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Abstract i 

Information capacity of Gaussian channels is one of the basic 

problems of information theory. Shannon's results for white Gaussian 

channels and Fano's "waterfilling" analysis of stationary Gaussian 

channels are two of the best-known works of early information theory. 

Results are given here which extend to a general framework these 

results and others due to Gallager and to Kadota, Zakai, and Ziv. 

The development applies to arbitrary Gaussian channels when the 

channel noise has sample paths in a separable Banach sp»ace, and to a 

large class of Gaussian channels when the noise has sample paths in a 

linear topological vector space. Solutions for the capacity are 

given for both matched and mismatched channels. 



Introduction      ' 

The modern theory of information is largely based on the pio- 

neering work of C.E. Shannon [1]. The contributions and importance of 

information theory to the advancement of technology are very well 

known, and need not be summarized here. However, new applications of 

a different nature seem likely to arise in the not-far-distant 

future. Some of these potential applications would require a much 

deeper development of the theory than has been needed heretofore. 

This is in part because of rapid advances in technology in areas such 

as computers and communications. Thus, one may envision computers of 

such high capability that their optimum use will require mathematical 

models using infinite-dimensional methods. Fiber optics is already 

leading to communication channels of extremely high bandwidth. Also 

to be considered is the need to develop information-theoretic models 

and methods for applications which do not fit into the classical mold 

of a communications channel with stationary Gaussian noise or a 

discrete memoryless channel. On the one hand, some communication 

channels contain nonstationary noise as a major source of 

interference. In another direction, information theory is viewed as a 

means of evaluating and designing systems in areas such as image 

processing, artificial intelligence, and surveillance. 

Thus, the scope of information theory as presently applied may 

require considerable expansion in order to meet the needs of the 

future. In particular, mathematical models may be needed for problems 

of a very general nature, including channels with memory, which may 

be infinite-dimensional, nonstationary, amd possibly nonGaussian. 
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The present article gives a treatment of capacity for Gaussian 

channels in a very general setting: when the stochastic processes of 

interest induce measures on a linear topological vector space. The 

work is an extension of previous results for induced measures on a 

separable Hilbert space [2], [3]. Although the latter model will be 

sufficiently general for most applications, it is not likely to be 

adequate for a treatment of nonstandard applications such as random 

fields, artificial intelligence, and surveillance. 

In the case of stochastic processes with sample functions be- 

longing to a separable Hilbert space, the results given in [2] and 

[3] represent a substantial generalization of previous work. This 

previous work includes Shannon's original white noise channel [1], 

Gallager's further work on this model [4], Kadota. Zakai, and Ziv's 

work on the Wiener channel [5], and the results of Fano [6] and 

Gallager [4] for stationary Gaussian channels. All of this prior work 

makes various assumptions on the channel noise. 

Of course, in practical applications the coding capacity is most 

important. Partial results in this area for these more general models 

have been obtained [7], [8]. It can be expected that more complete 

solutions of the coding capacity problem will require the 

availability of general results on information capacity such as those 

summarized here, since proofs of coding capacity typically involve 

use of the information capacity. 

This paper discusses the general framework in which these prob- 

lems have been solved, and summarizes the solutions. Proofs will not 

be included; it will be seen that one can modify the proofs of the 

Hilbert space solutions given in [2] and [3]. This has already been 
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done in [7] for the case of the "matched" channel analyzed in [2], 

and similar methods can be used for the "mismatched" channel consi- 

dered in [3]. Thus, the development here will be limited to defining 

the framework of the problem, providing the supplementary details 

needed to adapt the Hilbert-space solutions and proofs of [2] and [3] 

to the present more general setup, and then stating the results. 

i 

Mutual Information and Channel Capacitv 

Let (X,/3) and (Y,?) be two measurable spaces, with JJL^ a 

probability on (XxY, /3x2f). For the sake of clarity, jj^ is called a 

joint measure. Denote by fi^ and u^ the projections of fiyv °" (^.P) 

and (Y,?), U^^UY the product measure on (XxY, j3x3f). The (average) 

mutual information of )LL_, is defined to be 

where the supremum is over all N > 1 and all measurable partitions 

Cj Cj^ of (XxY, /3x?). It follows immediately that I(^YY) ~  " when 

it is false that ji^ is absolutely continuous with respect to UJ^Uy 

{^xY ^^ ^x®*^)- ^^" ^ "^^ Uy^^.   then [9] 

