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1. Introduction. Chernoff (1961, 1972) and others have shown how the heat equation and

associated free boundary problems arise naturally as mathematical tools for approximating

Bayes sequential procedures. Typical applications are concerned with normally distributed

observations which depend on an unknown mean 0 and a normal prior for 0. The present

paper has two objectives: (i) to show, very generally, that the heat equation is still relevant

when 0 is not normally distributed, and (ii) to investigate the problem of testing the sign

of the normal mean for smooth priors. A smooth non-normal prior can be viewed as a

perturbed normal prior, and it is possible to very precisely describe how the perturbation

affects the associated free boundary.

Since the subject of free boundary problems is fraught with technical details, a

conscious decision has been made here to emphasize exposition rather than rigor.

2. Bayes problems and continuous time approximations. Suppose X1 , X2 , • are potential

observations which are independent and N(8,a2 ), where a2 is positive and known, and 0

is unknown. Set Sn = X1 + ... + Xn, n0, and, for definiteness, ar2 = 1. We shall assume
that we are dealing with a concrete statistical problem which is expressed within a

decision-theoretic framework with a suitable loss structure, and that 0 has a prior density

g. The Bayes sequential procedure is sought.

Let d(z,n) denote the posterior Bayes risk associated with stopping at time n, with4I
S. = z, and making an optimal terminal decision. The primary task, in a Bayes sequential

problem, is to find the stopping time N, within {0, 1, 2 , }, which minimizes the

'.1 expectation E{d(SN,N)}.

We are only concerned here with the commonly used approximation based on the

replacement of {S,, n0} by a Wiener process X = {X(t)., tO} with drift rate 0. Given

0, the differential dX(t) has mean 0.dt and variance dt. The task is to find the

*1. %2.I*
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stopping time r in [0,®) which minimizes E{d(X(r),r)}. Such problems can be viewed

as Markovian, with states (x,t), and the search for optimality can be viewed as a search for

an "optimal continuation set" C in the (x,t) plane: The optimal stopping time r = r(x.t)

is the first time that X reaches the boundary of C if (x,t) is in C. And it is simply t

otherwise.

Let b(x,t) := E{d(X(r),r)}, represent the minimal Bayes risk that can be achieved

by stopping optimally starting from state (x,t). The same argument as that used by

Chernoff (1972, p. 92) can be used to show that it satisfies a diffusion equation:

(1) bxx + 2 (x,t)'b x + 2bt 0, (x,t)EC,

where

0 exp~xO - tP2 /2} g(O) dO -I

(2) (,(x,t) := E{OIX(t)=x} J exp~x# - tO2/2} g(P) dO

And, with the possible exception of certain points of singularity, the boundary conditions

S.(3) b -"d, bx = dx, b t  dt ?
hold on the boundary of C. Frequently, equation (1) and the first two conditions in (3) *,

jointly determine the function b and the set C. But these conditions do not always

guarantee a unique solution.

We note in passing that the ratio in (2) is meaningful for t > 0 even when the prior

g lacks a finite first moment.

3. Chernofls negative s scale. It is a standard practice to assume that the prior g is

%~ %,%

S'.
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normal with some known mean p and variance ao2 This makes the marginal
.mm

distribution of X Gaussian but something other than a Wiener process with drift. It does

not make equation (1) particularly attractive to work with. For this reason, Chernoff

(1972) and others have found it more convenient to work with the posterior mean process

Y = {Y(s), 0 < s < a2}, defined by

(4) Y(s) = E{OIX(t)} = (X(t) + o/ao2)/(t + ao-),
-.,S

where s = 1/(t + a -2) is the posterior variance at time t. Then Y is a Brownian

motion evolving backwards in time, as measured in s (hence the name "negative s scale").

And b(x,t), when described as a function of (ys), satisfies the much more familiar heat

equation uyy = 2Us, and boundary conditions comparable to those in (3). A frequent P

additional advantage is that Y(s) is statistically more relevant than X(t). I.e., d(x,t) is

more naturally described as a function of (y,s). -

If the prior g is non-Gaussian, the marginal distribution of X is non-Gaussian.

Moreover, the posterior mean is non-Gaussian, and it no longer assumes the simple linear

form shown in (4).

