
7 6f"335 AN (TEK WM) coWZiLU LMNTN SUEY hMUNT: i
IUTEUETRICS INC INT.. CU) ZNFOUTION SYSTENSU

UNCLSSIIEDTEONOLOSY CENTER N-P RF@ ON AN VALI. 36MR9
wm F7 F 12/5 U

~*Q . 8 *2.5
5: 32

L136

111111h Al14

- 25 1111 141.6

%I u0-b,
J1II zbF F1

111 Z,
_IIL==%

AD-A 190 335 AG,2. GOVT ACCESSION NO. 3. RECIPIENT'S .ATALOG NUMBER

4. TITLE (and Subtitie) 5, TYPE OF PEPOPT & PE;,OD COVEQE -

Ada Compiler Validation Summary Report: 30 Apr 19e7 to 30 Apr 1988
Intermetrics, Inc 1750A Ada Real-Time Comp.201.16cIBM ______________

3083 host,Hughes JOVIAL/1750A Debugger,Rel.004D Targ 6. PERFORVING ORG. REPORT NUMBER

7.~~Ptero AFBH 8. CON~TRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADORE-S 10. PROGRAM ELEMENT. PROJECT. TASK

Ada Validation Facility" AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 30 Apr 1987
United StatesCDepartment of Defense 13. NUMBER OF PAGES
Washington, DC 20301-3081 37

14. MONITORING AGENCY NAME & ADD RES S(f different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. RE5ASSFICATION/DOWNGRADING

DU-.

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

4

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED D I

18. SUPPLEMENTARY NOTESP

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABS TRAC T (Continue on reverse side if necessary and identi f by block number)%

See Attached

%

DD tum 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SEC,.RITV CLASSIFICATION OF 7H ,;AGE When Data Enterea).

-' -. I~~.f' - JiU~ 4 . 4 O, V low .'Q-~f.~. U*U U~ * ~~U

This Validation Summary Report (VSR) summarizes %the,results and conclusions
of validation testing performed on the Intermetrics 1750A Ad4 Real-Time
Compiler, Version 201.16c, using Version 1.8 of the Ada'O' Compiler
Validation Capability (ACVC). The Intermetrios 1750A Ada Real-Time
Compiler is hosted on an IBM 3083 operating under VM/HPO (using CMS),Release 4.2. Programs processed by this compiler may be executed on a

Hughes JOVIAL/1750A Debugger, Release 004D having no operating system. The '-

Hughes JOVIAL/1750A Debugger simulates a MIL-STD-1750A Instruction Set
Architecture with console 1/0 and no other optional features. .[

On-site testing was performed -27 April 87 through 30 April 1987 at
S Cambridge, MA, under the direction of the Ada Validation Facility (AVF),

according to Ada Validation Organization (AVO) policies and procedures.

The AVF identified 1938 of the 2399 tests in ACVC Version 1.8 to be

processed during on-site testing of the compiler. \The 19 tests withdrawn
at the time of validation testing were not processed; the 278 executable

tests that make use of floating-point precision exceeding that supported by .

the implementation were not processed; and the 164 executable tests that

require the creation of external files were not processed. ,After the 1938
tests were processed, resu2ts for Class A, C, D, and E tests were examined
for correct execution. Compilation listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors. Compilation ..

and link results of Class L tests were analyzed for correct detection of..
errors. There were 29 of the processed tests determined to be ...

inapplicable. The remaining 1909 tests were passed. -.- 2

The results of validation are summarized in the following table: "}

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8__ 10 11 12 14

Passed 93 204 280 235 159 97 134 262 128 32 218 671-1909

Failed 0 C 0 0 0 0 0 0 0 0 0 0 0 .

Inapplicable 23 121 140 12 2 0 5 0 2 0 0 166 471 i

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada. '<

"Ada is a registered trademark of the United States Government

(Ada Joint Program Office). eN

AVF Control Number: AVF-VSR-71.0487

87-01-15-INT

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Intermetrics, Inc.

Intermetrics 1750A Ada Real-Time Compiler, Version 201.16c
IBM 3083 host,

Hughes JOVIAL/1750A Debugger, Release 0014D Target

..,

Completion of On-Site Testing: ,en - -

30 April 1987

NTiS CRA&)

,, J1A:! 3.,

Prepared By:

Ada Validation Facility By..
ASD/SCOL

Wright-Patterson AFB OH 45433-6503 F

5!Jill:

Prepared For: I-It
Ada Joint Program Office

.* United States Department of Defense
Washington, D.C.

.,%

I Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

N .w

U,,.'. , '.. ". .,. ".V . , , . / ", " '."

..3Lr vr ww w r 'r-v i \. w rrrzr- ..'Y*.'. .,.wv ".r ; ' rj'. - ' - r r. r - . r, r nrnr tn NrM n r

b

N

'p

5,/t, .", ..",,,",,,,,T,,'-T.. .,, ', ..' " ",,"'- ,, ''' .", , r: .'- .-'.,%,,, , ,, .,",,, ., " ".,,,' ,,,,"-. ,,"-. -,'.-"-." -" .'--'.]-" ,."-'],. -.'.'..-- ". ",',,,,"-.".."-,.--.'.

