
VEIX COPRTONVu()INOMTOiSSES0TEHOOG CNERhhhRF O AAVRIhi0lEC9hhhhhhhhhhhhhF6h125 N

r .e. a. -- L -. I

I

1111 I. L12.

L I

1111.5 1111
'j~ [2 1111. 11 .

.........

-fs%

..

...5.., '
"

'. ' "''.V# ~ ,. %.--. .---. .-. ' % . '

, L, . _ , .r~.% " " " " " ,'./-,,,"' "-', ",".'%. ._,.x
1

",? " " -r" , 9.

TTTTr A~qqfPT ~_FILE
. C Entered) I

N PAGE
READ INSTRUCTIONS

1N______PAGE_____ BEFORE COMPLETEING FORM

1. /AD - 190 358 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. 11 Lt (dtUa uutiutj 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 20 Dec 1986 to 20 Dec 1987

Verdix Corporation. VADS VAda-010-03405, Version 5.41

MicroVAX Il-to-Fairchild 9450 6. PERFORMING ORG. REPORT NUMBER

7 AUTH R(sA 8. CONTRACT OR GRANT NUMBER(s)WigN- Patterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 20 December 1986
United States Department of Defense 13. NUMMR UF PAGES
Washington, DC 20301-3081 38

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. RJA SFICATION,DOWNGRADING

N/A

16. DISTR:BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

N 18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABS T RAC T (Continue on reverse side if necessary and identify by block number)

See Attached

D 10"m 1473 EDITION OF 1 NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
_ %",

/ EXECUTIVE SUMMARY

This Validation Summary Report (VSR) Iiummarizes the results and conclusions
of validation testing performed on the Verdix Ada Development Systemp VADS
VAda-010-03405, Version 5.419 using Version 1.8 of the Adas Compiler
Validation Capability, (ACVC)., The Verdix Ada Development System;is hosted
on a MicroVAX II operating under MicroVMS, Version 4.2. Programs processed
by this compiler may be executed on a Fairchild 9150 implementation of
MIL-STD-1750A.

On-site testing was performed A5-'eember- 1986 through 20 Decber'-49 at
Verdix Corp~eation in Aloha OR? under the direction of the Ada Validation
Facility (Ai).)according to Ada Validation Organization (AVO) policies and
procedures. --The AVF identified 2138 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well~u he 212 executable
tests that make use of floating-point precision exceeding that supported by
the implementation$ were not processed. -,After the 2138 tests were
processed, results for Class A, C, D, and 3 tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 22 of the processed tests determined to be inapplicable. The
remaining 2116 tests were passed. ._<

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
_ _ __ IO 11 12 -

Passed 96 222 298 241 161 97 137 261 130 32 218 220 2116

Failed 0 0- 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 3 0 0 2 1 0 0 0 13 264

Withdrawn 0 5 5 0 0 1 1 2 1 0 1 0 19

TOTAL 116 330 125 217 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

1., -. . I ' W V 0 ,V 1

AVF Control Number: AVF-VSR-53.0787
86- 10-06-VRX

AdaO COMPILE
VALIDATION SUMMAY REPORT: I

Verdix CorporationQ
VADS VAda-O1O-03 1105, Version 5.4I1

MicroVAX II-to-Fairchild 91450

'a Accession For

Completion of On-Site Testing: N-TIS GRAijfX
20 December 1986 DTIC TAB

Unannounced

JuS t ific ati o

Prepared By: Distribjution/
Ada Validation Facility Availability Codes

ASD/SCOL Aalado

Wright-Patterson AFB OHl 415433-6503 Dist Special

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

* Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

I

*.
4

+ Place NTIS form here +

4.I

I

,

p...

Ada® Compiler Validation Summary Report:

Compiler Name: VADS VAda-010-03405, Version 5.41

Host: MicroVAX II under Target: Fairchild 9450
MicroVMSp Version 4.2 (bare)

mounted on a
MIL-STD- 1750A Software Execution Unit
within a Tektronix V1750A
using the MicroVAX II for file I/O

Testing Completed 20 December 1986 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada JX'int Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

S.,

."5

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

16Ll "" ,,

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Verdix Ada Development System, VADS
VAda-010-03405t Version 5.1, using Version 1.8 of the Ada® Compiler
Validation Capability (ACVC). The Verdix Ada Development System is hosted
on a MicroVAX II operating under MicroVMS, Version 4.2. Programs processed
by this compiler may be executed on a Fairchild 9450 implementation of
MIL-STD- 1750k.

