AD-4190 319 Ns CP i ? Og }sé P ;EL? iis&s 11

UNCLASSIFIED M.




13333
S EEE

e
i EEFRFETTY -
= -

 EE

—————

==

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAL




-y e

it

. AD-A190 319 PORT DOCUMENTATION PAGE T

hL..

e

1b. RESTRICTIVE A MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/ AVAILABILITY OF REPORT

| 2b. DECLASSIFICATION - DOWNGRADING SCHEDULE

Appraved for onhlic ~elease;
distrituticnunlicited,

< PERFORMING ORGANIZATIQN REPORT NUMBER(S)
211

Technical Report No.

S. MONITORI AT RE NEY(S

5a. NAME OF 2ERFORMING ORGANIZATION
University of North Carolina

6b QFFICE SYMBOL
(if applicable)

7a. NAME OF MONITORING ORGANIZATION

AFOSR/NM
6¢c. ADORESS \th State, and 2iP Codge) 7b A £ gy, State, and ZIP Code)
Statistics Dept. 'PPSS?M e
321-A Phillips Hall 039-A Bldg 410
Chapel Hill, NC 27514 Bolling AFBDC 20332-3448
8a. NAgﬂE QF FUNDING / SPONSQORING 8b. QFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If licabie
0 applicadié) AR@SA—No . F19620 85C 0144,
AFOSR W™
8c A ity, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
“%%ﬁliio“ PROGRAM PROJECT TASK WORK UNIT
Bldg 4 ELEMENT NO. NO. NO. JACCESSION NO.
Bolliog AFBDC 20332-6448 6 1102F 2304 95 .

11 TITLE (Incluge Securrty Clas.vhcanon)

Normed Bellman equation with degenerate diffusion coefficients and its application to

differential equations.

\

1%uPERSOT\AL THOR(S)

13a. TYPE OF 7:PORT 13b. TIME BED 14 F_REP [Year, Month, O S P,
"Brepriit on 9/ 8% o 8/88 R E Y TEPPGE A vear Month, Day)  [1S. PAGE COUNT
16. SUPPLEMENTARY NOTATION
7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and idenyify by 3lo<k number)
SIELD GROUP SUB-GROUP Key Words & Phrases: Normed Bellman equation; degenerate diffH

e

usion coefficients; stochastic control problem; generalized
solutioanormalizing multiplier; cost function), ——

19 ABSTRACT (Continue on reverse :f necessary and identrfy b tf); block number)

}The purpose ot this paper 1s to prove

solution of the normed Bellman equation with degénerate diffusion coefficients and
also to prove that this unique solution is the cost ftme?lcm\ot‘a“m

problem associated with the normed Bellman equation.
some interesting degenerate and nonlinear differential equations.

tence and uniqueness of generalized

chastic control
these results to

We can apply (
Key

"\).\S \

BTIC

m ELECTE . B
\ JAN 1 1 1988

20. OISTRIBUTION / AVAILABILITY Of ABSTRACT

LJunclLassiFlEouNuMITED [T SAME as ReT [T omic users

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified/unlimited

22a. NAME OF RESPONS!BLE_ INDIVIDUAL
Maj. Brian Woodruff

220 TELEPHONE (Include Ares Code) | 22¢. %;;KE SYMBOL
(202)767-5024"1

DO FORM 1473, aaMmar

83 APR edition may De used until exhausted.
All other editions are odsolete.

87 14 29 093

SECURITY CLASSIFICATION OF “HIS PAGE
Unclassified/Unlimited




CENTER FOR STOCHASTIC PROCESSES
AFOSR-TR. ¥7- 1877

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

NORMED BELLMAN EQUATION WITH DEGENERATE DIFFUSION
COEFFICIENTS AND ITS APPLICATION TO DIFFERENTIAL EQUATIONS
by

Masatoshi Fujisaki

Technical Report No. 211

October 1987




NORMED BELLMAN EQUATION WITH DEGENERATE DIFFUSION
COEFFICIENTS AND ITS APPLICATION TO DIFFERENTIAL EQUATIONS

by

Masatoshi Fujisaki s,
Avai;gbility Codes

Kobe University of Commerce

k_fccession‘fé;
| NTIS GRA&I

DTIC TAB
Unannounced

Justification_

By
Distrlgggﬁon/

Avail and/opr

and .
University of North Carolina at ///;” \\ Dist Special

Chapel Hill \'H;x:ri/
N .
™ -/
Abstract
P The purpose of this paper is to prove the existence and uniqueness of gen-
. eralized solution of the normed Bellman equation with degenerate diffusion

coefficients and also to prove that this unique solution is th

equation.

We can apply these results to some interesting degenerate and

differential equations.

stochastic control problem; generalized solution;
multiplier; cost function.

>

e cost func-

tion of a stochastic control problem associated with the normed Bellman

nonlinear

1 Key words: Normed Bellman equation; degenerate diffusion coefficients;

normalizing




t

et ‘. e .

— o

-

0.1

0. INTRODUCTION

Consider the following Bellman equation with degenerate diffusion co-

efficients:
1y d
inf{3 v +3 2 aij(a,s,x)aiaiv fz b, (@,5,X)3;V ~c(a,s,x)v
aeA i.j=1 i=1
(0.1) + f(a,s,x)} = 0 (s,x) < (0,T) xR,

VT = gx),  xer

where d 22, 1 <v <d. Z'=(aij), 1<i,j <v, is a positive definite matrix,
which is written as a =0 0* (0* denotes the transposed matrix of o) and
0 is a (v,v)-matrix, and A is a separable metric space.

If the coefficients a, b, ¢, and f are bounded with respect to x, then
it is known ([3]) that under suitable conditions about regularities and
growth there exists a unique generalized solution of Equation (0.1) and
furthermore, it is the cost function of a stochastic control problem assoc-
iated with Equation (0.1).

in the case where the coefficients are not bounded with respect to o,
it is necessary to consider a modified form of Equation (0.1), so called,
the normed Bellman equation, which was originally considered by N. V. Krylov
([5]1). This case is very important from the point of view of application.
There are also several results in this case ([3], [4), [5], etc), though
they are rather restrictive.

In this paper, we shall extend these resulfs to more general cases, in
which are included many interesting examples. We shall also discuss some

applications to degenerate nonlinear differential equations.




1.1

1. FORMULATION AND MRELIMINARIES

Here we shall consider a stochastic control problem associated with
Equation (0.1) and summarize some properties of the cost function. All
of the notations follow [3].

