

dT1 TI 1 p( Iuijclt;IcIt thlng to notice is that each of the Schlie special formIIs,
4,,1 1wi.I(Vc to ccit-tcrl lilte whet her it cani deal with oipaeicdr r naisI.t

K, I jtctitself III liauut. The Sclieii lauuguige cctuisists only of thiese

">1~; I h ;ic jclccmft'riicus ;111cl procedlure calls,. Thus. (ce this aiial-
-1 1,. ,0t1.' p 1tti... ()f allI ccc11(iiijtu Id (ic(. uisci-cefjiiledh pu cuI

111 I:;% T1lit w l lluicil ig ;ctasc(- thius til ~litiwtttt
t 'Ic'l~tii' ;1 cu the Sciiicwliit subtle pitciiii iulisilug fi ciii tw

c;cIiicti ci~t t i))YI~iI1Is aS cl;t; cchcject.-. 't ic lt

S.', -- ~ -1 j~)~ /c 1 1t~ l t\V. E ch cast is , in t itctI tt Mli ii c
tcuh ~ ;rtvilct iy il viiiprcteu (or cccITicip )I. i i tihe
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Where to Automatically Touch

1. The valule of the lpredlicate' in the special formns if. cond. and, or. anid
case. Thi iiist be hiandlled ly thle interpret er and I/o r U)! n pi hr

2. The value of tile operator in anl application. This must be handled
byV the interpreter anid/or compiler.

3. Aie xlressioml p~re'sented for direct evaluation (i.e. in the case dispatch
of rthe interpreter itself a placeholder object will be touched rather
thian treatedl as a self-evaluating conistant). This must be handled by
tie initerp~reter. This case dloes not arise in normal practice. although

it \Volildl he Impllortanlt if thle system were changed to allow the program
coilsti-ictoi's ( the "svitaxer" of the MIT Schemne system) to operate

4 4. The value of operands to a primitive procedure wuhien they are required
to be of a specific tvype or set of types, as well as any p~ortions of a data
st rutilire imnspected by such a primitive, unless (of course) the priml-
itive requires a lplacehiolder. This must be handled by the p~rimitive
it self. For exampile. the primitive operator +, which requires inmeric
u gi in nim its. itst touch each of those arguments. The arguments, to
the cons aiiil list operations, by contrast, may be of any type andl
thus need1 not be touched.

The vahlic a'f ope'rands to primitive p~redicate procedure ( xet i

l'diat ' f uture? and non-touching- eq? ). For examplle, thle prim-I
i ve')(iata eq? is i predicate (it is guaranteed to return either
#7 or #F rt. ';tid hss of its aIrgumilts ). This mlust ie handled 1) thle

p)iiiiit ive itself.

G. Ccrt a iii P1riii1it Ve(' 'Idd1(ed to dleal withi placeliolders handle the touch
( pciat i(ai exi iit lv. For examiiple. thle primiitive operat ion touch is
)p i-mIed as aI way to explicitly touch ani l object iii case it is a p~lace-

ha~~ 4 e. hi iiioi -t be hanldled by thle primiltive itself.

2.1.2 Example: A (Contrived) Data Base Example

A, II cxamijIlP1I of the kiid1( of ol)(iatioiis possible' withi lacehiolders ili tile
1i1i!~iI2.. ()i'~II'i;ISchi('iii p)~r.1ill lsedh to Iiiaiiitaiia data ka.s( of st4im-

V
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CHAPTER 2. EXTENDED SEQ-EXVTIAL SCHEME

"' 'U nit lv enriolledl in a class. Let us assiiie. )or simiplicityV. t liar tle
a lito ecordls. one record( for eachi studi~ent. The 'cordn

nWit dmii l ~)(at a fields such as itane andt teacher a.,sigii-

Wc;1o\;iiit tot storec. for each st udlent, thle gradle oin eali (liii!

)K;;I.'tIpittlii s~et. As each of these is graded we store the gradle inito

;tt(t tiel(l of tlie record. This requires fields t hat receiv'e thei'

I it i;' r tlt (lat~ has crae thogl singile-assi'viiliit operationl.
V i: . citv' e11 c nsier onilx one such niunmber, the gradle oin thle flial

Ilff. hli-. P.. a a a- task (if we ignore the usual prob~lems ofefciny
iiait a~ '.t rage.' and atomnicity of simultaneous actions). All that is

I- cet a dtita abstraction for tl. records includ~ing a colist ruc-

Make- Student -Record), selectors for each component of the record
.A ~'St*udent .Name. Student .Teacher, Student.-Grade), and a writer for the

*'i 1a11t, as m g iiiit entry (Set -Student. Grade!).
Now linaginit that recitation instructors want to routinely examine the

I-itit ha-.e to see certain information about students assigned to their sec-
t; 1,Ili. They shouldl he able to create structures of their own choosing coni-
timinig1 Parts. of th li ain dlata records. For example, I might want to create
ai 1:1-t 4f the final exam grades of students in my section. As the main data

ill upla~te1 after the final exam, I expect my list to reflect the final
txln: lriu of iii%- st iimeits. When the data base is created, I planl to (10

o'iv t tpi edure f ilter returns a list of items from aii iilu
11-!r t liar iiattch i aselection criterion)

(,jefine My-Section-Grades

(map Student.Grade

(filter All-Students
a.. (lambda (Student-Record)

(eq? (Student.Teacher Student-Record) 'JIM)))

- 1. rtU ~thi ;ip-atproatli tloesnit wvork if wve use the "ob-vious" im1-
-, '' ' . t a )f lhie Ia ; a bstr Ioen m. Since the variable My-etin

'ra des 1- clf;1" t'tl il thle data I t:ise is h~ aiethe values for the Stu-
64~3rd 1t I 'Ni- 1 1iavt tiieir- or"inal (unini11tialized) valule and this valuec

L~~~ 0v 1, 11 t~ Il f~ 11,; 1' cx1 ilh ialea grade is entered inothe (lata b)ase.
I ' *> ;-t,1'-t1IIC 4f whatt Sussmiani mid Abelson refer to as "tinime of

-,.,,,.,-.t at 4,t t ;t r it ou we wvou ld like M3 -Section-Grades to

S%K%
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2. 1. PLACEHOLDERS: A NEW DATA TYPE 33

have its component values computed only when they are selected from the
list, not when the list is constructed.

There are a number of ways, in standard Scheme, of dealing with
the problem described here. Perhaps the simplest comes down to mak-
ing each field that will receive a value after the data base is constructed
c ontain a (single-element) list with the value of the field. Then this list
is contained in My-Section-Grades. and the list is mutated by the Set-
Student.Grade! proced ire. Unfortunately, this requires that we think of
My-Section-Grades as a list of lists rather than as a list of numbers. Thus,
instead of the straightforward definition

(define My-Section-Average
(U (apply + My-Section-Grades)

(length My-Section-Grades)))

we are forced to say

(define (Extract-Grade-From-Record Record)
(first Record))

(define My-Section-Average
(U (apply +

(map Extract-Grade-From-Record My-Section-Grades))
(length My-Section-Grades)))

In essence, we are forced into introducing a new data structure for the
sole purpose of providing these single-assignment fields. Furthermore, the
modularity of our program is changed. It is necessary to provide support
for the use of this new data structure for grades rather than using the
support already provided for handling numbers. As the complexity of the
data base increases by the addition of single-assignment fields or other
structures sharing these fields, the number of changes needed to support
tie late-arriving data also increases.

Once placeholders have been added to the language, however, a more
lt so lition becomes possible. The constructor Make-Student -Record

in ii,,ified so that the initial value of the single-assignment field is an ide-
! liiI , (l placeholdcr. The definitions for the writers of the student r(cords
iii mit ,l ,e Determine! instead of Set! to store the new values. Since the
pIl;ictldder lecoines invisible when it is determined, My-Sect ion-Grades

• .. %%, .% % % k % % %J , .
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3-1CHA.PTER 2. EXTENDED SEQUENTIAL SCHEM~E

acts- exactly like at list of nuiiibers andl the codle we originally wrote for
Cii Icuhi t ilg itIV'i ('s Works as wve bad expected.

But. h i usin thle fa1 ct that placeholders call be mnutated., we can solve an
Vt 'li liii :-dcr prt d)It'l:1. Iiiiagiiie that. Ii addi tion1 to t lie sinigle-asslagtiti1'iit

ttl with Jill/~. examl ando prolbleiii sets grades we want to inlaint ai an
-T'~ 11: ii e ' urM' gade for each st ll(lent . This nuinber should1( be updated

;I~- t11' nIww _,I-ades art, en1t cIIed. and thus this field is fually muiitable rather
than iigt- assignable. By using tile mut able-det ermine! (rather than

determine! ) operatiotn to updlate this field, we (-all allow this value to lbe
'(lotc 1)y in'jst rueton , wh'en the (lat a base is constructed. It, too, will be

1l1(1 tt ct t lie ('etc the enltr I'i th li aul data base is updated.

Tiki> t-xailiple. while s:oiiewhat cont rivedl. does rep~resenlt an imnportant
CtI tt ni tti ii ()f the lal'lioldt'r dat a type to Schemne. The kind of sliar-

l' wi '( iere ('( tplet I withi the invisibility of the placeholder object
e, it I, 1) A ('ies th lt uidelx'iig support for a variety of capabilities not easily

ct'/c, ;'dn t lie Standaurdl Schemne language. Some of these capabilities are
'~xplt dt Iin sect ins 2.3. 2.4, and 2.5.

OIt t li other hianid. of Course. the mlore general probleml of data base
'(I 114W t'IS' 7s1 (t o.tlv(lb t use of 1 lacehol(Ier. For examiple, the auto-

1iatctont'linrg rulles listed earlier require that a placeholder be (leternilned
I toef ' a dec1(is(in is Illa(Ie lbased on its value. Yet if the value of that place-
holdler is changed there is no niechanisrn to "unwind" decisions based on
I 1,w previouis value. Thus, while the mnechanismn supporting the placeliolder
contst ruclt is quite p~owerful arld flexible, I do not know how t~o efficiently

itt 'ncrahize it '"~to a truth rnaitellance systen-.

2.2 Talking to the Garbage Collector

6cillf '111i t'olililiot % withber Lisp dialects, providles operations, to allocate

-. tt'fr tt il '~i ty.Ini a(ldlit ion. cert aniioperationisiilllierenitly requIire Space-(
J t 'It 1 .t ,( A 'lytt even whlen these objects are to be use,(l as lilt eriilt'(hiate

i iii At H i(' 5aiiie t line, Sclicine does not p~rovide aiiv olperat it ts for

1,.: ' t; in lis Iit'iit ry. Instead it re'lies onl a garbage collector (or GC ) to
6 It 'vi' t1 ttcet1 1 tnt iuir(ferellceable inemrot'y

TlI- lt' 'Iiave itt en t bree areas where the MultiSchiemie jproject has ex-
* t't ';t 1ta l~'t'ttli t. The first of these is thle construction of two par-
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2.2. TALKING TO THE GARBAGE COLLECTOR 35

;ilhl stop-and-copy garbage collector im)lementations. The earlier of these
i11h11 .illllent at ions is described by Courtemanche[14]. and was later refin(d
1 v Kirk .Johnson to produce the second implementation. The secon(l *lpie
(,f work relates to the garbage collection of useless tasks, and is descriled
in Section 3.4.

The third area, described in this section, is a pair of extensions (weak
cois cells and the ability to discover when selected objects are no longer
needed) intended to allow the garbage collector to act as a partner in the
computation. These extensions allow the garbage collector to provide infor-
mation derived during its pass over the entire active storage of the system.
In order to accomplish this, however, the garbage collector can ino longer
promise to leave the state of the system apparently unaltered as has tradi-
t ionallv been the case - some aspects of the MultiScheme garbage collector
are deliberately visible to users of the system.

* The actual garbage collector used by MultiScheme requires that the
sy'st em suspend all other activities while it is garbage collecting. The
changes described here, however, appear to be compatible with the "'real-
tine" garbage collection algorithms derived from the work of Baker and
Hewitt[9]. In a system with a real-time garbage collector the CC demons
described below would run at the time when semi-space flip occurs.

2.2.1 Garbage Collection Demons

Prior to the MultiScheme project, MIT Scheme provided a mechanism
known as GC demons for interacting with the garbage collector. Users
('Wild provide procedures that would run immediately after each garbage
collection and before returning to the work in progress when the gambage
(,,lle'btion legan. By default, the system supplied two demons to perform
operations required by the system itself: a hash demon to support tables

* indexed by arbitrary objects and a files demon to close files no longer in
iIse.

The hash demon maintains a pair of tables in order to provide a form
of "unique ID" service for arbitrary Scheme objects. An object can be
inserted into these tables using the primitive object-hash, which returns an

* integer that serves as a unique ID for that object (a subsequent attempt
to insert the same object will return 'lie same unique ID). The tables can
1(, serched using object-unhash which expects as input this unique ID and

% %1%2 , .;



36 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME I
returns the associated object. The special feature of these tables, requiring
support from the garbage collector, is that an object not referenced by
any oflier Scheme object will disappear from the hash tables. After each
garlbage collection the tables are rebuilt by the hash demon based on only
those objects surviving the garbage collection.

The files demon is responsible for detecting the fact that a file is no
llger referenceable from within Scheme. It then calls on the operating

systenn to close the file if the user hasn't already done so explicitly. This
permits files to be handled rather like memory objects: they are created
u t nccd never be explicitly released. The operation is supported by a table

of file objects hidden from the GC primitive. This table is rebuilt by the
fils demon, after each garbage collection, by copying entries seen during
!it, ,-arlhat, collection or by closing files that were not encountered.

Each of these demons requires the ability to examine the portion of the
adlress space from which objects had been copied (old space), and therefore

cMud not safely be written in Scheme. In the process of developing Multi-
Schemne two new features were added, supported by changes to the garbage
c(lictor. The first of these, weak cons cells (discussed in Section 2.2.2).,
.serves as an implementation base for a new hash demon that does not need
r, :-cf,.rence old space. This new hash demon, therefore, is written entirely

in Schlinie. Weak cons cells also serve a vital role in MultiScheme's ability
tO garbage collect useless tasks, as discussed in Section 3.4. Weak cons cells

::v,' "-im'~e bcn used to perform other vital system services, especially in
:, ,,f interfacing to compiled code. The weak cons cells, themselves,

i i ,,irc a deniom that looks at old space, but it is far less complex and
Vtt > 11T)Vrts a wider range of services than the original hash demon.

TLC, sCcoild feature, object finalization (discussed in Section 2.2.3), is
,( invhat more limited use. It permits the files demon to be written in
Scheme. We lad also anticipated that it would provide a base for certain
4ms r .1rvic's in MultiScheme. These services, however, have never been
ill ph'enc ted.

2.2.2 Weak Pointers

The tat h supl)l)orted by the hash demon provide two independent services
in (,e' wraper: interning and weak pointers. The interning service is the
,O lii,',nt v visible from its interface functions. object-hash and object-

% A
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unhash. Interning provides a (reasonably rapid) method for generating
a unique ID for an arbitrary object. Since the unique IDs are integers
they provide an ordering on Scheme objects. This permits ordered data
structures to be constructed from arbitrary Scheme objects.

The second service, weak pointers, is what allows objects referenced only
by way of the interning service to disappear during a garbage collection. It is
the vital support needed for maintaining an association between a property

--"and the set of objects having that property. (Consider, for example, the set
: of objects that a user has traced for debugging purposes.) \Vhile it may be

necessary to provide operations referring to all objects in the system having
the chosen property. it is not intended that the objects remain in the system
for the sole reason that they have that property. Maintaining this sort of
association is sufficiently common that several Scheme dialects, including
MIT Scheme, provide a data structure for handling this situation, known

* as a population. Empty populations can be created, and then objects can
r-b le added and removed from them. Operations are provided for applying

a function to each remaining element of a population. An object leaves a
% . population either by an explicit user operation or when the garbage collector

discovers that no reference to it exists outside of populations.
A particularly important use of populations in MultiScheine is in main-

taining the collection of tasks waiting for the result of a given computation.
This collection is conceptually a population since there is no need to re-
tai a task just because it is currently waiting for a result to be computed.
Representing this collection using a population rather than a traditional
(tnordered) set data structure is what allows the MultiSchen garbage
c(llector to quench speculative parallelism.

Populations can be built on top of the tables inamtaiied by the ha.h

(lenlont. This, in fact. was the implementation used in MIT Scheni,. But
nowhere in the description of the population abstraction (li(I it bcom,

* necessary to rely on the ability to order the objects within th lpul tla tin
W" Thits. s port for this abstraction uses only the weak po inter scrvi(, ,ft I,,,

, h;lh de ii , llot its interning service. Indeed, in e'xaiiiuniL t1 i' (,r ti,'
,'xistii .MIT Schemc system as well as prograim. written in Sce mici. ill

10"of tw liunliqume IDs, require only the weak pointer seri-ie lt1 uii

• ,1'r t1 , ilt.r ig-;-r1 still ;lilticiiatel). M aiuitainiig the tl. m,.nVi',f- , ,t

.. il ;1'awl span('. '1nd vet th l' ( , l1 ! in' cl be o hip tely onitt,,,l if NIL SlhFiF,
]";Id >tippoi t for \\UkJoiilt('IS iI1' j)('l 'icit of the( iuiteruiiuig >0wVl e
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3S CHAPTER 2. EXTENDED SEQUENTIAL SCHEM\E

The solution adopted in MultiScheme is to add a new dlat a type. the
weak-cons. to Scheme. A wveak-cons is like ail ordinlary cons cell excep~t
that the car of at weak-conis is replacedl by ' )whenl the garb~age co)lector
(liscovers that its formner contents are no longer referenced elsewherve inl
tie systemu. Froin tire poinlt of view of a prograxirirrer, th reeatio n arr I
use of a weak-conis is similar to that of anl ordinary coils cell. except that
differenrt selectors, constructors, anol inut ators are used. \Veak -cons cells
,arV very efficient to create and reference (unlike the interned unique IIs
they replace), although they do impose sonc overhead1 at garbage collection
time.

The unusual handling of the weak-coirs is divided into two parts. both
occurring during the garbage collection cycle. First, the actual weak-cons
data object is handled specially by the GC primitive. Ani ordinary conls
cell would be copied from old space to new space, and then the contents

4.of its car and cdr would ultimately be scanned and copied as well as
shown in Figure 2.1. Instead, the contents of a weak cons are deliberately
discopie as illustrated in Figure 2.2: the cdr is copied as usual, but the
car is copied and marked as a non-pointer. Thus, when the car and cdr
are encountered later in the garbage collection cycle the car is not copied
bit renais with the address of the original contents in old space. During
this (nris)copy operation the original weak-cons object in old space is also
mhodfied. Its car is replaced with a "broken heart" (forwarding pointer)
(as is the car of an ordinary cons cell) but its cdr is also changed. The cdr
is inogified to contain the type code of the old car (this was lost when the
copy was marked as a lion-pointer) and a pointer to the previous weak-cons
cell encountered by the garbage collector.

The net result of this skullduggery, pictured in Figure 2.2, is that all of
the information necessary to reconstruct the contents of the car of a weak-
cons is available, and yet it has not actually been updated. Furthersu lore,
thcre is a cain (in old space) of all of the weak conses encountered during
the garbage collection An important asptect of this design (in fact, a driving
concern) is ithat n additional space is required for this handling of the weak-
( (his Cells. The actual copying of a weak-cons is somewhat slower than the
C(apYi of at cr ons ell, but the difference is very snall indeed.

The ;(ivi l part, of the work is perform-ed by a new gc leon. The

cioi walks dowr this chain and updates the new space copies with either
aI pinte,'r to the relocated contents of the car or a f ( ) This (decision

W
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(Before Scanning the Cell)
OLD SPACE NEW SPACE

Addr Contents Addr Contents
b CONS a -Scan
b+I

* a Type, Data, c -Free

a+l Type2  Data 2  c+1
- _c+2

(After Scanning the Cell)

1..._ _b CONS C

-"'__"_b+1 _--Scan

a Brkn Hrt c c Type1  Data,

a+l Type2  Data2  c+1 Type 2  Data 2

".____._c+2 _-Free

Figure 2.1: Copying a cons cell
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(Before Scanning the Cell')
. OLD SPACE NEW SPACE

Addr Contents Addr Contents

b WeakCons a 4-Scan

a Type, Data, c -Free

a4-1 Type, Data 2  c+l
I c+2

(After Scanning the Cell 2'3 )

- b WeakCons c
0 b+l _-Scan

a Brkn Hrt c C Number Data 1

a+1 Type, previous c+l Type 2  Data 2

e+_2 - Free

(After the Demon Runs 3'4 )

b WeakCons c
b+1 -Scan

a Brkn Hrt c c 4  Type, Data1

a+- Type, previous c+l Type 2  Data 2

c+2 (-Free

* Notes:

1. Assume the variable PreviousWeakCons contains the value previous.

2. The variable PreviousWeakCons will now contain the address a.

:1. This type style indicates changes from the handling of a normal cons cell.

4. This cell will contain ' () if the object no longer exists.

Figure 2.2: Copying a weak-cons
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Ais based on examining, in old space, the original contents of the car of
the weak-cons. If it contains a broken heart then the object was copied
during the garbage collection and hence is still in the system. If not, then
the garbage collector did not encounter the object and hence it has been
removed from the system. This new GC demon requires time proportional
to the number of weak-conses in the system (but no additional space).
Hence the garbage collection is somewhat slower, although the number of
weak-conses is small enough that this change is also negligible.

'Notice that it is critical that this operation be performed after the
garbage collector has been run to completion so that all objects remaining
in the system will have been moved from old space to new space. It also
requires access to the contents of old space and hence cannot be (safely)

* written in Scheme. Finally, it is important that none of the GC demons
executed before this one in any way reference a weak-cons, since all of the
weak-conses in the system are in an inconsistent state until this demon has
been run.

d'. These simple changes allow MultiScheme to efficiently implement weak
pointers. The population abstraction is easily implemented using weak-
cons, as are most of the other existing uses of obj ect-hash and object-
unhash. But they have not eliminated the need for the hash demon, since
there is no support for the interning services of that demon. However, once
the system contains these weak-cons objects, the hash tables (previously
special objects hidden from the view of the garbage collector) can be re-
placed by ordinary tables constructed from regular Scheme data structures
and using a weak-cons to hold the keys. The tables still need to be re-

* built after each garbage collection since the hash is based on the address of
the objects in memory, but they are no longer deeply intertwined with the
Nworkings of the garbage collection algorithm. Furthermore, by separating
the two services the size of the hash tables is significantly reduced, since

cthey need only contain objects passed to the actual interning service. As a
esult, the time spent during each garbage collection for the maintenance

of the hash tables is reduced and the overall amount of time spent during
PWa'bagc collection is reduced.

"S.

%%O3.
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42 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

2.2.3 Object Finalization

The file, denion supplies at svsteni service of a very specific nature. It detects

the dlisap~pearance of certain objects (files) ill the sys'teml and eXe('lites a
specifi procedlure for each object (it closes tihe file). But clearly. it wold,
lbe nice to genieralize this to allow for arbitrary object-, to be "fitializedI"
when they are no longer nleeded by the systeml. This would be usefuil.
for example. as the b~asis for a resource system designed to allow tasks to

allocaite selected(-( resources while assuring that they will be released eveni if
the task -dles- inl somec way.

S uch at resource systemn is an object-orinted version of thle clean- up c mle

p~(i 1 ( b 1)y at languagec like NMesa[41j . and is modeled onl thle finishiiig ( Icd
4 1rxi1S M i esa. clean-ull codle is att ache(l as anl except iol hlidl 'r

to a specific programi fragmentt to allow actions to be t akeii ifthat fragmint
* e~('1c ilulterS, uii error. These act ions can include, for exaimplle, releasing locwks
-, or (lt-ahlocatii"ig obets createdl by the program. This behavior call be ob-

taiied usingt exist incr mechanisms inScheme. The new ilecianmimn however.

t t a lcht St C Itli clanI-I 1j) C('ode to Sj)ecific objects in the system. It is inl some
Selise the logical inverse of initialization code run when anl object is createdl.
hemi run11 iilsteild whicm time object is removed fromn the system. The notionl
of snCparticular area of program resp)onsible for clean-up is replaced by
the not ion of a self, cleaning object.

Since the critical issue here is again the "disappearance" of an object
from the systemi, it is clIearly related to the garbage collector. Anid again, a
simple cxtenision to tile garb~age collector provides a good base for this gen-
eralizattion . NlultiSciiiie allows the system to provide one object, called the
finalization object. to be used as a root for the primitive GC after all of the
other roots have been scanned. The primitive CC reports back the location
in1to whlichl this root w.as copied so that objects surviving the garbage collec-
nionl I(IlI1vca l ist inmguishmed from those surviving because they were
rea1;chable omiilNy fro(m t his -pecial root. This technique, Of Course, dep)ends
upon thle fact that space for copying objects from old space is allocated
scuilcit ially III Imew space during the garbage collect ion. While this has not

1 ma mliv )ei i iiplemniemit ed oil tile p~arallel proce(ssor, the extension to that
* i nmj 1 h limwIt;atI'mmI is st raighit forwardh. Oil top) of this very low- level InecliailSill

% t " t ill exesil ilin.i for object finalization.

M1i\ lliveime lilt er-leaves the support for finializat ion and wveak-conses in

% ...

% . .
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a well-defined order. It first performs all of the normal garbage collection
cycle except that the car of a weak-cons is not copied. Next it copies the
finalization object and notes where in memory this copying process began.
Finally it runs the user supplied demons, one of which updates the car
of the weak-conses to reflect the existence of objects retained either in the

P.., ordinary process or by the finalization object. As a result, data structures
constructed using a weak-cons do allow the objects to which the car refers
to be finalized. This has two ramifications. First, a resource systen can be
constructed using finalization code as a means of granting serialized access
to a resource. The data structures used by the system must be built using a
weak-cons to allow the finalization code to run even though the system can
continue to reference the objects (via the weak-conses). Second, it is not
correct for finalization code to assume that there are no references to the
object remaining in the system. Rather, the correct assumption is that the

* only remaining references are by way of the weak-cons mechanism. This
interaction between weak-cons and finalization is useful, but it does require
the exercise of care when using both mechanisms in the same system.

This is an easy and efficient way to implement finalization code. It in-
te rates conveniently into the system, allowing certain forms of consistency
requiremellts to be guaranteed. There are, however, some drawbacks that
"'11it its usefulness. They derive from two different aspects of garbage col-
lection. First. there is no way to predict the amount of time before a freed
re'souro will be cleaned up. As a result, at least for resources in frequent

. ,heiand, this mechanism must be looked on as a form of fail-safe device.
It should be used only in cases where it is essential to the system that a
finmal operation be perfornmed to maintain an important consistency require-
In&mcit even whei the ordinary mechanisms for releasing a resource may not
he invoked by the user's program. Alternatively if a task discovers that a
re.sulrce it requires is not available it may choose to wait for an interval

*~-.iifticijmint for the resource to be released and then force a garbage collection
if the resource is still not available. Thus, the finalization code approach
lhlp solve the problem of a "disapl)earing resource," but it does not truly
" UpIport alitonatic releasing of a critical resource.

Thi, secon'd difficulty is somewhat more subtle. An object is finalized
* ,~( ul i wii all methoths of locating it (except through weak-cons cells) have

1)( ciimvei fr,(,mim the systen,. Thus, if an object is placed in a data struc-
," t1p1, ,V n, ta.k that -'owls" tle object, the object will not be finalized

,, , % % '* , or 1* % %
% %0 W I
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414 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

111t il t he (litta s ru'tur bcomies inaccessible and thli task loIses anN, ineals
T( cereiict thle object directly. This is a two-edged sword. For soilie SNys-

ttiii )i tgaiiatt ins It is perfectly reasonable to assume that ani obje(ct Is
iilU iits I lig as, it canl le found by aiiy imethiod wliatsoevei-. Fori other
-%VStt'ii-.. liow(vt'r, it maiy b~e better to view ail object at, Ili u1se oinly as

ii a it cai t a Iese ii particular ways regardless of other .vays
het r aiw cAoli t(r :iilglt be able to come across it. While Mulnt iSclicine(

a > i)t 'ij p trt aygenera niehanismn to hielp t his t tt ei case' at least

()"w1 Ct 1111 hull Cii ( lutIS eaitLly act'l7Oiodl (ated . If thle access pathi of Initerest is

* \l ia a kill wit set of objects ( for example. a rt'Stlrct' mighit bc ('e U

b A"I iacv sil whenl lie task that allocated it (lisappears ). tle is

III jt. It ratlher thanl thet resource canl le the subject of finalization. Thus.
;t t a~k ninght co11ll it list o~f all the resources it has allocated aiid not
rtI leased(. The finailization code for each task would then examine the list
4 of resources acquired by the ab~out -to- disappear task and assure that they,

are all released.

2.3 Example 1: Logic Variables in Lisp

WVith. tl~c i-ccut initerest in logic programming languages," a good dleal of
aittet iit I hs b-en paid to techniques for merging logic programming linto

Li'j 4'.There are three important notions inherent in these langulages
ill till the, uiiplt'iieitor's point of view: unification, backtracking, and~ eii-
1 j~ictbli , iaialesl (lata structures. Unification algorithmns canl be easily
wr-it ten i Lis p ( ste, for example, the one in [7], Sect ion 4.5). Slimillarly.
c(Il pIipitat etI U )iit rol st ruct ures involving b~acktracking (both teniporal ail
(Il peiddtnc% -dIiected ) c-an be expressed Ii Scheme using aI cominiation of
fir't -class, et it inluat ions anid procedures. Thius, they pose no dlifficiult ies

* \VWhitl a tt tipt ing to emlbed a logic language within Lisp. The logic variable,
wer.canl be enil )edd( inl several olatat structures lin such a wythat

IIrIl vIi2a valuie to the variable in any structure causes that value to ap-
ja r Ii ail 4 thle dlt a st ruct ures. This is w,%here a clean embedding ili Lisp

5, 111' Ill diffictult a good emibeddinig shouldl Ipermit logic variables to be
* ~JI;Ii t (f ;ilut;(li a l)j('ts and w.hen the variable receives a valuec all of

tIi.'ll tII~ t. l (I"I; At ltid couiliii thils valuei. for u1se ii what ever manniiier that

%-;idlie I ( iriiillIv be miaiiipulated. It is precisely here, that the addoitioii

% %%
% % % e

%



2.3. EXAMPLE 1: LOGIC VARIABLES IN LISP 45

of placeholders to Scheme plays a role. By representing logic variables us-
iiu placcholders, provided we do not in some way touch them before their
Viht,. are clilpted, we need never concern ourselves with whether the
daita structure was iiiade using normal Scheme techniques or through the

i>c (,f unification.",

The r cuiliulader of this section demonstrates an iml)lementation of logic
viri'lhclcs usiuu the uiechlanisnls already discussed. The focus here is on tlie

foriii of sharing provided by logic variables. Thus, the implementation does

not at tempt to a(dress issues such as backtracking 3 or the deeper questions
of logic raised by the particular unification algorithm shown here.

Let us represent a logic variable as a placeholder, initially mutably de-
te'rmined to a detectable value. In this case, it is the name of the variable
(for us to look at) and a special tag. The placeholder is mutably determined
so that when it successfully unifies with an expression we can change the
value.

(define variable-tag '(LOGIC VARIABLE))

(define (make-variable name)
(let ((result (make-placeholder)))

(mutably-determine! result (cons name variable-tag))

result))

(define (variable? object)
(and (pair? object)

(eq? (cdr object) variable-tag)))

If we unify a logic variable with an expression, the variable must hence-
forth take on the value of the expression. Since we are not concerned with
1,acktracking we can use the standard determine! operation to accomplish
this:

(define (unify-variable variable expression)

(determine! variable expression))

3"Io provide a version of the uinifier that supports backtracking is not a difficult task,
Iut requires iiiore co(de tihan shown here. The major differences are to pass explicit con-
tinuatib s for use when a unification fails, and to use inutable (rather than imnuutable)
determine! to provide the values of variables that are successfully unified.

F,
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46 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

T)iinify tWo expre-'.-ss(ins we ilust handle a numrber of cases. If t he
e1X!)r'>1A 1(IIs art' ilit ical . thll t hey urnif to tlclsevs If elhr a varn-

a.N.then we canii use unify-variable to combine it with the other. If
it i n si t i are ('0lilposedI of sub)-expressions we recursively ui lif the(
wxp c1115is This pa rt icular iiicat ion procedure will ret urn #t if the

tXv ') 1 1 >itII, canI b), suiccessfu lly uiilfiedl, or #f if they cannot. After
* - :'ct~tunificat ion.,ui variables in either expression have acquired1 the

* dI'1I(S 4 thle co rrecspond(ing Conliloneicit s of the ot her expression. This is
talilnpltmeiitedl:

(define (unify expi exp2)

(cond

- . ((eq? expi exp2) Wt

((variable? expi) (unify-variable expl exp2) Wt
((variable? exp2) (unify-variable exp2 expi) #0)

* ((and (pair? expi)

(pair? exp2)

(unify (car expi) (car exp2)))
(unify (cdr expi) (cdr exp2))
(else #fM)

Notice that this unlifier Is simpler than a more traditional unifier (such
aIs the one in1 [71,) writ ten in Lisp. Because a determ-ined placeholder is
il150(1 to relpreseiit a vatriable after it has been unified it is not niecessary

to~~~ cosdrti ase specially. A determined placeholder is the valueits
lunfied with. anil thus once a variable is unified it no longer matches the
variable? clauses.

As iniitioiied at the outset, this program does not add-ess the issues
rela1;ted( to unlificatlonl andI backtracking. It lacks two features important in
a NIg r("I( PraiiiIIiiu'2110 syt iii n occur check, and backtracking. The occur
Chock is eaily led. hut at aI large performance penalty (the occur check
is- olim rtt , ini P rolog for t his sanieI rea sOi). Furthermore , if this unifier fails
to un'ify lwo expIrtssin us it mlay still have determnined the values of somne of
hel( varini lcs InI t he ex pressionis. This probllemi is easilly solved in a version

writtctento inlch le a ba;cktracking control structure: unification of variables
CIM Im (loll(. with a ilit ale (let erine and backing out beyond the point

0.-whecre it wa>iiified would restore the previous value.
Usmgt l1itr( ranlll shlownv hiere, wve canl create sonme Schemie varialbles

wlioaev; t will be( (lea t (' by, thle process of unificat ion:

%~
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Create some ''logic variables"
(define ?a (make-variable 'a))

(define ?b (make-variable 'b))
(define ?c (make-variable 'c))
; Some simple expressions including the variables for unification

(define EXPI (list 'A ?a 'B ?b))
(define EXP2 (list 'A 10 'B ?c))

4 ; And a "Scheme" expression not for unification
4 (define SCHEME-EXPR (list ?a ?b ?c))

Try it out...

'. ' SCHEME-EXPR (#[FUTURE 16] #[FUTURE 84] #[FUTURE 52])

None of the variables has an (immutable) value and all are different

= (unify EXP1 EXP2) - #t

V =' SCHEME-EXPR ^_+ (10 #[FUTURE 64] #[FUTURE 64])
?A has a value, but ?B and ?C do not. ?B and ?C are identical.

"' (unify ?b 3) - #t
SCHEME-EXPR -- (10 3 3)

- (apply + SCHEME-EXPR) -,+ 16

- expl . (A 10 B 3)
, exp2 - (A 10 B 3)

By embedding "logic variables" in the expression SCHEME-EXPR, this
expression changes as the variables receive values. Most importantly, as
shown in the expression (apply + SCHEME-EXPR), it is not necessary to
know which elements of the data structure received their value by unifica-
tion and which received them through other mechanisms.

4. 2.4 Example 2: Normal Order Evaluation
AOne of the fundamental results of the A-calculus is the Church-Rosser Theo-

@. rem -- a proof that (in a system without side-effects) any order of argument
evaluation leads to the same answer provided the process terminates. The

-.- theoreii also shows that one particular order of application, called normal

order. will terminate if any order will terminate.

Na
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45 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

lThe essence of normal order evaluation is "substitute first" on function
Call uiievaluat'(l arguments are substituted into the body of a function
before the )ody of the function is evaluated. Expressions tend to expand
luring a sulbstitution phase and then contract in a reduction phase. While
here are few theoretical results to support a general assertion, it appears
hat this explansion during the substitution phase yields an unacceptable

.pmc(' requirellient in actual implenentations. By contrast, Scheme em-
loys applicative order, as do most other programming languages, in which

t. ar umients are evaluated prior to evaluating the body of the function.
Att,,inpts to reduce the space complexity of pure normal order systems
have imadc very little headway. For example, even a simple iterative facto-
riai program that executes in constant space in (applicative order) Scheme
requires a linear amount of storage in (normal order) Miranda. This is

icurrently a major research area for the functional languages community.
*1 Unfortunately. the use of applicative order for function call leads to

infinite loops or errors in some programs that would terminate correctly
under normal order A classic example of this problem is the if special
form of Scheme. Consider a modified version of Scheme where true and
false are implemented as in Church's work, and predicates (including )
ret urn omme of these new values:

(define true (lambda (X Y) X)) ; Replaces #T
(define false (lambda (X Y) Y)) ; Replaces #F

III such a syste m u we ight attempt to define our own function, following
Church. expecting it to work like the standard if special form:
(define (our-if predicate consequent alternative)
(predicate consequent alternative))

Finally. we could try it out as follows:

4 (define x 0)
(our-if (= x 0) 0 ( 10 x))

In Scheme. or any other applicative order system. the final line will result
1,1 ;1 ri1t iwli' rror. The three arguments to our-if will all be evaluated
W,,, the ldy of our-if is exanine(l. and the third argument ( (U 10 x )
X; 1 , vet a (vi',h ev ztr )o error. By contrast. a norial or(ler systiim would

-:tinr, th,. ,xilresins themselves into the b(13- of the function. Thiis
* .H:i f:,1 lije' vwoi:lcd i tramisforied in successive steps as follows:

I
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2.4. EXA.IPLE 2: NORMAL ORDER EVALUATION 49

(our-if (= x 0) 0 ( 10 x))
x 0) 0 (U 10 x))

((lambda (X Y) X) 0 (U 10 x))
0

Thus, the programming community seems to be faced with an unfortu-
nate trade-off. Normal order systems are convenient because they get stuck
in computational blind alleys only when there is no other choice. Applica-
tive order systems are space efficient because they produce data objects
at an earlier stage of the computation. A variety of avenues have been
explored for combining the best parts of both kinds of systems:

" Strictness Analysis, a static technique for discovering which arguments
to a procedure can be passed by value (i.e. using applicative order)
without running into the attendant difficulties.

* Syntactically marking entire procedures as "by value" or "by name."
giving programmer control over the trade-off on a procedure by pro-
cedure basis.

* .Marking individual procedure parameters as "by value" or "by name."

" Allowing individual calls to procedures to pass delayed arguments.
This is the approach permitted in Scheme; unfortunately, the proce-
dure must be written so that it anticipates which arguments are (or
may be) delayed.

Placeholders provide a time-efficient vehicle for solving the difficulty men-
tioned in this last approach. With the addition of a placeholder object the
need to explicitly force an argument is replaced with the automatic touch
supplied for placeholders. Thus procedures can be called with a "normal-
order- parameter by merely specifying a placeholder for that parameter.
The code for the procedure is unchanged, and can thus handle any set of
its parameters being passed using either method.

hi order to inake this use of placeholders convenient, MultiScheme pro-
vides a standard scheduling policy known as the delay-policy (see Sec-
tion 4.3.1). This policy causes the placeholder to contain a procedure (his-
tricallh known as a thunk) that will be called when the value of the pa-
r;jnt er is rc, iire(l. The scheduler responds to a touch of this placeholder
I )y'ra1i ug tle thunk and dete.rmining the value of the placeholdr. Thus.

o* ' I(t111 rewrit, our 'earlier trial program as:

% %'
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* - (our-if (x 0) 0 (future U/ 10 x) delay-policy))

ii It i \ ilIo \V \v w oh- \\'t io t t ny Oth er ('lan ges. p rit( iiciiig, t e t sIi l

*0 relult.
Tlup Ili ich thle iinc way t hat thle fuiture inechianijsil allows ilittIliatl

()i~tt f para llelisii it ills() alllows ininal iilot at it a of iiorinial 1(
:;:::ari ji~.t, 1 1. On pi iarticularly iitrs it,;(,~ of thl,is aility Is iii

he1 let rec ( iistt rt 05cc to clefiiie it Se't o)f inuit iallv reour.-.IVC*
It2t~i'0~ Scifi providles at special f orili for tis p1urpo)se whtose syli x

1.' ine ats thatt of lie let special formi. The st ailitrol Schellie ro fcrenlCC
manuaiIl 497, lit wever. states:

0:,w restrictio 01oil letrec: is very im1portant: it Iiiu-st be
jtt silc to evalluate each [Initial vale expression] Without re-

* :ori 'no to thle valuie (f anyi [of thle intrwducedI variables] . If this
rcst rictot IS isvolatedl, t hen thie effect is inidefined ... The it

irt 1. nl is IICCoessalrV becauise Schemei passes argumiient s 1)v value
SI- ic t h % I ilaiiic. III thle mlost C0111oill 11se5 of let rec. all

1wlimI'll\value expressionls] are lambda expressions and( the
tSt l toil Is satisfiedI auitolIticallv.