On-site testing was performed 15 December 1986 through 20 December 1986 at
Verdix Corporation in Aloha OR, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2138 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 242 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2138 tests were
processed, results for Class A, C, D, and Z tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 22 of the processed tests determined to be inapplicable. The
remaining 2116 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 _ 4 5 __ 10 11 12 14

Passed 96 222 298 24 161 97 137 261 130 32 218 220 2116

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 3 0 0 2 1 0 0 0 13 264

Withdrawn 0 5 5 0 0 1 1 2 1 0 1 0 19

TOTAL 116 330 125 247 161 98 110 264 13 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANS/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3. -* -3
1.14 DEFINITION OF TERMS ***............1-3

1.5 ACVCTESTCLASSES 1-...............-3

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS o * :. * * . o 3-1
3.2 SUMMAR OP TEST RESULTS B CLASS 3-1
3.3 SUMMARIOFTEST RESULTS BY CAPTER . o . . . o. . .3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE T ESTS 3-3
3.6 SPLIT TrESTS . o * o a o . e * o o o o * o o o o 3-3
3.7 ADDITIONAL TESTING INFORMATION o 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-4 -
3.7.3 Test Site 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS
A N DAPEN.DIX D WITHDRAWN TE.STS

a hh

l /I+ i : ' +IS

IM

CHAPTER I

INTRODUCTION

This Validation Sumnary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies-for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

,P

1-1 }

e = = JF -W

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an b
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

0 To attempt to identify any unsupported language constructs 0.
required by the Ada Standard P

" To determine that the implementation-dependent behavior is allowed t
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
15 December 1986 through 20 December 1986 at Verdix Corporation in Aloha
OR.

