

A D IO U AU OO R RN UG AN RN W N L X O O N A NSO AL X TR N RN U RN
-

"
" . 5.
7 Al
D k
v, 'y

(]
: 3
g .,
N »
! .:,

-~
-
-
-

LA o
-

¢
K]

s’
=

p = tw k= R
. flu & ;
: = s . :
22 mes e :

P e
a

e , ,
2 - K "
b :
k :r‘ 6."

7 d

»
AL} .
.]
"
| C}

- -
A T LIS
'\n\' a, L O

NNt .'.‘.'.
_xf\,t;
.‘\

S 4" m
[}

-
Ed

‘e ;"«";1

{-’;‘.ft‘_’ ')

4 -

o R

% " NP S T T

2o

A

LSS LTI AR WL R R TR LR R X . AN REAL RN AN KU *", .' n..l"*

TINCOT AQQTRTED m F“_E . 'J

sgcL “Entered) .

oW tab ~p0 va® eyp wag 3.9 § ol 2ab dnl 69 0. 08 4.0 Gop 8.9

‘N PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

!

1. AD-—A 190 358 12. GOVT ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

4. 1LiLe (dnudULUUY)

Ada Compiler Validation Summary Report:
Verdix Corporation. VADS VAda-010-03405, Version 5.41
MicroVAX II-to-Fairchild 9450

5. TYPE OF REPORT & PERIOD COVERED
20 Dec 1986 to 20 Dec 1987

6. PERFORMING ORG. REPORT NUMBER

AUTHOR
Wll‘jlg' t-Patterson AFB

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

Ada Validation Facility

ASD/SIOL

Wright-Patterson AFB OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING QFFICE NAME AND ADORESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081

12. REPORT DATE
20 December 1986
[T3 NURBER OF PRGES

38
14. MONITORING AGENCY NAME & ADORESS(/fdifferent from Controlling Office) 15. SECURITY CLASS (of thus report)
Wright-Patterson UNCLASSIFIED

5a. eéﬁk%aéy [ICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. ifdifferent from Report)

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if nécessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACLT (Continue on reverse side if necessary and identify by block number)

See Attached

DD FURN 1473 e0ITION OF 1 NOV 65 IS OBSOLETE

1 JAN 73 S/N 0102-LF-014-6801 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

r ,. 0‘! |h."l W ...\ .l

A V00, ¢9,99,4 S

P N y "'~'-.w.-~.*\-).-.*~.'»-

‘}‘

f

N -.'-"'.- ORI y‘n

COC RO B

orl s

-

R N ¥

[t i OB

-y

-
ey

",-ttrc'o'.:.l.c.v. & a9 @ n. U VTAY U AT LW USRS IRY

-~ - ¢ e ——— i

IOV .

/ EXECUTIVE SUMMARY),

4 R ~
» ,> - - (X
A A SN N

"
‘Q' i

PO

This Validation Summary Report (VSR) g&mmérizea the results and conclusions 3
of validation testing performed on the Verdix Ada Development System, VADS

. VAda-010-03405, Version S5.41, using Version 1.8 of the Ada® Compiler %

] Validation Capability (ACVC)., The Verdix Ada Development System is hosted f

3{ on a MicroVAX II operating under MicroVMS, Version 4.2. Programs procesaed Q
by this compiler may be executed on a Fairchild 9450 implementation of 3
MIL-STD=-1750A. Coe e

v

> On-site testing was pertormed*4§430°enber 1986 through 20 Decémber—31985:-at J
. Verdix Corperation 4in Aloha OR, under the direction of the Ada Validation
o Facility (AVF). according to Ada Validation Organization (AVQO) policies and \,
A procedures. waho AVF identified 2138 of the 2399 tests in ACVC Version 1.8 _
X to be processed during on-site testing of the compiler.) The 19 tesats Y
withdrawn at the time of validation testing, as well as the 242 executable
» tests that make use of floating-point precision exceeding that supported by 2
45 the implementation, were not processed. —vAfter the 2138 tests were t
by processed, results for Class A, C, D, and E teats were examined for correct ’
O execution. Compilation 1listings for Class B tests were analyzed for R
. correct diagnosis of syntax and semantic errors. Compilation and 1link .
. results of Class L tests were analyzed for correct detection of errors. v
g There were 22 of the processed tests determined to be inapplicable. The a
. remaining 2116 tests were passed. R a
‘ : ¢

The results of validation are summarized in the following table:

- RESULT CHAPTER TOTAL
_2_3_4 5 6_17_8_9_10 11 _12 1 X

ﬁ Passed 96 222 298 244 161 97 137 261 130 32 218 220’ 2116)
0 0

Falled o 00 O 0 0 O O O0 o O

Inapplicable

»
; Withdrawn 0 5 5 0 0 1 1 2 4% o 1 o 19 '
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399]

20103122 3 0 0 2 1 0 0 O 13 264 3

-

The AVF concludes that these resulta demonstrate acceptable conrormity to
ANSI/MIL-STD-1815A Ada 3

<

-
“T

®Ada is a registered trademark of the United States Government X
(Ada Joint Program Office).

=

,

i
AT A R R T e A (R SR £ R RN 2

P

LY B LR A L LY e : ‘.“
R R A R ARG

()

R U O O e

R
‘;. AVF Control Number: AVF-VSR-53.0787 i
Nh 86~ 10-06-VRX I

Ada® COMPILER

“ 13
e VALIDATION SUMMARY REPORT: o1 ¢
v Verdix Corporation ,m§u,
) VADS VAda-010-03405, Version 5.41 :”Eb -
o MicroVAX II-to-Fairchild 9450 4
Z
\\'..F ::
'i‘g | Accession For :}
;3 Completion of On-Site Testing: NTIS GRA&I h
o 20 December 1986 DTIC TAB .
i - Unannounced '
2‘ Justification
]
3
b By "g
Prepared By: Distriblzion/
0 Ada Valig‘;éggl‘?a"inw Availability Codes 5
h : Avail and/or 4
;{ | Wright-Patterson AFB OH A45433-6503 Dist Special f

’: Prepared For:
Ada Joint Program Office

~ United States Department of Defense
Washington, D.C.

W

®Ada is a registered trademark of the United States Govermment
(Ada Joint Program Office).

)

B . - . - e
ks .. '. " r‘!.' w o W "-'I"." - -..,\‘ '-‘1 .--l-'
Yoty "c'&,.h .'0‘!'&':’\.:'!‘-' AN N N, o 3 N N "' f" .

ol

A
I

NN

.:.l.:'*.:_\ . 4,}\.' > -s:..«.'» ~ r','_'.:_‘?;_' g

T R I R R RN AR AR KA WP WAL va bl a’t o' a'taatdn 0" a6 0 Fad 0.8 taf fad faf tat vad * o %ot "e? tal el aVs 2V g A¥s B2 2's 8°5 2's t'a R's £

i ipipipripipeipipipeipipcipdpepdppioireir
L g +*
+ Place NTIS form here +
+ +
dpeippipipipeipipipippiipteip e

=

-
- -
-
-

2x :1 \:f?'?":.

xa
o

L e o .
AT 5 T

SN Y
"_ v{s "

7oA~

o

s
e

i gL g
ra)

g PO 4 v W W PRI N X S ..-,--...,...__._...k"
it i i e Ty it D SRV S T S R R L A AV AN ARG

* agv bat By ¥a? 82 0y’ (av VAt #pt 02t ga’ gat Sat gar

Ada® Compiler Validation Summary Report:

Compiler Name: VADS VAda-010-03405, Version 5.41

f“ Host: MicroVAX II under Target: Fairchild 9450 \

e MicroVMs, Version 4.2 (bare) \

h‘ mounted on a |

¥ MIL-STD-17504 Software Execution Unit '
within a Tektronix V1750A

p using the MicroVaX II for file 1/0

Testing Completed 20 December 1986 Using ACVC 1.8

This report has been reviewed and is approved.