Ada® Compiler Validation Summary Report:

Compiler Name: Intermetrics 1750A Ada Real-Time Compiler, Verzion 201.16c

Host: Target:
IBM 3083 under Hughes JOVIAL/1750A Debugger,
VM/HPO (using CMS), Release 4.2 Release 004D

Testing Completed 30 April 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

;d aValidat on Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense

Washington DC

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

*/ /.,"

,. ' 2

0r 0,

EXECUTIVE SUMMARY

Tnis Validation Summary Report (VSR) summarizes the results and conclusions
of valization testing performed on tne Intermetrics 1750A Ada Real-Time

Compiler, Version 201.16c, using Version 1.8 of the Ada ® Compiler

Validation Capability (ACVC). The intermetrics 1750A Ada Real-Time

Compiler is hosted on an IBM 3083 operating under VM/HPO (using CMS),

Release 4.2. Programs processed by this compiler may be executed on a

Hughes JOVIAL/1750A Debugger, Release 004D having no operating system. The

Hughes JOVIAL/1750A Debugger simulates a MIL-STD-1750A Instruction Set

Architecture with console I/O and no other optional features.

On-site testing was performed 27 April 87 through 30 April 1987 at

Cambridge, MA, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.

The AVF identified 1938 of the 2399 tests in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn

at the time of validation testing were not processed; the 278 executable

tests that make use of floating-point precision exceeding that supported by

the implementation were not processed; and the 164 executable tests that

require the creation of external files were not processed. After the 1938

tests were processed, results for Class A, C, D, and E tests were examined
for correct execution. Compilation listings for Class B tests were

analyzed for correct diagnosis of syntax and semantic errors. Compilation
and link results of Class L tests were analyzed for correct detection of

errors. There were 29 of the processed tests determined to be

inapplicable. The remaining 1909 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

2 4 5 6 7 8 10 11 12 14

Passed 93 204 280 235 159 97 134 262 128 32 218 67 1909

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 12 2 0 5 0 2 0 0 166 471
P.

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

I

The AVF concludes that these results demonstrate acceptable conformity to 5-

ANSI/MIL-STD-1815A Ada. .-

Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

.J;

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION3-4
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TESr PARA4ETERS

APPENDIX D WITHDRAWN TESTS

V.% %. % ° ''._ - %m.%..% %.% .% ' .'.."..', . % ' %•- .. % ' ". . . % % %. ".. .% .

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler 0

Validation Capability (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.

The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of intsger types.
Other differences between compilers result from characteristics of

particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler

are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validatizn process includes submitting a
suite of standardized tests, the ACVC, as ini..ts to an Ada compiler and

evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly 0

implements legal language constructs and that it identifies and rejects

illegal language constructs. The testing also identifies behavior that is

implementation dependent but permitted by the Ada Standard. Six classes of I
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

%-

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any unsupported language constructs
required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from

27 April 87 through 30 April 1987 at Cambridge, MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,

this is provided in accordance with the "Freedom of Information Act" (5

U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizaticns represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities

to the Ada Stancard other than those presented. Copies of this report are

available to the public from: 5

Ada Information Clearinghouse S.

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2 0

%

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

p

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, I
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,]

Inc., DEC 1984.

1.4 DEFINITION OF TERMS I

ACVC The Ada Compiler Validation Capability. A set of programs

that evaluates the conformity of a compiler to the Ada

language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MTL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,

the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for

compiler validations.

Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including

cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

" '.. ~ o -.... . .
5.%5* % 5.-- ... 5.5 5.~5. ~%~.5..5.~ %%% %5%.% % 5

INTRODUCTION

inapplicable A test that uses features of the language that a compiler is

test not required to support or may legitimately support in a way

other than -he one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the

context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity

test to the Ada language specification. A test may be incorrect
because it has an invalid test objective, fails to meet its

test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs strzctured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during

execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in

the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is

executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-'4

-. (-~ '' ~ ~ 55/~ ~ * . e e . **/ -%SF

permitted in a compilation or the number of units in a library--a compiler
may refuse Lo comdile a Class D test and still be a conforming compiler.

Therefore, if a Class D test fails to compile because the capacity of the

compiler is exceeded, the test is classified as inapplicable. If a Class D

test compiles successfully, it is self-checking and produces a PASSED or

FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,

or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some

features addressed by Class E tests during compilation. Therefore, a Class

E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving

multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.

A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any

declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT

provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that

would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for

chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined

to verify that the units are operating correctly. If these units are not

operating correctly, then the validatio is not attempted.

The text of the tests in the ACVC follow conventions that are intended to

ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain

lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to

the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the

ACVC and, therefore, is not used in testing a compiler. The tests

withdrawn at the time of validation are given in Appendix D.

