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Abstract

The purpose of this paper is to prove the existence and uniqueness of gen-

eralized solution of the normed Bellman equation with degenerate diffusion

coefficients and also to prove that this unique solution is the cost func-

tion of a stochastic control problem associated with the normed Bellman

equation.

We can apply these results to some interesting degenerate and nonlinear

differential equations.
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0.1

0. INTRODUCTION

Consider the following Bellman equation with degenerate diffusion co-

efficients:

1d
inf{3s V +T aij (c,s,x) i Vi + bi(C,s,x)3iv -c((,s,x)v
acA i.j=l i=l

d
(0.1) + f(ot,s,x)} = 0 (s,x) E (0,T) xR

v(T,x) = g(x), X ERd

where d 2, 1 !v <d. a= (aij), 1 i,j v, is a positive definite matrix,

which is written as a =a a* (a* denotes the transposed matrix of F) and

o is a (v,v)-matrix, and A is a separable metric space.

If the coefficients a, b, c, and f are bounded with respect to .. then

it is known ([3]) that under suitable conditions about regularities and

growth there exists a unique generalized solution of Equation (0.1) and

furthermore, it is the cost function of a stochastic control problem assoc-

iated with Equation (0.1).

in the case where the coefficients are not bounded with respect to CL,

it is necessary to consider a modified form of Equation (0.1), so called,

the normed Bellman equation, which was originally considered by N. V. Krylov

([5]). This case is very important from the point of view of application.

There are also several results in this case ([3], [4], [S], etc), though

they are rather restrictive.

In this paper, we shall extend these results to more general cases, in

which are included many interesting examples. We shall also discuss some

applications to degenerate nonlinear differential equations.
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1. FORMULATION AND PRELIMINARIES

Here we shall consider a stochastic control problem associated with

Equation (0.1) and summarize some properties of the cost function. All

of the notations follow [3].

Let T be a finite positive number which is fixed. Let A be a separ-

able metric space which is a countable union of non-empty increasing sets

An : A= U An , An+1 iAn (possibly A1 A2 = ... =A), and we fix this re-
n~l Pu T(,) d dresentation. Put QRT= (0,T) x R and also QT = [0,T] × R . For each (s,x) Q V

consider the following stochastic control problem for a system described

by stochastic differential equations of the type:

(1.1) {dXt = b(cots+t,Xt)dt + (a ts+t,Xt)d~t, O< t!5T-s

fX0 = x,

where (6 t), 0! t! T, is a d-dimensional Brownian motion process. Assume

that the coefficients a and b satisfy the following conditions:

(A.1) o(cx,t,x): AxQT - Rd 0 Rd  (dxd - matrix)

b(ot,t,x): A x QT Rd  (d - vector)

We assume that they are continuous with repsect to (a,t,x). Moreover, let

there exist a sequence of nonnegative constants {k }, n=1,2,..., such that
n

for each n,

(1.2) 3(I,t,x) - (Ot,y) + lb(X,t,x) - b(Ot,y) S kn x-y ] .

and

(1.3) [ a(ct,t,x)II + lb(c,t,x) s nk(l+ lXI)

for all a E An  0 t ! T, x E Rd and yER (E I R I denotes the matrix norm).

We also write Oa(t,x) and bca(t,x), and so on.
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Assume further that for each aE A, aC and, in addi-a ct, and inadi

tion, all of their derivatives toa , a ?, ia 3 ai and i ja b

1 -<i,j <-d, satisfy the following inequalities:

There exists a nonnegative constant m2:0 such that for all n- 1 and

(a,t,x) E A QT'

(1.4) 1 II ac, (t,x) + a II 3. .'(t,x)ll + 3 fl aiba(t,x)(
l<-i<-d li,j-<d 1 j l id

+ i 3i . .b a(t,x) ll+ Ia tO (t,x) + I ba(t, x)l <k (1+ x) m.1 _i,j~d 1 3 t' -fn

Let 1- V <d and let us assume that (d,d) matrix a in Equation (1.1) is

written as follows:

(1.5) a a (t,x) [ (t~x X)O) V

0} d-V

v d-v

where a is a (v,v) matrix such that for all (t.x), QT and F R such that

II Q = 1,

(1.6) sup n (t,x)( ,a (t~x)o(t~x)*$) > 0, where
aEA 1

nL (t,x) = (1 + tr.a (t,x) + Ibc (tx x + c (t,x) + la(t. X)

The definition of strategy is the same as one given in [3).

Definition 1.1 Let n l. We write a, 4( n7 thp rrocess a = (c at()

0 s t <T, is defined on a probability sace (Q,F,P, Ft satisfy-. r the usua7

conditions, which are progressively rveasurabl, with r.sz'e'et to {F 1, hav-'na

values in An. Let A = U 91n. The elements of a set 9 are ca7led s t ra-
n -ge

tegies.



From the assumption (A.1), it is well-known that for each strategy

a E 91 and (s,x):QT, there exists a unique solution of Equation (1.1)

and we denote it by (Xt'S'X). Remark that in this case it holds that for
t

each a , (s,x) [0,Tj,

(1.7) E[ sup Ix"'S'xIP] <
0 <t T -s

for all p- l.

Next, for each aE Q1 and (s,x) E T, define a function v by the formula:

T-s ~,x a,s. cs~xT-s= A'ST-e.s , sx

(1.8) v (s,x) = E[f e f(a t,s+t,X t  + T-s aXs,
0 ~ )d g(-s3]0

where

t
,(1s9) fc s+r,Xa's'x)dr,(1.9) 0c r r

0

and (Xt'S'x) is the solution of Equation (1.1) associated with (c,s,x). Here
t

we assume that the coefficients c, f and g satisfy the following conditions.

