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Abstract

Recent results on coding capacity and information capacity for the

. mismatched Gaussian channel are discussed. Sufficient conditions for causal

- feedback to increase information capacity are given for the finite-dimensional

discrete-time Gaussian channel.
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Introduction

The capacity (in the Shannon sense) of a communications channel is

usually defined by either of two principal prescriptions. Information capacity

is the supremum of the average mutual information between an input stochastic

process (signal) and the noise-perturbed output process, with the supremum

taken over an appropriate class of admissible input processes. The second

definition is that of the supremum of all possible transmission rates, where

the transmitted code words are subject to a constraint. For example, in the

time-discrete additive channel, define the number of distinct code words tran-

smitted by time tn as [e nR], where [x] is the integer part of x, and R is the

"rate." If R is fixed and the maximum probability of decoding error goes to

zero as n - c along some subsequence, then R is said to be an admissible rate

(for the channel and the constraints). The (deterministic) coding capacity is

then the supremum over all admissible rates. One can also consider random

coding and other capacities connected with coding; only deterministic coding

capacity will be considered here.

The additive Gaussian channel is a channel of primary practical impor-

tance. The received waveform is the sum of the transmitted waveform and a

sample function from a Gaussian process: Y = X + N. where N is noise, X is

signal. If the channel is without feedback, and X is a sample function from a

stochastic process, then N is usually independent of X. With feedback, X will

be a function of the past values of Y, and will thus depend upon N.

In this paper, a general discussion is first given of some recent results

on information capacity and coding capacity of additive Gaussian channels when

the constraint is mismatched to the channel noise; that is, the constraint is

given in terms of a covariance that is different from that of the noise

covariance. Such a "mismatched channel" is the usual case in practice, since

one will rarely know the exact covariance of the noise. Moreover, in some

situations, such as jamming channels, the mismatch occurs as an essential part

of the problem formulation. The results given here on information capacity
without feedback appear in [3]; the results on coding capacity will appear in

• [5]. A second set of new results summarized here consists of sufficient condi-

tions for causal feedback to increase information capacity [2]. A statement

and proof are given for the finite-dimensional time-discrete channel.
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The channels considered here can be nonstationary and can have memory.

Thus, in the discrete-time case, it is not required that the noise covariance

matrix RN be a diagonal matrix.

Information Capacity and Coding Capacity of Gaussian Channels Without Feedback

For information capacity of Gaussian channels without feedback, solutions

are given in [1] and [3]. The framework there is for stochastic processes

inducing measures on Hilbert space. These results can be extended to measures

induced on a class of linear topological spaces; see [9] and [4].

Consider now the additive time-discrete Gaussian channel without feed-

back, with processes involved having sample paths in e2 . Let X denote an input

stochastic process, Y = X + N as above, and IFX, Y] the mutual information

between X and Y (see, e.g.. [1] for basic definitions). Let RN denote the

covariance operator of the noise, and let RW denote another covariance opera-0

tor. Define the constraint on X by IIX1I 2 P, where 9(-) denotes expectationW

with respect to the probability on e defined by X. and I1-11 is the repr--
2 W

ducing kernel Hilbert space (RKHS) norm for R: IyII = URW2yI} (1111 the 2
norm); one can assume WLOG that R- exists. If RW = RN , then the supremum of

I(X. X+N) over all such admissible X processes is equal to P/2.

For the same channel, with deterministic coding used, for each n > 1.

constrain each code word x to belong to 0n and to satisfy Ilxil . nP. where
Wn

S'll is the RKHS norm of Rw, with the nxn matrix given by
W,n W

RW(ij) = RW(ij), i.j _ n. A code {kn,en} is then a set of k code words, each

obeying the constraint, with maximum probability of decoding error being - n'

A real number R > 0 is then an admissible rate if there exists a sequence
.+R

(-[e, ].nen}) of codes such that e - 0 as n -* along some subsequence. The

supremum of all admissible rates is the coding capacity, denoted here by

C;(P). If RW = RN. then C(P) ' ' log[l+P].

