
~-RIM 364 ADA (TRAE NAME) COMPILER YLIOTION SUM14RY REPORT: /
HRIXS CORPORAITION H.. (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER N-P AFI OH ADA YRL I.. 63 JUN 87

IUCLESIFIED F/G 12/5

*L 6

MIII U.08
111-2 111L 1

1: 332

~*, ~ MA

SCTT~vfT A OWI FILE COPY0 SEC 3 EI~tered) f,

I 19 364 A ACSSO O N. .N, :- ' ,'Rv

A - 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. -... ,5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 3 June 1987 to 3 June 1988

Harris Corp. Harris Ada Compiler, Ver.1.3 Harris HCX-7
6. PERFORMING ORG. REPORT NUMBER

7 AUTH R(s 8. CONTRACT OR GRANT NuMBER(s)
7Wright-atterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 3 June 1987
United States Department of Defense 13. NUMBER U PAGES
Washington, DC 2 301-3081 20

14. MONITORING AGENCY NAME & AOORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson UNCLASSIFIED
15a. R SSFICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. ,f different from ReporT *

UNCLASSIFIED b I

18. SUPPLEMENTARY NOTES i A | N/ 0 65 ,]. 6 ..8

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

DD 1473 EDITION OF 1 NOV 65 IS OBSOLETE .

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhenDaraEnte...d)

- - -*5* . - V - & '. ~ . Z - . - %*501'.

V-AM N norha ,

EXECUTIVE SUMMARY

This Validation Summary Repor (VSR) giamarizes the results and conclusions
of validation testing per ormed on the Harris Ada Compiler, Version 1.3,
using Version 1.8 of the Ada! Compiler Validation Capability (ACVC). The
Harris Ada Compiler is hosted on a Harris HCX-7 operating under HCX/UX,
Version 2.2. Programs processed by this compiler may be executed on a 9
Harris HCX-7 operating under HCX/UX, Version 2.2.

On-site testing was. performed-30 May 1987 through 3 June 1987 at Fort
,Lauderdale, FL, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures. --
The AVF identified 2138 of the 2399 tests in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn
at the time of validation testing, as well as the 242 executable tests that
make use of floating-point precision _xoeeding that supported by the
implementation, were not processed. *After the 2138 tests were processed,
results for Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were analyzed for correct diagnosis
of syntax and semantic errors. Compilation and link results of Class L
tests were analyzed for correct detection of errors. There were 9 of the
processed tests determined to be inapplicable. The remaining 2129 tests
were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2_3 __ 2 5 6 7 8 9 10 11 12 14

Passed 96 222 298 244 161 97 137 261 130 32 218 233 2129

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 101 122 3 0 0 2 1 0 0 0 0 251 v

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/ZIL-STD-1815A Ada.

OAda is a registered trademark of the United States Government

(Ada Joint Program Office).

. I I I I I / I I... . "

AVF Control Number: AVF-VSR-74.0787

87-0 1-07-HAR

Ada ® COMPILER
VALIDATION SUMMARY REPORT:

Harris Corporation
Harris Ada Compiler, Version 1.3

Harris HCX-7

Completion of On-Site Testing:
3 June 1987 &

.. . 0

Prepared By: q

Ada Validation Facility
..

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C. ..

sAda is a registered trademark of the United States Government
(Ada Joint Program Office).

'4'jj 1 11 i y \1 2 = 4a

+ Place NTIS form here +

..

Ada' Compiler Validation Summary Report:

Compiler Name: Harris Ada Compiler, Version 1.3

Host: Target:

Harris HCX-7 under Harris HCX-7 under
HCX/UX, Version 2.2 HCX/UX, Version 2.2

Testing Completed 3 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

AKValidation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada J~nt Program Office
Virginia L. Castor
Director
Department of Defense

Washington DC

eAd is a registered trademark of the United States Government

(Ada Joint Program Office).

ymtl%'

* %\ , ,

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Harris Ada Compiler, Version 1.3,
using Version 1.8 of the Ada(Compiler Validation Capability (ACVC). The
Harris Ada Compiler is hosted on a Harris HCX-7 operating under HCX/UX,
Version 2.2. Programs processed by this compiler may be executed on a
?Narris HCX-7 operating under HCX/UX, Version 2.2.