Let T be a finite positive number which is fixed. Let A be a separ-
able metric space which is a countable union of non-empty increasing sets
A: A= U A, A > A (possibly A=A

n nx1 M n+l :
resentation. Put QT= (0,T) xR

5= ...=A), and we fix this re-
and also 6T= [0,T] x Rd. For each (s,x) ¢ Qp,
consider the following stochastic control problem for a system described

by stochastic differential equations of the type:

(1.1) {dxt = b(at,s+t,xt)dt + c(at,s+t,xt)d8t, 0<t<T-s

X0= X,

where (Bt), 0<t<T, is a d-dimensional Brownian motion process. Assume

that the coefficients ¢ and b satisfy the following conditions:

(A.1) {O(a,t,x): A><6& ~ Rd ® Rd (dxd - matrix) *
b(a,t,x): Ax 6% - Rd (d - vector)

We assume that they are continuous with repsect to (a,t,x). Moreover, let

there exist a sequence of nonnegative constants {kn}, n=1,2 such that

Yoy e ey

for each n,

(1.2) i ola,t,x) - a(a,t,y) ]| + [b(a,t,x) - b(a.t,v)] < knlx—_vl.
and
(1.3) loC@,t,x)|| + |b(a,t,x)| <k (1+|x])

for all ae An’ 0<t=<T, xe¢ Rd and ye Rd (Il *|l denotes the matrix norm).

*
We also write o®(t,x) and b™(t,x), and so on.




—

Assume further that for each ac A, o> and b e Cl’z(af), and, in addi-
tion, all of their derivatives 3 oa, 3.0%, B.B.GG, 3 ba, 3.b% and B.B.ba,
t 1 13 t 1 1)
1<i,j<d, satisfy the following inequalities:
There exists a nonnegative constant m2 0 such that for all n21 and

(G,t,X) € An xaT,

(1.4) ) llaica(t,x)” R AR R RO |
1<i=d 1<i,jsd ' J lcisd !

. o « . i

+ 1si%j3d“ 3i3jb (t,x) ]|+ \ato (t,x)| + |atb (t,x)] sk (1 « [xD™.

Let 1 £v<d and let us assume that (d,d) matrix ¢ in Equation (1.1} is

written as follows:

(1.5) o (t,x) =
0 0} } d-v
v d-v

where 0 is a (V,v) matrix such that for all (t.x) < Q. and £« R” such that

T
el =1,
(1.6} sup na(t.x)(E.Ea(t.x)Ea(t,x)*g) > 0, where
aeA
1
C! - (‘! O. \1 ﬂ ‘I
po(t,x) = (1+tr.a (t,x) + |b (t,x)]| +c7(t,x)+ £ (t,x)]) 2

The definition of strategy is the same as one given in [3].

Definition 1.1 Zetz n21. We write ac ﬂln 7.F the rrocess a = (a, (w)),

0<t<T, i8 defined on a probability space (Q,F,P; Ftvl satiefyine the usuc!
conditions, which are progressively measurable with respent to {Ft}. naving
values in A,- Let U= U]QIH. The elements of a set U are called stra-

n:
tegies.




From the assumption (A.l), it is well-known that for each strategy

o ¢ U and (s,x) ¢ 6%, there exists a unique solution of Equation (1.1)

Q,5,X

and we denote it by (Xt

). Remark that in this case it holds that for

each ae U, (s,x) ¢ [0,T],

(1.7) E[ sup [XP7 Y|P <o
0<t<T-s

for all p21.

Next, for each ae W and (s5,x) 56,1., define a function va by the formula:

T-s -6 5% ~po X
(1.8) Vis,x) = E[f e ° fla,s+t, X% de + e 1S g2 5%,
0 t t T-s
where
2,S,X ¢ 0,S,X
(1.9) o, = éc(ar,s+r,xr )dr,
A, 8,X, . . . .
and (Xt ) is the solution of Equation (1.1) associated with (a,s,x). Here

we assume that the coefficients c, f and g satisfy the following conditions.

(A.2) {c and f: A x QT ~> R, c 20,
g : Rd ~+ R,

We assume that all of these functions are bounded from below and also

. . $
continuous with respect to (a,t,x). Assume further that for each a, c s

X 1,2
cC

f (6}), and g ecz(Rd) and that the foregoing functions and all their

derivatives satisfy the following conditions: Btc, Sic(l <i <d), aiajc(lsi,jsd)
g, 318(1 <i <d) and 3i 3jg (1<i,j<d) are uniformly hounded with respect

to (o,t,x) ¢ Ax Q&. Moreover, assume that for all nz}, (a,t,x)eA x 6&.

(1.10)  [fla,t,x) | + [3, f(a,t,x)] + |f(2)(a,t,x)| + |q£)(2fa,t,x)|

+ Be,x) < k (1+]x™,




where f and f .o+ Mean the first and the second derivatives of fa(t,x)
(?) (13 {4)

along spatial direction ¢ Rd respectively (see [5] p. 46). 0
For each n, define a function Vo by the formula:

(1.11) v_(s,x) = inf v¥(s,x)
n aemn

and also v is defined by

(1.12) v(s,x) = inf v¥(s,x)
ae

It is easy to show by the assumptions (A.1) and (A.2) that the functions
i and v are locally bounded over 6&. In fact, it holds that there exist a

constant N and a sequence of nonnegative constants kﬁ, n 21, such that for

each n

' m
(1.13) N s v (s,x) < k!(1+ (xD)",
and
(1.14) N<v(s,x) < kj(1+[xD"

for all (s,x)e:ﬁ%, because v(s,x) < vl(s,x) for V¥ (s,x) € 6&.
For further discussions, let us assume the following conditions about

the coefficients:

(A-3) (1.15) c*(t,0) > 28] V. (e, 0| * + 8]7 p%(t, 0| + |7 46,0 |7

for all (a,t,x) e A><6&, where cha = (81 o“,...,adc“), etc. Moreover,

. . . . 2 =
assume that there is a nonnegative function u, belonging to cl’ (QT), such

that

d
(1.16) GRS |aif“(t,x)|2 s a0
i=1




a 2 a 2 d Q 2
+ jatb (t,x)[" + |30 (t,x)|“+« } |aiajr (t,x)|

i,j=1
d d
7 1e.abtlte T180,0% 0% < -1%Cut,x),
. L i% L i%j
i,j=1 i,j=1

for all (a,t,x) € A><6&, 0se<1, where L*'® is a second order differential

operator given by

o,E _ 1 ¥ a 2 d 2
(1.17)  L77u(t,x) = d.u+ 3 Y oa (t,x)3.9,u+€“/2 ] 3u
i,j=1 1J 1] i=usl *
d o o
+ ) bo(t,x)d.u - ¢ (t,x)u,
i=1 * t

where a = go*.
Finally, for technical reasons we assume that there exists a constant n

d
such that for all ac A, Xx<R and €« [0,1],

(1.18) 201, + 2 (T, 2 . 0

Some examples in which the assumptions (A.1), (A.2) and (A.3) can be
easily verified will be given in Section 3 later. In Section 3, we shall
also discuss another assumption different from the preceding one.