'T! tli o let rec spcial forml inl Schemle is really not nt elided for uise inl
I ' r.curive(lat a st rlit umes or any (other elaI)o)rate nitu iallv rectirsiV('

ii 1,1 By 051ing thle plitcelioldle imlplemient at, in of dlydoets
".,(T. tis rtst rictot c ii ii ]wt ('liiiniated. Ili fact, at siiiple iminert caii1 ],Ie

11,ca tola a, let rec o'xpres Iol Into t an equivalemnt let expre-s0it .
T A KlVre mt)ii Will ot nvt're to af valuec when iever t'iein let rec

I ix ie. C1 uiis1(lt r thle circula- list creat ci bv\

Slietrec_ ((ones (cons 1ones))

ones) body

* I>- itt a;1! a inl Schlii. sinkc the variable ones Is iitrtttltmt'et

* rec 0 anialso ( oiiii,l' the 'iiti;,l value formi. This titit he
.. ' I al11-alt( I. l C It"e lilto the followiii cXpre'('SS to:
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2.3. EXAMPLE 3: STREAM PROCESSING 51

(let ((ones)) ; Create variable, no value
(set! ones (future (cons 1 ones) delay-policy))

"Fucurized delay" of

initial valuo expression

ones) ; body

This correctly implements the version of the original letrec expression.

" A similar syntactic transformation can be used for any letrec expression,
effectively removing the language restriction quoted earlier. Notice that
tlii saine transfornation would not work using the delay special form of
Scheme; my method depends on the automatic touch provided for place-
holders (but not for ordinary delayed objects).

2.5 Example 3: Stream Processing

One very interesting technique for structuring (primarily functional) sys-
tems, called stream processing, involves the use of a data structure (a stream)
similar to a list but with the cdr of each cell containing a delayed object
instead of the actual object. Thus as one recursively walks down a stream
the first item (its car) is always available but the remaining items must be
forced in order to access their value. Since only the items actually needed
during a computation are forced during that computation, a stream can
represent an infinite set of values while occupying a finite amount of space.
If the stream "remembers" the values of items already referenced so that
they needn't be recomputed (called memoization), then the data structure is
efficient in both time and space. Streams are easily implemented in Scheme,
and lead to a very convenient abstraction.

An excellent introduction to stream processing in Scheme is found in
Abelson and Sussmian[7], Section 3.4. They demonstrate how streamrs are
used in a variety of examples. Two of these examples, in particular, high-
li ht problems with the stream implementation as normally supported in

S." Scheme: the need for unifoinnly delaying arguments to procedures (in the
integrate procedure), and the difficulty of prodlucing a fair merge oper-

* atin. By using l)laceliolders rat her than the standard iml)lementation of
,rl; vud ol),jcts MiltiScheme provides solutions to both of these problems.

P%
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2.5.1 Uniformly Delayed Arguments

The irst4 (i fhctilt V arises out of the nee'd for 11iltualiv reiiv t ,;t r a ii1

01 (Ii I to S'Olve certain slinle 1)rolells. The'tX~4ht 'j!ol I -I'~
- atnd Sussinaii is a slimple (iinumierical) integrator u'1eol to x

C'qiuttionms. The (levelopilleit of that exaiiiph' Is rctitct! ]; 'it' 'i : I L-

foi)to) illustrate the general problemn.

It is easy enough to wvrite a procedure t hat rt'ct' vt asC ;i 111put ,I '

Of incoing samnple values (integrand), i Ie value of the intt'111l0a
t -- 0 (initial-value), ani( the tinie interval h('twev'l sanipl(- tdt alto

Iproluccs a streall of the integrated values:

(define (integral integrand initial-value dt)

.1 :(define mnt
(cons-stream initial-value

(add-streams (scale-stream dt integrand)

* int)))

int)

Recall that the second arguirent to cons-stream is dlelayedl rather than

evaluated, so the fact that it references the value of mnt as part of the
(lehunit ion of mnt does not lead to a problem. There is a built -in unit of

(lelav, in t his branch of' the stream.
WVe ight try to uise this p~rocedure as part of a prograii to solve at first-

O r(l('r (ljfft, 1, nt ial equation. Given a procedlure tha't calculates the valuec
(~f ( y -cw wanit to find the streami of values y(t) such that ~ f )

This wvould bec straightforward if Schemne supported mnutually recursive dlata

st II lt ui' (lefimlit ion15 (for ('xaniple, if S('heine were at normnal order language).

In that case wve could w~rite:

(define (solve f initial-y-value dt)

(define y (integral dy initial-y-value dt))
(define dy (map-stream f y))

1Umf r t unately. Ini order to calculate the value of y (at st reai) we must

q dppv tkt' v'aluemt of dy ( also a st reani) to the initegral procedure. But III

WiL I to calcula~te dy Nv' neied to kinow thle valuie )f Y. 0new (tt (if
G.- Thii, djN'-1iin I to ('x 1 l'tly 'introdluct' a delay opermationI to "cuit thet lot )I)'

!,v cliallni,11ig the ilitt'grand( argAlimmit fromt call by valuec to call hy 11111111C.

'p-i.
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2.5. EXAMPLE 3: STREAM PROCESSING 53

In MIT Scheme, however, this requires that the body of integral have a
S-. corresponding force added. This, in turn, requires that all calls to integral

thave a delayed argument for the integrand.
The problem. then, is that the modularity of the program is disrupted.

Because one call to the integral procedure needed to be delayed, the external
interface to the procedure was altered, and all calls need to be located and
changed correspondingly. This is the same problem explored in Section 2.4
appearing in a different guise. It is not surprising, then, that the same
solution can be used. In MultiScheme it is not necessary to explicitly force
a delayed object if the object is implemented using a placeholder. Forces

* toluches) are supplied automatically when the object is referenced. Thus in
NIult iScheine we need only insert delays in those calls arising from mutually
rcursive declarations.

* 2.5.2 AMB and Fair Merge

In a purely functional stream processing system objects are modeled by
providing functions used to derive the new state of an object from informa-

functions can be executed at any time and in any order. This proves to be
ail extremiely elegant formulation for many self-contained systems. Unfor-

-.
I'  tunately, interactions with objects external to the system may have a very

different character. It is not possible to provide a function describing the
state of. for example, a computer terminal as it will appear five minutes
from now. We would prefer, instead, to model the terminal as a device that
issues events. Thus we would like to make a stream corresponding (say) to
the sequence of characters typed on a particular terminal line, along with a
ta specifying which terminal they came from (so we can support multiple
terminals). This is simple enough to implement in Scheme, although there
is at least one oddity here. What is the first item in this stream (recall that
the first item in a stream is instantly available and only subsequent items
.nay require a delay while they are computed)?

(define (make-terminal-stream terminal)
, -~ (define (loop)

(cons-stream
S . (cons terminal (read terminal)) ; Tag + Data

(loop))) ; More elements
- . (cons-stream 'dummy-first-element (loop)))

.2%
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5-4 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

Now the stream behaves normally, although attemllpts to read boyond
the first itein inl the stream will cause the system to delay until characters
are' typed on the keyboard - a potentially unbounded amount of tiimie.

But ulnilding an event based system, a very productive technique in
many operating systems, is not this simple. Henderson's paper[31] pursues
this same example to the next step. What if our goal is to write a program
in or(ier to listen to two terminals and process the key strokes from them

-" n the order in which they arrive from the terminals? This, of course,. is
precisely 11he1re event driven systems are at their best. If we have more than
one source of events (say we have two terminals with a stream for each) we
now must specify in which order we will examine the streams. And here is
the fundamental problem. Our program is no longer truly free to apply its
state transition functions in an order of its own choosing. Whichever stream

-, the program chooses to examine first, it is possible that the corresponding
* terminal will not have any data available. Yet the framework described

so far has no way to examine a stream without waiting for the data to
arrive. So regardless of which stream the program examines first, there is a

- possibility that it will delay when data was available on the other stream.
. In most event based systems there is a procedure allowing a program to

say "'please delay ine until any one of the following events occurs, then tell
mc which one it was". This is precisely the ability we need to solve this
problem. There are a number of ways to formalize and solve the problem,
all of them requiring the addition of a relation (rather than a function)
to the system. Two such relations are McCarthy's amb operator[40] and
fair merge. For my purposes, the following informal descriptions of these
relations will suffice:

A b takes two inputs. If only one of its inputs is undefined, then the
value is the other input. If both inputs are undefined, then the value

* is undefined. If both inputs are defined, the value is either of the two
- (I do not require amb to be "fair").

Fair Merge takes two streams and returns a stream containing all of the
elcments from its inputs in the same relative order in which they
OCCUirC(l in the inputs (hence it is a merge). The output stream has no

1(l-flic(l ()rd('r of interleaving of the two streams, but rather includes
itc ils fri()I cach st ream in the order ii which their values become

(- ". .. "? %
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available. In cases where values are available from both streams at
th," same time, fair merge does not give preference to either stream.

MultiScheme's placeholders, along with specific help from the scheduler,
provide an event-driven mechanism for supporting the creation of these
procedures. The basic support comes from the disjoin operation of the
scheduler whose implementation is shown in Figure 4.9 on page 106. Dis-
join takes an arbitrary number of arguments and returns a placeholder
whose value, ultimately, is the first of the arguments to be given a value.
In order to be useful, of course, disjoin is ordinarily called with unde-
termined placeholders for all of its arguments. Disjoin is driven by the
inechanism that gives values to placeholders rather than by any kind of
polling or busy-waiting.

Disjoin is thus a perfectly adequate implementation of amb as described
above5 . Fair merge is easily written using disjoin:

AP'' (define (fair-merge si s2)

(touch (disjoin (car si) (car s2))) ; (1)
(if (undetermined? (car s2)) ; (2)

(cons-stream (car sl) (fair-merge s2 (cdr si)))
(cons-stream (car s2) (fair-merge (cdr s2) si))))

There are three subtle (perhaps) points to be understood about this
- smnall program. The line marked (1) in the program contains a touch to

guarantee that the first element of the output stream is available before pro-
ce(ding. Fair merge returns a stream, so this first element must be known
b)efore it can return a value. But disjoin does not guarantee that its value

ihas actually been computed. The touch will suspend this computation
until one of the two values becomes available.

The second marked line is a rather inelegant but effective way to decide
*- which element will be placed in the output stream. Having guaranteed that

(t lca.st one of the initial elements in the input streams is now known to have
a value, it tests a pairticular element to see if that is the one whose value

is known. A more powerful variant of disjoin that returns the identity of

the ;iunient which has acquired a value, rather than the value itself, can
I.. h easily built on top of this one.

'S,iI, aut hors us,. slightly riife:retnt dlefinitions for amb. imnplying fairness or certain
. yi,;, ] t limm i ial l)roporties. It is because .MN ltiScheime's disjoin does not necessarily

t-. - i ass. linpti'ns tlhat a niew 11avne was chosen.
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56 CHAPTER 2. EXTENDED SEQUENTIAL SCHEME

-3' Finially, notice that the two recursive calls to f air-merge reverse the
order of the two streams being merged. This guarantees that fair merge
will alternate between the streams in case both streams have values imme-
diately available. In an n-wvay fair merge this would be replaced by at cyclic
permutation of the streams.

2.6 Summary

Bv addling' two new features (placeholders. described in Section 2.1, and
a visible interface to the garbage collector, described in Section 2.2) to
Scheme we create a new language (extended sequential Scheme) which has
considcrably more expressive power than the original.

% Because they introduce a new method of sharing, placeholders provide
a means of easily embedding logic variables into LISP (Section 2.3). In
addition they provide a convenient way to embed normal-order evaluation
into an otherwise applicative-order language (Section 2.4). This allows
recursive data structures to be conveniently defined, and provides a good
deal of the power of a normal-order language without the problems of either
strictness analysis or loss of control over space utilization.

This power can be conveniently exploited by using placeholders in the
implementation of streams of data objects (Section 2.5). Doing so solves
two often troublesome problems:

" Because a computation is automatically delayed when a value it re-
quires is not available, it is not necessary to uniformly impose this
delay on all uses of a procedure just because it is required for one
use.

" As will be shown in Section 4.3.2, placeholders can be created to
£ represent "'the first value to converge." This provides an elegant base

for implementing McCarthy's amb operator and the fair-merge of
stream processing.

%



Chapter 3

Parallel Processing Extensions

This chapter describes the work that went into converting the extended
sequential Scheme language of Chapter 2 into a systems programming lan-
guage for a parallel processor. Sections 3.1 and 3.1.1 motivate and de-
scribe the global-interrupt operation and synchronizer objects used to
coordinate the actions of processors (as opposed to the placeholders that
coordinate the actions of tasks). Sections 3.1.3 and 3.1.4 then show addi-
tional uses for these extensions. A few additional procedures, of much less
interest, are described for completeness in Section 3.2.

Section 3.3 discusses the design decisions related to providing storage
on a per-task basis. Dynamic and fluid binding are introduced and com-
i)ared in Sections 3.3.2 and 3.3.3, respectively. The mechanism used by

" MultiScheine to implement fluid variables in a parallel-processing system is
described in Section 3.3.4. Finally, Section 3.3.5 describes several mecha-

-" nisms available without any further extensions that can be used to provide
storage intended to be coxnipltely private to a task.

Finallv. Section 3.4 introduces MultScheine's task object. The impor-
t nt concept of a task goal, which eiables the garbage collector to detect
tasks that are no 1,uiger needed is described in Section 3.5. Again, umo
Ia l~n lgie ext'imsioii is neleded to support tasks, but the separatinm of tasks
a11icl pllie hl(lers is explored in MultiSemeine for the first time.

57
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CHAPTER 3. PARALLEL PROCESSING EXTENSIONS

3.1 Processor Coordination

Shilt i Scheme provides two methods (global interrupts an(l synchronizers)
for ( )ordiat ing the activities of processors. Unlike placeholders. wich
C()Arlhate the activity of taqks (logical processes generated by running

tills). thse two operations deal with the physical processing units
of the hardware. As such. the-y are more often used bv the M ultiSchewe
-vsteni itself than by application programs. The two operations, while not
nxecessarily novel, have the virtues of simplicity and compat ibility. They also
serve as a base for higher-level constructs useful in parts of the system not
related to garbage collection (see the examples of Section 3.1.3 and 3.1.4).

3.1.1 Starting Garbage Collection

*/; .,.tiScswille was built by first extending the Scheme language as (liscussed
in Chpter 2. This system was tested on a sequential computer by using
tine- licinIg to simulate a parallel processor. The next stage of development
involved miviug this implementation to an actual parallel processor. One of
the early prolleins encountered in this move was modifying the mechanism
i>,d tk, initiate a garhagec collection in order to make it compatible with a
1)mtarallhl processor. In (serial) MIT Scheme, garbage collection is initiated
in thire phases. using a system modeled after a hardware priority interrupt

.,. Inell'h.tlisnil:

Interrupt Request
During some operation the processor notices that it is low on memory
and sets a bit re(questing a garbage collection interrupt.

Interrupt Detect
The inter)reter and compiled code periodically poll the interrupt bits.
A )en(ling interrupt is serviced if no higher level interrupt is pending

-. or in progress.

Interrupt Service
Before executing the next instruction from the running program, the
ii"aclinc calls a procedure supplied by the Scheme runtime system
(the interrupt handler), in this case corresponding to the garbage col-
I.etol interrupt.

.e.
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In moving to a parallel-processor hardware base there was no need to mod-
ifv" the basic interrupt mechanism but some of the details were modified.
Because all of the processors share a common address space for the heap it
is essential that they cease computing1 before the garbage collector begins
relocating objects.

The system must, therefore, support some mechanism for forcing all of
the processors to synchronize. The ability to initiate such global synchro-
nization from software (in addition to any hardware initiation that might
be available) is essential to several system services (see the examples of
Sections 3.1.3 and 3.1.4).

3.1.2 Language Extensions for Coordination

Only three modifications to extended sequential Scheme are used in Multi-
*$ Scheme to provide coordination among the processors: the interrupt levels

intersperse global and local interrupts, the primitive procedure global-
-interrupt allows any processor to interrupt the others, and synchroniza-

tion objects permit all processors to proceed in unison.
The new primitive operation global-interrupt is a software interface

to the global interrupt facility:

(global-interrupt interrupt-priority-level
interrupt-handler
all-clear?)

The interrupt-handler is a procedure that is executed by all the
other processors once the interrupt is detected by that processor. Initiating
a global interrupt is a system-wide resource, and the global-interrupt
mechanism forces serialized access to the resource. A processor receives
permission to initiate a global interrupt only when no interrupt (local or

* global) of a higher priority is pending. At that time, it calls the all-clear?

4% procedure to determine whether or not the interrupt should actually be ini-
tiated. This test is used, for example, to guarantee that a garbage collection
global interrupt is issued exactly once even though the need for it may be
detected independently by multiple processors. The value returned by a

N1ult iScliete uses a stop-and-copy garl)age collection algorithm. The subsequent dis-
WCI,' IOiI. witi only slight modification, applies equally well to initiating the space flip in a

*; r,'l- Iin copying garbage collection algorithm.
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call to global-interrupt is the value returned by all-clear? so the pro-
..cesor issuing the interrupt can determine whether or not the interrupt was
.act iall genera ted.

The global-interrupt primitive returns control to the caller only after
t!, interrult is initiated or the all-clear? procedure indicates that no
iiitrl'rri)t should take place. It guarantees that all of the processors will
".p licr (inary Work as soon as they poll their own interrupt bits. anl
evenut that the interpreter and compiler force to occur fairly often. This

41 0d,. ho ve\,.r. is not sufficient to solve the problem of starting a garbage
,'lh.,t i ,i. Bfore any processor can begin the actual garbage collection

•l.ratiol. all processors must be entering the garbage collection operation:
tlie .lobal interrupt mechanism provides a way of initiating an action, but
"" oo'. not provide ,oynchronization.

Instead. MultiScheme provides a pair of procedures for this purpose:
make-synchronizer and await-synchrony. To synchronize all of the pro-
ctss,,rs. one processor Makes a synchronizer object and then forces all of the
other processors to call await-synchrony with the synchronizer as argu-

noent, \When all processors are waiting for synchrony on the same synchro-
nizer object they all return from the call to await-synchrony. Typically,
on' processor makes one or more synchronizers and then uses global-
interrupt to force the other processors to begin waiting on them.

While separating these two operations can cause deadlocks if they are
use(l improperly, the operations do serve two distinct purposes. The ex-

ainlples of the next two sections show how the separate operations can be
used to provide higher-level operations that are not as easily provided if
the low-level operations are bundled together.

3.1.3 Pause-Everything

Clanieil[13] describes an early investigation into debugging tools for dealing
with tie parallelism of MultiScheme programs. He identified a variety of

qItiatiolis requiring a program to temporarily stop all other work on the
-v t em. erforni some action, and then allow the work to proceed. In or-

,ler to liro)ioh, this ability, he imlpleiented the original pause-everything

P"'rm. A new inplementation extending Clamen's original version is
(lej icte'I in Figure 3.1, simplified for purposes of explanation. It provides
;I 1:0s>;,C passing in1t.rfac, to al object representing the tasks that were

vi'..-.n p

L

% % % * r 4 . - - - * %d . - -. . . . . . . . '



I-.-

3.1. PROCESSOR COORDINATION 61

available for execution at the time of the call to pause-everything. This
interface is described in Section 4.6 and the support routines referenced in
the procedure are discussed in detail in Chapter 4.

Pause-everything uses both the global interrupt mechanism and the
synchronizers. A global interrupt is necessary to force the other processors

A to save their state and become idle. The synchronizers are used to divide
the work into two phases.

The first phase is initiated by the call to global-interrupt and ends
when all processors have arrived at the first synchronization point. The
interrupt guarantees that all processors except the one that called pause-
everything will begin executing the code in interrupt-handler. Thus
the other processors save away the state of the task they are executing
and place it on the queue of work to be performed. They then wait for
all processors to execute (await-synchrony drain-synch). When all the
proccssors arrive at this point, the tasks available for execution (including
the ones that were formerly executing) have been saved on the work queue.

The processors proceed past the synchronization point, beginning the
,second phase. All but the initiating processor will arrive immediately at the
second rendezvous point, the call to (awatit-synchrony proceed-sync).
The initiating task, however, first saves away the contents of the work
queue in the variable queue and empties the queue. All the processors
again rendezvous, ending the second phase.

The initiating task makes the message accepting object based on the
value of queue (by calling the procedure make-returned-obj ect shown in
Fligure 4.12 on page 115). This becomes the value of the original call to
pause-everything. The other processors, however, have now finished the
proce(lure which is the argument to saving-state. But saving-state
(Ihos not return to the procedure that called it. Instead it tries to get work
from the (now empty) work queue. So at this point, the initiating task
is still running on the initiating processor. All the other processors have
relinquished the task they were executing and are waiting for more work.
The system has 'paused."

An intcresting detail has been deliberately omitted in this description.
What should happen if. while other work is suspended, the running task
touches the placehohder associated with one of the suspended tasks? While
there is lo( oh )viisly corr ect answer, the actual MultiScheme system marks
thes'e susii lehd tasks paused. Toiuching a placeholder that is marked paused

, , % ** % % %'**...*.'-. -. * -
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"

(define (pause-everything)
(let ((drain-synch (make-synchronizer))

(proceed-synch (make-synchronizer)))
(define (interrupt-handler)

(saving-state ; (1)
(lambda ()
(await-synchrony drain-synch)
(await-synchrony proceed-synch))))

(global-interrupt high-priority

* interrupt-handler (lambda () #T))
- (await-synchrony drain-synch)

(let ((queue (drain-work-queue))) ; (2)
(await-synchrony proceed-synch)
(make-returned-object queue)))) ; (3)

Notes:

I Saving-State stores away the state of the task currently executing on this processor
and places it on the work queue. It then calls the procedure which is its only
;rgument. Saving-State never returns to its caller: it looks for work from the
quoue when the argument procedure is finished. See the discussion in Section 4.2.3
and the code in Figure 4.8 on page 102.

2. Drain-work-queue empties the queue of tasks awaiting processors and returns a
list of the tasks removed. See the description of drain-work-queue in Section 4.1.3.

3. Hake-returned-object creates the message-accepting object that is the result of
a call to pause-everything. See the discussion of make-returned-object in Sec-

* tion 4.6 and the code in Figure 4.12 on page 115.

Figure 3.1: Simplified Code for Pause-Everything

4,

1.~~. % '44.1
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is handled by the scheduler of Chapter 4 in exactly the same way the
scheduler handles touching a placeholder marked delayed: the associated
task will be reactivated. One of the advantages of writing the scheduler in
MultiSchene is that such decisions can be easily changed. For example, it
is quite easy to add a "scheduler hook" to allow users to specify their own
way of handling this situation.

3.1.4 Within-Task

The final example of processor coordination is a critical part of the user
interface, allowing the user to interact with previously started tasks. The
primary use of this facility occurs in the top level interaction between a
usur and the MultiScheme system. In MIT Scheme, a user can at any time
interrupt execution of a program and create an interaction environment
within the state of the program at the time the interrupt was serviced (by
issuing a "breakpoint interrupt"). A user can also interrupt the program
and force it to throw back to an earlier interaction environment, effectively
aborting the current computation

The direct extension of this into MultiScheme would allow a user to
interrupt the system and interact with any one of the tasks in the system 2

at the time of the interrupt. Because a task has state information visible
to the -rogrammer (see Section 3.3) it is important that the correct task
actually interact with the user. As a result, there must be some way to
force a selected task to call the procedure which implements the interaction
environment or invoke a continuation that aborts the current computation.

Within-task is designed to facilitate this and other similar operations.
Some of Clamen's debugging tools, for example, rely on within-task in
order to report the progress of a program back to the user. A simplified
version of this procedure is shown in Figure 3.2. It expects two arguments,
a task and a thunk, and forces the task to execute the thunk tefore con-
tinuing with whatever processing it is currently doing. The operation of
this procc(dire is intertwined with the scheduler (so the details are deferred
to (hapter 4) ])tit the overview demonstrates a different use of the global
i'terril)t iimechanisin.

I hw ur intrfaci- norinally used for MultiScheme does not allow the user to select a
sir? i,'ii r t ask for interaction. Rather, it chooses randomly from the currently executing

t aYk-
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634 CHAPTER 3. PARALLEL PROCESSING EXTENSIONS

(define (within-task task thunk)

(with-task-locked task

(lambda (task-still-runnable?)
(if (eq? (task.status task) 'RUNNING)

(begin

(set-task.status! task 'WITHIN-TASK)

(set-task.code! task thunk)

(global-interrupt high-priority
(lambda 0) (if (eq? (current-task) task) (reschedule)))

(lambda 0) *TM)

Notes: Descriptioit of thie task data structure as well as the utility routines with-task-

locked, current-task, anid reschedule are provided in ChIapter 4.

Figure 3.2: Siplified Codle for Within-Task

Within-task \vutrks by te;tliin Nlietlier the task is curirenltly executing

()1 )1 (i f t"f prm jdCQ>5I'. If so, it itiarks the task indicating that it ilust be
c'c-I h le >1 necfiedl e'c ie an(1 thlen initiates anl interrupt onl all

K ;:. *1.~I.1. iIig the chioseni task to reschedule the task

K. -: K '1 r''reschedule. dlescribed1 in Sect ion 4.4.
- . ZI kv;t th at the'pf' cifie 4Code is exctit ed

~t1,1 ,li ( s not liieu ally.
.;.:-'*f I iitet-I'upt Is mlerely,

I fli (III t heir (Illt ics to

;11 1 .. 1*x el il d elteii
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" Programs can ask the number of Scheme interpreters in the systemi
(using N-Interpreters) and subdivide work accordingly. They can.
also ask which interpreter they are currently running on (using My-
Interpreter-Number). MultiScheme also provides a My-Processor-
Number for use in reporting hardware problems3 .

" MultiScheme provides an abstraction of an underlying task distri-
bution mechanism, described in Chapter 4 along with the details of
implementing the MultiScheme scheduler. User programs are not
expected to deal with this set of primitives unless they modify the
scheduler to provide specialized scheduling policies.

" MIT Scheme's mutation operations (set!, set-car!, etc.) were al-
ready defined to return the previous value stored in the cell they
modify. In MultiScheme these operations are performed atomically
by the interl)reter. The compiler may detect the fact that the value
is not used and convert them into pure write operations instead of
atomic swaps.

" MultiScheme supports operations derived from Multilisp[26] for per-
forming atomic conditional modify operations. In MultiScheme, these
operations are set-car-if-eq?!, etc.

3.3 Per-Task Storage

i,1 a system that supports concurrently executing tasks there is some amount
of imfornatim which constitutes the state of the task from the point of view
of the underlying system. But in addition to this system-imposed state, the
lrogranm structure itself may require storage on a per-task basis (see, for
examp1le, the Uniform Systein examI)le of Section 5.4.3). Providing this
tora ge is closely related to issues of variable naming, and MultiScheme.

has extended the fluid variables of MIT Scheme to provide per-task storage.
Section 3.3.1 describes Scheme's mechanism for providing localized stor-

age in a seqjumential program through the use of lexically scoped variables

:"|ntr retr numbers" are assigned se(uIentially from 0 through N-Interpreters-1.

'Pro,,ssor mnun lw-rs" are assignd by th le underlying hardware and are not necessa'rily
elent ;1a ,'

Ii
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.. fit famihar as -block structure InI other languiages. On)xe

(1CWI nIt( end prohleiii WithI tis struct ure, however. is thle dlif-

,f a ~sing0le inme to denote differenit values based ont thle
HW(ftle programi. the core of t he difficulty encounteredl wvith

K V;11 haibes 'in Niult iScheilie. Section 3.3.2 dlescribes thle tradi t ioi l
L i -iiviainic b~inding approach to solving this problemi while Sect it ii 3.33
o-crue the fluid variables used inScheme. Section 3.3.4 describes the

1 ujleinciit at ion changes required to provide fluid varial )es iii a para'llel
; tI ad Section 3.3.5 Concludes by pointingt out at set of additional op-

8 ins1- that miight be pulrsued if the block structure of these per-task variables
is nlot L1n1 important concern.

3.3.1 Packaging and Lexical Scoping

The problemn of controlling a program's name space was one of the im1-
* portaxt miotivations in the original design of Scheme. This led Scheme to
* . (depart from the dynamic binding of variables, which had been one of the

T* prunary' und1erpinning-s of Lisp for over a decade, in favor of lexical scoping
* .of vatriable namnes. One of the hallmarks of MIT Scheme has been its insis-

ttl1(c (tI uISIngl onily lexical scoping for variable reference. In this regard it is
like the Algol family of languages. Because Scheme also includes operationis
with li sIt-effects'. p)rogriiifs written in Schemre are analyzed using an envi-
ronment model i %xvliicli procedlures contain both the code for executing the
Pn ('du 11(1 the iirlonmnent inI which free variables are to be resolved4 .

(Jut- weil-knowvn and( desirable p~roperty of lexical scoping stems from
.Z. lhe fact that the scope of at variable is textually localized. Thus a comp~iler

fr at lexically scolped language can make deductions about the wvays in
whlichi variables are referenced even when p)resentedl with small parts of the

vtei.Unlike a coimnpiler for a dlynamnically scoped language, it does not
* iieed to see ili1 entire programn to know that a certain variable's value iever
Z. c~~hangres. 01 that it, is unriieferenced. The compiler need only see the code that

(tll1prises, the scope of the variable. Thus separate compilation of modules
can1 be performled wvi th optimiz~ation of variable references iii a 1lxiallv,
scopeul lang,,uage without imposing mminitural rulecs about referencing free

Ilwit comili,JU is' fuiin ;tbI to deitwt that omic of t his iiiformiiitit~i is iiot iitt(lttl ait

ri /it n , r~,t)c ,.e m r Ii, n e r~ina w sb -w ntet e u to s

0~% K



3.3. PER-TASK STORAGE 67

variables, or introducing unwarranted assumptions about the behavior of
components of the program external to the compilation unit.

This same ability to subdivide the code aids programmers and designers
in building and evolving large systems. The scoping, or block structure,
provides a simple and effective mechanism for isolating independent parts
of a system friom one another. At the same time, it provides an easily
ised and easily detected form of communication through the use of free

variables. Combining these in different ways provides a great deal of power
itnd flexibility. One common pattern found in MIT Scheme comes from
the ability to treat environments as first-class objects. With this ability it
becomes possible to create a package of related procedures, similar in spirit
to a Clu cluster[38].

A Scheme package is a single environment frame which contains a num-
)er of variables that are global to the package. Most packages include in

these "'package variables" a number of procedures that perform activities
using the variables to guide their behavior. Some of these procedures, con-
taining the package as the environment to use for resolving free variable
references, are also exported from the package to serve as interface proce-
dires with the rest of the Scheme system. Figure 3.3 shows a typical piece
of MIT Scheme code to construct a hypothetical package used for printing
numbers. This has one explicitly declared package variable (radix) in ad-
dition to all three of the procedures that are created using define. Two
of these three procedures are exported to the external environment (using
the access special form of MIT Scheme), and one of them is "renamed" in
the process (i.e. it is referenced by one name within the package and by a
(lifferent name from outside the package).

3.3.2 Dynamic Binding

The package introduced in Section 3.3.1 also demonstrates a common dif-
ficultv with this organization. Suppose we discover a frequent need to ex-
,.ulte. all existing program that prints some numbers using print-number,
1)lit with outlut in octal or hexadecimal rather than decimal. Our first
im,'linatio mi iight be to write a new interface l)rocedure as part of the pack-

(, %
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(define number-package

(let ((radix 10))
(define (number->list-of-digits number)

(define (print-number number stream)

(for-each

(lambda (digit) (display digit stream))
(number->list-of-digits number)))

(define (change-radix! new-radix)

(let ((old-radix radix))
(set! radix new-radix)
old-radix)) ; Return old radix

(the-environment))) ; (1)

Now export the interface procedures
(define print-number

(access print-number number-package)) ; (2)
(define set-print-radix!

(access change-radix! number-package))

Notes:

1. The-Environment supplies the current environment frame as an ordinary Scheme
object.

A2. Access performs a (lexical) variable lookup in a specified environment frame.

Figure 3.3: A Simple Package

'a.W
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(define (with-new-radix procedure new-radix)
(let ((old-radix (set-print-radix! new-radix)))

(let ((result (procedure)))
(set-print-radix! old-radix)
result)))

We change the radix and remember the old radix. Next we call the

procedure, and finally set the radix back to its old value. This works
unless somehow the procedure we are calling manages to return back past
the call to with-new-radix without executing the code to set the radix

4. back. This can only happen if during the execution of that procedure a
continuation made earlier in the computation is used. This might at first
appear to be a fairly unlikely occurrence; but it is precisely what happens
if the user interrupts the computation using within-task as described in

Section 3.1.4.
.= By allowing first-class continuations into the language, we have obliged

MIT Scheme to provide some mechanism for handling this kind of multi-
level return. Many languages provide an "exception handling mechanism"
to handle this situation, and MIT Scheme provides a very general mecha-
nism that serves this purpose, described in Appendix D. The problem here,
however, is a simple one that illustrates a problem with lexical scoping com-
pared to dynamic binding. In a dynamic binding discipline the values of
variables are located with respect to the execution stack at the time of the
reference. So, if we used dynamic binding for the value of radix we could
safely use the following piece of code:

(define (with-new-radix procedure radix)
(procedure))

.4. uIntroduciiig "just a little" dynamic binding into Scheme requires the
careful examination and resolution of a number of potential problems be-

* tween the interactive environment and tools with a more static view of

)rograms. such as a compiler. The goal of the MIT Scheme interactive
euvironient is to support the very simple model of a user positioning an
interaction loop inside an environment corresponding to a specific proce-
(lure invocation. This allows users to enter an arbitrary Scheme expression

0. and find its value at that position within the program. But in order to
S Io this, there umist be some way of knowing which free variales in the
SP ,'xnrs.i ni are to be referenced using dynamic binding (and hence use the

O.

4,.

O.
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call stack) as l( )CIe to those that are to be refe-reniced lexically (lusinrg
thre chiail ()f framles off deflitini ). InI general this information inilst also he

km)Wi t.c011)iato~ tu5c, a 1o mih-edltodc( in a variety off waiys.

1 . The sou1 rce text colld require explicit (leclaratiolls statinug which way
to treat variables for Which no binding is found at cmlpile tunle. liii-
fort 'ill lately! at runi t'iiin' there is no i1f( rilatioui available that spec 'S

what plart s oif a pr graunr Were comlpiledh as a sinigle 1111t, or Wich dec-
larat it Is wt 're ill effect for whalt variab;les(". As aI result it is no t pImssii de

t letern im it' wh ich references entered I ly thne user were to variab les
-~~ (letcruiilicl lby tire compiler to be dynainic as opposed to lexical. Of

>~ co tirse, thre couiipiler couldi leave aroundl such informration, but tis

pl sall r otherwise unnecessary b~urdeni onl the compiler and ruurtimne
systemur.

2. A dlefauilt assumptionr can be used, as in ZetaLisp. III this case ref-
ereicmig any variable for which no binding is provided by thre corn-

pilaition mit. returns the dynamic binding of the variable'. But this
has p~recisely tire samne prob~lems as the earlier solution, since tis
information is also not available at run time.

3. A i(New special forin could be created for introducing dynamnic, bind-
iings. Tis is an interesting comp~romnise andl is the lbasis for thre actual

choiee inade ill MIT Scheme and~ extended in MultiSchemie. This

(in is discussedl iii Section 3.3.3, below.

4. Special formls could1( be introduced for both referencing and1 intro-
ducing a dynlamlic biniding of a variable. Tis option is so h)iir(Ien-
soiioe that it wolinake the use of dynamic variab~les virtually non-
existenit. It also opens up the p)ossibility of program bugs arising from

imiadvert('iitly refe-reticing tihe dynamic binding of a Variable When the
lexical value isdesired, and vice vers~a.

'Byi "ColitIiiatiorl tihu!' I fiitat the time wirem Schemie source code is -onvert-ed intoai
o*x(,-lahie' 1)rograri. Tils, Coll 1ilatioli occurs even when Schemew expressions are typed

S in or 1( ,;eied irrt.'rw ivtly,
'Ifh atual rid(-s (if c om~uoiLisp, onl tie othrer ihand, are (ite'- complicated he(re, mid

VVAIi -mit if( posibility oft changig (it ?'?17 tine ti1. type of binrding to 1w' 11sed. To ti11eI ;uu~~~~tthor's kuu'iviedge no mn-nf-jiitation of ( oiiiloii sp) actkuially suuiuiirts this opt o

0.

% % %
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MIlT Scliei II f( I lted(lan int ei ne(liate solution to this prob lemi. Becau se of
- t lhe (Iithiltiles of 1)ililg anl interactive systen co)nsistenlt with two (list iiic*t

* \;t~vr1lle recferencing ail(l Ibii(ling inediaiisis, it provi(Ies a iiiechiailiin that
(1((- no u t affect the lexical niatuire of bindings ill the language. Iiistead, it,

providles a iiecl auistli allowing thle existing lexical lookup to effectively ref-
TI' 1(i fit reit.t locationtis at (lifferenit hiuleS, 1 asedI onl the (lalillic execu ition

o)f thle prograuii.

3.3.3 Fluid Variables

I~at her t ban intro(luce (llainic binding, MIT Schemne lprovi(les the special
foriii fluid-let, originally introdluced by Sussinan, to alter the value of an

- exist iuig varial e for uise (luring the execution (time) of a particular segmnent

of c'ode. All variable references remain completely lexical, but the location.4
where thlese 'fHiiid variab~les" are store(l is altered. Syntactically. f luid-
let is e-xac(tly the same as let. The solution to the earlier p~rolemi~ can be
exp~ressedl by adding the following procedure to the package:

(define (with-new-radix procedure new-radix)
(fluid-let ((radix new-radix))

(procedure)))

Fluid-let has a slightly unusual semantics. It does not introduice a
niew binding (as dloes let), although the syntactic terminology refers to

tIl Iv varmiab les ill b)o th cases as a "lbin(hing list.". Rather, it converts the
eisting l~ilhiugs into what are termie(l fluid varia bles (hience the iaule.

Tl, -execuit ou of a f luid-let exp~ression separates the (lynllicll( execuition

of a prograimi into two p~arts. Before enterinig the body of the fluid-let,
and after (exi ting, the variables specifiedI in the bindiiing list (inl this Case
radix) refer to ai certain set of locations in the store. W~hile execution

is wit hin the body, however, they refer to a newv set of locationis and the
* 1)1( ~~ld ( Iat i(n are t ( inaccess5il1e. The new locations are created when con)utrolI

ini1tiaIlly enite'rs the b oly of the fluid-let, and they are iitialized to the
NVIllit s specifiedl in the idinig list, (ini this case the Value I f the I'Xpre(.si( I
new-radix).

