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Abstract

s

2t

, Recent results on coding capacity and information capacity for the

-

- mismatched Gaussian channel are discussed. Sufficient conditions for causal

- feedback to increase information capacity are given for the finite-dimensional

discrete-time Gaussian channel.
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Introduction

The capacity (in the Shannon sense) of a communications channel is
usually defined by either of two principal prescriptions. Information capacity
is the supremum of the average mutual information between an input stochastic
process (signal) and the noise-perturbed output process, with the supremum
taken over an appropriate class of admissible input processes. The second
definition is that of the supremum of all possible transmission rates. where
the transmitted code words are subject to a constraint. For example, in the
time-discrete additive channel, define the number of distinct code words tran-

smitted by time t, as [enR]. where [x] is the integer part of x, and R is the

"

"rate.” If R is fixed and the maximum probability of decoding error goes to

Zzero as n - @ along some subsequence, then R is said to be an admissible rate
(for the channel and the constraints). The (deterministic) coding capacity is
then the supremum over all admissible rates. One can also consider random
coding and other capacities connected with coding: only deterministic coding
capacity will be considered here.

The additive Gaussian channel is a channel of primary practical impor-
tance. The received waveform is the sum of the transmitted waveform and a
sample function from a Gaussian process: Y = X + N, where N is noise, X is
signal. If the channel is without feedback, and X is a sample function from a
stochastic process, then N is usually independent of X. With feedback, X will
be a function of the past values of Y, and will thus depend upon N.

In this paper, a general discussion is first given of some recent results
on information capacity and coding capacity of additive Gaussian channels when
the constraint is mismatched to the channel noise; that is, the constraint is
given in terms of a covariance that is different from that of the noise
covariance. Such a "mismatched channel” is the usual case in practice, since
one will rarely know the exact covariance of the noise. Moreover, in some
situations, such as jamming channels, the mismatch occurs as an essential part
of the problem formulation. The results given here on information capacity
without feedback appear in [3]: the results on coding capacity will appear in
[5]. A second set of new results summarized here consists of sufficient condi-
tions for causal feedback to increase information capacity [2]. A statement

and proof are given for the finite-dimensional time-discrete channel.
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The channels considered here can be nonstationary and can have memory.

Thus, in the discrete-time case, it is not required that the noise covariance

e Y,
Ot

matrix RN be a diagonal matrix.

!

‘?j Information Capacity and Coding Capacity of Gaussian Channels Without Feedback
o

S For information capacity of Gaussian channels without feedback, solutions
s

,J are given in [1] and [3]. The framework there is for stochastic processes

tj inducing measures on Hilbert space. These results can be extended to measures
;f‘ induced on a class of linear topological spaces; see [9] and [4].

o Consider now the additive time-discrete Gaussian channel without feed-

[\
( back, with processes involved having sample paths in 82. Let X denote an input
5; stochastic process, Y = X + N as above, and I[X, Y] the mutual information
ﬁf: between X and Y (see, e.g., [1] for basic definitions). Let RN denote the
b covariance operator of the noise, and let Rw denote another covariance opera-
o
vi' tor. Define the constraint on X by EHXH% { P, where §(+) denotes expectation
fi- with respect to the probability on 82 defined by X, and H-Hw is the repro-

-~ ducing kernel! Hilbert space (RKHS) norm for : HyH2 =\ _éyH2 (=1l the &
( Ryt lylhy = MRy 2

;: norm); one can assume WLOG that R&l exists. If RW = RN' then the supremum of

I(X. X+N) over all such admissible X processes is equal to P/2.
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B
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For the same channel, with deterministic coding used, for each n > 1,

