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ABSTRACT

An extreme point analysis has been performed on two natural definitions

of positive quadrant dependence of three random variables. This analysis

helps us to understand how much these two notions of dependence are

different.

Key words and phrases. Upper positive quadrant dependence, lower

positive quadrant dependence, convex set, extreme points



1. INTRODUCTION

Let X and Y be two random variables with some joint probability distri-

bution function F. X and Y or F are/is said to be positive quadrant

department (PQD) if

Pr(X < x, Y <_ y) > Pr(X < x) Pr(Y < y) (1.1)

for all real nunbers x and y. The condition (1.1) is equivalent to each of

Pr(X > x, Y > y) > Pr(X > x)Pr(Y > y) (1.2)

for all x and y,

Pr(X < x, Y > y) < Pr(X < x, Y > y) (1.3)

for all x and y,

Pr(X > x, Y < y) < Pr(X > x) Pr(Y < y) (1.4)

for all x and y. See Lehmann (1966, p.1138).

One faces problems if one wishes to extend the notion of positive

quadrant dependence to more than two random variables. If X,Y, and Z are

three random variables, one could say that X, Y, and Z are PQD by adapting

any one of the conditions (1.1), (1.2), (1.3), or (1.4) in a natural way

To be more precise, say that X, Y, and Z are positive lower orthant

dependent (PLOD) if

Pr(X < x, Y <_ y, Z < z) > Pr(X < x)Pr(Y < y) Pr(Z <_ z) (1.5)

for all x, y, and z. Say that X, Y, and Z are positive upper orthant

dependent (PUOD) if

Pr(X > x, Y > y, Z > z) > Pr(X > x) Pr(Y > y) Pr(Z > z) (1.6)

for all x, y, and z.
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In this paper, we discuss the ramifications of the definitions of PLOD

and PUOD which are analogues of conditions (1.1), and (1.2), respectively.

These two notions of PLOD and PUOD are not equivalent. Ahmed, Langberg,

Leon and Proschan (1978) gave an example of a trivariate distribution which

is PUOD, but not PLOD.

The main goal of this paper is to examine how different are these

two notions of dependence. More precisely, we want to perform extreme point

analysis on these two notions of dependence. In some special cases, extreme

point analysis helps us to characterize all trivariate distributions which

are both PLOD and PUOD.

4)
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2. EXTREME POINT ANALYSIS

To simplify the problem, we consider the case where each of X, Y, and Z

assumes only two values I and 2, say. Let pijk = Pr(X : i, Y = j, Z = ,

i = 1,2; j = 1,2; k = 1,2. The joint probability law of X,Y, and Z is

written, for convenience,

P Plll Pl12 P 121 P 122)

P211 p212  P221  222

In terms of this new notation, P is PLOD if

P111 > p1q1r1  (2.1)

Pl1 1 + Pl12 > P1q1  (2.2)

ll + P121 >Pl r 1 (2.3)

Pill + P211 > q1 r (2.4)

and P is PUOD IS

P222 > P2 q2 r2  (2.5)

P222 + P22 1 > P2q2  (2.6)

P222 + P 1 P2 r2(2

P 222 + P122 > q2 r2 (28
' ?' u " where P1 = Pr(X = 1); ql = Pr(Y=I); r1 = Pr(Z=1); p2 = 1-P; q2  1 -q

and r 2  1 - r.

The extreme point analysis consists of looking at these two notions of

dependence from a global point of view. Let 0 < p1 < 1, 0 < ql - 1, and

O < r1 < 1 be three fixed numbers. Let MIPLOD (Pl,ql,rl) be the collection

of all trivariate distributions P = (Pijk) with support contained in {(i,j,k);
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1,2, j = 1,2, and k = 1,2 such that P is PLOD, and the marginal distributions

of X, Y, and Z under P are p,1-pPl; qll-ql; and rl,l-r I respectively. The

set MPUOD (pl,ql,rl) is defined analogously. The following result is

obvious.

THEOREM 1. The sets MP.OD (p1 ,q.,rl) and MPUOD (plql'r1 ) are compact

and convex. More strongly, they are simplexes, i.e., each of these sets is

bounded and a finite intersection of hyperplanes.

*: Nguyen and Sampson (1985) have looked into properties of sets of the

4 above type for bivariate distributions with fixed marginals. Subramanyam

and Bhaskara Rao (1986) have developed an algebraic method for identifying

the extreme points of sets of the above type in the context of bivariate

distributions.

Being simplexes, the sets MPLOD (pl,qlrl) and MpUOD (pl,ql,rl) have each

.' a finite number of extreme points. Once we identify the extreme points of the

set MpLOD (pl,ql,rl) say, we can express every member of MPLOD (pl,ql,r 1 ) as

a convex combination of the extreme points of MPLOD (pl,ql,rl). We describe

now a method of identifying the extreme points of MPLOD (pl ,ql,r 1 ) as well

* as M P (p ,q ,rl). First, we take up the case of MPLOD (p 1 ,q 1 ,r 1 ) , Any

P = (Pijk ) E M PLOD (pl,ql,rl) will have to satisfy the inequalities (2.1),

(2.2), (2.3), and (2.4). Also, due to marginality restrictions, we should

-have

Pill + P112 + P121 
< P1  (2.9)

Pill + PII2 + P211 < q1  (2.10)

P ill + PI21 + P211 < rl (2.11)