T3ccTi I15' of tile I'xistlice of first-class coiitiiiiatiouis ill the langi iage, t he
* ~~~imlpl'IitcttiniI of f luid-let is iiot trivial. Izn MIT Scheiie it is base'd

oh1 tw lic iittiiaiii>11ui (lstilt'( ill App~endix D which guiaraintees that anyv
Itt t tllpjt to I (,I t t. a it)lti ill ut1 tioi durling the execution of the b)odyl otf tiit



72 CHAPTER? 3. PARALLEL PROCESSING EXTENSION'S

fluid-let ('orrcctlv caIl t utes the locat ionIs of the fluid varia bles. XVIuxil
S1h a('1 u i~qt i litio i s1)11 lise(l, whether front 11151(11' or mut s1(l( the ('x('(ttIioll

()f I I ov, th1o ste1 Iocit i( 115ale restored.

* ~~Fitut dV %*'*ai1 lits are iise l in thle MIIT Scheme ruitli ie svstelil fo in iai u-

iii~t lit stttt' of ai lrge int~iller (if packages witini the svsteiii. These

\'alll Il'? ilit'lliide thle primiary ii pit andi~ olut hut stIiva111, ciirreiit sviit axe'm
Tatl N'. fo l. ii lp tgni i1ls, iiiforiitionl aboutit the curirenit error or' bre'(ak-

Ii t ( (iIit IxI . aii I recursive st ate of thle comipiler. They provide a cne

lilt-'lit c'Iic'il sI ilatio(11 of aui imulport ant conistniict whose power is needed lin anly
largt' 5,st euli. The i ise tif fluli Varial es has comipletely replaced diyi aiu iC
1 inm hug within MIT Schenme.

3.3.4 Fluid Variables in a Parallel System

I- (~t iliatelv, Im)tll the seIjiatic*(s muill the iiiecha'iisxi ulsedI to 'liiilieliieit
fu id-let lin MIT Schemie run into i rolieIis wheni the systeml Is extelidled

to tar lt' 'eectionu. Unliike a sequentijal systexin where the eiitirt' systt'iil

1i 4.11 lit jid e or t tt sde the (Iynuinic e'xtenlt oif thle bodyv of it fluid-let
,( 11ii. %I lilt Iscehi 'it'as a svstelll call be siniuiltaxieouisly iisi(Ie and oltsidle the
lmd. Fiu rt. irlliore, it ('all inistanitanieously be inlsidle of 'mary Itjdies that

ciitr th locI(ations oif thle samne variables. Thuis each task muiist somehow
( hit ail itlit' in formation iceded to locate the p~articuflar cell where the value

4ach of its.- flud variables is currently storedi.

MIliiriSelieije resolves tis situlatio n by pr-ovidhug a run timeo nieclianisiii
ti hat iiarks imidivi(lulal entries lin an eniivroinmient fraine for sweial handling

Iy t lit, variable lookupj anmd side-effect (set!) rodhe. Since the MAIT Sceiie
ilitrt'iprtttr alreadIy exitmilnes the values of a variable that is refer'enced or

llwilt ii i d to deft 'ect 111.1)01111( ail(1 unlassignled var'iab~le error0s, tis sain' test

wac xtel 'iide into a mnore flexible unecliaiisi. A type code (called trap on
reference or trap for short) wats assigned for tis pur])ose. Every interpreted

Vvia it' e 'eft'remiu' or set! ojlerat ioul exaijes the Conitenits (If the ( clexcally

N aI'ltIivirt uinut franiie t~o ('hi('k for special hianlinig. If t his trapl cod

I-li l it' sloit al'so cont alis the( informiation necessary to comtplet e the
I IitI 't Ill noliaiv ('ilsI' thle comlpiler cani omint this check, sIicit (.all Ie

tittt'.1Iijit'i u1tcalx (at ('onupi he tizzie ) to be 111minecessarv.

Ill I to.u tti iupltitmt fluid-let the trapl (ctode is assoc(itettd with ak
- >a i1;111 1111t1'k If tIlit;a. ThlIs block lilcltil(s a flag indticatinug that th lie vrlible

S%
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iii question is fluid as opposed to unbound or unassigned or soine user-
specifid type. It also contains the cell where the value of the fluid variable
is stored when outside of the influence of any fluid-let form. Further-
iii')re, associated with each task is a fluid binding list, a standard Lisp A-List
Iiapping trap objects to cells for the value of the corresponding fluid vari-
able. In order to allow the introduction of a future form within the code
executed as part of the body of a fluid-let to function as it would in MIT
Scheme, a newly created task inherits the fluid binding list of the task that
spanls it, and it can therefore communicate with that task and its own
"siblings" using the cells (and the fluid variables they represent) that are
part of that list. Finally, a continuation also contains the fluid binding list
that was in existence when it was created, and invoking that continuation
in the normal manner restores those fluid bindings.

To summarize the mechanism that supports fluid-let in MultiScheme:
0e When a fluid-let form is entered, each of the variables in the bind-

ing list is located using ordinary lexical lookup.

-° .'. - If the variable is not yet marked as fluid (by the presence of a
trap type code in the value cell) create a new trap object that
contains the current contents of the value cell as the contents of
the "outside" cell. Store this object into the lexical value cell.

- In either case, make a new entry on the task's fluid binding list.
• ,'. dThis new entry contains the trap object as key and the value of

- the expression in the fluid-let binding list as value.

.,Ol(n every variable reference or set! operation, look up the variable
-. using ordinary lexial lookup. If the value of the variable is a trap

object for a fluid variable, look on the task's fluid binding list.

- If the trap object is found in the fluid binding list, then the
W. correspol(nding value cell is used in place of the cell in the lexical

(,ivinI'Olll(tt fralle.

-- If the trap object is not on the fluid binding list, then the "out-

sidcl cell of the trap object is used in place of the cell in the
l,'xic, envi roxiinent frl'ame.

. When a new task is cr ated, it inherits the fluid binding list of the
cru;itii,< task. The initial task has an empty fluid binding list.

N. % .
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*-.When a continuation is created, it contains the current fluid binding
list as part of the saved computation state.

lWhen a continuation is applied to an argument (i.e. when it task
throws to the continuation), the fluid binding list from the continti-
ation becomes the task's fluid binding list.

Because fluid variables are referenced only rarely and the fluid binding lists
tcld to reilain fairly short this nechanism has proven effective in Multi-
Schemc. The mnechanism is closely related to the deep >inding mechanism
()riiilly used to implement dynamic binding in Lisp, and suffers from the
saime problems. If the fluid binding lists become long (typically because a
few variables are being bound by a recursive procedure) then references to
early entries becomes slow7 . For this reason, most Lisps now implement
dynamnic binding using a technique known as shallow binding that multi-
phexes the value cell within the environment directly. An implementation

of fluid-let using shallow binding was considered for use in MultiScheme,
but was rejected because it would dramatically increase the time required
to switch tasks.

3.3.5 Task-Private Storage

Fluid variables provide an excellent way for tasks to create their own stor-
age. Fluid-let can be used to provide a value for a variable withoutaltering the scope of the variable. Yet its accessibility is limited to the task

that evaluated the fluid-let and any sub-tasks it spawns within the body.
Furthermore, since the mechanism is supported by a uniform variable ref-
erence iechanismn there is no need to modify existing code to cope with
the fact that some of its free variables may become fluid variables at any
timie (uring the execution of the program. The mechanism is inherently
dyniamic, not static.

Yet this very flexibility can be a problem. The speed of a variable
refereice is governed by the usual issues relating to lexical lookup. For
ffid variables this time must be augmented by the time required for a deep
sea rch of the fask's fluid binding list. If a task references a variable that

Ely proviling a cache for recently referenced fluid variables (flushed when a throw
occurs atli when a fluid-let body is exited), the cost. of referencing fluid variables canV trin be significantly reduced.

V-.
% % ro V,%
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has a fluid binding by some other task, yet is not itself within the body
of any fluid-let for that variable, it must find the "outside" binding
of that variable. Unfortunately this requires searching the task's entire
fluid lbii(ling list to discover that the task has no such binding. Then,
of c(ourse, the correct binding slot is easily located from the trap object
which was originally located. Thus the time for referencing such variables
is proportional to the length of the task's fluid binding list (but see the
footnote on page 74). There is, therefore, a desire to keep this list as short

)s possible.
At the same time, there is always a need for a task to contain data

relevant only to its own workings and for which the ability to share that
data with other tasks is minimal. For example, in MultiScheme running
on the BBN Butterfly, each task has its own I/O stream that it uses by
(lefauilt. While the task itself must be able to reference these streams no
application has yet been found in which any other task need be concerned
with theiii. This task state can be supported directly using the fluid vari-
ables mechanism by placing a fluid-let into the code in the scheduler
for creating tasks. This guarantees that every task has its own location in
which to store the streams when they are needed.

While this solution works, it guarantees that each task's fluid binding

list contains an entry for each of these task state variables. Furthermore,
since each task inherits the fluid binding list of the task that spawned it,
it contains an entry for each of these variables for each task in the chain of
parent tasks back to the initial task created by the system. Thus the very
"(ct of creating a task will force that task to take a longer time to rcfcrence
fluid variables than the task that created it. This observation is really just
the same one that initiated the conversion from deep binding to shallow
binding in traditional Lisp systems.

This difficulty is a very real one in MultiScheme, but there has been no
single solution. Instead, the existing mechanisms support three different

0solutions employed for various parts of the task state.

1. For itenis that must be referenced by the lowest levels of the sys-
teini and possibly the microcode of a machine, the task object itself
contains a (fixed) number of slots. Since the task object can be ma-

* lipulated from within MultiScheme, it is possible to view the task
o)bject itself as a data structure containing certain pieces of state.

.' This, of course, requires that the state variables are fixed and known

p.
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*in advance. Furthermore, it requires that any code that manipulates
this state be aware that it is stored in a particular fashion. The task
data structure is described, along with a number of routines that deal
with it, in Section 4.1.2.

2. One of the slots in the task structure can contain a standard lexical
environment frame. This frame contains the extensible portion of the
task state. This solves the problem of allowing the task state to be
conveniently extended from within MultiScheme, but it must still be
manipulated explicitly. This mechanism is not, in fact, used in the
current implementation.

4

3. The trap mechanism described for fluid-let is quite general. By
. placing different flags (actually a procedure) into the trap object it

* is possible to specify an arbitrary mechanism for resolving variable
references. One other way to use this power is to specify that refer-
ences to a particular lexical variable are to be resolved into references
to the task state object, as implemented in either of the earlier two
solutions. This permits the structuring of the name space via lexical
scoping to be utilized without either fragmenting the task state or
distributing through the code the knowledge of which variables are
task state variables.

Providing a convenient syntax and interface to these mechanisms is an
interesting area for further investigation. The mechanisms themselves are
quite powerful and have easily satisfied all of the current demands for task
state. Unfortunately they are rather hard to use and the difficulties that
have arisen in this area so far do not need to utilize their full capabilities. As
hamore complex applications are built, these mechanisms will almost certainly

. be employed to help control the modularity of the program design.

3.4 Introducing the Task

The history of MultiScheme includes a long series of experiments with the
* notion of a task. Steele[54] introduced the notion of a continuation (which

originate(d in the area of denotational semantics) as a means of analyzing
S,'hmn, programs in tie process of compilation. This "continuation passing
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3.4. INTRODUCING THE TASK 77

style" of programnming proved sufficiently interesting and powerful that the
Snotion of using continuations as part of ordinary programming practice
was expanded and demonstrated in a series of papers by Friedman and
others at Indiana University[19,22,29]. The use of continuations as first-
,lass data objects was added to the language, and they were hailed as a
rep~lacement for the standard catch and throw constructs of earlier Lisp
systems. These continuation objects, since they encapsulate the interesting
state of the system, were the first candidates for tasks.

I,sing them it is easy to construct a multiprocessing system, sharing a
single processor among a number of "active" continuations. For example,
the concept of an engine introduced by Haynes and Friedman[30] is one way
of capturing this notion. At this time a continuation was purely a control
object. It was noticed that a continuation is completely interchangeable
with a procedure making it is easy to extend the continuation seen by a

* programmer to include other pieces of state. As described in Section D.5,
the MIT Scheme system includes the dynamic state information as part of
the continuation objects manipulated by programs. Again, these extended
continuation objects are good candidates for the notion of a task.

III multiprocessing systems there is, however, a notion that is not explic-
itly visible. Not all continuations are treated in the same way. Some of them
are candidates for execution by the system and others are merely objects

,.: created and manipulated by programs. The notion of a task refers to these
former kinds of continuations. A continuation embodies work passively,
the same way a procedure does (in fact, some Scheme systems implement
continuations as procedures). A task, on the other hand, embodies work
which for one reason or another should actually be undertaken. A task is
active if a processor is actually working on it. It is suspended if it could use
a processor if one were available but no processor is actually working on it.
The system maintains a data structure that contains all of the suspended

* tasks so that when the processor chooses to cease executing the current
(active) task it can choose a new task to execute. Vith the addition of

PP llaceholder objects and an event driven system, there is a third status for
t;asks. The" can be inactive if some event must occur before it can I)e active
;19 _aiil typically the event will be the arrival of a value for a particular

S1, l;1,'(holder.
Thim next stage in the evolution of a MultiSchene task was motivated

. V I lw (,,lire to inake t he system deiand driven. With this goal comes the

,,
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* Imt (only two typically lead to ret aining tasks. The first is the global eni-
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3.4. INTRODUCING THE TASK 79

reason for existence. Similarly, storing a task in a data structure or vari-
able that can be located by a chain of ordinary accessors from the global
environment gives the task a reason to exist.

The second object of interest is the task executing at the time of the
garbage collection. Since the garbage collection primitive operation is in-
yoked as any other primitive function it runs as part of the task that calls
it. But the fact that a task was active at the time of a garbage collection is
hardly a good reason to maintain the task. As a result, the interrupt han-
dler that initiates a garbage collection (see Section 3.1.1) guarantees that
all processors switch to a task that exists only for the purpose of garbage
collection.

The addition of placeholders to Scheme puts a new complexion on this

- problem. If we use tasks primarily as part of the future macro or a similar
4, construction, then we always create a placeholder for the value of a task
• at the same time the task is created. In a very real sense, the purpose
* -,of the task is to calculate a value for that placeholder. This is reinforced

by the fact that in a parallel- or multi-processing system the placeholder
propagates through the system even while the value it represents is being
calculated. Thus we need to represent the fact that a task's purpose is the
calculation of the value for a specific placeholder. This is easily done by
making the placeholder point to the task calculating its value. In this way
if the garbage collector maintains any references to the placeholdcr it will
also retain the task itself.

",. The final step in the evolution of the task comes from the decision to
firmly link the notion of task to placeholders. Associating every task in
the system with a placeholder and making that placeholder the "goal" for
the task provides a simple linkage between tasks and placeholders that

"*. makes it considerably easier to grasp the notion of task. Tasks exist for the
F. vprpose of computing some value, and the placeholder associated with the

task allows this value to propagate through the system even while the task
.. is doing the calculation

This simplification is nice, but it is important to keep in mind that
at task may do other things in the process of calculating the value of its
;,.,,iated placeholder. There is an important analogy between tasks with

1 r se and procedures. We may think of a procedure as existing for the
t- of c',miuting some value. Yet some very useful procedures loop
: ., Irld ir,'uce no value. Similarly, a task may include an infinite loop

- . Ile4I
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and lietce its associlt,(d phcehohler imay never recemve a value. Similarly.
a procedur iny delilerately side-effect a variable or data structurt, or
invoke a ('otinuation thereby producing a result in a place othtier thlati
the one indicated by its ostensil)le purpose. Likewise, a task nay execute
code that contains an explicit call to determine! and thereby c('otri iutt,
a value to a placeholder other than the one it is apparently intende(d to
compute. The association between the task and the pla('eholder should bw
thought of as providing a form of ordinary behavior chosen to support the
expected common patt. n of usage rather than an inherent and muiishakeable
condition.

To summarize this model, here is a recap of the three main MultiScheme
objects relevant to (potentially) simultaneous computations.

Placeholders
*2• A placeholder represents a value that is not yet computed. Place-

holders associated with a task (or a set of tasks) provide the primary
.computational motive force" for those tasks. There are typically

no references to tasks except through the placeholders for the values
they are calculating. Touching a placeholder may cause a task to be
generated, providing a lazy evaluation mechanism.

Continuations
A continuation represents a control state, a set of fluid variable bind-
ings, and a corresponding point in the system-state-space9 (see Ap-
pendix D). These three parts can be restored independently, or they
can be restored jointly by applying the continuation to an argument.
This corresponds to transfer of control (goto) in other languages.
There is a special continuation, used when a task is generated, that
corresponds to task termination. It stores the value supplied to the
continuation as the value of the placeholder associated with the task
that is terminating.

Tasks
A task represents a line of computation that is expected to ultimately
lead to the computation of a value for a particular placeholder. When

('ot inoat ions also contain other information relevant to the control state of the sys-
t, m. sn ~ias the i ntrrupt mask and compiler register set. The fact that this is not encoded
in the crnt rol state itself i., am immipleliemtatioll detail.

S.V
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3.5. DEMAND-DRIVEN COMPUTATION 81

a task is created the placeholder that is its goal must be specified, and
that placeholder forms the primary source of "computational motive
force" that will keep the task running. Typically, if the placeholder
is no longer needed the task will be removed from the system (along
with the placeholder), although it is possible to retain a task explicitly
if necessary. Tasks are created with the special "task termination"
continuation which will cause the value supplied to the continuation
to be placed in the task's placeholder and then terminate the task.

3.5 Demand-Driven Computation

One of the important design factors in MultiScheme is that computation
be demand driven - not in the sense of using "call by need" parameters
or a "lazy evaluator," but rather in the sense that a computation continues
to run only as long as it is serving a useful purpose. The notion of a task,
introduced in Section 3.4, captures the essence of this drive by providing K

an explicit goal for each computation in the system. One way of stating
this demand-driven computation mode is by saying

A computation continues only as long as the value it is com-
puting is still needed.

By reversing the statement, it can provide the answer to a problem
raised when converting a standard sequential Scheme program into a par-
allel version.

As long as the value of a computation is still needed that com-
putation must continue.

The parallel between memory allocation and task allocation is very
strong. .Just as Lisp allows memory to be allocated and invisibly handles
the release of that memory when it is no longer needed by the computation
at hand, MultiScheme allows tasks to be created and wvill remove them
when they are no longer needed. Thus the need to abort a task is mini-
inized. just as the need to deallocate memory is minimized. Furthermore
the technlique us"ed inl both cases to force the deallocation is the samle. To
rl('ase iiieiliorv the 1,rogramlller miiust find all objects that reference the

'N
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't. menory being released and guarantee that they no longer reference the ob-
[: :ject ill question (typically this means storing 0 ( or some other non-p-)inter
' "'as the value of a variable that is normnally the only entry point to a data
~~st ruct ure). Similarly, in MultiScheme the programmer must guarantee t hat

the goals of all the unneeded computations have been provided a valuie by
,. the explicit use of determine ! 10.

v-.

. This itein of philosophy becomes mnost obvious when considering the use
,,¢"of call!-w ith- current -cont inuat ion (creation of a continuation object)
~and throw (the Use Of Such anl object). In a single p~rocessor system there are

a nmbOer of ways to understand this interaction, and a number of styles for
their use. In Scheme, continuations are merely a convenient way of writing
certain procedures. The decision to explicitly write out a procedure or to
make use of a continuation is purely one of user convenience and should
imply no deep consequences. Based on this line of reasoning, continuations

,, in MuhtiScheme are treated exactly as any other procedure object. They
, ., have the effect of changing the implicit continuation being used by the task
~that calls them, but the task and its goal remain intact.

r

~(define (f y)

( c al-twi th-ycurrent- contminuat ion

(lambda (send-answer)
(define (transform in)

liet ((fn-of-y in y)))

(if (-- 0 fn-of-y)

(send-answer 'no-good)
(hairy-computation n-of-y) ) ))

(+ (transform sin) (transform cos)))))

Figure 3.4: Multi-level Exit using Call-With-Current-Continuation

This decision is not without ramifications and is not taken lightly. By
adoptinu a demaad-driven model and the notion of goal-oriented tasks it

For more drastic cases it is possible to use within-task to force a task to halt, but
this can leave the system in an inconsistent state if not done with care.

%.tha cl them, the task and it ga remain intc.
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is no longer true that (touch (future <exp>)) is equivalent to <exp>
in functional programs. Consider the program of Figure 3.4. This is a
fairly common use of call-with-current-continuation where it is used

to provide a way to return a result from a nested procedure call. This
use is similar to the way catch is used in CommonLisp. If transform
detects a problem condition it immediately returns an answer of NO-GOOD
to the program that called F and neither the hairy computation nor the

addition operation is performed. Thus, for example, (future (f 0)) will
4 ultimately return an answer of NO-GOOD.

If we wish to introdtuce parallelism into this program, one obvious way
to do it would be to perform the calls to transform simultaneously. Thus
we would change the final line of the program to

(+ (future (transform sin))
(future (transform cos)))

The program now results in an error since (future (transform sin))
creates a new task whose goal is the computation of the transform. This
task then uses the send-answer continuation to deliver a result of NO-GOOD
as the result of the call to (f 0). Since this is the end of a task (the one
created by (future (f 0)), the answer is stored in the goal of the current
task -- and this is then added to the other transform, resulting in the error.

(define (alternate-answer body)
(define final-result

(delay (body (lambda (early-answer)

(determine! final-result early-answer)

(kill-task)))))
(touch final-result))

Figure 3.5: A Replacement for Call-With-Current-Continuation

E What is the basis of this problem? In terms of the demand-driven

computing model the difficulty here is that one particular task has the goal
of computing a value for (f 0). In order to achieve this goal. additional

e
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tasks are created and the goals for these tasks would ordinarily be combined
I;..- bthe original task to form the value of its goal. The use of a continuation
.. here is intended to allow any task to provide a value for this goal.

This can be easily expressed by replacing the call to call-with-cur-
rent -cont inuat ion with a slightly different procedure, alternate-answer
shown in Figure 3.5. This works by creating a new task to execute the body
of code that, in the normal case, is executed by the originating task. This
new task computes as usual, but the procedure that replaces the continu-
ation in the original version explicitly determines the placeholder for the
generated task. Thus, regardless of which task tries to use this continua-
tion. it is the original placeholder that receives the value. In this example,
the task that generates the answer then "commits suicide," leaving its own
placeholder without a value 1 on the assumption that there can be no need
for the task's value if the alternate answer is being returned. If the task

0should continue computing then the call to kill-task can be omitted.
This solution also demonstrates one important consequence of the de-

i" and-driven approach. Using continuations for multi-level exit on a parallel
processor leaves open the question of how to kill other tasks that were
spawned after the call-with-current-continuation was executed by the

-/ original task. This "spawning tree" oriented approach to programming can
be completely avoided in MultiScheme. The problem is non-existent: those
tasks that continue to compute after a value is available for the placeholder

- created by the call-with-current-cont inuation are precisely those that
are attempting to compute values needed by the system even when that
value is known. To have killed these tasks merely because of the spawning
relation would lead to deadlock later - a problem avoided by allowing the
garbage collector's traversal of active memory to detect and remove tasks
that are unreferenceable.

3.6 Summary

Extending MIT Scheme for use on a parallel processing system required
four major areas to be explored: processor coordination, data storage for

''The procedure kill-task isn't specified here, so it can arrange to place an error value
in the placeholder if desired. Otherwise, the procedure next discussed in Section 4.2.2
would be a reasonable choice.

-r1
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tasks, dInainic state and exception handling, and the distinction between
tasks and continuations.

Section 3.1 introduced the mechanisms used to coordinate the processors
in the systemi: synchronizers which act as a "starting gate" to guarantee
that all processors are at a given part of the computation, and global-
interrupt to get the attention of all processors and demand their cooper-
ation in initiating some event. These were used to support three important
system operations: initiating garbage collection, pausing the system for
observation, and reacting to user interrupt requests.

The separation of the name space in a way which enables tasks to access
information that they may not necessarily share with others is discussed
in Section 3.3. The problem is divided into two different jobs. The fluid
variables of MIT Scheme are extended into the parallel processing domain
to providc one form of support. In addition, three different techniques (see
page 75) for providing totally private task information were discussed.

Finally, the distinction between a continuation and a task in Multi-
Scheme was introduced in Section 3.4. The motivation for this distinction
and the important notion of demand-driven computation was introduced.
The use of task goals to support the garbage collection of useless tasks
created for speculative computation was described in Section 3.5.
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Chapter 4

Implementing the Scheduler

The MultiScheme scheduler provides a convenient interface, in the form of
0- a package of procedures, between MultiScheme programs and the under-

lying virtual machine. Some of the procedures are invoked by programs
* .:written in MultiScheme while others are invoked as part of the trap or

interrupt handling of the virtual machine. The scheduler is itself written
in MultiScheme and is relatively small (20 pages of code including utility
routines). This has proven to be an important factor in the development

- .. of MultiScheme, providing a localized and flexible base for a number of
experiments with the nature of event-driven computing.

This chapter serves four purposes. First, it constitutes a "proof by
example" that the MultiScheme language as described in Chapters 2 and 3
is a powerful systems programming language for a parallel processor. It
also serves as the first extended example of programming in this language.
Third, it provides an English description of a number of the constructs used
in the implementation and thus acts as a form of documentation for people
dealing with the actual program. Finally, the implementation of disjoin
in Section 4.3.2 and Figure 4.9 fulfills the promise made in Section 2.5 of
demonstrating an event-driven mechanism for implementing the arab and
fair-merge operations.

This chapter discusses each of the major operations supported by the
scheduler: task creation (Section 4.3), task suspension and task switch
(Section 4.4), storing a value into a placeholder (Section 4.5), and transition
from parallel processing to single task execution (Section 4.6). The rough
outline of the scheduler (the services it supports and the inter-relationship

87
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betveein these services) has proven quite robust over time. Even as the
,stcnt grew to support more kinds of event driven comi)utation, the core
of the sciediller as described here has remained almost constant. The
scheduler was originally intended to be, and remains, a highly flexible body
Of code. The scheduler described here is the "standard" scheduler as it
currentlV exists. As iew applications are developed, driving the system
toward new niods of computation. the data structures of the scheduler are
iodifiedl to accommodate the new requirements. Users are encouraged to
examine and understand the scheduler, and feel free to modify it for their
own needs. Naturally, such modifications must be undertaken with a good
deal of care. But these modifications have proven useful in the past and
have in some cases been formalized and added to the standard MultiScheme

, scheduler.
By its very nature, the discussion in this chapter is more closely focused

* on implementation details than are the earlier chapters. The presentation
is roughly bottom up. describing the data structures in Section 4.1, general

A utility routines in Section 4.2, and then the user-visible routines. In order to
avoid an overwhelming amount of detail the examples included in this chap-
ter are simplified versions of the actual procedures in the scheduler. These
simplified versions present the important core of each procedure, and should
be considered more closely related to pseudo-code than to fully worked out
implementations. In many cases the versions presented here will not work
correctly in the actual implementation of MultiScheme. This comes from a
variety of reasons, including race conditions and name changes introduced
to be more consistent with the terminology of this document. Readers in-
terested in the complete versions of these procedures should contact the
author for a current version of the scheduler code.

4.1 Scheduler Data Structures

Much of the work of the scheduler procedures revolves around the correct
maintenance of the data structures that implement placeholders (see Sec-
tion 2.1), tasks (see Section 3 .4 ) 1, and a queue of tasks that are ready to

'At this time, the task and placeholder data structures are actually implemented as a
single Scheme object. This works, but is both a conceptually poor idea and implecenta-
tionally clumsy. The work of splitting the two apart has been planned and scheduled, but
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4.1. SCHEDULER DATA STRUCTURES 89

run.
For this description, all access to data structures is assumed to be

through mutators and selectors for each part of the structure. Thus, corre-
sponding to the goal slot of a task data structure there are two procedures:
task.goal returns the goal of a given task and set-task.goal! stores a
new goal into the task data structure.

4.1.1 Placeholders

Placeholders are the primary vehicle connecting the scheduler (and hence
programs written in MultiScheme) with the underlying support for parallel
processing. Placeholders are created by a scheduler procedure, normally as
part of the task creation process (see Section 4.3). Supplying a value for a
placeholder (through determine! and mutably-determine!) is also sup-
ported by srheduler procedures (see Section 4.5). Detection of placeholders
and automatically forcing them is built into the primitive operations and
the underlying machine itself, as described in Section 4.4.

Name Notes
Determined?
Lock
Value or Waiting Queue See text
Motivated Task

See text for complete description

Figure 4.1: Placeholder Data Structure

The placcholder data structure is shown in Figure 4.1. Each of the fields
is described below.

Determined?
A tri-state flag that indicates whether the placeholder: (a) has no
value yet; (b) has an immutable value; or (c) has a mutable value.

is not yet underway. This chapter describes the system as it is expected to be built after
the next release of the standard scheduler.

-0
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This flag is used by the underlying machine to test whether a touch
of this placeholder should trap into the scheduler (as discussed in
Section 4.4) or extract the current value and continue.

Lock
A standard mutual exclusion lock used to indicate that the place-
holder is currently being modified by MultiScheme code. The under-
lying machine uses this lock to implement the primitive mutual ex-
clusion procedures lock-placeholder! and unlock-placeholder!.
In addition, when a placeholder is locked the underlying machine
will not convert a placeholder into its value during garbage collec-
tion or variable look-up. Under ordinary circumstances this conver-
sion (called splicing) is an important optimization. The lock permits
MultiScheme code that explicitly manipulates placeholders (typically

* within the scheduler) to suppress this splicing. This assures that a
placeholder will not suddenly transform into another object while the

. data structure itself is being examined.

Value
Stores the value of the placeholder if it is either mutably or immutably
determined.

Waiting queue
A queue of tasks currently waiting for this placeholder's value to be
determined'. This queue is built using weak cons cells, as described
earlier in Section 2.2.2, since membership in this queue does not con-
stitute a reason for the task to continue computing. The underlying
machine does not reference this information (it is handled only by
MultiScheme code, typically within the scheduler). Since this queue
must be empty when the placeholder already has a value, the imple-
mentation overlaps the storage space for these last two items. There
is no inherent reason why this structure is a queue (rather than, say,
a stack) since all of the items are released for execution at the same
time.

Motivated task
The task that has the computation of a value for this placeholder as
its goal. As with any item other than a weak cons cell, the garbage

0
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collector does trace through this link. Thus it serves to retain the
task that is computing the value of this placeholder as long as the
placeholder itself is needed.'

4.1.2 Tasks

The task data structure contains a variety of information, but is not directly
referenced by the underlying machine. Tasks represent work that has been
requested to be performed, and they are the objects that the scheduler has
the underlying machine store on its work distribution queue (see below).

In order to support garbage collection of no longer useful tasks, the root
used by the garbage collection algorithm contains a particular set of tasks
whose continued existence is required by the user interface to MultiScheme
(those that can be reached directly using the ordinary keyboard interrupt

4characters). Other tasks are retained only if they can be reached either
from this initial set of tasks (because one of these initial tasks is waiting

", for (see below) the value of a placeholder and that placeholdr's motivated
task references another task) or from the global environment.

Name Notes
Goal Placeholder associated with this task
Lock
Code Work to be performed when task is next run
Status See text for details
Original Code For debugging purposes
Task-Private Data See Section 3.3.5
Waiting For Placeholder(s) for which this task is waiting
Wake-up Value See text for details

See text for complete description

Figure 4.2: Task Data Structure

The task data structure is shown in Figure 4.2.
2Thie motivated task could be extended to a list of tasks, but the code shown in this

chapter does not support this option.

%W]%i



92 CHAPTER 4. IMPLEMENTING THE SCHEDULER

Goal
The placeholder that is the goal for this task. When a task is ac-
tively computing, this placeholder is known as the current placeholder
for the processor doing the computation. When a task executes the
termination continuation (see Section 4.3.3) it stores the computed
value into this placeholder.

Lock
A standard lock to serialize access to the task description.

Code
The code to run in order to re-activate this task. If the object stored
here is not applicable (i.e. neither a procedure nor a continuation)
then either the task is already active or for some reason it cannot be

* reactivated (it may have finished computing and not yet been garbage
collected, for example).

Status
The current state of this task. This is one of:

created Task is newly created
delayed See delay-policy, Section 4.3.2
determined Task is finished
disjoin Waiting for the first of several placeholders
paused Stopped by pause-everything
runnable Available for execution

. running Actually in possession of a processor
waiting Waiting for a specific placeholder
within-task Running, but see Section 3.1.4

Original code
For debugging purposes this contains the expression that the t;:
created to evaluate.

Task-private data
See Section 3.3.5.

%
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94 CHAPTER 4. IMPLEMENTING THE SCHEDULER

are the responsibility of the MultiScheme code, not the primitive itself.
Thus, it is possible for one task to drain the work queue while other tasks
are still active and creating new entries on the queue. The results will be
consistent (a task that is available for work will be removed either by a call
to drain-work-queue or a call to get-work but not both), although it may
not represent an instantaneous snapshot of the internal data structures.

4.2 Overall Concepts and Utility Routines

The scheduler is organized around the data structures described in Sec-
tion 4.1 and two additional notions. The first, described in Section 4.2.1,
"is atoniicity and critical sections of code. These are supported through a
system of priority interrupts (within a single processor) and a set of data

*I object locks (between processors). The second is the task state and task
switch operations, described in Section 4.2.2, supported through the use of
Scheme's continuations.

-V

4.2.1 Atomicity

As with any operating system scheduler, most of the routines in the sched-
uler must appear to occur without interruption. The fact that these rou-
tines are written in Scheme, however, does not permit them to run com-
pletely uninterrupted: the garbage collector cannot be suppressed for even
short intervals without serious consequences. As a result, most of the oper-
ations are written to raise their own interrupt level to prohibit any kind of
interrupt except garbage collection, and the garbage collection code guar-
antees that any task that is running at a raised interrupt level will continue
to run after the garbage collection. This notion is embedded in the macrosaatomic and define-atomic which are used liberally throughout the sched-
uler implementation. To make the code more easily understood, however,
these have been omitted from the simplified versions described here.F, A second standard problem, exclusive access to certain data structures,
also exists in the scheduler. As Halstead[26] shows, users can ordinar-
ily use placeholders and certain primitive atomic operations to implement
semaphores. These solutions can be extended to include other standard
multi- and parallel-processing interlocks. Unfortunately, the scheduler is inr

I
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Waiting for
If the task has status waiting or disjoin this specifies the placeholder
(or list of placeholders) for which it is waiting. This is an ordinary
(strong) list, since the value of these placeholders is necessary for this
task to continue its own computation. Hence this task represents
a reason for the tasks that are computing a value for each of these
placeholders to continue their computation.

Wake-up value
When the task is awakened, the code is passed this value as its ar-
gument. It is primarily used in the implementation of disj oin (see
sections 4.3.2 and 4.4).

In addition, it has long been expected that some information might be
-stored here for use by user supplied scheduling policies. This information

o could indicate task priority or estimated time required for the value to be
computed. This has not been implemented since no applications have yet
required sophisticated scheduling policies.

4.1.3 Runnable Task Queue

The subject of task distribution is one on which a great deal of work has
been done, both theoretical and practical. The MultiScheme scheduler is
built using three primitive operations (put-work, get-work, and drain-

" . work-queue) that encapsulate the choice of task distribution mechanism
implemented by the underlying machine. The model employed by the
scheduler is that it can announce that a task needs processing resources

'.. using put-work, and when it needs more work to do it will retrieve a task
using get-work. Because the shared heap contains all of the task, place-

holder, stack, and other structures needed for a computation, no guarantee
* is made that a task will be run on the same processor which announced

that it needed resources.
In addition, there are times when the system must retract work that has

been declared to be available (such as during garbage collection initiation).
The primitive operation drain-work-queue returns a standard data struc-

0 ture (composed of weak cons cells) containing all items that were available
for work at the time the primitive was called. It leaves the work queue of
the underlying machine empty. As usual, synchronization and serialization

5'NO
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large part responsible for implementing the semantics for placeholders that
these solutions exploit. The scheduler, therefore, is built using two major
utility routines that are in turn based on spin-locks.

The primitive operation lock-placeholder! is used to implement the
more complicated of the two utility routines. It is called with one argument
that is normally a placeholder. Lock-placeholder! either immediately
returns #f (if its argument is not a placeholder) or it waits until it is able
to acquire the lock which is part of the placeholder data structure and
returns a value of #t 3 .

Using this primitive, the following scheduler utility routine can be writ-
ten:

4-

(define (With-Placeholder-Locked Placeholder Procedure)
(atomic
(if (lock-placeholder! Placeholder)

(let ((result (Procedure #t)))
(unlock-placeholder! Placeholder)
result)

(Procedure #f))))

As can be seen, With-Placeholder-Locked runs a procedure with a
given object (expected to be a placeholder) locked. The procedure receives
an argument that indicates whether the object is in fact a placeholder.
Notice that when the object is not a placeholder (and hence the procedure
is given the argument #f) the object is not locked while the procedure is
running, since MultiScheme does not provide any standard way of locking
arbitrary objects.

A similar utility routine, With-Task-Locked is also supplied. It locks a
task (its first argument) and then calls a procedure (its second argument)
indicating whether the task is actually runnable. When the procedure
returns the task is unlocked. Unlike With-Placeholder-Locked, the task
is always locked when the procedure runs since the race condition that
exists for placeholders is not a problem with tasks.

'A primitive is included for this purpose only because of the complexity of writing the
correct MultiScheme code to deal with a potential race between one processor setting the

- value of a placeholder and another processor attempting to lock it.

- %%%
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96 CHAPTER 4. IMPLEMENTING THE SCHEDULER

4.2.2 Task Switch

When a processor changes tasks it is really performing into three separate
operations. The first operation captures the current state of the task in a
way that allows it to be restarted later. The second chooses a new task
for execution, and the third activates a chosen task. Task termination (as
described in Section 4.3.3) is nothing more than performing the last two

-: steps but not the first. Task creation (see Section 4.3.2) may include the
first and third steps with a standard choice for the second.

The first operation, capturing the current state of a task, is done using
a variant on %[IT Scheme's call -with- current -cont inuat ion procedure.

Once a task is suspended it will be resumed only once, and then that state
will later be suspended and so forth. Thus, unlike an ordinary continuation
object, the object that denotes a suspended task state need niot be able

* to be invoked multiple times. In implementation terms, this means that
a certain amount of copying of continuation stack entries can be avoided
with task suspensions. W~hile this detail is an important efficiency concern,
it has not been called out in the code shown here.

While acquiring a representation of the current state of the computation
is simple, actually storing it in the task data structure is not as straight-
forward. In Section 3.1.4 an important user operation, within-task, was
introduced (the relevant code is shown in Figure 3.2 on page 64). Calling
within-task to modify the operation of a task which is already running

P.., marks the task data structure to indicate the work that must be performed,
and it is the responsibility of the task when it next saves its state away to
arrange to perform that work when the task is next activated.

The routine store-my-state, shown in Figure 4.3 is provided to sup-
Iport this operation. It allows scheduler routines to specify the state to be
used when the task normally regains control (the argument state), and ad-

* ditional work to be performed on the task data sticucture while it is locked
(while-locked). .As you can see, it locks the current task data structure
and then stores either the specified state or a procedure that first executes
the work specified by a call to within-task as the work to be performed
when the task is next activated.

0.- One other cornmon packaging of this first operation is provided by
release-task, shown in Figure 4.4. In this case, the intention is to re-
lease the current task for (possibly parallel) execution and then execute

-I.V
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4.2. OVERALL CONCEPTS AND UTILITY ROUTINES 97