constrain each code word x to belong to R” and to satisfy "X”% n <{ nP, where

~
-
- . : . n . .
:} Il ”W.n is the RKHS norm of Rw, with Rw the nxn matrix given by
5; Ra(ij) = Ry(ij). i.j < n. A code {k.n,en} is then a set of k code words, each
g_ obeying the constraint, with maximum probability of decoding error being < €
ff A real number R 2 O is then an admissible rate if there exists a sequence
4
¢ ({[enR].n.en}) of codes such that €y > O as n = @ along some subsequence. The
® . -
s supremum of all admissible rates is the coding capacity, denoted here by
- ®(P). If R.. then C.(P) = % log[1+P]
‘.ﬁ Cw( ). Rw = Ry. then Cw ) =3 log .
¥, »
R Those familiar with the Shannon theory will recognize the similarity of
[(Wu
the above results to those obtained for the classical white noise channel with
"
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NS a pure power constraint [6]. However, this similarity disappears when one
SN
;:} examines the "mismatched” channel: Ry # RN. The expression for the information
N
L capacity then takes one of several forms, depending on the relationship
.
,{:{- between Rw and RN. For finite information capacity. one must have
s
-0 % 5 . A . -
N RN = RW(I+S)RW. where I is the identity in 82 and S is a self-adjoint operator
o
\;)' in 82 such that (I+S) ! exists and is bounded [3]. The information capacity
.:’::_..
< then Jdepends on the spectrum of S; specifically, on the smallest limit point
<o
AN of the spectrum, denoted by 8, and those eigenvalues (if such exist) of S that
l\ 3
‘2N are strictly less than 6. See [3] or [4] for the various expressions. These
=
expressions are considerably more complicated than that for the matched
::'_::: channel .
;%:} For coding capacity when Rw # RN‘ one again obtains a rather complicated
7#5 expression for the capacity. In [3], a solution is given for capacity under
- the assumption that S has a pure point spectrum. The solution is a function of
the limit points of the spectrum of S and of their "relative importance.” For
the memoryless channel, where RN is diagonal, this "relative importance” can
{ be roughly described as the relative frequency of each limit point.
.\ I.

In the case where the spectrum of S has a single limit point, 6, and S
has no eigenvalues strictly less than 8, one obtains a result analogous to

J{j: that of the matched channel (Rw = RN)l the information capacity is equal to

2 5 o 3

. . . P
TR and the coding capacity is equal to 3 log[l + TIE].

::i In the analogous problems for the time-continuous channel, the constraint
ifl on the code words is given by HXH% T { PT, where x is required to belong to
O .

-'.i L2|_O.T]. and ”'”W,T is the RKHS norm of RW.T' RW,T is obtained from a covar-
'i;;; iance function Ty defined on [0,2)x[0,=}. and Rw T is the integral operator
??;' defined by the restriction of ry to [0.T]x[0.T]. In this case, assuming that
v,

L B range(Rw T) is infinite-dimensional for some T > O, the coding capacity when
Y .
N _ C .
o RW,T = RN.T for all T > O is given by P/2. When RW,T # RN,T‘ with
::" o A 1
:ﬁ:: Ry 1 = R; T(IT+ST)R{"V 1+ Ip the identity in L,[0.T]. then the coding capacity
:!;‘ depends on the behavior of (GT. T > 0} and {AI. n>1l, T >0}, where 9T is the
ifiz

:.:-:.‘ -3 -
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o
N smallest limit point of the spectrum of ST and {AI, n 2 1} is the set of
N eigenvalues of ST that are strictly less than BT. If {A:. n 2 1} is empty for
!\ all sufficiently large T, then the coding capacity is 3 ng . where
N
L 8 = lim GT. However, in general % ng is only a lower bound for the coding
5 To
L capacity
: Thus. the results for coding capacity and for information capacity of the
i mismatched channel (Rw # RN) both differ significantly from the corresponding
e
" results for the matched channel. For further details, reference is made to
1%
v (1]. [3]. and [5].
s All of the above discussion is for the additive Gaussian channel without
- feedback. In the case of channels with causal feedback, the solutions for
;3 information capacity and for coding capacity have not been obtained in the
i' case of the mismatched channel. For the matched channel. information capacity
g when N is the Wiener process has been obtained [8], and this has been extended
- to obtain capacity for some more general Gaussian processes [7]. In both
f cases, it has been found that causal feedback does not increase capacity. A
: solution has not been published for the general additive Gaussian channel,
o even for the matched case (Rw = RN).
3
N Feedback Capacity

Information capacity of the mismatched Gaussian channel with feedback is

-’. ,‘., Q l" e /' ..‘ ‘n. ..“

an open problem. It has long been speculated that causal feedback can increase
capacity over the no-feedback situation. An answer will be given here to these
questions for the discrete-time finite-dimensional channel:; processes take
values in RK. These results and other results for infinite-dimensional chan-
nels were announced at the 1986 IEEE Symposium on Information Theory [2].