On-site testing was performed 30 May 1987 through 3 June 1987 at Fort
Lauderdale, FL, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The AVF identified 2138 of the 2399 tests in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn
at the time of validation testing, as well as the 242 executable tests that
make use of floating-point precision exceeding that supported by the
implementation, were not processed. After the 2138 tests were processed,
results for Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were analyzed for correct diagnosis
of syntax and semantic errors. Compilation and link results of Class L
tests were analyzed for correct detection of errors. There were 9 of the
processed tests determined to be inapplicable. The remaining 2129 tests
were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2. 3 5 6 7 8 _ 10 11 12 14

Passed 96 222 298 244 161 97 137 261 130 32 218 233 2129

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 3 0 0 2 1 0 0 0 0 251

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

I-

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .1. . 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES -3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-3
3.7.1 Prevalidation 3-3
3.7.2 Test Method 3-4
3.7.3 Test Site 3-4

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

•.

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
Suite Of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Aia Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
30 May 1987 through 3 June 1987 at Fort Lauderdale, FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this re;ort are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 4 5433-6503

1-2

:NTRODUCTION

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization

Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, Ada Joint

Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that 5,P

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.,,

1-3

INTRODUCTION

inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately suppor". in a w.ay

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that check~s a compiler's conformity rega rding a
particular feature or features to the Ada Standard. in the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contairns both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
anc, special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in j
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or '.

semantic error in the test is detected. A Class B test is passed if every U

illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed. -.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4'

~W7~lhUIAWJU .~W~ W N~dWb Pd w wia-V WiW~K~n.~y 4~ywrNT ~w~ ru~.-- '.r.r irJu .1 N 6UWWI.VWVW

iNTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to comp-..e because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-chec~ing and produces a PASSED or J
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L. test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_-FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or 4

NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.%

The text of the tests in the ACVC follow conventions that are intended to%
ensure that the tests are reasonably portable without modification. For%
example, the tests make use of only the basic set of 55 characters, contain N
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an e
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5 p

'..5.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: Harris Ada Compiler, Version 1.3

ACVC Version: 1.8

Certificate Number: 870601W1.08059

Host Computer:

Machine: Harris HCX-7

Operating System: HCX/UX, Version 2.2

Memory Size: 32 megabytes

Target Computer:

Machine: Harris HCX-7

Operating System: HCX/UX, Version 2.2

Memory Size: 32 megabytes .4

2-1

I-.

CONFIGURATION INFORMATION

2.2 LMPLEMENTATIDN CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

" Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AD02B, D4AO04A, and
D4AOO4B.)

" Predefined types.

This implementation supports the additional predefined types
TINY INTEGER, SHORT INTEGER, and LONG FLOAT in the package
STAN5RD. (See tests B36001C and B86001D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

" Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed 30OLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CJMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array witn more than INTEGER'LAST
components raises NUMERICERROR when the array subtype is
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC-ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

" Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
938104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.

(See tests C4320TA and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

*~h % . ~ fill

CONFIGURATION INFORMATION

PFnctions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the

same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasgs, and
'STORAGE SIZE for collections; it rejects 'SMALL clauses.

Enumeration representation clauses, including those that specify
noncontiguous values, appear to be supported. (See tests C55B16A,
C87B62A, C87B62B, C87B62C, and BC1002A.)

" Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests CA3O004E and CA3004F.)

" Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package

DIRECT 10 can be instantiated with unconstrained array types and

record types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT FILE mode, created in
OUTFILE mode, and created in INFILE mode. (See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O, sequential I/0, and direct I/O for both reading

arnd writing. (See tests CE5! 1!A..E (5 tests) and CE21O7A..F (6
tests).)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.))

Temporary sequential and direct files are given a name. Temporary

files given names are deleted when they are closed. (See tests
CE2108A and CE21o8C.)

2-4

A C

CONFIGURATION INFORMAT:ON

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

!4

2-5

I
W'

SILK

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
Harris Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 251 tests were inapplicable to this implementation, and
that the 2129 applicable tests were passed by the implementation. J

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
__ _ _ A : C D E L

Passed 69 865 1119 17 13 ~46 2129

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 249 0 0 0 251

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3- 1

A A

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 4 5 6 7 8 0 1 12 14

Passed 96 222 298 244 161 97 137 261 130 32 213 233 2129

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 3 0 0 2 1 0 0 0 0 251

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4A01OC CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 251 tests were inapplicable for
the reasons indicated:

• C34001E, B52004D, B55B09C, and C55B07A use LONG-INTEGER which is
not supported by this compiler.

