A SNOOTH PRIOR AN.. CU) NOR
HILL CENTER FOR STOCHASTIC

322 SEQUENTIM. TESTS FOR THE
UNCLASSIFIED OCT 87 TR-212 AFOSR-TR-87-1878




EEE

R EER

mh.up-n_._._.:.__m

L

@«
=

——
==

l

1.4

——
——
—
—

2 i




DTG _EILE. CORY
CENTER FOR STOCHASTIC PROCESSES

AFOSR.TR. 87- 1878 :

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

AD-A190 322

S P L
.‘_OJ-, . ¥ .'l“ ""

-

Y

Pl

e &G4

Lo et o o

e
v -

5L

SEQUENTIAL TESTS FOR THE DRIFT OF A WIENER PROCESS

~
WITH A SMOOTH PRIOR, AND THE HEAT EQUATION 2-,.
N - DTIC 2
Gordon Simons el ::
o ELECTE g™ 2
Yi-Ching Yao I NS
JAN 1 4 1968 B ®
and ' :.:::.
A o
Xizhi Wu H L
: .
Technical Report No. 212 s
. b &
October 1987 ; ‘
®
o
e ey X s
~DISTRIRUTICN STATEMENT A . o,
e e S N
Booveeerey D b ie gote e A |‘l
H N N
t t
i~ ‘ : . by
| )‘s' he Ve A ] \0;)\~‘1~1 ‘..-‘ ‘V’.\ \~'\*ﬁ = '\v-.‘\",‘:-' RS R ) ‘*- TLW MM w, . .'-.-..-! ..". -...',... a ... - ,",. ,- -p P v .
D R T R S S R e R e R e R R R S



S3FCATIQN OF "41S 3aGe

ot a0 ot (VR aTR R IE bl

Aﬁﬂm__

. REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHQRITY

3. DISTRIBUTION/ AVAILABILITY OF REPQRT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Appraved for onblic melease;
distritutionunlioited,

4. PERFORMING QRGANIZATION REPORT NUMBER(S)

Technical Report No. 212

5. MONITORING GRGANIZATION REPORT NUMBER(S)

AFOSR-TR- 87-1878

6a. NAME OF PERFORMING ORGANIZATION
University of North Carolina

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

AFOSR/NM
6c. ADDRESS (City, State, and ZIP Code) 7b. A ity
Statistics Dept. EPBE?M State, and ZIP Code)
321-A Phillips Hall BE®%X CB 3260 Bldg 410

Chapel Hill, NC 27514 Bolling AFBDC 20332-8448
8a. NAME OF FUNDING 7 SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicablé) #PESR_No. F49620 85C 0144
AFOSR M ) )
RA%%WW, State, and ZIP Code) . o 10. SOURCE OF FUNDING NUMBERS
Bldg 410 - PROGRAM PROJECT TASK WORK UNIT
8 ELEMENT NO. NO. NO. ACCESSION NO.
Bolling AFBDC 20332-8448 6 1102F 1304 AS

. TITLE (Inciude Securrty Classification)

Sequenual tests for the drift of a Wiener process with a smooth prior, and the heat equation

‘.

12. PERSONAL AUTHOR(S) ‘.
Simons, G., Yao, Y.-C. and Wu, X.

13a. TYPE OF REPORT 13b. TIME COVERED

Preprint FROM 9/87 - TO 9488

14. DATE OF REPORT (Year, Month, Day) hS. PAGE COUNT
October 1987 16

16. SUPPLEMENTARY NOTATION

NX¥¥ Running head. Sequential Tests and the Heat Equation.

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identfy by block number)
Key Words § Phrases:

- ] motion, optimal stopping, continuation region, asymptotic.