1-5

S

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED D

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Intermetrics 1750A Ada Real-Time Compiler, Version 201.16c

ACVC Version: 1.8

Certificate Expiration Date: 28 May 1988 V

Kost Computer: I
% •

..

Machine: IBM 3083

Operating System: VM/HPO (using CMS), Release 4.2

Memory Size: 24 megabytes I

Target Computer: a

Machine: Hughes JOVIAL/1750A Debugger,
Release 004D

Operating System: None

Memory Size: 65536 words

2..p:..

2-1

-- ,i

2ONF:GURATION :XFO3MAT:ON

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to dete-mine the bt;.z,ior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

• Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels and recursive procedures separately compiled
as subunits nested to 6 levels. The compiler could not process
block statements nested to 65 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
(See tests D55A03A..H (8 tests), D56001B, D64005E..G (3 tests),
and D29002K.)

Universal integer calculations.

t-n implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
D4AOO4B.)

Predefined types.

This implementation does not support additional predefined types
in the package STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may raise
NJMERIC ERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

-1% .A~ 0 le , r WP % % % % *

CONFIGURATION INFORMAT::N

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAS:

raises NUMERICERROR when the array type is declared. (See test

C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype is
declared. (See test C52104Y.)

A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may

accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when

the array type is declared. (See test E52103Y.)

In assigning one-dimensional and two-dimensional array types, the

expression does not appear to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test

C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.

This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does V
not appear to be evaluated in its entirety before CONSTRAINT ERROR

is raised when checking whether the expression's subtype is S

compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices D
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a

bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2.
2-"3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless

function and an enumeration literal having the same profile in the

same immediate scope, or it may reject the function declaration.

If it accepts the function declaration, the use of the enumeration

literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

• Representation clauses.

The Ada Standard does not require an implementation to support

representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the

operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.

This implementation rejects 'SIZE and 'STORAGESIZE for tasks,
'STORAGE SIZE for collections, 'SMALL clauses, and enumeration
representation clauses. (See tests C55B16A, C87B62A, C87B62B,

C87B62C, and BC1002A.)

• Pragmas.

The pragma INLINE is supported for functions and procedures. (See

tests CA3004E and CA3O04F.)

• Input/output.

This implementation supports only the package TEXTIO for file *. '

operations on STANDARDINPUT and STANDARDOUTPUT. 0

The package SEQUENTIALIO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECT 10 cannot be instantiated

with unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E, 0

and CE2401D.)

• Generics.

Body and subunits of a generic unit must be in the same
compilation as the specification if instantiations precede them.
(See tests CA2009C and CA2009F.) .

2-4

I

V

4%.b

N.

CHAPTER 3

TEST INFORMATION d.%

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

Intermetrics 1750A Ada Real-Time Compiler was performed, 19 tests had been
withdrawn. The remaining 2380 tests were potentially applicable to this

validation. The AVF determined that 471 tests were inapplicable to this

implementation, and that the 1909 applicable tests were passed by the
implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

'p

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
__ _ _ A B C D E L

Passed 66 862 913 10 12 46 1909

Failed 0 0 0 0 0 0 0

Inapplicable 3 5 455 7 1 0 471

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1 p

S,o

TEST INFORMATIDN

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14 -

Passed 93 204 280 235 159 97 134 262 128 32 218 67 1909

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 12 2 0 5 0 2 0 0 166 471

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS
I

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A

C35904A B49006A C940ACA
B37401A B4A010C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features

that a compiler is not required oy the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 471 tests were inapplicable for

the reasons indicated:

C34001D, B52004E, B55BO9D, and C55B07B use SHORTINTEGER which is
not supported by this compiler.

C34001E, B52004D, B55BO9C, and C55BO7A use LONGINTEGER which is
not supported by this compiler.

. C34001F and C35702A use SHORTFLOAT which is not supported by this .
compiler.

3-2

TEST R M......

C34001G and C35702B use LONGFLOAT which is not supported by this
compiler.

C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this

compiler.

D55AO3E..H (4 tests) contain loops nested to 31 or more levels
which exceed the supported maximum of 24 nested loops.

. D56001B contains blocks nested to 65 levels which exceed the

compiler's capacity.

. D64005F and D64005G make use of nested procedures as subunits to a

level of 10. These tests compile and link correctly, but result
in STORAGEERROR being raised during execution.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such

type for this implementation.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

C87B62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clauses are rejected during
compilation.

" CA2009C and CA2009F compile the body and subunits of a generic
unit in separate compilation files. Separate compilation of
generic specifications and bodies is not supported by this

compiler unless instantiations follow compilation of the
corresponding body.

AE2101C uses an instantiation of package SEQUENTIAL_10 with
unconstrained array types which is not supported by this compiler.

" AE2101H uses an instantiation of package DIRECT 10 with
unconstrained array types which is not supported by this compiler.