Those familiar with the Shannon theory will recognize the similarity of

the above results to those obtained for the classical white noise channel with

-2-
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a pure power constraint [6]. However, this similarity disappears when one

examines the "mismatched" channel: Rw i R The expression for the information

capacity then takes one of several forms, depending on the relationship

between RW and R For finite information capacity, one must have

RN = R (I+S)Rw, where I is the identity in R2 and S is a self-adjoint operator

in P2 such that (I+S) - I exists and is bounded [3]. The information capacity

then depends on the spectrum of S; specifically, on the smallest limit point

of the spectrum, denoted by 0, and those eigenvalues (if such exist) of S that

are strictly less than 0. See [3] or [4] for the various expressions. These

expressions are considerably more complicated than that for the matched

channel.

For coding capacity when Rw e RN. one again obtains a rather complicated

expression for the capacity. In [5]. a solution is given for capacity under

the assumption that S has a pure point spectrum. The solution is a function of

the limit points of the spectrum of S and of their "relative importance." For

the memoryless channel, where RN is diagonal, this "relative importance" can

be roughly described as the relative frequency of each limit point.

In the case where the spectrum of S has a single limit point, 0, and S

has no eigenvalues strictly less than 0, one obtains a result analogous to

that of the matched channel (RW = RN): the information capacity is equal to

±P P
1+-- and the coding capacity is equal to ' log[l + 1-

In the analogous problems for the time-continuous channel, the constraint
2

on the code words is given by llx1w, < PT, where x is required to belong to
,L. -r

* L2LO,T] , and 11-1lWT is the RKHS norm of RWT. RWT is obtained from a covar-

iance function rW , defined on [O,x)x[O,w). and R T is the integral operator

defined by the restriction of rW to [O,T]x[O.T]. In this case, assuming that

O range(RW T) is infinite-dimensional for some T > 0, the coding capacity when

R R for all T > 0 is given by P/2. When RWT # RN,T' withW.T NJ WTXVNT
R N RT(IT+ST)RW IT the identity in L2[O T], then the coding capacity

depends on the behavior of (0T T > 0) and (N n > 1, T > 0), where 0T is the

T' ~ n T

-3-
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Tsmallest limit point of the spectrum of S T and TX n n >l1 is the set of
.eigenvalues of S that are strictly less than 0 if (XT n > 1) is empty for

gT PT n )e

all sufficiently large T, then the coding capacity is 1 , where

0 = lim 0T ' However, in general ' --L is only a lower bound for the coding

capacity

Thus, the results for coding capacity and for information capacity of the

mismatched channel (RW p RN) both differ significantly from the corresponding

results for the matched channel. For further details, reference is made to

[1], [3]. and [5].

All of the above discussion is for the additive Gaussian channel without

feedback. In the case of channels with causal feedback, the solutions for

information capacity and for coding capacity have not been obtained in the

case of the mismatched channel. For the matched channel, information capacity

when N is the Wiener process has been obtained [8], and this has been extended

to obtain capacity for some more general Gaussian processes [7]. In both

cases, it has been found that causal feedback does not increase capacity. A

solution has not been published for the general additive Gaussian channel,

even for the matched case (Rw = RN).

Feedback Capacity

Information capacity of the mismatched Gaussian channel with feedback is

an open problem. It has long been speculated that causal feedback can increase

capacity over the no-feedback situation. An answer will be given here to these

questions for the discrete-time finite-dimensional channel: processes take

*"6 values in RK. These results and other results for infinite-dimensional chan-

nels were announced at the 1986 IEEE Symposium on Information Theory [2].

The channel output is Y = X - BY + N, where X is the message process, N

is Gaussian noise independent of the message, and B is a strictly-lower-trian-

* gular (SLT) matrix (b = 0 for j _ i). The transmitted signal is X - BY. All
ij

processes are defined on a probability space (1,.,I), and 9 will be used to

denote expectation with respect to I. The capacity problem is the following:

*h.
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maximize I[X, Y] subject to 911X - BYII2 < P.

2 K 2
where I1-11 is the norm for a K-dimensional Euclidean space: XII12 = 2 X..

i=l

I[X. Y] denotes mutual information of X and Y. See [1] for definitions.

Let

C F(P) = sup I[X. X-BY+N]
F

C(P) = sup I[X, X+N]
F 1

where F = {(XB): 911X - BYII < P, Y = X - BY + N, B SLT}

F1 = {X: 911X1i2 < P}.

An "elementary vector" in IRK is a vector x such that xk = 1, x. = 0 for

i X k. some k in (1,2 .... K}.

The main results of this section are contained in the following theorem.