Sequential Bayes heat equation, Brownian

optimal stopping problems, using the heat

placed on the drift parameter of a Wiener

19. ABSTRACT (Continue on reverse if necessary and igentify by block number)
Methods are described which permit one to work with continuout-time

equation, even when the prior

process is not normal. The details of

the method are worked out for Chernoff's problem of testing the sign of

the drift parameter when the prior is ''smooth'.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT

GIUNCLASSIFIED/UNUMITED (T saMme As RPT (] oTic UsERs

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified/unlimited

22a. NAME OF RESPONSIBLE INDIVIDUAL
Maj., Brian Woodruff

22b. TELEPHONE (inc/ude Area Code) | 22¢. QGfIcE SYMBOL
(202)767-5026

OO0 FORM 1473, 34 MAR

&

-~ le—ji

PR
A

e e O O (A O

83 APR eqition may be used untit exhausted.
All ather editions are obsoiete.

SECLRITY CLASSIFICATION OF “HIS PAGE ™~ -

Unclassified/Unlimited

»
ER RS RN P N ey |



I AR N PEar A LR Pt U R PO S S T ALY W g 2000070 0000 0 40 0a8 64700 ta9 ¥ N X oy < g ony AR ) « -a¥. ahs ala a8V t0a’, T o g p

§ {
3
‘- SEQUENTIAL TESTS FOR THE DRIFT OF A WIENER PROCESS ',‘
, A\
WITH A SMOOTH PRIOR, AND THE HEAT EQUATION -
oY,
;.' by Gordon Simons!, Yi—Ching Yao and Xizhi Wu (’.‘
s &)
University of North Carolina in Chapel Hill, '
\.
i: Colorado State University and University of California at Davis. '.ft
K e
‘ by
- ).
) t
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: optimal stopping problems, using the heat equation, even when the prior ':f
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:'?E: 1. Introduction. Chernoff (1961, 1972) and others have shown how the heat equation and

53::: associated free boundary problems arise naturally as mathematical tools for approximating

A Bayes sequential procedures. Typical applications are concerned with normally distributed

E" observations which depend on an unknown mean 6 and a normal prior for §. The present

‘E::' ) paper has two objectives: (i) to show, very generally, that the heat equation is still relevant

R when @ is not normally distributed, and (ii) to investigate the problem of testing the sign

;‘ > of the normal mean for smooth priors. A smooth non—normal prior can be viewed as a (
;,: ' perturbed normal prior, and it is possible to very precisely describe how the perturbation »
. affects the associated free boundary.

:::':': Since the subject of free boundary problems is fraught with technical details, a

::' conscious decision has been made here to emphasize exposition rather than rigor. \_
L

;:- 2. Bayes problems and continuous time approximations. Suppose X, Xs, -+ are potential

;'EE . observations which are independent and N(#,02), where o2 is positive and known, and 4

\ is unknown. Set S, = X, + --- + X, n20, and, for definiteness, 02 = 1. We shall assume

t? that we are dealing with a concrete statistical problem which is expressed within a

\ .‘ decision—theoretic framework with a suitable loss structure, and that # has a prior density

g. The Bayes sequential procedure is sought.

Let d(z,n) denote the posterior Bayes risk associated with stopping at time n, with

v ;.gsr.r.;.

Sa = z, and making an optimal terminal decision. The primary task, in a Bayes sequential

problem, is to find the stopping time N, within {0, 1, 2,---}, which minimizes the

"

expectation E{d(SN,N)}.

-, ;‘-’ l-’ a

We are only concerned here with the commonly used approximation based on the

IR

replacement of {Sp, n20} by a Wiener process X = {X(t), t20} with drift rate & Given

e g, the differential dX(t) has mean #-dt and variance dt. The task is to find the