The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

C24113C..Y (23 tests) C35708C..Y (23 tests) C45421C..Y (23 tests)
C35705C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests)

* C35706C..Y (23 tests) C45241C..Y (23 tests) C45321C..Z (24 tests)
C35707C..Y (23 tests) C45321C..Y (23 tests) C45621C..Z (24 tests)

3-3% 'r V

TEST INFORMATION

The following 164 tests require the use of external files. This .
implementation supports only the files STAVN..RD 1NP.: and '
STANDARDOUTPUT:

CE2102C CE3104A CE3411A V
CE2102G CE3107A CE3412A
CE2104A..D (4 tests) CE3108A..B (2 tests) CE3413A

CE2105A CE3109A CE3413C

CE2106A CE3110A CE3602A..D (4 tests)

CE2107A..F (6 tests) CE3111A..E (5 tests) CE3603A
CE2108A..D (4 tests) CE3112A. .B (2 tests) CE3604A %

CE2109A CE3114A..B (2 tests) CE3605A..E (5 tests)
CE2110A..C (3 tests) CE3115A CE3606A..B (2 tests)
CE2111A..E (5 tests) CE3203A CE3704A..B (2 tests) -v."

CE2111G..H (2 tests) CE3208A CE3704D..F (3 tests)

CE2201A..F (6 tests) CE3301A..C (3 tests) CE3704M..O (3 tests)
CE2204A..B (2 tests) CE3302A CE3706D

CE2210A CE3305A CE3706F
CE2401A..F (6 tests) CE3402A..D (4 tests) CE3804A..E (5 tests)
CE2404A CE3403A..C (3 tests) CE3804G

CE2405B CE3403E..F (2 tests) CE3804I •

CE2406A CE3404A..C (3 tests) CE3804K
CE2407A CE3405A..D (4 tests) CE3804M

CE2408A CE3406A..D (4 tests) CE3805A..B (2 tests)
CE2409A CE3407A..C (3 tests) CE3806A
CE2410A CE3408A..C (3 tests) CE3806D. .E (2 tests)
AE3101A CE3409A CE3905A..C (3 tests)
CE3102B CE3409C..F (4 tests) CE3905L
EE3102C CE3410A CE3906A..C (3 tests)
CE3103A CE3410C. .F (4 tests) CE3906E..F (2 tests) ,'

3.6 SLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of

sailer tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split. .

Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for two Class B tests, BA1101C and BC3204D.

3.7 ADDITIONAL TESTING INFORMATION

.-

3,,. 4

3.7.1 Prevaliuation

Prior to validation, a set of test results for ACVC Version 1.8 produced Dy k

the intermetrizs 175-A Ada Real-Time Compiler was subm .ted to .ne AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and that the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Intermetrics 1750A Ada Real-Time Compiler using ACVC Version '
1.8 was conducted on-site by a validation team from the AVF. The
configuration consisted of an IBM 3083 host operating under VM/HPO (using
CMS), Release 4.2, and a Hughes JOVIAL/1750A Debugger, Release 004D target
having no operating system. The Hughes JOVIAL/1750A Debugger simulates a
MIL-STD-1750A Instruction Set Architecture with console I/O and no other
optional features.

A magnetic tape containing all tests except for 19 withdrawn tests, 278
tests requiring unsupported floating-point precisions, and 164 tests
requiring the creation or opening of external files was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the IBM 3083, and all executable tests were run
on the Hughes JOVIAL/1750A Debugger. The Hughes JOVIAL/1750A Debugger
produced output as one hexadecimal character per line. This output was
captured and run through a program to produce human-readable output, which e
was then transferred to a UTS machine and printed.

The compiler was tested using command scripts provided by Intermetrics,
Inc. and reviewed by the validation team.

Tests were compiled, linked, and executed using a single computer. Test
output, compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

The validation team arrived at Cambridge, MA on 27 April 87, and departed
after testing was completed on 30 April 1987.

3-5

%

APPENDIX A

DECLARATION OF CONFORMANCE

Intermetrics, Inc. has submitted the following0.declaration of conformance concerning the Intermetrics

1750A Ada Real-Time Compiler.

%
.

A-1 Or

%F _W .A A~ -jr - .P _J . -. rat-A % ~ -.R y r-W.1

DECLARATION OF CONFORMANCE

Jam~_-7_pj e.-entor: 7rtermetrics, --r.c.

AaVa' atfon Facifity: ASD/SCOL, 'vrIgnt-Patteron AFB, 0H
Aza E;iater VaIcat.on Capacility (ACV:) Version: i.

Base Configuration

Base Compiler Name: intermetrics 1750A Ada Real-Time Compiler Version: 201.1 6c

Host Architecture :SA: IBM 3083 OS&VER #: VM/IHPO (using CMS), Release 4.2

Target Arcntecture 1SA: Hughes JOVIAL/1750A Debugger OS&VER #: bare
Release 004D D i

Implemento.' s Declaration

1, the undersigned, representing Intermetrics, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/M-L-STD-1815A in the
compiler listed in this declaration. I declare that intermetrics, Inc. is the
owner of record of the Ada language compiler listed above and, as such, is
responsible for maintairing said compiler in conformance to ANSI/MIL-STD-101SA.
All certificates and registrations for Ada language compiler listed in this
declaration shall be made only in the owner's corporate name.

