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ABSTRACT

It is well known how to combine the significance levels observed in a

number of independent experiments. When this number is a random variable

determined by a stopping rule, the observed significance level can still be

calculated if there is an acceptable ordering of the points in the extended

sample space. But what can be said if the stopping time is ill-defined? This

paper obtains explicit lower bounds on the level of significance by considering

orderings based on a family of alternative hypotheses. These bounds give some

measure of the effect of failing to specify the stopping rule in advance.
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1. INTRODUCTION

The aim of this paper is to consider what advice a statistician should

give in the following situation.

Example. In order to detect a possible difference in performmnce between two

types of subject, a controlled comparison is carried out four times and the

significance levels observed in independent, one-sided tests are .04, .15, .01.

.05. The investigator consults a statistician about the proper combination of

these results and is recommended to use Fisher's method, based on the product

of the observed levels. He does this correctly and obtains a nominal

significance level a =.00131. However, the investigator then reveals that he0

is uneasy about the method because the number of comparisons was not fixed in

advance. He simply continued the sequence of experiments until he thought

there was enough evidence to reject the null hypothesis and establish a real

difference between the two types of subject.

In his first reaction, the statistician might well regret hearing the last

remark since it weakens, if not destroys the foundations of his previous

advice. On the other hand, perhaps the situation illustrated by this example

is common enough to deserve a more serious response. Can we properly say

anything about the combined significance of a sequence of experiments when the

stopping rule is ill-defined?

Before we attempt to answer this question, let us consider a more general

setting. Suppose that a sequence of m independent experiments is carried out

and that the results are used separately to test a certain null hypothesis H0 .

the same test statistic t being used in each case. For convenience, let us

assume that t is a continuous variable with a distribution function P . under0

H0 . such that the observed level of significance u = 1 - P (t) is uniformly

distributed on the interval [0,1]. Thus. we are assuming that the detailed

results of the original experiments have been reduced to a sequence of observed

significance levels u 1 ,u2 ... um and that, under the null hypothesis, this is



I U I 1,*,~..-. I UU * P Y '

2

equivalent to a random sample from the uniform distribution on [0,1].

For a single experiment, rejecting H0 when t is large is equivalent to

using u=1-4 (t) as a test statistic and there is an implicit ordering of the

underlying sample space in which points are treated as "extreme" if the

corresponding value of u is small. A justification for this might be an

application of the Neynan-Pearson Lemma, for some alternative hypothesis. For

example, suppose such a hypothesis restricts the distribution of u to a family

of Lehmann alternatives with probability densities of the form

h(u) = Ou1 0 < u < 1, (1)

with parameter 0. 0 < 0 < 1. Then, rejection of H0 when the observed level u

is small is justified by Neyman-Pearson theory. Of course, the same is true

for any alternative density h, provided that h(u) is decreasing in u over the

unit interval. However. it turns out that the family of Lehmann alternatives

is particularly appropriate for dealing with combinations of several observed

levels.

Suppose m is fixed, m > 2, leaving aside the question of stopping rules

for the moment. We are tacitly assuming that the experiments are all similar

and have similar sample sizes, so it is natural to give equal weights to the

components ul, u2 -... um in assessing their combined significance. The usual

method of combining m independent tests is based on the product

vm = ulU 2 ... um and it relies on the fact that -2log vin has a 2-distribution

with 2m degrees of freedom. The method is due to Fisher (1950) and it is also

described in standard texts such as Cox and Hinkley (1974), see page 80. For

n

our purpose, it will be more convenient to write S n  wI, where w. = -log u.

Thus, (S n'ni} is a random walk and, under the null hypothesis, the independent
-W

steps w i have a common probability density e, w>0. In particular, it is

easily verified that

m-I

ao = Po(Sm s) = {l+s+...+ (-l)! e-. (2)

....... m . ..=



3

In the above example, m=4 and s = 12.72, so the nominal significance level is

a = .00131. It will be argued later that, in the absence of a stopping rule.

a lower bound on reasonable significance levels is a =.00458 : see equation

(16). More precisely, a = min{a(O), O<<l}, where 0 represents a simple

alternative hypothesis and a(O) is determined by stopping the process {Sn} as

soon as the likelihood ratio exceeds a certain critical value.