-
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stopping time r in [0,0) which minimizes E{d(X(7),7)}. Such problems can be viewed 2::',
as Markovian, with states (x,t), and the search for optimality can be viewed as a search for >
an "optimal continuation set" C in the (x,t) plane: The optimal stopping time 7 = r(x.t) .
is the first time that X reaches the boundary of C if (x,t)isin C. And it is simply t E.t
otherwise. .
Let b(x,t) := E{d(X(r),7)}, represent the minimal Bayes risk that can be achieved :':
by stopping optimally starting from state (x,t). The same argument as that used by .-
Chernoff (1972, p. 92) can be used to show that it satisfies a diffusion equation: f'.
(1) by, + 20(x,t) by + 2b, = 0, (x,t)€C, R

where

2 MX = — —0 P x0 62 2 ) dé .‘E
( ) ’t') : E{0|X(t)—x} = ! { t / } g( ) 3
M

| exp{xd — t62/2} g(9) db '
And, with the possible exception of certain points of singularity, the boundary conditions
(3) b=d, b,=d
4
hold on the boundary of C. Frequently, equation (1) and the first two conditions in (3) G

jointly determine the function b and the set C. But these conditions do not always LA

guarantee a unique solution. ot

A, 5,

7
g )

We note in passing that the ratio in (2) is meaningful for t > 0 even when the prior

_,.,
o
oA

g lacks a finite first moment.

Py
SN
%

3. Chernoff's negative s scale. It is a standard practice to assume that the prior g is
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normal with some known mean u_  and variance ao?. This makes the marginal
distribution of X Gaussian but something other than a Wiener process with drift. It does
not make equation (1) particularly attractive to work with. For this reason, Chernoff
(1972) and others have found it more convenient to work with the posterior mean process

Y = {Y(s),0<s¢ 002}, defined by

(4) Y(s) = E{01X(1)} = (X(t) + #/0,7)/ (v + 0,7,

where s=1/(t + 00'2) is the posterior variance at time t. Then Y is a Brownian
motion evolving backwards in time, as measured in s (hence the name "negative s scale").
And b(x,t), when described as a function of (y,s), satisfies the much more familiar heat

equation uy,, = 2ug, and boundary conditions comparable to those in (3). A frequent

y
additional advantage is that Y(s) is statistically more relevant than X(t). lLe., d(x,t) is
more naturally described as a function of (y,s).

If the prior g is non—Gaussian, the marginal distribution of X is non—Gaussian.
Moreover, the posterior mean is non—Gaussian, and it no longer assumes the simple linear
form shown in (4).

The loss of the linear form is unfortunate; for it is the reason Y is a Brownian
motion. It will be seen in the next section that it is possible to continue to work with a
variant of this linear form. We will be content here with pointing out that the posterior
mean is approximately equal to a linear form when t is large and the prior g is
sufficiently smooth: It can be shown that (t+c)E{8|X(t)} — (X(t)+a) is a convergent
martingale, for arbitrary constants a and c, whenever g is continuously differentiable, in

which case the limit equals g'(6)/g(#) —a + cf a.s. A linear form will be used, as a

mathematical convenience, when we consider the problem of testing the sign of the normal
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| N
E mean. The results so obtained will need to be restated in the coordinate system of the )
",
posterior mean before meaningful comparisons can be made with Chernoff's results for
LYy
\ normal priors.
; N
f )
R
4. Transformations. We are concerned here with transformations of b which satisfy the 1
: , ™
heat equation u,, = 2u,. We start with a transformation which satisfies the backward 'A
*
\ heat equation u,, = —2u,: )
b »
' Theorem 1. The function :'
* v
(5) b (x,t) := b(x,t)- ¥(x,t) ;.-
"ﬂ'
satisfies the backward heat equation in C, where ;
=
(6) Wx.t) = [_2 exp{xf — 1#/2} g(6) db. Ry
’;
The proof follows by direct calculations. m
.
Now set et
x 0
d (x,t) :=d(x,t)- ¥{x,t). .-‘
e
S
. * . i
The functions b and d can be viewed as surrogates for b and d, respectively: i
Instead of trying to solve the free boundary problem represented by equation (1) with :
boundary conditions (3), one may solve an equivalent problem using the surrogates b E‘*-
* _.' X
and d . Nn
,'i )
What we have done can be understood from a probabilistic perspective as well: The ‘.-n
transformation corresponds to a change of probability measures with ¥{(X(t).t) equal to ‘ﬁ
x )
the Radon—Nikodym derivative dP/dP for the (current) sigma—field o{X(u): u<t}. o
7
At
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Under the new probability measure P*, X is a Brownian motion, d* and b* are the proper
analogues of d and b respectively, and the proper analogue of (1) is the backward heat
equation.