5N

(define (stora-my-state state while-locked)
(let ((my-task (current-task)))
(with-task-locked my-task

(lambda (am-I-runnable?) ; (1)
(if am-I-runnable?

(begin
(set-task.code! my-task

(if (eq? (task.status my-task) 'WITHIN-TASK)
(let ((within-task-code (task.code my-task)))

(lambda (wake-up) ; (2)
(within-task-code wake-up)

(state wake-up)))
state)) , (3)

(while-locked my-task))))))) • (4)

Notes:

1. Find and lock the current task data structure.

2. If the task is expected to continue running but has been marked for special handling
by within-task (see Figure 3.2 on page 64), then when the task next awakens it
must first execute the code specified in the call to within-task and then continue
on to its ordinary computation.

3. Under ordinary circumstances, the state to be stored is just the state specified by
5the caller.

4. If the task will continue to run, call the user-specified procedure while the task data
* structure is still locked.

Figure 4.3: Saving state for future execution: Store-My-State

V
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98 CHAPTER 4. IMPLEMENTING THE SCHEDULER

(define (release-task thunk)
(call-with-current-continuation

(lambda (my-state)

(store-my-state my-state
(lambda (my-task)
(set-current-task! 'STATE-SAVED)

(set-task. status! my-task 'RUNNABLE)
(put-work my-task)))

(thunk))))

Figure 4.4: Relinquishing the processor: Release-Task

some other code while the processor is temporarily not performing an ex-
isting task. The only non-obvious part of Release-task is why it must
be provided with the code to be executed. Notice, however, that the code
is executed as part of the procedure called by the call-with-current-
continuation operation. Thus it is executed by the calling task, but not
when that task is resumed by calling the my-state continuation.

The second operation, choosing a task to perform, is most often deferred
to the underlying machine, using the primitive get-work to select the task:

(define (next)
(Set-Current-Task! 'WAITING-FOR-WORK)

(run (get-work)))

The third operation, activating a chosen task, is the most ccrnplicated.
This job is handled by the procedure run, shown in Figure 4.5. It consists
mostly of routine housekeeping activities. The task being activated is first
locked and tested to see if it is actually runnable. If so, the status is changed
to running and the code and wake-up value are extracted from the task data
structure. The task is then unlocked, and either the code is activated with
the appropriate wake-up value as its argument or (if the task turned out
not to be runlable) an alternative task is chosen using next.

,ZS P: % % Y %u*A% % %.
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(define (run task)

(define what-to-actually-do
(With-Task-Locked task

(lambda (Still-Runnable?)
(if Still-Runnable? ; (1)

(let ((code-for-new-task (task.code task))
(wake-up-value (task.wake-up-value task)))

(set-task.status! task 'RUNNING)
(set-task.wake-up-value! task '0)
(Set-Current-Task! task)
(lambda 0 ; (2)

(code-for-new-task wakeup-value)))
next)))) ; (3)

(what-to-actually-do)) ; (4)

Notes:

1. Test the task to see if it is actually runnable.

2. If the task is runnable, this procedure will restart it.

3. If the task is not runnable, this procedure will select an alternate task and start it
instead.

4. Actually call the procedure chosen in steps 2 and 3 above.

Figure 4.5: Activating a chosen task: the run procedure

'p
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100 CHAPTER 4. IMPLEMENTING THE SCHEDULER

4.2.3 Other Utility Routines

There are a handful of other utility routines that are referenced later in
this chapter.

. A task data structure and its related placeholder can be created using
(Make-Task), which makes the pair simultaneously and supplies a
standard set of default values for all of the information rea"'red.

(define (immutable? placeholder)
(eq? (placeholder.known? placeholder) #t))

.4. (define (undetermined? placeholder)
(eq? (placeholder.known? placeholder) If))

(define (determined? placeholder)
(not (undetermined? placeholder)))

(define (mutable? placeholder)
(and (determined? placeholder)

(not (immutable? placeholder))))

Figure 4.6: Tri-state Flag Representation

e The three possible states of the determined? slot of a placeholder are:
#t indicating that the placeholder has an immutable value; #f indi-

y* cating that it has no value at all; and anything else indicates that the

. value is mutable. This is captured in the three procedures shown in
Figure 4.6. Notice that the placeholder must be locked in order to
safely perform these operations.

0.
A task that has been waiting is activated using the procedure acti-
vate shown in Figure 4.7. This procedure tests whether the task is
still runnable and is in fact waiting for the condition that has occurred

0V%°.*
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(define (activate task test wake-up-value)

(With-Task-Locked task (lambda (task-runnable?)
(if (and task-runnable? (test (task.status task)))

(begin
*s (set-task.waiting-for! task ')

(set-task.status! task 'RUNNABLE)

(set-task.wake-up-value! task wake-up-value)

(put-work task))))))

Figure 4.7: Activating a waiting task

4(as indicated by the test). It then updates the task data structure
and releases it for distribution using the underlying machine opera-

'.4 tion put-work.

* The procedure Saving-State, shown in Figure 4.8 was mentioned
earlier in Section 3.1.3. It allows a task to save its state away and
then execute a selected piece of code (thunk). The code is run in a
continuation that is part of the root of garbage collection and not as
part of the task that called saving-state. This permits the garbage
collector to reclaim the originating task if necessary. When the code
finishes execution, another task is selected for execution rather than
returning to the original task. A good way of thinking about saving-
state is that it performs a task switch (into a non-existent task) and
executes the thunk in the new task.

-- * Two "ugly" procedures, Current-Task and Set-Current-Task!, are

I provided to keep track of the task that is currently executing. These
maintain data that is private to the processor and are used to im-

4r plement the higher level concepts of task-private data as described in
Section 3.3.5. The author is too embarrassed to reveal the implemen-
tation.I

* Weak-list->list converts a list composed of weak cons cells into
one composed of ordinary cons cells.

4'%
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(define (saving-state thunk)

(release-task (lambda ) ; (1)
(within-control-point ; (2)
the-error-continuation
(lambda ) (thunk) (next))))))

Notes:

1. Release the current task for potential parallel execution.

2. Begin execution within the-error-continuat ion which was created at system boot
time, and does not reference any other continuations.

Figure 4.8: Code for Saving-State

* A package of queue manipulation routines, including enqueue, de-
queue, and queue-contents. Using these the operation add-to-
waiting-queue! is implemented:

(define (add-to-waiting-queue! placeholder task)

(enqueue (placeholder.waiting-queue placeholder) task))

4.3 Task Creation and Termination

Creating a task in MultiScheme really has four steps: create a continua-

tion, create a task (i.e. the task data structure), create a placeholder, and
schedule the running and newly created tasks for (possibly parallel) execu-
tion. Each of these can be performed independently and then combined to
provide specialized handling of unusual cases. Tasks are normally created,
however, by using the future macro.

This macro has one required argument, the expression to be executed in

parallel, and an uptonal policy used to schedule the parent and child tasks.

% 1'I

d



a.

-W-

'ao
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.Thus, the macro expands

.(+ (future expression policy) (future expression2))
into
(+ (spawn-task (lambda ) expression) policy)

(spawn-task (lambda ) expression2) parent-gets-priority)

The remainder of this section consists of a description of the Spawn-
Task procedure (Section 4.3.1), alternatives to this standard method of
task creation (Section 4.3.2), and finally the handling of task termination
(Section 4.3.3).

-" 4.3.1 Ordinary Task Creation

* As described above, most of the work of creating a task is ordinarily carried
out by Spawn-Task. This is merely a standard way of using the four steps
mentioned above.

Create a continuation.
One of the parts of the task data structure, described above, is the
code it is to execute. Spawn-Task creates a continuation for this pur-
pose (see the discussion below). The continuation could be expressed

*, as the procedure:

(lambda (ignored-argument)
(termination-continuation (thunk)))

In this procedure, thunk is the first argument to Spawn-Task, the pro-
cedure created from the expression by expanding the future macro.
The termination-continuation is a specific (primitive) continua-
tion that indicates the end of a task. The handling of this continua-

.' tion is described in Section 4.3.3.

Create a task data structure.
The space for the data structure that was described in Section 4.1.2

* must be allocated and initialized. The code slot is filled with the
continuation created in the previous step. The goal slot is filled with
the placeholder created in the following step.

,,
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104 CHAPTER 4. IMPLEMENTING THE SCHEDULER

Create a placeholder.
This acts as the goal of the task being created. It will receive the
value computed by that task when the termination continuation is
reached. The task created in the previous step is made the motivated
task of the placeholder.

Schedule the tasks.
Spawn-Task calls the user-supplied policy routine to schedule the cur-
rent (spawning) task and the newly created task. The default routine,
Parent-Gets-Priority (shown in Section 4.3.2), releases the new
task for potentially parallel execution. The value returned by Spawn-
Task to the task that called it is the newly created placeholder.

The decision to use a continuation (rather than a procedure) for the initial
* code of a task is not completely arbitrary. If a procedure is used the task

switch code in run (see Figure 4.5) that activates the newly created task
would be nothing more than a procedure call. But procedure call includes
passing an implicit continuation for use when a value is returned, and this
continuation will in some way reference the task that made the procedure
call. This prevents the garbage collector from reclaiming that task as long
as the newly created task is in existence.

In implementation terms, which may be easier to understand, proce-
dure call is handled by using a single stack to hold continuations (return
addresses). If the initial code for a task were simply a procedure then the
stack used for the new task when it first runs would be the same as the stack
of the task that was relinquishing the processor. This works perfectly well
but leads to a form of cactus stack implementation that has the garbage
collection problem mentioned above.

By explicitly building a continuation, however, task switch becomes the
same as invoking a continuation that does not implicitly reference the old
task. The continuation created when the task is created is an initial stack
framze and task switch (now throw) causes the stack to be switched as well.

4.3.2 Alternative Ways to Create a Task
The' task creation code is modularized into the four steps described above.
Actually utilizing these individual components is unusual since the flexibil-
itv available using the second (policy) argument to Spawn-Task is sufficient

'. - ' v . - .. . , -' --.. .-
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4.3. TASK CREATION AND TERMINATION 105

for most problems. To make this power easily available, two alternative
policies are included in the scheduler package along with the default policy.

The standard policy, Parent-Gets-Priority is very efficient:

(define (Parent-Gets-Priority new-task)
(put-work new-task)
'CHILD-QUEUED-FOR-EXECUTION)

This policy gives processing priority to the parent task. That is, the task
that calls Spawn-Task continues to run after the call, while the task which is
created is scheduled for (possibly parallel) execution. Since the task and its
associated placeholder have been made and initialized by Spawn-Task, all
that must be done is to make the new task available for computation. This
is done using the underlying task distribution mechanism, implemented by
put-work. (In this, as in the other policies, the value returned by the policy
is ignored by Spawn-Task but is useful in debugging the scheduler itself.)

Halstead argues, in his overview of Multilisp[26], that this standard
policy can lead to undesired performance characteristics as a system reaches
saturation. He suggests a strategy in which the parent task is deferred while
the child task immediately begins execution. This is implemented using the
Child-Get s-Priority policy.

(define (Child-gets-priority new-task)
(release-task (lambda ) (run new-task))))

The third policy, Delay-Policy, marks the spawned task as delayed and
does not release it for parallel execution.

(define (Delay-policy new-task)
(set-task.status! new-task 'DELAYED)

'OK-I-DELAYED-IT)

* Instead, the first task that touches the goal placeholder associated with

the newly created task will release that task for execution (see Section 4.4
below).

In addition to these three policies, there is one other case that occurs
sufficiently often to be provided standardized support. This is the ability to

* •wait for the first of a number of placeholders to return a value. This ability,
implemented by the procedures disjoin and await-first of the scheduler,
is the key to the amb and fair-merge procedures discussed in section 2.5.
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(define (disjoin Placeholders) ; (1)

(let ((My-Task (Make-Task)))

(let ((My-Placeholder (task.goal My-Task)))

(set-task.status! My-Task 'DISJOIN)

(set-task.waiting-for! My-Task Placeholders)
(set-task.code! My-Task

(lambda (awakened-value) ; (2'

(determine! My-Placeholder awakened-value)

(next)))
(for-each " (3)

(lambda (Placeholder)
(add-to-waiting-queue! Placeholder My-Task))

Placeholders)

My-Placeholder))) ; (4)

Notes:

1. As explained in the text, this code does not deal with a number of important
possibilities.

2. Code to be run when this newly created task is activated (i.e. when one of the
placeholder receives a value). This is one of two major race conditions that the
complete version handles. If more than one task completes, y-Placeholder may
already have a value when this code is run.

3. Enqueue this task on the waiting-queue of each of the placeholders. This is the
second of the major race conditions. In the process of enqueuing, it may be discov-
ered that one of the placeholders already has a value which must then be returned
instantly.

4. The value returned by disjoin is the placeholder that will ultimately receive the
value of the first computed placeholder.

Figure 4.9: Simplified Code for disjoin
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The actual code for these procedures is complicated because it must deal
with the possibility that one of the placeholders has already received a
value before the operation has been completed, and because more than
one of the placeholders may eventually receive a value. Figure 4.9 shows a
much simpler version that does not deal with these problems (the footnotes
to the figure explain the most important omissions). Recall that disjoin
itself returns a placeholder rather than actually waiting for the value to be
known.

This simplified version works by creating a task and its corresponding
placeholder (goal) using Make-Task. The purpose of this new task is to
propagate the value of the appropriate placeholder (the first one that re-
ceives a value) out to its own goal. The code to be performed when this
new task is awakened is supplied as an explicit procedure4 . This is very
similar to the processing of the normal case, except that the task has a list

0 of placeholders (rather than a single placeholder) for which it is waiting
and it is enqueued on each of these placeholders.

When any of the placeholders for which this task is waiting receives
.''. a value (see Section 4.5), that placeholder is stored in this task's wake-up

value slot and the task is made available for execution. When the task is
activated (using the run procedure described in Section 4.2.2) the procedure
stored in the code slot will be passed this wake-up value. The procedure
will propagate it to the placeholder created by the call to disjoin, and
then call next (see Section 4.2.2) to release the processor and find another
task.

The use of a task to propagate the value of the appropriate disjunct
may seem unusual, but it improves the modularity of the scheduler code
itself. This work could have been made part of the determine! code, but

*'. this organization allows determine! to simply awaken tasks in a standard
manner. Determine! is never required to do any specialized processing on
behalf of the tasks it awakens.

'The choice of a procedure rather than a continuation here is somewhat arbitrary. It is
easier to write as shown. Furthermore, the procedure will relinquish the processor and be
itself garbage collected almost instantly so that the garbage collection problem mentioned
earlier is not an issue.

5%*
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4.3.3 Task Termination

As mentioned in Section 4.3.1, there is a primitive continuation that denotes
the termination of a task. As with any continuation, it receives a value that
is treated as the value for the goal of that task. To make modifications to
the system simpler, the handling of this continuation (unlike most primitive
continuations) is reflected back into the scheduler as a call to a procedure.
The standard procedure is quite simple since it runs as part of the task
that is terminating:

(define (end-of-computation-handler value)
(determine! (task.goal (current-task)) value)
(next))

This merely stores the final value into the goal and then locates and
activates the next available task. Notice that by simply calling next without
saving its own state, this task relinquishes the processor and will not be
reactivated'.

4.4 Suspending a Task

There are three ways in which a task can relinquish the processor. It can
explicitly relinquish the processor using the reschedule procedure (men-
tioned earlier in Section 3.1.4). An interrupt can occur and cause the pro-
cessor to be relinquished (for example, the initiation of a garbage collection
or a clock interrupt). Finally, and most commonly, the task can attempt
to touch a placeholder that does not yet have a value.

With the utility procedures described earlier it should be easy to see
how the first operation is performed:

(define (reschedule)
(release-task next))

Garbage collection initiation was described in Section 3.1.1. The actual
code to implement it is very similar to that of pause-everything discussed

* 5It is possible, of course, to write code that saves the state of the task prior to ending
the computation. The results of such an action can be predicted easily enough, and might
even be useful in some cases. But this is so far out of the ordinary as to be almost certainly
an error.

S%. . . . . . .
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4.4. SUSPENDING A TASK 109

in Section 3.1.3. Timer interrupts are handled by calling reschedule as
part of the interrupt handler.

The remainder of this section is devoted to the third problem, touching
a placeholder. When placeholders were introduced in Section 2.1 it was
stated that they "can be used to denote an object whose value is not yet
known," and that the scheduler is responsible for handling an attempt to
touch a placeholder which does not yet have a value. This mechanism has
two parts, one implemented in the machine underlying the MultiScheme
system, and the other as part of the scheduler.

The underlying machine is responsible for both detecting and handling
the simple cases related to placeholder objects. There are three different
ways in which a placeholder can be initially noticed:

1. The "microcode" for certain operations explicitly touches objects
*6 that they manipulate. If the object is not a placeholder, or the place-

holder has a value, the microcode will retrieve the correct value and
5- the operation proceeds unimpeded. The operations are all carefully

written, however, so that if a placeholder is encountered that does not
have a value the operation can be stopped and restarted at a later
time. The operation gracefully backs out and returns the state of
the system to what it was before the operation began. It then per-
forms a call to the scheduler's await-placeholder operation. The
result is as though the user had written a call to touch (which is im-
plemented using await-placeholder) of the appropriate placeholder
immediately prior to the call to the operation.

Ithe

2. Many primitive operations normally type-check their arguments for
validity before doing any processing. For those operations that do
not permit an operand to be a placeholder (for example, arithmetic

*operations restricted to numeric data types), the normal error han-
dling mechanism of MIT Scheme would cause the primitive to grace-
fully back out (just as in the previous case) and then invoke an error

handling procedure. In MultiScheme, the microcode for these error
handlers tests for placeholders and restarts the primitive automati-

O cally (i.e. without any form of trap into Scheme code) if the erroneous
argument is a placeholder that has a value. If the argument is a place-
holder that does not yet have a value then instead of invoking one

iUU
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110 CHAPTER 4. IMPLEMENTING THE SCHEDULER

of the Scheme error handling procedures it invokes the scheduler's
await-placeholder procedure.

3. Compiled code contains calls to the primitive operation touch when-
ever it must ensure that an object (argument to an in-line coded
primitive, predicate of a conditional, or function to be applied) is not

-" a placeholdei and cannot, at compile time, deduce this. Touch, which
is one of the operations described in case 1, merely tests its operand

, to see if it is a placeholder. If it is not, the operand is returned. If it
is a placeholder with a value, that value is returned. The net result
is that an attempt to use a placeholder whose value is already known
will proceed unimpeded, but one whose value is still undetermined

4 ~will cause a call to the await-placeholder procedure. (The exact
..N placement of these calls to touch is a topic for further investigation.

*Placing them earlier in the code can frequently make the code more
efficient but it reduces the potential for parallelism.)

..,- In each case, the underlying machine handles placeholders that have al-
ready received a value but calls the await-placeholder procedure to han-
dle placeholders that do not have a value. The job of await-placeholder,
then, is to save the state of the current task (if it needs to continue run-
ning) and enqueue this task on the waiting-queue of the placeholder. It then

-- - releases the processor by calling next.
. The code for await-placeholder is shown in Figure 4.10. The following

description of its operation is keyed to the numbers in the figure.

1. Create a continuation, me, that holds the state of the current task.
Attempt to lock the placeholder for which the task is waiting.

2. If the placeholder couldn't be locked, just resume the current task.
This can occur if the placeholder has received an immutable value
prior to reaching this point in the code. The placeholder would be

' subject to the splicing operation (mentioned in Section 4.1.1) during
variable reference or garbage collection. After the lock is acquired
this splicing will no longer occur.

3. If the placeholder has a value, unlock the placeholder and resume
the current task. This can occur if the placeholder has received a
mutable value before reaching this point in the code. In this case, the

S..
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112 CHAPTER 4. IMPLEMENTING THE SCHEDULER

placeholler is not subject to splicing so it will have been locked, but
there is no need to await the arrival of a value.

4. Activate tile task that is calculating the value for the placeholder if
it is inactive. This arises either because the placeholder was created
by the delay-policy (hence the task has status delayed), or because
the task has been suspended by pause-everything (see Section 4.6),
and the task has status paused.

5. At this point, the task will definitely be releasing control of the pro-
cessor. The state of the task, me from step 1, is saved away in the
current task data structure. Mark the task as waiting and add it to
the waiting-queue of this placeholder.

6. Unlock the placeholder (by exiting the with-placeholder-locked
procedure). Find another task and start executing it. Notice that this
call to next is not executed when control returns to the original task
using the me continuation created in step 1 (count the parentheses...).

4.5 Storing the Value of a Placeholder

Storing a value into a placeholder is a straightforward operation, al-
though the details are somewhat complicated. The essential work is to
store the value into the placeholder data structure and activate any tasks
that may have been waiting for this value to appear. The detailed code is
shown in Figure 4.11. The following notes describe the fine details of its
operation. They are geared to the numbers appearing in the figure. Most
of the complexity comes from the need to keep the placeholder locked for
as short a time period as possible, and the possibility of a race if two tasks
attempt to supply values to the placeholder nearly simultaneously.

1. The auxiliary procedure update-placeholder! actually makes the
lchanges necessary to the placeholder data structure to reflect the fact

that it now has a value.

2. What-to-do will contain one of three procedures to be performed after
th placeholder is unlocked, in step 7. The three procedures are (a)

S'.
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4.5. STORING THE VALUE OF A PLACEHOLDER11

(define (determine! placeholder value allow-mutations?)
(define (update-placeholder');C)

* (set-task.status! (placeholder.motivated-task placeholder)
DETERMINED)

(set-placeholder value' placeholder value)
(set-placeholder determined?' placeholder
(if allow-mutations? 'MUTABLE *t)))

(define what-to-do ; (2)
(With-Placeholder-Locked placeholder

(lambda (still-a-placeholder?)
(cond C(or (not still-a-placeholder?)

(immutable? placeholder))

(lambda C)0 (3)
(error "Immutable Placeholder" placeholder)))

* ((undetermined? placeholder)
(let ((waiters

(queue-contents
(placeholder waiting-queue placeholder))))

* (update-placeholder!) ;(4)

(lambda 0); 5
(for-each

(lambda (task)
(activate task

(lambda (status)
(or (eq? status 'WAITING)

(eq? status 'DISJOIN))

waiers)))placeholder))

(else (update-placeholder!) ;(6)
(lambda 0) 'OK))))))

(what-to-do) ;(7)
value) ;(8)

See text b~eginning on page 112 for footnotes.

Figure 4.11: Code for determine!
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114 CHAPTER 4. IMPLEMENTING THE SCHEDULER

an error procedure, step 3; (b) awaken the waiting tasks, step 5; and
(e) do nothing, step 6.

3. With the placeholder locked, test whether it already has an immutable
value. If so, return a procedure that will cause an error in step 7. 0

4. If the placeholder did not previously have a value, remember the tasks
that are waiting for the value of this placeholder (in waiters) and
then update the placeholder.

5. Since the placeholder didn't have a value before, in step 7 we must
activate (see Figure 4.7) each task that is waiting for this place-
holder. The activation test permits only tasks that are waiting for a
placeholder (status waiting or disjoin) to be awakened.

6. If the placeholder previously had a mutable value, then it can't have
a queue of tasks waiting for its value to appear. Thus, in step 7 we
don't need to take any special action.

7. Now that the placeholder is unlocked, perform whatever work is nec-
essary.

S. The value returned by determine! is (arbitrarily) the value that has
been given to the placeholder.

4.6 Single Task Interludes

The final, and most complicated, operation supported by the scheduler is
the ability to switch from a parallel processing mode where many tasks
arc simultaneously active to one in which only a single task is active. This
operation, embodied in the procedure pause-everything, has already been
discussed in Section 3.1.3, and the code is shown in Figure 3.1 on page 62.
This section presents the underlying support routine that was omitted in
that earlier version6

As mentioned in the earlier discussion of pause-everything its job is
to suspend all other tasks on the system. It returns as its value an object

'A procedure with structure very similar to pause-everything but without the elab-
'ratt, ret urned object is used to initiate garbage collection.

'Ir
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(define (make-returned-object the-queue)

(lambda (message)
(cond ((eq? message 'ANY-TASKS?) ;(1)

(and (not (eq? the-queue Wt)
(not (eq? the-queue '0)

((eq? message 'RESTART-TASKS) ;(2)
(if (eq? the-queue #t)

(error "Attempt to re-use a pause object!")
(begin
(for-each ;(3)

(lambda (task)
* (activate task

'NO-RELEVANT-WAKE-UP-VALUE)
the-queue))(aba(tts esau PUE)

(set! the-queue *t))))

((eq? message 'THE-TASKS) ;(4)
(if (eq? the-queue #t) '(0 the-queue))

* (else (error "Pause: unknown message" message)))))

Notes:

1Code to handle the Any-Tasks? message.

2. Code to handle the Restart-Tasks message.

3. If this is the first time the restart-tasks message is received, any tasks that are
%. still paused are activated. Notice that the code for await-placeholder shown in
% Figure 4.10 will have activated any of these tasks that were touched after the call

* to pause-everything. Hence, the test here.

-1. ('ode to handle the The-Tasks message.

Figure 4.12: Make-Returned- Object, support for pause- everything

'I
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that encapsulates these other tasks through a "message passing" interface.
The returied object (implemented in MIT Scheme as a procedure of one

argument, the message) accepts three messages.

Any-Tasks?
Returns a boolean answer of #t if there were other tasks running at
the time of the call to pause-everything and they have not yet been

restarted.

The-Tasks
Returns a list of the tasks that were suspended by the call to pause-

everything provided they have not yet been restarted.

Restart-Tasks
Activates the tasks that were suspended by the call to pause-every-
thing by releasing them to the underlying task distribution mecha-
nism. It can be called only once.

The procedure Make-Returned-Object, shown in Figure 4.12, creates the
inessage accepting object that will be returned by pause-everything.

4.7 Summary

The sclwduler is the "heart" of the MultiScheme system. and is designed as
'i flxil hl and extensible nechanisn for supporting a variety of experiments.

Tlw ilni;iiry data structures of the scheduler, the l)laceholder and the task

'Ire d,.-criled in Section 4.1. Using these data structures, a variety of ways
ef crating-, suspending, and managing tasks are described.

N1(-.,t )f the material presented is very much "nuts and bolts engineer-
ii,' lit slv,,s to (lemonstrate the ease with which the parallel processing
- 11 rt ,'a;.I 81,, described within the existing language framework.
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Chapter 5

Examples

The earlier chapters have described the structure of the MultiScheme sys-
tern and a number of the important design choices. This chapter consists
of three programs that exploit parallelism and demonstrate several of the
unique features of MultiSchenie. The purpose of these examples is to in-
troduce some novel ways of using the tools provided by the underlying
MultiScheme system.

Section 5.1 concentrates on speculative parallelism - using parallelism
to increase the speed of programs that try multiple approaches to solving

" the same problem. It shows a simple procedure (first-value) which can
*. be used as the base for several parallel control structures, and demonstrates
r its use in the core of a simple "expert system" (rule-based interpreter).

Section 5.2 shows the evolution of a serial program for solving the n-body

prohlei of computational dynamics into a parallel implementation by the
a(ldition of future constructs. The judicious addition of futures, coupled
with measurements and a small amount of rewriting, ultimately yields a
prograi that solves the 8-body problem 6.6 times faster than the serial
version on a 16 processor machine. Section 5.3 (along with some details in
Appendix B) reviews this solution to the n-body problem and provides a
reformulation using a system similar to a pipelined computer architecture
or a (lataflow computation model. Section 5.4 describes how the fork/join.
Uniform System[56]. and QLambda[231 parallel programming methods can
Ibe expresse(l in MultiScheme.

There is no claim that these programs provide optimal solutions to the
.iitil problems a carefully crafted Fortran program coupled with an

. : 117
0.
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lii ili'ilg, Fort ran cominljer canl certainly generate faster prograiiis for a

ito i8 ,)inl)iit er thban the current interp~reter for Nhrlt iScijeine oi it 32-
Bt' 3utt erfly (m ijtiter. The programs present ed here. however. do

. ';Ile withi thle size of the problem and thle nunmber of p~rocessors. Fuir-

11)i(110(, rt'.t hre is reasonl to believe that an opt inizing compiler for Muil t i-

' l-Iil 'ii a he' buiilt atnd that the resulting comp~iledl programs, will bothI

rfl)ril 11and( exp~loit thle parallelism specifiedl in the prograni.

5.1 Speculative Computation

Tlit're art, thiree important ways to use multiple processors of a given type

tov( it pf( 41 cin ii fater than it would be solved with a single processor of

O e~ Mfaiv p)rolem(Is c-an be divided into loosely coupled smaller problems

t0 rhat '( 4nill)liliiig the Solutions to the smaller problems, produces a

410 ion) to the original problem. If the coupling is sufficiently loose,

the' -iiiallr lprobl'is can each be assigned to a separate processor

ali, thle t ime required to solve them can be overlapped.

0Ill ai 1 rol'alhility- based programn (such as a Monte-Carlo, method), per-

f)riniiig, the same operation more often in a given amount of time

l'eds to anm *iinrrov. ed answer. So for a desired precision, using more

pr4t'tss(~ wll lead to ain answer ina shorter periodl of time.

. If iiiv dlitferent iii('tlhods, are known for solving a single problem

''1processo r cii ursue a dlifferent approach to the prolem. If we,'
art' lookling fo~r any' solution to the problem, then we can select the

sollitioii found by the first processor to announce success.

o T Ii i11 titird aipproatch is, kmnown as speculative parallelism. !Using tile otheiri
T w() ;ipp;ru'a'he we canm hope that ii processors would run a programn

Insfast er t han ille prcssr By c'ontrast . in speculative corniput atlonls

114 hit f~r an )lit mizinig compiler is iiiort' than slheer speculatioi. An opt imizing
.l.4r f-r SI u i?3T l alr#'a(V h-('ii Miple'intutd. W~ork on a simlillar Comiletr for

\1 I S-Awiui miI lroay. XNedI'ss to sat 1sicf \1uilt iScli'vit forms thet heart of tlit' 1313N
llltto rflv Llp l'("hict 131N is phirs~iiing coimpilatioin technology in the parallel-processor
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5.1. SPECULATIVE COMPUTATION 119

we hope to have n processors run as fast as the one processor that always
picks the best method to solve the problem at hand. Clearly, this approach
is justified only if there is no simple way of deciding, in advance, which
approach works best on the particular problem at hand.

5.1.1 Parallel Control in a Rule Interpreter

Speculative parallelism may prove useful in a variety of cases. Many "AI
search" problems can be conveniently expressed using speculation; in fact,
this was one factor motivating the design of the Connection Machine[32].
The example chosen here, a rule interpreter that forms the core of an expert
system, exhibits one such search. The purpose of the example is to demon-
strate how speculative computations can be expressed in MultiScheme. The
example does not address other important issues such as the ability to ana-

* lyze the rule base to find a better control structure than the one described
here.

The example is based on a program originally developed for teaching
an introductory undergraduate course in signal processing[6]. It is a rule-
based expression simplifier supplying enough power to handle a set of rules
for simple symbolic algebra. Like most rule interpreters it consists of a pat-
tern matcher, a rule firing mechanism, and a control structure component.
Both the pattern matcher and the control structure can utilize specula-
tive parallelism, but for simplicity this example deals only with the control
structure.

The rule interpreter has an inner loop that takes an expression and
* . tries to match it against all of the rules. If a rule matches the expression,

the rule firing mechanism is invoked to produce a modified (presumably
) (simpler) expression. If no rule matches, then the expression is already

in its simplest form. The problem we arf- attempting to solve, then, is
converting the sequential control structure of "multiple solution techniques
aiogrnented with a default result" into a corresponding speculative (parallel)
control structure. In doing so, we will assume that rules may be fired in any
order that terminates and will still arrive at a correct final result - the only
restriction is that we will not "give up" on sinplifying an expression until

0. all rules have failed to simplify it. This assumption is not valid in general
for rule sets and poses an important practical limitation to the solution
described here.

V.
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N Iult iSchene provides two forms of support for speculative program-
"rin,<, and( both are usw(' iii solving this problem: the procedure disjoin
hit i tlccr, d in Section 2.5. and the garbage collection of useless tasks dis- 4

, in Section 3.5. The former is used as the most primitive operat ion
-r r'quet in g j se,'nlative eomputation it takes t set of 1)laceliolhrs

and ret urls a placeliolder that eventually receives the value of the first one
to be given a value. The latter is invoked implicitly rather than explic-
itly, and c-rves to free up processors that are pursuing approaches to an
already-solved problen.

Before proceeding, a little utility procedure will come in handy. The
procedure disjoin is a nice primitive mechanism, but for this example a
slightly different interface will prove more convenient. Rather than receive
a placeholder for the first value to be computed, we will want to receive
the value itself. Furthermore. we will be creating a list of placeholders
separately from the call to disjoin so we need a procedure that accepts a
list of placeholders (disjoin expects the placeholders as arguments). This
is easily expressed:

(define (await-first list-of-placeholders)
(touch ; Wait for a value to appear
(apply disjoin ; "Spread" the arguments

list-of-placeholders)))

With only this to help us, it is slightly tricky to express the notion of a
default value to be used only' when all other approaches fail. If we merely
use disjoin to try all of the approaches we risk getting a premature answer
from the default method, causing us to abandon the other techniques. On
the other hand. if we don't include the default value in the set of methods
tried, we will never succeed in simplifying an expression since we won't be
able to simplify the most primitive components. The gist of the solution is
to provide an explicit indication that a rule has failed. Then, rather than
just wait for disjoin to return an answer, we look at the answer we get
back. If it is a failure indication we wait again, until either a successful
re,ult is returned or no other rules are available only in this last case do
we supply the default value.

To implement this idea, we begin by introducing the special value used
to represent the failure of a rule (failure-tag). and a procedure to test
for a not-yet-failed ilaceholder:

(define failure-tag (list 'failure))

• . . • . . • • A ..
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5.1. SPECULATIVE COMPUTATION 121

(define (not-failed object)
(or (placeholder? object) ; No value yet

(not (eq? object failure-tag)))) ; Value, not failure

Using these it is easy enough to write the procedure that waits for a
non-failure answer or returns the default value:

(define (first-value placeholders default-value)
(if (null? placeholders)

default-value ; No alternative
(let ((result (await-first placeholders)))
(if (eq? failure-tag result)

(first-value ; Failed: try again
* (filter not-failed placeholders) default-value)

result)))) ;Success

This mechanism is sufficient to solve our problem. The rule system

discussed in [6] takes a set of rules and produces a procedure for simplifying
expressions based on these rules. It consists of three major procedures,
corresponding to the pattern matcher, rule firing mechanism, and control
structure. For our purposes, the first two components can be treated as

S.i"black boxes" whose internal operation is not relevant to us. The pattern
matcher and rule firing components have the following interfaces (these
differ slightly from the version in [6]):

(matcher rule expression fail succeed)
Matches the rule against the expression. If there is no way for
them to match, fail is called with no arguments. Otherwise suc-
ceed is called with a dictionary (containing the values assigned by
the successful match to variables in the pattern) and a procedure
that can be used to resume the matching process if the values in the

dictionary are unacceptable (fire, below, is the base for a typical
success procedure as shown in Figure 5.1).

2 The version of first-value shown here has order n' performance in the number of
Il)aceholIers. because of the call to filter. More efficient versions could be constructed
using. for example, a counter of the number of placeholders whose value is not yet known.

% N-
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122 CHAPTER 5. EXAMPLES

(fire rule dictionary simplifier)
Fires the specified rule using dictionary to guide construction of
a new expression. The resulting new expression is simplified using
simplifier and returned.

The control component - the lone component we are setting out to
modify consists of the routine simplifier shown in Figure 5.1. This
simplifies any sub-expressions, then tries the rules sequentially until one
fires. The firing process then creates a replacement expression and (re-
cursively) simplifies it. The only part of simplifier that we will need to
change is scan, which in the original version (reproduced below) sequen-
tially scans the rules:

(define (scan rules)
(if (null? rules) *5

exp
(match-rule (car rules)

(lambda () (scan (cdr rules))))))

In this sequential version, scan tries the first rule - using match-rule
- and specifies that if this rule fails to fire the process should repeat
with the remaining rules. Instead of this, we want to use the first-value
procedure we defined above by creating a task for each of the rules. In order
to do this, we must arrange matters so that when a rule fails to match it
causes the task that is running to return the failure signal:

(define (scan rules)
(define workers ; List of placeholders

(map (lambda (rule) ... one per rule
(FUTURE (match-rule rule

(lambda () failure-tag))))
rules))

(first-value workers exp))

Introducing this form of speculative parallelism into the rule interpreter
was quite simple. But the same technique allows more complicated sequen-
tial control structures to be converted to parallel speculation as well. By
only a small change to first-value it can be converted into the basic sup-

port needed for handling any number of priority-based solution methods
instead of returning a specific value, it can call a procedure that starts

-Z~~ ~ -4 % %%



5.1. SPECULATIVE COMPUTATION 123

(define (simplifier the-rules)

(define simplify-exp ; (1)
(memorize

(lambda (exp)

(try-rules (if (compound? exp)
(map simplify-exp exp)
exp)))))

(define (try-rules exp) ; (2)

(define (match-rule rule rule-fail) ; (3)

(matcher rule exp rule-fail

(lambda (dictionary keep-matching)

"4 (fire rule dictionary simplify-exp))))

(define (scan rules) ; (4)

(if (null? rules)

exp
(match-rule (car rules)

(lambda () (scan (cdr rules))))))

(scan the-rules))

simplify-exp)

Notes:

1. Simplify-exp simplifies all the components of an expression, then tries all of the
rules on the result. Memorize implements the standard dynamic programming trick
of consulting a table of known simplifications before attempting the recursive tree
walk shown here.

2. Try-rules tries to match and fire each rule against the incoming expression.

3. Match-rule tries to match and fire a single rule against the incoming expression.

4. Scan sequentially tries to match and fire each rule against the incoming expression.

Figure 5.1: Recursive Control Structure
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the next lower priority set of methods and calls first-value to wait for
all of these methods to complete, and so forth. Since there need be no
restriction on the mechanism used to generate the next set of methods to
be tried. quite coml)licated systems of dependencies can be expressed using
the same general technique.

5.1.2 Speculative Computation: Summary

As an example, this rule system was run using two sets of rules -- one
for symbolic algebra and one for derivatives - and these two rule sets
were passed as arguments to the simplifier procedure to create two sim-
plification functions. These two functions were themselves composed to
produce one large procedure, psimp, that first simplifies its input using the
derivative rules and then simplifies the result using the algebra rules. The

* algebraic rule set consisted of twenty rules including constant elimination,
* comnutativity, distributivity, and conversion of products into exponents.

The derivative rule set had eight rules.
The psimp procedure was used to find the derivative of a standard

cubic equation (ax3 + bx2 + cx + d with respect to x). Using ten processors,
the derivative calculation required half the time of the same calculation
on a single processor. One property of the rule sets (unfortunate for this
example) is that a single expression rarely matches the pattern of more
than one rule. As a result, most tasks terminate very quickly by failing to
match, so the garbage collection of tasks played no noticeable role. The
ability of the garbage collector to remove useless threads of computation
remains important in general, although this rule set and parallel control
structure do not show it to advantage.

The particular choice of speculative control structure u:sed here is only
one of a range that deserves more exploration. An interesting property of

* • this structure is that it allows the parallel systein to arrive at answers even
.i cases where a sequential implementation would fail because of an infinite

loop in the rule set. If, for example, we include commtativity as one of
rules of algebra it is essential in the serial system that this rule be chosen
only once for any given expression - otherwise we might start with a + h.

S.convert it to b + a, then convert it back to a + b and so fort 1:". By conit rast,

: l :The rule base used in the serial program of [6] solves tis problem by the use of

restrictions o the applicability of the rule. A lexical ordering on expressions is exploited

._.'. .,

I..

.... ....

• . -. ." ".. ,,°. " ,. - " .. . . .-. .-.--.-.-. .. -% % . - * ,--. '1 , %, % % . % % n' '



5.2. OBJECT INTERACTION SIMULATOR 125

the )arallel control structure here will terminate even in this case - and
then the garbage collector would remove the remaining tasks. Without

performing such an experiment, however, it is not clear just how well such
a rule set would perform.

This experiment, while demonstrating a factor of 2 performance im-
provement, leaves open a number of questions related to the use of specu-
lative parallelism in rule-based systems. But, as mentioned at the outset,
answering these questions was not the purpose of the example. Far more
importantly, this example has shown that the underlying disj oin operation
does provide the starting point for building systems that exploit parallelism
to explore alternative methods for solving a single problem. Using this op-
eration it was a straightforward task to modify the serial control structure
of an existing system into one more suited for a parallel processor.

* 5.2 Object Interaction Simulator

One class of problem in which parallel computation can be expected to
provide significant performance improvement is the simulation of systems
composed of interacting components. The plan is to utilize the multiple
computation units so that each simulates a single object or group of objects,
periodically updating its own state based on the state of all of the other
objects. This kind of simulation is quite common, and has been a target
of investigation in the parallel computing community for some time. One
classic example of this kind of problem is the "n-body problem" of classical
1)1hysics:

Given: The mass (mi), initial position (4(0)), and initial velocity (C',(0))
of a group of n particles.

Given: The force law (F(F,x)) governing the interaction of a pair of
* particles.

01%'*' Predict: The position (i(t)) and velocity (?i, (t)) of the particles into the