The main argument of this paper relies on several principles. The first

is to use Fisher's method of combining significance levels when the number is

.xed in advance. Other methods have been suggested in the literature, for

example, several are mentioned in a discussion of asymptotic optimality by Berk

and Cohen (1979). However, they do not seem appropriate here. The second

principle is that the ordering of points (u lu 2-- Um ) in Im determined by the

product v can be formally justified by an application of the Neyman-Pearson

Lemma, for some alternative hypothesis. We postulate an alternative H1. which

may be composite and assume that the observed levels u1 ,u2 ... um are

independent and identically distributed not only under the null hypothesis H0 ,

but also under H Then, as we shall see in Section 2, the only alternative

distributions of u with the required properties are those given by (1). The

final principle is one of conservatism in the evaluation of a(O). When the

number of experiments is not prescribed and a range of values is possible, the

simple alternatives represented by 0, 0 < 6 < I. lead to different orderings of

the corresponding sample space. If there is no clearly defined stopping rule,

then it seems reasonable to consider one that nDayimizes the error probability

a(O) and this corresponds to using a test of power one.

The next section gives a version of the Neyman-Pearson Lemma for

independent sampling up to a well-defined stopping time. This is followed by a

discussion of alternative hypotheses for our particular problem. The explicit

calculation of a(O) is described in Section 3 and it is a simple matter to find

the minimum
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a = min{a(G), 0 < 9 < l}. (3)

In general, the results u Vu 2 -... um of m tests determine a final value S s

and the corresponding levels a and a* depend only on m and s, with0

0 < a < a < 1. The interpretation of a as an observed significance level is0 0

familiar and. provided that m is fixed, it can be justified in terms of

Neyman-Pearson theory by appealing to any one of the alternative hypotheses

represented by 6, 0 < 0 < 1. In the absence of any stopping rule, a is a

useful measure, but its interpretation is more complex, since each value of 0

leads to a different ordering of the set of possible stopped sequences.

Unfortunately, the choice of 9 is arbitrary and all we can say is that a is

the smallest significance level that can be justified by applying the

Neyman-Pearson Lemma. for some alternative hypothesis. Roughly speaking, the

ratio a *a is a measure of the effect of failing to specify the stopping rule

in advance. The final section gives some numerical values of the ratio,

corresponding to nominal significance levels a = .01 and .001.0

2. PRELIMINARIES

Let y = (yl1 y2 .... ) be a sequence of i.i.d. random variables and suppose

there are two simple hypotheses, H0 and H which specify their common

probability density as f or g, respectively. Suppose further that the stopping

rule is given and, for convenience, let this be determined by continuation sets

nC IC 2-- where each Cn is a measurable subset of n . For any sequence y. let

Yn (yl.y 2 , . ,yn). It is assumed that, if yn . Cn' then ym . Cm for m

1.2-. n-1. The stopping time is

N(y) = min(n>l: yn f Cn}, (4)

so that N(y) = - if yn 6 C for every n 1. Consider the stopping set at timen

n :

D) n =yn t ER n ym . C, M.nmn, yf n Cn d.

nFor y t D . the observed sequence that arises from stopping will be written
n
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(n,yl,y2 .... yn). A terminal decision rule is defined by any measurable

partitions of the stopping sets : Dn = A U B , n=l,2,..... Thus, H0 isn n n0

accepted if N(y) = n and yn F An. for some n > 1, and rejected if N(y) = n and

y nE B . We are concerned here with comparing terminal decisions for a givenn

stopping rule and finite stopping times, so the case N(y) = - can be treated

arbitrarily. For simplicity, suppose that H0 is always accepted if N(y) =

Then the error probabilities are

a =nI f BndPf' 0 = n-IlAn dPg + Pg (N=w), (5)

where Pf and P refer to the distributions of y under H0 and H Now consider

the stopped likelihood ratio when N = n. For an observed sequence (n,

YlY2.yn), the likelihood ratio is

dP n g(yi)i ny ) =l (6)

dPx n i f(y()

Definition. We say that the partitions {A nB , n>l} define a likelihood ratio
nn

test if there is a positive constant X such that X (yn) , X if yn e A andn -n

An (yn) , X if yn E B n n = 1,2,....
n - n

Note that the standard proof of the Neyman-Pearson Lemma applies to two

measures on any a-field and, in particular, to a stopped a-field. This leads

to the result that, in general, likelihood ratio tests have the following

optimality property.

Lemma. Let {An' B } define a likelihood ratio test with critical value X > 0

and error probabilities a.0 given by (5). Consider any other terminal decision

rule defined by partitions

D = A' U B'. n=l.2,... and let a',P' be the corresponding error probabilities.
n n n

Then,

a' < a => 1' > 1 and a' < a => 0' > 1.

The lemma shows that. for any stopping rule, the ordering of observed

sequences should be based on the likelihood ratio and this holds whether we are
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comparing data vectors of the same or different dimensions.

