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ful in the areas to which it has been applied. Here we--show how the method
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1.1

1. POISSON APPROXIMATION

Much of extreme value theory is concerned with convergence to a Poisson

distribution or a Poisson process of random variables or processes generated

by exceedances over high thresholds. It might therefore be expected that

general theorems of convergence to Poisson limits will be relevant to this

theory. In fact, such general theorems are relevant, but the main applica-

tion to date has been to a rather specialised class of problems connected with

symmetric statistics. The purpose of the present note is to introduce the

possibility of using such results in the extreme value theory of discrete-

time stochastic processes, as developed by Leadbetter, Lindgren and Rootz6n

(1983).

There is a long history of work on Poisson approximation, summarised in

the article of Serfling (1978). In recent years, a new approach has been de-

veloped. This started with a paper of Stein (1970) on the normal approximation

for dependent sequences, and was developed in the Poisson context by Chen

(1975). The method has proved highly successful in the extreme value proper-

ties of random variables of the form g(Xi...,X i ) where g is a symmetric func-
1 m

tion of m arguments, X1,... ,Xn are independent or exchangeable random variables

and the multi-index (i1 ... ,im ) ranges over a class of m-subsets of {l,...,n}

(Barbour and Eagleson, 1983, 1984). A particular advantage of the method is

that it does not require that the individual Xi have common distribution. This

means that it has the potential to be applied to extreme value theory for non-

stationary sequences, a subject developd by Hisler (1983, 1986). We shall

show how the Stein-Chen method leads to an alternative version of H6sler's

main results, with the additional advantage in giving an explicit upper bound

for the approximation error.
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We begin by outlining the Stein-Chen method. Suppose Yi. ie I, is a set

of 0-1 random variables with pi = P{Y = 11 = 1- P{Y = 0 }. Define

(1.1) W = I Yip A = I Pi.
iEI iEI

Under suitable circumstances W will be approximately Poisson with mean X. The

purpose of the method is to provide an upper bound for the distance in total

variation between the distribution of W and the Poisson distribution. The meth-

od is first to calculate an upper bound for

(1.2) IE{Wf(W) - Xf(W+1)}1

where f is a real-valued function on Z+, and then to choose a particular f

which allows (1.2) to be related directly to the desired distance. We shall

throughout be working with a function f for which

(1.3) If 11 = max{ff(w), wEZ Z+}, Af = max{If(w+l) - f(w)I, wE Z }

are finite (with known upper bounds).

Suppose, for each iE I, Ji is a class of "near neighbors" of i. The idea

is that Ji should be small compared with i, but, for j Jis Yi and Yj are

nearly independent - in some cases exactly so, in others governed by a mix-

ing-type condition. Assume i 6 Ji" Let

(1.4) W(i) = W-Yi, v(i) I Y
jEI-Ji

Then we may write

(1.5) IE{Wf(W) - Xf(W+1)}I = I E{Yif(w(i)+I)} - XE{f(W+1)}I
iEI

-I E[Yi{f(W(i)+l) - f(V(i)+1)}] + Z E{(Yi-pi)f(V(i)+l)1
igl iEI

IMFJ...I_



+ E[p+1f(V(i)+1) -f(WWl
i-i

f E{YiY.}
iEI YJ1J

j~il

+ E{(Y-P i )  f(V(i)*l)}[ +  A f  . P .-j

i I "eiT jEJ.

The method then proceeds by bounding each of the three terms in (1.5).