Under the assumptions (A.1), (A.2) and (A.3) in which € = 0, we have

the following result about Vo and v.

Proposition 1.1  (a) vy 8 locally bounded in 6& untformly with respect

to n. (b) {vn, n21} is equicontinucus in each cyiinder 6& g = [0,T]

x {xe Rd; Ix| <R}. (e) lim vn(s,x) = v(s,x) wniformly in each cylinder
n-»ow

6& R (d) v is absolutely continuous in (s,x); hence there exist first

order generalized derivatives with respect to (s,x). 3V/ds and 3v/dx,,

1<i<d, and, furthermore, the foregoing derivatives are bounded in each




— 2
QT R (e) Tnere exist second order gemeralized derivatives: a"v/axiaxj,

1<i,j<v, which are also bounded in each 6’1” R’ (f} It holds that

(1.19) inf Fa[v](s,x) >0 a.e. (s,x)e QT’
acA

where Fa[v] i8 given by the formula:

(1.20)  F*[v](s,x) = BV +

(ST

v d
§ a?.(s,x)&iajv'+ z b?(s,x)aiv - ca(s,x)v

i) =1 J i=1

+ fa(s,x).

Proof The method is the same as [3] (Proposition 5.1). (a) is clear

5
from the definition of Vn' Let us prove (b). Since for each a <, vae cl"(QT)
n c(af) under the assumptions (A.1) ~ (A.3), we have the following:

a,S,X

a T-s -, d a,s,X a,s,x
(1.21)  3v'(s,x)/3x; = E[ [ e Z t(a s+, X070 8L X dt
0 j=1
T-s -¢?’s & a,5,x.; ¢ a,s, X a,s,X
+ [ e £, s+, X0 ){-f 28 cla,s+r, X )3;X drldt
0 0 G T, ]
_¢a,s,x ¢a ,5,X
. z 3. g(xa ,S, x)a.xa,s,§ < e T-s . {- (xa s, x)e T-s
i T-s,j
j
T-s a,s,
f Z 3. c(a ,S+t, X x)dt]' Z Ia Ss X, where ¢ 2135:X 45 given by
03 J k=1
a,s t a,s,X
(1.22) ¢2°>% = fe(a_,s+1,X>*>*®)dr, and, in addition,
t 0 T T
a,s,X a,s,X,.
ij(a,t,x) = af(a,t,x)/axj, 3. Xt i = axt,j /dxi, etc.

In order to get the assertion (b), it is sufficient to show that for any

n 21, for all (a,s,x) eéln XQT’ Sva/axi is locally bounded uniformly with re-

spect to (a,n). Using Schwartz's inequality to I;’S’X, the first term of




the right hand side of (1.21), we have the following inequality:

2
2y 2 T-s -¢t
(1.23) 1T < Ef [ e )la £(a,,s+t, x> ik 2at |
0 j
T-s -¢“ .
x E[ j e = )|3, x i dt] < T
J

(we omit superindices (s,x) so long as they are fixed).

7 —
Now, by means of (A.3), there exists a nonnegative function ue cl’“(QT),
satisfving (1.16). Put S(t,x) = u(s+t,x), 0<t<T-s, (s,x)elaT, then from

Ito's formula, we have the following:

¢ T-s -¢7
T-s~ ~ t ~ a
D - - =
(1.24) u(T-s xT s - u(0,x) é e T{du(t,X)) +
1 4 a o} ~ a d Q a ~ a o} Qa
> . §=1aij(s+t,Xt)8i8ju(t,Xt) +i§1bi(s+t,xt)8iu(t,xt)— c (s+t,Xt)

x E(t,Xa)}dt + M_, where M_ 1s a square integrable martingale.
t t t 4

o
. . . . T-s -¢t at a
Note that the right side of (1.24) is equal to IO e L u(s+t,Xt)x dt+-Mt,
a
e e . T-s -¢t .
because of the definition of u. If we add the quantity [ e

0
,
Zjlajfa(s+t,xi){”dt to both terms of (1.24), and if we take the mathemati-

cal expectation, then, taking account of the inequality (1.16), we have the
inequality:

a
-¢T

3S5,X
(1.25) Iz's’xs E[-e S u(T, x“ ) s uls, 0] < uls,x),

for all ac¥l, (s,t) e QT’ since u is nonnegative.

On the other hand, as to I6’ since X: is (LB-) differentiable with re-

spect to x, we have the formula:

(1.26) aixa =38, . +

g p) b (s+r, x> )alxr Wdr

+

Dt Ot

o o A
kz9320jk(s+r,Xr)Bin’dek(r)




(see [5], Chapter 2, Section 8). By using again Ito's formula (and also

taking the mathematical expectation), we get the following:

= —¢S a2 t o] a 42
(1.27)  } Ele “{,X} 171 =6+ [E[f-e T{a.x% .}°c%dr
i,j »] 1] I,J 0 1T,) T
5 } '¢:3 XX T 8 b x® } '¢3 o) o a a
+ 2 e . .°d.X dr + e 3,0, . 0. . dr
0 1r,j g k'j i'r,k 0 Q,g,m £k mjki'r, 21 r,m ]

r

t o)
s I@eelf e T2 |« | vt ] e ),
0

where (1307 = ] 0.6 1%, vt @l P - ] 3,0% (0)1°
i,j ' i,j,k 1)
wEE=T e 7.
and | Xr[ i%j[81¥r13[

Then, on account of (A.3) (1.15), we have the inequality:

a,S,X

(1.28) E[e— t

2 —
{aixa’s’x}“] < }N, for all (o,s,x,t) e 0 « QTX [0,T-s],
i,j

t,]

where N is a nonnegative constant independent of (a,s,x,t). Therefore, from
(1.25) and (1.28), we can conclude that there exists a nonnegative function

~ —_— ~ 7 -
u over QT such that ue cl’"(QT) and for all n,(a,s,x) e Q&1XQT,
(1.29) IIT’S’X| < u(s,x).