Hu^) = J [log dn;;8^^.y)J dMxY('^.y)        ^    (2) 
XxY      ^ '^ 

Channel information capacity is defined as  the supremum of 

ICf^) over all p^ in a suitable set. In the framework of most com- 

munication channels, and to be used here, the channel model is 

defined as follows. A measure }JL^ on (XxY, Px5) describes the statis- 

tical relationship between the message X and the channel noise N; 

usually, as we shall assume, JJL^ = l^^U^- The channel output Y is 

described by a measure ji^ = U^®hi^ ° g~   .   where g is (XxY, /3xgr)/(Y.3f)- 



measurable. The joint measure fi^ is then U^®1\. ° f~ . where 

H^'V) = (x. g(x,y)). The most typical situation in engineering 

applications is for g(x.n) = A(x)+n, where A is an (X,3F)/{Y,|3)- 

measurable coding function. In general, the capacity is then defined 

as SUPQ I(M^), where Q is a set of constraints on all admissible 

pairs (M^-A) of message measures fj^ and coding functions A. However, 

if A is 1:1 and bimeasurable, then no information is lost due to A. 

That -1 ^  -, . ,-1 is. let figY = lu^oA. 0 jj^] o h . where h(x.y) = (x. x+y). If A 

is 1:1 and (X./3) /(Y.3f) bimeasurable. then (1) shows that 

ICf^gy) = ^(f^)- ^^ ^ ^^*^ ^ ^^^ Polish (complete, separable, 

metrizable), then by Kuratowski's Borel mapping theorem [10] any 1:1 

Bore1-measurable map A: X ^ Y is Borel-bimeasurable. 

We shall assume here that X=Y, P=?. A=I (identity), so 

g(x.y) = X + y. The extension to the more general case can be 

obtained by either restricting attention to coding functions A which 

are 1:1 and bimeasurable, or else by computing the information lost 

due to a coding function which does not have these properties. 

Mathematical Structure 

The following assumptions will be made henceforth. E is a 

locally convex Hausdorff linear topological vector space over the 

real numbers, with topological dual E'. It will also be assumed that 

E is quasi-complete: every closed and bounded subset is complete. E 

must then be sequentially complete. a(E') will denote the cylin- 

drical <7-field, generated by the elements of E', cr(E' )^ the com- 

pletion under the measure p.. For x in E and y in E' . the value of y 

at the point x will be denoted by <y,x>. 



The noise measure JLL^ will be defined on (E, CT(E')). p^    will be 

assumed to be Gaussian and zero-meam: U^°i       is a zero-mean Gaussian 

distribution on IR for each i  in E'. u^  will be assumed to have a 

covariance operator Rj^: E' ^ E.  R^ is  linear,  self-ad joint and 

nonnegative: <x.Rj^y> = <y,R^x> and <x.Rj^x> > 0 for all x,y in E" . pu^ 

has  characteristic  function given by fij^(x) = J e*  ■^ dfi^(y) = 
E 

-t<x.Rj^x> 
e       , and <x.Rj^y> = S-^  <x,u><y,u>dfij^(u).     . |. 

Under these assumptions, it is known [11] that there exists a 

unique Hilbert space Hj^ contained in E, such that the natural 

(canonical) injection jj^: Hj^ -» E is continuous, R^ = jj^j^, and H is 

the closure of range(R) imder the inner product <Ru,Rv>„ = <u,Rv>. 

Here, Hj^ is always identified with H^^. H„ is termed the reproducing 

kernel Hilbert space (RKHS) of R^ (or pt^); it is actually the RKHS 

for the covariance fvmction R_: E'xE' -» R, R (u.v) = <u,Rv>. It will 

be further assumed that H^^ is separable; instances where this assump- 

tion is not necessary will be noted. If JJL^ is Radon, then H.^ is 

necessarily separable [12]. 