(A.2) {c and f: A x QT- R, c -0,

R d  R.

We assume that all of these functions are bounded from below and also

continuous with respect to (a,t,x). Assume further that for each a, c

a 1,2- 2 d
f cl(qT), and g Ec (R ) and that the foregoing functions and all their

derivatives satisfy the following conditions: 3tc, 3ic(l 5i 5d), i ac(l<i,j!d)

g, ig(l <i -d) and 3i 3jg (1< i,j _<d) are uniformly hounded with respect

to (a,t,x) _ A Tx Moreover, assume that for all nt ?,, (a,t,x) E An QT '

(1.10) If(a,t,x)j + I3tf(a,t,x)I + If(9) (.,tx)I + If( )R )(a,t,x)I

+ cC (t,x) !5 kn(l +Ixl)m,

A-- li mm I nnn n,
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where f(M and f Mk) mean the first and the second derivatives of fc(t,x)

along spatial direction 9.6R respectively (see [51 p. 46). E

For each n, define a function vn by the formula:

(1.11) Vn (S,X) = inf v (s,x)
LEZn

and also v is defined by

(1.12) v(s,x) = inf va (s,x)
aXE9

It is easy to show by the assumptions (A.1) and (A.2) that the functions

v and v are locally bounded over QT" In fact, it holds that there exist an

constant N and a sequence of nonnegative constants kn, r- 1, such that for

each n

(1.13) N ! v (s,x) k'(l+ (xl) m,

and

(1.14) N-v(s,x) -< kI(l+ IxI)m

for all (s,x)E QT' because v(s,x)- vI(s,x) for V (s,x) E QT"

For further discussions, let us assume the following conditions about

the coefficients:

(A.3) (1.15) ca (t,x) > 2811 VxOa(tx) 2 + SIVxba(t,x) I + IV xfa(t,x) 12

for all (a,t,x) EA×QT, where Vx a = (31 °a ... d a ), etc. Moreover,

assume that there is a nonnegative function u, belonging to c '2 (T such

that

(1.16) If"(tx)[ 2 + d i fa(t,x)l 2  13 tfa(t,x)f 2
i=l



1.S

d

+ 13 b (t,x ) l2 + ata(tx )j 2 + a a f tx
t ti,j=l 

Sd 4+ 1 iajb (tx)I + X I3 aa 5 (t,x) 4 <- -La' u(t,x),i~j;1i,j=l

for all (c,t,x) E AxQT, 05E51, where L is a second order differential

operator given by

v d1 aa (t,x)3.3.u + £22 2u

(1.17) L 'Eu(tx) = 3tu + - cc U + E 2 /2 2
t 2 i,1 =l j1 '+

d
+ b (t,x)3 u - c (t,x)u,

i=l 1 I

where a =c*

Finally, for technical reasons we assume that there exists a constant

such that for all cEA, xER d  and Lc [0,1],

(1.18) f?(T,x) + LC £g(T,x) -> q. 1

Some examples in which the assumptions (A.1), (A.2) and (A.3) can be

easily verified will be given in Section 3 later. In Section 3, we shall

also discuss another assumption different from the preceding one.

Under the assumptions (A.1), (A.2) and (A.3) in which £ = 0, we have

the following result about vn and v.

n
Proposition 1.1 (a) v n is locally bounded in Q T uniformly with respect

to n. (b) {Vn, n i l} is equicontinuous in each cylinder QTR [0,T]

{xE R•d lxi R}. (c) lim v (s,x) = v(s,x) uniform/y in each cylinder
n-

QT,R" (d) v is absolutely continuous in (s,x); hence there exist first

order generalized derivatives with respect to (s,x): 3V/3s and 3v/ax i ,

S- i <- d, and, furthermore, the foregoing derivatives are bounded in each
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QT,R" (e) Tnere e ,;st second order generalized derivatives: axv/xiax j,

1 - i,j < v, which are also bounded in each QT,R" (f) It holds that

(1.19) inf F [v](s,x) 0 a.e. (s,x) EQT,

aEA

wiere F [v] is given by the formula:

(1.20) Fa [v](s,x) = D V + 1 aia(s,x)3. .v+ d - c (s'x)vS i.. i

+ f'(s,x).

Proof The method is the same as [31 (Proposition 5.1). (a) is clear

from the definition of v n. Let us prove (b). Since for each aF 1. v c1,2

n C(QT) under the assumptions (A.1) - (A.3), we have the following:

T-s -dt d
(1.21) 9va(s,x)/3x. = E[ J e 1j ,f(s s+t,X ) x t dt

1 0 j= J

T-s - (1 sxa ,S, x ' CX ' r
+ f e f(ats+t, t ){-f j' C(Or s+rX ) x) r' x
0 0j r r i r j

+ 9X x e T-s+ ,Sg(X0.'5' X)eT-s. Tj ' -s'x 3 ixT-s,j -T-s . -s x) -T s

3 s,

T-s 4
S 3C(at's+t,Xt 'Cs X)dt]= Ik"x where ,as x is given by

0 j k=l k t

t
(1.22) t  =c (ar's+rX rS)dr, and, in addition,

0

ajf(at,t,x) = Df(a,t,x)/Dxj, @ etc.