For the other Ik‘s (k=2,3 or 4), we can also obtain the same kind of estimates

(1.29) for Il.by using the assumption (A.3). Thus it is shown that there exists
-

a nonnegative function u' ¢ cl’“(QT) such that for all (a,s,x) e AU QT’

d
(1.30) Z lava(s,x)/axi] < u'(s,x).
i=1

Similarly, it is not hard to see that av“/as is also locally bounded uni-

——— e -



1.9

formly with respe¢t to a by using (A.3) and (1.28). The assertions (c) ~ (f)

can bé obtained by the same way as [3] (Proposition 5.1). 0




|
|

2. NORMED BELIMAN EQUATION

. -~ ——— g - - — ——~ -
2.1
|
~

-

As it is well-known (see Section 3 and also [5], 6.3.14, p. 273), gener-
ally the inverse relation of (1.19) does not hold if the coefficients are not
bounded with respect to a. Therefore, in fact, we need to introduce some aux-
iliary notations. Let ma(t,x) be a nonnegative function with respect to

(&,€,Xx) € Ax 5&, and define G" by the formula;

m - Qa 1 . o
(2.1)  G'(u,,u..,u.,u,t,x) = inf m (t,x){u, +3 z al.(t,x)u..
071571 aeA 0 “1<€i,jsv 1 1
+ Z b?(t,x)ui - ca(t,x)u + fa(t,x)} (a=00*)

1<isd

Definition 2.1 4 nonnegative function n*(t,x) over A x 6} ig said to be a

0’ Uij, ui) u, t, x,

normalizing rultiplier if for all u
(2.2) Gm(u WU, .U, ,u,t,x} > ~oo,
0 1371

P . . 8 4 . . .
Morecver, the normalizing rmultiplier m (t,x) is called regular 1f there exiats

a function N(t,x) < « such that for all (a,t,x) - Ax 6T’
(2.3)  mo(t,x) £ N(t,0m(t,x),
where tne function mz ig given by the formula:
a 1 a 2 d a 2
(2.9)  my(t,x) = {1+3 FT Jal (6,0 + § b (t,0)]
RS . i
1<i,j<v i=1

sl ]? e [P0l 3

Let us assume the conditions (A.1)~ (A.3). Then we have the following

main result.

Theoprem 2.1 Let n*(t,x) be a regular normalizing rultiplier. Then it holds

that




(9]
(3]

(2.5) G"[v](t,x) = 0 a.e. @)
here GRV](t,x) = G (3 v, 3,9;5¥, 3;0,v.t.x). 0

We call (2.5) the normed Bellman equation. For the same reason as [3],
Section 5 (see also [5], pp. 269~ 271), in order to prove (2.3), it is suf-

ficient to show the following:

A O a oo o
Lerma 2.2 IFf m (t,x) = mo(t,x), rien (2.5) <e correct.

{2

This can be shown by the same way as [3], Section 5, the so-called per-
turbation method. Since the proof is almost the same as [3], it is suffici-
ent to describe different points from it. Let us start introducing several
notations as usual. Let € be an arbitrary number between 0 and 1, and for

each €, (a,s,x)e Ax 6&, define of by the formula:

(2.6) T e,x) 0 )
c v
o (a,t,x) = €0
0 0 ‘E } d-v
v d-v
0,5 ,X»E

For each ae U, (s,x) ¢ 6&, 0<e<1, let (X ) be a solution of Equa-
a’

tion (1.1) in which o is replaced by GE, and also let v *% be given by (1.8)

A,S,X,E

t ). For each 0<e< 1 and n21,

in which (X

?,s,x) is replaced by (X

define vi and v© by the formulas:

. o,€
inf v’

asmn

(2.7) Ve (s,%) (s,x), and

ve(s,x) = inf ve(s,x).
n
nx=1

Then we have the following:




[ 3]
(92

. . g . o ;e . ’
Proposition 2.3 (a) v, s untformly (in (€,n)) bounded and also equicontin-

uous in (s,x) unijormly with respect to € in each cylinder 6} R’ (b) For
\ € . . I~ . .
each €>0, lim vi(s,x) = v (s,x) uniformly in each QT R’ and v& is continuous
n-e :

in (s,x)e 6%. (e¢) For each €>0, n21, vie w;’z(Q) and vee W;’z(Q) (cf. Sec-
tion 4) for any bounded subregion QeQp p21. Mcreover, all their first or-
der generalized derivatives with respect to s and X5 1<is<d, and second or-
der generalized derivatives with respect to xixj, l1<i,jsv are locally
bounded in QT wniormly with respect to (e,n). (d) lig ve(s,x) = v(s,x),
uniformly in each cylinder 5&,R' ) a
Proof. Since the assertions (a)~ (e) are the same as [3] (Proposition 5.4)

it is sufficient to show (d). Consider the following equality:

(2.8) vE(s,x) - vis,x) = (vE(s, 0 - vi(s, 0 + vE(s,x) - v (5,x)}
n n n
_ .,n,€ _Nn,e _n
+ {vn(s,x) - v(s,x)} = Il LRSS o

Note that for each ¢>0, lim I?’E = 0 by means of (b} above and also that

n—xn
lim Ig = 0 from (c) of Proposition 1.1. Note also that the convergence
n->oo

is uniform in each cylinder T.R in both cases. Let us show that 1;’5-»0
b4

as €>0 uniformly with respect to n.

- o,€ . .
For each aefY , 0<e<l, (s,x) € QT’ v ' (s,x) is written as follows:
AyS,X,E _ Q,8,X,€

T-s -¢
t f(at,s+t,X%’s’x’§dt+ e 178

(2.9)  v»&(s,x) =E[ [ e
0

g2 91,

a,e

It is easily shown that for each (a,s,x),v is cbntinuously differentiable
with respect to €, and, moreover, av“’e/ae is given by the following: (we

omit also the superindices (s,x)) (see [S5], Section 2.8).