The message measure )j^ is a probability on (E, a(E')). The 

constraints to be imposed will ensure that JJL, has a covariance 

operator R^: E" -» E; it can be assumed (WLOG) that u^ has zero mean. 

As in the previous section, the measure of interest is lu^. defined 

by jXj^ = ^x®)^ °  ^     '   where f(x,y) = (x, x+y). 

A basic result in the Shannon theory is that if the supports of 

}i^ and fi^ are restricted to be of finite dimension £ind the covariance 

of fi^ is fixed, then I(MyY) is maximized when (j.. is Gaussian. From 

this one obtains the result that the channel capacity problem can be 



6 

solved by assuming p^ to be Gaussian (see [2, Lenuna 6]). This 

assumption will be made henceforth. 

The ohservation measure u^ = M^®)^ " g~ . where g(x,y) = x + y, 

is thus Gaussian, with covariance operator IL,: E' ^ E, R^ = Ry + R^. 

Of course, Ry has a RKHS H^ contained in E and R^ = j" jy, where 

jy' Hy -» E is the natural injection and is continuous. 

The joint Gaussian measure JJL^ has a joint covariance operator 

^^' E'xE' -* ExE [13], [7]. This operator and its properties are 

characterized by the following result. It does not require that H^ be 

separable. Moreover, the result holds for any joint Gaussian measure 

on (ExE, CT(E')X(7(E')) having a covariance operator 34™.: E'xE' -♦ ExE. 

Lemma 1 [13], [7]: 

(1) 9^ = ^{-^+t)^**, where ^: H^xHy -* ExE is the natural 

injection. ^ is the identity in ExE. and t is a self- 

adjoint bounded linear operator in H^xHy with lltll < 1. 

(2) t(x.y) = (Vj^y. Vj^x). where V^= Hy ^ H^ is a bounded 

linear operator with IIVj^ll < 1. The operator V^^ is 

uniquely defined by Xj,<u.x><v,y>dfi^{x.y) = <u, JJ^VJ^JYV> 

for all u,v in E'. 

(3) Id^xY^ ^ "' ^^ ^^^ °^^y *^ ^XY ^^ Hilbert-Schmldt with 

IIVj^ll < 1. 

(4) When V^ is Hilbert-Schmidt with IIV^II < 1. then 1(1^) 

= -2^ log (l-T ) where (nr ) are the eigenvalues of V^^V.^^. 

Lemma 1 is fundamental to the solution of the channel capacity 

problem. It enables one to calculate the mutual information, yielding 

the following result. 



Lemma 2 [2], [7]: Suppose that p^  is Gaussian. Then: 

(1) I(f^) < " if and only if ji^[range(jj^)] = 1,  where JI^    is 

 Hy ; 
the extension of y^.  to CT(E')  ; 

(2) I(MXY) < «> if and only if R^ = JN'^^N' '^^^''^ '^'- "N ^ "N ^^ 

trace-class. When this is satisfied, ^CfVy) 

= 2 2^ log (1+T^), where (T^) are the eigenvalues of T. 

If  the RKHS Hj,^ is not separable, then part (1) of Lemma 2 holds 

with the condition ^^^[rangeCjj^)] = 1 replaced by ^L*[range(j )] = 1, 

where jx^ is  the outer measure obtained from p^ [7]. The following 

result is then useful. 

I 

Lemma 3 [7]: Suppose that E is a locally convex l.t.v.s., fi a 

probability measure on (E.cr(E')). Suppose that B is a separable 

or reflexive Banach space and that j: B -* E is a continuous 

linear injection. Then, the following are equivalent: 

(1) Aj(B)] = 1: 

(2) II = uoj , where u is a unique probability measure on 

(B.a(B')). 

If (1) or (2) holds, then fi is Gaussian if and only if v is 

Gaussian. If B is both separable and reflexive, then 

j[B] € a(E')^ so that (1) is equivalent to ^[j(B)] = 1. 