THEOREM. >P) > C(P) for all P > 0 if the eigenmanifold for the smallest

eigenvalue of RN does not have a basis consisting entirely of elementary

vectors which are eigenvectors of RN.-

CF(P) > C(P) for all sufficiently large P if RN is not a diagonal matrix.

0

In order to prove the result, the problem will first be reformulated into

an equivalent no-feedback problem involving a pure power constraint.

Reformulation of the Problem

Y = X - BY + N; since B is SLT, Y = (I+B) (X+N). Moreover, as (I+B) is
* 2

1:1. I[X, Y] = I[X, X+N]. The constraint is 411X - BYII < P. which can be
-1 ( 2

written as 911X - B(I+B) (X+N)II < P. Since B is SLT, I + B is lower

triangular, so (I+B) is lower triangular and B(I+B) is again SLT. Given

• any SLT C, there exists a SLT B satisfying C = B(I+B)-; simply, B = (I-C)- C.

The original feedback problem is thus equivalent to finding sup I[X, X+N]

subject to 9IX - C(X+N)l2 < P, where C is any SLT matrix.

Using the above, attention can now be restricted to the following

• problems.

-5-
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CF(P) = sup I[X, X+N]
F'(P)

C(P) = sup I[X. X+N]
Fj(P)

where F'(P) is the set of all Gaussian random vectors in K such that

BX+N)Ii P for some SLT matrix B, and FI(P) is the set of all Gaussian

K 2random vectors in ER such that llXl1 < P.

Structure of the Reformulated Problem

Let H(RK 4) be the set of all K-component real random vectors f on (Q,)
K 2 K

such that 9 2 f (w) < -. H(R .4) is a Hilbert space under the inner product
n=l
K

(fg)4 = 9 2 fn(W)gn(w). Suppose that X and N are two mutually independent
n=l

zero-mean Gaussian (w.r.t. i) random vectors: 9Xn(w)Nm(w) = 0 for all n.m < K

Suppose also that N has non-singular covariance matrix RN. Let H_(X+N) be the

K
set of all random vectors f in H(R .p) having the form f = B(X+N), where B is

an SLT matrix. It is clear that H (X+N) is a linear manifold. It is also

closed in H(IR K.) norm since

IIBn(X+N) - Bm(X+N)112 = II(Bm-Bm)(X+N)II2

= Trace (B n-Bm )(RX+RN) (B n-Bm)* > 0 Tr (Bn-Bm)(B n-B )*,

where 0 is the minimum eigenvalue of RN.

Thus, if (Bn(X+N)) is Cauchy in H(RK, w), then Tr (Bn -Bm)(Bn-Bm)* -- 0.
K n m2 n

This is equivalent to . (B..-B. .) -i 0. Hence (Bij) must be Cauchy for each

,j. and so the limit exists as an SLT matrix B.

Now let N be a fixed Gaussian vector. For any Gaussian vector X indepen-

dent of N, let P X be the projection of X onto H_ (X+N). The feedback problem

is now to choose a Gaussian vector X so that I[X, X+N] is maximized, while

ix - P Xii 2  P.

That is, if one chooses any Gaussian vector X with SLT feedback matrix B,
suhta IX-2 2 2

such that 91X - B(X+N)II < P. then necessarily 9IX - B(X+N)II > IX - P XI

>LI

-6-
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and since PX = C(X+N) for some SLT matrix C (since H_(X+N) is closed) one can

replace B with C and be assured that the constraint is still satisfied.

It can be seen from the above that C F(P) > C(P) if the optimum solution X

for the no-feedback message is not orthogonal to H(X+N). In fact, if this

condition is satisfied, then for the optimum no-feedback message X, and a X 0,

911aX - B(a-X+N)II2 < P gives a2911X112 < P + A. where A = Tr B[a 2RX + RN]B* =

a2Tr BRx and B(aX + N) is the projection of aX onto H_ (aX+N). Since 9IIXII 2 = P

2 2, for the optimum no-feedback message X. setting a 911XII = P + A gives2 2

a 2= + A/P. so that a2 > 1 whenever A > 0. Thus, one can replace X in the no-

feedback problem with aX. use the upper bound P + A in place of P, and obtain

a strict increase in capacity. Of course. A depends on a.

The above requires that the optimum no-feedback message X not be ortho-

gonal to H_(X+N). Since X is independent of N, this orthogonality condition

occurs if and only if X is such that for all non-zero SLT matrices B,

Tr BR O.

a PROPOSITION. Tr BRX = 0 for every SLT matrix B if and only if RX is diagonal.