Before we can apply this result, we need to discuss alternative hypotheses

for the problem of combining independent significance tests. In the first

place, let us return to the case when the number of tests is fixed. There is

no given alternative, but it is difficult to justify any method of combination

and the implicit ordering of vectors of significance levels without introducing

one. In fact, there are many alternatives consistent with the usual method of

combination. For a fixed number of tests with observed levels uu 2 .  u.

m > 2, the ordering based on the product vm uIu 2 ...u is equivalent to using

m

the statistic 2 w. on the set of points {(w1 ,w2 .  i Wm): wi > 0, 1 < i< m}. In

i
m m

other words, (w' w' .W.W) is more extreme than (ww 2 .  w ) if 2 w, >
1 'I i - I

w.. Under the null hypothesis, when the u. are uniformly distributed on [0.1],.1 1
-W

we have the probability density f(w) = e , w ) 0, for the w. = -log u.. Now1. 1

consider an alternative hypothesis under which their common probability density

is g(w) and assume that g(w) > 0 and its derivative g'(w) is continuous for

w ) 0. The likelihood ratio is given by

m m
log' i;m = I log g(wi) + w..

1 1
m

It can only produce the same ordering as w. if it is a function of this sum.
1

m m

Then, differentiation shows that I d(log g(wi)) = 0 whenever 7 dw. 0. Since

1 1

m> 2, it follows that g'(wi)/g(wi) is constant for all w. > 0 and, hence, the

alternative hypothesis must be represented by an exponential distribution

g(w) = Oe- Ow . w > 0. (7)
m

The parameter 0 is positive and, since X is required to be increasing in : w.
n 1I

we demand that 0 < 0 < 1. Finally, it is easily verified that (7) is

equivalent to the family of Lehmann alternatives (1), for the original

significance levels u i .
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3. SIGNIFICANCE LEVELS

We now turn to the question of assessing the significance attained by a

series of tests when there is no clearly defined stopping rule. The null

hypothesis H0 is given by (7). with 0 = 1, and we first consider a simple

alternative corresponding to a fixed value of the parameter 0, 0 < 0 < 1.

Bearing in mind that the investigator might have been seeking to reject the

null hypothesis as soon as he felt convinced that this was proper, we ought to

use a conservative evaluation of the "observed" significance level a(0). In

general, the likelihood ratio at any stage is

n
Xn(0) = 0n exp{(1-) wi}. (8)

1

Suppose we are given the results of m tests and let obs ( ) be the final

value of the likelihood ratio. The stopping rule underlying these results is

unknown and, perhaps, there were intermediate values of the likelihood ratio

exceeding obs . However, in view of the lemma in Section 2, any other series

of tests must be treated as stronger evidence against HO if and only if it

produces a final value Xn(0 ) > Xob s . The most conservative evaluation of a(0)

corresponds to rejecting H0 for any sequence {n(0)} such that n (0) ) Xob s for

some n > 1. This suggests a stopping rule: any sequence with sup n (0) > Xob s

n>l

is stopped when it first exceeds the critical level. The terminal decision is

to reject H0 whenever the stopping time is finite. Note that the procedure

depends on 0. It leads to a significance level a(0) which is a maximum amongst

likelihood ratio tests with the same critical level.

In order to evaluate a(0), consider the stocha3tic process (Sn), where S0

n

= 0 and S = I w., n > 1. We note that the condition Xn (0) ) Xob s is
S 1 n- h

equivalent to

S > c + nk, (9)

c = (I - 0) -log obs , k = -(1 - 0)- log 0. (10)
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The stopping time is determined by a linear boundary

N = min{n > 1: Sn  c + nk}. ()

The likelihood ratio test with critical value X = Xobs always leads to

rejection of H0 if N is finite, so the corresponding error probability is

a() = PO(N<-) = Po(Sn > c + nk for some n > 1). (12)

Any other stopping rule, followed by a likelihood ratio test with the same

critical value Xob s , must produce a smaller error probability under H This

is a consequence of the definition of N and the terminal decision rule. It is

a straightforward matter to evaluate a(O).

Proposition. Let N be the stopping time defined by (10) and (11). for a fixed

value of the parameter 8. 0 ( 0 < 1, and suppose that Xob s  8. Then the

likelihood ratio test with this critical value has error probabilities

a(O) =OxI PO)=0
obs' 3() 0

Proof. These results are consequences of well-known properties of the random

walk {S }: see, for example, problem 2.1 in Siegmund's monograph (1985). We

first show that P(0) = 0. Under the alternative hypothesis, {Sn} has

0-I
independent steps with mean 8 and it is easily verified from (10) that the

slope k=k(O) has 1 < k(G) < 8- . It follows from the strong law of large

numbers that N is finite with probability I and, according to (5), )3(0) = 0.