In the mismatched channel to be considered subsequently, the 

constraints are given in terms of the norm for another Hilbert sub- 

space of E. The following result is then useful. It does not require 

that IL, be separable. 
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Proposition 1: Suppose that tt^ is a Hilbert subspace of E. Let 

%' ^ ~* E ^® ^^^ natural injection map, and suppose that 

ji^[range(j^)] = 1. Then ^iu^) < «> if and only if H^ is a vector 

subspace of H^^. If H^ C H^^, then j" is continuous, the natural 

injection J: H^ -♦ H^^ is continuous, and H^ is the RKHS for the 

covariance operator j^j^: if B^ is separable, then H^ is also 

separable. 

Proof:  Suppose that H^ C Hj^. Since H^ is a Hilbert space contained 

in the RKHS E^,     H^ is also a RKHS of functions on E" and lljxll^ 

2 
< kllxll^ for all X in H^,  some k < <» [12],  so that the natural 

injection J: H^ -* Hj^ is continuous. Since j^ = j^^J. j must also be 

continuous, so that Jmj«, is a covariance operator mapping E' -* E. By 

definition, H^ is the (unique) RKHS for j^j^. To see that H^ is sep- 

arable (assuming that Hj^ is separable), one notes that the linear map 

L- Hj^ ^ ^' ^*^N^ ~ ^^W^' ^^ continuous and has dense range in IL,,  so 

that L  has only {0} in its null space. Thus, if (u , n>l} is such 
n  ~  ' 

^ n 
that {jfjU^. n>l} is dense in E^,   then {Ljf^u^. n>l} nrust be dense in 

H^- ^Cf^) < "' ^y  Lemma 2, since ji^ [range(j„)] = 1. 

If H^ is not contained in IL,, then there exists z in r8inge(j„), 

z € range(j-,). The Gaussian measure pu. with covariance z8z has 

M^ [range(jj^)] = 0; by Lemma 2. I(M^) = <"■ ^ 

Constraints 

The constraints that will be used to define the admissible set Q 

of message measures jiy are the following: 

(A-1)  )Li^[range(j^)] = 1. 



.2 
(A-2)  J 11x11 Jdyj^(x) < P. - : 

where H^ is a Hilbert space contained in VU,  with norm II•11™, 

^W' ^ ~* ^ ^^ ^^^ natural injection, and Uy is the Borel measure on 

H^ satisfying jj^ = VyS>j^  . 

Since we wish to have the constraint (A-2) apply a.e. dji^, it is 

first necessary to require (A-1). The existence of the measure u„ 

such that fi^ = "y'^jm follows from Lemma 3; H™ is separable, from 

Proposition 1. Also by Proposition 1, the capacity will be infinite 

if PL. is not a vector subspace of IL,. 

The constraint (A-2) is motivated by the tjrpical application 

when E is L2[0,T]. In the case of formal white noise, the constraint 

T 2 
is usually E SQ  X^(w)dt < P. This can be viewed as a constraint on 

2 
EIIXII^,  where W is  the RKHS of the identity operator: this is the 

covariance of formal white noise. When white noise is viewed as the 

formal derivative of the Wiener process, then the "integrated" 

channel is analyzed [5]. In that case, the transmitted signal X is 

defined by X^ = SQ  u(s)ds,  u in L2[0,T],  and the constraint is 

2 •2 
typically EIIUII       <  PT.        llxIL      is   the norm of x  in  the RKHS of Wiener 

^2 ^2 

measure. Finally, one may note that in his  treatment of  stationary 

power-and-frequency-limited Gaussian channels when the noise has 

integrable spectral density [4], Gallager first assumes a constraint 

on the message of the form EilXII^ p^-, < PT. However, the transmitted 

signal is obtained by passing the message through a linear filter 

dX < <». where <^>, is the whose transfer function G satisfies 

-00 '*'N' 

noise  spectral  density.  Such a  transmitted signal satisfies both 

(A-1) and a constraint of the type A-2, with (assuming  that  |G| /<^ 
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is bounded) an upper bound of EL.IIXII„ ™ < — sup '^^ ' dA for any 

T > 0. where now X refers to the filtered message and ll«ll„ is the 

RKHS of the noise covariance for the interval [O.T]. Of course, the 

constraint (A-2) is not placed explicitly on the transmitted signal 

in [4]; instead, it appears in the solution for the capacity. 