1.*2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may p
make full nd free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2--

~~~~~~ % w* ~ . .~



INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

*.

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ASI/MIL-sT-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Ofice, 1 JAM 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 19841. '

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard. a

Host The computer on which the compiler resides. 

1-3
- ' - - --,,-,-, - ,, - -,- . . . -, % ,. , . .. ,, . ,. , " . , 4.'.



L..

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is 1
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result. ..1*

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a -.

particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

S

-V.?

1.5 ACYC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if

the test objective has been met. For example, a Class A test checks that p
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the •
program eXecutes to produce a PASSED message. .

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is se.f-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

L.

5. . *~5 -. -. '5 N' '. 5. '*'4 ~ ',.s . a5



INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler. %

Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.

A Class L test passes if it is rejected at link time-that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable. tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values-for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5



CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: VADS VAda-010-03405, Version 5.41

ACVC Version: 1. 8

Certificate Expiration Date: 6 March 1988

Host Computer:

Machine: MicroVAX II

Operating System: MicroVMS, Version 4.2

Memory Size: 13 megabytes S

Target Computer:

Machine: Fairchild 9450
mounted on a
MIL-STD-1750A Software Execution Unit
within a Tektronix V1750A
using the MicroVAX II for file I/O

Operating System: bare

Memory Size: 64K words

Comunications Network: RS-232

2-1



U-.

CONFIGURATION INFORMATION

2.2 IMPLE4ENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

0 Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64OO5E..G (3 tests), and D29002K.)

0 Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SST4.KMAIXNT. This
implementation does not reject such calculations and processes
then correctly. (See tests D4AOO2A, DA0023, DAAOOA, and
D4AOOB. )

0 Predefined types.

This implementation supports the additional predefined types
LONG INTEGER and LONG FLOAT in the package STANDARD. (See tests
B86001C and B86001D.) p.

0 Based literals.

An implementation is allowed to reject a based literal with a
value exceeding STSTEI.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises UK4ER.IC ERROR during execution. (See test
E24101A.)

a Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH tZat exceeds
STANDARD.I NTEGER' LAST and/or SyST 4.!aLXNT.

2-2 '



CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER 'LAST
raises NUMERIC-ERROR when the array objects are sliced. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER' LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation accepts the declaration.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible disc1rminant constraint.
This implementation accepts such subtype indications. (See test
E3810A.)

In assigning record types with disc1riminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

. Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3



CONFIGURATION INFORMATION

. Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the us. of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

" Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasks and
'STORAGE SIZE for collections. 'SMALL is supported only when the
value given in the representation specification is the same as the
value 'SMALL for the base type. Enumeration representation
clauses, including those that specify noncontiguous values, appear
to be supported. (See tests C55B16A, C87B62A, C87B62B, C87B62C,
and BC1002A.)

" Pragmas.

The prawma INLINE is supported for procedures and functions. (See
tests CA3004E and CA3004F.)

" Input/output.

The package SEQUENTIAL M0 can be instantiated with unconstrained
array types and record types with disori-inants. The package

*DIRECT IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. However, any
call to CREATE of such instances of DIRECT 10 with unconstrained
array types raises USE ERROR. (See tests AE2101C, AE2101H,
CE2201D, CE2201E, and CE2T01D.)

An existing text file can be opened in OUT FILE mode and can be
, created in both OUT FILE and N FILE modes. (See test EE3102C.)

More than one internal file can be associated with each external
file for text IO for reading only. (See tests CE3111A..E (5
tests).)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..F
(6 tests).)

2-14



p
CONFIGURATION INFORMATION

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107A..F (6
tests).)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

Generics.
i

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

I..:

52

.' .

~ -~ .2-



CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.*8 of the ACYC contains 2399 tests-* When validation testing of
the Verdix Ada Development System was performed, 19 tests had been
withdrawn.* The remaining 2380 tests were potentially applicable to this
validation. The AVW determined that 264I tests were inapplicable to this
implementation, and that the 2116 applicable tests were passed by the
implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUIQIARI OF TEST RESULTS Br CLASS

RESULT TEST CLASS TOTAL l

Passed 69 864I 1107 17 13 416 2116

Failed 0 0 0 0 0 0 0

Inapplicable 0 3 261 0 0 0 2641

Withdrawn 0 7 12 0 0 0 19 .

TOTAL 69 874 1380 17 13 146 2399

3-1

(11IS 11,15



TEST INFOPMATION

3.3 SUM4RY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

Passed 96 222 298 24 161 97 137 261 130 32 218 220 2116
Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 3 0 0 2 1 0 0 0 13 264

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the tim of
this validation:

C32114A C'41' 04A B74101B BC3204C
B33203C B45116A C87B50A
C34018A c48008A C92005A
C35904A B49006A C94OACA
B37401A B4A010C CA3005..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 264 tests were inapplicable for
the reasons indicated:

• C34001D, B52004E, B55B09D, and C55BOTB use SHORT-INTEGER which is
not supported by this compiler.

0 C34001F and C35702A use SHORT FLOAT which is not supported by this
compiler.

* B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

3-2



TEST INFOMATION

" C86001F redefines package YSTE4, but TEXT.IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

" C32107B..E (4 tests), CE211O, CE2111D, CE2111H, CE3111B..E (4
tests), and CE3114B are inapplioable because multiple internal
files cannot be associated with the same external file. The
proper exception is raised when multiple access is attempted.

" CE2401D uses an instantiation of package DIRECT-1O with
unconstrained array types. In this implementation, a call to
CREATE of such an instance of DIRECT.10 raises USE ERROR.

" The following 242 tests require a floating-point accuracy that
exceeds the maximum of 9 supported by the implementation:

C24113F..Y (20 tests) C35708F..Y (20 tests) C45421F..Y (20 tests)
C35705F..! (20 tests) C35802F..Y (20 tests) C4542F..Y (20 tests)
C35706F..T (20 tests) C452I1F..T (20 tests) C45521F..Z (21 tests)
C35707.Foo (20 tests) C45321..T (20 tests) C45621F..Z (21 tests)

£k

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recoveryq then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 18 Class B tests:

B24204A B33301A B67001A
B2420 4B B37201A B67001B
B24204C B38008A B67001C
B2AO03A B41202A B67001D
B2A003B B4401A B91003B
B2AOo3C B6400 1A B95001A

3-3



TEST INFORMATION S

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Frevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Verdix Ada Development System was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable teats, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Teat Method

Testing of the Verdix Ada Development System using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a MicroVAX II host operating under MicroVMS, Version 4.2, and
a Fairchild 9450 implementation of MIL-STD-1750A. The Fairchild 9450 ochip
was mounted on a MIL-STD-1750A Software Execution Unit within a Tektronix
V1750A Software Integration System. The host and target computers were
linked via RS-232.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the 1
magnetic-tape. Tests requiring splits during the prevalidation testing
were included tn their split form on the magnetic tape.

The contents of the magnetic tape were loaded onto a VAX-11/750 under UNIX
4.2 BSD. The file names were converted and the tests were distributed to a
directory structure expected by the command scripts. A File Transfer
Program (FTP) using an EXCELAM implementation of TCP/IP on VAX/VMS was used
to transfer the files to the MicroVAX II. After the test files were loaded
to disk, the full set of tests was compiled and linked as appropriate on
the MicroVAX II under MioroVMS 4.2, and all executable tests were run on
the Fairchild 9450. Object files were linked on the host computer.
Executable images were transferred to the target computer using a
comunications program to download the executable image to the Fairchild
9450 chip via a R3-232 serial link to the Tektronix V1750A Software
Integration System. Results were copied over ethernet to the VAX-11/750
and printed.

In this cross-target implementation, the functions of TEXT IO are
physically as well as logically divided; I/O-file system requests are
handled by the portion running on the host, and formatting handled by the
portion running on the target. For a user, the lower level of the
implementation is completely transparent.

3-41

N Nt

nN A



TEST INFORMATION

A protocol has been developed to allow the target processor to make
requests of the host file system, and to do all the I/O there. This
protocol is implemented using a daemon on the host that serves all requests
for file and I/O activity from the target.

The compiler was tested using comand scripts provided by Verdix
Corporation and reviewed by the validation team. The compiler option
/SUPPRESS was used on some tests. This option suppressed run-bime checks
from the object code in order to reduce the size of the executable image.

Test output, compilation listings, and job logs were captured on magnetic
tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Verdix Corporation in Aloha OR on 15
December 1986, and departed after testing was completed on 20 December
1986.

3-I

' 3-5



APPENDIX A

COMPLIANCE STATE4ENT

Verdix Corporation has submitted the following
compliance statement concerning the Verdix Ada
Development System.

I .

A-;

--

°S

.. F



COMPLIANCE STATEMENT

I

Compliance Statement ,.,

Configuration:

Compiler: VADS VAda-O0O-03405, Version 5.41

Test Suite: Ada®Compiler Validation Capability, Version 1.8

Host Computer:

Machine: MicroVAX II

Operating System: MicroVMS, Version 4.2

Target Computer:

Machine: Fairchild 9450 V

mounted on a
MIL-STD-1750A Software Execution Unit
within a Tektronix V1750A
using the MicroVAX II for file I/O

Operating System: bare

Verdix Corporation has made no deliberate extensions to the Ada language
standard.

Verdix Corporation agrees to the public disclosure of this report.

".N

Verdix Corporation agrees to comply with the Ada trademark policy, as
defined by the Ada Joint Progr-m Office.

I