The channel output is Y = X - BY + N, where X is the message process, N

«
it

is Gaussian noise independent of the message, and B is a strictly-lower-trian-

@ gular (SLT) matrix (bij =0 for j 2 i). The transmitted signal is X - BY. Al]

7

:} processes are defined on a probability space (Q.B,u), and & will be used to

;} denote expectation with respect to u. The capacity problem is the following:

N
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<
'i: maximize I[X, Y] subject to &IIX -~ BYII2 < P,
A 1:. K
oY where Il<ll is the norm for a K-dimensional Euclidean space: IIXII2 = 3z X?.
v i=1
j: I[X, Y] denotes mutual information of X and Y. See [1] for definitions.
- Let
-3
< C.(P) = sup I[X. X-BY+N]
b F F
1
O C(P) = sup I[X, X+N]
N F
- 1
n where F = {(X.B): &IX - BYH2 ¢ P, Y=X-BY + N, BSLT)
h F, = {X: &mxi® ¢ P).
\
:, An "elementary vector” in RK is a vector x such that X, = 1, Xy = 0 for
o
'_‘_:- i # k, some k in {1.2,...,K}.
:; The main results of this section are contained in the following theorem.
@
g THEOREM. CF(P) > C(P) for all P > O if the eigenmanifold for the smallest
- eigenvalue of RN does not have a basis consisting entirely of elementary
>
.
> vectors which are eigenvectors of RN'
- CF(P) > C(P) for all sufficiently large P if RN is not a diagonal matrix.
A o
- In order to prove the result, the problem will first be reformulated into
an equivalent no-feedback problem involving a pure power constraint.
A
nj: Reformulation of the Problem
i; Y = X - BY + N; since B is SLT. Y = (I+B) !(X+N). Moreover, as (I+B) ' is
- 1:1, I[X. Y] = I[X. X+N]. The constraint is &IX - BYNZ ¢ P, which can be
" written as §lIX - B(I+B)_1(X+N)ll2 { P. Since B is SLT, I + B is lower
fﬂ; triangular, so (I+B)_1 is lower triangular and B(I*-B)“1 is again SLT. Given
° any SLT C. there exists a SLT B satisfying C = B(I+B)™!; simply. B = (I-C) lc.
3'f The original feedback problem is thus equivalent to finding sup I[X, X+N]
1%
’:ﬁ subject to &lIX - C(X+N)l|2 ¢ P, where C is any SLT matrix.
<
:*j Using the above, attention can now be restricted to the following
A
.J problems.
L
7
#‘:: -5 -
o
o
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sup I[X, X+N]
F'(P)

sup I[X, X+N]
Fi(P)

Ce(P)

C(P)

where F'(P) is the set of all Gaussian random vectors in RK such that
ENx - B(X+N)H2 ¢ P for some SLT matrix B, and Fi(P) is the set of all Gaussian
random vectors in RK such that 8HXH2 < P.

Structure of the Reformulated Problem

Let H(RK,u) be the set of all K-component real random vectors f on (Q,83)
K

such that § 3 fﬁ(w) < o H(RK.u) is a Hilbert space under the inner product
n=1
K

(f,g)u =& 3 fn(w)gn(w). Suppose that X and N are two mutually independent
n=1

zero-mean Gaussian (w.r.t. p) random vectors: 8Xn(w)Nm(w) = 0 for all n,m < K.
Suppose also that N has non-singular covariance matrix RN. Let H (X+N) be the

set of all random vectors f in H(RK.u) having the form f = B(X+N), where B is

an SLT matrix. It is clear that H (X+N) is a linear manifold. It is also

closed in H(RK.u) norm since

IBP(X+N) - Bm(X+N)Hi - H(Bm—Bm)(X+N)H3

= Trace (B"-B")(R,+Ry)(B"-B™) 2 =, Tr (B"-B™)(8"-B™.

where ) is the minimum eigenvalue of RN.

