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Deaton et al.--l

ABSTRACT

Glial cells have been shown to increase the levels of
synthesis of selected proteins in response to damage

inflicted upon their associated axons. These proteins may
be instrumental in mediating axonal repair. In this study

proteins synthesized by the glial cells of the goldfish
optic nerve were examined using tissue incubation,
polyacrylamide gel electrophoresis, and gel fluorography.
Ten days after monocular nerve crush or monocular
enucleation, three glial proteins were found to have
increased levels of synthesis relative to controls. These
enhanced glial proteins, or EGPs, were detectably
increased relative to controls at 4.5 hr after nerve
trauma, and returned to control levels of synthesis by 6
months post-crush. The EGPs displayed apparent molecular
weights of 16, 30, and 42 kilodaltons (i.e. EGP-16, EGP-
30, and EGP-42).
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INTRODUCTION

Proteins manufactured by glial cells may subserve
important functions during the processes of both neuronal
maturation and nerve regeneration. Studies in this area
have demonstrated that various glial cell preparations can
exert a positive effect on nerve growth [1-6]. More
recently, specific glial proteins have been identified
which are thought to be instrumental to the mechanisms of
axon growth and regeneration [7, 8]. We have studied the
effects of nerve crush and enucleation on the synthesis of
proteins manufactured by glial cells of the goldfish (C.
auratus) optic nerve. The results indicate that the
response of goldfish optic nerve glial cells to nerve
trauma includes the increase in synthesis of three soluble
proteins.

METHODS

Goldfish received either unilateral intraorbital optic
nerve crush or monocular enucleation. Ten days or 6
months later the crushed optic nerve was excised, minced,
and incubated at room temperature in a protein-free
isotonic medium [9] (100 ul per nerve) which also
contained 60 uCi of 35S-methionine (35S-met). At the end
of 2 hr, the mixture was centrifuged at 13,000 x g for 5
min to sediment the tissue fragments. The medium
(supernatant) was then drawn off and brought to a
concentration of 0.01 mg/ml with bovine serum albumin
(BSA). Proteins in the medium were precipitated by adding
an equal volume of ice-cold 10% trichloroacetic acid (TCA)
and centrifuging at 13,000 x g for 15 min. The resulting
pellet was washed with diethyl ether to rid the sample of
excess TCA and solubilized in 50 ul of electrophoresis
sample buffer in preparation for one-dimensional (SDS-
PAGE) [10] or two-dimensional polyacrylamide gel
electrophoresis (2-D PAGE) [II1 analysis. Radiolabe~led
proteins that had been synthesized by the optic nerve's
glial cells during incubation were made visible using gel
fluorography [12, 13]. Optic nerves from enucleates were
excised 10 days post-enucleation and were manipulated as
above. Controls for these procedures included the
identical manipulation of undamaged contralateral optic
nerves and optic nerves from normal fish. Three animals
were used for each experimental and control condition.

It was also considered necessary to demonstrate that
the incubation conditions were capable -f suppo tinj
protein synthesis in glial cells throughoot the 2-hr
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incubation period. To that end a synthesis viability test
was performed. This test consisted ot subjecting normal
optic nerves to a 2.5-hr pre-incubation in unlabelled
medium prior to the addition of 35S-met. After
introducing the radiolabel, the nerves were incubated an
additional 2 hr, and then manipulated as described above.

RESULTS

The paradigm was designed to examine the response of
optic nerve glia to nerve crush or enucleation in terms of

protein synthesis. Since the optic axons were separated
from their cell bodies at the time of excision, the optic
nerve's glial cells were the only significant entities
capable of incorporating 35S-met into protein during the
incubation step. At 10 days post-crush three proteins
were found whose levels of synthesis were visibly elevated
relative to controls, as shown in Figure lB. For
convenience, these are referred to as enhanced glial
proteins, or EGPs, and each is named according to its
apparent molecular weight in kilodaltons (i.e. EGP-16,
EGP-30, and EGP-42). The synthesis of each EGP at 6
months post-crush was undiscernible from control levels;
the electrophoretic profiles were indistinguishable from
those of normal nerves shown in Figures IA and 2A.