~~~ ~~Date: ' Z-- /
Verdix Corporation /
Michael Seyfrit
Manager, Ada PIEM .

Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A-2

~ .9' p.9% .9 %%.V. a.-.~ ~ ~ ~ 9.9 9 . ~ ~ .w lip.

'4

I

APPENIDIX B., .%.
APPENDIX F OF THE Ada STANDARD

I%',

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the VADS VAda-010-03405, Version 5.41 are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONOLTV ER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -2#0.01111111111111111111111#E127 ..200.11111111111111111111111#3127; -

type LONG FLOAT is digits 9 range==2====011111111=111111111111111111111111111=1#= 2"
2#0.111111111111111111111111111111111111111#E127; ,.

type DURATION is delta 2#1.0#E-14 range -2#100000000000000000.0#

end STANDARD;

B-1-

'p..

.4,

1. Implenientation-Dependent Pragmas

1.1. SHAREBODY Pragma S

The SHAREBODY pragma takes fhe name of a generic instantiation or a generic unit as the
first argument and one of the identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a declarative item in a declarative pan or
package specification, or after a library unit in a compilation, but before any subsequent compi-
lation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that gen-
eric. When the first argument is the name of a generic instantation the pragma applies only to
de specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantations of the same generic. When the second S
argument is FALSE each instantiation will get a unique copy of the generated code. The
extent to which code is shared between instantiations depends on this pragma and the kind of
generic formal parameters declared for the generic unit.