J}kg%gLoR/gL5kL44/41L/”éZ/éi/iluzryﬂﬁc/)

Ada ValidaGion Facility

Georgeanne Chitwood

ASD/SCOL %
Wright-Patterson AFB OH 45433-6503)

Gl £ Mo ;

Ada Validation Organization
Dr. John F. Kramer g
Institute for Defense Analyses !
Alexandria VA

Ada %%1nt Program Office

Virginia L. Castor
i\ Director

| Department of Defense .
Washington DC

-

-%; e e
-

.5_’_ &

it b g AP

< ke

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

. . . e ~ s ‘ . .
T L GG e S S e W AN P ALY A

LI PO P RN P MM AN AR RN KN E N AR)y Y $'a.8°, 280 8% S 0% 0% 4% % A% Ata";

EXECUTIVE SUMMARY

ch

Yy This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Verdix Ada Development System, VADS
I VAda-010-03405, Version 5.41, using Version 1.8 of the Ada® Compiler

oy Validation Capability (ACVC). The Verdix Ada Development System is hosted !
o on a MicroVAX II operating under MicroVMS, Version 4.2. Programs processed

o by this compiler may be executed on a Fairchild 9450 implementation of

o MIL-STD-1750A.

W On-site testing was performed 15 December 1986 through 20 December 1986 at '
:' Verdix Corporation in Aloha OR, under the direction of the Ada Validation '
. Facility (AVF), according to Ada Validation Organization (AVO) policies and \
y procedures. The AVF identified 2138 of the 2399 tests in ACVC Version 1.8 X
M to be processed during on-site testing of the compiler. The 19 tests J

withdrawn at the time of validation testing, as well as the 242 executable
tests that make use of floating-point precision exceeding that supported by

Qf the implementation, were not processed. After the 2138 tests werse ”
" processed, results for Class A, C, D, and E tests were examined for correct

P- execution. Compilation 1listings for Class B tests were analyzed for “
;; correct diagnosis of ayntax and semantic errors. Compilation and 1link)

results of Class L tests were analyzed for correct detection of errors.
There were 22 of the processed tests determined to be inapplicable. The

:3 remaining 2116 tests were pasased.

Y

i;: The results of validation are summarized in the following table:

- RESULT : CHAPTER TOTAL

t _2_3_M4_5_6_17_8_3_10 _11 _12_14

b 3

N Passed 96 222 298 244 161 97 137 261 130 32 218 220 2116 K\

o~ ’ ')
' Failed 0 0 0 0 0 0 0 O o0 o o0 o 0

if Inapplicable 20103122 3 0 0 2 1 0 0 0 13 264 0
o X

& Withdrawn © 5 5 0 0 1 1 2 4 0 1 0 19 -'
-f: (
5 TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

o .

i? The AVF concludes that these results demonstrats acceptable conformity to f

e ANSI/MIL-STD=-1815A Ada. .
) "

2]

Yp ®Ada is a registered trademark of the United States Government 5

::.' (Ada Joint Program Office). <

v

. i)

bs .

5 . _n.'fo:"l.'?l.‘ WA, ".o.". B0, 05 P s, % \.0 oI Dot Ol‘.,l‘o '!?n'.'

TABLE QF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT 1=2
USE OF THIS VALIDATION SUMMARY REPORT . 1=2 4
REFERENCES L [) L) [] * L] L L L] L)] L) L] L]
DEFINITION OF TERMS .+ ¢ « o ¢ o o o &
ACVC TEST CLASSES ¢ o ¢ ¢ s ¢ ¢ o o &

[PNy
.
NEWN -

CONFIGURATION INFORMATION

CONFIGURATION TESTED « « « + &
IMPLEMENTATION CHARACTERISTICS

CHAPTER 3 TEST INFORMATION &g
3.1 TEST RmLTS L - ® L L] L] L L L] L] L] L L] L] L] * L] L] . 3-1 l
3.2 SUMMARY OF TEST RESULTS BY CLASS ¢ ¢ ¢ « o ¢ o o o 3=t
3.3 SUMMARY OF TEST RESULTS BY CHAPTER « « . « « & . + 3=2 ?
301‘ WITHDRAHN TESTS o & ¢ & & & & o 0 5 s * & P e o o 3-2 1:
305 ImPLICABLE TESTS ® 6" 9 & @ & 9 & o ¢ s & o 8 o 3-2 "
3.6 SPLIT TESTS ® o & o & & ® @ o & 0 o o 4 % * o e @ 3-3 N
3.7 ADDITIONAL TESTING INFORMATION « ¢ « ¢ ¢ ¢ o o o o 3=4 .
3.7.1 Prevalidation .« o « ¢ o ¢ ¢ ¢ o o o o o o o o o 3=l .
3.7-2 Test Method ® & o o o 0 e ¢ ¢ 6 s &6 e 8 6 e o o 3-” :
3'703 TOSt Sit‘ ® & & & & o ¢ & 6 6 O O o o B & o o o 3-5 L#

APPENDIX A COMPLIANCE STATEMENT

LA A
" g

L 2

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

NN

APPENDIX D WITHDRAWN TESTS

4

D T “ . P I T T
b, iF -ﬂ.f ¥ .'§vf\-ﬁ.:\.'~l I_-_-.-\.c\\.-\\\-~ _‘\f\f~l~f\f\V~V‘

.......

. LIRS LS TR PN L L)
HRLONAAY, .)‘:‘t'., KNI A ‘\"'-

R P A T R s Ao 0 “ar “Aa™ WIXLYY 3 aad' 0808 Ba s 2 G ot ey I ok @ ry 28,0 4,06

F

)

; o
; o
|- Y
! "
Q.
)
i
W
A4
’ .
XN
b
e
i ":::
| (]
g CHAPTER 1 Ry
it
INTRODUCTION 4
et
)
This Validation Summary Report (VSR) describes the extent to which a »J
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. ‘ﬁ
This report explains all technical terms used within it and thoroughly \)
reports the results of testing this compiler using the Ada Compiler “ﬂ
Validation Capability (ACVC). An Ada compiler must be implemented V
according to the Ada Standard, and any implementation-dependent features ni
must conform to the requirements of the Ada Standard. The Ada Standard ;s
must be implemented in its entirety, and nothing can be implemented that is "
not in the Standard. $,
N
Even though all validated Ada compilers coaform to the Ada Standard, it).
must be understood that some differsences do exist between implementations. o
The Ada Standard permits some implementation dependencies--for example, the Z5§
maximum length of {identifiers or the maximum values of integer types. o
Other differences between compilers result from characteristics of {§
particular operating systems, hardware, or implementation strategies. All "
of the dependencies observed during the process of testing this compiler)
are given in this report. *j
. &
The information in this report is derived from the test results produced -:f
during validation testing. The validation process includes submitting a :‘:
suite of standardized tests, the ACVC, as inputs to an Ada compiler and HA
evaluating the results. The purpose of validating is to ensure conformity g_
of the compiler to the Ada Standard by testing that the compiler properly }:
implements legal language constructs and that it identifies and rejects :n
illegal language constructs. The testing also identifies behavior that is g:
implementation dependent but permitted by the Ada Standard. Six classes of Ggf

tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

-a NN ¥ "% -
PN X

- .
Kd .’.-” ."t"_-:,,

1 §

g'f'f'(}' x

G I P N I R A A N R R R R R R S L e L A R LN T P T LT L R
O € S T s T N T A G A A L L LA N A

..................................

' »
INTRODUCTION Yy
E]
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT N ,.f
R
This VSR documents the results of the validation testing performed on an b
Ada compiler. Testing was carried out for the following purposes: ~
Lyt
« To attempt to identify any language constructs supported by the '%
compiler that do not conform to the Ada Standard ;’ 1
> 1.
.« To attempt to identify any unsupported language constructs —
required by the Ada Standard -
-~ O\
« To determine that the implementation-dependent behavior is allowed :-,,'C:
by the Ada Standard 5,
»
-
. Testing of this compiler was conducted by SofTech, Inc., under the ":g
direction of the AVF according to policies and procedures established by t',:,c{
the Ada Validation Organization (AVO). On-site testing was conducted from ':f
15 December 1986 through 20 December 1986 at Verdix Corporation in Aloha Wt
OR. ;
7
» o
1.2 USE OF THIS VALIDATION SUMMARY REPORT h
Consistent with the national laws of the originating country, the AVO may ’
make full and free public disclosure of this report. In the United States, 0N
this is provided in accordance with the "Freedom of Information Act™ (5 i
U.8.C. #552). The results of this validation apply only to the computers, \
operating systems, and compiler versions identified in this report. v
l‘. i
The organizations represented on the signature page of this report do not y
represent or warrant that all statements set forth in this report are Z-'-:‘.
accurate and complete, or that the subject compiler has no nonconformities :"
to the Ada Standard other than those presented. Copies of this report are 'a“-ﬁ
available to the public from: o
5
Ada Information Clearinghouse L
Ada Joint Program Office RN
OUSDRE Y
The Pentagon, Rm 3D-139 (Fern Street) N
Washington DC 20301-3081 N
LA
or from: Er
g
Ada Validation Facility o
ASD/SCOL AR
Wright-Patterson AFB OH 45433-6503 o
)
e!
3
=
N

1-2

)
"

v AR TEIE I JE v T P Y - - - N
It h \ Y F P 04 Pyl g C W, W N O Wy Py Wy P a P g% g Camp Y - - e E RTR T TR K w et R S‘p‘
WY NV I S S R R R RS A AR IR AN, \ v, AN ,.,.*-.‘,,. oy \». N

oo

FEXS

)

’ 1Y -
R AT

INTRODUCTION

Questions regarding this report or the validation test results should be

directed

to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1.