In order to get the assertion (b), it is sufficient to show that for any

n 21, for all (/tsx) EI xQT, 3 / x. is locally bounded uniformly with re-

:t,s,xspect to (%,n). Using Schwartz's inequality to II , the first term of
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the right hand side of (1.21), we have the following inequality:

S T-s -

(1.23) II - E[ f e t J13f(a ts+tX'()1 dt l10 j t t

T-s e- t  X 2 dt] = Iaf[ e ai' t ,j I 16
0 j

(we omit superindices (s,x) so long as they are fixed).

Now, by means of (A.3), there exists a nonnegative function u E c' 2 (Q )

satisfying (1.16). Put u(t,x) = u(s+t,x), Ost!_T-s, (s,x) QT, then from

Ito's formula, we have the following:

-Ca T-s _Ct
T-s~  t ..

(1.24) e u(T.-S,Xs - u(O,x) = e tat(t,X +
0

v d
aij(s+t,Xt)3a u(t,X ) + b(s+t,X)au(t,X) - c (s+tX)i i ii= i=l t tt

× u(t,XX)}dt + Mt, where N1 is a square integrable martingale.
t t

rT-s -¢t atus t t )  tM ,

Note that the right side of (1.24) is equal to f e L (u(s+tXa) dt+Mt,
0 Ts t

because of the definition of u. If we add the quantity fT e t

fa(S+t,x)I2dt to both terms of (1.24), and if we take the mathemati-
U t

cal expectation, then, taking account of the inequality (1.16), we have the

inequality:
(ISx

(1.25) ,s,x< E[_e-T-s u,x Ts

(1.25) 5 u(T s)+ u(s,x)I-u(s,x),

for all a' , (s,t) E QT' since u is nonnegative.

On the other hand, as to 16, since Xta is (LB- ) differentiable with re-6 P t

spect to x, we have the formula:

t
(1.26) 3 X 6 kbj (s+rX ,)Xkdr0 k

t rX a
+ f a C k (s+rX );"X dd(r)

0 k,9,
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(see [5], Chapter 2, Section 8). By using again Ito's formula (and also

taking the mathematical expectation), we get the following:

(1.21) E[e {8i } L + X E[f-e r{, 2 .1 c dri,j t,j i r,j r

t a at 
a+ 2 f e r r  . ak b D X dr + f e rkym L ajk kaiX ' X a d r ]

0 r k ji k 0 2,,k,m Z jk m jk i r 91 i r m

(+E[ e r a 21Vba(r I 7o()fl 2}(VX+r 2dr])

a 2, cc 2
where lVb'(r)2 = I jaib .(r)l, I Vo(r)l = k 3a (r)l

i ,j i ,j ,k

and 1,x0 2 1 ax 2
r ij rJ

Then, on account of (A.3) (1.15), we have the inequality:

,tSX

(1.28) E[e -  {iXa's'x,2] 5 N, for all (a,s,x,t) % . x QT × [O,T-s],
i,j1 t "

where N is a nonnegative constant independent of (a,s,x,t). Therefore, from

(1.25) and (1.28), we can conclude that there exists a nonnegative function

over Q such that uc ) and for all n, (a sx) n xQT

(1.29) 1ia"sI -u(sx).

For the other Ik's (k=2,3 or 4), we can also obtain the same kind of estimates

(1.29) for I . by using the assumption (A.3). Thus it is shown that there exists

a nonnegative function u' c 12( T) such that for all (a,s,x) E x×QT'

d
(1.30) X JWv(s,x)/axiI f- u'(s,x).

i=l

Similarly, it is not hard to see that 3v /3s is also locally bounded uni-

.a1-I I /
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formly with resp.#t to at by using (A.3) and (1.28). Th. assertions (c) ' f

can be obtained by the same way as (3] (Proposition 5.1).0



2.1

- .NORMEI) BEU1.IAN EQUATION

As it is well-known (see Section 3 and also [51, 6.3.14, p. 273), gener-

ally the inverse relation of (1.19) does not hold if the coefficients are not

bounded with respect to t. Therefore, in fact, we need to introduce some aux-

iliary notations. Let m (t,x) be a nonnegative function with respect to

(CL,t,x) E Ax qT, and define Gm by the formula;
21) Gm(U, ,utx inf 1 n. c

(2.1) Ou i m& (tx){u + a.. (t,x)u.
aE A 1<-i,j<-v

+ bX(tx)u. - cO(t,x)u + fa(t,x)} (a=ao*)
l_<isd

Definition 2.1 A nonnegative function m (t,x) over Ax QT is said to be a

normalizing mZutipZier if for aZZ uO , u.j, ui , u, t, x,

(2.2) Gm(U0,u.ij u,u,t,x) > --.

Moreover, the normaZizina muZtinlier m (t,x) is caZ!ed regular if there exicts

a function N(t,x) < - such that for all (o,t,x).i AxQT,

(2.3) mc(t,x) - N(t,x)m (t,x),

where the function m0 is given by the formula:

C& 1 Yx Id)((2.4) m0 (t,x) = {1+f l Ja i(tx)] i~ b (t,x)j
2 1 i iy i

+ Ica(tx)I2 + Ifa(t,x),2}-7

Let us assume the conditions (A.1)~ (A.3). Then we have the following

main result.

Theorem 2.1 Let ma (t,x) be a reguZar normalizing multiplier. Then it holds

that



(2.5) G[v](t,x) = 0 a.e. (QT)

Ge m [v](t,x) = G (3 V, ; D.v, a \',v.tx).