" C34001F and C35702A use SHORT FLOAT which is not supported by this
compiler.

* C86001F redefines package SYSTEM, but TEXTIO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package

TEXT3-.

3-2

TEST :NFORMAT:QN

• C87B62C uses a length clause which is not supported by this
compiler. The length clause 'SMALL is rejected d-r.ng
ompilation.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

" The following 242 tests require a floating-point accuracy that
exceeds the maximum of 9 supported by the implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Y (20 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45424F..Y (20 tests)
C45521F..Z (21 tests) C45621F..Z (21 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
oompiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 18 Class B tt.ts:

B24204A B33301A B67001A
B24204B B37201A B67001B
B24204C B38008A B67001C
B2AO03A B41202A B67001D
B2AOO3B B44001A B91003B
B2AO03C B64001A B95001A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Harris Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

3-3

TEUT INFORMAT:ON

3.7.2 Test Method

Testing of the Harris Ada Compiler using ACVC Version 1.3 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Harris HCX-7 operating -nder HCX/UX, Version 2.2.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specefic values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in t:.eir split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Harris HCX-7, and all executable tests were
run. The results of this validation were compared to the results of the
validation for the HCX-7 host and a Tektronix 8540A-1750A target computer.
The differences were printed from the host computer.

The compiler was tested using command scripts provided by Harris
Corporation and reviewed by the validation team. The following options
were in effect for testing:

Option Effect

-w warnings suppressed (all but b tests)
-el long error listing (for compile-error tests)
-Bf front-end specify fe
-Bc code-generator specify cg
-BI linker specify a.ld
-Be error-program specify a.error
-o executable name specify executable

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output and compilation listings were
captured on magnetic tape and archived at the AVF. The listings and job
logs examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at Fort Lauderdale, FL on 30 May 1987, and
departed after testing was completed on 3 June 1987.

3-4 L

APPENDIX A

DECLARATION OF CONFORMANCE

Harris Corporation has submitted the following
declaration of conformance concerning the Harris Ada
Compiler.

jp

DECLARATION OF CONFORMANCE

Comfiler Implementor: Harris Corporation
Ada 7 =alidation Facility: ASD/SCOL, Wright-Patterson AFB, OH

Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Com iler Name: Harris Ada Compiler Version: Version 1.3
Host Architecture ISA: Harris HCX-7 OS&VER #: HCX/UX, Version 2.2
Target Architecture ISA: Harris HCX-7 OS&VER #: HCX/UX, Version 2.2

Implementor's Declaration

I, the undersigned, representing Harris Corporation have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler listed in this declaration. I declare that Harris Corporation
is the owner of record of the Ada language compiler listed above and, as
such, is responsible for maintaining said compiler in conformance to

ANSI/MIL-STD-1815A. All certificates and registrations for the Ada
language compiler listed in this declaration shall be made only in the
owner's corporate name.

W;'~-r: bL Da'.6-x.Ete: -- 2--1
Harris Corporation
Wendell E. Norton, Director of Contracts

p

Owner' s Declaration

I, the undersigned, representing Harris Corporation, take full
responsibility for implementation and maintenance of the Ada compiler
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the ;da
trademark policy, as defined by t:ie Ada Joint Program Office. I declare
that the Ada language compiler listed, a:.d its host/target performance are
in c)mpliance with the Ada Language Standard ANSI/MIL-STD-1815A. I have
reviewed the Validation Summary Report for the compiler and concur with the
contents.

a.

" C dZj~J (J,'wr DEte: 2<'7'
Harris Corporation
Wendell E. Norton, Director of Contracts

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Harris Ada Compiler, Version 1.3, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A).

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 9 range
-2#0. 11111111111111111111111#E127
2#0.1111111111111111111111l#E127;

type LONG FLOAT is digits 9 range
-2#0.II111111111111111'11111111111111111111111111111111111111l#E127 .