To get from the backward heat equation to the heat equation, let y = (x + a)/(t +
¢) and s=1/(t +¢)(t > —c¢),and let ' be the image of C in the (y.8) plane, where,

for now, a and c are arbitrary constants. Thus,x =y/s —a and t = 1/s —c. Further,

oy fsh)

let ¢ be the standard normal density and n(yv.s) = s 2o(y/s’

Theorem 2. The funclion

x w

(1) b (v.s) = b*(x.t)-n(y.s).

sabisfies the heat cquation i the variables (v.s) within .
Again the prool follows by direct caleulations. And again a probabilistic

interpretation can he given: Assume N = {X{1), 120} is standard Brownian motion under
the probability measure P and ¢ > 0. Then the process Y = {Y(s) = (X(t) + a)/(t +
¢). 0os<d/e} s Brownian motion in reverse time s, under a probability measure P if

for each s, the Radon=Nikodym derivative dP /dP  for the (current) sigma—field
a{Y(u): s<u<l/e} is proportional to n(Y(s).s). (The coefficient of proportionality equals

entae)] )
[heorems T and 2 together vield the formula

(%) l).'(X.S)' hix.t)-f Ll\(y~-ﬂs).(f*‘”+*'”“/2

s

ol ) df).

Aeain, each solution of the original free boundary problem can be deseribed,
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x %K
equivalently, in terms of surrogates, b and

Y . '-I'(-(

*x

(9) d (ys) = d(x,t)-/_z n{y—=6,:s)- —ad+cf/2 gi0) dé.

While a particular solution b, so found, may not be the solution sought for the sequential

’
U

RS
LN

Bayes problem, one of the obtainable solutions in the (y,s) plane will. necessarily,

%

correspond to the sequential Bayes problem; there is a simple one—to—one correspondence

- \;‘

hetween sofutions in the two spaces.

Notice that the original problem has been converted into an equivalent problem in

-
2,

-

the context of Chernoff's negative s scale described in Section 3. This has several

P,

advantages.  An obvions advantage is that the heat equation has been widely studied by

LR AN
S5 I

'(f

probabilists and statisticians.  Many solutions are known, and these can be used to obtain

(A

asviptotic expansions and other analvtic approximations to the solution of the free

P
-

boundary problent. Another convenience is that Chernoff and Petkau (1984, 1986) have

I

)
L
=]

x

developed numerical algorithms for the negative s scale which find b and (", for quite

LR

ceneral functions d . A final potential advantage is that one is able to place a large

rH- "\ ..- "- .

family of optimal stopping problems within a common context; each prior g contributes a

LA
v E

L 4

K
1]

member. This invites new tvpes of comparisons.  An example of this is given in the next

" ar
|t'l 5

section.

2
2,7

A 4
b

T

[t is now a quick matter to completely recover Chernoff's framework when the prior

g is normal .\'(/10.002): Simply set a = /10/002 and ¢ = 1/002. Then (3} and {9) become

L

> w X

h (vs) = n(;zo.no’z)-l)(x.t) and d (vs) = n(/io.(fo?)-d(x.t). respectively.  The positive

I3

e

P e
.-_ \"""'.",'

constant nfy .o 2) contributes not hing of significance to the problem, and can simply be

s}

P A

. .
LI §

x X

dropped.  So. effectively, we are concerned with the transformation d  (v.s) = d(x.1).