We call (2.5) the no-med BeIZman equation. For the same reason as [3],

Section 5 (see also [5], pp. 269- 271), in order to prove (2.5), it is suf-

ficient to show the following:

Lerna_ 2.2 ft m(t,x) = mo(t,x), t,. (2.5) is correct.

This can be shown by the same way as [3], Section 5, the so-called per-

turbation method. Since the proof is almost the same as [3], it is suffici-

ent to describe different points from it. Let us start introducing several

notations as usual. Let 6 be an arbitrary number between 0 and 1, and for

each E, (a,s,x)E Ax QTP define ar by the formula:

(2.6) 'a (t,x) 0
a (a,t,x) £ 0o'" }

"o d-v

For each ac E , (s,x) Q--T' 0< E< 1, let (Xtcs'x' ) be a solution of Equa-
iTT t

tion (1.1) in which a is replaced by a, and also let vc ,£ be given by (1.8)

in which (X SX) is replaced by (Xa ' s ' X' C ). For each O< c< I and n> 1
t t

define v and vE by the formulas:
n

(2.7) E (s,x) = inf va ' (s,x), and• v~n  cLE 91n ( ,x) an

v (s,x) = inf v E(s,x).
n!1 n

Then we have the following:
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Proposition 2.3 (a) vE is uniformlz, ('in (c,n)) bounded and also equicontin-
n

uous in (s,x) uniformly with respect to c in each cylinder T,R" (b) For

each E> 0, lim v n(s,X) = v (s'x) uniformlu in each QTR' and v is continuous

: 1,2 6 1,2in (sx)E Q. (c) For each E> 0, n_ 21, vn EW (Q) andv EW ' (Q) (cf. Sec-n p p

tion 4) for any bounded subregion Qc QTy p - 1. Mcreover, all their first or-

der generalized derivatives with respect to s and x., 1! i < d, and second or-

der generalized derivatives with respect to x.x., 1 - i,j <- v are locally

bounded in QT uznif'o r.ly with resrect to (E,n). (d) lim v (s,x) = v(s,x),
i-N

uniformly in each cylinder QT,R"

Proof. Since the assertions (a)- (e) are the same as [3] (Proposition 5.4)

it is sufficient to show (d). Consider the following equality:

(2.8) v E:(S,x) - v(s,x) = {v E(s,X) - v E:(s,x)l + {v E(s,x) - v (s,x)}n n n

+ {v (s,x) - v(sx) - n,c E n,e +n
n 1 2 3'

_n, E

Note that for each £> 0, lim I1  = 0 by means of (b) above and also that
n-Ko

lrm In = 0 from (c) of Proposition 1.1. Note also that the convergence
3n-Ko -_~

is unif3rm in each cylinder QT,R in both cases. Let us show that 12$ +0

as c- 0 uniformly with respect to n.
- VE

For each otE. , O<E< 1, (s,x) E QT'v '(s,x) is written as follows:

T s (X,S , X ,= [ , )S ,Xa

(2.9) vf'E(s,x) = E[ e f(ats+t x 'S'X'P5dt+e T-s g(XaLs )I.t ' t g(T-s
0 

E
It is easily shown that for each (a,s,x),v is continuously differentiable

with respect to E, and, moreover, av C /ac is given by the following: (we

omit also the superindices (s,x)) (see [5], Section 2.8).

T-s t d ./ -Ea,s

(2.10) 3vx'E/3=E[f {-f 1 3.ca£ aXa 3E/k.dr}e t fl'dt
0 0 i=l1r,
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T-s - T-s
f &,ax:E/DE dt +{-f .c".-Xa:s/3E-dt}
0 i ti0 it

TL,E a ,

eT-s g(Xa T-s a (X x,) /ac]T-s iT -s T-s,i

Here, note that for each aEq2, (s,x) E QT i, (t)/9e denotes the "derivative"
qT i

(in the sense of N. V. Krylov) with respect to E and that it satisfies the

following formula:

t c

(2.11) MXtc. / = f D .b.r(s+r,Xa'O) x Xa' ,/3E drt,i 0 lj-d j rj

t a
I f3<d ckij(s+rX' ) x Xa' /3 dB

f ~ ak 13 r r,k r,

d
+ I t,i •
i=v+l

Then, by using the Ito formula, taking account of the condition

(A.2), we have the following: there exists a nonnegative constant N, inde-

pendent of (a,s,x E), such that

01 S X,% 2
(2.12) E[e - t  Oc I sX' / 2 N,

i= ti

(see also (1.26)- (1.28)).

As we saw in Section 1, since it is not difficult to estimate 9v '6/3E

by using (A.3) and also the inequality (2.12) just as we proved above, it

holds that there exists a nonnegative function u' over QT such that u' is

locally bounded, independent of (a,e) and

S(2.13) 13v a'e(s,x)/3I <5 u'(s,x)

for all (a,s,x,e) E 1 x QT x (0,I). Now it is clear from the above inequal-

ity that
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(2.14) IvE(s,x) - V(sX) = linf vc_(s,x) - inf va (s,x)l
niE 2in

S sup IVOL, E(S ,X) _ V 01(S ,X) SUP I VOQ,1(S ,X) - V v(S ,X)

sup If{ VoiAC(s,x)/3EcdXI < Ex uI(s,x),
OLE21 0

which implies that In2E -0 as _- 0 uniformly with respect to n ( we used
2

Hadamard's theorem).