2#0.111#E a7;

type DURATION is delta 2#1.0#E-14 range -2#100000000000000000.0# ..
2#11111111111111111.11111111111111#;

-- DURATION'SMALL is 6.10351E-05 seconds;

end STANDARD;

B-1

Appendix F of the Reference Manual for the Ada*

Programming Language

Harris Corporation
Computer Systems Division

Software Development

1. Program Structure and Compilation

A 'main' program must be a non-generic subprogram that is either a procedure or a function
returning a STANDARD.INTEGER (the predefined type). A 'main' program may not be an
instantiation of a generic subprogram.

2. Pragma.

TiImntt nno..flngp tnt pEagmta1

PRAGMA CONTROLLED is recognized by the implementation but has no effect in this
release.

PRAGMA LNLINTE is supported.

PRAGMA UNTERFACE is recognized by the implementation and supports calls to C and
FORTRAN language functions. The Ada language specifications can be either functions

or procedures. All parameters must have mode IN. -

For C, the types of parameters and the result type for functions must be scalar, access, or
the predefined type ADDRESS defined in the package SYSTEM. Record and array "
objects may be pased by reference using the ADDRESS attribute.

For FORTRAN, all parameters are passed by reference; the parameter types must have
the type ADDRESS defined in the package SYSTEM. The result type for a FORTRAN
function must be a scalar type. Care should be taken when using tasking and FORTRAN
functions. Since FORTRAN is not reentrant we suggest that an Ada controller task
should be used to access FORTLAN functions.

PRAGMA MEMORY..SIZE is recognized by the implementation, but has no effect. The ,%
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be &:hieved by recompiling SYSTEM with altered values.

PRAGMA OPTIMIZE is recognized by the implementation but has no effect in this
release.

PRAGMA PACK will cause the compiler to choose a non-aligned representation for com-
posite types. In the current release, it will not cause objects to be packed at the bit level.

PRAGMA SHARED is recognized by the implementation but has no effect in this release.

PRAGMA STORAGE_..NIT is recognized by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by mcans of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

0 Ads. is a registered trademark of the U.S. Government.

B-2

I * % I'Ile

PRAGMA SUPPRESS is recognized by the implemention and applies from the point of
occurrence to the end of the innermost enclosing block. The double parameter form of the
pragma, with a name of an object, type, or subtype is recognized, but has no effect.

PRAGMA SYSTEM-NAME is recognized by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by mean! of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

Imp1emf,- t x ti n n-T)r n f-td Pragmas

PRAGMA EXTERNALNAME allows variables defined in Ada language source code to be
referenced from foreign languages. PRAGMA EXTERNALNAME will replace all
occurences of variable-name with an external reference to link-name in the object file
using the format shown below.

pragma EXTERNALNAME(variable-name, "link-name"); :%

This pragma is allowed at the place of a declarative iten in a package specification and
must apply to an object declared earlier in the same package specification. The object
must be declared as a scalar or an access type. The object cannot be any of the following:

a loop variable
a constant,
an initialized variable,
an array, or
a record.

PRAGMA INTERFACE-OBJECT allows a user to reference an object defined in another
language in much the same way that the INTERFACE pragma allows a user to call a sub-
program defined in another language. The form of this pragma is:

pragma INTERFACE-OBJECT(objectname, "linker..name");

PRAGMA SHAFEBODY is used to indicate a desire to share or not share an instantia-
tion. The pragma may reference the generic unit or the instantiated unit. When it refer-
ences a generic unit, it sets sharing on/off for all instantiations of that generic, unless
overridden by specific SHARE-BODY pragmas for individual instantiations. When it
references an instantiated unit, sharing is on/off only for that unit. The default is to
share all generics that can be shared, unless the unit uses PRAGMA INLINE.

PRAGMA SHARE-BODY is only allowed in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit in a
compilation, but before any subsequent compilation unit. The form of this pragma is:

pragma SHARE.BODY (generic..name, booleanjiteral)

Note that a parent instantiation is independent of any individual instantiation, therefore
recompilation of a generic with different parameters has no effect on other compilations
that reference it. The unit that caused compilation of a parent instantiation need not be
referenced in any way by subsequent units that share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type attributes must be
indirectly referenced (as if an extra calling argument were added). However, it substan-
tially reduces compilation time in most circumstances and reduces program size.

3. Implementation-Dependent Attributes

There are no implementation-dependent attributes in HAPSE.