-
)

Wy's)

dore v — (v 2 AN P — 9y . o eonnl a et alle o :
where v = (x + p fo 2)/(1 + 6_72) and s = 1/(t + o_?). and we seck a suitable solution

A )
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b b (ys) of the heat equation. Chernoff, by focusing attention on the posterior mean
e
_ process (4), reaches the same context.
.:" More generally, suppose, for now, the prior g is strictly positive and smooth in the
14
;:: sense that log g(4) is expressible in a Taylor series expansion :
e (10) log g(8) = ag + a0 + a2 fP/2 + az®3/6 + - - -.
S
b
' It is convenient to think of a; and — ap as prior parameters with all the other subscripted
,“ a's held fixed except ag, which must be chosen to make the integral of g equal to one. Then
o
N

; the posterior density of g given X(t) = x remains in the family, and it has posterior

parameters x + a; and t — ap. This is a generalization of the normal family, which

7
LY

corresponds to a; = po/ao2 and ap = — 1/002, with a, = 0 for k > 3. In general. the

integrals in (8) and (9) take the form

.';’1“ ‘ "i:. L’(fk’g

. AN

(11) exp(ao)- [_% n(y—4,s)-exp {a36°/6 + as8*/24 + - -} df

.
L]

-

when one sets a = a; and ¢ = — ap. This makes y = (x + a;)/(t — as). \

-

5. Testing the sign of the drift.

-
A AP

xk
5.1. The function d (y,8). Assume the cost of sampling is one per unit time and the cost

%

i

s
(3
Lt B

due to a wrong assessment of the sign of the drift rate 8 is 2k|#|, where k > 0. This

H 84

leads to

5

YN XX
S5

)
r

"

- ®

Julels
A

d(x.t) =t + ‘2k-min{
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and "

K,

; . far 2 N
' a7 (ys) = (s + a2)]_2 n(y-5)e~ 218228 2g(g) ag 3
>

AY

2k minl /2 0-n(y~0.s)e 18328 /24 g) a1 0 g.n(y—ss)e 21822812y ) dl)}. "

,:‘?-'

Before proceeding, we shall find it convenient to subtract away a solution of the heat _‘

. " , —a f8-a P/ ‘ot el o,
equation, f_m (as+k]| 8] )n{y—85s)e g(#) db, and then tc “ivide by the positive 2

constant e, which will not affect the boundary of C'. (This particular solution is defined X

-

for 0 < s < if 3320, and for 0 <s < —a,™ if ay < 0.) Keeping the same notation. as T

. . N

a convenience, we obtain VA

A-.:
=
X XK 02 TS\'

4" (y.s) = s 2 n(y—fs)e 20"08-228/25 ) 4 ',

—

[V
—_—
ay

P
-

~k |72 0-n(y—f.s)e~20mb-28/2, 5 41

S

TN

o)

{ %
Using the fact that the function ¥ (xt) = /__‘: §-exp{x8 —t82/2} g(0) db. is :,

) monotone in x, one can show that the second integral in (12) vanishes along a line \
(y,(s).8). It is positive above the line and negative below. It can be argued. along the lines __l‘\

of Sobel (1953). that the continuation region C' assumes the form {(y.s): v(s) < v < :::'};

L

y'(s). s > 0} with (yo(s).s) inside C'. One of our main objectives is to describe the :'.;',:

RN

asymptotic form of the boundaries yi(s) as s goes to zero. It can be shown that [ 3}

A

o

Y

a (p) = — a3p3/2 — asp5/8 — (ar + 20a3a4)p7/48 — O(p%) as s -0, ::;:E
°

:;':
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—1 Py —
where ao(p) = yo(s)s * and p :=s’. This function is identically zero when e

is an even function. and, hence, for all normal priors.

5.2 Expansions of d“. Let a:=ys ™ and let r!pr( a) be the r—th moment of a standard
normal random variable about — ¢, ie., p(a) = j_: ¢>(u)(u+a)rdu/r!. Thus po(a) = 1,
m(a) = a, and pla) = (p'(a) + a-p.(a))/r for t=1,2,---. It is useful to know
that ,ur(a)pr satisfies the heat equation in the variables (y,s).

A preliminary step is to expand the function dM in terms of th~ g (a)'s and

powers of p: For bounded e, as p goes to zero.

{2 n(y—fs)-e2072828/2 g ) g

ol n(y-bs)-edratnf2 o g 4

[6]<p?
=] s n(y—&,s)-ea333/6+a404/24+. 48
|6]<p?
=f}0|< L n(y—0s)-{1 + a3%/6 + as6*/24 + ---} d#
<p?