future (possibly ignoring collisions).

The problem is easily formalized, but the computational task for even rela-
0.2 tively small systems is immense. Because the interparticle force calculations

to guarantee that the rule is fired only once for a given expression.

OI.

' %i
;r % Ni



126 CHAPTER .5. EXAMPLES

rIliuire it Jteps at serial p~rocessor requires timie p~roportionial to 0.2 Since
t~ ptol dciii Inherent ly dividles into it indep~eident I)art s (one Iwer p)article).

it ~ceart inta pogam n l e coded that will solve thle pn oblemin tm
Pj))p rt anal to it if there are it processors available.

Thec leseription anid analysis of this single exaiiile is quite long (it
b.~~i othi Sect ions 5.2 an(1 5.3) andl provides information at it nuiiler of

levels,. At one level it pr-ovides a largely accurate chronology of the con-
ver1Ision1 of at working serial p)rogrami into a parallel pr-ograin thlat ciee

l-etesr[ sp~eed increase. At another level, the measulremrents that iiii

ivar ed each step InI thle process are t heinselves aided by mnodificat ioiis to
lhe Mitlt iSchjerne scheduler that l)rovidlcd the data needled to graphically

*.present the p-arallelismn profile of the programn. illustrating the value of at
flexiblle schieduler impijlieentation in MultiSchene. At yet another level.
lie eliaiiges, from each versioli of the programn to the iiext demionstrate uses

* f Thle ('onstrmet s described earlier. And finally. the last t raiisforniation
(lescrile(h lin Section 5.3 ) of the programn demnonstrates a technique t hat

hias loin, beeni the strong point of Lisp) languages: the ability to construct a
vst ei that I)rovidcs the external behavior of a comp~letely different model

of ci npit at ion based on l)rinitives that exist withi (In tIs cs)Mli-
Sn (i thi case 'II'

.5.2.1 Simple Sequential Implementation

To 1 egiii iinj)lieiiet ing a I)aralhel pr-ogramn that solves the n-body prol)-
ltiii. let us firs-t study an elegant sequential solution. This programn is
a lapjt ei froi rit version written by Sussmnan. based on his work on orbital

ii chi xies T li The pograrzi is structured around the notion of a system

4particles aii(l opera tionso such systenis. It operates by constructn
differential systems rej)reseiiti~ig changes to a s),stemn over 5OiflC smiall tinie

* t val.11 i t as at svsteiii Consists of p~articles, a dlifferenltial systemi consists
f differential particles wla ise state is couiilniitedl based on the state of the orug-

ii i;i1 arlt it'D s and~ a p~artc in t eract ion (force) law. Using a B unge- Nut ta
::ttn

t
jiiitechnquire tto coinie thec initial svstemin withi relatedh (ifferel-

tj1 lit. pitwogran preict th position advlct of thle part icles
* : ~!i, u il Tlit )lut ion iiiakes uise. of a library of general- 1)iuI~I-s('

..P:tinjja i~lii> lii)wn 'ii Figure 5j.2,
.- \ -. \~tt' l ii-jt, 4 ;1 sinuiilateil tiiie. anid the set (list) of particles III
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4 554.

v4

.2

N.-.ame Descripton
: .'(group op 11) Re-groups objects from 11, a list of sets of objects,

. into sets based on a selection criterion (op). Each
" '."output set consists of those input objects for which

• op returns the same value.

--'(reduce op vals) Combines all of the vals using the associative op-

erator op.

Scalar Operations cube, square and sqrt (square root).

• __(scale n) Returns the procedure that multiplies a vector by
n n (a number).

,.(scale-by n v) Scale vector v by amount n. More convenient to
'::'write than ((scale n) v).

•.°Vector Ope rations add and sub.
Szero-vector A pre-computed three dimensional vector of zeros.

?.- Figure 5.2: A Simple Mathematics Library

..4
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the system. The particles have their own state information, represented for
' simplicity as a vector of quantities. Each particle has a name, primarily
" for documentation purposes. It also has a mass (a scalar quantity) and

two vectors representing its position and velocity. Particles are constructed
using the procedure make-particle, systems by make-system. Selectors
are time and particles for a system, and name, mass, position and
velocity for particles.

. There are two operations that can be performed on particles. Scale-
Particle (used to construct differential systems) multiplies the state infor-
mation of a particle by a scalar factor (representing the time step). Add-
Particles adds together the state information from a number of particles
to produce the state information for a new particle. See Figure 5.3.

iI:.

* (define (scale-particle factor)
(define factor* (scale factor)) • vector scale
(lambda (particle)
(make-particle

N-, (name particle) ; name
(* factor (mass particle)) ; mass

.* (factor* (position particle)) ; position
(factor* (velocity particle))))) • velocity

(define (add-particles . particle-)
(make-particle
(name (car particles)) ; name (same for all)
(reduce + (map mass particles)) • mass
(reduce add (map position particles)) ; position
(reduce add (map velocity particles)))) ; velocity

v Figure 5.3: Operations on Particles (serial)

Finally, there are two operations on systems of particles. These corre-
t),, d to the particle operations: scale-system multiplies a system )y a

0. cnlistant factor (t in, step), and add-systems sums a number of systems
to lpro(dhce a resultant system. See Figure 5.4.

Thc iiost c)niplicated step in our simulation is to write a procedure

"5"%,.-

,.-.
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(define (scale-system scale-factor)
(define sp (scale-particle scale-factor))
(lambda (system)

(make-system (* scale-factor (time system))
(map sp (particles system)))))

(define (add-systems . systems)
(make-system (reduce + (map time systems))

(map (lambda (bunch) (reduce add-particles bunch))
(group name (map particles systems)))))

Figure 5.4: Operations on Systems of Particles (serial)

that will construct a "differential system" from an initial system and a par-
ticle interaction force law (see Figure 5.5). A differential system consists
of a differential of time (dt/dt, clearly always 1), and a set of differential
particles. Just as a particle consists of a mass, position, and velocity, a
differential particle consists of a differential of mass (dm/dt, always 0 since
there is assumed to be no loss of mass over time), a differential of position
(dx/dt, which is of course the velocity of the original particle), and a differ-
ential of velocity (dv/dt, or acceleration). This last component is the core
of the computation. Acceleration is just the sum of the inter-particle forces
acting on a given particle (divided by the mass of the particle), computed
using the specified f orce-law.

Given this framework, we can describe the overall n-body computation.
All that needs to be done is to select an integration procedure sufficiently
accurate for our purposes. One could, for example, merely use the dif-
ferential system to produce a linear prediction of the next state. This
would suffice for either a very small value of dt or a low accuracy calcula-
tion. There are many more sophisticated (and accurate) techniques that
have been developed for numerical integration, and for this example a 4 th

order Runge-Kutta integrator 4 was used. The code for this specific integra-

4 A Runge-Kutta integrator works by using interpolation of the system based on deriva-
tives of the system state up to some chosen number. A 4th order integrator, thus, uses the
first through fourth derivatives of the system. It is a generalization of the more familiar

I
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(define (particle-force force-law)
(define (accelerations bodies) ; (1)

(define (my-acceleration me) ; (2)
'-, (reduce add

(map (lambda (other) (force-law me other))

bodies)))
(map my-acceleration bodies))

(lambda (system-state) ; (3)

(make-system I , dt/dt
(map (lambda (particle acceleration)

(make-particle
(name particle)

0 ; dm/dt
(velocity particle) ; dx/dt
acceleration)) ; dv/dt

(particles system-state)
(accelerations (particles system-state))))))

(define (gravitation me it) ; (4)
(if (eq? me it)

zero-vector
(let ((dx (sub (position me) (position it))))

(let ((rcube (cube (sqrt (reduce + (map square dx))))))

(scale-by (/ (* -G (mass it)) rcube) dx)))))

Notes:

1. Return a list of the accelerations of all n particles.

2. Calculate the acceleration of one particle.

3. Procedure returned from Particle-Force, that takes a system at time t and pro-
duces the differential system dt. See text beginning on page 129.

4 A sample force law returning the acceleration of me as a result of gravitational

interaction with it.

Figure 5.5: Differential System Generator

"S .... . q: .. : . ./ ..4 x ,. ;::



5.2. OBJECT INTERACTION SIMULATOR 131

tion technique (runge-kutta-4) along with the procedure that produces a
stream of future values of an initial system (integrate-system) are shown
in Figure 5.6.

The serial program is now complete. It can be tested out by creating
a system of particles and predicting the state of the system for three time
steps. Using the 9-particle solar system5 as an example, we have (time in
days, distance in AU, mass in units of the mass of the sun, center of mass
coordinate system):

(define sun
(make-particle
'sun+mercury (+ 1 (/ 1 6000000)) • name and mass
(-4.09433e-3 -5.62963e-3 -2.2635e-3) position
(6.666e-6 -5.75161e-6 -2.6353e-6))) ; velocity

0 '2 (define system (make-system 0 (list sun+mercury ...)))
(define system-stream (integrate-system system 0.5))
(nth-stream system-stream 3)
(1. ; time
(SUN+MERCURY ; name

1. ;mass

(-4.08432e-3 -5.63825e-3 -2.26745e-3) ; position
( 6.67693e-6 -5.73931e-6 -2.63031e-6)))) ; velocity

5.2.2 Parallel Particle Interaction

The system as described above works well, and it is time to speed it up With
the judicious addition of future. Because the computation is asymptoti-
cally dominated by the time required to compute particle interactions, it
seems logical to rewrite the particle-force procedure of Figure 5.5. This
is easily done, by changing only the procedure my-acceleration within
particle-force:

' (bit less accurate) trapezoidal technique for integration.

, 5.~"Fliis treats the sun aln] Mercury as a single particle, a standard simplification uised it

#.. ,
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(define (runge-kutta-4 f dt) • (1)
(define dt* (scale-system dt))

(define 2* (scale-system 2))

(define 1/2* (scale-system (U 1 2))
(define 1/6* (scale-system (U 1 6)))
(lambda (system) ; (2)

(define kO (dt* (f system))) %

(define kl (dt* (f (add-systems system (1/2* kO)))))

(define k2 (dt* (f (add-systems system (1/2* kI)))))

(define k3 (dt* (f (add-systems system k2))))
(add-systems system

(1/6* (add-systems kO (2* kl) (2* k2) k3)))))

(define (integrate-system initial-state dt) ; (3)

(let ((integrator (runge-kutta-4 (particle-force gravitation) dt))
(define (next state)

(cons state
(delay (next (integrator state)))))

(next initial-state)))

Notes:

I Produce a proce.dure that takes an input system at time t and produces a system
at time t + dt using a 4 t h order Runge-Kutta integrator.

2. This is the actual integration procedure returned from Runge-Kutta-4.

3. Produce a stream of values representing the state of the system beginning with the
initial-state and separated by intervals of dt.

Figure 5.6: Integration Procedure (serial)

I,
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(define (my-.cceleration me)
(FUTURE
(reduce add (map (lambda (other) (force-law me other))

bodies))))

-Now, in order to perform the inter-particle force calculations the pro-
(gram creates a task for each particle. That task calculates the acceleration
of its associated particle based on the state information of all of the par-
ticles. Installing this change and running the program yields precisely the
same results as before, but faster.

Our initial expectation, of course, was that for a 9-particle system we
should see a factor of 9 improvement (since the experiment was run on a
machine with more than 9 processors). Unfortunately, the program runs
only a factor of 1.8 faster than the original - the kind of result often
encountered when adding parallelism to a serial program. At this point,
the project shifts into a "performance debugging" phase, not unlike the

pep ordinary debugging phase of a program. At this stage the ability to visualize
the parallelism being attained by the program is essential.

d %. Fortunately, MultiScheme running on the Butterfly computer had al-
ready been augmented by Seth Steinberg (of the BBN Butterfly Lisp pro-
ject) to provide a good deal of help with this task. He modified the scheduler
described in Chapter 4 to send a monitoring packet out whenever a task is
created, suspended, or completes its processing. These packets are collected
and can be displayed (unfortunately only after a run is completed) using
a set of tools that are part of the "Butterfly Lisp User Interface" (BLUI)
developed by Laura Bagnall of the BBN project. A glance at these displays
(see Figure 5.7 and the accompanying notes) reveals a consistent pattern:

* A short stretch of 9-fold parallel computation.

e A medium length stretch of serial computation.

e The previous two items repeat a total of four times.

* A long period of serial computation.

Clearly, the 9-fold parallel unit that repeats four times arises from the
0 four calls to f within the procedure runge-kutta-4. The medium length

serial computation between them corresponds to the work of scaling and

0"-
% % % % •

", m kD '-



134 CHAPTER5. EXAMPLES

It

U I
,, I

p.'?

0 ?~~EPHR6WWE~r.: 
4 

tsi -p.

%Key to Performance Diagrams:
Performance diagrams consist of two regions, with a common time axis running from left to
right. The lower region is i graph of processor activity showing the number of processors
actually engaged in running tasks. The upper portion is a detailed accounting of all tasks
in the system during the time of interest. Each task is represented by a horizontal bar
which, in enlarged drawings, will be seen to consist of segments in three different patterns:
fully black indicating a running task, dark grey indicating a task that is ready to run but
for which no processor is available, and white (very light grey) indicating a task waiting
for a placeholder's value to become available. The vertical arrows indicate either a task
being spawned (arrow pointing down from the parent, which is black, to the child), a task
waiting for the value of auother's goal placeholder (arrow from the task that is waiting
- ad thus changing from black to white - to the task that will deliver the value), or a
determine! operation (typically terminating a horizontal bar).

The range of times shown on these performance diagrams is not the same on every diagram.

Figure 5.7: Parallelism in Particle Force
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adding the resulting system. The final long serial computation corresponds
to the final call to add-systems.

These results were not overly surprising, although there seemed to be
no reason for the final call to add-systems to be so very much (more than
a factor of 4) longer than the earlier calls. Re-examining the procedure in
Figure 5.4 shows that one possible problem is in the group procedure of
the math library. Indeed, examining that code (not included here) reveals
that it employs an algorithm with a worst case n2 performance. A minimal
speed increase can be found by rewriting group to itself operate in parallel,
but a more dramatic increase results from understanding what purpose it
is serving.

In general, when two systems of particles are to be added together, there
is no guarantee that the system contains precisely the same particles. Fur-
thermore, we have implemented systems using unsorted lists to represent
the sets of particles. As a result, there is no guarantee that even if the sys-
tems contain the same particles they will appear in the same order in each
system. Thus, a general purpose procedure for adding together systems
of particles must use some operation like group to match corresponding
particles in the systems. In the problem at hand, however, the particles
in each system are in fact always both the same and in the same order.
Thus, rewriting add-systems with this assumption will save considerable
time during the computation. At the same time, we can operate on each
set of corresponding particles in parallel:

(define (add-systems . systems)
(define (transposer particle-set)

(define (compute particles) (reduce add-particles particles))
(if (null? (caar particle-set))

,()
(cons (FUTURE (compute (map car particle-set)))

(FUTURE (transposer (map cdr particle-set))))))
* (make-system (reduce + (map time systems))

(transposer (map particles systems))))

With this new version of add-systems performance is significantly bet-
ter. biit only by a factor of 3.7 over the original. (See Figure 5.8 for a
close-up of oIle of the four system calculations. This figure corresponds

to the region between the points marked A and B in Figure 5.7.) The

I
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4-W
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This figure corresponds to the area between the points marked A and B in Figure 5.7.
See the notes to Figure 5.7 for a general description of performance diagrams. In this figure,
the numbers visible in the horizontal bars show the number of the processor running the
task.

Figure 5.8: Parallelism in Adding Systems
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next advance comes from realizing that the procedure scale-system can
be improved by processing the particles in parallel:

(define (scale-system scale-f actor)
(define sp (scale-particle scale-factor))
(define (scale-it x) (FUTURE (sp x)))
(lambda (system)

I (make-system (* scale-factor (time system))

(map scl-t(particles system)))))

.11

A ' ' 1.

4. See the notes to Figure 5.7 for a general description of performance diagrams.

Figure 5.9: Parallelism in Scaling Systems

This was not, perhaps, obvious at first since the work entailed in scaling
a particle seems small - small enough that it isn't likely to compensate
for the work necessary to create a new task. On reconsideration, however,

* the cost of the two vector operations involved in scaling a particle (one for
position and the other for velocity) is sufficient to overshadow this cost.

% %0,%0t-
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This figure is an enlargement of the area between the points marked A and B in Figure 5.9
See the notes to Figure 5.7 for a general description of performance diagrams. Unlike theearlier examples, the amount of parallelism demanded exceeded the 16 processors available.'
[fence some of the bars are grey, indicating queuing of tasks waiting for processors.

Figure 5.10: Details of Scaling Systems
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\Vith this change we begin our final approach to the speed-up we had
originally expected. The figure now stands at a 6.6-fold increase over the
original serial version. Further work along the same lines doesn't seem
warranted, since examination of the activity graphs (see Figure 5.9 for
the total computation, and an enlargement in Figure 5.10) indicates no
significant areas of serial computation we are seeing the overhead of
creating the tasks on demand combined with small amounts of truly serial
computation (such as the sequencing of execution of the def ines in runge-
kutta-4).

5.2.3 Particle Interaction: Summary

As we have seen, the simple methodology of adding future constructs to a

straightforward serial solution of the n-body (particle interaction) problem
does, indeed, succeed in producing a faster program by exploiting the in-
herent parallelism. Unfortunately, intuition is not a perfect guide to where
this parallelism can be used to best advantage. A set of tools for visualizing
where the parallelism is being exploited and (more importantly) where comn-
putation remains serial is almost essential to the "performance debugging"
task.

But this simple methodology has some drawbacks. This example has %

ldemonstrated two of them. The first, perhaps a failing of the author rather
than the methodology, comes from a poor intuition. Even knowing the %-

cost of a future and applying good engineering trade-off concepts, the
initial parallel version missed a significant use of parallelism. This was
corrected only by using the visualization tools to actually measure the time
s)ent during the scale-particle calculations. This kind of engineering
estiniation can l)e improved, perhaps, by the use of automated program .5

analysis tools. This approach has been explored to a limited degree by
Sharon Gray[25].

The second drawlback, however, is harder to correct. After some effort a
general purpose utility procedure was found to use a large amount of serial
computation to solve a very simple problem. Just as in a serial program, re-

(ding t he general algorithin using specialized knowledge of the application
I)ro(lcd(''s a significant improvement. Unlike the first drawback, attempting
to automate this process brings us dangerously close to the automatic pro-
graimiing area. in fact, the effort to discover and classify algorithms that

t.e
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exploit parallelism is a major area of research in the theory of computation.
While the actual future construct itself has nothing whatsoever to do with
the difficulty, its very simplicity encourages a style of operation where this
kind of algorithmic exploration is easily overlooked.

5.3 Parallel Pipelining

The solutions to the n-body problem described in Section 5.2 were arrived
at by incremental changes to a working sequential solution. This section
takes a different approach to solving the same problem. First a new general
framework for expressing parallel programs is created. Then this specific
probleii is solved within that framework. This section will serve to high-
light two important points. First, one of the most powerful aspects of
.MultiScheme is the case with which alternative programming models can
be ex)ressed and the resulting ability to experiment with new techniques.
Second. this section introduces some uses of placeholders and tasks that
are less evident than the ones in earlier examples.

The speed increase of a factor of 6.6 out of a possible 9.0 that was
achieved in Section 5.2 seems about the maximum we can reach using the
simple technique of adding futures to a sequential program. And yet with
one final, less obvious change, we can reach a speed-up of 7.9 over the serial
version. This final change occurs in runge-kutta-4. Notice that the two
intermediate constants ki and k2 appear in the final line scaled by 2. This
scaling computation can begin earlier, providing some additional speed, by
merely introducing two new intermediate variables:

(define (runge-kutta-4 f dt)

... definitions of dt*, 2*, 1/2*, and 1/6* as in Figure 5.6 ...

5' (lambda (y)
(define kO (dt* (f y)))

* (define k1 (dt* (f (add-systems y (1/2* kO)))))
"P (define kl*2 (FUTURE (2. k1))) •

(define k2 (dt* (f (add-systems y (1/2* kl)))))
(define k2*2 (FUTURE (2* k2))) ;

(define k3 (dt* (f (add-systems y k2))))

*ll. (add-systems y (1/6* (add-systems kO kl*2 k2*2 k3))))) ; ***

This new way of using parallelism to speed up the program is reminis-
ceilt of the arguments put forth in favor of the dataflow model of comput-
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1ing. In fact, this problem seens ideally suited for a data flow computation
model. With this idea in mind, we can explore an alternative implementa-
tion technique for this problem that maintains the same modularity in the
solution.

The new solution to the n-body problem takes a sort of vector pipeline
approach to the problem. Imagine a pipeline that consists of five kinds of
building blocks:

1. Straight segments where computations on individual elements of the

vector occur.

2. Forks where the vector proceeds in multiple directions simultaneously.

3. Joins where several vectors originating from one initial input reunite

and are combined to form an output vector.

0 4. Interactions where each element of a vector does a computation based
on the state of all of the elements of the vector as they arrive at this
point in the pipe.

5. Outputs where all of the elements of a vector are gathered together

and bundled back into Scheme format.

To use this kind of pipeline in solving the n-body problem it must be
able to perform three operations: scaling a single vector (scale-system),
adding several vectors (add-systems), and interparticle force calculations
(particle-force). Scaling a vector can be accomplished by examining
only the individual elements of the vector, and so a straight pipeline seg-
nient can be used. Adding several vectors is also done component by com-

join in the pipeline. Finally, interparticle force calculations require that
* each component of a vector know the state of all the other components of

the vector and, thus, is implemented using a pipeline interaction segment.
-} The pipeline solution to the n-body problem will be presented in three

parts. First, in Section 5.3.1, the procedures used to construct a pipeline are
described (the details of the implementation are presented in Appendix B).
Using these procedures we can then describe the pipeline based implemen-
tation of the procedures scale-system, add-systems, particle-force,
and runge-kutta-4 used in the original solution to the n-body problem.

. %
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But in order to use the pipeline, we must also be able to create the ob-
jects that propagate through the pipeline. This is a rather complicated
procedure, and is explained in Section 5.3.2. Finally, we can combine these
operations together to construct the remaining major part of the n-body
program, integrate-system. The implementation of this procedure is de-
scribed in Section 5.3.3, along with some observations about its behavior
compared to that of the previous version.

5.3.1 Building the Pipeline

There are any number of ways in which a pipeline could be constructed
to solve the n-body problem. The method described here is motivated by
two considerations. The first is that the overall modularity of the original
solution should not be changed. That is, given the choice of construction

-"..technique, the code for runge-kutta-4 and integrate-system should be
.. nearly unchanged. The second consideration is that the method should be

clearly applicable to many other problems as well. In fact, if the effort
is not too great, it would be nice to create a convenient abstraction for
constructing pipelines with arbitrary structure and operations.

The particular abstraction described below seems to meet these require-
ments quite well. Unfortunately, the amount of detail required to explain
the implemeitation is large enough that it merely distracts attention from
the more important points that this example is intended to demonstrate.
The implementation, therefore, is described separately in Appendix B.
What follows is a description of the overall nature of the pipeline and the
construction operations. The description provided here should be sufficient
for the purposes of understanding the remainder of this example.

There are two distinct ways to visualize the pipeline, and both are es-
sential to understanding its operation. The first way, which corresponds
to the "view from outside" is that it has an input port, one or more out-
put ports, and an overall physical interconnection. Specially constructed
vectors of objects (called pipe vectors) can be presented at the input port.
They progress through the pipeline and the objects in them are modified

h'. by operational portions of the pipe (straight segments and interaction seg-
in ents), and ultimately arrive at output ports. The output ports appear to

be a list of the pipe vectors that have arrived at the port in the order of
their arrival at this output port. Naturally, these output lists will appear

I%
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5.3. PARALLEL PIPELINING 143

to become longer and longer as more and more pipe vectors arrive at the
output port in fact, an attempt to examine the entire list will always
fail to terminate (take an infinite amount of time) since a new pipe vector
ighat arrive at any tinme.

The complementary view, "from inside," is that a pipe vector of objects
arrives at the input port. Each object in the pipe vector progresses inde-

* pendently through the pipeline - the pipe vector is largely a polite fiction
maintained for the benefit of outsiders. From the object's point of view the
pipeline is nothing but a list of messages that tell it how to mutate its own
state information as it passes through the pipe. The total existence of a

pipe vector consists only in the fact that each object knows the pipe vector
to which it belongs and each pipe vector knows how many objects com-
pose it and to which pipeline input port it has been assigned. Section 5.3.2
describes the messages that each object must be capable of handling, and
the implementation of the objects themselves. For the purposes of this sec-
tion, we need only know that operations to be performed on vectors passing

-p through the pipe are actually received by the individual objects within the
pipe vector. Thus, for any given pipe vector, it is critical that all of the
objects in that vector handle the same set of messages. It is these messages
that the pipeline construction procedures allow the user to specify, and that
consequently tailor the pipeline to a particular application.

The work of constructing the pipeline is supported by a package of pro-
cedures whose implementation is discussed in Appendix B. The following
paragraphs document the interface to this package, but the overall game
plan must be explained first. A pipeline is constructed by making an input
port (using make-input). This is then extended step by step: at each step
a procedure takes the previous end of the pipeline, creates a new pipe seg-
inent, joins them together, and returns the newly created segment (the new
end of the pipe). Outputs are created in a way similar to other segments

4 (by extending an existing pipe segment using add-output), although the
result is not itself a pipe segment. You can imagine the pipeline "growing"
from its input port toward its output ports with loose ends being extended
at each step, leading to a new set of loose ends until finally these ends are

capIped" with an output port.

(make-input)
Creates a pipe input segment. This is the way in which a pipeline
construction project normally begins. Vectors are injected into the

L 
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pipeline at this segment using start-pipeline, discussed in Sec-
tion 5.3.2.

(extend p m)
Given an existing pipe segment (p) that is currently a "dangling end"
of the pipeline, extend creates a new straight pipe segment that will

cause operation m to be applied to vectors passing through it. This
nlew pipe segment is now a dangling end, and is returned to the caller.
The messages that can be used for m are defined by the objects that
comprise the pipe vectors passing through this segment of pipe.

(fork n p)

Given an existing (dangling end) pipe segment (p), return a list of n
new dangling ends for the pipeline. As a pipe vector exits segment p
it is duplicated n times, and one copy of the pipe vector will continue

* along each of these output pipes.

(join m ps)
Given a set of existing pipe segments (dangling ends, ps), create
a new dangling end segment. Each of the incoming pipe segments
is extended into the new segment. As pipe vectors arrive from the
input segments they are combined using operation m to produce a
single outgoing pipe vector that proceeds down the newly created
pipe segment. As in extend, the operations that may be used are
defined by the objects which comprise the pipe vectors arriving at
this pipe segment.

(add-interactor p m)
Similar to the operation of extend, except that the object arriving at
this pipe segment will receive a record of the state of all the objects in
the sanme pipe vector as they arrived at this point. This permits each
object in a pipe vector to compute a new state based on the states of
all the other objects in the vector. In this example, add-interactor
is used for force calculations.

(add-output p)
Extend an incoming dangling end by creating an output port to "cap"
that segment. Thc value returned by add-output is a list of all of the
pipe vectors that arrive at the output port. In fact, this value is at

N
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all times a list whose final element is an undetermined placelholher. It
initially contains no elements at all (i.e. it is itself the undetermined
placeholder). As each pipe vector arrives at the output port the un-
determined placeholder is determined to be a cons of the new output
vector and a new undetermined placeholder.

Using these operations we can define our own specialized pipeline construc-
tion procedures that correspond to components of the earlier solution. The
first one, add-systems, is quite simple once we realize that it is used only
in the process of pipeline construction. Just as in the earlier solution it
received an entire system as input, in this version it receives existing "dan-
gling ends" of the pipeline. Just as it used to return a new system, now it
returns a new dangling end of the pipeline:

(define (add-systems .pipes) (join 'add pipes))

The next two construction operations are scale-system and particle-
force. These were originally higher-order procedures that produced output
procedures which transform systems. Correspondingly, the new versions are
higher-order procedures that produce pipeline constructors:

(define (scale-system amount)
(lambda (pipe) (extend pipe (list 'scale amount))))

(define (particle-force force-law)
(lambda (in-pipe)

(add-interactor in-pipe (list 'DERIV force-law))))

Notice that we have already begun placing requirements on the objects

that will comprise the vectors passing through the pipeline in our apl)lica-
tioli. We are requiring that the objects support three messages:

1. (scale anount) corresponds to the procedure scale-particle of
the earlier solution. The object is expected to multiply its state in-
formation by the specified amount.

2. add corresponds to add-particles. The object will receive a list of
states that it must add together to produce its new state.

3. (deriv force-law) has no direct counterpart in the earlier solution.
*d• The iobject will receive a list of states of other particles in its vector.

It olist conipute the state of its differential l~article as was (one in

the code for particle-force in Figure 5.3 on page 130.

%°%

I

% *" 
%

, . t W .%' 1W2iN 1 N 1'* 1



'a.

146 CHAPTER 5. EXAMPLES

In addition to these messages, which are specific to the application of the
pipeline, the pipeline construction procedures themselves require some ad-
ditional messages. These are described in Appendix B.

The final pipeline construction procedure is runge-kutta-4. As stated
above, the overall goal was that this procedure should not change. This
was not. unfortunatelv, possible:

N,'[ (define (runge-kutta-4 f dt)

... definitions of dt*, 2*, 1/2*, and 1/6* as in Figure 5.6 ...
(lambda (y) y is a PIPE

(define ys (fork 5 y))
(define kOs (fork 2 (dt* (f (1st ys)))))
(define kis (fork 2 (dt* (f (add-systems

(2nd ys) (1/2* (1st kOs)))))))
(define k2s (fork 2 (dt* (f (add-systems

* (3rd ys) (1/2* (1st kls)))))))
(define k3 (dt* (f (add-systems (4th ys) (1st k2s)))))
(add-systems (Sth ys)

(1/6* (add-systems (2nd kOs) (2* (2nd kis))
(2* (2nd k2s)) k3)))))

The changes, however, are syntactic. If you compare this procedure
with the one shown in Figure 5.6 on page 132 you will notice that the only
differences arise from the need to copy the vector (using fork) when it
arrives at the incoming pipe segment. Subsequent references must specify
an appropriate branch. The procedures 1st, 2nd, etc. are used here (as
well as later) for the names of the appropriate selectors from the list of
branches. This requirement arises from the fact that a single variable can
he referenced ini many places in a program, but the pipeline requ; es a
se)arate copy for each reference.

Notice that. just as the original version of runge-kutta-4 was higher-
orler. so the new version is also. That is, runge-kutta-4 returns a pro-
ce.dure that viII extend a dangling pipe end (y) into a newly constructed
pipe segment and return the dangling end of this new pipeline.

5.3.2 Pipe Vectors and Objects in the Pipe
Having labored to understand the construction of the pipeline we can turn
to the second task: making things to put into the pipeline. There are,
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in fact, three separate problems to address here. We must construct the
pipe vectors (make-pipe-vector), construct the objects that comprise the
vectors (make-object), and we must start the vectors down the pipeline I
(start-pipeline). Of these, the most complicated one, and most infor-
mative, is the construction of the objects themselves. This operation is

4 described in detail in this section, while only an overview of the others is
provided here (the implementation and details are part of Appendix B).

As mentioned earlier, vectors in the pipeline are for the most part a I
polite fiction maintained for the benefit of the "outside view" of the pipe.
The real work is performed by the objects that make up the vector. A pipe
vector, in fact, is a message receiving object that accepts two messages:
size returns the number of objects in the vector, and messages returns
the list of messages (i.e. the pipeline input port) to which that vector has
been assigned. These messages are used only internally to the pipeline itself,
as shown in Appendix B. Once the objects belonging to a vector have been
created using make-obj ect, the pipe vector itself can be created by pa~sing
a list of the objects to make-pipe-vector. Make-pipe-vector does just
a tiny bit more than create the message receiving object: it informs each
object that it now belongs to this vector by a mechanism that will be
described along with the details of constructing objects.

Once a pipe vector has been constructed, it can be injected into a specific
pipeline input port using start-pipeline. As shown in the discussion of
Appendix B this amounts to nothing more than telling the vector which
message list its objects are to examine.

With this background and overview, it is time to discuss the star players
in the example: the objects that flow through the pipe. As has been men-
tioned already several times, the objects are expected to accept a message
from the pipe, process it, and continue on to the next message. All objects
must be able to handle a set of messages that are used by the pipeline con-

4 struction operations of Appendix B. In addition, they can be customized
to accept additional messages appropriate to a particular application of the
pipeline. In the n-body problem, for example, these messages are add, de-

S.riv, and scale as discussed in Section 5.3.1. In general, an object consists
of some internal state information and a group of message handlers that
imutate this state in response to particular messages received by the object.

So far, nothing has really changed from the original solution, except to
state that we are dealing at each stage with a vector representing a system

.4 I
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of particles flowing through a pipeline. But now for the new twist: each
object in a pipe vector is represented not by a static procedure object (as

.' would be the ordinary practice in Scheme) but rather by an active task.
Thus, the pipeline actually operates in parallel on all objects within the
pipe at any instant. The objects proceed independently along the pipe
until they reach a fork, join, or output segment. At a fork, each object
is replicated (once for each output of the fork) creating a task for each
output direction of the fork - thus the degree of parallelism increases at
these points. At a join, objects wait until all f their partners arrive on the
other input paths and then a single object is created to travel along the
output path. At an output, all of the objects from a single input vector
are gathered together and then are released as a unit. The pipeline system
is, in fact, built out of active objects flowing through a statically created
pipeline.

This new approach has several advantages over the original. First, by
creating processes only when an object is created or at a fork in the pipeline
we can amortize the cost of process creation over the straight line length
of a pipe. Thus operations that would not merit the creation of a task
for each particle in the original implementation can be executed in parallel
without remodularizing the program to combine them into larger (hence

longer duration) operations.
v, Furthermore, since each object is an independent task traveling along

the pipeline, the system need not idle while one object is undergoing lengthy
processing. The objects do not travel in lock-step through the system as
they would in a traditional vector processor, and it would be simple, in fact.
to allow the pipeline to contain conditional branches or loops that would
affect only some of the objects in any given input vector.

To make the job of creating active objects for inclusion in pipeline vec-
tors simpler, make-object creates the appropriate task and handles the
standard messages required of every object (see Appendix B for a descrip-
tion of these messages). In order to make an object that has its own state
and specialized messages we merely specify the initial state of the object, a
procedure that will handle object-specific messages, and a procedure that
will copy the state of the object. As explained in Section 5.3.1 the objects
in our examnple must handle three kinds of messages.

Before describing the code for make-object (shown in Figure 5.11) it
will help to see' how it is used in this particular example. This will sharpen
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our understanding of its specification, and thereby make the actual imple-
mentation considerably easier to absorb. Because the pipe vector (which
propagates through the pipeline) corresponds to the systems of the earlier
Solution, we will require two kinds of objects. These correspond to the ele-
inents of a system: the time (whose state is a simple number), and particles
(with a more complex state including name, mass, position, and velocity).
Time objects are simple to create, given make-object:

(define (make-time-element time)
(define (time-messages time m arg)

(cond ((eq? m 'ADD) (apply + arg))
((eq? (1st m) 'DERIV) 1) ; DERIV: dt/dt
((eq? (1st m) 'SCALE) (* time (2nd m)))))

(make-object time ; Initial State
(lambda (x) x) ; Copy State
time-messages)) ; Message Handler

Notice the way the message handler is expected to operate. It will
receive three arguments: the current state of the object (time in this ex-
ample), the message to be processed (m), and a single additional argument
(arg). It is expected to update the state information and return the new
state. It may do this by side-effecting a data structure or by creating a new
one depending upon implementation considerations.

The additional argument, arg, has three different meanings depending
upon which operation was used to create the pipe segment sending the
message:

Extend
The argument is always '0 . Any information needed to process the
message must be included in the message itself and the state of the
object. For this reason scale-system (on page 145) includes the
scale factor as part of the message.

Join
The argument is a list of the states of corresponding objects arriving
at the junction.

S . Interaction
The argument is a list of the states of all the objects in the same
v"ctor as this object.

15,,
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For particles, the state is the same as the data structure used in the se-
rial implementation of particles (a standard Scheme vector). The defini-
tion of scale-particle! and add-particles! (used in the code below)are
omitted; they are simply side-effecting versions of the procedures scale-
particle and add-particles shown in Figure 5.3'.

(define (make-particle-element particle)
(define (interact force-law me all)
(make-particle (name me) 0 ;name and dm/dt
(velocity me) ;dx/dt

(reduce add ;dv/dt
(map (lambda (other) (force-law me other))

(cdr all))))) ;Ignore time!
(define (particle-messages state m arg)

(cond ((eq? m 'ADD) (add-particles! state arg))
* ((eq? (1st m) 'SCALE) (scale-particle! state (2nd in)))

((eq? (1st mn) 'DERIV) (interact (2nd mn) state arg))))
- -(make-object particle ; Initial State

vector-copy ; Copy State
particle-messages)) ; Message Handler

The core of the procedure Make-Object is shown in Figure 5.11. The
code to handle most messages has been omitted since it is quite straight-
forward. Only three messages are handled by the code shown in the figure:

e Procedural messages are used in the implementation of the pipeline,

as shown in Appendix B. An object (i.e. task) responds to a pro-
cedural message by calling the procedure and supplying the object's

* own message handler. This allows the procedure to effectively send
multiple messages to the object without requiring the creation of a

IL complicated and lengthy pipe segment.

* Halt indicates that the object (task) should terminate immediately
01 It is used both for the output port of a pipeline and for pipeline joins.

See Appendix B for examples.

"The use of (cdr all) to ignore the time of the system when doing the interparti-
c force calculation corresponds to the construction of the pipe vector in the procedure
serial->pipe-system, shown on page 154.
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User messages are those not required of all objects. They are han-
dled by calling the user supplied message handler (for example, the
procedure time-messages for time objects created by make-time-
element). They pass along the current state of the object, the mes-
sage, and any additional argument that may have been specified. The
user's message handler is expected to return the new state of the ob-
ject.

.< One final note before diving into the implementation details. In addition
to the job of creating a task for the object, make-object returns a Scheme
procedure that can be used to activate the task. The task is created in
such a way that it will touch an undetermined future almost immediately
after creation, and hence will become inactive. The procedure returned by
make-obj ect allows the task to become active once the object is made part
of a pipe vector and the pipe vector is placed in the pipeline.

The following items are keyed to the implementation of make-obj ect
shown in Figure 5.11.

-. 1. The procedure make-placeholder creates a placeholder with no as-
sociated task. As a result, any task that touches it will hang until
some other task explicitly gives it a value (using determine!). It
is used here as the initial list of messages to be processed by this
object so that the task associated with this object will wait until it
is inserted into a pipeline. This conveniently implements a "start
gate" to hold off execution until a selected time. It receives a value
somewhat indirectly, but the start of that process is in step 7.

9. This clause handles procedural messages by providing them with the
message handler itself. The task that implements the object exe-
cutes the procedural message and thus sends itself messages before

• proceeding on to the next message in the pipeline.

3. (See also step 5.) The procedure kill-task is not shown. It removes

the task that implements the object from the list of active objects

in the system and then releases the processor to other tasks, "coin-
e, mitting suicide." This list of active objects is essential to the correct

operation of the pipeline. As described in Section 3.4, a task contih-
ues to COml)ute only as long as the placeholder which is its goal is

*.
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(define (make-object state copy-state user-code)

(let ((my-cell)
(vector)

(obj ect-number)
(the-messages (make-placeholder))) (1)

(define (loop message-list)
(define (standard-handler m #!optional arg)

(cond
*((procedure? m) (m standard-handler)) ; (2)

((eq? m 'HALT) (kill-task my-cell)) " (3)
%" ... more standard message handlers ...

(else ; (4)

(set! state

(user-code state m (if (unassigned? arg) '() arg))))))

(standard-handler (car message-list))
(loop (cdr message-list)))

(set! my-cell ; (5)

(make-task (lambda () (loop the-messages))))

(lambda (the-vector number messages) ; (6)
(set! vector the-vector)

(set! object-number number)
(determine! the-messages messages)))) ; (7)

Az See text beginning on page 151 for footnotes.

Figure 5.11: Creating Vector Elements
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referenced by the system. But the pipeline works by using tasks that
have no goal placeholder. Thus the pipeline operations themselves
maintain a globally visible data structure (a doubly linked list) of ob-
jects still in the pipe in order to guarantee that they will remain in the
system after garbage collection. The variable my-cell is initialized
when the task is created.

4. Messages other than the standard ones are handled by invoking the
userIs procedure user-code.

3. (See also step 3.) The procedure make-task is not shown. It creates
a task with no goal placeholder and places it on a globally accessible
data structure so that the task will not be garbage collected. A
pointer to the appropriate part of this global data structure is stored
in the variable my-cell for use when the object receives the halt
message. This task begins immediately by calling loop to process
messages from the-messages. Recall from step 1 that this is initially