* 9'M .0-.
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p11 2 0 (2.12)

P12 1  0 (2.13)

P2 11  0 (2.14)

All these inequalities (2.1) to (2.4) and (2.9) to (2.14) involve p1 1 1 '

P112' P12 1 ' P2 11 only. If some four numbers P1 11 P112 ' P12 1 ' P2 11 satisfy

the inequalities (2.1) to (2.4) and (2.9) to (2.14), then one could define

P122 PI (P11 1 ' p112 + P12 1 )' (2.15)

= q1 - (~i + p1 2 + p 1 ), (2.16)wP212 = ql (Pill ' P112 ' P211)'( .6

P221= r (Pill + P12 1 + P211)
'  (2.17)

and

P222= 1 - p- ql rl + pil+

(P111 + P112 + P12 1 + P2 11)- (2.18)

The numbers p122 ' P2 12, and P22 1 will be nonnegative. If P222 > 0, then

p= (Pijk MPLOD(Plqlr)

A standard method of identifying the extreme points of VPLOD(Plsql,r I )

is as follows. Select 4 inequalities from (2.1) to (2.4) and (2.9) to (2.14).

Replace the inequality signs by equality signs. Solve the resultant system

of 4 linear equations in 4 unknowns p1 1 1 , P112 ' P12 1 and P211. If there is

a solution, and this solution satisfies the remaining inequalities, determine

P122 ' P212 ' P221, and P222 as per the equations (2.15), (2.16), (2.17), and

(2.10). If P222 > 0, then

P = (Pi jk)

PIE-V %w%1r~ -~i
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is an extreme point of !PLOD(P 1,qi1r). A computer program is easy to write

which will identify the extreme points of MPO p~lr)

Pursuing this approach, we have isolated the extreme points of

MPLD~p~qiri)and tMPUOD(Pl,c1,rl) when p1  q = r, = 1/2g given in Table 1.

The above extreme point analyses of the sets Mpo( b) an

MPUaO(J,,I) reveal the following insights.

1. The extreme points of MPLOD(l J,J) and MPU0(,12,1) fall into three

distinct categories. The first five extreme points are common to both the

sets. Observe that

P = P + .1P

8 2 115

10 P315

P = p + 3 p
12 5 T 15

Consequently, P6  P8, Po P2 E ti Also observe that

P P7  1 P4 + j 1

9 2 14

11 13 14

P IP + P
13 5 414

Consequently P 7, P 9 R 11 P 3c£ LO(,, and
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Table 1 Extreme Points of M PLOD(1,1,1) and MPUOD( ,i, )

Serial No. MLPQD( , , ) MUPD(, , )

1 8 [1 1 1 1 1 1
2 8 j . 1 2 0 2 2 1 0 1

2 0 02 0 2 0 0

3.=I r P2

2. P2  8 2 0 2 = 3 0 2 2

4. 1 [ 00 2] P [ 0 0 2j
4 2 2 0 0 2 0 0

5 1 0 0 4 25 8 0 0 0 4-
3. P I 8 0 0 2

1 82 0 0 2 7 8 014. P5II

. P I 1 1 I 0 1
58 0 8

8" 6. I IP7.2[ 0 I

I 1 2 0 2 0 1 1
7. P8 2

1 0 0 2 1 1

' °1o

~12 P13 [

10. P 2 0 0 2= r0 2 01
14 8 0 2 2 j 15 8 2 0 0 2
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P MPLOD( , , ) n MpUOD( , , )

for i : 1,2,..., 12,13. The extreme point trivariate distribution P14 of

MPLOD( , , ) is not PUOD. The extreme point trivariate distribution PI5 of

MpUOD(i,1,1) is not PLOD.

2. Because of the symmetry present in the probabilities p1 = 2= P2,

ql :I = q2 ' and r1 = I = r 2 , the extreme points of M PUOD( , ,) can be obtained

from those of MPLOD( , , ) by flipping I and 2 among the indices of Pijk'S of

pi's, i = 1,2,3,4,5,6,8,10,12,14.

3. The distributions pi's, i = 1,2,...,12,13 are extreme points of

MPLOD( , , ) nl MPUOD( ,, ).

4. If one wishes to construct a trivariate distribution P which is

PLOD but not PUOD, one could use P14 as a building block. Look for convex

combinations of P14 and some or all of P1 ,P2 'P3 'P4 9P5 'P6 'P8 Po10,P 1 2 " Any

convex combination x P + (1-X)P 14 with 0 < x < 1 is PLOD but not PUOD.

t1

I

.4

- ti

,%""
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3. CONCLUDING REMARKS

The extreme point analysis of two natural definitions of positive

quadrant dependence in three dimensions reveals that these two notions of
.4.

dependence are not violently different. Extreme point of analysis is

useful in evaluating the power function 3f any test proposed for testing

independence of X,Y, and Z against strict positive quadrant dependence of

X,Y, and Z. For details, in the case of 2 dimensions, see Subramanyam

and Bhaskara Rao (1985). Also, certain measures of dependence can be shown

to be affine functions over the sets MPLOD and MPUOD. This affine function

property is useful to evaluate asymptotic power of tests based on these

measures of dependence. All these ideas and an algebraic method for isolating

extreme points of the sets MPLOD and MPUOD will be the subject matter of

a forthcoming report.

o

..

a

6 .
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