1.2. EXTERNALNAME Pragma
The EXTERNAL NAME pragma takes the name of a a subprogram or variable defined in Ada
and allows the user to specify a different external name that may be used to reference the
entity from other languages. The pragma is allowed at the place of a declarative item in a
package speification and must apply to an object declared earlier in the same package .

specification.

1.3. !NTERFACE OBJECT Pragma

The INTERFACE OBJECT pragma takes the name of a a variable defined in another language
and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
variable name with an external reference to the second, link argument. The pragma is allowed
at dte place of a declarative item in a package specification and must apply to an object
declared earlier in die same package specification. The object must be declared as a scalar or
an access type. The object cannot be any of the following:

a loop variable, 4,

a constant,
an initialized variable,
an array, or
a record.

1.4. IMPLICITCODE Pragrn.

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed
within a machine code procedure. It specifies that implicit code generated by the compiler be

,e.'rl

v

B-2

' , '.' . ", . e' , " ",e. ', "-' %-.%'-' ", %,%.-.-..-.-,,...,..- %...-,-.-,- -. "e . - ""."." " " v -,- ,t

z';

allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be e
generated. The default is ON.

2 Implementation of Predefined Pragnus

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE
This pragma is implemented as descuibed in Appendix B of the Ada RM.

.

2.3. INLIE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports unchecked calls to externally defined subprograms. The Ada subpro-
grams can be either functions or procedures. The types of parameters and the result type for
functions must be scalar, access or the predefined type ADDRESS in SYSTEM. An optional
third argument overrides the default link name. All parameters must have mode IN. Record
and array objects can be passed by reference using the ADDRESS atribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

26. MEMORY SIZE

This pragma is recognized by the implementaton. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

28. PACK

This pragm will cause the, compiler to choose a non-aligned representation for composite
types. Components that are smaller than a STORAGE-UNIT are packed into a number of bits
da is a power of two.

,2.9. PAGE '

This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY V
Ths pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED

This pragma is recognized by the implementation but has no effect.

2.12. STORAGE-UNIT

B-3

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE-CHECK and
DIVISION CHECK cannot be supressed.

2.14. SYSTEM-NAME

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF
For a prefix that denotes an object, a program unit, a label, or an onty:

This attribute denotes the effective address of the first of the storage units allocated to P. For a
subprogram, package, task unit, or label, it refers to the addres of the machine code associated
with the corresponding body or statement. For an eny for which an address clause has been
given, it refers to the corresponding hardware intempL The awribute is of the type %
OPERAND defined in the package MACHINE-CODE. The attribute is only allowed within a
mnachie code procedure.

See section F.4.8 for mor information on the use of this atribute.
F

(For'a package, task unit. or enrny, the 'REF amibute is not supported.)

B-4,

K.

e'.

%.

%-'A

K.K

'Kd'

'A. 'A K ~ K~~-9 ~. W V~Cr t * '.' % ** PK

,A, - *.~ * I S ' 9~

4. Speoification of Package STSThI

package SYSTEM
is

type NAME is (m1750a);

SYSTrM NAME : constant NAME :- m1750a;
EXTEND EDMEMORY : BOOLEAN : FALSE;

STORAGE UNIT : copstant 3= 16;
MEMORY SIZE : constant := 2097152;

- System-Dependent Named Numbers

MIN INT : constant ; -2147483648;
MAX TNT : constant : 2147483647;
MAX DIGITS : constant := 9;
MAX MANTISSA : constant = 31;
FINE DELTA : constant :=,0*(-30);
TICK : constant := 0.01;

- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAX REC SIZE 3 INTEGER : 32767;

type ADDRESS is private;
type SHORT ADDRESS is private;
subtype SEGMENT is INTEGER range 0 .. INTEGER'LAST;