The loss of the linear form is unfortunate; for it is the reason Y is a Brownian

motion. It will be seen in the next section that it is possible to continue to work with a

variant of this linear form. We will be content here with pointing out that the posterior

mean is approximately equal to a linear form when t is large and the prior g is o

sufficiently smooth: It can be shown that (t+c)E{OIX(t)} - (X(t)+a) is a convergent

martingale, for arbitrary constants a and c, whenever g is continuously differentiable, in

which case the limit equals g'(0)/g(O) -a + cO a.s. A linear form will be used, as a

mathematical convenience, when we consider the problem of testing the sign of the normal

-'P

• m P / W'' ? I . .. . . ? . ' - -
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mean. The results so obtained will need to be restated in the coordinate system of the 5'

posterior mean before meaningful comparisons can be made with Chernoff's results for

normal priors.

4. Transformations. We are concerned here with transformations of b which satisfy the

heat equation uxx = 2u t . We start with a transformation which satisfies the backward
.1"*

heat equation uxx = - 2ut:

Theorem 1. The function *|

(5) b (x,t) b(x,t) - x,t)

o°I.satisfies the backward heat equation in C, where

(6) (x,t) := _ exp{x- t9/2} g(O) dO.

The proof follows by direct calculations.

Now set

d (x,t) d(x,t) x,t).

The functions b and d can be viewed as surrogates for b and d, respectively:

Instead of trying to solve the free boundary problem represented by equation (1) with "'

boundary conditions (3), one may solve an equivalent problem using the surrogates h

and d.

What we have done can be understood from a probabilistic perspective as well: The

transformation corresponds to a change of probability measures with X(X(t),t) equal to

the Radon-Nikodym derivative dP/dP for the (current) sigma-field ajX(u): u<t}.

% % % % % .%
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Under the new probability measure P , X is a Brownian motion, d and b are the proper

analogues of d and 1) respectively, and the proper analogue of (I) is the backward heal

equation.

To get from the backward heat equation to the heat equation, let. y : (x + a)/(t +

c) and s= 1/(t + c) (t > - c), an(d let C' he the iniage of C in the (y,s) plane, where,

for now, a and c are arbitrary constants. Thus, x v/s - a and I, 1/s - c. Further,

let v be t he standaAr normal densitv an(d ii(,s)

Theorem 2. Th fil i

(7) b (.) b s) (x.t).n(vst ,

A aitl the proof follows l)v (f11ict calculat fils. A tld a-aL i i t tlrobatill,1t

interpretat loll call I givoln: Asslum' N - (X(t)' tQ0) is sland]ard Blrownian inotil01 1d(11 po.

lle pl obability ll.asl lr' ) an d c 0. lhell the process Y { Y(s) = (X(t) + a)/(I +

), It<K l/c'} is Btowtiati motiotn in reverse tI o e s. un1der a probailit Y Ileasilre I if

f"or cach s. leRadom-Nikodvint derivative dl /dl1 for the (current) sigma-field

,'7{ Ntt): S<(1<_I/cl is proptortiotal to t( (s).s). (The coefficietnt of ltoportiotality equals

I lworcmis I inn 2 tO~,ftl~r .\ielI the formuiila

('< b - (y.S,) hl(×.t).f "a(. ---s. W 12 (0))(l0.
"i..

%%
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eqluivalently, in terms of surrogates, 1) andl

(9) d (y,s) =d(x,t).J-0 tyOs)eaIv/ g(O d0

WVhile a part icuilar solution 1), so found, may not lbe the solution sought for thle sequent Wa

Baves p~roblem, one of the ob~tainablle solutions in the (y,s) plane will. necessarilyv.

correspond to thle sequential Bayes p~rob~lem; there is a simple one-to-one correspondence

bet ween sol it ionis ill thle two spaces.

Not ice that thle originial p~roblem has been con verted into an equivalent prolblemn ili

hle colitex(t ( f ('1ierii1off's iaIt .yie s scale dIescrib~ed in Section :3. This has several I

advanrta n-es. :\in ol vions advantiiage is that the heat equation has been widely studliedl by

lprolba 1lists a id statist icians5. MIanyv solunt ions are known, andl these canl be uwe( to 01)1 iii

Asviiptot ic explansions atid ot her artalvt ic approximations to the solution of the free

boliilr priob~lti . nlot tier (orvetlerce is that (lier-noff and] Petkau (1.98.1, 19861) ha ve

developcd rniniiecrical algoritlirrs for ihe ne-ative s scale which Find 1) and (" for qlit Ie

genera'il fiiiictiisi d(I A;fiial pot (it al advaintage is that one( is able to place a large

fairlvl of opt1imial st oppn-i probilemts withlin a coiior (ont ext; each prior g corflribmni s at

membI er. Tis inivites(' new I vpes of comptlarisons. An exampile of I this is given iii 1lie next

sect10it.