a placeholder with no value, so that the task runs for a very short time
before becoming inactive while waiting for the messages to arrive.

G. This is the procedure actually returned from the call to make-obj ect.
It is used only by make-pipe-vector (see Appendix B), and specifies
the vector to which this object belongs, the offset within that vector,
and the messages which that vector is to process.

7. The task associated with this object will be able to proceed after the
call to make-pipe-vector since this determine! operation supplies
a value for the placeholder described in steps 1 and 5.

At this point we have implemented almost all of the pieces we need to make
th, example work. We can create objects representing particles (make-
particle-element) and times (make-time-element), combine them into
pipe vectors representing systems (make-pipe-vector), and start them
throgh the pipeline (start-pipeline). The only remaining job is to
put thee pieces together to provide the simplified interface, integrate-
system.
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5.3.3 Integration, Pipeline Style

The procedure integrate-system is responsible for initializing the pipeline
and keeping it busy. Notice that integrate-system is defined (in Sec-
tion 3.2) to return a standard stream of results, beginning with the initial
state of the system. The solution presented here retains this interface, al-
though doing sO is slightly more difficult than in the earlier implementation.

Before proceeding to describe the new implementation of integrate-
system there are two small jobs to perform. First, review the implemen-
tation of integrate-system shown in Figure 5.6 on, page 132. The new
version will be similar, but differs in some significant ways. Second, let's
review the pieces we have in our newly constructed pipeline arsenal.

From Section 5.3.1 (and Appendix B) we have the standard pipeline
constructor procedures make-input (for creating an input port) and add-

*output (for extending a pipe into an output port that appears as an ever-
growing list). Using these, we implemented (in Section 5.3.1) some proce-
dures that construct pipeline segments specific to our needs. Particle-
force takes a force law (in our case we will use the same gravitation
law used in the solution of Section 5.2) and produces a procedure that will
extend an existing pipeline by fitting on a new segment that performs the
appropriate interaction calculation. Similarly, Runge-kutta-4 takes such a
pipeline extender procedure and a time step and returns a procedure that

1will extend an existing pipeline into an integrator pipeline.
We also have some procedures from Section 5.3.2. \Ve will use these to

create two new utility routines. The first takes a system of particles in the
form used in Section 5.2 and constructs a )ipe vector from them:

(define (serial->pipe-system serial-system)
% (make-pipe-vector

(cons (make-time-element (time serial-system))
Z_ (map make-particle-element (particles serial-system)))))

This is simple enough. It converts the time and particles from the se-
rial system into the corresponding time and particle objects for the pipeline

sing make-time-element and make-particle-element of Section 5.3.2).
These are then combined together into a single pipe vector using make-

pipe-vector. Notice that it is at the time when this procedure is called
th;,t iiot of the active objects (tasks) are created (the remainder are cre-
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ated when these objects arrive at the forks in the pipeline created by runge-
kutta-4).

The inverse operation is even simpler. The entry that appears in the
list at the output port of a pipeline when a pipe vector arrives at the port
is just a list of the state information of the objects that were part of the
pipe vector. Since at the input we made the time object be the first entry
in the pipe vector, it will be the first entry in the output as well:

(define (pipe->serial-system pipe-system)
(make-system (car pipe-system) (cdr pipe-system)))

The only other operation we need was described in Section 5.3.2 and
shown in Appendix B. This is start-pipeline which requires a pipeline
input port and a pipe vector, and merely inserts the vector into the pipeline.

With these two jobs completed we can discuss the implementation of
integrate-system shown in Figure 5.12. Notice that the outline of the

* pipeline version of integrate-system and the version in Figure 5.6 are
roughly the same. The new version is more complicated, but it still consists
of two parts. The first constructs the pipeline and starts it operating. The
second is a procedure to compute subsequent values of the system state.

The differences between the two versions arise from two sources. In
the pipeline version, it is necessary to construct the actual pipeline when
integrate-system is called, since it is only then that all of the compo-
nents are available. Furthermore, two different parts of the pipeline must
be located for future use (its input and output ports). These make the
construction somewhat more cumbersome than in the earlier version. It is

further complicated by a technical point: it would be undesirable to allow
the original output port of the pipeline to be visible once the value of the
system after the first time step has been extracted. If this were done, then
the garbage collector would "see" the potentially infinite list of states of
the system over time - instead it is maintained in a local varirble that be-

* comes inaccessible after the first call to next. This is a standard precaution
used in Scheme when dealing with potentially infinite streams.

The second difference is that the pipeline must be started and kept busy.
This is done with the two calls to start-pipeline. When integrate-
system is called, the initial state of the system is fed into the input port

* . o f the pipeline. Every time a result is extracted from the system (by a call
to next) the result is also fed back into the pipe so that the pipeline can
begin computing the system state at the next time step if it is called for.

,%% %
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(define (integrate-system initial-state dt)

(define integrator-maker ; (1)
(runge-kutta-4 (particle-force gravitation) dt))

(define input (make-input))

(define (next output-list)

(let ((next-out (pipe->serial-system (car output-list))))

(start-pipeline ; (2)

input (serial->pipe-system next-out))

(cons next-out ; (3)

(delay (next (cdr output-list))))))

(let ((pipeline ; (4)

(add-output (integrator-maker input))))

(start-pipeline ; (5)

*input (serial->pipe-system initial-state))

(cons initial-state ; (6)

(delay (next pipeline)))))

Notes:

1. Integrator-Maker will take an input pipeline "dangling end" and extend it into a
newly constructed integration pipeline.

2. As each result is pulled from the stream returned by integrate-system the output
system is turned around and started back down the pipeline. This allows the

-. pipeline to overlap computation of the next answer with the handling of the current
- . answer. See also comment 5.

3. Create the actual item to be added to the stream of answers. As in most stream
processes, this is a cons of the currently available answer and a promise to compute

*, the next one.

4. Create the complete pipeline by taking the input port (input), extending it with
an integration pipeline, and capping that with an output port,

S5. Start the pipeline computing the state of the system one time step into the future.
See also comment 2.

(V. '[he result returned by integrate-system is the current state and a promise to
compute the next state.

S. Figure 5.12: Pipeline Version of Integrate-System

S.
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This implementation, in some sense, has a bit of speculative computa-
tion. It computes one time step ahead of what has been requested. Notice
that this is not true of the earlier solution, and as a result performance
of the two systems is somewhat hard to compare. To further complicate
the measurement problem, notice that integrate-system in the pipeline
approach is responsible for constructing the pipeline. Since the pipeline is a
static structure it seems hardly fair to count this cost as part of the compu-

tation (since it is amortized over the total number of time steps ultimately
performed).

If the intention of the program is to continue the calculations indefi-
nitely into the future (rather than explicitly by demand), we could have
constructed a looping pipeline by placing a fork in the pipeline after the
integrator segment. We would then feed one end of this fork into the out-
put port and "weld" the other back to the pipe segment leading into the
integrator. This would lead to unbounded speculative computation, since
the objects in the pipeline would then be able to loop forever. The im-
plementation shown here would need some modifications to support this
possibility.

5.3.4 Parallel Pipeline: Performance

Unlike the n-body programs in Section 5.2, this pipeline implementation
has performance characteristics that are difficult to compare directly with
the serial version. In attempting to make this comparison, a number of
issues arise that are interesting in their own right. The results reported in
this section reflect only a cursory attempt to understand the performance
of this pipeline emulation - they are intended (in the same vein as the
examples themselves) to illustrate how such measurements can be made.
This highlights the more important point that MultiScheme provides a good
],ase for emulating other systems, as discussed in Section 5.4.

First. the good news. The program presented here was able to solve the
problei a factor of 6.9 times faster than the original serial version - run-
miug somewhat faster than the final version of the program of Section 5.2,
although slower than the modified version that motivated this approach'

7 Because of machine availability, the measurements in Section 5.2 were taken separately

from those in Section 5.3. 'The systems used to collect the measurements differed in the
total numb,-r of physical processors and amounts of memory, although the experiments

I%
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By adding measurement hooks to the pipeline implementation of Ap-
p)cidix B, it is possible to gain more detailed insight into this approach.
For example, running one sample data set through the pipeline to perform

! t8

a single integration step yields the following breakdown of processor time'

Time Description
(kticks)

Pipeline Message Handling
424.1 Handling the pipeline join message.

12.0 Handling the pipeline fork message.

112.6 Handling the pipeline interact message.

0.3 Handling the pipeline output message.

User Message Handling
(includes time spent waiting for value of placeholders)

533.2 Calling user supplied message handlers from straight
pipe segments.

419.1 Calling user supplied handler as part of the join op-
eration.

110.6 Calling user supplied handler as part of the interact

operation.

0._ HandigePipeline Internal Utilities
5.8 Searching and inserting into tables, part of the join,

output, and interact operations.

7.3 Busy-waiting on locks, part of the table operations
and process creation and removal.

were performned using the same numbers of active processors. The speed-up measurements
are ratios of measurements, both of which are taken from the same system. These ratios,
therefore, should be comparable even though the raw data feom which they are calculated
is not.

* 41.e timing units here are "kiloticks," 1000 times the amount of time required to call
and return from the procedure x defined by (define W 3). This time unit is relative
insensitive to the actual machine on which the measurements are taken. For comparison,

seAppendix C.

a%
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__ Pipeline*. Inera Ut ities . I



'pl

5.3. PARALLEL PIPELINING 159

In addition, the real time required to compute the new system state
was 16.5 kiloticks. Since the computation was done using 16 processors.
this indicates that a total of 264 kiloticks of CPU time were available.

" The measured idle time, totalled across all processors, was 154.1 kiloticks.
Thus the actual amount of time spent computing was 264.0 - 154.1 or 109.9
kiloticks.

W\e can condense this information to gain an estimate of the cost of
implementing the actual pipeline operations. For example, to compute the
percentage of time spent in the overhead of a join operation, we take the
424.1 kiloticks required for all joins and subtract the amount of time spent
in the user's code that actually combines the incoming data, a total of 419.1
ticks. The pipeline overhead is thus 50 kiloticks, or a total of 4.5% of the

-: CPU time. Performing this calculation for the other operations yields the
following picture of processor utilization:

% Time Description
10.9 Pipeline fork operations

4.5 Pipeline join operations

1.8 Pipeline interact operations

0.2 Pipeline output operations

82.6 User Program

The S2.6% of processor time available to the user program can be further
subdivided. While actual measurement of the amount of time spent in user
code (as opposed to, for example, the MultiScheme scheduler and the cost
of message dispatching) is a difficult task, we can still make a reasonable
estimate. Since the serial version took 732.1 kiloticks to execute (if we
disregard garbage collection which did not occur in the parallel case), we
can assume that roughly the same amount of time was required by the

• _pipeline execution of the program. This 732.1 kiloticks comes to 66.6% of
the total CPU time spent in the program, leaving 16.0% for unallocated
overhead.

Finally, as can be seen from this table, 17.4% of the total time was
spent in the pipeline operations themselves. Yet from the previous table

•. (under the heading "pipeline internal utilities) only 5.3% of the total time
is spent manipulating the tables used for matching objects arriving from
different branches of the pipe (at joins and interaction points). At the same

.5
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time. G.6% of the total time goes into serializing access to data structures,
indicating that the creation and destruction of tasks represents a more
serious problem than the matching itself.

5.3.5 Parallel Pipeline: Summary

This final example has served to demonstrate three points. It clearly shows
the independent utility of tasks, placeholders, and the determine! oper-
ati( ui. But notice that tasks (without goal placeholders) are used to i>-
phiinie t the objects that propagate through the pipeline (step 5 of make-
object. on page 153). On the other hand, placeholders (without tasks) are
use(ld to function as -gates" that allow tasks to be conveniently activated
using the determine! operation (steps 1 and 7 of make-object).

Second. while the details have not been shown, notice that the decision
0 to use tasks without specific computation goals makes the garbage collector

a danger to the computation. Special arrangements (hidden inside make-
task and kill-task in steps 3 and 5 of make-object) are required to
maintain a global data structure that specifies the tasks that are in the

•" pipeline lest they be removed at the next garbage collection. Unfortunately,
this (hata structure can retain tasks that are no longer useful. For example,

V- if the user stops all tasks using pause-everything and then discards the
tasks which were running (an operation that is particularly convenient since
it correspondls to the standard "abort" interrupt handler) the data structure
%,will still contain references to the tasks. These tasks will not drain processor
re'sources (they are no longer candidates for processor time) although the
data structures that sui)port themi will remain in memory.

But most importantly this example shows that MultiScheme's packaging
(,f parallel com iptation allows a radically different approach to parallel pro-
-rahimminig to be embedded within the language. To emphasize this point, it
I, worth reviewing this solution to the n-body problem from this particular
point ()f view. Bear in mind that the pipeline proced'ires of Appendix B
toL,,etlwr with make-obj ect of Section 5.3.2 represent the interface to the
eilledd(l cop)tut ationi model.

T.ingi these, we easily created four procedures that construct a pipeline
* ,in a 1,' fo)r the particular problem under consideration (Section 5.3.1). In

to tailo r thli operations of the pipeline to our own ap)lication. we
a,[I , , two more procedures that construct objects with properties specific

,".
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to our application (Section 5.3.2). We created two procedures to convert
-et wee(.n the serial representations of particle systems that the user normally
'hals with ant the pipe vectors which propagate through the pipeline (Sec-
ti, 53.3). Fiially, we wrote the only complicated procedure (integrate-
system; whi,'h serves to keep the pipeline full and convert its results into

9iiit r e,1tiirA representation . In fact, the total amount of code needed
to - t' f b., pi(,,lei using this interface amounts to less than two pages of
te xt, andi, nieli of this is nearly unchanged from the original implementa-
t ii .

This w,)rk, once the pipeline interface is specified, is not difficult. In
fact, it seens likely that anyone with a reasonable familiarity with Scheme
and the application itself (i.e. the use of a Runge-Kutta integrator to solve
the u-body problem) could be expected to construct the solution. The

41 01e~ildiuig of the pipeline Is a more signiificant project as is only to be
O expecte(d. Yet, as can be seen from the code in Appendix B, even this

pro)jct Is not hard once the interface is defined.

5.4 Other Methodologies

This section shows how three additional parallel-programming methodolo-
gies can be expressed in MultiScheme. Section 5.4.1 briefly reviews the
extensions to Lisp proposed by Gabriel and McCarthy[23] for introduc-

. ing parallelism, and then presents a set of syntactic rewrite rules (macros)
-hat provide these same constructs within MultiScheme. Section 5.4.2 out-
lines a common approach for command-based (as opposed to expression-
based) languages, the fork and join construct. Again, this is easily embed-

* ded within MultiScheme, although the "linguistic fit" of these constructs
is rather poor in an expression-based language like Lisp. Finally, Sec-
tion 5.4.3 discusses the approach to parallelism advocated by BBN for the
C langiiage[S6].

1ln fact, this final procedure is probably a sufficiently common type of operation that
it would be provided as a part of the interface to the pipeline package in a more developed
irnplernentation.

NK I ,
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5.4.1 QLanbda

Ii the siinier of 1084, prior to the work oin MultiSchemile, Gabriel and
NtcCarthiv suggested it trio of extensions~ to Lisp[23] intended to support
parallel programmiiing. Ini their language, the special formis lambda aid
let have iatching counterparts, qlambda and qlet, that allow tihe iiser

to .pe cify lio)Nv eagerly the bodly of the expression is to be evaluatedl. The
batsic mlodel is onle of indlependent tasks communicating by a queue of iiipt

arguieits.Evaluation of a qlambda expression leads to a miew task runniiing
liiilepeiideiitl . A call to this task is performed by evaluating the argiieit s
toi the task and putting themi onl the task's queue. Evaluation of at ql.et
allowvs the values of the bound variables to be calculated in parallel wvith
the execution of the body of the qiet expression.

Z Each of these constructs call operate at three eagerness levels (mx' nmes
* for the levels. not theirs): none, providing behavior identical to the standard

(sequential) special formis: normal, creating a task that waits for all of the
argument values to arrive before proceeding on to execute the body in
parallel with the call to it; or eager, creating a task and executing tilt
body in parallel with the task pausing only wvhen it attempts to reference
argiumients that have not yet arrived. Gabriel and McCarthv proposed at
similar. but irore complicated, extension for catch and throw.

In 'March of 1085. with the help of Byron Davies (a member of the group
at Stanford that was developing QLisp), a set of mi-acros was developed
for converting programis written uising qiet and qlambda into standard
NiultiScheine programs. No support was provided for qcatch, since its
de(fiitin was still under active dlevelopment at the time.

The results of this work, somewhat revised, are described belowv. Each
of the six cases (tw,,o special forms,, each with three eagerness values) is
(les-cril.)ed. Ini QLisp. the amnount of eagerness may le specified either syii-

tact icallv (by using a particular constant for each of tile three values) or at
ro.:iiut 1inle (bly uising a non-constant exp~ression ). The rewrite rules exlpaild as
shown if the aniount of eagerness is constant. Otherwise, they exlpaiid into
a runt i ile (,ase( dispat ch to tile correctly exp~anded version.

S

Converting qlet Expressions

A qlet expression has the form

,A

0

I-e.
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(qlet <e> (<bindings>) <body>)

*- where <e> specifies the amount of eagerness and each <binding> consists
of a variable and an expression. To make the explanation simpler, we will

- "- expand a particular qlet expression:

(qlet e ((a (f 3))
(b (g 4)))

(cons a b))

If the eagerness is none, this converts to the standard let special form:

(let ((a (f 3))

(b (g 4)))
(cons a b))

If the eagerness is normal, then the intent is to evaluate the expressions
* in the <bindings> in parallel. When all of these values are available, the

body can then be evaluated:

(let ((a (future (f 3)))
(b (future (g 4))))

(touch a)
(touch b)

(cons a b))

Finally, an eagerness of eager indicates that execution of the body should
proceed concurrently with evaluation of the expressions in the <bindings>:

(let ((a (future (f 3)))
(b (future (g 4))))

(cons a b))

Notice that in this eager case the value (a cons cell) may well be returned
to the caller long before the values of (f 3) and (g 4) are computed. Since
cons does not touch its arguments the cell will contain two placeholders
that ultimately receive these values.

Converting qlambda Expressions

• . A qlambda expression resembles a standard lambda expression:

(qlambda <e> <formals> <body>)

%a,.
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again, <c> is the eagerness. An eagerness value of none leads to operation
just like the standard form:

(lambda <formals> . <body>)

The remaining cases are considerably more complex, and the published
description ([23]) is somewhat less clear about the exact semantics. The
description given here corresponds to the best understanding we were able
to arrive at after consultation with members of the Stanford project.

For an eagerness of normal, the intent is to create a free-standing task
when the qlambda expression is evaluated. This task repeatedly tries to
read a set of arguments from an input queue and produce a corresponding

-.% ,result. Vhen the call occurs, all of the arguments are evaluated and their
* values are placed on the task's input queue. The caller receives a place-

holder for the value to be computed by the task and continues on past the
call, pausing only if it touches the result of the call before the task has
computed the answer. This can be implemented using atomic queue opera-
tions enqueue to add an item to an existing queue and dequeue to remove
an item or suspend the caller if no data is available". The code required
is shown in Figure 5.13.

This code deserves a little explanation. The work of a qlambda occurs
at two different times. When the qlambda expression itself is evaluated to
form a "process closure" the argument queue is created and the independent
task begins running. The process closure itself is created (by evaluating
the lambda expression in the above expansion). When this process closure
is applied to arguments both the arguments and a location (placeholder)
where the result should be stored are added to the queue of work for the
task.

The task, of course, is just a simple infinite loop. It attempts to read an
% item from its queue. When it succeeds, it will receive both the arguments

and a placeholder into which to store the result. It then computes the
required function and stores the result away using determine!. Since the
placeliolder associated with the task is lexically visible (as the value of

* the-task), it will continue running as long as the process closure remains

'-Atonic enqueue and dequeue operations can in turn be written using the built-in
atomic operations set-car-if-eq?! and set-car!.

p

"Y*%
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(qlambda normal <formals> <body>)-'.+

(let ((argument-queue (make-empty-queue)) ; (1)
(the-task))

(define (thunk) ; (2)

(let ((arglist (dequeue argument-queue)))
(determine! (car arglist)

(apply (lambda <formals> <body>)
(cdr arglist))))

(thunk))
(set! the-task (future (thunk))) ; (3)

* (lambda <formals> ; (4)

(let ((answer (make-placeholder)))
(enqueue argument-queue

(list answer . <formals>))
answer)))

Notes:

1. Argument-Queue is filled by callers and emptied by the free-running task. Each
entry has a placeholder for the result to be returned as well as values for the
arguments.

2. Code for the free-running task: dequeue a set of arguments and result placeholder,

calculate, store the result, repeat forever.

3. Start the task running when qlaznbda is evaluated.

4. Code for caller: create a placeholder for the answer, enqueue arguments and place-
holder, return the placeholder.

Figure 5.13: QLambda with normal Eagerness

.?
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*.' accessible. The garbage collector will remove the task when the closure
becomes inaccessible

The final case, an eagerness value of eager, closely resembles the pre-
vious case. There are two differences: the task begins executing the body
iii,,nediately when the qlambda expression is evaluated (rather than wait-
iii' for arg iients to arrive from a call), and the task pauses only if it has
produced an answer that has not been requested yet. This latter case is
rather strange; it can arise only if the body of the qlambda does not touch
anv of its arguments. This problem is handled in the code shown in Fig-

MrT 0.14. leading to a somewhat unusual implementation. In the program
shown here, the free-running task begins operation as soon as the qlambda
expression is evaluated, but pauses when it attempts to use determine! to

store its answer. It can proceed only when some task has called the closure
and therefore supplied a placeholder for the result. At the same time, a

6 caller iaust pause until the free-running task has created an entry on its
(1ticue into which arguments for the call can be placed. This last constraint
does not pernit a caller to simply leave the arguments on a queue and pro-
ceed -n odifying the program to permit this, however, is simple enough:
simply enclose the body of the lambda expression in a future!

5.4.2 Fork and Join

Another common language construct for parallel programming is the fork
and join found, for example, in Simultaneous Pascal[12]. This construct
is used in a command-oriented language to indicate that the commands
between the fork and join (which must nest in the same way that begin
and end nest) are to be executed in parallel. When they have all completed
execution, control continues past the point of the join. Another common
variation on this control construct is do-all, which executes a single block
of code with respect to each index in a given range (for example, all the
subscripts in a one-dimensional array). A more complicated construct oper-
ating in a similar manner is the coenter of Argus[39]. The implementation

'[here is a race condition here that allows the task to disappear after it has
received its final set of arguments hut before computing a final value. One so-
lution, due in part to Halstead, is to change the final line from answer to
(future (begin (touch answer) answer))). Explaining how this works is left as a
ciallenu , to the realer.. wiarning: this lay not work if you have a good conipiler!

%V
V%% 1 I%
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(qlambda eager <formals> <body>)--

(let ((argument-queue (make-empty-queue)) " (1)
(the-task))

(define (thunk) ; (2)
(let ((args (cons (make-placeholder)

(make-list (length < formals >)
make-pl aceholder))))

(enqueue argument-queue args)
(let ((answer (apply (lambda <formals> . <body>)

(cdr args))))
(determine! (car (car args)) answer)))

(thunk))
(set! the-task (future (thunk))) ; (3)

-- (lambda <formals> ; (4)
(let ((answer (list (make-placeholder)))

(args (dequeue argument-queue)))
(determine! (car args) answer)
(for-each determine! (cdr args) (list. < formals >))
(car answer))))

Notes:

1. Argument-Queue is filled by the free-running task with placeholders where it will
look for values of arguments and where to store a result. It is emptied by callers,
who store the values of arguments and where they want the result stored.

.5 Code for free-running task: make an entry on argument-queue, calculate, store
result, repeat forever. Notice that car touches its argument, so this loop pauses
after calculation until a call specifies where the result should be stored.

? 3. Start the free-running task going when the qlambda is evaluated.
0
%ir 4. "Process closure" returned to the user: dequeue an entry from argument-queue, fill

it with values of arguments and a placeholder where the answer should go, return
this placeholder.

Figure 5.14: QLambda with eager Eagerness

S.

% "

Se

6;. 4 7.~



- - i , ,, U.. r 4 .7 - -, . T . . r -4 ,,r " ' V WV- , -' | .: -1 r - , fl .- % -: -q = ,

~~1.

I6S CHAPTER 5. EXAMPLES

of this control structure in MultiScherne is simple enough: simply wrap
each cominiid in a future, gather a list of the resulting placeliolders, arid
touch them all.

A slightly more interesting control structure, where precedence con-
straints are explicitly indicated, can be achieved by using placeholders to
act as triggers. Thus, each precedence constraint is represented by a place-
, hloer. When the constraint is satisfied, an explicit determine! operation

is performed by the task that has satisfied the constraint. Similarly, any
block of code that must wait for a constraint to be satisfied merely touches
the appropriate placeholder. This organization can be used conveniently in
situations where it is easy to predict which block of code is responsible for
satisfying each constraint. This kind of precedence handling is not directly
r'lated to the miore powerful "constraint-based systems" familiar to the ar-
tificial intelligence commnity. These systems do not possess this kind of

pjredictalbility, so the trigger mechanism will not make the job of designing
such a constraint-based system significantly easier.

5.4.3 Uniform System

One final model for writing parallel programs is the Uniform System[56), a
methodology advocated by BBN for use on the Butterfly computer system.
The essence of the method is to devise a "task generator" that runs as a
serialized critical region and provides callers with information about what
job to perform next. In addition, users supply a main program that is run
simltaneously on all available processors. Typically the main program is a
loop that calls a task generator, does the work specified, and asks for more
work - that is, it supports precisely the polling model of synchronization
discussed in Section 1.3.2.

The proponents of this methodology point out that it can be made
highly efficienit by carefully identifying data shared between processors
(used by the task generators) and data which can be kept local to a partic-
Wa;)r pro(ssr. Indeed, the results achieved by using carefully implemented
(but general purpose) task generators is quite impressive[15], leading to
very Iearly li ear speed increases over the range from one to 256 processors.

These results show that this technique can avoid many of the "hot-spot"
(contcntii) pr oblems found in other methods used on the Butterfly.

.I r l tiSchle deli bcrat el takes the opposite view and encourages users I
IWIi
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to ignore the distinction between private and shared data storage. If Multi-
Scheme and the Uniform System were otherwise comparable, this difference
of approach would be an interesting one to examine with respect to a num-
ber of architectures. Unfortunately, MultiScheme suffers in two additional
ways: it is purely interpreted (which makes it far slower and at the same
time reduces contention for individual memory locations), and it must strip
and restore type codes as it references memory. This additional overhead
makes the direct comparison of the two systems uninformative.

It is interesting to notice that programs can be written in the "Uni-
form System style" rather simply in MultiScheme (a fact that has aided
some users in moving programs from one system to the other). The only
problems are to see how to scale the number of MultiScheme tasks to the
actual number of processors available, and the implementation of critical
regions. Both of these problems are easily solved, the former by using the

4' N-Interpreters primitive mentioned in Section 3.2, and the latter using
semaphores built from a spin lock using set! for an atomic swap operation
on the lock cell.

In order to make this more concrete, Figure 5.15 shows one way to write
a uniform system simulator. In order to use this simulator, we must first
create a package containing the data used by the tasks, a well as the "core"
of a task generator. As an example, consider writing a program to calculate
the factorial function by parceling out multiplication tasks of 50 numbers
each. The appropriate core procedure is shown in Figure 5.16.

The core should contain two variables shared by all tasks, one of which
keeps track of the next number to be multiplied (next-start), and the
other contains the final answer result. In addition, each task will need its
own local variable to keep track of its part of the product being calculated
(task-value) - note the use of fluid-let in Figure 5.16 to convert this
single shared variable into a per-task variable. In addition, the uniform-
system procedure itself requires four procedures:

'p

end-test
This tredicate returns #T when there is no more work available to
lbe parceled out. When this happens, the uniform system enters its
"'terination phase." In this example, termination begins when the

next number to multiply (the global variable next-start) exceeds
thle argunment originally given to fact, n. -".

p.:

p.g

p.a
,b
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,• {(define (uniform-system core) "
(define result (make-placeholder))

(define (make-task-generator core) ; (1)
(let ((terminated-tasks 0)

(end-test (access end-test core))

-" (next (access next core))

(end (access end core))

(n-tasks (n-interpreters)))
(make-critical-region ; (2)

(lambda ()
(if (end-test) ; (3)

(let ((answer (end)))
(set! terminated-tasks (1+ terminated-tasks))
(if (= terminated-tasks n-tasks)

(determine! result answer))

kill-task)
(next)))))) ; (4)

(define task-generator (make-task-generator core))

(define (loop) ((task-generator)) (loop))

(define workers ; (5)

(make-list (n-interpreters)

(lambda 0 (future ((access start core) loop)))))

(touch result)) ; (6)

Notes (see also page 172):

1. Make-task-generator takes the core of a user-specified task generator and creates
a full-fledged handler. See Figure 5.16 for a sample core.

2. Make-critical-region serializes calls to its argument.

3. Termination phase: call end to allow the task to do any final code, then return
kill-task as the work to perform. If there are no more tasks, announce the
result.

4 ('all the user-supplied task generator next.

5. Spawn off the actual tasks, one per processor.

6. Wait for an answer before returning to the caller.

Figure 5.15: Uniform System Simulator

.-
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(define (make-fact-core n)
(make-package fact-core

((next-start 1) (i)
(result 1)

(task-value)) ; (2)

(define (end-test) (> next-start n)) ; (3)

(define (next) ; (4)
(let ((start next-start)

(end (min n (+ next-start 49))))

(set! next-start (1+ end))

(lambda ()
(set! task-value

(* task-value
(multiply-range start end))))))

(define (end) ; (5)
(set! result (* result task-value))
result)

(define (start work) ; (6)
(fluid-let ((task-value 1)) (work)))))

S. .

Notes (see also page 169):

1. Global variables used by all tasks.

2 Local variables, per-task.

3. Test for end of task generation phase.

4. Generator for next task.

5. Calculate final value of task.

6. Start task by initializing per-task variables then processing work.

Figure 5.16: Core of Fact for Uniform System

% %
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% next
% When the system is not in termination phase, this procedure generates

the next task to be performed. In this example, the work is to multiply
the current task-value (a per-task variable) by a range of numbers
(handled by the procedure multiply-range, not shown here). The
result becomes the new task-value.

end

#. .A

This p~rocedure is called, as part of a critical region, once by each
task when the system is in its termination phase. It performs any final
code before the task is killed, and the last task to be killed is expected
to return the final value of the entire program. In this example, it
multiplies this task's contribution to the final answer (task-value)
into the system-wide final result.

start
This procedure is called once by each task when it is started. It is
expected to initialize any local state information (in this example, the
variable task-value) and then call its argument which will cause it
to run tasks generated by calls to next or end.

With this package created, we can examine the workings of the uni-
form systemn simulator of Figure 5.15. It works by creating a placeholder
for its final result, then converting the core package of procedures into a
serialized task generator (using make-critical-region, not shown, a sim-

ple procedure that uses the atomic set! operation to create a busy-waiting
lock procedure). It then makes the tasks by calling n-interpreters to find
out how many processors are available and creating a MultiScheme task for
each processor. Nothing guarantees that each of these MultiScheme tasks
is attached to a single processor, however by making precisely one task per

. fprocessor we can guarantee that the number of tasks scales to the number
of p~rocessors.

The final detail is the operation of the critical region in the task genera-
tor. Tis calls the end-test from the user supplied package to see whether
tlhe termrinat ion phase has begun. If not, the user's next procedure is called
to generate a new itemi of work to be executed by this task. If so, the user's
end procesure is called to let the task perform any final actions and return

[,. 2:'~a an. ser.lls ths endtest frta senig tsule age eomse thethaler,
Owt emnto haehsbgn fnoteue' et rcdr scle

, t( ,erae anew temof orkto e excutd b ths tsk. f s, te uer'

,,' en pocdreiscale t lt hetskpefom nyfialacios ndreur%
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returned by the entire simulation. In any case, the task is then told to call
kill-task, causing it to "commit suicide."

Finally, we can define a parallel factorial function:

(define (fact n) (uniform-system (make-fact-core n) 1))

5.4.4 Other Methodologies: Summary

As we have seen, MultiScheme can be used (with some creative thought) to
emulate a large range of parallel programming methodologies. It provides a
nice environment for "cobbling up" system prototypes written using these

S. other methods, and this in turn aids the rapid exploration of a number
of different styles for writing a program. All of these are similar to Lisp's
well known advantages as a prototyping system in a sequential computing

-, environment.
There are limits, however, to the information that can be gained from

these emulations. These emulations are very useful in answering a variety
of questions:

i How can I write a selected program in a particular methodology?

* Does the program produce the expected results? (If not, the emulator
is a major aid in debugging the program.)

* Does the program utilize the additional processors?

" What mechanisms are needed to support this methodology?
?-

On the other hand, deeper questions of resource utilization are often ob-
scured by the emulation overhead. Furthermore, MultiScheme is deliber-

* ately designed to take certain kinds of resource allocation issues out of the
programmer's hands. This is most noticeable when exploring questions re-
lated to communications models or performance estimates that are intended

- to take communication costs into account.
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Chapter 6

Conclusion

Over a three-year period, MultiScheme has evolved to the point where it can
serve as the system base for significant parallel programming projects. In
fact, any of the examples discussed earlier could become the starting point
for such an investigation. This idea is pursued in Section 6.1, in which the
major accomplishments of the MultiScheme project are summarized and a
number of newly-feasible research areas are described. But the work on the
MultiScheme system itself is far from complete, and some obvious steps to
improve it are the topic of Section 6.2.

6.1 What Have We Wrought?

. The philosophy behind the design of MultiScheme is simple: add some
straightforward extensions to Scheme and thereby produce a new language
with considerable additional expressive power. For sequential computing,
the addition of placeholders provides the basic support for embedding logic
variables in Scheme programs and data structures (see Section 2.3) as well
as call-by-need arguments (Section 2.4). Furthermore, MultiScheme pro-
granimers have a rich language for interacting with the memory manage-
i.e nt system -- the weak-cons primitiv, allows an object to be referenced
without altering its extent, while finalization allows an object's extent

0 . to be increased.
i For parallel computing, the separation of placeholders from tasks al-

1,ws a variety of programming methodologies to be expressed conveniently

175
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within the MultiScheie system (see, for example, the pipeline example 7.
of Section 5.3 and Appendix B, as well as Section 5.4). In addition, the
ability to change the value of a placeholder (using mutable-determine!)
has been a key item in the support of work on parallel programming in %
programs with side-effects[35].

In fact, the importance of placeholder objects may go well beyond these I
examples. Historically, the addition of a new Lisp data type has served to
focus the Lisp community's attention on problems of interest to the larger
computer science community. The cons cell, for example, proved to be a %
simple structure for studying sharing; the first-class procedure forced at-
tention onto the areas of lexical scoping and program structure; and the
first-class continuation invited experimentation with control structure. In
a similar manner, placeholders help to bring several very different pro- I
gramming issues into focus: parallel computation, logic programming, and
normal-order languages. The MultiScheme work is certainly not the first to

point out the connections here, but it is the first to point out that a single
data structure can provide a uniform method for studying all of these areas.

Another positive result of the MultiScheme project is that a few simple
extensions to Scheme lead to a system sufficiently robust that it can be used
for substantial application programs in the parallel-programming domain.
As a result of this work we can undertake a set of projects that were not
previously feasible. Some of these projects include:

Embedding a logic programming language within MultiScheme by
combining a unification algorithm with the placeholder implementa-
tion of logic variables (Section 2.3) and control structures like the
dependency-directed backtracking described by Zabih et a[61]. Not
only should such a system provide a number of exciting possibili-
tics because of the unusual control structure, but by embedding it
within MultiScheme we create a laboratory for exploring the use of
parallelism both within the logic programming component and within
programs written using that system. This method of extending logic
programming into the parallel domain may not be practical, even
though it will certainly be instructive: placeholders serve to repre-
sent a forn of structure sharing, but this very sharing is a )ro)lem
in the parallel system where several potential values for a single logiC
variable are under consideration simultaneously.

.. w.
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e MultiScheme provides an expressive base language, a:" does Scheme.
But the power of Scheme derives largely from the abstractions that
can easily be written in the base language and then used without
reference to the implementation technology. Such abstractions have
vet to be explored within MultiScheme. There are two areas ripe for
exploration here: parallelism in control structures, and parallelism in
data structures. Writing a number of parallel search algorithms in
MultiScheme would serve as a good starting point for both of these
areas. In the data structure area, providing a package of routines
with an interface similar to that of the Connection Machine's *Lisp[5]
language should be straightforward, and would allow explorations into
data parallel programming in MultiScheme. Similarly, implementing
the frons[21] operation should also be straightforward based on the
current implementation of disj oin.

MultiScheme provides two primitive mechanisms for supporting spec-
ulative computation: a garbage collector to eliminate unnecessary
tasks, and a flexible scheduler to facilitate experiments in priority-
based execution of tasks. The first step in understanding how this
support can be used in practice is the creation of programs that ex-
ploit speculation to solve realistic problems.

6.2 What Remains To Be Done

\,hile the MultiScheme system is now sufficiently stable to be used for the
kinds of projects described in Section 6.1, much remains to be done to im-
prove the system. Some of this work involves implementation details or
small changes to the system, but there are two important areas that have
only been touched upon during the construction of MultiScheme: perfor-
inance and user interface. These are extremely promising areas for future
research efforts.

6.2.1 Performance Enhancements

The most woefully neglected part of the MultiScheme work has been its
performance. There are three major research directions here: compilation,
;tPrli tectuiral changes, and system changes.

O
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Compilation
Compilation technology for Lisp and Scheme is relatively well de-
veloped 1371. Most of the standard techniques are directly applicable
to parallel as well as sequential programs, although some standard
optimizations (such as common sub-expression elimination) have the
potentially undesirable consequence of reducing the amount of par-
allelism even though they accelerate a sequential thread. A Multi-
Scheme compiler would help answer a number of questions about
memory contention due to Lisp's reference pattern, as well as provid-
ing the basic set of tools needed for program analysis.

Architecture
Even the best compiler can only do a limited amount when faced with

-/ an architecture poorly suited to the language and system. Recent
* work by Wu[60] suggests that specialized hardware aimed at support-

ing Lisp may well improve the cost-performance ratio of a processor
within a given technology family. The major forms of hardware sup-
port for Lisp are well understood[42], and apply directly to parallel

A architectures as well. Beyond these support mechanisms, however,
parallel architectures are critically sensitive to memory latency and
bandwidth. As stated in Section 1.3.1 there are two fundamental

requirements on a parallel architecture:

1. A large portion of the address space must be shared by (acces-
sible to) all processors in the system.

2. The speed of reference to all portions of the address space must
.%% be comparable.

a ~The closer an architecture comes to realizing constant access speed
to all areas of the address space, the less will be the impact of any
non-locality of reference by programs.

a System
Unfortunately, the "equal access" goal stated in the previous para-
graph is very hard to meet. Thus, system support aimed at keeping
objects close (in speed of access) to the task referencing them may
have significant benefits. The simulation studies of Nuth[43] are a first

% % 
N --1
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step in understanding the relationship between performance charac-
teristics of the memory subsystem and overall system performance.
Using these same kinds of simulations, it may be possible to tune the
memory and task management to more closely fit specific architec-
tures.

6.2.2 User Interface

An important, and often overlooked, aspect of any programming system is
the user interface. At present, the MultiScheme user interface is directly
based on the MIT Scheme user interface, in turn derived from the standard
Lisp Read-Eval-Print loop. While perfectly serviceable, this interface was
never intended to help programmers visualize the activity of their programs
(cf. Turbak[571). This visualization is even more crucial in a parallel system
than in a sequential one. Providing an easily understood model of the
program's behavior while it is running serves several important purposes:

Displayed Parallelism
Any one of a number of techniques can be used to keep the program-