~ [ 2n(y=0s)-{1 + a36°/6 + as6*/24 + ---} df
= como( @) + cip(@)p + copa(@)p2 + cauz(@)pd + - - -,
where
Co=1 cr=ca=0, c3=a3 C4=a4 C5=25 C6=as+ 10a3”,
c; = a7 + 353324, Cg = ag + 35a42 + 56a3as.
cg = ag +34azas + 126a4as + 280a3>,

Cio = a0 + 120aza7 + 126as> + 210asa6 + 2100a3%a,.

A .
The deletion of the set 8l > p*} from the range of integration, and its subsequent
g g

reinsertion, contribute negligible terms of order e—l/(4p). Likewise. one obtains
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~ cop(@)p + 2c1p2(a)p? + 3cauz(a)pd + - - -, t
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and, hence, 7
* % :.:
(13) d (y.8)~ pola)p? + §1[C,.2u,.2(a) # rke,. pu(a)]p", -
r’ N
where the sum includes a finite number of consecutive terms. The upper and lower signs in L
‘ "#" are applicable above and below the line a_(p), respectively. ::
‘: Note that the even and odd functions of a always go with the even and odd powers ~ '
[ & %
of p, respectively. The same must be true for the expansion of b . The presence in (13) .i_:
>
of a negative second power of p forces us to say something more about solutions of the \_;’.
' <
3 heat equation. E:
.
ul~
5.3 Special solutions of the heat equation: For any integer r, V (a)p’ is a separable _'::
b
solution of the heat equation (in y and s) if V| satisfies .“f:"
L3
Py
; s
b (14) Vi'(a) + a-Vi(a) =r-V (a). ;:?:
' 2
The even and odd solutions of (14) are, respectively: {
Gla)=1+50c+ f.(ﬁﬂ.y P r(f—?)&él‘lgg—%-*-?).azn .
and _ !.
Ha) = o+ bt 4 (B 5 ooy (ELER)protndl), o 7
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The function p(a) is a multiple of G (a) when r is an even integer. and a

S

multiple of H (a) when ris odd (r = 0.1.2.---). For notational convenience. we will let

IR

pala) = Gala) = 1 — 20%/2 + 2-4a*/24 = -+ and p(e) = Hala) = a — 2a3/6 ~

.
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2.40°/120 — - - -.
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We shall seek an asymptotic solution for b of the general form

L 3
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(15) b (y) = £ uislals"

_.
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where, again, the sum includes a finite number of consecutive terms, and the u /s are

LIRS

constants which are to be determined from the boundary conditions.

LN

X
5.4 Four boundary conditions: Two boundary conditions are described by equating the &4
_x = Y

expansion of d  with the presumed form of the expansion of b . This yields By
o

?'1

(Ugpig(@) = 1o + upg(@)p™ + ugsgla) K

+ T [(u, # rkep )i (@) = Cragliragla)}p” = 0,
r21 2.

i
where " + " refers to the upper and lower boundaries yi(s), respectively. This is to hold
when a = ai(s) = yj‘(s)s’*, The further requirement that d:‘ and b:,‘ should be :
’ L.

equal on the boundaries can be incorporated by differer.tiating {16) with respect to a: '::I_
xS
U-z#-2'(0)P-2 + U-ll‘-l'(a)p“ + = [(ur x rkcr-l)“rl(a) - er#pz'(a)]/’r = 0. -

r2l X
:1:'5‘

Since g,' = p,., (r=-1.1,2.3, ---), this becomes N
l.\'
N

R

.:'

ah

~

N

- LA e *n T N A« a® " a" T a” aMa® o’ A"
L3P - LY Y AR I R I T D T S P S L N N T Y !
{\" - '\" W ‘.‘h’ J'.-\. N ('\ ‘-’N‘ \‘_ -'\¥\f‘ {\‘. ‘.‘.\J\f - *\f f\*‘- W
s St o o . . i rY v



ol AL

ANy Ty

(17) u.ap-3(@)p? + uapa(a)p™ + ‘;“l[(u, £ TKC . ) ap1 (@) = Cragpipny(@)]p = 0,
r2

x

where p.3(@) := po'(a) = —2a +2-403/6 —2:4-6a°/120 + - - -.
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5.5 The expansions of ot Following Chernoff (1972, p. 99), we anticipate that the