2.

3.

Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, FEB 1983.

Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 19387.

Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984,

1.4 DEFINITION OF TERMS

ACVC

The Ada Compiler Validation Capability. A set of prograns
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983,
Applicant The agency requesting validation.
AVF The Ada Validation Facility. In the context of this report,

AvVO

Compiler

the AVF is responsible for conducting compiler validations
according to established policies and procedures.

The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

Host

WA
A

demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

1-3

N L T o P R M N

i P2 EELEP] 0\
..'.{.- t?"' -y e R

Rt

=

(SN

fysi s

Ry

Y

PRSI

e AN NN
’

b S D

el

-
.
-
»
)
»

P s 2 'x

UV UN YL “Big 092 9's 0% 875 V0 B4 R 80 870 00 0 s 070 0°0.0°0,0°0.8 Qb Eat 1.0 Fol Rat gt Bt 'y O Bab B Gt gl gt g b - . 0a® Qa® Bab LU (00 Qa0 ot fov

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test ‘not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, Dy E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected Lo produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test 1is passed if no errors are detected at compile time and the
program executaes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
exscuted. Each Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it |is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4
¥ S TPl PN N T S I R TR T TS T L P PR P R R P I T TR S O T N R NI TN AL L
A A R o S A A N A U S R O R

NS
PO

o L J ‘r"u"n:l'-'
0,8 Y .“.'1'(

& ,"’.v

NG =
I_. ‘l

N @
S TR

«

s
N

A
Py

‘. "u'-

RCIINT T
? -l-‘-_’.

RS
KAy

KR RRN. IF
s

X;
&

[4

<’

b

'l
-

e
’

t
. L3
LT ateta

S e,
v

T
"
oS8

.
<

> 1@
()

SR

L4

4'/

L4 5
Lty

PN NS

AR UL S e e & R AT Y W AW R o L a e VRt e a g e

X
3

o’

ZeTh iy R

PJ‘}-. X

Ty

ZVERLIES

A "-."?-;'.f.j

R

A0S

LS)

Pl]

-

¥)
1%

R A A AN A A N N A B TR e Dt A M Ny N S R AT R oLt A e NI s P L A i A bt u!
A . - - i X B . 3 - . N . . B B - L) 3

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test 1a classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it 4is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test 13 passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-~that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable. tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tasts. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1=5

tLLSCPOY

- .

"%

oL & L1

A

¥
¢

byt
Pyt

CHAPTER 2

CONFIGURATION INFORMATION

- o

2.1 CONFIGURATION TESTED

Car g

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: VADS VAda-010-03405, Version S5.41

ool

N ACVC Version: 1.8

_ Certificate Expiration Date: 6 March 1988 :
é Host Computer: E
: Machine: MicroVAX II 3

4 @3

Operating System: MicrovMs, Version 4.2 :

e

o
15D

Memory Size: 13 megabytes

)
a f"

=&

Target Computer:

Machine: Fairchild 9450
mounted on a
MIL-STD=1750A Software Execution Unit)

within a Tektronix V1750A]

using the MicroVAX II for file I/0

:]
’\.’\"\’S’\ \.

TS

L4

Operating System: bare N

< Memory Size: 64K words :

RS=-232

Communications Network:

2-1

L M A A . . - ;s - .- W T R T W pw .
P N e T N e R Qi e NN el e A A R e

i L AL . o 00 W B0 74TV, . Nal

NIAINN TR I RN U 5a PAa 40 0¥e b-g . 8 190)t b g, ‘A . - as AL N Sa% 2" e e " n .

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
! a coampiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard: .

« Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
. recursive procedures separately compiled as subunits nested to 17
' levels. It ocorrectly processes a compilation containing 723
K variables in the same declarative part. (See tests D55403A..H (8
tests), D56001B, D640OSE..G (3 tests), and D29002K.)

« Universal integer calculatiéna.

An implementation is allowed to reject wuniversal integer
calculations having values that exceed SYSTEM.MAX_ INT. This
implementation does not reject such calculations and processes
them correctly. (See tests DHADO2A, DUADO2B, D#AOOUA, and
D4AOOYB.)

« Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD (See tests
B86001C and B86001D.)

« DBased literals.

An implementation is allowed to reject a based iiteral with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

. Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT _ERROR for an array having a 'LENGTH that exceeds
/ STANDARD . INTEGER'LAST and/or SYSTEM.MAX_ INT.

. 2-2
‘.
L)

AL

AEAL Y Al
.[’

et
Y l'l.'-."

r
L

T Ry

5
MMl N

1"'1:1."(’ -
O

W Bl A,
-';T'-'-"

‘: By ok X

o\ 7 s \ e -.P I‘\f\-’_‘(~ A .\.~\.:\f_-.-\¢\ \ ~f\(\¢'.. AL .-.\.-,‘.:\.r_',-\.r_‘,_‘.-.-_:_:,..".\ ,.\ -

.'| R IR R R AN R R T LTy AP a'e, a0 0 0 R e 02 50 80" Ra0'P, e 18 '8 a'h 2% a'dat ‘R gV 'y

g: CONFIGURATION INFORMATION E
@ Q
h A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST .$
' raises NUMERIC_ERROR when the array objects are sliced. (See test b
. C52103X.)
i:: ‘¢
. A packed two-dimensional BOOLEAN array with more than INTEGER'LAST 0y
:h components raises CONSTRAINT_ERROR when the length of a dimension M)
“ is calculated and exceeds INTEGER'LAST. (See test C52104Y.) 5
g A null array with one dimension of 1length greater than .
! INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either .
] when declared or assigned. Alternatively, an implementation may ph
B accept the declaration. However, lengths must match in array j
X slice assignments. This implementation accepts the declaration. o
(See test E52103Y.)
“ N
g: In assigning one-dimensional array types, the expression appears y
to be evaluated in its entirety before CONSTRAINT ERROR is raised '

when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety

- before CONSTRAINT ERROR is raised when checking whether the N
- expression's subtype is compatible with the target's subtype. t
R (See test C52013A.) e
he: N
n . Discriminated types. x
o N
,; During compilation, an implementation is allowed to either accept ﬁ
§ or reject an incomplete type with discriminants that is used in an)
s access type definition with a compatible discriminant constraint. g
: This implementation accepts such subtype indications. (See test

E381044A.) .

In assigning record types with discriminants, the expression

! appears to be evaluated in its entirety before CONSTRAINT_ERROR is .
raised when checking whether the expression's subtype is At
compatible with the target's subtype. (See test C52013A.)

-
a v

2,)
> vl
't]
5 « Aggregates. P
- i
- In the evaluation of a multi-dimensional aggregate, all choices Q
A appear to be evaluated before checking against the index type.)
i\' (See tests C43207A and CU3207B.) N,
v, N
j In the evaluation of an aggregate containing subaggregates, all K
“ choices are evaluated before being checked for identical bounds. 0
4 (See test E43212B.) o
‘f All choices are evaluated before CONSTRAINT ERROR is raised if a A
R bound in a nonnull range of a nonnull aggregate does not belong to e,
" an index subtype. (See test E43211B.) b
K ;
) ~)
. 2-3 3

\J
) X &
LV Y L Y N R T O R TR RN AP L S L P T RS TS ; P L Py U Wy W T T g Ty
------- LN .'!g AN T T .. LY - AN ORI *x 4»- 12 Vet S SR VW " ALY

2
_a'8 o

CONFIGURATION INFORMATION

Y Al
‘r‘r*&'pf- e

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scops, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This 4implementation
rejects the declaration. (See test E66001D.) :

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE_SIZE for tasks and
'STORAGE_SIZE for collections. 'SMALL is supported only when the
value given in the representation specification is the same as the
value 'SMALL for the base type. Enumeration representation
clauses, including those that specify noncontiguous values, appear
to be supported. (See tests C55B16A, C87TB62A, C87B62B, C87TB62C,
and BC1002A.)

Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests CA3004E and CA30Q04F.)

Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT_IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. However, any
call to CREATE of such instances of DIRECT IO with unconstrained
array types raises USE_ERROR. (See tests AE2101C, AE2101H,
CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT_FILE mode and can be
created in both OUT_FILE and IN_FILE modes. (See test EE3102C.)

More than one internal file can be associated with each external
file for text I/0 for reading only. (See tests CE3111A..E (5
tests).)

More than one internal file can be associated with each external
file for sequential I/0 for reading only. (See tests CE2107A..F
(6 teats).)

2-4

T A AR a ™ 0% T At At AT T T AT o et LAY A AT A A AT A T e A
M S A A S LD A NN NN 4

ALV LEPRTAES S
. g)" x

N

LY

N
A

-
.

PP P

o o

.5 -

ARC LR "h"‘

£

p’l R RN AT O XA R TR NN XU IR SO) AN ATV UR ST A N ROV LY oY oYy ia 0% b'a %000 0" T T T T) . ‘::;';
) ‘:v
) :5¢
) .‘
CONFIGURATION INFORMATION X
H
More than one internal file can be associated with each external ;ﬁ
file for direct 1I1/0 for reading only. (See tests CE2107A..F (6)
tests).) b
!
, An external file associated with more than one internal file can &
x be deleted. (See test CE2110B.) !
¥) ...'
Temporary sequential files are given a name. Temporary direct C
; files are given a name. Temporary files given names are deleted ¥
’ when they are closed. (See tests CE2108A and CE2108C.) y
. Generics. ;‘
’
. Generic subprogram declarations and bodies can be compiled in]
X separate compilations. (See test CA2009F.) .w
) U
K Generic package declarations and bodies can be compiled in ’
; separate compilations. (See tests CA2009C and BC3205D.) ‘
]
: A
[:_;
7
¢
» »
;\

R AR

L i

A .-‘..f‘:'l' v’ \’T"t’] "I

Ry

v
s

P RV

IR S LRGN T, PN A N A N
» - o » i - L

S M N Y e "y \{

CHAPTER 3 -
-v)'
TEST INFORMATION e,
%
{'\.o-
[]
3.1 TEST RESULTS o
‘l
Version 1.8 of the ACVC contains 2399 tests. When validation testing of ""
the Verdix Ada Development System was performed, 19 tests had been ‘::
withdrawn. The remaining 2380 tests were potentially applicable to this "
validation. The AVF determined that 264 tests were inapplicable to this »
implementation, and that the 2116 applicable tests were passed by the it
implementation. . o
)
1
The AVF concludes that the testing results demonstrate acceptable :::
conformity to the Ada Standard.] o
| 2
e
Ny
3.2 SUMMARY OF TEST RESULTS BY CLASS i‘.,.
3
P
RESULT TEST CLASS TOTAL :
A B ¢ D E L o o
. WM
Passed 69 864 1107 17 13 46 2116 by
LT
Failed o 0o o o0 o0 o0 0 2
o~
Inapplicable 0 3 261 0 0 0 264 :.::
Withdrawn o 7 12 0 o0 0 19 =
TOTAL 69 874 1380 17 13 46 2399 !.:,
1_*
"f
Ry
:-n"
.r::.-
o
o
3-1 By
»

) : N 0 e AT N L L R L N 1A Y R T Y “prat
it ad el adiad v ’ A PN SIS Ay ! WO

AR (A

A O L0n Wi g K

TEST INFORMATION hn

)

v .l’

3.3 SUMMARY OF TEST RESULTS BY CHAPTER -}'
U'

.I,.

RESULT CHAPTER TOTAL o
—2_3.%_5_6_7_8_9 10 1 12 a4 __ 9
Passed 96 222 298 244 161 97 137 261 130 32 218 220 2116 iy
Failed 0O 0 0 0 0 0 0 0 0 0 0 0 O v
Inapplicable 2010312 3 0 0 2 1 O 0 0 13 264 §‘

[<]

A

Withdrawn 0 5 5 0 0 1 1 2 & 0 1 0 19 ¥
o

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399 "':;2

LY ':

3.4 WITHDRAWN TESTS)
b

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of K;
this validation: o
S

321144 CU140UA B74101B BC3204C %

B33203C B45116A -C87B504 _
c34018a C480084A €920054 : o'y

C35904A B49006A C940ACA

B37401A B4AO10C CA3005A..D (4 tests) s

N

See Appendix D for the reason that each of these tests was withdrawn. . ?
Y

. o

3.5 INAPPLICABLE TESTS B
. .l'¢

o

Some tests do not apply to all compilers because they maks use of features)
that a compiler is not required by the Ada Standard to support. Others may >3
depend on the result of another test that is either inapplicable or ;
withdrawn. For this validation attempt, 264 tests were inapplicable for -
the reasons indicated: ’

.:u
. C34001D, B52004E, BS55BO9D, and CS55BOTB use SHORT_INTEGER which is ;ﬁ
not supported by this compiler. =g
o
. C34001F and C357024 use SHORT_FLOAT which is not supported by this o
compiler. &
v

. B86001D requires a predefined numeric type other than those)
defined by the Ada language in package STANDARD. There is no such 3
type for this implementation. oS,
'S*
.6

.
3=2 :-f' 1

",
)

. % LRSS LS L] LIE S R TR L%]

) ‘ . . 3 s . L
-‘l.:.!‘u'l'?‘l‘:.l.:) l'..‘i..‘l‘. t':‘l'-l!‘l A '!‘I't‘i','l't‘l"‘l'. % '.~l' A .‘l‘& t O‘l '. o ! . WA, N Nl R S Y ..o_- G N U .0‘;.‘:.\

o 2 - ‘o 80 8'x 22 A'a 88 B L YWYy ‘B o * ga¥ b’ e AAe®

t T

TEST INFORMATION

-
-

. C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package ot
Ny TEXT_IO.

R Ty

M . C96005B checks implementations for which the smallest and largest

K values in type DURATION are different from the smallest and 3
W largest values in DURATION's base type. This is not tho case for v
this implementation. L]

Y. « CRE2107B..E (4 tests), CB2110B, CE2111D, CE2111H, CE3111B..E (4 -
X ’ tests), and CE3114B are inapplicable becauses multiple internal -
» files cannot be associated with the same external file. The ~ "

R proper exception is raised when multiple access is attempted. ”

: . CE2U01D uses an instantiation of package DIRECT IO with ¢

- unconstrained array types. In this implementation, a call to "

Q CREATE of such an instance of DIRECT_IO raises USE_ERROR. o
{

A . The following 242 tests require a floating-point accuracy that v
exceeds the maximum of 9 supported by the implementation:

C24113F..Y (20 tests) C35708F..Y (20 tests) CU5421F..Y (20 tests)
C357T05F..Y (20 tests) C35802F..Y (20 teats) CAUSH2UP..Y (20 tests)
N C35TO6F..Y (20 tests) CUS2U1P..Y (20 tests) CU5521F..Z (21 tests) o
g C35707F..Y (20 tests) CU5321F..Y (20 tests) CU5621F..Z (21 tests) X

\ 3.6 SPLIT TESTS

s
o Je g,

" If one or more errors do not appear to have been detected in a Class B test
{‘ because of compiler error recovery, then the test is split into a set of
oy smaller tests that contain the undetected errors. These splits are then
e compiled and examined. The splitting process continues until all errors
1 are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
14 because of its size is split into a set of smaller subtests that can be
' processed.
)
[}

-

[l ol Y

rLe.-

Splits were required for 18 Class B teats:

oL O O

B24204A B33301aA B67001A
B24204B B37201a B67001B
B24204C B38008A B67001C
B2A003A B41202A B67001D
B2A003B B44001A B91003B
B24003C B64001A B95001A

Col N e Y
(LR,

-
-

Ok S
A

-
L

3-3

v

LA A "'w. o \"\ R "-.x"x‘-s."‘\."'n"\"_-s\.'\';\"-.."\‘V\'\."‘w
v - . . L) »

S I S T T X R O O R T T e R S T R R R N Y U Y X ™ OO YO WO WO T TR war

.
B
| 2
| ' TEST INPORMATION .
~
b
3.7 ADDITIONAL TESTING INPORMATION 4

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by - 1::‘0
the Verdix Ada Development System was submitted to the AVF by the applicant .::f:
for review. Analysis of thease results demonstrated that the compiler .u:‘
successfully passed all applicable tests, and the compiler exhibited the |::,‘

expected behavior on all inapplicable tests.