___________________~ Oate __________
I ntermetrics, Inc.
Dennis D. Struble, Ada Compilers Manager

Owner' s Declaration

1, the undersijaed, representing intermetrics, Inc., take full responsibility
for implementation and maintenance of the Ada compiler listed above, and agree
to the public disclosure of the final Validation Summary Report. 1 further
agree to continue to comply with the Ada trademark policy, as defined by the Ada
Joint Program Office. I declare that all of the Ada language compilers listed,
and their host/target performance are in compliance with the Ada Language
Standard ANSI/M1L-STD-1815A. I have reviewed the Validation Summary Report for
the compiler and concur with the contents.

4..: ____________________Date: . '/// . .1
:ntermetrics, inc.
Dennis D. Struble, Ada Compilers Manager

DAda is a registered trademark of the Urited States Government '

(Ada Joint Program Office).

%

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Intermetrics 1750A Ada Real-Time Compiler, Version 201.16c, are

described in the following sections which discuss topics in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-1815A).
implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

.e..

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -2#1.0#e127 .
2#0. 11111111111111111111111#e127;

type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;
-- DURATION'SMALL 2.0 ** (-14)

end STANDARD;

B-1 q

% f%

B- I AL

Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRM for this implementation. The
following quotations are from the standard LRM Appendix F:

The Ada language allows for certain machine-dependencies in a controlled manner. No
machine-dependent syntax or semantic extensions or restrictions are allowed. The only
allowed implementation-dependencies correspond to implementation-dependent pragmas
and attributes, certain machine-dependent conventions as mentioned in Chapter 1S, and
certain allowed restrictions on representation clauses.

The reference manual of each Ada implementation must include an appendix (called
Appendix F) that describes all implementation-dependent characteristics. The Appendix
F for a given implementation must list in particular:

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and the type of every implementation-dependent attribute.

9. The specification of the package SYSTEM (see 19.7).

4. The list of all restrictions on representation clauses (see 13.1). ",

5. The conventions used for any implementation-generated name denoting
implementation-dependent components (see 13.4).

6. The interpretation of expressions that appear in address clauses, including those for
interrupts (see 19.5). "%'4"

7. Any restriction on unchecked conversions (see 19.10.2). "".

8. Any implementation-dependent characteristics of the input-output packages (see 4'."

14).

F.1 Pragmas

This section describes the form, allowed places, and effect of every implementation- •
dependent pragma.

F.1.1 Pragmas LIST, OPTIMIZE, PAGE, PACK, SHARED, SUPPRESS

Pragmas LIST, OPTIMIZE, PAGE, PACK, SHARED, and SUPPRESS are not
implemented. .

F.1.2 Pragmas PRIORITY and ELABORATE

The pragmas PRIORITY and ELABORATE are supported exactly in the form, in
the allowed places, and with the effect as described in the LRM.

B - -

Z -.7 7 .77 7 V-7- .-. .. .

F.1.8 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommaList

Allowed Places: As specified in LRM B(4) : INLINE

Effect: If the subprogram body is available, and the subprogram is not recursive, the
code is expanded in-line at every call site and is subject to all optimizations.

The stack-frame needed for the elaboration of the inline subprogram will be
allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for non-inline
subprograms. Register-saving and the like will be suppressed. Parameters may
be stored in the local stack-frame or held in registers, as global code generation
allows.

Exception-handlers for the INLINE subprogram will be handled as for block-
statements.

Use: This pragma is used either when it is believed that the time required for a call 4,

to the specified routine will in general be excessive (this for frequently called -;
subprograms) or when the average expected size of expanded code is thought to
be comparable to that of a call.

F.1.4 Pragma INTERFACE

Form: Pragma INTERFACE (language-name, subprogram.name)
wbere the language__name must be an enumeration value of the type
SYSTEM.SupportedJLanguage4Name (see Package SYSTEM below).

Allowed Place: As specified in LRM B(5) : INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program library
and will be callable with a specified calling interface. Neither an Ada body nor
an Ada body.5tub may be provided for a subprogram for which INTERFACE
has been specified.

Use: Use with a subprogram being provided via another programming language and
for which no body will be given in any Ada program. See also the
LINK _NA.ME pragma.

A unit containing a pragma INTERFACE must also "with" package SYSTEM.

F.1.5 Pragma LINK-NAME

Form: Pragma LINKNAME (subprogram-name, link-name) p.,

B-3

1 , : . :F - / ' .:: 4 ¢ , ' ' ' .
. :. . , ,-; , , ,- s -

II

Allowed Places: As specified in LRM B(5) for pragma INTERFACE. p
Effect: Associates with subprogram subprogram_.name the name linkname as its entry

point name.
't--

Use: To allow Ada programs, with help from INTERFACE pragma, to reference ,
non-Ada subprograms. Also allows non-Ada programs to call specified Ada ,N
subprograms.