mer fully aware of the amount of parallelism actually exploited by her
code. Not only does this help programmers understand the amount
of parallelism in their programs, it also serves as a subtle reminder
that the program has multiple concurrent threads of control. Even
after two years of MultiScheme experience, I find it easy to forget
this rather obvious fact: programming a parallel computer is not the
same as programming a time-sliced sequential computer.

Visualizing Dependencies
*When dealing with a running parallel program it is important to un-

* derstand which tasks depend on one another. This information can
be quite difficult to derive, since a future can be stored in a data
structure that is accessible from a number of tasks, voiding most kinds
of simple analysis. One vital role of a good user interface to Multi-
Scheme must be to provide tools (visual or otherwise) to correctly
answer the dependency question, and to subtly remind the program-
iner that the dependency question must be answered independently

'

of the creation behavior of the program.
'4
%'4
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I/O handling
An important aspect of interacting with a parallel system is how
tasks communicate with the user. MultiScheme provides "hooks" in
the form of per-task variables that allow tasks to have independent
I/O streams for communication, and the Butterfly Lisp User Interface
(BLUI) uses these to provide a separate window for each task which

a., attempts an I/O operation. But the ability to interrupt a specific
task is missing - and implementing it will not be easy, since there
are many tasks that do not themselves perform I/O and so have no
window through which a user can "point" to the task to generate the

"" interrupt.

Debugging Tools
A user interface can also be an extremely powerful debugging tool.

* This, in fact, is the source of much of Lisp's power as a program
development environment: the Read-Eval-Print loop allows users to
interact as though they were part of the program, so that inspect-
ing and modifying the state can be done in a natural manner. This
style becomes even more powerful when coupled with an interface
that makes the computational environment visible and allows pro-
grammers to take advantage of position to direct their interactions.

- . SmallTalk[24] popularized this form of interface, and a similar inter-
face for Scheme was demonstrated by Eisenberg[17].

The fundamental components of a user-interface for MultiScheme are un-
derstood: Turbak's visualization of control structure, Eisenberg's visual-
ization of binding and interaction environments, Clamen's task monitoring
and dependency displays, graph traversal (garbage collection) algorithmb,
BLUI's input/output and performance displays. But combining these into
a single, coherent interface remains a challenging project.

S.

6.3 Parting Shots

MultiScheme is only a start along the long road towards a convenient and
powerful system for programming )arallel processors. The basic structure,
largely inherited from its Lisp ancestry, allows abstractions to be layered
on top of the system's kernel in order to extend the system in novel dli-
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rections. But work remains both under, in, and above this kernel. The
architectural support under the MultiScheme system, for Lisp in general
as well as for placeholders and first-class continuations (tasks), must be
pursued to the point of producing a set of criteria for evaluating potential
machines as a base for MultiScheme implementations. Critical to this ef-
fort is an understanding of the inter-processor communication inherent in
the MultiScheme model, and work directed at the communication technol-
ogy of the underlying hardware. Work in the system includes performance
enhancements, user interface improvements, and the development of tools
for debugging and "performance debugging" of programs. Work above the
system includes the construction of abstractions for a variety of control and
data structures and the implementation of significant application programs
that exploit these new abstractions.

But the single overriding lesson I have learned from the MultiScheme
*work comes from a different direction entirely. In building the MultiScheme

system, teaching students about it, and in describing it in this report, I have
seen repeatedly not how different parallel computing is from sequential com-
puting, but rather how similar. This lesson is perhaps best demonstrated
by observing that most of the changes made to convert MIT Scheme into
MultiScheme have been re-absorbed into the sequential system - because
these additions have proven to have important benefits in sequential com-
puting. The outstanding example, of course, is the placeholder itself: a data
structure derived entirely from considerations of parallel programming, yet
provi(ling the base for several important facilities in the sequential system.
It is my belief that future work will further strengthen this similarity. In
retr)spect, we will discover that the importance of programming paral-
1l systems comes from insights applicable to both sequential and parallel

* U.,llli ltiung.
I Sillllliaize this lesson in a simple analogy:

sequential parallel (computing) real complex (analysis)

4
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190 APPENDIX A. FUNDAMENTALS OF SCHEME

A-1 Introduction to Lisp

The Lisp languages are distinguished by a number of shared attributes.
For those not familiar with the Lisp culture, here is a brief (and doubtless
biased) list of the items most unlike other programming cultures. The
author makes no claim that these are all advantages of the language family;
they do appear, however, to be facts.

- .~ (Lack of) Syntax
Perhaps most distressing to those unfamiliar with the language is its
apparent lack of syntactic constructs. This is actually a mispercep-
tion: there is a good deal of syntax, but it is all superficially similar.* .~ Lisp is an expression language, as opposed to the more common state-
ment languages. Lisp expressions are of four kinds:

*1. Constant expressions. For the purposes of this report, the con-

%~ stants are numerals, the two booleanis #f (false, also written as
1() or 0 since, for historical reasons, MIT Scheme uses the

same object to denote the empty list) and #t (true), and strings
surrounded by double quotation marks (")

2. Variables. Denoted by a sequence of alphanumeric characters and
certain additional characters (most importantly for this report

4!),"?", and "-"). Historically, Lisp systems have used a system
of dynamic binding for finding the value of a variable. Scheme,
however, uses a strictly lexical scoping system (the same system
used by the Algol family of languages).

3. Special forms. Most of the syntax of the language is embodied
in what are known a-, the "special forms" of Lisp. There is a
short list of these forms, and the ones used in this report are
shown in figures A.1 and A.4 (pages 194 and 198, respectively).
A special form is signalled by an expression beginning with a
left parenthesis followed by a keyword (the name of the specialrir form). The form ends with the close parenthesis matching the
opening one of the form.

*4. Combinations, applications, or procedure calls. These names are
interchangeable, although combination tends refers to the syn-
tactic construct, the others to the semantics. These superficially

0~%
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A.1. INTRODUCTION TO LISP 191

resemble special forms, a fact that confuses people learning the
language. A combination is, like a special form, surrounded by
parentheses. If the first sub-expression following the left paren-
thesis is not the keyword of a special form, then the expression is
a combination. In Scheme, the value of a combination is found
by evaluating each of the subexpressions (the order is not spec-
ified). The value of the first subexpression must be a procedure
or continuation, and it is then applied to the values of the other
subexpressions.

Storage allocation
Programmers do not worry about allocating or releasing memory in
Lisp. Operations allocate memory as needed by creating data struc-
tures or other objects. Data structures are made using cons to create
an ordered pair, list to create a singly linked list out of ordered pairs,

* or vector to create a one-dimensional vector. Memory is reclaimed
by recycling those parts that cannot be reached using the ordinary
operations of the system. This process of recycling memory is known
as garbage collection. The operations car and cdr select the first and
second components of an ordered pair (respectively), and vector-
ref selects entries in a vector (zero based). The contents of a data
structure can be modified using the mutators set-car!, set-cdr!,
and vector-set! as appropriate. Lists can be copied to make vec-
tors using the procedures list->vector and vectors copied to make
lists using vector->list. There are other data objects with their
associated mutators and selectors, introduced as needed throughout
the main body.

' i Functional style
Algol family languages tend to rely on sequential evaluation of com-

mands as the primary control construct. The Lisp family of languages
uses applicative order evaluation as its primary control construct: the
subexpressions of a combination are evaluated before the body of the
procedure is evaluated. The Scheme special form begin is used to
force sequential evaluation of a series of expressions when needed.

W : Incremental program construction
Historically, one of the most notable features of Lisp systems has been

,.
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192 APPENDIX A. FUNDAMENTALS OF SCHEME

the emphasis on an environment supporting interactive construction
of programs. In particular, the Lisp language does not have the notion
of a program. Rather, it deals exclusively with procedures having a
standard function call interface. The notion of a program in other
languages is supported through an informal (human based) system of
specifying certain top-level entry points into a related group of proce-
dures. The Lisp system supplies a standard interaction environment
(the MIT Scheme system has the "read - eval - print" interface) for
defining and calling procedures.

Dynamic type checking
A common misperception about the Lisp family is that they are type-
less languages. In fact, they are far from typeless, although they re-
quire runtime checking of data types. Unlike the Algol family of lan-
guages, Lisp places data types on the objects manipulated by the lan-
guage, not on the variables of the language itself. Usually no attempt
is made to statically type variables. Instead, the primitive operations
themselves examine their operations to determine whether they have
the appropriate data types. While the Lisp languages cannot strictly
be said either to support or not support user-defined abstract data
types, it is certainly fair to say that this discipline is more one imposed%
at the programmers' discretion than by the language or programming
system.

First-class objects
* One way of examining programming languages is to ask what types

of objects are treated as "first-class citizens" of the language. A first-
class object can be (a) stored as the value of a variable, (b) passed as
an argument to a procedure, (c) returned as the value of a function,
and (d) stored in data structures. A running theme of the evolution
of the Lisp family has been an attempt to make more objects first-
class. In the MIT Scheme dialect, all objects are first-class with the
exception of special forms (syntax or macros). In particular, binding

* environments, procedures, and continuations are first-class objects.
The ramifications of these latter L vo are explored in sections A.3
and1 AA respectively.
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A.2 Scheme as a Dialect of Lisp

Scheme evolved as a separate dialect of Lisp with three distinguishing fea-
tures. Scheme was the first Lisp to use lexical scoping for its variable
binding mechanism. This major break with the Lisp tradition has allowed
Scheme to experiment with the block structure available in the Algol fam-
ily of languages. Scheme has been influenced by a very strong minimalist
tradition from formal mathematics. It has fewer syntactic constructs than
most other dialects and a much smaller standard library of procedures. Fi-
rially, it emphasizes consistency and simplicity in the language, relying on
compile-time analysis for translation of the simple constructs into efficient
implementation.

Readers familiar with CommonLisp[53] will notice the following major
differences:

* Scheme does not support "special variables." Thus, special forms such
as symbol-value and symbol-function do not exist in Scheme. Sec-
tion 3.3.3 discusses the use of fluid variables in MIT Scheme. These
provide similar properties but are strictly lexically scoped. The de-
fine special form in Scheme always introduces a binding in the cur-
rent lexical contour, and is thus different from the defun special form
of CommonLisp.

* Scheme has no iteration constructs. Instead, all implementations of
Scheme are required to exhibit fully reductive behavior (sometimes
called tail- recursion). That is, each sub-expression of an initial expres-
sion can be syntactically determined to be either a subproblem or a
reduction of the full expression. No stack space is required to han-
(Ile the evaluation of a reduction sub-expression. The result of this
requirement is that some (syntactically) recursive procedures may be
executed in an iterative manner. This area is described in more detail
in Section A.4.

* Scheme treats all sub-expressions of a combination in an identical
manner. In particular, the first sub-expression is evaluated using the
same evaluation rules it uses for the other sub-expressions. There is no
separate function name binding environment. None of the associated
special forms exist (funcall, flet, etc.).

W W, W"r .
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194 APPENDIX A. FUNDAMENTALS OF SCHEME

Name Description
and, (and exp1 ... exp,), (or exp ... exp,)
or Short-circuit (or conditional) and, or.

begin (begin exp1 ... exp,)

Sequentially evaluate exps, returning value of expn.

cond (cond (pred, . conseqj) ... ))

define..McCarthy's conditional construct.

define (define name exp)
Add binding for name to exp in current environment.

(define (name . params) . body) expands to

(define name (lambda (params) . body)).

delay (delay exp)

Memoized delay of ezp until it is forced.

if (if predicate consequent alternative)
If-Then-Else construct.

lambda (lambda (paraml ... ) . body)

Create a procedure (closure).

let (let ((name, expl) ... ) . body)

Evaluate exps, then bind names to these values, then eval-

uate body. Evaluation and binding order are not specified.

letrec (letrec ((name, expl) ... ) . body)

Similar to let, but exps can reference the names.

quote (quote expression) or Iexpression

Return expression without evaluating it.

0 set! (set! name expression)

Assign value of expression to lexical variable name.

Note: For a full definition of the standard Scheme language, please refer to [49].

Figure A.1: Standard Scheme Syntax Used in Report
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e The special form lambda in Scheme evaluates to a procedure object
the "closure" of CommonLisp. There is no need for the function

special form (or its abbreviation, "#I").

e The special form set! in Scheme is roughly equivalent to the setq
form of CommonLisp but it will not create a binding. Scheme has
no equivalent for the setf macro, but uses the primitive operations
set-car!, set-cdr!, and vector-set! explicitly.

e Scheme guarantees neither the order of evaluation of operands nor
the order of binding in a procedure call. For sequential evaluation,
the special form begin must be used. For sequential binding, either
the macro let* or an equivalent program structure must be used.

A.2.1 The Standard Scheme Dialect
There is a standard Scheme dialect supported by a number of different :%
implementations. This dialect is described in a short document[49] that
includes a complete denotational semantics for the language. A very brief
summary of the syntactic constructs used in the examples of this report is
included in Figure A.1.

The procedures used in this report which either differ from CommonLisp
or are not frequently encountered are shown in Figure A.2. In addition, a
smattering of common Lisp procedures are used without explanation (such
as car, cdr, eq?, etc.).

Figure A.3 shows a simple program demonstrating some of the syntax of
the Scheme language and most of the procedures described in Figure A.2.

A.2.2 MIT Extensions to Scheme
The purpose of the Scheme standard[49] is to provide a language base. This
base is then subject to local extensions. The MIT Scheme system contains
a number of extensions used throughout this report, shown in Figure A.4.
These extensions provide three features not conveniently available in the
standard dialect.

First-class environments
The MIT dialect of Scheme has been extended to allow lexical binding

-"%4"
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Name Description
. apply (apply procedure argument-list)

Call procedure with the arguments in the argument-list.
This "spreads" the argument list before calling the pro-
cedure.

I display Print its one argument out in a human- (rather than 7

machine-) readable format.

for-each (for-each procedure list)
Applies the procedure to each item in the list. Procedures
are invoked "for effect only," thus the value returned is
unspecified. This is MacLisp's mapc procedure.

-. map (map procedure list)

Similar to for-each, but returns a list of the results pro-
duced by procedure. This is MacLisp's mapcar procedure.

newline Begin a new line on the primary output device.

Figure A.2: Standard Procedures Used in Report

6
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.1-

(define (display-scaled-matrix matrix scale)
(define (scale-row row) ; (1)

(map (lambda (item) (* item scale)) row))
(define (display-row row) ; (2)

(define (each-item item) ; (3)
(display item)
(display "s))

(for-each each-item row)
(newline))

* (for-each ; (4)
(lambda (row) (display-row (scale-row row)))
matrix))

Notes:

S1. The procedure scale-row takes a row of a matrix (stored as a linked list) and
produces a list of scaled values using the procedure map.

2. The procedure display-row uses for-each to display each item in a given input
row, then uses newline to start a new line of output.

.3. Each-item is called once for each item in the matrix. It displays the item followed
by a space.

4. This is the main body of the procedure display-scaled-matrix. It uses for-each
, to display the scaled rows of the matrix. This procedure assumes that a matrix is

%, stored as a list of lists (rather than the more traditional vector of vectors).

Figure A.3: A Simple Scheme Program

N
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Name Description
access (access name expi) and

(set! (access name ezpi) exp2)
The variable name in the environment ezpl.

cons-stream (cons-stream exp ezp2 ) expands into
(cons exp1 (delay exp2))

_,. fluid-let (fluid-let ((namei expl) ... ) body)
- Evaluate all of the exps, then modify the bindings of the

-' .. existing (lexical) variables (names). Evaluate the body,
then restore the original values of the variables. Inter-
acts with call-with-current-continuation to guaran-
tee that values axe restored even when exit is performed

_using continuations. See description in Section 3.3.3.
the-environment (the-environment)

Return the current lexical environment as a Scheme ob-
ject. Used with access.

Figure A.4: MIT Syntax Used in Report
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environments to be treated as first-class objects. Environments are
made available to a Scheme program by using the the-environment
special form or one of a number of macros built using it. These return
as their value the current environment. The value of a variable in
a given environment can be found using the access special form,
and the syntax of the set! special form allows the use of an access
special form in place of a variable name. Finally, the procedure eval
can be used as a "compile and run" operation. It receives both a
program to be executed (typically represented as a list) and a binding
environment for execution.

Stream processing
Section 2.5 introduces the notion of stream processing, a very powerful

method for dealing with simulations in a functional system. MIT
Scheme provides only one simple additional syntax for dealing with

streams: cons-stream expands as shown in Figure A.4. Using this
syntactic extension along with the standard delay special form and
primitive operations car, cdr, and force, the entire array of stream
processing functions are easily defined.

Fluid variable binding
Section 3.3.3 discusses MIT Scheme's fluid variable concept. The
essential idea is to allow a single lexical variable to represent differ-
ent values depending on the control path taken to reach the current
execution state. The special form fluid-let is introduced in MIT
Scheme to make the addition of fluid bindings convenient.

In addition to these language extensions, MIT Scheme is largely distin-
guislhed by its particular choice of runtime environment. This is discussed
in Section A.5.

A.3 Procedures as Objects

.-, While most modern dialects of Lisp, including CommonLisp and Scheme,
allow procedures (also known as closures) to be treated as first-class ob-
jects. the practice is rare in most other languages and unfamiliar to most
programmers. This report is certainly not the place to introduce the power

% %I
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and flexibility this allows (see, for example, references [7] and [55]), but an
ability to at least understand programs written using this ability is essen-
tial to a number of the examples, especially in Chapter 4. The essential

points to bear in mind can be summarized in the following "mantras" of
the Scheme language:

' Every expression has a value.

The value of a lambda-expression is a procedure.

* The free variables of a procedure receive their values from the envi-
ronment in which the procedure was created (i.e. lexical scoping).

%* The bound variables of a procedure receive their values from the ar-

gument list in the call to the procedure.

Because variables are lexically scoped and procedures can be created "on
the fly" using lambda-cxpressions, procedures are often used to encapsulate
expressions whose value is to be computed at a later time. Procedures used
in this manner are known, for historical reasons, as thunks. This term is
used somewhat loosely in this report, and does not necessarily imply that
the procedure has no formal parameters (the traditional usage).

The sample program shown in Figure A.3 demonstrates a very common
. .' use of lambda-expressions to create a procedure for use as an input argu-

ment. Figure A.5 shows three equivalent ways of defining a very simple
procedure-generating procedure, and Figure A.6 is a demonstration of its
use. If the syntax or operation of this procedure is difficult to understand,
a thorough treatment of these topics is provided in the chapters 1 and 3 of
reference [7].

A.4 Continuations as Objects

There is one type of object available in Scheme that does not exist in other
programming languages: the continuation. Continuations were introduced
as part of the formal description of programming languages through denota-

O tional semantics. They are used there to provide a mathematical handle for
expressing control flow in programs (see Stov[55] for an excellent overview
of the nimatheiatics involved).
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% .

(define (make-incrementer! amount)
(lambda (increment)

(set! amount (+ amount increment))
amount))

(define make-incrementer!

(lambda (amount)
(lambda (increment)

(set! amount (+ amount increment))
amount)))

(define (make-incrementer! amount)
" (define (do-increment! increment)

(set! amount (+ amount increment))

Si. amount)
5' do-increment!)

-. Figure A.5: Three WYays to Define a Procedure-Generator
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(define incrementer-a

(make-incrementer! 3)) - INCREMENTER-A

= (define incrementer-b

(make-incrementer! 3)) - INCREMENTER-B

S(define incrementer-c

incrementer-a) - INCREMENTER-C

- (incrementer-a 5) -. 8
(incrementer-b 3) 6
(incrementer-b 2) - 8

=. (incrementer-a 2) N* 10
(incrementer-c 3) - 13

S(incrementer-a 2) -- + 15

((make-incrementer! 3) 2) - 5

Figure A.6: Use of Make-Incrementer!

A.4.1 Continuations: An Introduction

The main idea behind a continuation is that every expression or statement
in any language is provided with a function it is expected to call when it
has completed its own processing. The notion of "returning a value" is

thus eliminated and replaced with the simpler (mathematically) notion of

calling a function.

For example, the meaning (semantics) of the Scheme statement

(if predicate consequent alternative)

L can be described as follows. First, each of the three sub-expressions is con-

verted into its equivalent semantic function (i.e. the mathematical function

that computes the same value the sub-expression itself computes). Recall

that every semantic function, including these three, will receive a continu-

ation as one of its arguments.

WO. The semantic function of the if expression itself, then, receives a con-
tinuation, K. Since the first thing an if statement must do is to evaluate

the predicate expression, the semantic function for the if statement will

A' .



A.4. CONTINUATIONS AS OBJECTS 203

call the semantic function for the predicate sub-expression. But this re-
quires a continuation expressing the work to be performed after the value
of the predicate has been computed. If we call the semantic functions for
the consequent and the alternative consequent, and alternativej, re-
spectively, then this new continuation will receive the value of the predicate
sub-expression and call either consequent,f or alternativej.

(lambda (K)

(define (KI value-of-predicate)
(cond ((eq? value-of-predicate Sf) l,

(alternative, K))

(else (consequentj K))))
(predicate,1 r')))

Figure A.7: The Semantic Function for if

To help readers who are not familiar with the notion of continuations,
Figure A.7 shows, using Scheme notation, a procedure that generates the
semantic function for an if expression given the semantic functions for
the sub-expressions. The most important point to notice is that ,c' uses
K, the continuation for the if expression itself, as the continuation for use
by the consequent and alternative sub-expressions. This corresponds to
the fact that the predicate sub-expression in Scheme is a "subproblem"
of the original expression (there is more work to be performed after its
value is calculated) whereas the consequent and alternative sub-expressions

are "reductions" of the original - their value is the value of the overall
expression. This idea will be examined again in Section A.4.3.

A.4.2 Continuations in the Scheme Language

In 1978, Steele[54] introduced the idea of using continuations as a way of
analyzing Scheme programs during the compilation process. He explored
this possibility and demonstrated the idea by building the first working
compiler for the Scheme language. He also introduced a programming

I
_- a . -. A'' . ,. ".",.",t" _,-.. ,' . - -,, ,-t. - ,- %.'[. ' %2 -%-' %- '..-,%."-, -e"," .. ",2 ,-' -" I~ ,_,-,r,, , .%," ,', ,,



204 APPENDIX A. FUNDAMENTALS OF SCHEME

style, called "continuation passing," that makes the continuations explic-
ith" visible within the program itself. Exploiting Scheme's ability to treat
procedures as objects, Steele showed a simple procedure for converting any
procedure written in Scheme into an equivalent procedure that does not
return a value but rather invokes an explicitly supplied continuation.

In Steele's system, an expression's continuations was simply a procedure
of one argument (the value computed by the expression). The fact that this
simple conversion process can be applied to any program demonstrated that
the Scheme language was sufficient to implement continuations without
any extensions. The availability of continuations within the language itself

adds a vast amount of expressive power since it encompasses all the forms of
control structure that can be described using the mechanics of denotational
semantics. The ramifications of the ability to program using continuations
are still being explored by the Scheme community.

Unfortunately, the procedures resulting from the conversion process are
often difficult to understand. The argument that continuations need not
be added to the Scheme language is factually correct. It has as much valid-
ity as the statement that "the names of formal parameters can be chosen
arbitrarily." And both of these arguments have the same basic flaw: the
form in which a statement is written can have a major impact on how eas-
ily a person can understand the statement. While understanding that the
language does not inherently need any extensions to support programming

using continuations, the Scheme community nevertheless chose to add one
operation to the language to ease the chore.

Instead of rewriting a program so that all continuations are made explic-
itly visible in the text, Scheme supports an operation with the somewhat
daunting name call-with-current-cont inuat ion. Rather than name
every continuation and pass them explicitly as procedures, this operation
allows Scheme programs to acquire a name for just those continuations used
in a way not supported directly by the syntax of the language. The contin-
uation objects made available using this operation are, from the point of
view of a programmer on a serial machine, just another kind of procedure
object. They expect a single argument, ordinarily the value computed by
the expression whose continuation they represent.

A simple use of call-with-current-continuation is demonstrated
in Figure A.8. Here the continuation is used to support a "non-standard
,xit" similar to the CommonLisp catch and throw operations or the exit

6
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(define (list-of-square-roots list)
(call-with-current-continuation
(lambda (early-exit) ; (1)
(map (lambda (object) ; (2)

(cond ((not (number? object))
(early-exit 'NOT-A-NUMBER)) ; (3)

((negative? object)
(early-exit 'NEGATIVE)) ; (4)

(else (sqrt object)))) ; (5)
list))))

Examples of Use:

-' (list-of-square-roots '(4 9 16)) -,- (2 3 4)
' (list-of-square-roots '(4 x 16)) '- NOT-A-NUMBER
= (list-of-square-roots '(4 9 -16)) -. NEGATIVE

Notes:

1. This procedure (the value of the lambda expression) is called with early-exit
bound to a continuation object.

2. Recall that map applies a procedure to each element of an input list and creates a
list of the resulting values.

3. First premature exit. Notice that the continuation object, early-exit, is treated
exactly like a procedure of one argument. The value of that argument is returned
as the value of that call to call-w ith-current-continuation that created the
continuation object.

4. Second premature exit. See note 3, above.

* 5. Ordinary exit. The square root is returned using the ordinary (implicit) continua-
tion - in this case one created somewhere inside of the map procedure.

Figure A.8: Simple Use of Call-With-Current-Continuation

.
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procedure of UCSD Pascal.
Notice the somewhat unusual interface provided by the call-with-cur-

rent-continuation primitive. It takes one argument, a procedure. This
procedure is called and passed its own continuation as its argument. This
continuation, of course, is the one corresponding to returning from the call
to call-with-current-continuation itself. Since Scheme requires every
procedure to return a value, the continuation object itself expects one argu-
ment: the value to be returned from call-with-current-continuation.

Calling a continuation object has the effect of returning from
the call to call-with-current-continuation that created the
continuation. 4

It is important to bear in mind that the operation call-with-current-

. continuation is nothing more than a way of avoiding the inconvenience of
- syntactically rewriting Scheme procedures. In particular, the continuation

object created in this way is a first-class object. It has indefinite extent and
can be used multiple times, just like an ordinary procedure. This implies, of
course, that a call to call-with-current-continuat ion may return more
than once: an unusual but useful possibility.

A.4.3 Continuations: One Implementor's View

There are a number of different implementations of the Scheme language,
and each of them has its own techniques for handling first-class continuation
objects. The description here is based on the MIT interpreter since it forms
the basis of MultiScheme.

Because of Scheme's lexical scoping and consequent block structure, its
implementation in many ways resembles that of the more familiar Algol

qfamily of languages (Pascal and Ada, for example). Common implementa-
tions of these languages rely (at least conceptually) on a stack to support
recursive procedure calls. Scheme differs in substantial ways, however, and
the simplest way to describe Scheme's handling of continuations is by con-
trast with a stack-based implementation of one of these languages. The
three major differences are summarized in Figure A.9. A typical Pascal
implementation (such as the UCSD implementation) uses a single stack for
three different kinds of activities.
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1. Variable bindings. The values of formal parameters to a procedure
are pushed on the stack along with the "static link" to the lexically
enclosing stack frame. All references to variables are through this
stack area, either to a local variable stored in the frame itself or
through the static link to enclosing frames'. Return from a procedure
includes popping the parameters off the stack.

2. Return addresses or "dynamic link." Since procedures are entered,I
execute, and then return to the caller, the stack is a natural data
structure for storing this call chain. The address where control will

return when the current procedure completes is therefore pushed on
a stack when the call begins and is popped when the procedure ends.

3. Intermediate storage while evaluating sub-expressions. In calculating
the value of a complicated arithmetic expression, for example, the
values of sub-expressions are pushed onto the stack as they are com-
puted and then popped back off when they are combined with the
values of other sub-expressions.

The Scheme language is more flexible than most Algol family languages,
and this flexibility comes at a price. Scheme's ability to create and return a

% procedural value at run time (as in Figure A.5) requires that some variable
bindings have a lifetime extending beyond the execution time of the pro-
cedure that created them. Calls to these procedures cannot, therefore, use
the procedure call stack to store variable bindings. Instead, in the general
case, bindings must be stored in the heap (the same place where cons cells
are allocated). This leads to the first statement in Figure A.9.

One of the unusual features of Scheme, mentioned in Section A.2, is that
there are no iteration constructs. All implementations must correctly im-
plement the notions of subproblem and reduction mentioned earlier. In order
to understand the impact of this requirement it is important to understand
the relationship between these concepts and the use of the stack. For the
purposes of this report, we can use the following informal definitions:

Subproblem:
A sub-expression is a subproblem of an original expression if the value

'Sometimes a "display" is used to access the enclosing frames rather than a chain of
static links. The frames, however, are still stored on the stack.

oooI
IZ

~~PA 10 ~~



208 APPENDIX A. FUNDAMENTALS OF SCHEME

1. Values of variables are not (in general) stored on the Scheme
stack.

2. Procedure call in Scheme does not push entries onto the
stack. Subproblems push entries on the stack, but reductions do

not.

3. The current continuation is the stack, and it (or a copy) can
become directly visible to programs.

Figure A.9: Scheme's Stack vs Pascal's Stack

of the full expression requires finding the value of the sub-expression
-C and then doing additional work. Alternatively, a subproblem is a sub-

expression evaluated using a continuation other than the one supplied
for the overall expression.

Reduction:
A sub-expression is a reduction of an original expression if the value
of the full expression is the value of the sub-expression (should that
sub-expression ever by evaluated). Alternatively, a reduction is a
sub-expression evaluated using the same continuation as that of the
original expression.

Using these definitions and Figure A.7 we can see that the predicate
sub-expression of an if-expression is a subproblem (it has K.', not K, for

its continuation), while the consequent and alternative are reductions
(they have the original K as their continuation). A similar analysis, based
on the formal semantics given in [49], will distinguish subproblems from
reductions for all the sub-expressions in the Scheme language. The two
iriost important reductions in the language, leading to the majority of the
so-called tail-recursive nature of the language, are

1. The final sub-expression of a begin special form. That is, each of
the earlier sub-expressions is a subproblem (using a continuation that

%W
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A .4. CONTINUATIONS AS OBJECTS 209

causes the evaluation to continue on to the next sub-expression). The
final sub-expression, however, is a reduction since its value is the value

*b.- of the entire expression. This reduction is particularly significant since
there is an implicit begin special form around the body of all pro-
cedures (including the bodies of let, letrec, and fluid-let special
forms) and the consequents of cond special forms.

2. The body of a procedure. That is, after evaluating all of the sub-
expressions of a combination, the evaluation of the combination re-
duces to the body of the procedure.

With this understanding, we can reexamine the original question: what is
the relationship between these two concepts and the use of a stack in the
implementation. The answer lies in the fact that the continuations are for
the most part left implicit in Scheme programs. As long as this is true,

@ an analysis of the language will reveal that the continuations created for
sul problems are used in a last-in first-out manner and can therefore be

a-, efficiently stored on a stack. This should come as no surprise, since the lan-
C guage has none of the control constructs that would lead to anything other

than the ordinary stack-like discipline of procedure call in other languages.
In fact, the MIT Scheme implementation does use a stack for storing

-! continuations. Thus, whenever a new subproblem is about to be evaluated
a new entry is pushed on the continuation stack, and completion of an

* evaluation step (where the semantic function would call the original con-
tinuation of an expression) pops this continuation off of the stack. This
usage of the stack corresponds to the return address use (number 2) de-
scrilbed earlier. But there is an important difference. Notice that Scheme

pushes an entry onto the stack only for subproblems of an expression, not
reductions. Since the body of a procedure is a reduction it follows that, as
shown in Figure A.9, procedure call in Scheme does not push entries onto

O the stack.
Instead, it is the position in which the call occurs that determines

whether an entry is pushed on the stack. Calls occurring in subproblem
po)ition push entries onto the stack; calls occurring in reduction position
leave the stack unchanged. It is this property that allows a (syntactically)

O. Orcursive Scheme program to operate without requiring additional space
(i.e. iterate). This is a generalization of the more common tail recursion
'.pt iization found in compilers for some languages.

F'.'.
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210 APPENDIX A. FUNDAMENTALS OF SCHEME

With this terminology and implementation background, we can explain
the implementation of call-with-current-continuation. Rather than
produce a full procedure at every point where the semanics of the lan-
guage requires a new continuation, the MIT implementation pushes an
entrv onto a stack. This is fine for all of the ordinary operations of the
language, since they require knowing only the immediately following oper-
ation to be performed. Call-with-current-continuation, on the other
hand, must make an applicable object with indefinite extent that can be
used to reference this control state at any time in the future.

The first, and simplest, way this can be accomplished is to "package
up" the entire stack by copying it into the heap. The stack can then be

-'. emptied and a single entry pushed onto it. This entry says, in essence, that
the object just created must become the stack if control ever returns to this
point and thus the continuation will be copied back from the heap into
the stack. This describes the original implementation of continuations in
MIT Scheme. Measurements have shown that the stack rarely grows very
deep (over 100 entries) even in lengthy (syntactically) recursive programs.
although it is quite easy to write a program that allows the stack to grow
arbitrarily deep. Thus, the cost of copying the entire stack is not large, and
since call -with-current-continuation is rarely used, this implementa-
tion causes no major problems. Thus, the third major departure from the
Algol family of languages is the ability to capture the stack as an object in
the programming language. This is shown as the third major difference in
Figure A.9.

There have been two changes to the implementation of call-with-
current-continuation, however, as a result of the work on MultiScheme.
As will be discussed in Chapter 4, this primitive is used to support task
switchliig in MultiSch,,me and its performance is therefore much more im-
p)ortant than in MIT Scheme. The first change is an alternative implemen-
tationl of the interpreter (arid compiler interface) allowing the stack to be
allocated in the heap and thus eliminates the need to copy the stack at the
time the continuation object is made. Instead, it is copied incrementally
whien control returns to the part of the stack that existed at the time of
the call to call-with-current-continuation. The second change was
t th' recognition (as explained in Chapter 4) that the continuation objects
ri ued for task switch art, in fact never reuse(. Although they have indefi-
iit, eex',iit, thy are created and ,used exactly once. A far more efficient
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A.5. MIT SCHEME AS A SYSTEM 211

implementation can be made under these circumstances, and an additional

primitive, non-reentrant -call -with- current -cont inuat ion was added
precisely to support this operation.

A.5 MIT Scheme as a System

One traditional method for building a programming system is to divide the
task into three parts: language implementation, portable language-based
library, and a system-specific library for interfacing to the underlying oper-
ating system and external (non-language specific) facilities. The goal of this

structure is to facilitate the construction of portable programs (by promot-
ing the use of the portable library) while at the same time allowing efficient
access to non-portable features available within a specific implementation.

* Lisps exhibit a similar structure, although the delineation of the compo-
* .. nents is frequently far less clear and the portable library tends to contain

a wider range of procedures than those of many other systems.
* Since standard computer architectures do not provide support for the

garbage collection essential to the Lisp language, most Lisp implementa-
tions are forced to supply their own memory management routines. But
once the Lisp implementation becomes responsible for its own memory man-

a.'.'agement it becomes considerably simpler to support the dynamic allocation
of what are frequently supplied only as static objects (tasks, files, and so

forth). Thus Lisp systems tend to build very large portable libraries consist-
ing,, of what wvould ordinarily be considered "systems code." Furthermore,
there is a bias within the Lisp community to provide users of the system

* with access to a very wide range of implementation decisions within this
kind of code. Where possible the system builders provide "hooks" for users
to specify their own extensions to a framework provided and maintained
along with the rest of the Lisp system.

Lisp systems tend to be built in four parts. There is a core language
inmplemented in some non-Lisp language or the result of cross-compiling

carefully written Lisp code. An extensible set of primitive procedures pro-
vides the very low-level support needed to implement the rest of the system

* is generally written in assembly language for the target machine. On top
of these a set of system procedures (written in Lisp) provides an interface
l-tween the external environment, the core language, and user programs.

IX
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212 APPENDIX A. FUNDAMENTALS OF SCHEME

Finally, a system supplied library of general utility procedures is written
using the other three parts as a base. A large component of this report is
devoted to the design and implementation of the interface procedures for a
parallel processor system. Since these procedures are closely tied to the un-
derlying language core, the broad outlines of this core must be understood
before their implementation can be explained.

A.5.1 Machine Model or Core Interpreter

The MIT Scheme system is built to run on a virtual machine whose origins
are in the Scheme '79[33) and Scheme '81[10) projects. Since neither of
these projects (nor their successor hardware projects) has become widely
available, a portable interpreter has been implemented to simulate the in-
struction set of these machines. This interpreter is the basis for the actual

-:. implementation of MultiScheme2.

These machines are based around the ability to manipulate typed ob-
jects. In the current implementation all objects consist of two parts: the
data type field, and the value field'. The value field can contain either im-
mediate data (for example, a short signed integer) or more commonly an
address. The machine itself runs a tree-structured instruction set (known
as SCode). SCode is little more than a parse tree for the program, using an
opcode for each of the Scheme special forms (plus some additional ones for
combinations, variables, and constants). These operations are encoded in
the data type field. The machine maintains a stack of continuations as de-
scrilbed in Section A.4, and has a small set of dedicated registers referenced
implicitly by many of the instructions.

In addition to this simple execution engine, there is a linear memory
space with a free pointer used to allocate the heap. When this pointeris incremented beyond some specified address, the processor indicates the

condition by setting one of a number of interrupt request bits, indicatingthat a garbage collection cycle should begin as soon as convenient. These

'2An MIT Scheme compiler is being currently under development. This compiler accepts
;1; input programs written in the instruction set of these machines, performs a number of
optimizations, and generates instructions for a standard computer architecture.

'('urrently, the data type field is 7 bits wide, the value is 24 bits wide, and there is
a hit wide field called the "danger bit." This danger bit is being phased out of the
implemn tation and is not discussed further in this report.
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VA-5. MIT SCHEME AS A SYSTEM21

bits, along -w ith an interrupt requiest mask (set under program control), are
sampled periodically and cause specific Scheme procedures to be invoked.
In addition to this garbage collection interrupt a number of other interrupt
conditions are treated in the same way. A priority system is used to handle
stacking of these interrupt conditions.

Finally, some instructions can detect error conditions. For example.
the variable reference instruction can fail if a variable is unbound in the
current enivironment. In these cases a trap into Scheme code is also invoked.
Since these errors are synchronous with instruction execution there is no

need for the interrupt bits or priority mechanism. Any instruction that can
- . generate an error is required to "back out" and leave the system in the same

state it was in prior to the attempt to execute the instruction. This allows
the instruction to be retried later if the error condition is removed. Thus
executing an erroneous instruction appears to the Scheme system as though

0 the user had inserted a call to the appropriate error handler immediately
prior to the erroneous instruction.

In order to allow the hardware to call Scheme procedures in case of errors
or interrupts, the machine and the Scheme runtime system communicate

through a region of memory known to both. This area contains the Scheme
procedure object to invoke for each interrupt or error condition, as well as
other information accessible to both.

A.5.2 Primitive Procedures

The majority of the core interpreter actually consists of the implemen-
tation of a (unfortunately) large number of primitive procedures. These
procedures can be roughly divided into three classes.

1. Unimplementable. These primitives support language features and
cannot be coded directly in Scheme without resorting to directly read-
ing and writing absolute memory locations. Sample primitives in this