B-3

N V.& -V ., %Ill l - • - i I I - I I • i .. .i
:

-- .

4. Specification of the package SYSTEM

package SYSTEM
is

type NAME is (hcx..ux);

SYSTEMNAME constant NAME :- hcx-ux;

STORAGE-UNIT constant :- 8;
MEMORYSIZE : constant :- 3_22.22..5-469;

- System-Dependent Named Numbers

MIN._INT constant - -2-147-483-647 - 1;
MAX. NT constant : 2-147-483-847;
MAX.DIGITS : constant :- 9;
MAX-IMANTISSA : constant :- 31;
FINEDELTA : constant :- 2.0"*(-14);
TICK : constant := 0.01;

- Other System-dependent Declarations

*subtype PRIORITY is INTEGER range 0 .. 99;

MAX...RECSIZE : integer :- 64*1024;

type ADDRESS is private;

NOADDR: constant ADDRESS;

function PHYSICAL..ADDRESS(I: IT GER) return ADDRESS;
function ADDRGT(A, B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEANT;
function ADDF._GE(A, B: ADDRESS) return BOOLEA.V;
function A -DI 7.E(A, B: ADDRESS) return BOO] EA
function ADDKJDIFF(A, B: ADDRESS) return IN'TrGER;
function INCR..ADDR(A: ADDRESS; [NCR: INTEGER, return ADDRESS;
function DECR..ADDR(A: ADDRESS; DECR: INTEGE?/ return ADDRESS;

function ">"(A, B: ADDRESS) return BOCLEA-_N renames ADDRGT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDRLT;
function ">-"(A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<-"(A, B: ADDRESS) return BOOLEAN renames ADDR..LE;
function "-"(A, B: ADDRESS) return INTEGER renames ADDR-DIFF;
function "+"(A: ADDRESS; NCR: INTEGER) return ADDRESS renames INCRADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECRADDR;

pragma inline(ADDR..GT);
pragma inline(ADDRLT);
pragma inline(ADDR..GE);
pragma inline(ADDR..LE);
pragma inline(ADDRDIFF);
pragma inline(INCRADDR);
pragma inline(DECR.ADDR);
pragma inline(PHYSICAL-ADDRESS);

B-4

private

type ADDRESS is new integer;

NOADDR : constant ADDRESS :- 0; S

end SYSTEM;

5. Restrictions on Representation Clauses

Pragma PACK

Bit packing is not supported. In the presence of pragma PACK, components of composite
types are packed to the nearest whole STORAGETJNIT.

Length Clauses , *

The specification T'SIZE is supported, but the size required for a type is a multiple of
STORAGE UNIT. The specification T'SMALL is not supported. 0

Record Representation Clauses

Component clauses must specify alignment on STORAGE-UNIT boundaries.

Address Clauses

Interrupts that are defined in address clauses are mapped to UNDC signals.

8. Other Representation Implementation-Dependencies

Change of representation is not supported for record types.

The ADDRESS attribute is not supported for the following entities: static constants; packages;
tasks; labels; and entries.

7. Conventions for Implementation-Generated Names

There are no implementation generated names.
,.5

8. Restrictions on Unchecked Conversions "

The predefined generic function UNCHECKEDCONVERSION cannot be instantiated with a
target type that is an unconstrained array type or an unconstrained record type with discrim- 0

inants.

g. Implementation Characteristics of I/0 Packages

InLtzejaaion af Strings as Apliped to Extor.mzi Fils
Strings that contain names of external files are interpreted in the following manner: p
External files: file names may be composed of up to 256 characters of the ASCII character
set except for "/", with a total path name of up to 1024 characters. Further, the first
character of a file must be alpha-numeric, "." or "-". If the "F character is encountered in
a string, it is interpreted as a separator between file names that specify directories.

Implom .ntAtinn-Doportiont Charamt stetica of DIRECT 10

Instantiations of DIRECTIO use the value MAX.REC.SIZE as the record size (expressed
in STORAGEUNITs) when the size of ELEMENT-TYPE exceeds that value. For exam-
pie, for- unconstrained arrays such as string where ELEMENTTYPE'SIZE is very large,
MAXRECSIZE is used instead. MAXREC..SIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECTJO to provide an upper limit on the
record size. In any case, the maximum size supported is 1024 * 1024 * STORAGEUNIT

0 UNX is a trademark of AT&T Bell Laboratories.

B-5

'iS
;~*

5 ~~ ~~~ p* ~ Sm~h ~*.~ ~. %Ile.