F.1.6 Pragma CONTROLLED

Form: Pragma CONTROLLED (AccessTypeName)

Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Means that heap objects are not automatically reclaimed but are explicitly
reclaimable by use of uncheckeddeallocation.

F.1.7 Pragmas SYSTEM-NAME, STORAGEUNIT, MEMOR)YSIZE

These pragmas are not supported and are ignored.

F.2 Implementation-dependent Attributes

This section describes the name and the type of every implementation-dependent
attribute.

There are no implementation defined attributes. These are the values for certain
languagt.-defined, implementation-dependent attributes:

Type INTEGER.
INTEGER'SIZE = 18 -- bits.

INTEGER'FIRST =- (2"*15)

rNTEGER'LAST - (2"31-1)

Type FLOAT.
FLOAT'SIZE = 32 -- bits.

FLOAT'DIGITS =
FLOAT'MANTISSA = 21
FLOAT'EMAX = 84
FLOAT'EPSILON = 2.0*(.20) ..]

"".B-4

FLOAT'SMALL = 2.0"(-85)
FLOAT'LARGE =

FLOAT'MACHLNEROUNDS = false

FLOAT'MXCHINEY.ADIX = 2

FLOAT'MAChI1NEMA.NTISSA = 24

FLOAT'MACHINEEMAX = 127

FLOAT'MACHINEEMIN = -128

FLOAT'MACHINE-OVERFLOWS = true
FLOAT'SAFEEMAX = 127
FLOAT'SAFESMALL = 2#0.10000000000000000000000#F,- 127

FLOAT'SAFE__LARGE = 2#0.11111111111111111111110#E127

Type DURATION.

DURATION'DELTA = 2.0"*(-14) - seconds
DURATION'FIRST =- 86,400

DURATION'LAST = 86,400

DURATION'SMALL = 2.0"*(-14)

Type PRIORITY.

PRIORITY'FIRST = -127

PRIORITY'LAST = 127

F.3 PACKAGE SYSTEM

package SYSTEM is

type ADDRESS is private; - " = " ' / - " defined implicitly;
type NAME is (UTS, MVS, CMS, PrimeSO, Sperry1100, MIL STD_1750A);

SYSTEMJNAME: constant NAME := MILSTD_175OA;

STORAGEUNIT: constant := 16;
MEMORY-SIZE : constant:= 2**16;

- In storage units

-- System-Dependent Named Numbers:

MINJNT: constant:= INTEGER'POS(INTEGER'FIRST);
MAXJNT: constant := INTEGER'POS(INTEGER'LAST);
MAXDIGITS : constant := 6;
MAXMANTISSA: constant := 31; - bal 7/25/86
FINE-DELTA : constant := 2.0**(-31); - bal 7/25/86

- MAX. 4ANTISSA: constant := 15;
- FINEDELTA: constant := 2.0**(-15);
TICK : constant 0.0001; -bal real clock tick 4/18/86 1.0;

B-5

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

-- Implementation-dependent additions to package SYSTEM --

NTLLADDRESS constant ADDRESS;
- Same bit pattern as "null" access value
- This is the value of 'ADDRESS for named numbers.
- The 'ADDRESS of any object which occupies storage
- is NOT equal to this value.

ADDRESSSIZE : constant := 16;
- Number of bits in ADDRESS objects, - ADDRESS'SIZE, but static.

- ADDRESSSEGMENTSIZE : constant := 2**16;
- Number of storage units in address segment

type ADDRESSOFFSET is new INTEGER; -- Used for address arithmetic
type ADDRESSSEGMENT is new INTEGER; - Always zero on targets with

- unsegmented address space.

subtype NORMALIZEDADDRESSOFFSET is

ADDRESSOFFSET; -bal range 0 .. ADDRESS_SEGMENT-SIZE - 1;
- Range of address offsets returned by OFFSETOF

function "+"(addr : ADDRESS; offset : ADDRESSOFFSET) return ADDRESS;
function "-"(offset: ADDRESSOFFSET; addr : ADDRESS) return ADDRESS;

- Provide addition between addresses and
- offsets. May cross segment boundaries on targets where
-- objects may span segments.
- On other targets, CONSTRAINT-ERROR will be raised when
-- OFFSETOF(addr) + offset not in NORMALIZEDJDDRESSOFFSET.

function "-"(left, right :ADDRESS) return ADDRESS_OFFSET;

- May exceed SEGMENTSIZE on targets where objects may
-- span segments.
- On other targets, CONSTRAINT-ERROR
-- will be raised if SEGMENTOF(left) /= SEGENTOF(right).

function "-"(addr : ADDRESS; offset ADDRESSOFFSET) return 0
ADDRESS;

- Provide subtraction of addresses and offsets.