Thus. if (B"(X+N)) is Cauchy in H(RX.u). then Tr (B"-B™)(B"-B™* = 0.
K

n m 2

This is equivalent to X (B —Bij) - 0. Hence (B?j) must be Cauchy for each

i, j=1 9
!j. and so the limit exists as an SLT matrix B.
Now let N be a fixed Gaussian vector. For any Gaussian vector X indepen-

dent of N, let P_X be the projection of X onto H_(X+N). The feedback problem

is now to choose a Gaussian vector X so that I[X, X+N] is maximized, while

X - P XH2 < P
- M

That is, if one chooses any Gaussian vector X with SLT feedback matrix B,

such that &IIX - B(X+N)I% ¢ P. then necessarily &IX - B(X+N)IIZ > IIX - P_xni.
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and since P_X = C(X+N) for some SLT matrix C (since H (X+N) is closed) one can

replace B with C and be assured that the constraint is still satisfied.

It can be seen from the above that CF(P) > C(P) if the optimum solution X
for the no-feedback message is not orthogonal to H_(X+N). In fact, if this

condition is satisfied. then for the optimum no-feedback message X, and a # O,

SllaX - B(aX+N)H2 < P gives a28HXH2 < P+ A, where A = Tr B[a2RX + RN]B*

a2Tr BRX and B(aX + N) is the projection of aX onto H (aX+N). Since SHXH2 =P

for the optimum no-feedback message X, setting a28HXH2 =P + A gives
a( =1+ A/P, so that a2 > 1 whenever A > O. Thus, one can replace X in the no-
feedback problem with aX. use the upper bound P + A in place of P, and obtain
a strict increase in capacity. Of course, A depends on a.

The above requires that the optimum no-feedback message X not be ortho-

gonal to H_(X+N). Since X is independent of N, this orthogonality condition

occurs if and only if X is such that for all non-zero SLT matrices B,
Tr BRX # 0.

PROPOSITION. Tr BRX O for every SLT matrix B if and only if RX is diagonal.

Proof . Since (BRX)ii = 2 Binx(ji). it is clear that Tr BRX = 0 for every SLT
J<i

matrix B if RX is diagonal. Now suppose that Tr BRX O for all SLT matrices

B. For any i,j ¢ K such that i > j, choose the matrix B to be zero except for
the 1j component; then Trace BRX = biJRX(Jl) = 0, so that RX(JI) = 0. As RX is
symmetric, this shows that the condition Tr BRX = O for all SLT matrices B

implies RX is diagonal. a

This development shows that feedback can increase capacity if the optimum
no-feedback message X does not have uncorrelated components. From [3, Theorem

1]. the optimum no-feedback signal covariance is given by

J J J
[ ) B } b unu: - f B u u*,

n=1 m

where {u , n < K} are o.n. eigenvectors of RN corresponding to the increasing
n :

-7 -
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sequence of eigenvalues (I+Bn)‘ and J < K is the largest integer such that

J L. . . Pl *

< > ; > ; ; = = 2

P o+ "i:lBi > JBJ’ For all sufficiently small P, this gives RX =T Sy
where L 1s the multiplicity of 1 + Bl as an eigenvalue of RV‘ RY wil! rhen not

be diagonal if {Ui‘ i ¢ L} cannot be taken to consist of elementary vectors

If RY is defined as above for J > L, then this property will agnin prevent R\

from being diagonal, since a diagonal RX must have the K elementary vectors as
a c.o.n. set of eigenvectors. This shows that CF(P) > C(P) for all P > O if

the restriction of RN to the eigenmanifold of 1 + Bl (as an eigenvalue of RN)

is not diagenal. Further, for all sufficiently large P,

) K
- =15 1 -
RX =g 12 ﬁi + P+ h]I RN'

i=1

This matrix is obviously non-diagonal if RN is non-diagonal. These observa-

tions complete the proof of the Theorem. 0

The above results give sufficient conditions for feedback to increase

information capacity. It can be seen that the requirement that R, not be

N
diagonal is also a necessary condition if feedback is to increase capacity for

some value of P, without assuming linear feedback.
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