T-s t d ¢3¢
2.10) av®€/se=g([ {-f § 3,c¢®® ax**/3e-drte b £ %4t
0 0i=1"1 T,1

r————— =



2.4
T-s _wt,e A, € nyd,E T-s O,E . 0,E
v [e Y9 £ 73X 77/3e dt +{-f J3.c 73X’ /3eedt}
v 1 t,1 < 1 t,1
0 1 01
_®a,e QL€
T-s A,E T-s o,€ a,e
x e g(X;7J) + e z 9. 8(X2 Q) axT_s’i/ae]

i
Here, note that for each ae, (s,x) e 6&, SX?’Q(t)/Be denotes the ''derivative"
(in the sense of N. V. Krylov) with respect to € and that it satisfies the
following formula:

o

a,e r o, Qa,e
2
(2.11) X7 /3¢ g 3.b, T (s+r,X "7) axr,j/ae dr

i
Oe—t

Then, by using the Ito formula, taking account of the condition

(A.2), we have the following: there exists a nonnegative constant N, inde-

1 pendent of (a,s,x €), such that
(2.12) Ele N |axt’i’ *“/3e|°] < N,
i=1 ’

(see also (1.26)~ (1.28)).

, . . L. s . o
As we saw in Section 1, since it is not difficult to estimate 3v o€

/%€
by using (A.3) and also the inequality (2.12) just as we proved above, it
holds that there exists a nonnegative function u' over 6& such that u' is

locally bounded, independent of (a,e) and

1 (2.13) v € (s,x)/3¢e| < u'(s,x)
3 for all (o,s,x,€) € A x 6} x (0,1). Now it is clear from the above inequal-
ity that




sad

(2.14) Ivi(s,x)- vn(s,x){ = |inf va’s(s,x) - inf va(s,x)[

aeﬂ“ aemn

%)

sup [va’e(s,x)~ Vu(s,x)l < suplva’s(s,x)- va(s,x)l

Qe &ln aell

1
= sup lj{av“'Ae

aef O

(s,x)/3c}edr| < exu'(s,x),

which implies that Ig’€->0 as €~ 0 uniformly with respect to n ( we used

Hadamard's theorem). B

Recall the definition (2.1) of Gm, and for each n=1,2,..., denote by G:
the right side of (2.1) if we replace A by An. In addition to these no-
tations we further need the following one: for each function m and €¢ {0,1),

define G™° by the formula

(2.15) Gm’s(uo,u..,u.,u,s,x) = inf ma(s,x){u0+ (%J X aQ.(s,x)u..
1ot deA 1<i,jsv 1]
2 9 d a a
+ (€°/2) ) wu,, + ) bi(s,x)u. - c (s,X)u + 2s,x) ).
. ii . i i
i=v+l 1=1

Then we can obtain the following, where proof is the same as [3] (Lemma 5.5).

Lerma 2.4 For each €>0 1t holds that

m.,€ m. ,€
0 v¥1(s,x) = G 0

£ £
(2.16) G (Stv ) Biajv , Biv s V ,8,X) =0

a.e. (QT). g

Let € - 0 in (2.16). In order to show Lemma 2.2, we also need the follow-

ing transformation of variables: 1let us fix an arbitrary pair (§,e) such that

£ = (& Eg) € RA™ and 0<e< 1, and define new variables (s,y)e 6& in

vl

the following way:




—_———~ —

S = s
(2.17) Yy = X, l€ixgv
eyi = xi - ii, v+ l<icsd

~

d — .
For any ye R, let y and y denote the first v and the last d- v components
of v respectively (similar to x= (x,x)). Then the last two expressions of

~ -~

{2.17) are written by ;= X and €y = x- § respectively. For each (§,e), define

a function y”’ over 6& by

(2.18) 85 s,y = vE (s, x) (2 VE(s.T ey + £)).

¥
If we assume the conditions (A.1)~ (A.3). it is not hard to show that w”’e

has the following properties.

Lemma £.5 {a) For eacn (§,e), ¥ 5 e W; loc (Q Yy For avy p21. (b) The
FTunetion w&, itself and ite jeneralized derivatives wg e’ w%’e(ls i<d),
w%fi.(ls i,j<d), are locally bounded in each cylinder QT R u:t ormly With
Pe;séct to €. (e) For anu (s,y)e QT’ lig wi e(s,y) = v(s,v,5) (v= (;;y)e Rd),
whose convergence 1s uniform in each cy%inder ﬁf,R . 3

Since the proof is the same as [3], we omit it here.

Proof of Lemma 2.2 Now, in order to prove Lemma 2.2, it is sufficient to
m
show that G O[v](s,x)s 0 a.e., due to Proposition 1.1 (1.19). At first, it

is easily seen that Equation (2.16) is equivalent to the following:

(2.19) 0 = inf EO &€ (s,y){wg € %- Y A 6E (s, /)wi’

aeA lsi,jsv j

d
1 ’ ’ N , 5, €
) o5 ; + P,y - 0,0 ae. Q)
i=vel Yi%i
where mO’g €, ;a,&,a' 658 and ;a,&,e are given by the following




(0<e< 1) respectively:

(2.20) ( Eg’g’e(s,y)
! ;a.i,e(s’y)
l TS s,y

and
85,y

((s,x) = ]

1

From (2.19) we obtain the

Eg 2
(2.21) 0 =GO s,y + § f?’e(s,y), a.e.,
i=1
ol
~0 ~5,€ . .
where G ~[p°’ ] and £’ (i=1,2) are given by the formulas:
~E ~E
~m ~ m> [
2.22) ¢ ">,y = 0(9?’5. V28 0B sy = inf a2 S Vs
S V.V, 0 s
13 aeA
Y
1 AR 1 2GS ] 4 ’0
c@ 1 sy wfj_ e 2 o8 T80y Be L ot
27, & . 2 Yi¥i
I,J—l j i=v+l
=£,€ €, 1 N £,€
(2.23) T 8(s,y) = inf[n2 &8s, v){wg = 7 A%, v’
1 0 Y7L 3y Y.
aeA i,j=1 Yi i
d £E.€
+ _1_ ;' wgie _?:E)C(S’y)wgle} - ;la’g’o(s,y){lbg’“
2, y.Y. 0 S
1=v+l 7171
1 ¥ ~a,g,0 Ee 1 S £ ~n,E,0 £,e
I CROTVVES R CR A MR
i,j=1 1 Y5 < ovel YiYy
and
(2.2 By =it i e - Sl Y

acA

o - - -

= mO(S.y,€y+£), y={y,y),
] - "

= a (s,v,ey+§8),

" A
= C (S,.V-EY" E)»

A

= x(s,v,ey + £),

b?(s,x)vx (s,x) + £2(s,%)).

i

following inequality:

(s,y) 1},



2.8

Let {en}, n=1,2,..., be a sequence of arbitrary positive numbers such that
lim €n= 0, then by the same way as [3] (see the proof of Lemma 5.3) we can
n-e _ ~£ »€
show that for a.e. £¢ Rd v’ lim fi n(s,y) = 0 (i=1,2) a.e. in each cylinder

n-r+e

6& g- [In fact, in this case it is sufficient to check, for example, the fol-

lowing inequality: there exists a constant NR(i) which depends upon (R,§)

such that
- o - 7 o] - (1—-'\
(2.25) }aij(s,y,ey* £) - aij(s,y,E)l < e:Ng(E){c (s,y,ey+ £) + 1}, for all
- d-v
ae A, (s,y) € QT R’ £eR and 0<e< 1,

because of the assumptions (A.2) and (A.3) (in fact, (1.15)). We can also

make similar estimates for b, ¢ and f as in (2.25). On account of the above

£ ~
estimates and the fact that the equality lim|Vv n(s,y,e y+£)-V(s,v,8)| =0
n-eo n
JBie
still holds in this case, it is shown that lim fi n(s,y)= 0 (i=1,2), whose
n->-o

proof is routine and thus omitted here.
Finally, for the same reason as [3], we can obtain the following inequal-

ity: for a.e. £,

~E,€ ~E

a2’ m

G0 B,y 28 b1 ae. (s,

(2.26) 0 = lim

n->wo

*(s,y) 2 v(s,7,8).
m> m

. ~0. & 0 - . . . .

But, since G ~[¢](s,y) = G “[v](s,y,£), (2.26) implies the desired relation:

where

My
(2.27) 026 °[vl(s,x) a.e. (Qp). ad
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3. EXAMPLES AND APPLICATIONS

3.1. Here we shall discuss another assumption different from (A.l),
(A.2) and (A.3) in Section 1. Roughly speaking, the latter is the most
general one in the case in which all of the coefficients are unbounded rela-
tive to the parameter a. We can, however, relax the assumptions with respect
to the coefficients f and g if the bounds of o and b are independent of a,
which is often important from the point of view of applications. Let us con-
sider the following example.

Let us assume that ¢ and b satisfy the following conditions:

(A1) .0 A~ Rd ® Rd

= d
. b A x ~> R
QT
. 0 is a continuous ft. in A and b is also continuous in (a,t,x).

b is uniform Lipshitz continuous with respect to x, i.e. there

exists a nonnegative constant k such that

(3.1) |b(a,t,x) - b(a,t,x')| < k|x-x']

2
for all (t,x,x',a) ¢ [0,T] x R'dx A, and also

(3.2) ol ] + bla,t,x)| < k(1+ |x])

for all ae A, (t,x)e¢ 6&-

a

Furthermore, for each ae A, b ¢ cl’z(ai) and its first order deriva-

tives with respect to (t,x), Btb, Bib(ls i<d) and second order one
8i3jb(1si,jsd) are uniformly bounded. o” is still assumed to satisfy the

relations (1.5) and (1.6). O

As for ¢, f and g, assume the following conditions:




(A.2)" c: A~ R,

f: A><6& ~ R, g: R ~ R.

¢, f and g are continuous functions over A, A><6& and Rd respectively. c is
nonnegative and f is also uniformly bounded from below. Moreover, for each
ac A, 2 ¢ cl’z(af) and there exists a nonnegative sequence {kn} n =0 such
that for each n=1,2,...,

d d m
(3.3) lfa(t,x)|+|3 fa(t,x)l+ z |3.fa(t,X)l§Z la.a.fa(t,x)l+C(G)Skn(14’|}(|) ’
| ¢ i=1 ij=1 *J

for all (a,t,x}e An><6&. As to g, g« cz(Rd) and it satisfies the following
d

condition: for all »eR

d d
(3:4) Jgeal + ] [3.8001 + § 19,3l < k(1+[xhT,
i=1 i,j=1 17

where m is a nonnegative constant. O
In this case, we assume the following condition instead of (A.3):
(A.3)' There exists a nonnegtaive function u over 6& such that ue cl‘z(ﬁ&)

and, moreovec,

+

d d
(3.5) lf(a,t,x) ] ]atf(a,t,x) +.Z 3. f(a.t.)] + ] IBiajf(u,t,x)l

i=1 i,j=1

+ La’eu(t,x) 0

IA

for all (a,t,x) « A:<6+, 0<e <1, where 1% €5 given in (1.17). Assume
further the following condition between f and c:
d
(3.6) Z[afﬂntm)lskdah
i=1
for all (o,t,x) e A)<6&. Finally, we also assume the same condition as (1.8),

i.e.




(3.7) 2T, x) + L*Fg(T,x) 2 n

]

for all (a,t,x) ¢ A><6& and all € € {0,1).

Then we have the following result whose proof is the same as Theorem 2.1.

Theorem 3.1  Assume the conditions (A.1)'~ (A.3)'. Then the assertion of
Theorem 2.1 s correct. O

Remark 3.1 Thus we can consider cther assumptions besides (A.1) ~ (A.3)
or (A.1)'~ (A.3)’' under which Theorem 2.1 holds (e.g. in (A.1)'~ (A.3)', if
g has bounded derivatives then the conditions with respect to b can be re-

laxed, etc.) (cf. [3] examples 5.1, 5.2). 0

Before we consider an example for which the assumptions (A.1)}'~ (A.3)'

hold, notice the following fact.

Remark 3.2 In order that ma(t,x) = 1 (constant function) is a normalizing
multiplier, it is sufficent and necessary that for any rz0, (t,x) ¢ 6&,
(5.8) inf{-r[%-tr.aa(t,x) + lba(t,x)l + ca(t,x)] + fa(t,x)} > -

aeA -
This is a small modification of the result due to N. V. Krylov ([5], Exer-

cise 6.3.10). O

3.2 Consider the following simple example considered by N. V. Krylov in

the case of d = 1.

(3.9) inf {atv-#%-vxx-av-va?(t,x,y)} = 0,
0<a<eo “

1’2(6&) function with bounded derivatives. It is

where f is a bounded and ¢
easily seen that the coefficients of Equation (3.9) satisfy the assumptions

(A1)~ A3) (=2, v=1, A= (0,%), *(t,x) = (5 o) b(6,00 2 0, (e,0) =0,




3.4

(x,y) ¢ Rz, fa(t,x,y) = a?(t,x,y), g is arbitrary, but also note that the
constant function 1 is not normalizing multiplier for any such £ by means
of (3.8). Theretfore, we could not know whether the cost v, given by (1.12),
satisfies Equation (0.1) and, in fact, there exists a counter example (cf.
[5], Example 6.3.14).