B-6

-- May cross segment boundaries on targets where
-- obiects may span segments.
-- On other targets, CONSTRAINT_ERROR will be raised whc
-- OFFSETOF(addr) - offset not in NORMALIZED._ADDRESSOFFSET.

function OFFSETOF (addr: ADDRESS) return NORMALIZEDADDRESSOFFSET;
-- Extract offset part of ADDRESS

Always in range O..seg-size - 1

function SEGIENTOF (addr: ADDRESS) return ADDRESS_SEGMENT;
-- Extract segment

-- part of ADDRESS
-- (zero on targets with
-- unsegmented address space)

function MAKE-ADDRESS (offset ADDRESSOFFSET;
segment: ADDRESS__SEGMENT := 0) return ADDRESS; S

-- build address given offset and segment.
-- Offset may be > seg-size on targets where

-- objects may span segments, in which case it is equiv
- to "MAKE__ADDRESS(0,segment) + offset".

-- On other targets, CONSTRAINTERROR will be raised when
- offset not in NORMALIZEDADDRESS_OFFSET

type SupportedLanguageName is (- Target dependent
- The following are "foreign" languages:

AIEASSEMBLER, - NOT a "foreign" language - uses AIE RTS
UNSPECIFIEDLA.NGUAGE

- Most/least accurate built-in integer and float types •

subtype LONGESTJNTEGER is STANDARD.INTEGER;
subtype SHORTESTINTEGER is STANDARD.INTEGER;

--

subtype LONGEST-FLOAT is STANDARD.FLOAT;
subtype SHORTEST-FLOAT is STANDARD.FLOAT;

private

type ADDRESS is access INTEGER;
-type ADDRESS is new INTEGER;

- Note: The designated type here (INTEGER) is irrelevant.
- ADDRESS is made an access type simply to guarantee it has .
- the same size as access values, which are single addresses.

B - 7

- Allocators of type ADDRESS are NOT meaningful. b

N'ULL_,ADDRESS constant ADDRESS := null; *• *

end SYSTEM;

'

F.4 Representation Clauses

This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses to
those that can be handled simply by the underlying hardware.... If a program contains
a representation clause that is not accepted [by the compiler], then the program is ille-
gal." (LRM 13.1(10)). There are no restrictions except as follows.

A. Length clauses are not allowed.

B. Address-clauses are not supported.

C. No representation clause will be accepted on a record type having any

D. dynamic-sized component.

E. Record-representation-clause:

Within a record-representation-clause, the object being represented must be no larger
than one 16-bit word.

The range of bits specified must be in the range of 0..15.

Record components, including those generated implicitly by the compiler, whose loca-
tions are not given by the representation-clause, are layed out by the compiler following I

all the components whose locations are given by the. representation-clause. Such corn- "
ponents of the invariant part of the record are allocated to follow the user-specified
components of the invariant part, and such components in any given variant part are
allocated to follow the user-specified components of that variant part.

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated name
denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-dependent
(record) components, although there are, indeed, such components. Hence, there is no
convention (or possibility) of naming them and, therefore, no way to offer a representa-
tion clause for a record containing such components.

B-8

a.W .

NOTE: Records containing dynamic-sized components will contain (generally) unnamed .
offset compoLents which will "point" to the dynamic-sized components stored lat.r in S.
the record. CMS/1750 offers no means to specify the representaticn of such corn- v
ponents.

F.6 Address Clauses

This section describes the interpretation of expressions that appear in address
clauses, including those for interrupts.

Address clauses are not allowed. S

F.7 Unchecked Conversions

This section describes any restrictions on unchecked conversions.

The source and target values must both be of an integer, enumeration, or access
type.

F.8 Input-Output p

This section describes implementation-dependent characteristics of the input-output
packages.

The 1750A is assumed to operate without an operating system and without other
external I/O devices than the console device which supports textio for
STANDARDJNPUT and STANDARDOUTPUT. The predefined exception
USE-ERROR will be raised if an attempt is made to open any external file or use the
console for other than textio.

(a) Where are I/O exceptions raised beyond what is described in Chapter 14? [14.1(11)]
None.

(b) What are the standard input and standard output files? [14.3(5)]
These files both map onto the 1750A console device.

(c) What are the forms of line terminators and page terminators? [14.3(7)]Line terminator is ASCTLF (line feed);

Page terminator is ASCU.FF (form feed)

(d) Effect of instantiating ENUTMERATIONJO for an integer type? [14.3.9(15)] 1r
The instantiated Put will work properly, but the instantiated Get will
raise Data-Error

(e) Specification of package LowLevelIJO? [14.6]
Low_LevelIO is not provided. %

B-9

L::,',

N

%0

F.9 Tasking i

This section describes implementation-dependent characteristics of the tasking run-
time packages.

Even though a main program completes and terminates (its dependent tasks, if any,
having terminated), the execution of the program as a whole continues until each task
dependent upon a library unit package has either terminated or reached an open ter-
minate alternative. See LRM 9.4(13).