Gallager's analysis is for the water-filling model treated by Fano 

[6]. Fano's treatment does not yield finite capacity, precisely 

because the constraints (A-1) and (A-2) are not imposed. 

In addition to its use in previous more specialized analyses, 

the use of a Hilbert space norm is plausible from two other consid- 

erations. First, as can be seen from Lemma 2, the capacity will be 

infinite unless the constraint used implies E^IIXIC < P" for some 

P" < «>. Proposition 1 shows that R^ must be a RKHS of functions on E" 

if the capacity is to be finite. Second, a RKHS norm actually places 

a dual constraint on the signal; this corresponds to limitations on 

the amount and frequency distribution of the signal energy in typical 

applications. ' 

The capacity subject to the constraints (A-1) and (A-2) will be 

denoted by %^{?). If H^ = Hj^ (consisting of the same elements and the 

identical inner product), then the capacity will be denoted by *€»,(?) 

and the channel is said to be matched (to the constraint). If H^, ?i H„ 

as Hilbert spaces, then the channel is said to be mismatched. It will 

be seen that in the matched case, the results can be directly related 

to results obtained by Shannon [1] and Gallager [4] for the white 

noise case and by Kadota, Zalcal, and Ziv [5] when the noise is the 

Wiener process (without a dimensionality constraint).  Thus,  these 
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results extend the aforementioned results to an arbitrary Gaussian 

noise, rather than for formal white noise or for the Wiener process. 

In the case of the mismatched chaimel, a completely new set of 

results is obtained. These results differ from those of the matched 

channel not only in the value of the capacity, but also by the 

properties of the solution. These differences will be discussed after 

the main results are presented. 

Information Capacity of the Matched Channel ■ 

The solution for '^(P) is given by the following theorem. 

Theorem 1 [2], [7]: 

(a) Suppose that Hj^ is of dimension > M, and that (in addition 

to (A-1) and (A-2)), jj^ is required to satisfy 

dim [supp(M^)] < M. Then '£^i?) = (M/2) log (1 + P/M). The 

supremum is attained, and only attained, when fi^ is 

Gaussian with zero mean and covariance operator Ry = j Tj^, 

where T: Hj^ ^ Hj^ is any self-adjoint linear operator with 

M-dimensional range space and with a single non-zero 

eigenvalue of value P/M. 

(b) Suppose that R^ is infinite-dimensional. Subject only to 

the constraints (A-1) and (A-2), "^i?) = P/2. The capacity 

CEinnot be attained. ; 

Shannon's original work [1] considered capacity for the white 

Gaussian channel with noise of spectral density N„/2 and the signal S 

constrained in time to T seconds,  constrained in bandwidth to W 

T 9 
hertz,  and constrained in average power by Ej_S dt < PT. His result, 

one of the best-known results of early information theory,  was  that 
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the capacity is WT log (1 + P/(WNQ)). Since the formal RKHS norm for 

2   T 2 
such noise is  llxllj^ = jQX^dt/{NQ/2),  Theorem 1(a) gives Shannon's 

result by setting the dimensionality M = 2WT.  Gallager [4] has 

obtained this result for the white noise channel by considering the 

signal as a point in a space of 2WT dimensions, and applying the same 

energy constraint as that used by Shannon. 

Part (b) of Theorem 1 is also a generalization of known results 

for the white noise case, again generalizing results of Shannon and 

Gallager.  For white noise of spectral density N„/2 and signal S such 

T 2 
that E/^S^dt < FT, Shannon showed that the capacity without a band- 

width constraint is at least P/N^. Gallager proved that the capacity 

is P/NQ if there is no dimensionality constraint on the signal. 