In remains to choose f. Let A denote an arbitrary subset of Z+ and

-t f(O) = 0,

(1.6) f(w) = -- We X(w-l)! {Px(A nU) - Px(A)Px(Uw)}, wl

where P denotes the Poisson probability distribution with mean X (P (B)

=jEB . Je-'/j!) and Uw = {0,1,. .. ,w-l}. Then

(1.7) I(w EA) - Px(A) = wf(w) - Xf(w+l)

so (1.2) provides an upper bound on IP{WE A} - Px(A)j. Moreover, for such

f we have

(1.8) 1f 1I <-  min(1,1.4X- ), Af - min(1,,X

(Barbour and Eagleson, 1983) so the upper bound derived from (1.5) is in

fact a universal bound, valid for all A. This is the total variation dis-

tance between the distribution of W and P,"

In Barbour and Eagleson (1984), this method was applied to a situation

in which I is a class of two-member subsets of {1,... ,n}, and Y. and Y. are1 J

independent whenever i nj = . Their proof corresponds to defining Ji to

be the class of all j such that i nj p. With this definition the middle

term of (1.5) is 0, so the result depends solely on the first and third

terms.
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For extreme value theory in dependent sequences, it is natural to try

to apply the method when I = (, .. ,n} and there is some form of mixing con-

dition on the Y.. Such a theorem was in fact given by Chen (1975), but it

requires 4-mixing, which is much too strong an assumption, and the final re-

sult is hard to interpret - there is nothing corresponding explicitly to Con-

dition D' (see Section 2), but we know from the long history of extreme val-

ue theory that some condition of this form is necessary. We therefore out-

line an alternative approach which leads directly to some results in extreme

value theory for nonstationary sequences (Hisler, 1983, 1986).



2. EXTREMES IN NONSTATIONARY SEQUENCES

Suppose, for some n -1, X1 ..... Xn are random variables with marginal dis-

tribution functions F1 .... Fn and let {uni, 1 5-i <n} denote a sequence of

boundary values. Define Yi to be 1 if Xi >uni, 0 otherwise, and let pi 
=

P{Y 1}, p* = max(pi, 1<is n), T = Zn Yi' T = E(Tn) = In Assume:
n P n 1 1 n n I i s

Condition D Let B(i,j) denote the a-algebra generated by (Yi,Y .... ,Y.)

for l_i_<jSn. Then, for each k->I,

(2.1) sup{IP(AB)-P(A)P(B) : AES(l,k),BEB(k+ ,n), lk!5n-}_ c(n,z).

Condition D' For each r 1-, there exist intervals of the form

I = 1 ' 12 + ... r= fir- l ' ' '''n }

and subsets I* I (I-<k-<r) for which

k - k(lk )fowhc

(2.2) pi - Cn /r, 1 i5 k 5 r,
iEl k n

(2.3) [ E(YiY.) a* (n,r),
iEI* jEI* 1

k k
i~j

(2.4) Pi -< g(r)/r.
iElk-I '

k k

Then we have:

Theorem 1 Let k and r be such that conditions D and D' hold. Then for

arbitrary A c Z+ C2

(2.5) JP{TnEAl-P (A)j Ii ra(n, Z) + 3r a *(n,r) + -a + 2rkp* + 2g(r).
T r nn

This is in the form of an upper bound for finite n, rather than a limit

theorem as n + . However, if we make some assumptions about the asymptotic



behaviour of the various constants involved in Theorem 1, we can derive a

limit theorem as a corollary:

Corollarv 2  Suppose the conditions of Theorem 1 hold for each n 1 ;t'd th:it

(i) the sequence {r ,n l.1 satisfiesn

(2.6) T n T as n - . where 0 < 7 < o,

(ii) the sequence {C ,n l} satisfies

(2.7) C n C < 00

(iii) There exists a sequence 2. , n I, such thatn

(2.8) j(n,Z) 0, 2z P, Q
n nn

(iv) As r -,

(2.9) Jim sup r a* (n,r) -0 , g(r) - 0.

The PfT t-A} - P (A) for each A c Z+n T -

An immediate consequence of Corollary 2 is:

-T

(2.10) P{X. -<u . for i= 1,...,n} - e as n - ° .