NOADDR : constant ADDRESS;
NO SHORT ADDR : constant SHORT ADDRESS;

function OFFSETOF(A: ADDRESS) return SHORT-ADDRESS;
function SEGMENT OF(A: ADDRESS) return SEGMENT;
function SEGMENT OF return SEGMENT;
function MAKEADDRESS(A: SHORT-ADDRESS; SEG: SEGMENT) return ADDRESS;

function PHYSICAL ADDRESS(I: LONG INTEGER) return ADDRESS;
function ADDR GT(A, B: ADDRESS) return BOOLEAN;
function ADDR LT(A, B: ADDRESS) return BOOLEAN;
function ADDR GE(A, B: ADDRESS) return BOOLEAN;
function ADDR LE(A, B: ADDRESS) return BOOLEAN;
function ADDR DIFF(A, B: ADDRESS) return INTEGER;
function INCR ADDR(A; ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

function PHYSICAL ADDRESS (I LONG-INTEGER) return SHORT-ADDRESS;

B-5
W' .

otin. ADR -%AA B ORTADRES retur n r BOOLEA

function ADDRGT(A, B: SHORT ADDRESS) return BOOLEAN;
function ADDRELT(A, B: SHORTADDRESS) return BOOLEAN;
function ADDRGE(A, B: SHORT ADDRESS) return BOOLEAN;
function ADDiELECA, B: SHORT ADDRESS) return BOOLEAN;
function ADDR.DIFF(A, B: SHORT ADDRESS) return INTEGER;
function INCR ADDR(A: SHORT ADDRESS, INCR: INTEGER) return SHORT ADDRESS;
function DECR-ADDR(A: SHORT-ADDRESS, DECR: INTEGER) return SHORT ADDRESS;

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDR LT;
function ">"(A B: ADDRESS) return BOOLEAN renames ADD GE;function "<-"(A, B: ADDRESS) return BOOLEAN renames ADDR LE;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR ADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR ADDR;

function "-"(A, B: ADDRESS; INCR: INTEGER) return INTEGER
renames ADDRDIFF;

function ">"(A, B: SHORT ADDRESS) return BOOLEAN renames ADDR GT;
function "<"(A, B: SHORT ADDRESS) return BOOLEAN renames ADDR LT;Iunction ">z"(A, B: SHORTADDRES) return BOOLEAN renames ADDR GE;
function "<z"(A, B: SHORT ADDRESS) return BOOLEAN renames ADDR LE;

function "+"(A: SHORT ADDRESS; INCR: INTEGER) return SHORT ADDRESS
renames INCR ADDR;

function "-"(A: SHORT-ADDRESS; DECR: INTEGER) return SHORT-ADDRESS
renames DECR ADDR;

function "-"(A, B: SHORT-ADDRESS; INCR: INTEGER) return INTEGER
renames ADDRDIFF;

pragma INLINE(OFFSET OF);
pragm INLINE(SEGMENT OF);
pragma INLINE(MAKE ADDRESS);
pragma INLIE(PHYSICAL ADDRESS) ;
prasm INLINE(ADDRGT)
pragma INLINE(ADDR LT);
pragma INLINE(ADDR GE);
pragma INLINE(ADDR LE);
pragma INLINE(ADDRDIFF);
pragma INLINE (1INCR ADDR);
pragma INLINE(DECRADDR);

private

type ADDRES is range 0..65535;
type SHORT ADDRESS is new ADDRESS;
for ADDRES3'siz use 16;
for SHORT ADDRESS'sze use 16;

* NO ADDR :oonstant ADDRESS :: 0;
NO SHORT ADDR c constant SHORT ADDRESS :=0;

end SYSTE4;

B-6

-V.r7w -%JWAA-IKY-

5. Restrictions On Representation Clauses

5.1. Pragma PACK
Array and record components that are smaller than a STORAGE UNIT are packed into a
number of bits that is a power of two. Objects and larger components are packed to the
nearest whole STORAGE UNIT.

52. Size Specification
The size specification T'SMALL is not supported except when the value given in the represen-
tation specification is the same as the value 'SMALL for the base type.

S3. Record Representation Clauses

Components not aligned on even STORAGEUNIT boundaries may not span more than four
STORAGEUNITs

5.4. Address Clauses
Address clauses are supported for variables and constants.

5.5. interrupts

lnterup ties amreo supported.

5.6 Representatlon Attributes
The ADDRESS attribut is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.7. Mahini Code Insertions
Machim code ineutiom am supported.

p.