Enucleation also increased the synthesis of all three

EGPs, as shown in Figure 2B. This suggests that the

trigger mechanism(s) that initiates their increased
synthesis responds to nerve trauma rather than some
signal specifically associated with nerve regeneration.
This result does not mean, however, that EGPs do not
function in some process crucial to axon repair. The
effects of long-term enucleation (6 months or longer) on
EGP synthesis were not examined since too little of the
optic nerve remained at that point to acquire a suitable
tissue sample.

The synthesis viability test demonstrated that the
incubation conditions supported protein synthesis since
the gliaL cells of the excised nerves were capable of
incorporating 35S-met into protein even after a 2.5-hr
pre-incubation in unlabelled medium, as demonstrated in
Figure 2C. While initially designed simply as a control
measure, this test also gave the interesting result that
normal optic nerves began to synthesize the EGPs in small,
yet detectably elevated amounts sometime within 4.5 nr of
their excision. This is a reasonable result since
excision of the nerve subjects it to si jni[[iant trauma.
Furthermore, it indicates that the biochemical switch(e3)

"_P .R%



Deaton et al.--4

that initiates the elevation of synthesis of the EGPs acts

very rapidly.

DISCUSSION

This study demonstrated that the glial cells
associated with goldfish optic nerve axons respond to
nerve crush and enucleation, in part, by increasing the
levels of synthesis of three proteins, EGP-16, EGP-30, and
EGP-42. The synthesis of these proteins returned to
normal control levels in the nerve crush paradigm by 6
months post-crush. This time course of events suggests
that the EGPs may function in some phase of axon repair
[14]. What these roles might be has been extensively
discussed elsewhere [1-8, 15, 16], and should become
clearer as the identities of the EGPs, and their
homologues in other species, are made known. For
instance, it is likely, based on studies performed in the
rat and rabbit, that EGP-30 is (or is similar to)
apolipoprotein-E (J.A. Freeman, personal communication).
That glial factors can potentiate nerve jrowth and.
regeneration is well documented, and it may be that the
EGPs are responsible for at least a portion of these
effects.
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Figure 1. The goldfish optic
nerve glia respond to nerve
crush by increasing the levels
of synthesis of EGPs. This
f i g u r e s h o w s 2- D
PAGE/fluorography preparations
of radiolabelled proteins
synthesized by optic nerve glia
and subsequently emitted into
the medium during incubation.
A, normal control. B, 10 days
post-crush.

Three enhanced glial proteins,
or EGPs, appear in the gels
f r om c r u sh ed n e r ve
preparations, suggesting that
these polypeptides undergo
enhanced synthesis as a result
of the trauma sustained by the
optic nerve. Similar results
are obtained lG days after
enucleation.
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Figure 2. Various conditions result in the elevated
synthesis of EGP-16, EGP-30, and EGP-42. This figure
shows SDS-PAGE/fluorography preparations from three
manipulations of the optic nerve. A, normal control. B,
10 days post-enucleation. C, normal nerve which received
a 2.5-hr pre-incubation in unlabelled medium prior to the
addition of 35S-met.

EGP-16 and EGP-42 appear as faint bands in SDS-PAGE
preparations. As can be seen in Figure 1, EGP-30 has a
more basic 29 kilodalton (KD) neighbor which makes EGP-30
difficult to identify using SDS-PAGE. Characteristic
broadening of the 28-31 KD band, as seen in lanes B and C,
signals the induction of EGP-30 synthesis in these
preparations. The synthesis of all three EGPs is
increased as a result of both nerve crush and enucleation.
Simply pre-incubating a normal optic nerve for 2.5 hr is
also sufficient to cause perceptible increases in the
levels of the EGPs to occur.
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NOTES ON FIGURES

The polyacrylamide gels shown in Figures 1 and 2 are
not really gels, but photographs of computer-driven
reconstructions of gels. Radiolabelled proteins of glial
origin were made visible using gel fluorography (13). The
fluorograms were digitized and stored in the memory of a
PDP 11-70 computer. The digitized image was then
subjected to a 256 x 256 fast Fourier transformation
(FFT), and the results were added back to the original
image to enhance subtle shades of gray. The image then
underwent a 9-point smoothing routine to restore normal
border effects around the enhanced images. The
reconstructed fluorograms were then displayed on a high
resolution video monitor and photographed on high contrast
film to produce the figures.

The algorithms for this procedure were designed by Mr.
Larry Sherman and Dr. Harry Zwick, Letterman Army
Institute of Research.
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