Recall the definition (2.1) of G , and for each n=1,2,..., denote by Gm

the right side of (2.1) if we replace A by A . In addition to these no-n

tations we further need the following one: for each function m and CE (0,1),

define G by the formula

(2.15) G m'C(u0,u iiu,s,x ) = inf m OL(s,x){u 0 +I aa(y~

ae A B~~< 3  1

d d
+(c/2) u.. + b.(s,x)ui - c(s,x)u + f(Sx).

i=v+i i=l i

Then we can obtain the followinR, where proof is the same as [3] (Lemma 5.5).

Lemma 2.4 7or each E > 0 it hotds that

I£

(2.16) G [v (sx) = G 0 3 t V , a v , v ,s,x) = 0

a.e. (QT).

Let c - 0 in (2.16). In order to show Lemma 2.2, we also need the follow-

ing transformation of variables: let us fix an arbitrary pair ( ,E) such that

=E R(dlv and 0< e< i, and define new variables (s,y)EQT in

the following way:
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{ S = S

(2.17) Yi = x, i s

FY = Xi - + I i d

Rd
For any yE R , let y and y denote the first v and the last d- v components

of y respectively (similar to x= (x,x)). Then the last two expressions of

(2.17) are written by y= x and cy= x- $ respectively. For each ( ,,), define

a function 47' over Q by

(2.18) ' (s,y) = v (s,x)( - v C(s,y,sy+)).

If we assume the conditions (A.I)- (A.3). it is not hard to show that

has the following properties.

Lemma 2.5 (a) For each (,), E:.E W1 ' 2

p,loc T for any p 1. (b) The

f 'unction tp itself and its :eneraiized derivatvves C +' C'(I _ i < d)

!5 i , j < d), are Zocal bounded in each cuZinder QT ri -y with
.v. -- ' 

- drersect to c. (c) For any (s,y) E QTV lim (s,y) = v(s,v,') (v= (y,y) E R,
6-0

whose convergence is unifom in each cylinder QT,R 7

Since the proof is the same as [3], we omit it here.

Proof of Lemma 2.2 Now, in order to prove Lemma 2.2, it is sufficient to
m

show that G [v](s,x)_50 a.e., due to Proposition 1.1 (1.19). At first, it

is easily seen that Equation (2.16) is equivalent to the following:

(2.19) 0 = inf m (s,y){1 '£+ a '' (s,y) .Y.
ct A 5 l-i,j5v

wx+'' (s,y) - c a.e.
i V+l YiYi (aitn

where m , a~x g c a ' ' and X'' are given by the following



(0!5 E< 1) respectively:

(2.20) r 0 ~(s,v) = m 0(S,V,EV+ ),Y= (y,y),

a (s,y) a(s,V, Cy + )

Isy C 'I c(sY,E:V+

and

x (s Y) =x (s jy ICy + )

(X'Y(s ,x) b'Ns,x)v (s, X) + P (s, X))
1 1.

From (2.19) we obtain the following inequality:

(2.21) 0 G p' ]sy + f'(s,Y), a.e.,

where G 0 and f.J (i=1,2) are given by the formulas:
1

0m 0
(2.22) G V ~~)EG,~~ s,y) =inf M~ 'Us,v)

+ --)ja (S,y)4> () iy(,V

(21.23) E:" (s ,y) =inf[m ,, (s,v){ 'E:+- V CE
1 LEA 0 ' i,j~ I -1 i

and

T" E 0 E
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Let {Un}, n=1,2,..., be a sequence of arbitrary positive numbers such that

rm En = 0, then by the same way as [31 (see the proof of Lemma 5.3) we can
n-Ko d-vn

show that for a.e. C R - , ir fi (s'y) = 0 (i=l,2) a.e. in each cylinder

QTR" In fact, in this case it is sufficient to check, for example, the fol-

lowing inequality: there exists a constant NR( ) which depends upon (R,)

such that

(2. 25) la' .(S'y y +) Q a. (sy,)l - E:N (){c c(syy4 + ) + 1}, for all
ij R

otE A, (s,y) E QT,R' E Rd -v and 0!5E< 1,

because of the assumptions (A.2) and (A.3) (in fact, (1.15)). We can also

make similar estimates for b, c and f as in (2.25). On account of the above

estimates and the fact that the equality limIVv n(s n y+ )- Vv(s,y,) = 0n-*o

still holds in this case, it is shown that lim f, n (s,y)= 0 (i=1,2), whose
1

proof is routine and thus omitted here.

Finally, for the same reason as [3], we can obtain the following inequal-

ity: for a.e. F.,

(2.26) 0 lim a [4nPE(s,y) > G 0 [q, ](s,y) a.e. (sy),
n-o

where 4(s,y) H v(s,y).

But, since C [p ](s,y) = Gm [v](s,y,), (2.26) implies the desired relation:

(2.27) 0 ' Gm 0( 2 . 7) G [v ] (s ,x) a .e . (Q. r .
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3. EXAMPLES AND APPLICATIONS

3.1. Here we shall discuss another assumption different from (A.1),

(A.2) and (A.3) in Section 1. Roughly speaking, the latter is the most

general one in the case in which all of the coefficients are unbounded rela-

tive to the parameter a. We can, however, relax the assumptions with respect

to the coefficients f and g if the bounds of a and b are independent of a,

which is often important from the point of view of applications. Let us con-

sider the following example.