The result of Theorem 1(b) has also been obtained by Kadota, 

Zakai, and Ziv [5] for'the case where the channel noise is the Wiener 

process (the "integrated white noise" channel). 

Theorem 1 thus extends some of the well-known results of infor- 

mation theory, previously obtained only for the formal white noise 

channel (or. for part (b), the Wiener process channel) to a general 

Gaussian channel without feedback. The results of Theorem 1 hold for 

any Gaussian noise measure whose covariance operator maps into E and 

which has a separable RKHS. In particular, they hold whenever the 

space E is a separable Bztnach space. 

Capacitv of the Mismatched Gaussizm Channel 

The capacity problem for the case where H^ ?£ H-, (as Hilbert 

spaces) provides a degree of flexibility which is lacking in the 

matched channel. By Lemma 2, necessary and sufficient conditions for 

finite capacity are that M^[range(j^^)] = 1 and EX"^"N - ^'  ^°^ ^"""^ 
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P' < 00.  However,  one may wish to use more selectivity in the choice 

of constraint. As noted above, the RKHS norm llxll„ can be viewed as a 
W 

constraint on both the amount and the frequency distribution of the 

signal energy. 

In the matched case, the constraint E^IIXll < P constrains the 

frequency content of the energy in a manner determined solely by the 

channel noise. It is more desirable to constrain the frequency 

distribution in a manner which not only satisfies constraints imposed 

by the RKHS of the channel noise, but also satisfies additional 

constraints. Such additional constraints are needed in order to 

analyze channels with partially unknown noise, including jamming 

channeIs. 

In this section, the results corresponding to Theorem 1 will be 

given, now assuming a mismatched channel. For more details, reference 

is made to [3], where the corresponding results are obtained for the 

case where E is a separable Hilbert space. Those results can be 

extended to E a separable complete metric space by using the Banach- 

Mazur theorem and Kuratowski's Borel mapping theorem. However, in 

applications one may deal with a linear space that is not metrizable. 

or not complete, or not separable. The extension of those results to 

the present framework can be carried out by using Lemmas 1-3 and 

Proposition 1 to adapt the proofs given in [3]. 

The constraints  (A-1) and (A-2)  involve the unique Gaussian 

Borel measure v^  on H^ satisfying fi^ = v^o^~   . Of course,  u  has a 

covariance operator R^: H^ ^ H^, and R^ = J^RyJ^- At the same time. 

Rjj = JJI|TJM where T is  the covariance operator  (in E^)  of   the Gaussian 

measure  i)„ satisfying UT,OJ'       = It^.   T = 2TU®U     for a CONS  {u   .   n>l} 
i- IINX nnn ^n~-^ 
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-1 in Hj^. and  I(fJ^)  = 2 \  log (I+T^^)-  Moreover,  v^ =  u^oj 

J= ^ "* Hj^ the imbedding map, and so IL. = j JR J^j!!. 

 H 
From this  it follows that one can assume that range(J)  = H 

 H^ 
(otherwise, restrict attention to range(J)  ).  One  then has R 

I) 

= J TJ  , and the constraint (A-2) becomes 2 T IIJ~'^U 11^ < P. Define 

IN ■" s = (J"^)V^ = uf)-^ (3) 

where Ij^ is the identify in H^^. The operator S: IL, -* tt^ is densely 

defined. The limit points of the spectrum of S consist of all eigen- 

values of infinite multiplicity, all limit points of distinct eigen- 

values, and all points of the continuous spectrum [13]. Let 9 be the 

smallest  limit point of the spectrum of S, and let {A , n>l> be the 
n  ~  ^ 

set of all eigenvalues of S which are strictly less  than 6,  with 

corresponding o.n.  eigenvectors {e , n>l}. Of course, {X , n>l> can 
n n  ~ -^ 

be empty, finite, or countably infinite. 

The capacity problem now becomes that of determining 

<e^(P) = sup (t) ^ log (1 + X^[1+-YJ"^) (4) 

subject to the constraint 

L ^n ^ P- (5) 

2 
where X = T (1 + T ), (6) 

n   n*-    n-* ^ -' 

1 ^ -n = "j"'-n"w • C^) 

where (T^) is any nonnegative summable sequence of real numbers, 

{u , n>l} any CONS in H„ which belongs to range(J). 