F.10 Other Matters

This section describes other implementation-dependent characteristics of the system.

a. Restrictions on SHARED variables (LRM 9.11):

Must be of a scalar or access type.

b. Package MachineCode S
Will not be provided.

c. Order of compilation of generic bodies and subunits (LRM) 10.30:9):
Body and subunits of generic must be in the same compilation as the
specification if instantiations precede them (see AI-00257/02).

0

F.11 Compiler Limitations

(a) Maximum length of source line? .',.

255 characters. S

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number of dis-
tinct packages actively "used."

(c) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

V

4-''a

%w

B-L e

.,. ,,,

I

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names

before the test is run. The values used for this validation are given
below.

Name and Meaning Value al

$BIGIDI (1..254 => 'A', 255 => '1')
identifier the size of the
maximum input line length with

varying last character.

$BIGID2 (l..254 => 'A'. 255 :> '2')
Identifier the size of the
maximum input line length with
va-rying last character.

$BIG ID3 (1..127 => 'A', 128 => '3', 129..255 :> 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_IDN (1..127 => 'A', 128 => '4', 129..255 :> 'A')

Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (l..252 => '0', 253..255 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the

maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1-•249 => '0', 250. .255 => "6O.0E1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..235 => ' ')
A sequence of blanks twenty
characters fewer than the size

'a. of the maximum line length.

$COUNT LAST 32767
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCIICHARS "abcdefghijklmnopqrstuvwxyzi$%?@[\]^'{1-,
A string literal containing all
the ASCII cnaracters with
printable graphics that are not
in the basic 55 Ada character
set.

SFIELDLAST 32767
A universal integer literal

whose value is TE-XT iO.FIELD'LAST. 'a

$FILENAME WITH BAD CHARS NOFILES
An illegal- external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$-ILE NAME _WITHWILDCARDCHAR NOFILES
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$SGREATERTHANDURATION 90_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THANDURATIONBASE LAST 10_000_000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2L~o .

TEST ?ARamIETERS

Name and Meaning Value %

$ILLEGALEXTERNAL FILENAMEI NOFILES 0
An illegal external file name. V

$ILLEGAL EXTERNALFILENAME2 NO_FILES
An illegal external file name
that is different from
$ILLEGALEXTERNALFILENAME I. S

$INTEGER FIRST -32768
The universal integer literal
expression whose value is
INTEGER 'FIRST. -

$INTEGER_ LAST 32767
The universal integer literal
expression whose value is

INTEGER'LAST.

$LESS THAN DURATION -90_000.0 0
A universal real value that lies
between DURATION'BASE'FIRST and

DURATION'FIRST if any, otherwise
any value in the range of

DURATION.

$LESSTHANDURATION BASE FIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 6 S
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAXINLEN 255 0

The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAX INT 32767
The universal integer literal
wnose value is SYST2EM.MAXINT.

C-3

TEST PARMETERS "

"Jame and Meaning Value .

$NIE :40 OTHER PREDEF NUM TYPE

.....

A name of a predefined numeric .
type other than FLOAT, INTEGER, ,

SHORTFLOAT, SHORT_-INTEGER,
LONG FLOAT, or LONGINTEGER

if one exists, otherwise any
undefined naVe.alue.

$NEGOBASORDDINRT 8#E177776# D 1MY

A based integer literal whose .
highest order nonzero bit

falls in the sign bit

position of the representation
for SYSTEM.MAX INT. G..

$NON ASCII CHAR TYPE (NON NULL)

An enumeraTed type definition ,.
Aor a character type whose
literals are the identifier

NON NLL and all non-ASCII-

characters with printable
graphics.

'0 "

..% .5

S "

.5,%

S"

APPENDIX D

WITHDRAWN TESTS f

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

"AI-ddddd" is to an Ada Commentary .

p'a

•C32114A: An unterminated string literal occurs at line 62."

B33203C: The reserved word "IS" is misspelled at line 45.

C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions. .

C35904A: The elaboration of subtype declarations SFX3 and SFX4 '

may raise NUMERIC-ERROR instead of CONSTRAINT-ERROR as expected in ,

the test. .

.B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

.C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

.B45116A: ARRPRIBLI and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOL TYPE--at line
41.

.C48008A: The assumption that evaluation of default initial values

occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

.B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

SB4A10C: The object declaration in line 18 follows a subprogram

body of the same declarative part.

D-1Ik

ma as UEICERRisedofCNTANRORa xetdi
th t"t

e;i DRAW0N TESTS

. 741' 13: The ein at line causes a .e.a.rate pa r e
treated as a sequence of statements.

C87B50A: Tne call of "/=" at line 31 requires a use clause for
package A.

C92005A: The "/=" for type PACK.BIGINT at line 40 is not isiie
without a use clause for the package PACK.

C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

BC3204C: The body of BC3204CO is missing.

D-2
4,' ,

0

,~ ,
.d~ d

'.1.'
.'.d P

-S

S

- ~

.p
'I.

S

~
~. '- ~'

1'
S

S

~*J. A~~9*

S

0
-~
~

~. ..*,~*% ~

* ~ ~ .~*'. .. V* 'I