The genal definition of due packap MACHINE CODE provides an assembly language inter-
face for the target machine. It provides th necusmay record tyls) needed in the code stae-
ment an enumeraton type of all dte opcode nneumoics, a set of register definitions, and a set
of addressing mode Ahnctions.

The general synax of a machine code smment is as follows:

=. CODEj,'(opcodA, operand , operapd);

whoe n indicates the mimber of operands in the aggregate.

A special cs aises for a variable number of operands. The operands are listed within a
subaggega t . The format is a follows :

CODE N'(opcode, (operand { operand}));

B- 7

- %'% %9 * %' I, . 6- * 5 r. 'f(.S

- ' . - --,.."-

For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).

CODE_0'(op -> opcode);

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINE-CODE must be static expres-
sions, sting lierals, or the functions defined in MACHINE CODE. The 'REF attribute may
not be used as an argument in any of these ftnctions.

Inline expansion of machine code procedures is supported.

Va
B-8('

6. Conventions for Implemnentation-generated Names

Thee are no implementaton-generaied names.

7. Interpretation of Expressions in Address Clauses
Address clauses are suppoted for variables and constants.

L.- Restrictions on Unchecked Conversions

None. V,

9. Restrictions on Unchecked Deafocatlons

None.

10. Imnplementation Characteristics of 110 Packages
Instantiations of DIRECT 10 use the value MAX REC SIZE as the record size (expressed in
STORAGE-UNITS) when dhe size of ELEMENT TYPE exceeds that value. For example for K

unconstrained arrays such as string where ELEMENT TYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX RECORD SIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECT -10 to provide an upper limit on the recrd
size. In any case the maximum size supported is 1024 x 1024 x STORAGE-UNIT bits.
DIRECT 10 will raise USE-ERROR if MAX REC SE exceeds this absolute liMit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIE as the record size
(expressed in STORAGE UNITS) when the size of ELEMENrTTPE exceeds ihat value, ForV
example for unconstrained arrays such a string where ELEMENT TYPE'SEZE is very large,
MAX REC SIZE is used instead. MAX RECORD SIZE is defined in SYSTEM and can be
changed by a program before instantiatings INTEGER 10 to provide an upper limit on tie
record sizeL SEQUENTIAL 10 imposes no limit on MACX EC SZE.

1t. Implementation Limits "

The following limits are actually enforced by the implementation. It is nt intended to imply
that resources up to or even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500 chaaters including die end of
* lina character.

* ~ ~ 11.2 Record and Array Sines

The maximum. size of a statically sized array type is 32768 x STORAGEJJNITS. The max-
imum size of a statically sized record type; is 32768 x STORAGE rUNITS. A record type or
array type declaration that exceeds dies liaits will generate a warning message.

11.3. Default Stack Size hr Tasks
In the absence of an explicit STORAGE SIZE length specification every cask except t main
program is allocated a fixed size stack of 1000 STORAGEJJNITS. This is the value returned
by TrSTORAGE-SIZE for a cask type T.

B-9 a

L a- -**- "' J

11.4. Default Collection Size

In the absence of an explicit STORAGESIZE length attribute the default collection size for an
access type is 000 STORAGEUI.ET. 'This is the value returned by T'STORAGESIZE for
an access type T.

11.S. Limit on Declared Objects

There is an absolute limit of 2 ** 16 x STORAGE UNITS for objects declared statically

within a compilation unit. If this value is exceeded the compiler will terminate the compilation .

of the unit with a FATAL error message..-

ILI

'pi
;8:.

11.4 Defult olletionSiz

Inth bsne fanexlci-TOAES O lep tiueth eal olcto iefra

.%.P
-A

-0

b

APPENDIX C
.5.

TEST PARAMETERS r,

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file

name* Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value
%

$BIG ID1 (1..498 a> 'A', 499 x> ,1') t

Identifier the size of the
J,.

maximum input line length withvarying last character.

$BIG ID2 (1..1498 a> 'A', 499 a> '2') 0
Identifier the size of the
maximum input ine length with
varying last character.

$BIG ID3 (1..249 I 251..499-> 'A',
Identifier the size of the 250 > '3')
maximum input line length with
varying middle character.

$1 I IN (l..249 1 251..499 a> 'A',
Identifier the size of the 250 > '14')
maximum nput line length with
varying middle character.