The formula for a(8) can now be established by using equations (5) and

(6). We note that Pf and P are both derived from exponential distributionsfg

and that

Dn = B n = ' - n {(w.w2 . w): S, (c+jk, 1<j<n. S >c+nk},

a(O) = I IB dPf = I IB  n () -ldp .

n=l n n=l n g

By using (8) and (10), we find that
-l -I

{N n(0)) X obs exp{-(1-O)(S n-c-nk)}.Onnh obs Bn

On the set B , S c - nk = is the overshoot beyond the linear boundary

when the random walk stops. Thus.
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00

Sabs f B exp(-(1-O)Cn)dP "
n=l n

Since P(0) 0, we know that P (N () = 1 and the above series reduces to the

expectation of exp{-(l-0)C n} under the alternative hypothesis. This is easy to

evaluate for a random walk with exponentially distributed steps, since the

overshoot C must also have the probability density (7). The only exception is

when Xob s = 0 and, hence, c + k < 0. In this case, the event S ) c + k always

occurs and Pf(N=1) = P (N=I) = 1, so a(0) = 1. Otherwise, obs > 0 and the N
required expectation is

fO exp{-(l-O)C}g(C)dC = 0.

It follows that a(O) = Obos, as required.

The critical level of the likelihood ratio was defined as the final value

observed in a particular series of m tests. Let this correspond to stopping

the random walk when Sm = s so that X obs  m exp{(1-0)s) by equation (8).

The main result of the proposition can be expressed in a more convenient form

a(O) = 0 -mexp{-(1-O)s}. (13)

Fhe condition that Xob s > 6 is satisfied provided that

s (m-1)k, k = -(1-0)- log 0. (14)

It can be shown that, as 0 increases from 0 to 1. k=k(O) decreases from - to 1

Hence, the formula (13) is valid for sufficiently large values of 0. provided

that s > m-1. It holds whenever it produces a significance level a(O) 1 and

otherwise, it should be replaced by a(O) = 1.

Our results, so far, depend on choosing a single value of 0 and we must

now consider the general hypothesis H represented by (7) for 0 < 0 K 1. It is

easily verified that the inequality (9), which characterises stopping points

where the likelihood ratio exceeds Xob s . is equivalent to

S - s > (n-m)k(O). (15)n_

This shows how our ordering of the set of possible results depends on 0. There

is no single ordering which adequately represents the composite alternative H

However. it will be useful to determine the range of values achieved by a(O)
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for any given m and s.

By differentiating (13), we find that a'(O)/a(O) = s-(m-l)-, so there is

a unique minimum of a(@) at 6=6 =(m-l)s- 1 and 0<l if s > m-1. The case 0 < s

< m-i is trivial, since it implies that a(O) = 1, 0 < 0 < 1. Let us assume,

from now on, that s > m-i. Then the minimum level a = aO*) < 1 and

a= { exp(m--s), s > m-1. (16)

It is also clear that any level in the interval (a .1) can be attained by

choosing an appropriate 6 e (0*,l).

4. NUMERICAL ILLUSTRATION

m
Finally, we can compare the formulae (2) and (16). As before, s = -: log

I

u.. where ul.U 2 ... u are the observed significance levels in m independent

tests of the same hypothesis. The nominal combined level of significance a0

represents these results, assuming that m was fixed in advance. On the other

hand, a is a measure of the evidence against the null hypothesis when no

stopping rule was prescribed. The previous arguments can be summarised by

saying that a is a lower bound in the following sense : it is the smallest

significance level that can be justified by a sequential likelihood ratio test,

for a suitable alternative hypothesis.

It is clear from (2) and (16) that a0 = a if m=l. For each m > 2 and any

s > m-I. we have 0 < a0 < a < 1. This is implicit in our construction of a

but it can also be verified directly from the formulae. For convenience, we

shall consider the ratio a /a It is a straightforward exercise to establish

the following properties by using (2) and (16): both aG and a are decreasing

in s and a /a0 is increasing in s. with

a e m-i
lrn a 0 M-) (m-l)! (17)

When s = m-1, a*=l and a0 < 1, which confirms that a /a0 > 1 for all s > m-1.

The limit given by (17) is an upper bound. The table below shows values of the



ratio a /a 0 for m = 2,3,....10,20. with s chosen so that a0 = .01, .001. I-,e

final row gives the limits as s-* - and a0 -+ 0.

TABLE I

Ratios of significance levels : a /a

m 2 3 4 5 6 7 8 9 10 20

a =.01 2.36 2.92 3.26 3.52 3.72 3.89 4.02 4.12 4.22 4.81

a0=.001 2.45 3.09 3.53 3.82 4.08 4.30 4.46 4.61 4.75 5.56

a 0 2.72 3.70 4.46 5.12 5.70 6.23 6.71 7.16 7.59 10.97
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