Proof. Since (BRx).i = .B..RX(ji), it is clear that Tr BRx = 0 for every SLT
j<i

matrix B if RX is diagonal. Now suppose that Tr BRX = 0 for all SLT matrices

B. For any i.j _ K such that i > j, choose the matrix B to be zero except for

* the ij component; then Trace BRX = bijRx(ji) = 0, so that Rx(ji) = 0. As RX is

symmetric, this shows that the condition Tr BRX = 0 for all SLT matrices B

implies RX is diagonal.

This development shows that feedback can increase capacity if the optimum

no-feedback message X does not have uncorrelated components. From [3, Theorem

1], the optimum no-feedback signal covariance is given by

-J J J
R= 13 + P nU -u u m mUmu

where {un  n < K} are o.n. eigenvectors of R corresponding to the increasing
n N

-7-
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sequence of eigenvalues (1+0n) and J k is the largest integer such thit

P1)
P + P, /i 2 JfO For all sufficiently small P, this gives R - uu.

J, Li=l in [.

where L is the multiplicity of 1 + 03 as an ei-envalue of R R wilV 'he: rtN%-NY

be diagonal if {u i , i < L} cannot be taken to consist of elementarv vector,

If R, is defined as above for J > L, then this property will again preverit R

from being diagonal, since a diagonal RX must have the K elementary vectors a,

a c.o n. set of eigenvectors. This shows that C (P) > C(P) for all P > 0 if

the restriction of RN to the eigenmanifold of 1 + /l (as an eigenvalue of RN)

is not diagonal. Further, for all sufficiently large P.

rK
R\ K 3 + P + - RN

This matrix is obviously non-diagonal if RN is non-diagonal. These observa-

tions complete the proof of the Theorem.

0

The above results give sufficient conditions for feedback to increase

information capacity. It can be seen that the requirement that RN not be

diagonal is also a necessary condition if feedback is to increase capacity for

. some value of P, without assuming linear feedback.

Acknowledgement

'The research summarized here was supported by ONR Contract NOOOl-1-S6-

K-0039

Re ferences

I. C R. Baker. Capacity of the Gaussian channel without feedback, rriform.
Coritr 37 (197S), 70-89.

S 2. C. R Baker, Information capacity of the G-,tussian channel with feedback,
Abs of Papers, IEEE Intern Stump on Inform. Theori, Ann Arbor
Mich , Oct 6-9, 1 )8, 7s

(R RP[ker. (_iapaicity of the mismatched (;iussian channel, to appevir, Lt-
-'"'" /-Tu ns. nnr Info rm. [)ienrtj ( l8S7).

%4, % . . . . . .- ,. % , -

Str - P 2r



4.C. R . Baker, Informa tion cap,-c i v o f Caull in c-hlrlrle I R ReenIt A v Ie'
in Communication and Control Fheorv, 1 R PK ilman.
Marchuk. A.E. Ruberti, and A.J. Vte r b 2-I T ip m z,
Software, Inc. . New York.

5C. R. Baker, Codin~ capacity of the discrete-ime (>ossLlvn cutr to

- appear.

6. R. G. Gallager, "Information Theory and Reliable Communicat joti, Wiley,
New York (196S).

*7. M. Hitsuda and S. Ihara, Gaussian channels and the optimal codini~y, P
Mutticctriate AnaL., vol. 5 (1975). 106-11IS.

S T. T. Kadota, M. Zakai, and J. Ziv, Mutual information of' the white
Gaussian channel with and without feedback, rEEE Frarts, on Itrorn.
Theory. 17 (1971), 36S-371.

1) . W. Mcheazue, On the capacity of channels with Gaussian or non-Gau~ssian
- noise. Inform. Contr. 51 (19S1), 153-173.

0

-9-

dS-Wl

% % ?-. e-



*~ ~A ~Ir
-. -

.. .~.

pw~.
,.p~

d.Z~~Y

N

4,.-
~hs.',.

I

"I.-

'I,

4.4.

"4

4.
.4

.4

107

* 0

.4' * .'. .~V .~. .-~
.4

.4.
4.. -

_ *4~."6

* .4

*~ 0 0 0 0 0 0 S S S 5 0 S 0 5.

p4. ~ S