The  results for the mismatched channel which correspond to part 

(1) of Theorem 1 can now be stated. 
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Theorem 2 [3]: Suppose that KL has dimension M < <». The capacity is 

then 

^(P) = (t) 1    log [^-^ ' 
n=l    ■■ K(l+/3 )-■ 

^  n-^ 

where P^ < j32 < . . . < /3jj are the eigenvalues of S. and K is  the 

largest  integer < M such that 2V/3. + P > K/3„. The capacity is 

attained by a Gaussian jj^ with covariance operator  (8),  where 

T    =    2^/3 +P-K/3     (1+p  )~^K"^     for    n < K.     T    = 0 for n > K,   and n       L  1   1 nj n n 

{u^, n>l} are o.n. eigenvectors of S corresponding to the 

eigenvalues (P^) • No other Gaussian JLL. can attain capacity. The 

same result is obtained if Hj^ has dimension L < <» and }JL. is 

constrained to have support of dimension M < L. ; 

The above result assumes IL, to be finite-dimensional. The 

following theorem extends to the case where IL, is infinite- 

dimensional, but the support of fx^ is restricted to be of finite 

dimension. 

Theorem 3 [3]: Suppose that H^ is infinite-dimensional, and that 

support (/j^) is restricted to have dimension < M < «>. 

(1) Suppose that 9 < <». , 

(a)  If {X , n>l} is empty, then 

%^i?) = {M/2) log [1 + PM"^(l+e)"^]. Capacity can be 

attained if Eoid only if S has 9 as an eigenvalue of 

multiplicity > M. In this case '^^(P) is attained only 

by  a  Gaussian  ji^  with covariance  (8),  where 

T. = PM~^(l+9)"^ for i < M with {u^ Uj^} any o.n. 

set in the null space of S - 91. 
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(b) If KAj^ < 2^. + P < KXj^^^ for some K < M, then the 

capacity is as in Theorem 2, with /3. = A.. i=l,...,K. 

and can be similarly attained. 

(c) Let K = min(L,M), where L > 1 is the number of 

eigenvalues (X ) of S whose value is strictly less 

than 0, and suppose that P + 27X. > KB. The capacity 

i s then 

K 
^(P) = t 2 log 

n=l 

1+9 
1+X n 

+ {M/2) log 1 + 

K 
P + 2 (x.-e) 

n=l 

M(l+e) 

The capacity can be attained if and only if 9 is an 

eigenvalue of S with multiplicity > M-K. The capacity 

is then achieved only by a Gaussism fi^ with covariance 

(8).  where T = (2^. + P - MX + (M-K)9)(l+X )~^M~^ 

for n<K. with Su^ = X^u^ and {Uj.....u„} an o.n. set; 

and with u    = v^    and    T      =  (P + 2VX.   - Ke)M~^f1+6)"^ nn n^ li J       \.       j 

for K+1 < n < M, where Sv = 9v and v„ ,. 
n    n     K+r ,v„ is an 

o.n. set. 

(2)  If 9 = 00, then "S^CP) has the value given in part 1(b), and 

can be similarly attained. 

s^ 

Theorems 2 and 3 together are parallel to part 1 of Theorem 1. 

The solution for the mismatched channel is seen to be considerably 

more complex than that for the matched channel. The final generali- 

zation is to permit fi^ to have infinite-dimensional support. The 

solution will again be much more complex than the solution to the 

corresponding problem for the matched channel (part 2 of Theorem 2). 
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Theorem 4 [3]: 

(1) Suppose  that  9 < «>, E^    is infinite-dimensional,  and 

dim[supp(fj^)] is not constrained. 