Let us assume that a and b satisfy the following conditions:

(A.1)' . a: A - R 0 R

b: A x QT + Rd

a is a continuous ft. in A and b is also continuous in (a,t,x).

b is uniform Lipshitz continuous with respect to x, i.e. there

exists a nonnegative constant k such that

(3.1) Ib(ax,t,x) - b(a,t,x') I < kix- x'I

for all (t,x,x',a) E [0,T] x R 2dxA, and also

(3.2) 11 a(a) 1 + jb(a,t,x) 1 !5 k(1 + lxj)

for all ao A, (t,x) E T"

Furthermore, for each c A, bEa c1' 2 (QT) and its first order deriva-

tives with respect to (t,x), o b, aib(l- i!5d) and second order one

a.a.b(1<i,j5d) are uniformly bounded. a is still assumed to satisfy the13J

relations (1.5) and (1.6). 0

As for c, f and g, assume the following conditions:
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(A.2)' c: A R,

f: AxQT - R, g: R d  R.

d
c, f and g are continuous functions over A, Ax QT and R respectively. c is

nonnegative and f is also uniformly bounded from below. Moreover, for each

aE A, fci'1,2 (QT) and there exists a nonnegative sequence {kn} n> O such

that for each n= 1,2,...,

d d

(3.3) 1 f (t,x) I a fatf (t,x)I + I f (t,x)I. 1 a.afc(t,x)I +c(a)k n(l+IXI)m,
i=l i,i=l

Anx QT " As to g, g5 2(R d ) and it satisfies the following

dcondition: for all ,,E R

d d
(3.4) jg(x)l + j i19g(x)I + I 1. ag(x)l K(l+ jxf)

i=l 1,j= I

where m is a nonnegative constant.

In this case, we assume the following condition instead of (A.3):

(A.3)' There exists a nonnegtaive function u over QT such that ue C1 '2 (QT)

and, moreovec,

d d
(3.5) ]f(a,t,x) + jat f(a,t,x) + E I@if(cI,t.x)I + I (a.a.ffa,t x)l

i=l i,j=l ' -

+ Lccu(t,x) -< 0

for all (a,t,x) E AxQ, 0 <-1, where LCECis given in (1.17). Assume

further the following condition between f and c:

d
(3.6) laif(cz,t,x)I _ kc(a),

i=l

for all (a,t,x)c Ax QT. Finally, we also assume the same condition as (1.8),

i.e.
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(3.7) fe(T,x) + LI"'cg(T,x) n n

for all (a,t,x) E AxQT and all e E [0,1).

Then we have the following result whose proof is the same as Theorem 2.1.

Theorem 3.1 Assume the conditions (A.1)'- (A.3)'. Then the assertion of

Theorem 2.1 is correct.

Remark 3.1 Thus we can consider other assumptions besides (A.1)~ (A.3)

or (A.1)' (A.3)' under which Theorem 2.1 holds (e.g. in (A.1)' (A.3)', if

g has bounded derivatives then the conditions with respect to b can be re-

laxed, etc.) (cf. [3] examples 5.1, 5.2). 1

Before we consider an example for which the assumptions (A.1)'- (A.3)'

hold, notice the following fact.

Remark 3.2 In order that m (t,x) H 1 (constant function) is a normaZizing

muLtiplier, it is sufficent and necessary that for any r2!0, (t,x) T

(3.8) inf{-r[T tr.a (t,x) + lb (t,x) + c (t,x)] + fa(t,x)} > _o
a EA 

"

This is a small modification of the result due to N. V. Krylov ([5], Exer-

cise 6.3.10). fr

3.2 Consider the following simple example considered by N. V. Krylov in

the case of d = 1.

(3.9) inf {a v v. v -Ctv+ctf(txy)} = 0,
0<C t 2 xx

where ? is a bounded and c1 '2 (Q) function with bounded derivatives. It is

easily seen that the coefficients of Equation (3.9) satisfy the assumptions
1 0 , 01x O at a ,

(A.1) I ~ (A.3)' (d = 2, 1= , A= [0,-) , ol(t,x) 0 (0 o),b ( x) 0 c t )=a
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(x,y) E R, f(t,x,y) = af(t,x,y), g is arbitrary, but also note that the

constant function 1 is not normalizing multiplier for any such f by means

of (3.8). Therefore, we could not know whether the cost v, given by (1.12),

satisfies Equation (0.1) and, in fact, there exists a counter example (cf.

[5], Example 6.3.14).

For Oa<-, (t,x) Q T' put

a 1

( 3 .1 0 ) m O t x

then it is easy to verify that the function m (Xis a normalizing multiplier

of Equation (3.9). It follows from Theorem 3.1 that v of (1.12) is a gen-

eralized solution of the following normed Bellman equation:

(3.11) inf m (t,x) (tv+ v - av+ af(t,x,y) = 0, v(T ,x) g(x).
t xx

If we put 6 = + ' then Equation (3.11) is equal to the following one:

1
(3.12) inf {(l- B)(t v+ v xx) + B(f(t,x,y)- v)} = 0.

But it is equivalent to the following inequalities:

1(3.13) (a) f(txv) = v(t,x,y), atv+7 vxx > 0

1
(b) f(t,x,y) > v(t,x,y), a 1v+ V = 0.