It is now at quiick tuat I ur to (omipletelv recover ( 'lerrioff's framework when thle lio

gis nornial N~p 0a 02): Sinjplv set a 1 p /a02 and c I/7 2. Then (8) and (9) beconie
0 0 0 0

corist alt n (p ' C7 2) con(tribhutes riothingy of signuificance to t he p~robllemi. and (anl simpilyl he
0 0

dlropp~edl. So, effect ivelYv we are concerned withI the transform at ion d(I vs) ( ~x .t .

where v ( x +± p /ci2)/(I + a0 -2) arli S +- l/(r± 0 ). and we seek a suit able solution

% %
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b (y,s) of the heat equation. Chernoff, by focusing attention on the posterior mean

process (4), reaches the same context.

More generally, suppose, for now, the prior g is strictly positive and smooth in the

sense that log g(0) is expressible in a Taylor series expansion:

(10) log g() =a+ a0 + a202/2 + a3 0/6 +....

It is convenient to think of a, and - a2 as prior parameters with all the other subscripted

a's held fixed except ao, which must be chosen to make the integral of g equal to one. Then

the posterior density of g given X(t) = x remains in the family, and it has posterior

parameters x + a, and t - a2. This is a generalization of the normal family, which

corresponds to ai = u/ O, 2 and a2 -1a2, with ak 0' 0 for k > 3. In general, the

integrals in (8) and (9) take the form

. (11) exp(ao).f n(y-,s).exp {a30 3/6 + a4#/24 + . dO

when one sets a = a, and c = -a2. This makes y = (x + a)/(t - a2).

R'?

5. Testing the sign of the drift.

5.1. The function d (y,s). Assume the cost of sampling is one per unit time and the cost

due to a wrong assessment of the sign of the drift rate 0 is 2k 01, where k > 0. This

leads to

0 O 0-t/2g(O) dO f 0IeXt/ 2g(0) dO

d(x,t) t + 2k .m ini 0 x______0_e ____/2 ____

ef_ eXt02/g(0) dO .. ext 02/ 2 g() dO

4,/

a

:00

% %% %%,
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and

d (y~s) =(s-' + a2)f~ n~-,~-a6La6/g dO +

2k* m { n~y9.s~al g(9) dO-f 0 On(y..Os)e-a9a2/g(,j udj

Before proceeding, we shall find it convenient to subtract away a solution of the heat

equation, f~ (a2±k I 91 )n'y-O,s)e-a1OLa26p/'g(9) dO, and then tc -livide by the positive '

constant e, which will not affect the boundary of C'. (This particular solution is defined

for 0 < s < ox if a2? 0, and for 0 < s < -a,)- if a2 < 0.) Keeping the same notation. as

a convenience, we obtain

d**(y~s) =s-'f '0n(y-0s)eal-10a20/2g(9) dO

(12)

-k If! 0.n(y-.s)eala1 L-~ /2() dOl.

Using the fact that the function ,x,t) =f O-exp~xO -02/21 g(9) dO. is

monotone in x, one can show that the second integral in (12) vanishes along a line

(y0 (s).s). It is positive above the line and negative below. It can be argued, along the lines

of Sobel (1953), that the continuation region C' assumes the form {(y~s): yi(s) < v <

y*s) > 0} with (y Vs),s) inside C'. One of our main objectives is to describe the ",~0
asymptotic form of the boundaries x' (s) as s goes to zero. It can be shown that

a (p) =-a 3P3/2 - a5P5/8 - (a-, + 20a3a4)p7/48 - 0(p 9) as s - 0,
00

ir r.
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where ao(p) := yo(s)s-- and p := s'. This function is identically zero when e-alg(o

is an even function. and, hence, for all normal priors.

5.2 Expansions of d Let a:= ys 2 and let r!jir(a) be the r-th moment of a standard

normal random variable about - a, i.e., ur(a) f . ¢(u)(u+a)rdu/r!. Thus (a) = 1,

jul(a) = a, and 1r(a) = (Ir.l'(a) + a-/r 1(a))/r for r = 1, 2, .. It is useful to know

that Ilr(a)pr satisfies the heat equation in the variables (y,s).