(a)  If {A , n>l} is not empty, and 2 (8-A ) < P. then 
n n   n 

^(p) = t L log i+e 
l+A n 

P+2  (X -9) 
j.        m    m 

■•■2      

1 + 9 

(b) If {X , n>l} is not empty,  (X )  is an infinite 
n n 

sequence,  and P < 2 (9-X ).  then there exists a n        n 

largest    integer    K    such    that    2VA..  + P > KX^,       and 1  i 

'^i?)  = i    2    log 
n=l 

K rSlS.+P+Ki 1   1 

n' 
P 

K(l+X ) 

'.(, (c)  If {X , n>l} is empty, then %„{?)  = 
^ 2(1+9) 

(d)  In (a),  the capacity can be attained if and only if 

2^(0-X^) = P. It is then attained, and only attained, 

by a Gaussian JJL.  with covariance operator as in (8), 

where u^ = e^ and T^ = (9-X^)(l+X^)"^ for all n > 1. 

In (b),  the capacity can be attained by a unique 

Gaussian jj^ with covariance operator  (8).  where 

2^.+P+K 
u = e  and T = 1  for n < K; T =0 for 
""   ""      "^      K{l+X ) "    ^ 

'^  n-* 

n > K. In (c), the capacity cannot be attained. 

(2)  If 9 = 00, then '^{'P)  has the value given in part 1(b),  and 

can be similarly attained. 

Discussion 

The results summarized in Theorems 1-4 provide a general 

solution to the capacity problem for the Gaussian channel without 

feedback,  requiring a minimal set of assumptions. The solution for 
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the mismatched channel  is markedly different from that for  the 

matched channel. The value of the capacity can be very different, as 

already seen; it can be less or more than the capacity of the matched 

channel, depending on 6 and {X ,  n>l}.  The expression for  the 

capacity varies as a function of P, IL^ and H^. Moreover, the problem 

of attaining capacity is much more significant.  Even in  the 

finite-dimensional channel  the vectors u-,...,u„ must be a specific 

set of vectors, not just any o.n. set. If R. is infinite-dimensional 

with dim[supp()ij^)] < M, the situation is even worse in (a) and (c) of 

Theorem 3. That is, capacity can then be attained only if S has 9 as 

an eigenvalue of multiplicity > M when S > 91,  or of multiplicity 

> M-K  when  S  has  K < M  eigenvalues  X < ... < \. < 6    and 

P + 2^. > K9. 
1 1 ~ 

For the infinite-dimensional channel without a constraint on 

dim[supp(fi^)],  there can again be significant differences between 

<€^(P) and 'fij^^CP), depending on {9; X^, n>l}. Moreover, there is again 

a rather different situation in the problem of attaining capacity. 

•fij^CP) can never be attained; '^^(P) can be attained if and only if 

{X , n>l} is not empty and P < 2 (9-X ). 
n    ^ ~ n^  n-* 

A comparison of the value of the capacity '^(P) for the mis- 

matched channel with the capacity "^CP) of the matched channel can be 

made from the preceding results. For the finite-dimensional channel, 

<€^(P) is strictly greater than <gj^{P) if 2^j3^ < 0, or if P + 2?/3. < 0. 

•^(P) < "^CP) if 0 < j3j < /3jj. For the infinite-dimensional channel, 

suppose that {X^, n>l} is empty. Then, "^^C?) > '^(P) if 9 < 0, 

%^{?) < <€j^(P) if 9 > 0, <€^(P) = <ej^{P) if 9 = 0. If {X^, n>l} is not 

empty, then for the unconstrained channel '^(P)  is greater  than 
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P/[2(l+e)]. Thus. <e^(P) > <€j^(P) if e < 0 and {X^. n>l} is not empty. 

A similar result can be obtained for the constrained channel. 

Applications 

The results on the mismatched channel can be used to euialyze 

channels with partially unknown noise, including jEunming channels. 

The results can also be applied to compare the capacity of channels 

with and without feedback. It has been possible to show that the 

capacity of a large class of mismatched Gaussian channels is 

increased by adding linear feedback [16]; for example, this class 

includes the time-discrete correlated noise channel with a pure power 

constraint. This illustrates another difference between matched and 

mismatched channels; it is not possible to increase capacity of 

matched Gaussian channels by adding feedback. , 
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