For O0<sqa<e, (t,x) ¢ 6—1-: put

1

o )
(3.10) m (t,x) ='T:7; ,

then it is easy to verify that the function m* is a normalizing multiplier
of Equation (3.9). It follows from Theorem 3.1 that v of (1.12) is a gen-

eralized solution of the following normed Bellman equation:

(3.11) inf ma(t,x){atv+—l; v o - ov e aF(e,xy) i = 0, VT, 2 g(x).

0<q<eo

a
1+

If we put 8 = , then Equation (3.11) is equal to the following one:

(3.12)  inf {(1- 8)(atv+%vxx) « 8(F(t,x,y) - V)} = 0.

0<gB«1

But it is 'equivalent to the following inequalities:

N 1
(3.13) { (a)  flt,x,v) = v(t,x,y), 3dve+sv 20
~ l =
(d)  flt,x,y) > v(t,x,y), 3dv+5v =0

5.3 Linear case (separate form of variables)

If all of the coefficients are of separate form in the variables
(t,x) and x, then the assumptions (A.1)~ (A.3) can be verified easily in
the following way.
Let A= Re (ez 1), and assume that 3, b, f, ¢ and g are of the following

form: Ea(t,x) = K(t,x),




S e - n v T T
3.5
o BY(t,x) = I(t,x) + J(@), (t,x) =0,
o FA(t,x) = M(t,x) + N(a),

where K, I, J, M and N satisfy the following conditions:

(A.D' K 6T->RvGR\), I: q. ~ rY

-
1
» Kand T are Lipshitz continuous, i.e. there exists a constant

k2 0 such that for all te [0,T], x,x'e€ Rd,
| K(t,x) - KC(t,x") |+ [1¢t,x) - 1(t,x") | <k|x- x'].
o For all (t,x)e 6&,
| K, |+ [1(e,x) ] < k(L+ [x]).

e
« Assume that K and I belong to cl’“(QT) and, further, that their
derivatives 3 K, 3 I, 3.K, 9.I, 9.9.K and 9,9.I (l<i,jsd) are
t t 1 1 1) 1)
all bounded.

o O is assumed to satisfy the relations (1.5) and (1.6), i.e.

K(t,x) O

o*(t,x) = (O 0

)

. . . . . d
o Let J be a continuous function over A with its values in R,

and, furthermore, for each n, |J(a)|s< k ~ for all aeA . a

L
(A.2)'" Me cl’“(QT) and ge cz(Rd). Moreover, all of their derivatives,
2
M, atM, VM, Y°M, g, Vg and Vzg are bounded.
o N(a) is assumed to be continuous in A and bounded from below,

and also satisfy that for each n, |N(a)| < kn for ¥ ae An' a
In this case, instead of (A.3) it is sufficient to assume the following:

(A.3)'"  M(T,x) + N@@) + L¥Eg(T,x) = 0 for all x<RY, acA, Ose<l. U
g

et ———
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Corollary 3.2 Assume (A.1)''~ (A.3)'', then the assertion of Theorem 2.1

still holds. U

Remark 3.3 If the function J is null, then the assumptions will respect
to M and g are relaxed (see Theorem 3.1). We can also consider the case

where 0 depends upon a under which the assertion of Corollary 3.2 is correct.

d

Remark 3.4 Linear Regulator Problem: A = R®,

o*(t) = o(t), bI(t) = A(t)x + B(t)a,

fa(t,x) = M(t)x* + aN(t)a*, g(x) = xDx*
(M, N and D are symmetric matrices such that M>0 and N,D2 0) is not included
in (A.1)''~ (A.3)"'', but it is well-known that this problem can be solved

completely by a particular method (see, for example, [2], p. 165). 0
3.4 Consider the following 1-dim. (d=1) Bellman equation:
2
(3.1%) inf (3. v+dv + V2 av' + o” +d(t,x)} = 0,
- y<© t
where A is a positive constant and d is a nonnegative, bounded and continu-

ous function of (t,x). It is easily shown that this equation is equivalent

to the following:

v")

> + d(t,x) =0,

(3.15) Btv + AV -

and, moreover, Equation (3.15) is known as "equation of burning of gas in
a rocket" ([1], p. 23). Since the coefficients of Equation (3.14) satisfy

the assumptions (A.1)''~ (A.3)'', the cost v, given by the formula

T-s
(3.16)  v(s,x) = inf E[ [ {Jo_|? + d(s+t, X F)Hdt + gx® 9],
o<y, <o 0 t t T-s
t

is a generalized (classical in this case) solution of Equation (3.14) (and




of Equation (3.15)) by means of Corollary 3.2. Here, (X%’x) is given by

t
(3.17) Xi’x = X + f V2 ardr + /2% Bt,
0

and the function ¢ may be taken appropriately so as to satisfy (A.2)''

Rl

and (A.3)''.

By using Corollary 3.2, we can easily extend the above result to a multi-
dimensional and also degenerate one. For example, assume that a=2, v=1
2
and A=R", Let us consider the following degenerate Bellman equation:

(3.18) inf {9 vilv w3 (a,Vv) + |1|2 + d(t,x,y}} = 0,
eR2 t 2 XX

then it is easily shown that this is equal to the following:

2 2
) (v,) (vy)
(3.19) B,V + SVex T Ty T Tt d(t,x,y) = 0.

Thus, by using Corollary 3.2, it is also shown that the cost v (see (3.16))
is a generalized solution of LEquation (3.19), which is a nonlinear and degener-
ate differential equation. We can obtain a partial result if d is neot

bounded ([4]).

Remark 3.5 It is well-known (e.g. [1]) that certain kinds of equations, such
as Burger's equation, are equal to Equation (3.15) by simple transformations.
Therefore, by means of the above discussions, the cost v is an explicit rep-
resentation of a solution for those (nonlinear, degenerate) partial differen-
tial equations. Moreover, by choosing the coefficients in Equations (0.1) or
Equation (2.5) appropriately, we can consider mahy other differential equa-
tions than Equation (3.19). Conversely, it is well-known that the following

equation,

d
aij(t,x)aiaiu +.Z

b.(t,x)aiu - c(t,xu =20
1 i=1 !

2 .

1
(3.20) Btu+— z
i,j=

o e ~ S




3.8

ation by simple transforma-

tions (for the details, see [41). (0]

can be formally transferred to the Bellman equ

A T R e ey 4 P
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4. UNIQUENESS

There arises naturally a problem whether the cost v, given by (1.12),
is only one solution of Equation (0.1) or Equation (2.5), i.e. the unique-
ness problem.

It is known {e.g. [3], [5]) that if all of the coefficients in Equa-
tion (0.1) are bounded with respect to a, then there exists only one solu-
tion of Equation (0.1) under relatively general conditions.