$B1G INT LIT (1..496 > '0', 497..199 > "298") .-'*'

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I..

% ------

I

TEST PARAMETERS

Name and Meanin Value

$BIG REAL LIT (l..493 => '0', 494..499 x>
A real literal that can be "69.OE1")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANXS (1.A49 => '
A sequence of blanks twenty "
characters fewer than the size
of the maximum line length.

$COUNT LAST 32767
A universal Integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "I*%?@[]'"
the ASCII characters with
printable. graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 32767
A universal integer literal
whose value is TEXT IO.FIELD'LAST.

$FILE NAME WITH BAD CHARS "/illegal/file name/2 1]$%2102C.DAT"
An illegal external file name
that either contains invalid %
characters, or is too long if no
invalid characters exist.

$FILE NAME WITHWILDCARDCHAR P/illegal/file name/CE2102C*.DAT"
An external file nam that
either contains a wild card
character, or is too long if no
wild card character exists. S

$GREATER THAN DURATION 100 000.0
A universal real value that lies
between DURATION' BASK' LAST and
DURATION' LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASS LAST 10000000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

• i ""5

TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNAL FILE NAME1 "/no/such/directory/" &
An illegal external file name. "ILLEGALEXTERNAL.FILE NAMEI"

$ILLEGAL EXTERNAL FILE NAME2 "/no/such/directory/" &
An illegal external file name "ILLEGAL EXTERNALFILE..NAME2"
that is different from
$ILLEG AL EXTERNAL FILE NAKE1 .

$INTEGER FIRST -32768
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 32767 A

The universal integer literal
expression whose value is
INTEGER ' LAST.

$12E 1_AN DURATION -10 0ooo.o
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASE FIRST -10 000 000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

#WAZ DIGITS 9 '-.

The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

tA1X INLEN 499
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$KAXINT 21 4783647
The universal integer literal
whose value is SYSTE.MAXINT.

C-3. p.,

}p

!.W:

TEST PARAMETERS

Name and Meaning Value

$NAME NO SUCH TYPEA name of a predefined numeric

type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,LONG FLOAT, or LONG INTEGER

if one exists, otherwi-se any
undefined name.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTE.MAXINT.

$NON ASCII CHAR TYPE (NON-NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C'

-S-

5°°.

.5
5,

C-Il

-.- - "5 " - "

'S.%

APPEF.ND IX D ",

- .i

WITHDRAWN TESTS-:"

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. The following 19 tests had been withdrawn at the time of"
validation testing for the reasons indicated. A reference of the form
"kI-ddddd" is to an Ada Commentary. d

• C32114A" An unterminated string literal occurs at line 62. ',

• B33203C: The reserved word mI1ff is misspelled at line 45.

"C34018A: The call of function G at line 114 is ambiguous in the .-
presence of implicit conversions. '

"C35904A: The elaboration of subtype declarations SFX3 and SFX4'-,
may raise NUMERIC.ERROR instead of CONSTRAINT-ERROR as expected in""
the test. .'.,

D 37401k: The object declarations at lines 126 th~rough 135 follow ;.
subprogram bodies declared in the same declarative part. .-

"C41404A" The values of 'LAST and 'LENGTH are incorrect in the if .?
statements from 1IL). 74 to the end of the test•."

"B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type-PRIBOOL..TYPE instead of kRRPRIBOOL TYPE-at line'

• C48008A: The assumption that evaluation of default initial values

occurs when an exception 13 raised by an allocator 13 incorrect" ,, ,-
according to AI-00397.

D-1..

Ju,

"As

WITHDRAWN TESTS

. B49006A: Object declarations at lines I and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B14AO1OC: The object declaration in line 18 follows a subprogram

body of the same declarative part.

B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

C87B50A: The call of "1=n at line 31 requires a use clause for
package A.

C92005A: The "/a" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

C940ACA: The assumption that allocated task TV will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

BC320C: The body of BC3204C0 is missing.

D-

U.,.'U . °p" ", - " , -% " % " * " " """"% "*"% .* "%

I-
I,

'ii

-~

S

0
1'~

* I
I

I
I

* --I,.
* w.

S

P

*, *-,~

1~*
I- -

0

'Iv

*1~ I II'
'5%'I'