category are garbage-collect, general -car-cdr, apply, and call-
with- current -cont inuat ion. The majority of these operations are
primitive space allocation or data structure referencing operations.

2. Speed-up. Mlost of the primitives are supplied only to make the opera-
tions faster than they would be if implemented in Scheme. String and
list search operations, case conversion, integer restricted arithmetic,

S.
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214 APPENDIX A. FUNDAMENTALS OF SCHEME

etc. are in this category. The theory is that when a "good enough

compiler" is available, these will be supplied as part of the runtime
system (i.e. written in Scheme) rather than as primitives.

3. External interface. About one fourth of the primitives in the MIT
system are used to interface with objects outside of the Scheme world.
This includes file operations, date and time handling, and so forth.

Jd Most of these primitives are not needed by the Scheme system directly,I
although users of the system mnight be disappointed if there were no
way, for example, to read or write files.

From the point of view of the core interpreter, the number and compo-
sition of the primitives is completely immaterial. They have a standard
interface allowing the interpreter to check that the correct number of argu-
mnerts have been supplied and then turn control over to the primitive itself.
The primitives themselves are responsible for type and range checking of
any arguments, and they use a well defined interface to signal errors or
interrupt conditions. Some primitives also alter the flow of control of the
interpreter itself (for example, the apply primitive stores information on
the continuation stack and then requests that the interpreter proceed on
to a procedure application rather than by processing the returned value of
the primitive).

A.5.3 System Code

The third and fourth components of the MIT Scheme system constitute
the "runtime system," written in Scheme itself. As might be expected, it
really consists of two categories of code. There is a "low level" portion of
the sy.stem dealing with the details of interfacing with the interpreter core,
and an extensive set of utility procedures designed for users of the systemn.

The runtime system (low level portion) is itself organized as a number
1k of interrelated packages (i.e. lexical environments) of procedures. The fol-

lowing list is incomplete, but describes a number of these packages with
particular reference to parts that are impacted by the system changes de-
s crib)el in this report.

9 System initialization, binary file loading and dumping.

fi
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* The reader and printer handle input and output operations and~
interact ion with the host operating system.

* The parser and unparser convert between the external (character
string~o) and internal (typed p~ointer) representations of objects. User
operations such as read depend on the reader to gather characters
from the input source, then pass them to the parser for conversion

to the internal object representation.

* The syntaxer and unsyntaxer convert between the program (SCode)
and surface syntax (list) representations of programs.

* Type dispatching and SCode abstraction allow a convenient interface
to the underlying representation of objects and programs.

0 The REP-Loop package allows the construction and stacking of user
interaction procedures. It is tightly coupled with the error and inter-
rupt systems (below). The interaction of this structure with exception
handling is discussed in Appendix D.

* The interrupt and error system respond to traps from the core
interdreter. Changes and extensions to the interrupt system (in par-
ticular to support the initiation of garbage collection) are discussed
in Section 3.1.1. The error system reacts to most errors by using
the REP-Loop component of the system code. Exception handling is
not a part of the error system, but is closely related to the REP-Loop
component as well.

* The scheduler is a component of the system added in the conver-
si1i from MIT Scheme to MultiScheme. Chapter 4 discusses this
Com1ponient in dletail.

A.6 Summary

Tle Schemne languiage as used in this report has a very simple syntax (Sec-
* j( fl AlI. Figure A. 1, and(, Figure A.4 ). In addition to the ordinarily encouin-

teiecl In-rcedutres of ConinionLisp, some of the examples in this report use
11' pr'wedlures dlescribedl in Figure A .2. The language makes heavy use of%
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216 APPENDIX A. FUNDAMENTALS OF SCHEME

the ability to create and return procedures on the fly (in older Lisp parlance
it "solves the upward and downward funarg problems"), and examples of
this ability are provided in Figures A.5 and A.6.

The Scheme dialect, but not CommonLisp, provides the ability to con-
vert the otherwise implicit continuation for an expression into an object of
the language. This allows control structures of arbitrary complexity to be
built within the language. Figure A.8 shows one very simple use of this
ability. This usage is the key to understanding the task switch of Multi-
Scheme (discussed in Chapter 4). The implementation of continuations in
the MIT Scheme system is based on a stack model and the key ideas of
reductions and subproblems as presented in Section A.4.3.

Finally, the MIT Scheme implementation is layered in four constituent
parts. There is a core interpreter (Section A.5.1), an extensible set of
primitive procedures (Section A.5.2), system code (Section A.5.3) and a

* library of utility procedures. Errors and interrupts are reflected into the
system code by calling Scheme procedures provided as part of the standard
system. A set of hooks allows users to customize the Scheme runtime
svst em by supplying their own code for use in a variety of well defined
circumstances.
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Appendix B

Implementation of the Pipeline

This appendix includes the code used to implement the pipeline example
of Section 5.3. This code is presented complete and, with the exception of
additional comments, unedited.

B.1 Locks for Serializing Access

Recall that (set-car-if-eq?! a b c) is an atomic operation that either
operates like (set-car! a b) (if (car a) is currently c), or it does noth-
ing. It returns a if the modification takes place and '() if not.

(define (lock obj) • Internal
(if (null? (set-car-if-eq?' obj 'LOCKED 'UNLOCKED))

(lock obj)))

(define (unlock obj) (set-car! obj 'UNLOCKED)) ; Internal

(define (make-lock (make-lock value) (cons 'UNLOCKED value)))
(define lock.value cdr)
(define set-lock.value! set-cdr!)

(define (atomically object procedure)
(lock object)

(let ((result (procedure)))
(unlock object)

result))
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218 APPENDIX B. IMPLEMENTATION OF THE PIPELINE

B.2 General Utilities

(define (make-placeholder)

((access make-future scheduler)
'MAKE-PLACEHOLDER 'MAKE-PLACEHOLDER "Waiting Forever"))

(define (make-list count object-generator)

(let loop ((answer '0)

(count count))

(if (= count 0)

answer
(loop (cons (object-generator) answer)

(-1+ count)))))

(define (make-vector count obj-gen)

0 (list->vector (make-list count obj-gen)))

(define (start-pipeline pipeline vector)

(if (and (pair? pipeline)
(eq? (car pipeline) 'INPUT-NODE))

(vector 'MESSAGES (cdr pipeline))
(error "START-PIPELINE: not an input node" pipeline)))

.. Refer to procedure make-pipe-vector in Section B.6 to understand
how pipeline vectors handle the messages operation.

B.3 Hash Tables

One and two-dimensional tables are provided, based on hash numbers gen-
erated using the interning service described in Section 2.2.2. As mentioned
there, this implementation should really use weak cons cells, but I was lazy.
It is important that the tables not retain the objects entered in the table,
since there is no code to remove entries when they are no longer needed.

That should have been implemented, too.

0
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(define (make-table) (make-lock '0))

(define (hash-add table hash-code adder)
(let ((first-try (assq hash-code (lock.value table))))

(if first-try
(cadr first-try)

(atomically table
(lambda 0

(let ((second-try (assq hash-code

(lock.value table))))
(if second-try

(cadr second-try)

(let ((result (adder)))

4(set-lock.value! table
(cons (list hash-code result)

* (lock.value table)))

result))))))))

(define (id-add table entry adder)
(let ((hash-code (object-hash entry)))
(hash-add table hash-code adder)))

(define (2d-add table first second adder)
(let ((first-hash (object-hash first))

(second-hash (object-hash second)))

(let ((sub-table (hash-add table first-hash
(lambda 0 (make-table)))))

(hash-add sub-table second-hash adder))))

;..
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.B.4 Simple Pipeline Constructors J
The pipeline is simply a list of messages to be processed by the objects
flowing through the pipe. During construction, a "dangling end" has a

~message in the car, and a ' )in the cdr.

Internal procedures:
(1) Add a new operation to the end of an existing pipe

- (define (next-op! pipe op)
(let ((result (list op)))

(set-cdr! pipe result)
result))

(2) Join two existing pipes so the first flows into the second
(define (weld! in-pipe out-pipe)
(set-cdr! in-pipe out-pipe))

External procedures, see Section 5.3.1:
(define (extend pipe operation) (next-op! pipe operation))

(define (make-input) (list 'INPUT-NODE))

B.5 Complicated Pipeline Constructors

The main pipeline constructors operate by adding a procedural message to
the growing pipeline. In the case of fork, the message causes an incoming
object to make new objects with copies of its current state, each of which
propagates down a different output branch:

(define (fork n input) ; Yields list of n output pipes
(let ((result (make-list (-1+ n) (lambda () (list 'FORK-START)))))

(define (fork-operation obj)
(let ((obj-num (obj 'OBJECT-NUMBER))

(vector (obj 'VECTOR)))
(map (lambda (pipe)

(let ((new-object (obj 'NEW-OBJECT (obj 'COPY-STATE))))
6 (new-object vector obj-num (cdr pipe))))

result)))
(cons (next-op! input fork-operation) result)))

0
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B.5. COMPLICATED PIPELINE CONSTRUCTORS 221

The remaining constructors all require synchronization of arriving ob-
jects. They use tables (constructed from the operators above) to locate
corresponding objects from the same vector as they pass through a partic-
ular point in the pipeline.

At a join point, the first object corresponding to a vector and offset
within that vector proceeds on to the output pipeline after performing the
user-specified join operation. Objects arriving from other input pipeline
branches for the same vector and offset are forced to halt after they make
their state available to the first object:

(define (join combiner inputs)

(let ((count (length inputs))
(result (list 'IDLE))

(my-table (make-table)))

(define (make-operation input-number)
* (lambda (obj)

(let ((vector (obj 'VECTOR))

(object-number (obj 'OBJECT-NUMBER))
(state (obj 'GET-STATE))

(first-one-through? #F))
(let ((mates (2d-add my-table vector object-number

(lambda )

(set! first-one-through? #T)
(make-vector count make-placeholder)))))

(determine! (vector-ref mates input-number) state)
(if first-one-through?

(obj combiner (vector->list mates))

(obj 'HALT))))))

(define (loop n inputs)

(if (null? inputs)

result
* (begin

(weld! (next-op! (car inputs) (w -operation n))
V result)

(loop (1+ n) (cdr inputs)))))

(loop 0 inputs)))

. At output and interact points, each object looks to see if any other
objects from the same vector have arrived. If so, it merely stores its state
,way in the output structure already created, then halts. If not it creates

V.
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a data structure for objects that arrive later:

(define (add-output pipe) ; Yields list of answers
(let ((my-table (make-table))

(result (make-placeholder)))

(define (output-operation obj)
(let ((vector (obj 'VECTOR))

(object-number (obj 'OBJECT-NUMBER))

(my-state (obj 'GET-STATE)))

(let ((result-vector
(id-add my-table vector

(lambda 0
(let ((next-out (make-placeholder))

(this-out (make-list (vector 'SIZE)
make-placeholder)))

(determine! result (cons this-out next-out))
(set! result next-out)

(list->vector this-out))))))
(determine! (vector-ref result-vector object-number)

my-state))))
(next-op! (next-op! pipe output-operation) 'HALT)
result))

(define (add-interactor pipe interactor)
(let ((my-table (make-table))

(result))
(define (interactor-operation obj)

(let ((obj-vector (obj 'VECTOR)))
,. (let ((data (Id-add my-table obj-vector

9 (lambda 0

* (let ((l (make-list (obj-vector 'SIZE)

make-placeholder)))

(cons (list->vector 1) 1)))))

(determine!
(vector-ref (car data) (obj 'OBJECT-NUMBER))

(obj 'GET-STATE))
(obj interactor (cdr data)))))

(set! result (extend pipe interactor-operation))

result))
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B.6 Creating a Pipe Vector

Pipeline vectors are message receiving objects. They take either a messages
.imessage, used to associate the vector with a given pipeline input port (see
start-pipeline, in the general utilities section), or a size message to re-
port the number of objects it the vector. All of the objects in the vector
are created using make-object, and they are activated by specifying the

*.*. vector to which they belong, the offset within that vector, and the messages
(pipeline) they are to process:

(define (make-pipe-vector elements)

(let ((message-list (make-placeholder))
(size (length elements)))

(define (the-vector message . additional)
(cond ((eq? message 'MESSAGES)

(determine! message-list (car additional)))

((eq? message 'SIZE) size)
(else (error "Bad message to vector" message))))

(define (loop number elems)

(if (null? elems)
the-vector ; Value returned: the vector

(begin ; Activate the objects
((car elems) the-vector number message-list)

(loop (1 number) (cdr elems)))))

(loop 0 elements)))

B.7 Task Creation and Removal

-. (define *all-objects* (make-lock (list 'OBJECTS)))

_' (define (make-cell before me after)

(cons (cons before me) after))

-N (define (before cell)
(if (or (future? cell)

(future? (car cell)))
(error "Before trouble" cell))

(caar cell))

.
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(define (after cell)

(if (future? cell)
(error "After trouble" cell))

(cdr cell))

(define (set-before! cell value)
(if (or (future? cell)

(future? (car cell)))
(error "Set-Before! trouble" cell))

(set-car! (car cell) value)

'new-before)

(define (set-after! cell value)
(if (future? cell)

(error "Set-After! trouble" cell))

(set-cdr! cell value)

'new-after)

(define (kill-task cell)
(atomically *all-objects*

(lambda ()
(let ((before-me (before cell))

(after-me (after cell)))

(set-after! before-me after-me)

(if after-me
(set-before! after-me before-me)))))

((access next scheduler)))

(define (record-task! me)

a-I. (atomically *all-objects*

(lambda ()
(let ((after-me (after (lock.value *all-objects*)))

(before-me (lock.value *all-objects*)))

(let ((my-cell (make-cell before-me me after-me)))
(if after-me (set-before! after-me my-cell))

S. 0(set-after! before-me my-cell)

my-cell)))))

1, .
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B.8 Making an Object

A simplified version of this procedure was shown in Figure 5.11 on page 152.
The complete code for handling all operations is:

(define (make-object state copy-state user-code)
(let ((my-cell)

(vector)
(obj ect-number)
(the-messages (make-placeholder)))

(define (loop message-list)
(define (standard-handler m #!optional arg)

(cond

((procedure? m) (m standard-handler))
((eq? m 'halt) (kill-task my-cell))
((eq? m 'idle) 'IDLED)
((eq? m 'new-object) (make-object arg copy-state user-code))

((eq? m 'object-number) object-number)
((eq? m 'vector) vector)
((eq? m 'get-state) state)

((eq? m 'set-state!) (set! state arg))
((eq? m 'copy-state) (copy-state state))
(else (set! state

(user-code state m (if (unassigned? arg) '() arg))))))
(standard-handler (car message-list))

(loop (cdr message-list))) 
.

(set! my-cell (record-task! (future (loop the-messages)))) 64

= (lambda (the-vector number messages)

(set! vector the-vector)

(set! object-number number) I
(determine! the-messages messages))))

.i I
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Appendix C

Performance Measurements

The MultiScheme project was not primarily concerned with issues of imple-
* •mentation efficiency, but these are clearly important to any serious parallel

programming system. This appendix provides measurements of some of the
important operations internal to the MultiScheme interpreter, primarily to
provide a baseline for comparison with future versions of the system.

Performance measurement is an area which by rights requires careful
planning and a well chosen goal - typically aimed at discovering the im-
portance of one aspect of the implementation to the overall performance
of a large system. These measurements are not part of such an effort, and
their utility is correspondingly limited.

-A.

C.1 The Measured System

The measurements are taken from a simulator for MultiScheme that runs
on the Hewlett-Packard Series 9000 Model 320 computer, based on a Mo-
torola MC68020 processor running at 16.67 MHz using a 16-bit memory bus
with a large (roughly OOK line) cache between the processor and memory.

., The simulator is written in C, sharing almost all of the code with the ac-
tual implementation of MultiScheme on the BBN Butterfly. The primary
differences between the two implementations are:

. The Butterfly is a true multiprocessor, while the HP machine is a stan-
dard sequential machine. The simulator can be run with or without
timer-driven scheduling interrupts. For these measurement no timer

227
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22S APPENDIX C. PERFORMANCE MEASUREMENTS

was used since the examples were either sequential or were deliber-
ately intended to measure the overhead of task switches at controlled
times.

- The Butterfly hardware is based on an 8 MHz processor (normally
a Motorola 68000 but a Motorola 68020 is available as an option)
and a microcoded co-processor to provide a virtual memory system. N

The co-processor is responsible for all transactions across the But-
terfly Switch. References to memory that is physically located with
the processor making the reference are faster by a constant factor
(which depends on the configuration of the particular Butterfly) than
are references to any other memory. Switch transactions take place
in 16-bit quantities, but the co-processor can be used to implement
atomic 32-bit transfers at the cost of some set-up time. Since the
MultiScheme interpreter uses a combination of both atomic and non-
atomic transfers, memory reference times are not comparable on the
two implementations. Typical memory access times are 2 microsec-
onds for local memory and 6 microseconds for remote memory[l].

* The Butterfly memory management is based on the garbage collec-
tor described by Courtemanche[14]. It pre-allocates portions of the
address space to each processor, and a garbage collection is initi-
ated when any processor's area is filled. This alters the frequency of
garbage collection on the Butterfly by comparison to the HP. None
of the performance measurements include garbage collection activity
on the HP.

* The queue of tasks awaiting processors is provided using the Butter-
fly's atomic "dual queue" operations[2 operations. These are simu-

. lated using primitive procedures (written in C) for queue manipula-
tion on the HP. Similarly, the primitive procedures global-inter-
rupt and await-synchrony are simulated on the HP.

* The operating system on the HP machine is HP-UXTM, a version
of UnixTI. The Butterfly runs the ChrysalisTM[2] operating system,
developed for high-pe-formance data communications applications on
a multi-processor. j
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The effects of these differences are quite difficult to quantify. The author

wihrsett nata aallpoesripeetto.I attherefore suggests that these numbers not be considered to have any validityI

iilxiously await the release of the BBN Butterfly Lisp system so that a
realistic set of measurements can be undertaken. d

d One further caution: the system being measured is fully interpreted.
The MultiScheme systemn code used during the measurements contains a

-pj

scheduler that corresponds to the scheduler shown in Chapter 4, but with
three significant differences:

1. The scfheduler actually measured does not permit the independent
creation of tasks and placeholders. In fact, the two data structures
dlescribed in Chapter 4 are combined in one.

2. The race conditions inherent in the implementations of Chapter 4 are
not present in the measured version. The scheduler measured runs
unmiodified on the Butterfly, and no races have been detected. aK

3. The measured version of the scheduler uses a primitive (written in C)
to imp lement a faster version of call-with-current-continuat ion
for utse solely in task switching. This new primitive does not permit ,

'l

the onntiio n ivte caodbe used morn e thansureens nontana"

task (whose implementation was not shown in Chapter 4) is written
inI Scheme, and part is written in C.

C.2 Measurement Technique

For eah itemc measured, a small section of code was written that exercised
the detired operation. Because the clock resolution available was 1 tick

ery 0.01 seconds, the code was repeated 50 times in sequence and the -
ttoil tire for the 50 repetitions was measured. This group of 50 operations
WS then repeated 20 thies (for a total of 1000 operations), separated by a
garbage collection.

.sing this technique, calls to the procedure x defined by

(define (x) 3)

I
4% % %!
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230 APPENDIX C. PERFORMANCE MEASUREMENTS

were measured for purposes of normalization. A single call to X, measured
in this way, took 0.360 milliseconds (ms). For comparison procedure calls
of 1, 2, 6, and 12 arguments were measured. These took 0.396, 0.3961,
0.576 and 0.781 milliseconds, respectively.

Because of concern over the accuracy of the clock, the remaining num-
bers were normalized with respect to the time required to perform a call
to this procedure, x. This time unit, 0.36 milliseconds, is referred to as a
"-tick". The table in Figure C.1 summarizes the results.

C.3 Analysis: The Cost of a future

In order to better understand the cost of touching a placeholder that does
not vet have a value (131.6 ticks from Figure C.1), a number of additional
measurements were made. The cost of the procedure that is used within
the scheduler to handle this case was measured (this procedure is shown
as await-placeholder in Figure 4.10 on page 111). The time required for
this procedure, combined with a call to task-catch, was 48.65 ticks, so the
Cost of await-placeholder itself is approximately 39.12 ticks. In addition,
a measurement of the time required to release the current processor and get
it back again (roughly the cost of a call to saving-state and then using
the underlying task queues to save and restore that state) was 39.8 ticks. %

Using these measurements, we can compute the amount of time we
would expect a (touch (future 3)) to take, as shown in Figure C.2. The
difference between the measured cost of 131.6 ticks and the computed value
of 137.0 ticks (from Figure C.2) is well within the margin of error in these
timing measurements, which have been observed to fluctuate by as much as
5W (presumably due to the cost of certain critical Unix background jobs).

The Scheme interpreter is optimized for one and two argument function calls (but not

zero arguments), lending credence to this first pair of numbers.

k"~
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Code Time Notes
(ticks) (ms.)

(touch 131.6 47.4
(future 3))

variable reference 0.7 0.3 For a local variable
i (lambda (x) x) 0.2 0.1 Creating a closure

(future 3) 19.0 6.8 Queues new task and returns to
spawning task

determine! 13.0 4.7
touch 1.2 0.4 Placeholder that has a value
touch 0.9 0.3 Non-placeholder (e.g. af-

ter a garbage collection replaces a
placeholder with its value)

task dist. 1.8 0.7 Store and retrieve a value on the
task distribution queue

enqueue 5.3 2.0 Add task to those waiting for
placeholder's value

dequeue 5.1 1.8 Remove task from those waiting
for placeholder's value

call/cc 11.0 4.0 Make a continuation using call-
with-current-continuation and
then invoking it

task-catch 9.5 3.4 Optimized version of above, used
for task switch

Note:
As mentioned in the text, all timings are reported in ticks corresponding to the time

required to call a procedure of no arguments. This time was measured as 0.36 milliseconds,

and includes the costs of: one lexical variable look-up (for the variable X); allocating and

initializing an environment frame; saving the current continuation; evaluating a constant;

and restoring the previous continuation.
6(

Figure C.1: Internal Timing Measurements
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Item Time Description
____ (ticks)

a 19.0 Creating the task and placeholder

b 39.1 Touching the undetermined placeholder and calling
await-placeholder

c 39.8 Task switch from parent to child task

d 13.0 Determine! value of placeholder

'. e 5.1 Dequeue parent task from queue waiting for place-
holder's value

f 39.8 Task switch from child back to parent task

g 1.2 Touch of the placeholder after value is known

_ 157.0 Sub-total

-20.0 Item b includes a suspend of the parent task, as
does item c. Assuming that the cost of suspension
is roughly half the cost of a full task switch, this
double count has a cost of roughly 20

".._ [137.0 Total

Note:
0 See the text and Figure C.1 for an explanation of the time unit.

Figure C.2: Components of the Cost of a Future
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Appendix D

Exception Handling in
MultiScheme

Section 3.3 explained how fluid variables can be used to provide storage on
a per-task basis. In passing, it was mentioned that the ability to use first-
class continuations to exit from the body of a fluid-let can lead to com-
plications, and the implementation mechanism described in Section 3.3.4
correctly handles these difficulties. This implementation was newly intro-
duced in MultiScheme to replace a mechanism based on the notion of twin
dynamic state and control state introduced in MIT Scheme following the
work of Hanson and Lamping[28].

,. These notions are useful beyond their ability to implement fluid vari-

a l:ls: they provide the base on which exception handling mechanisms can
be built. This section describes these twin notions, how they interact, and
how they could be used in MultiScheme to build the kind of exception
handling facilities available in other languages. MultiScheme, at present,
provides only the basic support for control and dynamic state spaces. None
of the applications developed so far, nor the system itself, have had need
of an exception handling mechanism. As a result, this section describes a
basic mechanism and several ways to use that mechanism. It provides no
final system designer's choice - only application of the mechanism to real
problems will provide the insight needed to make such a choice.

233
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D.1 Twin Notions

The addition of first-class continuation objects to Scheme introduced an
unprecedented amount of power into the language. Control constructs such
as setjmp and longjmp of many C implementations[4], co-routines, and
even multiprocessing systems can be conveniently expressed. The control
state of the system can be captured at any point in time and reactivated
at any other time, and even reactivated multiple times. An excellent and

provocative use of this last ability is demonstrated by Rozas[51], where the
ability to reactivate a control state is used to simulate the fundamental
operations of quantum mechanics. The creation and manipulation of these

€-" control state objects, called continuations, is described in Section D.3.
But this kind of expressive power is rarely added to a language with-

out introducing some corresponding difficulty. In the case of Scheme the
difficulty comes from the kind of problems that were mentioned when fluid
variables were introduced in Section 3.3.3. There are times when a pro-
gram needs to set up some state that must be maintained for the duration
of a particular body of code. In the example of Section 3.3.3 this state
consisted of the storage location associated with the variable radix. Other
common cases include opening and closing files, locking and unlocking data
structures, and saving and restoring hardware registers. One of the fastest
growing sets of functions in the MIT Scheme system are the "with-..."
functions (with- interrupt-mask, with-output-to-file, with-syntax-
table, etc.) used to perform this sort of "modify.. .execute... unmodify"
operation.

In all of these cases the intention is to perform some action when control
exits a block of code, independent of the mechanism used to exit the block.
This is a fairly standard problem, often handled as a special case of the
more general problem of handling exceptions or errors. An overview of two

*different solutions from other languages is supplied in Section D.2.
Because Scheme provides the ability to re-enter a region of execution,

however, a number of new difficulties arise. If a region of code requires a
certain state to be in existence while it is executing, then reentry to the
region must reestablish that state. In order to support this requirement
'MIT Scheme provides a data structure, called a dynamic state space, that
maintains the procedures required for transitions into and out of execution
regions. This mechanism is described in Section D.4. But the dynamic

S
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D.2. EXCEPTION HANDLING 235

and control states must be related to one another. Transitions within the
control space correspond to the exiting of one block of code and the entry
into another. The dynamic state records the transition functions that must
therefore be invoked. This interconnection is described in Section D.5.

D.2 Exception Handling

Languages like Ada[44], Clu[38] and Mesa[41] provide syntactically limited
ways of exiting a block of code. One way typically corresponds to anl
ordinary exit and is implicit when the body of code completes in the nornmal
manner. Another syntactically distinct mechanism is used if the body of
code completes in an unusual manner. These unusual exits are typically
called signals or exceptions.

* Users can provide exception handlers for certain blocks of code. When
a program raises an exception (either by using the appropriate syntax or
implicitly from errors detected by the runtime system) the block of code
that has most recently been entered, has not yet been exited, and that
contains an exception handler for the particular exception is located and
thle handler is invoked. A block of code that exits normally does not activate
any of the exception handlers and furthermore these exception handlers are
removed from consideration when future exceptions are raised (the block is
now "exited"). If the code for an exception handler is required to run for all
p~ossible ways of exiting the block (as in the example of Section 3.3.2) the
code for the block terminates by raising the appropriate exception condition
itself instead of using the ordinary return mechanism.

Details of the mechanisms differ, but in general these systems provide for
several important cases. Exception handlers may be supplied for a specific
excep~tion, a class of exceptions, and "all exceptions that aren't otherwise

* handled." Raising an exception can pass user selected data to the exception
llail(llers. When anl exception handler is invoked it may be permitted to re-
invoke the exception after performing some code, thus becoming invisible
except for providing clean-up code. Or it may raise a different exception,
or force the normal exit from its own block rather than continuing the

* propagation of an exception. Or it may cause the procedure that raised the
excep~tion to appear to return a selected value.

In suimmary, these languages (a) annotate blocks of code with exception

0.%
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236 APPENDIX D. EXCEPTION HANDLING IN MULTISCHEME

.handlers; (b) distinguish normal return from unusual block exit; (c) provide
a path of connunication from the point where an exception is detected to

the point vhere it is handled; and (d) use this communication path to
control the selection of relevant exception handlers. It is assurned that
,xceCptions occur relatively infrequently, and thus the cost of invoking th e

incchaiiisin for signalling and handling an exception can be high. The
c)>t of both entering ald normally exiting a body of code that cont ain,
exception handlers must be minimized.

The Lisp languages have evolved a different mechanism. They gener
ally provide a means of naming a particular control state (using the catch .
imeclianisin in CommonLisp, for example) and a way of causing an arbi-
trary value to be returned after restoring that control state (throw). These
constructs are utilized to provide many forms of control flow, generally
not related to exceptional conditions. Typical uses include iterators and .

nultiple-level procedure exit. There is also a way (unwind-protect) to as-
sociate with a block of code a set of actions that must be performed when
it is exited in either manner (the normal return mechanism or the throw
imnethod). Unlike the other group of languages, Lisp dialects do not provide
any direct method of disambiguating a normal return from an exceptional
case, although it is easy enough to use the underlying structure to devise a
inechanisin for this purpose.

The way an exception condition is typically handled in Lisp is to provide
it -"well-known name" for a procedure intended to handle the exceptional
condition. The system supplies a standard handler for exceptions, but
users are free to rebind the name (in a dynamically scoped Lisp) or provide
an alternative fluid value (in Scheme) to provide customized handling of
the condition. These exception handlers are called in such a way that the
,)revioils value for tile exception handler is always available under the stan-
(lard nane. This allows an exception to be propagated on to the previous
handler. The control flow can be altered by a handler in the same way it
',,1ild I, 1)y aly proc'dure, using throw to reestablish an existing control

'tiate. Normal return from the handler may either attempt to continue the
c(Miput ation from the point where the exception occurred or invoke the
previously existing handler, depending upon the particular Lisp system.

The two mchanisiis appear very different from one another, and yet
there is a (deep similarity. There are a number of features that can be %
ahstra,'tl from both of these methods of handling exceptions to provide

Lb
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at basis for building other mechanisms. The essence of the mechanisms

appears to be the ability to:

1. Mark anl execution state for possible use at a later time.

2. Select a dlestination execution state and cause a transfer of control to

3. Maintain the ordering information that correspondIs to the normal

return path between inarked execution states.

4. Associate transition functions with marked execution states.

* 5. For each except ion condition maintain a chain. correlated with the

P., return path chain, of (potential) handlers for that exception.

* C~. Pass user sp)ecifiedl informiat ion about thle excep~tion to the exception

handlers.

M IIT Scheme has dIivjided these prob~lem~s inito( tw ()Categories. The first

iILV( dyes, creating, naming. and iilig amng different p)oint s in thle exe-

(c1i it it prga.Cllciey thlese operat ions (inminibers I and~ 2) refer
towhat is, known as thle control state of thle p)rograIi., The second Is relatedl

toi Icrt iiig, remiovilig. locating. anid ex cunting codle that hiandles, excepltionl

Coiilitioiis. This group~ (iniibers 4. 5. ani( 6) is knowni as tlie dynamic state

o)f H it- prograIin. The two are not iIependen(It, and~ it is inI t lic ilitercoti

lnert ii of the two iliiillber 3) that thle iiiecliaiiisin for liatidllig exc'eptioni

c(( itlit ions Ilies.

D.3 Control State
* 11 1 ler to) SupJport ani except ion hiandlinig ineciaisn there miust be some

o ~f marking, at 1,11in timle. certain points inI t lie ext-cilt ion of the ipro-

-i so that conitrol cami be restored to thlese p~oinmts later. The not'iu

fr )Iii olenot at ionitl semnmt ics, of at continuation embodies t his ii -ani elegant

ma1tthiemiat ical fo)rmuilat ion. The conitiniilat loll emicapsilat es n( t onily a point

S. ~~InI thle rode (like a label in assenilbly language or B C'P L), but also the iller-

'lit stack of operationis t hat remains to be performned at a p)artiular 1)oit

* ~f tiime in thle execution of a program. Section A .4 d1 'scribes thle uise of

.
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" call1-with-current -cont inuat ion in Scheme to capture a first-class ob- i
". je'ct corre'sponding the the current continuation. The formal semantics of :
.- '. this, primitive can be gleaned from the denotational description of Scheme-.
"' contained in the in 1)lenient ation- in dependent language definitioni[49]..:

.. D This inechanisin allows any point in the execution of a program to be
-. '" labc'h'd (requiremnent I from Section D.2), by merely making the continua- .

-,. tion iii existenice at that point into a standard Scheme object. The selection

. - of an exe'cution state to be resumied, then, is identical to choosing any other
"-" ohjec t in tlh systen. The usual naming rules, parameter passing rules, and

da1;ta struc'tiires can b~e used to devise arbitrary mechanisms. Transfer of
'2' c,,zttrol to the chosen state is accomplished by (at least syntactically) pro-

r, . c(duI'e call, since continuation objects are interchangeable with procedures
', ( requirement 2).

::: D.4 Dynamic State

MIT Scheme provides a mechanism (proposed by Hanson and Lamping[28])
intended to support requirements 4 and 5 of Section D.2. A dynamic state

~space (tihe word "dynamic" is often omitted) consists of a number of state
:" points connected by arcs with a pair of transition functions on each arc,
. one for each direction along the arc. The MIT Scheme system is always
-. operating at a specific point in each space that has been created. Programs
;'-" can move within each space, causing the transition functions between the

original position and the destination point to be executed. In order to ,
(ruarailtee a unique path between any two points within a space, the space .

i- in fact constrained to be a tree.
State spaces are ordinary Scheme data structures. WNhen they are cre-

ate'd initially (by make-state-space) they contain a single point in whfich
the' systein is conside.red to be operating. They can be extended by adding a
point adjacent to tihe current one (execute- at -new- stat e-po int), spec-

ifying tie transition functions into and out of that point. The system
executes the e'ntering transition and is then located at the new point. Nor- i
real i-,turn from the primitive causes a transition out of the newly created
point ani(l into the point where execution of the primitive began. And a
prograin ran request tz'ansfer to another point in the space (translate-
to-state-point). In this case a path is calculated to the destination and

%"%.,
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the system moves a step at a time toward the destination, executing a
transition function at each step.

The state space abstraction provides a convenient packaging of the no-
tion of transition functions, providing support for requirement 4. Further-

more. the state space is built in a manner that causes it to reflect the
normal return path for programs (unless the program performs a translate-
to-state-point), so they can be used to satisfy requirement 5. By coupling
the use of translate-to-state-point (motion in dynamic state space) with
the use of continuations (motion in control space) these two can be kept in
complete agreement. This is discussed in Section D.5.

The current dynamic state space model does have a deficiency, although
it is easily repaired. There is currently no convenient way to pass infor-
inmation along the chain as transitions occur. By allowing the transition
functions to receive arguments this problem would be solved, allowing re-
(quirement 6 to be easily met.

D.5 Connecting the States -

At the lowest level of the MIT Scheme system (in the "microcode") the
control space and the dynamic state space are completely independent as
described so far. This separation has been introduced largely to allow
extperimentation with mechanisms that support the exception handling at
the system level. For ordinary use, however, they must be interconnected
i1 a way that supports the common use of the system. MIT Scheme uses
i variant on the familiar Lisp procedure unwind-protect. While unwind-
protect allows a region of code to have an exit handler attached to it, this
variant (introduced by St allniai[521 and known as dynamic-wind) allows
a programi to provide transition functions that will be invoked upon both
(re-)entry and exit of a block of code:

(define (dynamic-wind re/entry code exit)
(execute-at-new-state-point system-state-space

re/entry
code
exit))

Dv.awmic-wind operates by manipulating a specific dynamic state space,
system-state-space. It, creates a new point within that space, specifies

R
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the function re/entry for use on transition into that point and exit as the
transition function out of the point. It moves the system into the newly
created point (causing re/entry to be evaluated) and then executes code.
When this procedure ends the system will return to the previous state
point (causing exit to be evaluated). But, by itself, this will not cause
control transfers that occur through the use of continuations to evaluate
the appropriate thunks.

In order to make dynamic-wind a standard facility the continuation ob-
ject that users normally manipulate is not just the control state as might be ,
expected. The procedures that create continuations (such as call-with-
current - continuation) produce procedures (continuations) that capture
both the control state and the current point within the system-state-space
at the time the continuation is created. When this procedure is called (cor-
responding to CommonLisp's throw construct) both the saved control state
and saved dynamic state point are restored. Since restoring the dynamic
state point is done by moving from the current location in state space to
the one being restored (using translate-to-state-point) all of the appropriate
transition functions are invoked in the process.

The introduction of parallel processing raises a problem with this state
space model. The system can no longer be considered to reside in a single
state (control or dynamic) at each instant of time. The notion of simul-
taneoasIy being in multiple states must be considered. The control state
of the system is easily captured in a stack and allowing each processor to
provide its own stack conveniently solves this problem. The dynamic state,
however, is characterized by arbitrary user specified transition functions.
Since transition functions always come in pairs (entry and exit), a single
processor can move (in theory) between states when it performs a task
switch and return to the same set of conditions it was in when it left the
task. But the states may be mutually exclusive and there is no informna-
ti(n available to deteriiiine which states are compatible and which are not.
By separating the implementation of fluid-let from the dynamic space
model the majority of problems with incompatible states are avoided. The
remaining mutually incompatible states must provide transition functions
that guard against any simultaneous access.
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D.6 Exception Handling via State Space

The Kvyilainl(' andl control state iiechanismiis, interc(onnected( as described inl
Sect ion D.3, adlequlately support the method traditionally used by Lisp for
exception1 haindling. even inl light of the ability to reenter aI control reglin.
Ini fact, onl a single processor, the MIT Scheme system uses the coupling of
liumnic space andI control space to implement the f luid-let inechaiisimi

()f Sect ion 3.3.3. The except ion ine('lalisin of Ada ( and so forthI) camIi he0
implemiented onl top) of this b~ase' in several ways. The MIIT Scheme s5Vste(ili

loes not use this inechailisxii so thle choices wthliie I here have no0t becin

fully linvestigated. althomgh thev do n1ot appear, to po()'' anly dithicultilt"..

0 Excep'Itl(ins areMamed inl tlies. laniaILts and tlet'.t iil(w are t 11(1

liseti to inldicate that the eXception1 ha i-cl 'd1 i aid 1ike a li1Iier.
A (llre('t aialo)L, of tlln atpmai( i inl NIT sclma 1, 1(' thud va-,l
;11)i(s to uilt1 til'. Ix p i i;lI lll'l.' it 1 I Ilo()k

XV:.............................. .

pr Iwl'b ii Je' t 11.11 Iof ScIll-1ii

q i~ -n O t I f; %vlt i~t~ t ~ i t l i1, ki t ii ii lt m s f t I li ' 11,1 1 1 11fL %.J~ i

Slinc' thet cllluj(' f1i1Iiv . to hilnd 1111t oc1 when Thet prot)tcctt'd ot

1)1()ck 1'' Iiitcrcdt it js', nottlI.~~ to alt iclitc tue. ;tdllth(Itii (of a new\\
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242 APPENDIX D. EXCEPTION HANDLING IN MULTISCHEME

exception after the block has been entered.

The system-state-space is always correlated with the execution chainI
and can be used in place of the fluid variables to implement the se-
lection of an exception handler and propagation of the exception. In

order to install an exception handler, dynamic-wind is used to cre-
ate a new state point. A pair of procedures generated in a standard
way are installed as the transition functions. These procedures have
two important properties: they are "easily recognized" as exception
handlers, and when invoked they first test whether an exception is

being signalled and then whether they were generated to handle that
exception. Only if both of these conditions are met do they continue
on to perform their work.

WXhen an exception is signalled, the system-state-space is walked back
from the current point of execution to the root of the state space.
Each transition function encountered along the way is tested to see
if it is one of the "easily recognized" exception handlers. If so, it is
invoked to determine whether or not it will handle the exception. If
not the walk continues back as though the transition had not been
marked.

This approach deals well with the addition of exception conditions on
a dynamic basis. Since the exception handlers are invoked for every
exception, they can determine at the time when the exception occurs
whether or not the exception is one to which they apply. Unfortu-
nately, it requires every transition to be examined, even ones that do
not apply to exception handling.

By adding a new state space, say the exception-state-space, to the in-
formation that is saved and restored with a continuation it is possible
to allow only exception handlers to be examined when an exception
is signalled. The mechanism is the same as in the previous approach,
but with transitions marked in this alternate space. This comes very ,
close to the implementation normally found in languages like Mesa
for the exception mechanism.

This implenentation does have an efficiency problem. All exception
handlers are inspected, even ones that are not relevant to the par-
ticular exception being initiated. The argument generally given in

'

r r VP,
.1 .



D.6. EXCEPTION HANDLING VIA STATE SPACE 243

defense of this is that exceptions occur infrequently and handlers for

exceptions usually include a default handler, so the inefficiency is
minimal.

An intriguing alternative to this last approach is to provide a sepa-
rate dynamic state space for each kind of handler that is installed. A
separate data structure is maintained that can be used to determine
whether a particular exception needs to execute any transition func-
tions in that space. A single exception condition may require walking
several of these -'exception spaces," since the exception may satisfy
more than one criterion. Thus these spaces must somehow be walked
in parallel with each other.

Installing an exception handler involves choosing the correct dynamic
state space to use. Then the current point of the system in any of
the other exception spaces that might be relevant to an exception
handled by this space must be captured. The transition function
installed must first cause the point in each of these other spaces to be
restored to the captured position and then execute the actual handler.
This intertwines the walks of the trees in a way that guarantees that -3

the order in which exception handlers are examined corresponds to
the {reverse of the) order in which they were installed.

By calculating which state spaces are relevant when an exception is "
signalled, it is possible to examine only transitions relevant to that

exception. Whether this elaborate mechanism is more efficient than
the others will largely depend upon the extent to which handlers are
created and removed and the overlap between groups of ex-eptions.

Selecting among these alternatives is a matter of taste, and has been left
to users of the MultiScheme system. As mentioned earlier, no current
applications (nor the system itself) have required an exception handling
mechanism. In keeping with the tradition of Lisp languages, when need
arises for such a mechanism the system implementors and the users of
the svstem will doubtless negotiate a standard interface to the facilities
described here.

.
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