On the other hand, if the coefficients are unbounded with respect to
o, then it is difficult to get such general results from Equation (2.5)
as the preceding one. In the following, we shall discuss only some parti-
cular cases which were treated in Section 3 (cf. [3], Remark 5.2).

Following [3], let us start to define additional notations. Let c(ﬁ&)
be a space of real valued continuous functions defined over 6&. For each

v(l<v<d), pz1, we say that a real valued function u given on 6& belongs

1,2,v

to wp,loc

(QT) if there exist generalized derivatives, atu, aiu (1<ix<d)

and Bia‘u (1<1i,j<£v) such that they are locally pth integrable on QT' We

]
X w1,2
write p,loc(QT)

Let ma(t,x) be a regular normalizing multiplier.

if v=d which is the well-known Sobolev space.

Definition 4.1 A real valued function u over 6& ts called m-superharmonic

if there exist comstants p, A and k 2 0 such thatl1€W;:iéz(QT) 0 C(6+)~
A

4.1) lu(t,x)| < k(1 +[xDH"

and, moreoven,

(4.2) Plul(t,x) 20 ae. (), u(T,x)<g(x), x ¢ &

Then we have the following.




Theorem 4.1 Let > be a reqular normalizing multiplier and let u be m-guper-
ineorem %..1 g g P ?

harmonte. Moreover, suppose that Biu(l <ic<d) and aiaju(1 <i,j<£V) are local-

ly bounded. Then for cll (s,x) € 6&, u(s,x) s v(s,x), a
Proof. By means of (4.2) and the definition of m* it follows that
(4.3) F*fu] (t,x) 2 0 for a.e. Q) s

where Fa[u](t,x) = Fa(atu, 8iu, Biaiu, u,t,x) and Fa(°) is given by the formula:

V d
y 2 - l Q Qo _ 2
(4.4) F (uo.uijnjfu,t,x) = uj+s . gzlaij(t’x)uij+ iElbi(t,x)ui c (t,x)u

+ fa(t.x).

Let us fix a2 ; then there exists a number n such that ae an, and for

such @ it is well-known ([3]), Theorem 3.1) that

(4.5) va(t,x) 2 u(t,x) for all (t,x) ¢ 6&.

By means of the definition of v, the assertion follows immediately from (4.5).

o
In order to show the inverse relation, we need a further new notation and
also some assumptions about the coefficients. For any real valued function h
on 6& and ¢ Rd such that |2] =1, 0<8<1, define the quadratic difference,

2
Dz’éh(t,x), by

(4.6) oi sh(t,x) = (h(t,x+82) + h(t,x- 62) - 2hit,x)}/8"

-
“~

2,6 as §+0.

Note that if h(t,*) ¢ cZ(QT) then D, .h(t,x) >

h t,x
OION
Let ma(t,x) be a regular normalizing multiplier. Borel measurable with re-

spect to (t,x) and continuous with respect to a. Then we have the following

(cf. [3], Lemma 4.2).




1,2,v

9
Lemma 4.2 For some p, let uce wp,loc

Q) nc@p), Also, let GM[u](t,x) <0
a.e. (QT). Then for each x=1,2,... there exists a Borel function a, over

6& taking values in A such that

a a

4.7) 1/¢>m “(t,x) F “[u](t,x) a.e. (Qp),
where

o

m K(t,x) = m(aK(t,x),t,x) and
(4.8)

o‘|<< 1 : .

F “[u](t,x) = u, + 5 l aij(aK(t,x),t,x)BiBju

i,j=1
d
+i§1bi(aK(t,x),t,x)aiu - c(a (t,x),t,x)u + f(a (t,x),t,x). ]

Let us assume the following conditions relative to the sequence {a } ob-

tained in the above lemma.

(A.4) There exists a constant k 2 0 such that

(4.9) suo o (t,x)| <k
1<Kk<> K
for almost all (t,x) ¢ Q- 0

Remark 4.1 For example, in 3.4, (3.18), we can take as o the following

function (we may put ma(t,x) =1): for any x=1,2,...,
(4.10) a (t,x) = - Y2 Yv(t,x)/2.

Note further that in this case Vv is a.a. bounded on QT (for the details, see

[4]1). Also in 3.2, (3.12), {aK} can be taken such that (4.9) holds under addi-

tional assumptions. 0

Let us assume (A.4); then we have the following:




T T T T~ —— e e

1 »2,V
p loc

r

Theorem 4.3 Let u ¢ (QT) n c(Q ) for any p=d+1, and also let (4.1)
be satisfied. ILet m‘(t,x) be a regular normalizing multiplier satisfying the

conditions of Lemma 4.2 and the relation
A a
(4.11) mo(t,x) < N(t,x)m (t,x)

for alt (t,x), where N is bounded from below. Assume that for such m,

d

(4.12) { G [u](t,x) < 0 a.e. (Qp),
u(T,x) = g(x), X €R™.

Moreover, assume that there exist nonnesative constants k, m such that for all

(t,) Qs 0<8<1, 2 eR such that (2] =1,

\)

s

Dy qu(t.x) < k(1 +xH"

{(4.13)

Then it nolds that

L]

(4.19) uzv on 6&.

Since the proof is almost the same as the one for Theorem 4.1, Lemmas
4.2 ~4.4 in (3], we omit it here (although we have to modify it slightly).
Finally, by combining Theorem 4.1 with Theorem 4.3, we have the following

uniqueness result of Equation (2.5).

Corollars 4.4 Let u ewl (QT) n c(QT) for any p 2d+1 and also let (4.1)

p,1
be verified. Suppose that u satisfies the normed Bellmann equation

v

Gm[u](t,x) =0 a.e. and u(T,x) =g(x), x st, for a regular normalizing

rmultiplier m satiefying the preceding conditions made in Theorems 4.1 and
4.3. Furthermore, let us assume all of the conditions made in Theorem 4.1

and 4.3. Then u =v on 6&. 3




Remark 4.2 It is not hard to prove that for the examples in Section 3, such
as (3.12), (3.18), etc. (under some additional conditions, if necessary), the
uniqueness theorem holds. In fact, it is sufficient to note that (A.4) is true
and that mg itself has such properties as m*. It is also shown that the cost
v satisfies the same condition (except (A. 43} as u in Corollary 4.4 under the

assumptions (A.1) ~(A.3) or (A.1)' ~(A.3)" or (A.1)"' ~(A.3)''". (cf. [3]).
0
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