'S * S. p %

bits. DIRECTJO will raiAe USE-ERROR if MAX._, ECORDSIZE exceeds this absolute
limit.

TmpIementation-De.pender. Ch a r-terh tr. -- -7FQTTNT1 ,T

Instantiations of SEQUENTIALJO ube the value MAX..REC_3IZE as the record size
(expressed in STORAGEUNITs) when the size of ELEMENT_..TYPE exceeds that value.
For example, for unconstrained arrays such as strin- where ELENIENT.TYPE'SIZE is
very large, MAXREC.SIZE is used instead. MAX.REC-SIZE is . efined in SYSTEM and
can be changed before instautiating SEQUENTIALJO to provi . an upper limit on the
record size. SEQUENTIAL-JO imposes no limit on MAX..REC.SZE.

B-6

h

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (..4 98 =>'A', 499 =>'l')
identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (I..498 =>'A', 499 =>'2')

Identifier the size of the
maximw: input line length with
varying last character.

$BIGID3 (1..249 I 251..499 =>'A', 250 =>'3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_ID4 (1..249 I 25 1..4 9 9 =>'A', 250 =>'4')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (1..496 =>101, 497..499 =>"1298")

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PA% ETERS

Name and Meaning Value

$BIGREALLIT (1..493 =>'O', 494..499 =>"6-.0E1"
A real literal that can be

either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be

the size of the maximum line
length.

$BLANKS (1..479 =>' ')
A sequence ;f :lanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 2147483647

A universal integer literal
whose value is TEXT_IO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz!$%?@[\]'{-"
A string literal containing all
the ASCII characters with
printable graphics that are not

in the basic 55 Ada character
set.

$FIELD LAST 2 147 4 83 64 7
A universal integer literal
whose value is TEXT_IO.FIELD'LAST.

$FILENAMEWITHBADCHARS "/illegal/file-name/2i]$%2102c.DAT"

An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILENAMEWITH WILD CARD CHAR "/illegal/filename/CE2102*.DAT"

An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATERTHANDURATION 100_000.0
A universal real value that lies
between DURATION'BASE LAST and

DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATERTHAN DURATION BASELAST 10_000_000.0

The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

a -

TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNALFILE_NAME1 "/no/such/directory/ILLEGALEXTFILENAME1"
An illegal external file name.

$ILLEGAL EXTERNALFILE NAME2 "/no/such/directory/ILLSGALEXTFILE NAME2"
An illegal external file name
that is different from
$ILLEGALEXTERNALFILENAMEl.

$INTEGER FIRST -2147483648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGERLAST 2147483647
The universal integer literal
expression whose value is

INTEGER'LAST.

$LESS THAN DURATION -100_000.0
A-universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THANDURATIONBASEFIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 9
The universal in-ger literal
whose value is :he maximum
digits supported for
floating-point types.

$MAX IN LEN 499
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 2147483647
The universal integer literal
whose value is SYSTEM.MAXINT.

I C-3
- '1 f' V ' U P VW r 9 v v' ' .' ' .- f. "- , €. , , .- , .,

• |: --. ' wR+ +,l + i+., _: , SPAq

TEST PARAMETERS

Name and Meaning Value

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT-INTEGER,

LONGFLOAT, or LONGINTEGER
if one exists, otherwise any
undefined name.

$NEGBASEDINT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NONASCII CHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose

literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

% %L id %

Ac

jf.
c-4 1fq

Se

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.

. B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

* C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC-ERROR instead of CONSTRAINT-ERROR as expected in
the test.

* B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

. C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

• B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOL TYPE--at line
41.

. C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

• B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

* B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

WITHDRAWN TESTS

• B74101B: The begin at line 9 causes a declarative part to be

treated as a sequence of statements.

* C87B50A: The call of "/=" at line 31 reqires - use clause for
package A.

• C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

C94OACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by

the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

* BC3204C: The body of BC3204C0 is missing.

S

,%'.%

D-2

A!

L AAJ