!‘
»
3.7.2 Test Method Y
N
Testing of the Verdix Ada Development System using ACVC Version 1.8 was »
conducted on-site by a validation team from the AVF. The configuration W
consisted of a MicroVAX II host operating under MicroVMS, Version 4.2, and
a Fairchild 9450 implementation of MIL-STD-1750A. The Fairchild 9450 chip F
was mounted on a MIL-STD-17504 Software Execution Unit within a Tektronix)
V1750A Software Integration System. The host and target computers were by,
linked via RS-232. L
et
A magnetic tape containing all tests except for withdrawn tests and tests -“-E
requiring unsupported floating-point precisions was taken on-site by the ;'.{.\P
validation team for proceasing. Tests that make use of v
implementation-specific values were customized before being written to the
magnetic- tape. Tests requiring splits during the prevalidation testing :,.
were included in their split form on the magnetic tape. Q
‘ot
The contents of the magnetic tape were loaded onto a VAX-11/750 under UNIX .“‘
4.2 BSD. The file names wers converted and the tests were distributed to a ’
directory structure expected by the command scripts. A File Transfer :
Program (FTP) using an EXCELAM implementation of TCP/IP on VAX/VMS was used e
to transfer the files to the MicroVAX II. After the test files were loaded o
to disk, the full set of tests was compiled and linked as appropriate on Oy
the MicroVAX II under MicroVMS 4.2, and all executable tests were run on »
the Fairchild 9450. Object files were linked on the host computer. S
Executable images were transferred to the target computer using a :::-?‘
communications program to download the executable image to the Fairchild _\).
9450 chip via a RS=-232 serial 1link to the Tektronix V17504 Software :_.‘
Integration System. Results were copied over ethernet to the VAX-11/750 oS
and printed.
oY
In this cross-target implementation, the functions of TEXT IO are l‘-‘
physically as well as loglcally divided; I/0-file system requests are ’,'.:ﬁ
handled by the portion running on the host, and formatting handled by the oo
portion running on the target. For a user, the lower level of the »
implementation is completely transparent. :;‘
*,
.
3=4 XX

G T T T R r R e e e 1 e O 0 A L A e T D TN

WXUN N

TEST INFORMATION

A protocol has been developed to allow the target processor to make
requests of the host file system, and to do all the I/0O there. This
protocol is implemented using a daemon on the host that serves all requests
for file and I/0 activity from the target.

The compiler was tested using command scripts provided by Verdix
Corporation and reviewed by the validation team. The compiler option
/SUPPRESS was used on some tests. This option suppressed run-time checks
from the object code in order to reduce the size of the executable image.

Test output, compilation listings, and job logs were captured on magnetic
tape and archived at the AVF. The 1listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Verdix Corporation in Aloha OR on 15
December 1986, and departed after testing was completed on 20 December
1986.

R R Ry T B I N I I
A N o A A N A N T A R N A I N I N N A SN N AN A

CERRAY

PN

[} ? o
Wen

5 TS
S KX

570 % e

I o p% o8 Dol oo T 20 o oo oo g B0 g
] P o .
O L K O KN

(-.'{p‘. p

[o

Wt v r Wan 8 g BaR GaoNay g8 g8 gty P 9 878 0 R0 gV] *_fat b Vo e M TV Wy P "a® at, =08 0a8 6o Vol * v

APPENDIX A

COMPLIANCE STATEMENT

Verdix Corporation has submitted the following
compliance statement concerming the Verdix Ada
Development System.

[y

. ;;.'1:',5'

oLy

b J

[/

"'l'
LR

T

P
554

LA

"y %

.. cr _
P':’ "u:%‘ .'f o ,‘ﬂ.

‘I'.'l
LY

';}'- 4 [

l{
2

555

A-1

r's
'

F,FLS
.
'

v v " L g h Wy W o Wo W K . o CA .- . crp e a. e ety e e .-
) 4 Wy vy ¥ DN 4 R P a - g =3 “ . tat. - -
e D -.- '} <. A. - ,_ .' WO “ ~ 0 "-" S AN '-"'"'\"-'.\ A YA AT Y

/
t

|
|
|
J
)
|
I
]

COMPLIANCE STATEMENT

Compliance Statement

Configuration:

Compiler: VADS VAda-010-03405, Version 5.U1

Host Computer:
Machine: MicroVAX II
Operating System: MicrovMs, Version 4,2

Target Computer:

Machine: Fairchild 9450
mounted on a

Test Suite: Addgcompiler Validation Capability, Version 1.8

MIL-STD-1750A Software Execution Unit
within a Tektronix V1750A

using the MicroVAX 11

Operating System: bare

for file 1/0

Verdix Corporation has made no deliberate extensions to the Ada language

standard.

Verdix Corporation agrees to the public disclosure of this report.

Verdix Corporation agrees to comply with the Ada trademark policy, as

defined by the Ada Joint Progr-m Office.

Date: :l,f) Zﬁ‘ﬂ:L / 8}4;

. i
Verdix cCorpora //
Michael Seyfrit
Manager, Ada PIEM

"Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+ v L Y %) TR PRI FLER W UL e R S L AT N e, M LY WL W L e e L Pl
LR AR I N N, A G G T o N S e A N A (R A A A A W N A ¢

S b0 b

% P SO % 1% 3% WL T
L) e {"

N
v,

el %)

2

."?

.
»
I"‘
)
»

PR

T, Tw
P
.

> %
L D It A
@, «

i

ﬁ}§5{¥4"

WIS AL,
prrereee

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-18154, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the VADS VAda-010-03405, Version 5.41 are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767T;
type LONG_INTEGER is range 2147483648 .. 214TH8364T;

type FLOAT is digits 6 range -2#0.01111111111111111111111$#E127 ..
280. 1111111111 1M11111111111148127;;

type LONG_FLOAT is digits 9 range
L2001 T T TN NTTTNI I I19E12T ..
Ft PR R R R R R AR AR R R R R AR R R R AR R RRRRRARRARRARRRE A4S

type DURATION is delta 241.0#E-14 range -2#100000000000000000.0# ..
F AR R AR R RRR R AR R PR ARRARRRRRRRRAE ¥

end STANDARD;

B=1

0 S S0 5 P 0 e 55 0 S A PR N S D A L R L S A L L G vy oA

t .'. ‘l"l

LS O &«
LAY Y O

v

]

;1E6£5

’.éf??

35555 YN

.

Ul A A

O e g S A PP P RPN

v-. ‘0. 4"

I
N
b

N
. 5 T

L R
A

" TN
,‘..{'J.J"

W 1":"'-’ ! -

‘%
-,

A
a

L S

a2

1. Implementation-Dependent Pragmas
1.1. SHARE_BODY Pragma

The SHARE_BODY pragma takes the name of a generic instantiation or a generic unit as the
first argument and one of the identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation, but before any subsequent compi-
lation unit. o

When the first argument is a generic unit the pragma applies to all instantiations of that gen-
eric. When the first argument is the name of a generic instantiation the pragma applies only to
the specified instantiation, or overioaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantiations of the same generic. When the second
argument is FALSE each instantiation will get a unique copy of the generated code. The
extent to which code is shared between instantiations depends on this pragma and the kind of
generic formal parameters declared for the generic unit.

12. EXTERNAL _NAME Pragma

The EXTERNAL_NAME pragma takes the name of a a subprogram or variable defined in Ada
and allows the user to specify a different external name that may be used to reference the
entity from other languages. The pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier in the same package
specification.

13. INTERFACE_OBJECT Pragma

The INTERFACE_OBJECT pragma takes the name of a a variable defined in another language
and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
variable name with an external reference to the second, link_argument. The pragma is allowed
at the place of a declaratve item in a package specification and must apply to an object
declared earlier in the same package specification. The object must be declared as a scalar or
an access type. The object cannot be any of the following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

14. IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed
within a machine code procedure. It specifies that implicit code generated by the compiler be

NN A

.............