The result (2.10) was obtained by Husler (1986) under minor variations

in the assumptions. In Condition D', Htisler made slightly different assump-

tions about the construction of the I,, but his assumptions are effectively

equivalent to (2.2) - (2.4) and (2.9). H~isler's condition D is different

from ours in that the B(ij) of (2.1) consist only of events of the form

{Y. I = Yi = "" = Y. = 0) for some i- i <...< i - j.
1 12 1 ,

With this modification, (2.1) together with (2.8) is exactly H~isler condi-

tion D. It is not clear whether the modification is of any practical signi-

ficance; a similar modification to D has been adopted in a different context

by Hsing, H~isler and Leadbetter (1986).
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Before giving the proof of Theorem 1, we note the following:

Lemma 3 If P and P are Poisson distributions with means X and p, then

for all A

IPA(A) - P (A) <-[I- 1.

Proof Suppose X> ji. Let X and Y- X be independent Poisson with means W

and X- p. Then

IP{XE A}- P{YE A} -< P{X#Y} - X-J.

Lemma 4 Suppose B and C are two a-fields with the property that, for any

events BE B, CE C,

IP(BC) - P(B)P(C)I -< _

Let X and Y be two bounded random variables, ranges [a,b] and [c,d], measur-

able with respect to B and C respectively. Then

JEXY - (EX)(EY) I -< s(b-a) (d-c).

Proof If a=c=0, b=d=l then

IEXY - (EX)(EY)I

11
= If f [P{X>x, Y>y} - P{X>x}P{Y>y}]dxdyl- c.

0 0

The general case follows by linear transformation.

Proof of Theorem I For each k let I** c I* be formed from I* by deleting

the Z rightmost points of Ik. This ensures that i- ji > Z whenever iE I*,

jE I**, kAm. Let
m

r
I U I*, W Yi, x Pi

k=l iEI iEI
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The proof proceeds by obtaining a Poisson approximation for W using the

method of Section 1. For each iE I** let J. = I**. Since V(i) in (1.4) de-
k l1

pends only on k, we write V(i) = U (k) whenever iE I**. Consider (1.3). The

third term may be written

r AfC2

(2.11) Af P ( y pi _ n

k=l iEI * jE I* 1 r

using (2.2). The first term may be written

r
(2.12) Af [ I I E{Y.Y.}] - Af rct*(n,r)

k=l i,jEl* 1 3
i#j

using (2.3). Therefore we concentrate on the second term in (1.5), which may

be written in the form
r

(2.13) J E{(S k - k)f(U(k) + 1)}I
k=l

where = * Y. and = E(Sk)" However, we may writeSk  k"k (k

(2.14) E{(Sk - Ik)f(U (k) + 1)} = E{(Sk - vk)I(Sk 1)f(U(k) + 1)1

+ E{(Sk- uk)l(Sk > l)f(U(k) + 1)1.

The second term is bounded by

11f 1 E{SkI(Sk> 1)1 - Ilfi1 E{Sk(Sk- 1)}

= Ilfl E{ Z Y.Y.} - IflIl ot*(n,r)i~jEI * 1 .1

while by Lemma 3 the first term in (2.14) is bounded by

]Ifjj a~n~k+ I 1{(s k)(Sk< 1)}E{f(U (k) + 1)

!5 [a (n,Z) + E{Sk- "k)(S k> 1))] < Ilff1 [c(n,k) +cz*(n,r)].
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Thus an upper bound on (2.13) is

(2.15) r lfI1 ((n, Z) + 2a*(n,r)].

The sum of (2.11), (2.12) and (2.15) now gives a bound on the total var-

iation distance between the distribution of W and P The total variation

distance between W and T is at most
n

r r

(2.1) P{ .Y. O} - p. < rp*+ g(r)
k=1 iEI -1 k=1 IEI I*

k k kk

The total variation distance between P and P is, by Lemma 4, at most
n

r
Tn - x= p I Pi

k=l iEI I**
nk k

which is also bounded by (2.16). Finally, adding (2.11), (2.12), (2.15) and

twice (2.16), using also (1.8), gives the result.