3.3 Linear case (separate form of variables)

If all of the coefficients are of separate form in the variables

(t,x) and a, then the assumptions (A.1)- (A.3) can be verified easily in

the following way.

e
Let A= R (e? 1), and assume that a, b, f, c and g are of the following

form: o'(t,x) = K(t,x),
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o b'A(t,x) = I(tx) + J(A), C (t,x) E 0,

o ef (t,x) = M(t,x) + N a),

where K, I, J, ?.M and N satisfy the following conditions:

(A.1)'' K: RV 3 RV I: Q- Rd

0 K and I are Lipshit- continuous, i.e. there exists a constant

dk -t) such that for all tE [0,T], x,x'E R

1 K(t,x) - K(t,x') I + II(t,x) - I(t,x') 15 k x- x'I.

o For all (t,x)E QT'

11 K(t,x) + I(t,x) I k(l + I).

Assume that K and I belong to c '2QT) and, further, that their

derivatives tK, DtI, D iK, .I, 3a i K and a I (l!i,j!d) are

all bounded.

o 9 is assumed to satisfy the relations (1.5) and (1.6), i.e.

at( t x ) = K ( t x ) 0 )

d
o Let J be a continuous function over A with its values in R

and, furthermore, for each n, ]J(a) !- k for all aE A .n n

(A.2)'' M E c"(QT) and gE c2 (Rd). Moreover, all of their derivatives,
92

M, t,\I, ViM, 7124, g, Vg and V 2g are bounded.

o N(a) is assumed to be continuous in A and bounded from below,

and also satisfy that for each n, IN(a)l < kn for V nXE An I

In this case, instead of (A.3) it is sufficient to assume the following:

(A.3)'' M(T,x) + N(oL) + LaJ'g(T,x) > 0 for all xE Rd, O A, 0<_ E< 1.
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Corollar 3.2 Assume (A.1)'' ~ (A.3)"1, then the assertion of Theorem 2.1

stiLL holds.

Remark 3.3 If the function J is null, then the assumptions will respect

to Ml and g are relaxed (see Theorem 3.1). We can also consider the case

where a depends upon a under which the assertion of Corollary 3.2 is correct.

Remark 3.4 Linear Regulator Problem: A = Re.

a (t) - o(t), b(t) = A(t)x + B(t)ca,

fct,x) = xM(t)x* + caN(t)ca*, g(x) = xDx*

(M, N and D are symmetric matrices such that M> 0 and N,D 0) is not included

in (A.)''- (A.3)'', but it is well-known that this problem can be solved

completely by a particular method (see, for example, [21, p. 165).

3.4 Consider the following 1-dim. (d= 1) Bellman equation:

(3.14) inf 0t v+ Xv" + V-2v' + 2+ d(t,x)} = 0,

where h is a positive constant and d is a nonnegative, bounded and continu-

ous function of (t,x). It is easily shown that this equation is equivalent

to the following:

(3.15) atv + \v" - (v')2 + d(t,x) = 0,
2

and, moreover, Equation (3.15) is known as "equation of burning of gas in

a rocket" ([i], p. 23). Since the coefficients of Equation (3.14) satisfy

the assumptions (A.1)'''- (A.3)'', the cost v, given by the formula

T-s 2

(3.16) v(s,x) = inf E[ f{a 1 + d(s+t, Xa'x)}dt + g..a,x.
0<a < 0 s t T-s

is a generalized (classical in this case) solution of Equation (3.14) (and
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of Equation (3.15)) by means of Corollary 3.2. Here, (Xa'x ) is given by

t

t
(3.17) >?' x 

= x x f 2 z dr + /2W 6t,t r
0

and the function o may be taken appropriately so as to satisfy (A.2)''

and (A.3)''.

By using Corollary 3.2, we can easily extend the above result to a multi-

dimensional and also degenerate one. For example, assume that a = 2, V= 1

9
and A= R . Let us consider the following degenerate Bellman equation:

(3. 18) inf { v +- v + r2 (aVv) + 2 4 + d(t,x,y) } = 0,
OLE in t 2 xx

then it is easily shown that this is equal to the following:

(3.19) V+(Vx)2 (vy)2 + d(t,x,y) = 0.
t 2 Vxx 2 2

Thus, by using Corollary 3.2, it is also shown that the cost v (see (3.16))

is a generalized solution of Equation (3.19), which is a nonlinear and degener-

ate differential equation. We can obtain a partial result if d is not

bounded ([4]).

Remark 3.5 It is well-known (e.g. [1]) that certain kinds of equations, such

as Burger's equation, are equal to Equation (3.15) by simple transformations.

Therefore, by means of the above discussions, the cost v is an explicit rep-

resentation of a solution for those (nonlinear, degenerate) partial differen-

tial equations. Moreover, by choosing the coefficients in Equations (0.1) or

Equation (2.5) appropriately, we can consider many other differential equa-

tions than Equation (3.19). Conversely, it is well-known that the following

equation,

d d
(3.20) U+ a(t,x) U + (t,x)t.3)uu - c(t,x)u = 0

t i,j=l i i=l i



can be formally transferred to the Bellman equation by simple transforma-

tions (for the details, see (4]).0
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4. UNIQUENESS

There arises naturally a problem whether the cost v, given by (1.12),

is only one solution of Equation (0.1) or Equation (2.5), i.e. the unique-

ness problem.

It is known (e.g. [3], [5]) that if all of the coefficients in Equa-

tion (0.1) are bounded with respect to a, then there exists only one solu-

tion of Equation (0.1) under relatively general conditions.

On the other hand, if the coefficients are unbounded with respect to

a, then it is difficult to get such general results from Equation (2.5)

as the preceding one. In the following, we shall discuss only some parti-

cular cases which were treated in Section 3 (cf. [3], Remark 5.2).

Following [3], let us start to define additional notations. Let c(QT)

be a space of real valued continuous functions defined over Q For each

v(1 vd), p :l, we say that a real valued function u given on QT belongs

to W, (QT) if there exist generalized derivatives, 3tu, D.u (li!d)

th
and .D.u (1 i,j v) such that they are locally p integrable on QT" We1J

write W, (Q )  if v= d which is the well-known Sobolev space.