% I) P T R R N R P S et ama . Mt e ammp Nt e TN .-
VAN SN AL IO SN ol o N S T o P N NI A A A L N ST A U O
. Al - WS, W o S

..
-

i

AR AT R
. _h

«
-I’.‘

ARN

s e) - \l L
in?‘.f\

N
LSt

LE LT

L@ UERN

r_‘v"l..
. .

el

LA

g

L RN

h)
u./.u L -.l
AN AR

N

ORNLIEANL R TRIEP r
LAk

S
o

-'.:;..

W

= L]
LS
[l AL A

L

¥
oy

. e
a‘z»'}. "o

_ -.71."'.'-_'- W3

x

L N T
£

.,
oy

F

o - ,-.’.

P Ak
RERFF

- - - — e

. -

RETR I R

T PR R R A P IR RN WY " - pa'aa's T

allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be
generated. The default is ON.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect.

22. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

23. INLINE
This pragma is implemented as described in Appendix B of the Ada RM.

24. INTERFACE

This pragma supports unchecked calls to externally defined subprograms. The Ada subpro-
grams can be either functions or procedures. The types of parameters and the result type for
functions must be scalar, access or the predefined type ADDRESS in SYSTEM. An optional
third argument overrides the default link name. All parameters must have mode IN. Record
and array objects can be passed by reference using the ADDRESS atribute.

25. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY _SIZE

This pragma is recognized by the mplememanon. The implementation does not allow SYS-
TEM w be modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

28. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite
types. Components that are smaller than a STORAGE_UNIT are packed into a number of bits
that is a power of two.

.29. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY
This pragma is implemented as described in Appendxx B of the Ada RM.

2.11. SHARED
This pragma is recognized by the implementation but has no effect.

2.12. STORAGE_UNIT

B-3

i
v - .
:'h“l .' 2 f*”‘ \(.‘ \f- \ *v "-"'-"'.' 7 "5’ "y A '\ LY \ \ ’.‘.. O ‘.’

ey Sy LA

M N

SRR

- w
b S A

A AR I
PNy

X

v":l“'i R vy

P

- g €
o,

R

P

[ATNE S

‘\'.“;;':"f"‘;.{_.‘_'T M

v

This pragma is recognized by the implementaton. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE_CHECK and
DIVISION_CHECK cannot be supressed.

_ 214. SYSTEM_NAME

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF
For a prefix that denotes an object, a program unit, a label, or an entry:

This atribute denotes the effective address of the first of the storage units allocated to P. For a
subprogram, package, task unit, or label, it refers to the address of the machine code associated
with the corresponding body or statement. For an entry for which an address clause has been
given, it refers to the corresponding hardware interrupt. The auribute is of the type
OPERAND defined in the package MACHINE_CODE. The attribute is only allowed within a
machine code procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF auribute is not supported.)

A RTRURT AT AT

LN Nl '.*’.

-

ol

2 @S
L r.‘-."s".hé.::.'.

-
-4

5

-

oy

X

25

@
.%

:':-t’.

Jo

PAAL)&
o,

AR

o 72 L2
TR L

Y
o,)

4.5 ($-P
4-.5 - e

AN NG YV A R,V 0
L A 0 M & Lf
T BAERA

“h
P
T

"n"n‘l -" " -".-".'
o

vy,

o "
Ly % T la
o s

(o

h3

(\f\(
LA

b4
“.’)! l,A'

l
o)

L 1

o,

4, Specification of Package SYSTEM

package SYSTEM

is

type NAME is (m1750a);

SYSTEM_NAME
EXTENDED_MEMORY

STORAGE_UNIT
MEMORY_SIZE

constant NAME
BOOLEAN

constant
constant

~= System-Dependent Named Numbers

MIN_INT
MEX_INT
MAX_DIGITS
MAX_MANTISSA
FINE_DELTA
TICK

00 o0 03 80 6% oo

constant
constant
constant
consatant
constant
constant

-~ Qther System-dependent Declarations

e as

0 90 Q8 B8 0% 00

waunuon

subtype PRIORITY is INTEGER range 0 .. 99;

MAX_REC_SIZE

type ADDRESS is private;

e
L4

INTEGER

type SHORT_ADDRESS is private;
subtype SEGMENT is INTEGER range O .. INTEGER'LAST;

NO_ADDR
NO_SHORT_ADDR

m1750a;
FALSE;

163
2097152;

~2147483648;
21474836473

?
313
2.0%%(-30);
0.01;

1= 32767;

constant ADDRESS;
constant SHORT ADDRESS;

function OFFSET_OF(A: ADDRESS) return SHORT_ADDRESS;

function
function
function

function
function
function
function
function
function
function
function

function

R A -
L) Ll e

N ., T A A e S T WV S P, Sy o WA '

SEGMENT_OF(A: ADDRESS) return SEGMENT;
SEGMENT_OF return SEGMENT;
MAKE_ADDRESS(A: SHORT_ADDRESS; SEG: SEGMENT) return ADDRESS;

PHYSICAL_ADDRESS(I: LONG_INTEGER) return ADDRESS;
ADDR_GT(A, B: ADDRESS) return BOOLEAN;

ADDR LT(A, B: ADDRESS) return BOOLEAN;

ADDR GE(A, B: ADDRESS) return BOOLEAN;

ADDR_LE(A, B: ADDRESS) return BOOLEAN;

ADDR DIFF(A, B: ADDRESS) return INTEGER;

INCR ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

PHYSICAL_ADDRESS(I: LONG_INTEGER) return SHORT_ADDRESS;

B-5

i
oY

ohad)6)7
ht

2

'."-

S—,‘\(‘

-
[4

Nty
S d

{}

&

PRV aad > s WY
% 5

"'
Uty N

5

]

I", ’

T 1
‘PI ‘_:_ "

Shs
Py

sk g) 4
.
F

LR X
v

e W
s
\ [3

S
"

ANy
A

",

LN A Mg o € M 8
N A LAV O

? function ADDR_GT(A, B: SHORT_ADDRESS) return BOOLEAN;
¢

function ADDR_LT(A, B: SHORT_ADDRESS) return BOOLEAN; X
function ADDR_GE(A, B: SHORT_ADDRESS) return BOOLEAN;
R function ADDR_LE(A, B: SHORT_ADDRESS) return BOOLEAN;
0 function ADDR_DIFF(A, B: SHORT_ADDRESS) return INTEGER; N
o function INCR_ADDR(A: SHORT_ADDRESS, INCR: INTEGER) return SHORT_ ADDRESS; 2
R function DECR_ADDR(A: SHORT ADDRESS, DECR: INTEGER) return SHORT_ADDRESS;)

- function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR_GT;

o function "<"(A, B: ADDRESS) return BOOLEAN renames ADDR_LT;

X, function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR_GE;

& function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE;

& function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR_ADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADDR;

. function "-"(A, B: ADDRESS; INCR: INTEGER) return INTEGER

Y renames ADDR_DIFF;

PR

A

2 function ">"(A, B: SHORT_ADDRESS) return BOOLEAN renames ADDR_GT;
; function "<"(A, B: SHORT ADDRESS) return BOOLEAN renames ADDR_LT;
function ">-"(A, B: SHORT '_ADDRESS) return BOOLEAN renames ADDR_GE;

o function "<="(A, B: SHORT ADDRESS) return BOOLEAN renames ADDR_LE;

D function "+"(A: SHORT ADDRESS, INCR: INTEGER) return SHORT ADDRESS

y renames INCR_ADDR;

: function "-"(A: SHORT _ADDRESS; DECR: INTEGER) return SHORT_ADDRESS
renames DECR_ADDR;

function "-"(A, B: SHORT_ADDRESS; INCR. INTEGER) return INTEGER
renames ADDR_DIFF;

‘IT’II'