A preliminary step is to expand the function d in terms of tho iir(a)'s and

powers of p: For bounded a, as p goes to zero.

f .n(y-0,s),e - a - al 6--a26/2. g( 0 ) dO

f n(y-O,s), e - a - a #--a2 /2. g(O) dO

f 101 O <P 2 n(y-O,s).-e a 303/ 6 + a 4O4/ 24 + " " " dO

f. -: = n(y-O,s).e( + a3#3/ 6 + a404/24 + dO

- _n(y-O,s) .{I + a3
3/6 + a40'/24 + } dO

= copo(a) + Cl(a)p + C2.2(a)p 2 + C3,j 3(a)p3 + "

where
'p2

'CO = 1, C1 = C2 = 0, C3 = a3, c 4 = a 4 , c 5 = a5 , c6 = a6 + 10a32 ,

C7 = a7 + 35a 3a4, c8 = a8 + 35a 4
2 + .56a 3a5,

c9 = a9 +84a 3a + 126a 4a5 + 280a 3
3,

..a c o = ajo + 120a 3a7 + 126a 5
2 + 210a 4a6 + 2100a 3

2 a4.

The deletion of the set {I 101 > p"} from the range of integration, and its subsequent

reinsertion, contribute negligible terms of order e1/( 4 p) Likewise, one obtains

r J -P

U'.j
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..
0. n(y-O~s). /2g(O) dO ."

"cojj( a)p + 2cIP2(a)P2 + 3c213( a)p3 + " ,

and, hence, 
%

(13) d (y,s) -po(a)p-2 + le [Cr+/r+2 (a) rkcr-ir(a)lpr,
r> 1

where the sum includes a finite number of consecutive terms. The upper and lower signs in

are applicable above and below the line ao(p), respectively.

Note that the even and odd functions of a always go with the even and odd powers %

of p, respectively. The same must be true for the expansion of b The presence in (13)

of a negative second power of p forces us to say something more about solutions of the

heat equation.

5.3 Special solutions of the heat equation: For any integer r, Vr(a)pr is a separable
'p.

solution of the heat equation (in y and s) if Vr satisfies

:-S.

(14) V.'(a) + a.V.(a) = r.Vr(a).

The even and odd solutions of (14) are, respectively:-.

Gr~a).= 1 + .a + ..4 + .. + r(r-2). - r-2n+2). .2, + .. .

and p-

H'' = o + 3- + (r-1) (r-3). .+ + (r-1)(r-3) • - . r-2n+1). a2 n+t +r2a0 (2n+ .

, "S

%.5%.5.%.%.D -,--
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The function M,(a) is a multiple of Gr(a) when r is an even integer, and a

multiple of Hr(a) when r is odd (r = 0,1.2....). For notational convenience, we will let P

k-2(a) = G 2(a) = 1 - 2a2/2 + 2.4a 4/24 . and ja-t(a) = H-t(a) a - 2a3/6 -

2.4 a/120 - . ..
*5

We shall seek an asymptotic solution for b of the general form

(15) b (y,s)- E urpr(a)pr,
r> -2

where, again, the sum includes a finite number of consecutive terms, and the ur's are

constants which are to be determined from the boundary conditions.

5.4 Four boundary conditions: Two boundary conditions are described by equating the ,.

expansion of d with the presumed form of the expansion of b This yields S.S.

PS

(u. 204. 2(a) - 1)p 2 + U.1 ,U1 (a)P- + Uo0Jo(a)

(16)
+ E [(u, * rkcri-)jir(a) - Cr 2Ur 2(a)]pr = 0,

r>1

where refers to the upper and lower boundaries y (s), respectively. This is to hold

when a = a (s) y +(s)s - . The further requirement that dy and b. should be

equal on the boundaries can be incorporated by differentiating (16) with respect to a:

u-2p -'( a)P' 2 + u-I'U-'(a)P' +rE [(u r rkcr.1)pUr'(a) - Cr 21r, 2 I(,)]pr 0..
r >

Since pr' = p-I(r - -1. 1, 2. 3, .. this becomes

II



-13-

(17) U.29.3(&)P -2 + U-U_-2(a)P - + [ *ur * rkcr.i)/r.il(a) -Cr.2/Jr+I(d)]p - 0,
r >

where U-3(a) := p-2'(a) =-2a + 2. 4/6 - 2.4.6 /120 +

5.5 The expansions of a t . Following Chernoff (1972, p. 99), we anticipate that the ..

boundary functions a (s) have a general asymptotic form

(18) a ±(s) - b 3 "±ip3 + b4 ±P4 + b5 ±p5 +

The constants bi +  and the coefficients ur are determined by the boundary conditions.