Proof of Corollary 2 It suffices to show that r = rn and k = Z can ben

chosen so that the right hand side of (2.5) tends to 0. Let 9n be the se-

quence that satisfies (2.8) and write

n = ct(n,9.) + 29Z p*

nn nn

g1 (r) = 2g(r) + 3 lim sup rca* (n,r).
n-*oo

Then the bound in (2.5) becomes

re + g (r) +
r n r

Choosing r = r n so that r n - , for example, guarantees that this tends to 0.
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3. PROCESSES WITH LOCAL DEPENDENCE

Condition D' is of course crucial to the results of Section 2. For many

familiar kinds of stochastic processes it is not satisfied, and much atten-

tion has been given to such cases in recent years. The general picture is

that exceedances of the boundary occur in clusters, and the limiting distri-

bution of the number of exceedances is compound Poisson (Hsing, HUsler and

Leadbetter, 1986, Alpuim, 1987). Although the Stein-Chen method does not

yield explicit rates of convergence in this case, it nevertheless suggests an

alternative method of proof of limit theorems.

Theorem 5 Suppose all the conditions of Theorem 1 hold except (2.3). Define

r
(3.1) S= Yi3 Tn ( j ) = P{S k= } j=l,2,...

iEIk k=l

Fix B c Z {0} and define

r
(3.2) Lk = I(SkE B), W = z s X = I Tn(J).

k=1 jEB

Then for any AcZ +
C2

(3.3) IP{We A} - Px(A) 1 ! rt( n,Z) +n + 2rZp* + 2g(r).
Xr n

The relevance of this to the compound Poisson limit is seen from:

Lemma 6 Suppose (Yk' n- 1, 1-<k<-rn } is an integer valued array such that,

for each Bc 7 - {0}, the random variable

r
n
SI(Ynk E B)

k=l

converges to a Poisson limit with mean j T(j). Assume the uniform integra-
jeB

bility condition



(3.4) lir lir sup . {nk > m} = o.
rnr-  n-- k

Let r -i tj) (assumed finite), 7r(j) = T(j)/T

and define the generating function

M
(3.5) Z(') = z 7(j)

j=l

r

Then In y converges as n - to a compound Poisson distribution with gen-
~k=l nk

erating function

(3.6) exp{O(Z) - TI.

Thus, provided (3.3) tends to 0 as n- - for each B, Lemma 6 implies that

the limiting distribution of Tn is compound Poisson. The full result is:

Corollary 7 Suppose the conditions of Theorem 5 hold, together with (2.7),

(2.8) and the second half of (2.9). Suppose, for each j> 1,

(3.7) r n(J) - ' "T7 (5)

where O< T<o- and {Tr(j), j31} is a proper probability distribution with gen-

erating function given by (3.5). Then the distribution of

n
T = I(Xui > .)n i=l 1Uni)

converges to a compound Poisson distribution with generating function (3.5).

Clearly, these results are not as easily applied as those of Section 2,

since (3.1) and (3.7) require detailed calculations of the local fluctuations

of the process. However, a number of specific examples have now been worked

out for which it is possible to make such calculations explicitly, e.g. Davis

and Resnick (1985), 1|sing (1986). The general question,of how broad is the
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condition (3.7), is harder to answer. In the stationary case the 7(j)'s, if

they exist at all, are properties of the process and do not depend on the pre-

cise sequence of boundaries (Hsing, Hiisler and Leadbetter, 1986). In the non-

stationary case, the discussion of extremal index in Hisler (1986) makes it

clear that no such universal result can hold, though we might still expect

(3.7) to be valid if the process is nearly stationary in some sense, e.g. a

stationary process modified by some slowly moving trend which does not affect

the local fluctuations.