A 7 J0a P L

:
| pragma INLINE(OFFSET_OF); -
[« pragma INLINE(SEGMENT OF); e
. pragma INLINE(MAKE_ADDRESS); Y
pragma INLINE(PHYSICAL_ADDRESS);

pragma INLINE(ADDR GT)j 5
pragma INLINE(ADDR_LT); .
pragma INLINE(ADDR GE);)
pragma INLINE(ADDR_LE); o
pragma INLINE(ADDR | _DIFF);
pragma INLINE(INCR_ADDR);
pragma INLINE(DECR | _ADDR) ;

rxr2>r&ELL

M Ey
ol Ty

‘- private

T 5 1 _»
o5 h

" type SHORT_ADDRESS is new ADDRESS;
o for ADDRESS'size use 16;
for SHORT_ADDRESS'size use 16;

£,

Lol o

P A

X _ NO_ADDR sconstant ADDRESS := 0;
NO_SHORT_ADDR ¢ constant SHORT_ADDRESS :=0;

& end SYSTEM;

B=6
N
»
‘ W W Wy WY ‘N't ™ ~
4 f}f "-" -'*1--._'.1n'-- AT LE ", » .
AT L R A R R LG Ay LR N O o, D X S _ ‘ S TR

W s et avile® fad Gat €a% 828 0av fut fs¥ et Sty ¥ Ge8 $a7 410 020 fat s a0 dat 420 4,0 Agh Tt et Eat Rl 0 08 Al s’

"

R ‘

:?: 5. Restrictions On Representation Clauses

::;, S.1. Pragma PACK .'f

o Array and record components that are smaller than a STORAGE_UNIT are packed into a

< number of bits that is a power of two. Objects and larger components are packed to the '

::... nearest whole STORAGE_UNIT. 3

e §.2. Size Specification .

N .

i The size specification T'SMALL is not supported except when the value given in the represen- "

N tation specification is the same as the value 'SMALL for the base type. N

', *
$3. Record Representation Clauses '

F Components not aligned on even STORAGE_UNIT boundaries may not span more than four

%’ STORAGE_UNITs.

o 5.4, Address Clauses "
Address clauses are supported for variables and constants.

o 55. Interrupts

“; Interupt entries are not supported.

" S.6. Representation Attributes

. The ADDRESS attribute is not supported for the following entities:

5

S Packages

o Tasks

™ Labeis

i Entries

>, 5.7. Machine Code Insertions ;

3 Machine code insertions are supported. it

hY \
The general definition of the package MACHINE_CODE provides an assembly language inter-

o facs for the target maching. It provides the necessary record type(s) needed in the code state- “

b ment, an enumeration type of all the opcode mneumonics, a set of register definitions, and a set 3

B of addressing mods functions. "

[

;: The general syntax of a machine code statement is as follows: A

o |

P CODE_n’(opcode, operand {, operand}),

L 3

, E S where # indicates the number of operands in the aggregate. B

> A special case arises for a variable number of operands. The operands are listed within a

:::. subaggregats. The format is as follows:

:’:" CODE_N’(opcode, (operand {, operand}));

i N

f |;

:1';1 B A

B U) B I A T N T o A

For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)). Ty

CODE_0O’(op => opcode);

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE_CODE or the 'REF auribute.
The arguments to any of the functions defined in MACHINE_CODE must be static expres- 0
sions, string literals, or the functions defined in MACHINE_CODE. The 'REF attribute may
not be used as an argument in any of these functions.

»
Inline expansion of machine code procedures is supported. .A

J

N

P

P IO
SO N ATLIALE

Pals

'-'

CLA® oo e

55

5

=

B-8

':;.'.0"‘-' " Pt D.A ..\l’ ' AL l"l“l'q l. o o f el _t',-‘l » ‘D ‘-‘l ’ Ny '(“". X J. ’ 'l e ’ -""':¢ A ! &

............. 0 O M A

N g e > o~

B
P
r 80,

P taE tgte-glg” 4% din" D0 Bia B J0u A%e 0 ey Tywgeywy

6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address clauses are supported for variables and constants.

8. Restrictions on Unchecked Conversions
None.

9. Restrictions on Unchecked Deallocations
None.

10. Implementation Characteristics of /O Packages

Instantiations of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENI‘ TYPE'SIZE is very large,
MAX_REC_SIZE is used instead. MAX_RECORD _ SIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECI‘ 10 o provide an upper limit on the record
size. In any case the maximum size supported is 1024 x 1024 x STORAGE_UNIT bits.
DIRECT _IO will raise USE_ERROR if MAX_REC_SIZE exceeds this absolute limic
Instantiations of SEQUENTIAL_IO use the value MAX _REC SIZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENT _TYPE exceeds that value. For
exampie for unconstrained arrays such as string where ELEMENT _TYPE'SIZE is very large,
MAX _REC SIZE is used instead. MAX_RECORD_ SIZE is defined in SYSTEM and can be
c.hangedby apmmmbefommstannmnglNTBGERlOmpmwdemupperhmtonthe
record size. SEQUENTIAL _IO imposes no limit on MAX_REC_SIZE.

11. Implementation Limits

The following limits are actually enforced by the implementaton. It is not intended to imply
that resources up to or even near these limits are available to every program.

11.1. Line Length

The implemennation supports a maximum line length of 500 characters mcludmg the end of
line character.

11.2. Record and Array Sizes

The maximum size of a stadcally sized array type is 32768 x STORAGE_UNITS. The max-
imum size of a statically sized record type is 32768 x STORAGE_UNITS. A record type or
array type declaration that exceeds these limits will generate a warning message.

113. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main
program is allocated a fixed size stack of 1000 STORAGE_UNITS. This is the value returned
by T'STORAGE_SIZE for a task type T.

B-9

'IY-‘({‘."I-'I-“_‘J'\-'J'-“lIJ‘J'J'" Ty AL,

l i) .""Il' \ L .'."q‘ f~ k3 - $ » - A .. ‘ -' .\ . ¢ -\ .- \ \ ~ \ ~ - \:\‘.\ \f- \ “ . -‘-.“

Y

i 2 gu g # W]
e

xS

TGN

g

-

X e F

x.»-

SIS L ST v_ s
AT e

Yy W a Vv

e 0 .
"‘~"‘4“i' AN Y, \"‘\.‘.n." 1 %0 V. RN i "

"ot Vel Va0 0ad et day Y P ol g Ol b ‘R Al A ath g AT AR Gl 080 0’ ' 80’ 0op Ao 2 A st ~ ") TYY

11.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length attribute the default collection size for an
access type is 1000 STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for
an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 2 ** 16 x STORAGE_UNITS for objects declared statically
within a compilation unit. If this value is exceeded the compller will terminate the compilation
of the unit with a FATAL error message.

f~f"f\" Al Nl

c"l rr fq.ts": g - ‘..‘

L/

S

oy

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its frile
name . Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below.

Name and Meaning Value
$BIG_ID1 (1..498 => 'A', 499 3> "1')

Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 (1..498 => 'A', 499 2> '2')
Identifier " the size of the
maximum dinput line 1length with
varying last character.

$BIG_ID3 » (1..249 | 251..499 2> 'A°,
Identifier the size of the 250 => '3')
maximum input line 1length with
varying middle character.

$BIG_ID4 (1..249 | 251..499 2> 'Ar,
Identifier the size of the 250 => '4*)
maximum input line length with
varying middle character.

$BIG_INT_LIT (1..496 => 'Q', 497..499 =z> n298")
An integer 1literal of value 298
with enough leading 2zeroes so
that it is the size of the
maximum line length.

L NN N NGNS

&

‘ate® hd ST WL S O AP AT Ny) Lo I W e T WA T W I WL SLIPY et wT R, AT R . *, Y'Y ~ ag A
N AR 38 X S O D N A N PN N AN N A TR T Py o

S
PN

_\.-'n

s
SHAGY LN

[T e A

.

X7,
Sy X,

-
&

450
{.

'y
LS

o - .

e, X2
%S
\-,${..

»
hY
(s

Pl
gt

PN AN
A

TR G

A

s, v.",—

TEST PARAMETERS

Name and Meaning Value !
4,
[l

‘BIG_REM‘_LIT (1 . cu93 '—') '0' 9 ugu. ou99 => .

: A real literal that can be "69.0E1") oy
either of (floating- or fixed- I
point type, has value 690.0, and 3§
has enough leading zeroes to be "
the size of the maximum line W
length.