The details are messy but the idea is quite simple: One replaces a everywhere in (16) and

(17) by the presumed form of the asymptotic expansions of a ± (s) given in (18). This

yields four series in p which can be viewed as being identically equal to zero. By setting

the coefficients of the powers of p equal to zero, one obtains a system of equations which ,.

can be solved to yield the coefficients ur (r = -2,-1,0,-.-) and bj (j = 3,4,...). One

finds: "1

U-2 =1, u-1 = uo = 0, u=-a3/2, u2 = a4/4, u3 =-a5/4, -I

U= (a6 - 2a32 - 12k2 )/6, u5 - - (a7 + 11a3a 4 )/6, u6 = (a8 + 8a3a5 + 35a 4 
2)/8.

U7= - (ag + 36a3a6 + 72a33 + 78a 4as)/8 - 38k2a3,

us = (a10 + 40a3a7 + 66a52 + 210a 4a6 + 380a 32a4)/10 - 108k 2a4, a

b 4 = b6 = b8  0, b3  -a 3/2 k/2,

bs± = - a5/8, b7 ± = - (a7 + 20a3a4)/48 ± ka4/4,

b9= - (ag + 56a3a6 + 96a4a5 + 96a33)/384 * k(a6 + 4a32)/16 + k a3/24 T- k3/6.

W N.4V ;I
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5.6 Expansions in the coordinate system of the posterior mean. In order to clearly

interpret (and simplify) the results described in the previous subsection, it is necessary to

change from the coordinate system based on the mapping y = (x + a)/(t - a2) to the

coordinate system based on y = E(01X(t)=x) = Vx(x,t)/ Vx,t). It is easily checked that

y is a continuous and strictly increasing function of x when t is held constant. So, there is

a well-defined one-to-one mapping from (y,s) to (y,s). One obvious simplification is that

the function yo(s) gets mapped into the the s-axis of the (y,s) coordinate system. The

most interesting question is: "How are y (s) mapped?" This is easily answered using the

information at hand: Let y (s) denote the mappings of y (s). The asymptotic

expansions of y+(s)s ' as p goes to zero take the form b3s~p + b5+p5 + b7±p7 + 9 p

+ .. ,where

b3  = * k/2, b5  = 0, b7  = * ka 4/2, b9  = * k(a 6 + 4a32)/8 + k2a3/6 : k3/6.
4.r

Several observations can be made:

(i) Chernoff's expansion for a normal prior has the same first term (also obtained by

Bather (1962)). Our second nonzero term does not show up in his expansion since

normal priors have a4 equal to zero. His second nonzero term is b + = k1/6.

(Note that our k is one-half of Chernoff's k.)

(ii) The evidence for a non--symmetric optimal stopping boundary, in the (y,s) coordinate

system, first appears in the formula for b9
" , and then only if a3 is not zero. Its

effect is to shift the continuation region upward when positive, and in the opposite

direction when negative.

(iii) The coefficients a4 and a6 produce similar effects: When positive, each causes the

continuation region to be enlarged.

:.% %, %%
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(iv) It seems somewhat surprising that a4 shows up earlier than a3 in the expansions of

y+, and a6 earlier than a5 (which presumably appears in b1 1). It seems that

departures from normality more readily affect the size of the continuation region

than the location of its midline, at least when s is small (large t).

We are uncertain how to intuit observations (ii)-(iv).

It should be pointed out that we have assumed much more about the prior density

g than is necessary. Clearly, for the results we have described, one only needs g to be

positive and to have a suitable number of derivatives within a neighborhood of zero.

Presumably, one can work out precise theorems with "stingy assumptions", but this is not

our intent here. It might be interesting to investigate more severe departures from

normality than we have considered. For instance, one should expect a double exponential

prior (g(O) = e- 1 01/2) to behave quite differently. The optimal boundaries for one severe

departure from normality is known: It is easily seen that two point prior distributions give .4

rise to sequential probability ratio tests. -

It is tempting to speculate whether Chernoffs (1965) theory for small t (large s) can

be extended from the setting of a normal prior to the more general setting of a smooth

prior. We do not know whether this is feasible.

A% A
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