4

boundary functions ai(s) have a general asymptotic form

- Dl WA A

(18) o (s) ~ bsEp® + byTpt + bsTpS 4 -,

N &
-

The constants bii and the coefficients u, are determined by the boundary conditions.
The details are messy but the idea is quite simple: One replaces a everywhere in (16) and

(17) by the presumed form of the asymptotic expansions of ai(s) given in (18). This

B A Sy )

yields four series in p which can be viewed as being identically equal to zero. By setting

the coefficients of the powers of p equal to zero, one obtains a system of equations which
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can be solved to yield the coefficients u, (r = —2,-1,0,---) and bji (j=34,---). One
finds:

o S

ug=1, ug=up=0, uy=—as/2, uz=as/4, uz=—as/4,

,.
5 5

\l

ug = (ag — 2a3% — 12k?)/6, us = — (a7 + 11a3a4)/6, us = (ag + 8azas + 35a4°)/8.

u; = — (ag + 36a3ag + 72a3° + 78asas)/8 — 38k%as,

AR
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ug = (ajo + 40a3a7 + 66as? + 210a4a6 + 380a3%a4)/10 — 108k%a,,

+

beE = bgT = bgT =++-= 0, by = —a3/2 £ k/2,

bsi = —as/8, bft = — (a7 + 20a3a4)/48 = kas/4,

be¥ = — (ag + 562336 + 96asas + 96a3°)/384 = k(as + 4a5?)/16 + k?a3/24 7 k3/6.
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5.6 Expansions in the coordinate system of the posterior mean. In order to clearly
interpret (and simplify) the results described in the previous subsection, it is necessary to
change from the coordinate system based on the mapping y = (x + a;)/(t — a3) to the
coordinate system based on y = E(4|X(t)=x) = wx(x,t)/w(x,t). It is easily checked that

5] is a continuous and strictly increasing function of x when t is held constant. So, there is

a well-defined one—to—one mapping from (y,s) to (5/,5). One obvious simplification is that

the function y (s) gets mapped into the the s—axis of the (i',s) coordinate system. The

most interesting question is: "How are yi(s) mapped?" This is easily answered using the
information at hand: Let ili(s) denote the mappings of yi(s). The asymptotic
expansions of :;zi(s)s—# as p goes to zero take the form Baip‘"’ + f)5ip5 + f)yi/ﬂ + f)gipg

+ .-+, where

bsT = £ k/2, bsT = 0, br¥ = 2 kay/2, beT = + k(ag + 4232)/8 + k2a3/6 = k3/6.
Several observations can be made:

(i}  Chernoff's expansion for a normal prior has the same first term (also obtained by
Bather (1962)). Our second nonzero term does not show up in his expansion since
normal priors have a4 equal to zero. His second nonzero term is ll)gi = 7 k3/6.
(Note that our k is one-half of Chernoff's k.)

(i) The evidence for a non—symmetric optimal stopping boundary, in the ();,s) coordinate
system, first appears in the formula for i)gi, and then only if az is not zero. Its
effect is to shift the continuation region upward when positive, and in the opposite
direction when negative.

(iii) The coefficients a4 and as produce similar effects: When positive, each causes the

continuation region to be enlarged.
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(iv) It seems somewhat surprising that a4 shows up earlier than a3 in the expansions of
;'d:, and ae earlier than as (which presumably appears in t‘)ﬁ). It seems that
departures from normality more readily affect the size of the continuation region
than the location of its midline, at least when s is small (large t).

We are uncertain how to intuit observations (ii)—iv).