Proof of Theorem 5 Define I** as in the proof of Theorem 1, and set

k

r
(3.8) S* Yi' Tn(j) = I P{S-=j}, j=1,2,...,

k iI* n k=l

r

(3.9) -*= I(S*B) W* I z* X T-(J)
k=l jEB n

As in the proof of Theorem 1, both

I P{WE A} - P{W*E A}I

and

IPA (A) - P*(A)]

are bounded by

(3.10) r Z p* + g(r)
n

so we concentrate on the approximation of W* by P*. With Jk = {k}, W(k)

- W*- Z*, (1.5) - (1.8) lead to the inequality

r ( ) r 2
(3.11) lPW*cA}PX(A) I I E{(Z-E)f(W+ + I (EZ*)

k = -- k = l

By (2.2), EZ* 5 C /r and hence the second term in (3.11) is at most C 2/r. By
n n n

Lemma 4, (2.1) and (1.8), the first term in (3.11) is at most ra (n,k). Hence
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(3.12) P{W* A} - Px*(A) r a (n,Z) + C2/r
n

and the result follows by combining (3.10) and (3.12).

Proof of Lemma 6 The assumptions of Lemma 6 imply that

r
nU nj I (Y nk= j), j=1,2 ....

k=1

converge in distribution as n + to independent Poisson variables U.(j- I)

with E(Uj) = TiT (j). Hence

r
n 00

(3.13) Y Ynk I j U nj
k=l j= n

converges in distribution to JjU., Condition (3.4) allows this operation to

be rigorously justified, by showing that (3.13) can be approximated arbitrar-

ily closely, uniformly in n, by the sum from j = 1 to m. Finally, it is easily

checked that JjU. has the generating function (3.6).
J

Proof of Corollary 7 Write Snk in place of Sk in Theorem 5, rn in place of r,

Z n in place of i. This is to emphasise the dependence of these quantities on

n. Choosing Xn so that (2.8) is satisfied, we have by the same argument as

in Corollary 2 that the right hand side of (3.3) tends to 0 as n - -, provided

rn is chosen appropriately. This is true for each B. Now apply Lemma 6, iden-

tifying Ynk with Snk. To verify (3.4) we have

I P{S nk>m} < m -1 I E(Snk) a m-1 C
k k

which is independent of n, so (3.4) is satisfied. The result then follows

from the conclusion of Lemma 6.
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4. SOME FURTHER REMARKS

1. Hisler (1986) considered only the case when the {X.1 are drawn from
1

a single sequence of random variables. Obviously our method applies equally

well to triangular arrays. Perhaps that is true of Hisler's method as well,

but HUsler did not mention the point.

2. An obvious application of Theorem 1 is to rates of convergence in

dependent extreme value theory. This topic has been extensively developed

for extreme values of i.i.d. random variables, but the only substantial con-

tribution to the dependent case is the work of Rootzgn (1983) on stationary

Gaussian sequences.

3. The method is also applicable to the more general problem of Poisson

convergences of point processes generated by high-level exceedances. For

example, in the stationary case Leadbetter, Lindgren and Rootz6n (1983,

Section S.7) give conditions under which the two-dimensional point process

n with points at (j/n, (X.)) (j=l,...,n), with some suitably defined func-

tions u , zonverges to a limiting process N which is homogeneous Poisson on

(0,1) x(0,-). The same method as in Theorem 1 can be used to bound the total

variation distance between the distributions of Nn (B) and N(B), for arbitrary

measurable B.

4. A final, intriguing possibility is the use of this method to obtain

improved approximations. In the independent case, the calculations leading

to (1.S) show that

(4.1) E{Wf(W) - Xf(W+I)} =_ piEff(W(i)+l) - f(W+Il)}

1
P PiE{YAf((i) l ) }

p 2 W(W i)+1)1
i
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where Af(w) = f(w+l) f(w). The right hand side of (4.1) can be approximated

by

(4.2) - p2E{Af(T+1)}

where T has a Poisson distribution with mean X. Chen (1975) shows that this

procedure leads to an improved approximation for the distribution of W, with

error of order I p3 instead of I p i . This idea has never been applied in

the dependent case but the possibility exists, if one of the three terms

in (1.5) dominates the other two, of doing further analysis along these lines.
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