$BLANKS (1..479 => ' 1) 1

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

-

- P - Y
A I A A ARy

. $COUNT_LAST 32767
; A universal integer 1literal
! whose value is TEXT_IO.COUNT'LAST.
$EXTENDED_ASCII_CHARS "abedefghi jklmnopqrstuvwxyz" &

A string literal containing all "i1§%2e(]1"*"(}~"
the ASCII characters with
printable. graphics that are not
in the basic 55 Ada character

PO Wl

AN
AP Py

set. o
: 4
; $FIELD_LAST 32767 o
: A universal integer 1literal -9
whose value is TEXT_IO.FIELD'LAST. Y
‘o
$FILE_NAME_WITH_BAD_CHARS "/i{llegal/file_name/2{]$%2102C.DAT" h
An illegal external file name '
that either contains invalid N
characters, or is too long if no e
invalid characters exist. ::_
$FILE NAME_WITH_WILD CARD_CHAR "/illegal/file_name/CE2102C*.DAT" e
An external file name that v
either contains a wild card Ny
character, or is too long if no \j
wild card character exists. ::
.
$GREATER_THAN_DURATION 100_000.0 ;”
A universal real value that lies o
between DURATION'BASE'LAST and e
; DURATION'LAST if any, otherwise e
' any value in the range of Nyt
DURATION. :.5‘
]
$GREATER_THAN_DURATION_BASE_LAST 10_000_000.0 =
The universal real value that is 5*
greater than DURATION'BASE'LAST,
if such a value exists. , '::.:

C-2

AR

T Ny B A AT A mp ety % s e n e A Ra e o et A A YA s - A
SN LN RN ah Y I A I i o A G "-:’-.\"-:"-.-." o N A N N N '\' N OSSN N

[

[}
. ’
‘; TEST PARAMETERS >3
W ~
: 3
; Name and Meaning Value
- $ILLEGAL EXTERNAL_FILE_NAME1 "/no/such/directory/" &)
; An iTlegal external file name. "ILLEGAL_EXTERNAL_FILE_NAME1" i
y $ILLEGAL EXTERNAL_FILE_NAME2 "/no/such/directory/" &]
An illegal external file name "ILLEGAL_EXTERNAL_FILE NAME2" "
that is different from . =
. $ILLEGAL_EXTERNAL_FILE_NAME1. %
: $INTEGER_FIRST -32768 A
. The universal integer literal ~4
h expression whose value is o
INTEGER‘FIRST.
b $INTEGER_LAST 32767 A
y The universal integer literal e
p expression whose value is .2
INTEGER'LAST. A
$LESS_THAN_DURATION -100_000.0 4
A universal real value that lies W
between DURATION'BASE'FIRST and oY
DURATION'FIRST if any, otherwise E:'
any value in the range of ™~
DURATION. N
. =)
- $LESS_THAN_DURATION_BASE_FIRST -10_000_000.0 N
; The universal real value that is RN
. less than DURATION'BASE'FIRST, :
. if such a value exists. .
, $MAX_DIGITS 9 o
; The universal integer 1literal Qs
" whose " value is the maximum .
N digits supported for E’ y
: floating-point types. |
$MAX_IN_LEN 499 2
- The universal integer 1literal R
whose value is the maximum >
input 1line 1length permitted by o
the implementation.
i
$MAX_INT 2147483647 A
r The universal integer literal :'.:
; whose value is SYSTEM.MAX_INT. T
. .’-
! .
Ly Fn_
p]
:]
R
1 C-3 't
: iy
L

Ll LD

o o - . - - My R e s . - \ . “ ot [P -
O AN I e '.\.l 0 A :- N, ""‘ N oo B .‘}»\'..'\"' vy \\. RN "‘.""* - *':

TEST PARAMETERS

Name and Meaning Yalue

$NAME NO_SUCH_TYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER
if one exists, otherwise any
undefined name.

$NEG_BASED_INT 16 4FFFFFFFD#
A based integer literal whose
highest order nonzero bit

falls 1in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NON_ASCII_CHAR_TYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphics.

P o b W
. " . nﬂ.ﬁ;&)(.:'.- v

4

; .\ I\ lﬁ

[
] SN S

4& "x AN

A

PLALCIAL L ol

T
- o s

-

i§l C-4 K

v"!“‘..i.n‘:"hl':‘,'.i. » l‘:‘t'- .‘l 9, . N .t.l .h .0 -. Il.',l. 'l- i l' *:* .‘*"_‘v -"j ‘:*""J" SN A

»~ '~ -y w

LIS A
Tt

1 NN S B,

-" !-l- - - t. 'l“” > _ ------ .i. "'. w U R W R .y - - - - bll -“" f,

- f,‘.’"
) A
»
v::‘-
by
‘:::\
o
»
e
,,\
>
,,'h
Pt
‘*,
]
APPENDIX D o
-4
WITHDRAWN TESTS ' N
’
U
Some tests are withdrawn from the ACVC because they do not conform to the Jyf
Ada Standard. The follcowing 19 tests had been withdrawn at the time of r&.
validation testing for the reasons indicated. A reference of the form rﬁ
"AX-ddddd" is to an Ada Commentary. A
]
o
\n.'_'-
. C32114A: An unterminated string literal occurs at line 62. :$:
b
\.'_":
N

. B33203C: The reserved word "IS" is misspelled at line 45.

))
4

« C34018A: The call of function G at line 114 is ambiguous in the :E:

presence of implicit conversions. ’“:
»

.« C35904A: The elaboration of subtype declarations SFX3 and SFX4 SﬁJ
may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in o
the test. S

..: s,
)

. B37401A: The object declarations at lines 126 through 135 follow %?

subprogram bodies declared in the same declarative part. ;{1
o
--\.':

. CU41404A: The values of 'LAST and 'LENGTH are incorrect in the if o

statements from linu T4 to the end of the test. i
. :E)

. DBH5116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of by
the wrong type--PRIBOOL_TYPE instead of ARRPRIBOOL_TYPE--at line ‘xﬁ
b1, N

.) \.

. CU48008A: The assumption that evaluation of default initial values NN

occurs when an exception is raised by an allocator is incorrect VN

44

-
e

according to Al-00397.

-J-

D=1

v,

A N

.
1

e T T TUE S T T TP U s U S S S At w e - .- - .
W D ooty W A e, T s N -."'s\.'s\\‘.\ ~" -.',\\' - \s"\-. "' \\': WCY O, R ELEG1 T U QUL AP LR L LRA R LN

‘4'. s "
B
.J '

i

O

.r

v

WITHDRAWN TESTS 3

. DBUGO06A: Object declarations at lines 41 and 50 are terminated .
incorrectly with colons, and end case; is missing from line 42,

o
1

. BH#AO10C: The object declaration in line 18 follows a subprogram .
o body of the same declarative part. .
. t
L5y [
>~ . BT4101B: The begin at line 9 causes a declarative part to be
- treated as a sequence of statements.

) . C87TBSOA: The call of "/=z" at line 31 requires a use clause for

package A.
f |
~: o
f:e . C€92005A: The "/=" for type PACK.BIG_INT at line U0 is not visible

w

without a use clause for the package PACK. !

"2,

=2l
:i ﬁ.‘ ‘1

« CQ40ACA: The assumption that allocated task TT1 will run prior to :
the main program, and thus assign SPYNUMB the value checked for by A
the main program, is erroneous.

LT
R

% 90

. CA3005A..D (4 testa): No valid elaboration order exists for these
tests.

»
LR flf._l“-

BC3204C: The body of BC3204C0O is missing.

i J.

L]
:‘;‘,:';'.- s .
L]

s
o

L%
2 xtatats

Y
2

s
»
-

oy "

E AR R

¥
X5

ERALANSA
S S

FND

AT E
F//HED

P
D20,

=
o

R’

&
<> ¥ el
.'.tgi;;}.e-:-.-

Dt Bk B BV

s & 5%
=N

o
« T
A

OLL

4

.. O P P
AR

Cul i 0]
'J:"r"’f. T
€« _v .= Y " w K
\‘.I%N\sq..) ‘lll.§
o » l.,‘.' v
l.'.lJl, l;l:N"-';’ :-*??5’4{.-—1

Y ". ’- ‘.L'.s.".’\.'
- .

g [)
P {‘I‘.I

bo
G

AE

Sl LA NS IR 'R)

"I.. M - . (WA ¥ “ WY
"v.l'n W00l l‘?"..‘ 1%y .:‘I..'.l':'l’:.l.:'l'a L% 'o‘l’r *l'u, o l"..‘l .v 3 0."'\.'0-..0. .l. . . 800 W B 075 WYy