Let m (t,x) be a regular normalizing multiplier.

Definition 4.1 A real valued function u over QT is called m-suoerharrmonic

if here exist constants p, X and k 0 such that uE Wp 'C (Q T) n c(QT

(4.1) iu(t,x) l k(l+ Ixl)

and, moreover,

(4.2) Gm[u](t,x) 0 a.e. (QT) u(T,x) fg(x), x R.

Then we have the following.
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Theorem 4.1 Let ma be a regular normalizing multiplier and let u be m-super-

harmonic. Moreover, suppose that 9.u(l<i!d) and . .u(l-5i,j-v) are local-1 1)]

ly bounded. Then for all (s,x) E QT' u(s,x) S v(s,x), L]

Proof. By means of (4.2) and the definition of ma it follows that

(4.3) Fa1u] (t,x) - 0 for a.e. (QT)I

where F [u](t,x) = F u, a.U, 3.a.u, u,t,x) and F () is given by the formula:

~d

_L1 V a ad
(4.4) F(uOlu utpx) = u + a (tx)u. + b(t,x)u C (t,x)uoijiut =0 i, a i t  )i j  i l

+ f,(t.x).

Let us fix aE9I ; then there exists a number n such that ac 91n , and for

such a it is well-known ([3]), Theorem 3.1) that

(4.5) va (t,x) >- u(t,x) for all (t,x) E QT"

By means of the definition of v, the assertion follows immediately from (4.5).

In order to show the inverse relation, we need a further new notation and

also some assumptions about the coefficients. For any real valued function h

on and ZER such that IZI =1, 0<6< 1, define the quadratic difference,

D2 
6 h(t,x), by

,D6 h(t,x) = {h(t,x+R ) + h(tx- R) - 2h(t,x)'/6 2

2Note that if h(t, °) E (QT) then D, 6 h(t,x)- h( )()(t,x) as 6-0.

Let m a(t,x) be a regular normalizing multiplier. Borel measurable with re-

spect to (t,x) and continuous with respect to a. Then wp have the following

(cf. [3], Lemna 4.2).
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Lemma 4.2 For some p, let uE W1o2 (QT nc(Q), Also, let Gm [u](t,x)-0

a.e. (QT). Then for each K= 1,2,... there exists a Borel function aK over

QT taking values in A such that

OL a
KK

(4.7) 1/K>m (t,x) F K[u](t,x) a.e. (QT),

where

m K(t,x) = m(aK (t,x),t,x) and

(4.8) F K[u](t,x) =u t + 1 V aij (a (t ' x ) ' t ' x) ' 'ui a

d
+ b i (a K(tx),tx)'u - c(a K(tx),tx)u + f(a K(tx),tx).
i=1l

Let us assume the following conditions relative to the sequence {a K} ob-

tained in the above lemma.

(A.4) There exists a constant k _0 such that

(4.9) suo IaK(t,x)I - k
i -K<W

for almost all (t,x) E QT'

Remark 4.1 For example, in 3.4, (3.18), we can take as aK the following

function (we may put m (t,x) -I): for any K= 1,2,...,

(4.10) a K(t,x) = - r2 Vv(t,x)/2.

Note further that in this case Vv is a.a. bounded on QT (for the details, see

[41). Also in 3.2, (3.12), [aK } can be taken such that (4.9) holds under addi-

tional assumptions.

Let us assume (A.4); then we have the following:
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Theorem4.3 LetuEW 1 ,2,' (Q)n c(QT) for any p ->d +1, and also let (4.1)p,loc T T

be satisfied. Let m (t,x) be a regular normalizing multiplier satisfying the

conditions of Lena 4.2 and the relation

(4.11) mo(t,x) <_ N(t,x)m a(t,x)

for alN (t,x), where N is bounded from below. Assume that for such m,

(4.12) Gm [u](t,x) - 0 a.e. (QT),

du(T,x) -> g(x), x ER

!oreover, assume that there exist nonne<ative constants k, m such that for all

(t,x) E QT 0 < <1, Q ER such that IZI =i,

(4.13) DZ,u(t,x) -< k(l +Ixl).

Then it holds that

(4.14) u >-v on QT'

Since te proof is almost the same as the one for Theorem 4.1, Lemmas

4.2 -4.4 in [3], we omit it here (although we have to modify it slightly).

Finally, by combining Theorem 4.1 with Theorem 4.3, we have the following

uniqueness result of Equation (2.5).

CoroZlar, 4.4 Let u E 'Wl' ,V(QT) n c(QT) for any, p d +1 and also let (4.1)

be verified. Suppose that u satisfies the normed Beilmann equation

Gm [u](t,x) = 0 a.e. and u(T,x) =g(x), x ERd, for a regular normalizing

multiplier m satisfying the preceding conditions made in Theorems 4.1 and

4.3. Furthermore, let us assume all of the conditi,ns made in Theorem 4.1

and 4.3. Then u Ev on QT"
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Remark 4.2 It is not hard to prove that for the examples in Section 3, such

as (3.12), (3.18), etc. (under some additional conditions, if necessary), the

uniqueness theorem holds. In fact, it is sufficient to note that (A.4) is true

and that m 0 itself has such properties as m. It is also shown that the cost

v satisfies the same condition (except (A.41)as u in Corollary 4.4 under the

assumptions (A.1) -(A.3) or (A.1)' -(A.3)' or (A.1)'' -(A.3)''. (cf. [3]).
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