It should be pointed out that we have assumed much more about the prior density

g than is necessary. Clearly, for the results we have described, one only needs g to be

positive and to have a suitable number of derivatives within a neighborhood of zero.

Presumably, one can work out precise theorems with "stingy assumptions", but this is not

our intent here. It might be interesting to investigate more severe departures from

normality than we have considered. For instance, one should expect a double exponential
prior (g(0) = e-l o] /2) to behave quite differently. The optimal boundaries for one severe
departure from normality is known: It is easily seen that two point prior distributions give
rise to sequential probability ratio tests.

It is tempting to speculate whether Chernoff's (1965) theory for small t (large s) can
be extended from the setting of a normal prior to the more general setting of a smooth

prior. We do not know whether this is feasible.

1’,"‘, -.' -I ,,* -I -f .I -’ .f LT ] ~ A ~ '[.'J - —-'. ~{ -.-- J|~_-\'-.-(_..~..f\f.-.’ ‘:-'n:&-’.‘n".‘i’\i _.r ‘1 \b.\d \- -.- \- - -.\ -\ .~
h g N o A "'.)-"‘.4\:"1-.\ e T e T S Ao T M S
A L.‘l (P i) e P Y Ba¥ ! il Vo' o, Bl S NS NS A A Ll v 0

ol
L2 4

T

Y e
-y

R ]
Y

TRy,
\-"‘-\(\." -;.

2"

19

-
-""

e

Y
Ly N B NeY:

-

v

[y ) -.I‘:‘.
S

Ay

[ ¢
£

B3

S P
AL

e
s

“v .'-

)
T

Id

S 5N
-~

FXN N,
:7'15

e
LA M
PP

ww

.

S,
sl
S

1} ."\.
X

7

1t
"“I

A A

LN
S

v ;f‘-;h ®

{';('- <
"] ﬂ-%‘-»f&

_1¢
Ly,
| 4

-----



18,08 IO WL W WU NG VL WL L T RN J gt ady A 8 p

W - - - -

L S g e L

i

o alial et TN, ;

ot - ™

)
Y

U 2 L g

h
' WAL SR INLS
]

‘.!n‘!‘l’:'. o, '. % "

7,

-16 —

REFERENCES

Bather, J. A. (1962). "Bayes procedures for deciding the sign of a normal
mean", Proc. Cambridge Philos. Soc., 58, 599—620.

Chernoff, H. (1961). "Sequential tests for the mean of a normal distribution",
Proc. Fourth Berkeley Symp. Math. Statist., 1, 79-91.

Chernoff, H. ('1965) "Sequential tests for the mean of a normal distribution
[II (small t)", Ann. Math. Statist., 36, 28—54.

Chernoff, H. (1972). Sequential Analysis and Optimal Design, SIAM
monograph 8, Philadelphia, PA.

Chernoff, H. and Petkau, A. J. (1984). "Numerical methods for Bayes
decisions problems", Statistics Center Tech. Rep. No. ONR 34, MIT,
Cambridge, Mass.

Chernoff and Petkau, A. J. (1986). "Numerical solutions for Bayes sequential

decision problems", SIAM Journal on Scientific and Statistical Computing, 7.

46—59.
Sobel, M. (1953). "An essentially complete class of decision functions for
certain standard sequential problems", Ann. Math. Statist., 24, 319-337.

_-'\1 L2 -~

L g LI 2P B R ey Ry ) LI P I ey ] T e a™ m "k R " 2" """ 2" """ o~ a " - .- - . ..
LS SRR RS T S L A S e L T AT T B AL R AL RS AN N S R S
A \.-ns\ g ~.-\. - -. Tl "'\" nda s \\ AT T AT T

<
-

PERTEI L

- g w_m e
Ho 0 0 P %

v AN

e a

Sl ANANIT g

‘h')_'v'-ﬁ‘v'-{"

s 17
. s

B % 7 BRI



5 ! 1, y \ , 2 4
A @ ey,
R P e AP " n.....”... Sy

LI A G W W LA S | PSR R Sl -.....\-l\\\\\

- s A




