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INTRONUCTION

Rail gun technology is rapidly being developed both for the Strategic

Defense Program (SDI) and for tactical Army applications. In general, rail gun

technology will be required whenever projectile velocity or minimum projectile

time of flight demands exceed the capabilities of normal chemical propellants.

Under present chemical launch capabilities, muzzle velocities in excess of 2

km/sec will require some sort of an electromagnetic (EM) system.

The two types of armature drives, plasma and solid types, characterize

present rail gun development. Both types have their advantages and disadvan-

tages which will dictate the type used by system requirements.

The plasma armature rail gun adds a plasma push force to the normal Lorentz

magnetic force to obtain extremely high projectile velocities (> 10 km/sec) in

small mass systems. The main disadvantage of the plasma drives is the severe

rail damage caused by the high temperature plasma arcs which limits barrel life-

times to a few launches at most. However, single shot missions for very high

velocity missions will probably use plasma armatures.

Since Army tactical missions require multi-shot capability, this report

concentrates on the solid armature type propulsion in which rail damage is

significantly reduced.

In the first section, a brief description of rail circuits is presented to

suggest some of the static and dynamic responses which may occur in these

systems.

The second section presents actual launch results that illustrate some of

the unusual loading conditions which can occur in these systems, either inten-

tionally or accidentally, due to the electromagnetic origin of the propulsion

force.
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In the final section, we describe preliminary rail damage data obtained

from two different metallic armatures to illustrate that the type and extent of

rail damage is dependent not only on launch conditions, but on armature

materials as well.

RAIL GUN CIRCUITS

Figure 1 is a schematic of the basic rail gun circuit. Electrical energy

is supplied in a suitable pulse shape to the rail gun circuit. The resulting %

current waveform I(t) will produce the propelling Lorentz force FSRG

FSRG(t) - J * L' I2(t) (1)

where L' is the magnetic self-inductance gradient of the rails. Although a

constant high current has the highest launch velocity/energy input efficiency,

actual rail guns are generally powered by a capacitive-like discharge from an

energy source.

After closing switch S, the electrical energy stored in the capacitor (31

QCI) is converted to current energy in the inductor (% LIa). This is

accomplished before the projectile P moves. At this point, the crowbar switch

CS is normally closed, converting the electrical system from an oscillatory LCR

circuit to a decaying LR rail gun circuit. (In the next section, we discuss the

rail gun behavior when the crowbar is not used.) '.

In an earlier presentation (ref 1) we showed that when the current decays

to zero before the projectile reaches the end of the rails, the muzzle velocity

vF will be

L0E0
VF a 2mR (2)

1C. G. Homan, C. E. Cummings, C. M. Fowler, and M. L. Hodgdon, "Superconducting
Augmented Rail Gun (SARG) Development," presented at the Fourth International

Conference on Megagauss Magnetic Field Generation, Santa Fe, NM, 14-17 July

1986.
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where Eo is the energy stored in the capacitor bank, m is the projectile mass,

and R is the mean circuit resistance during launch. This formula was derived

assuming frictional losses are negligible and has been shown to be in fairly

good agreement with experimental data for low velocity launches (ref 1). Loss

terms introduced at higher velocities, such as the resonance losses described by

Simkins in Reference 2, may lead to significant correction terms in these for-

mulae, since in general, the rail gun system will be more compliant than a nor-

mal gun system.
I

The simple rail gun described above is not a very efficient system, since

any magnetic field energy stored in the rail fields at the end of launch must be

dissipated. It is possible to show, from general energy considerations, that an

ideal rail gun, operating at constant current, equipartitions the energy

extracted from the power source into magnetic energy and projectile work, and

therefore the maximum efficiency of such a system is 50 percent. Real rail guns

operating at nearly constant current dissipate some of the projectile work into

Joule heating, friction, etc., so that actual launch efficiencies are about 10

percent.

In an effort to increase barrel efficiency, Benet Laboratories developed

the concept of superconducting augmentation. Figure 2 shows schematically a

superconducting augmentation coil operating in the persistent mode magnetically

coupled to the rail coil by the mutual inductance M

M - k VZE (3)

1C. G. Homan, C. E. Cummings, C. M. Fowler, and M. L. Hodgdon, "Superconducting
Augmented Rail Gun (SARG) Development," presented at the Fourth International %'
Conference on Megagauss Magnetic Field Generation, Santa Fe, NM, 14-17 July
1986.

2T. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," Proceedings of the
Fifth U.S. Army Gun Dynamics Symposium, ARCCB-TR-87023, Benet Laboratories,
Watervliet, NY, 23-25 September 1987, pp. 64-78.
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where L and Ls are the self-inductance of the rail coil and supercoil, respec-

tively, and k is the coupling constant whose positive value can approach unity.

Both L and k are dependent on projectile position. The superconducting coil

recovers some of the magnetic field energy normally lost at the end of launch

and augments the armature force as shown below.

In the development of the equations that follow, it is important to note

that these equations are peculiar to a rail gun with a superconducting augmen-

tation coil, since the superconducting property of flux trapping was used in

their derivation. A normally conducting augmentation coil, which cannot be

placed in a persistent mode, will exhibit the same efficiencies as an

unaugmented system. This latter fact can be shown quite generally for any

system of linear normally conducting circuits.

We have shown that the armature force F(x) for a SARG system is (ref 3)

F(x) - J L'IP + I ISOM' - xI*M'2/Ls (4)

where the current I varies as

, Io - xlso(M'/Lo)
------------------------------------------- ()+ x(L,/Lo) - xa(M,/LoLs) ()

and Iso is the initial supercurrent, Lo is the pulse shaping inductance, and the

distance x is measured along the rails.

Now the point in presenting all this theory is that although these

equations give reasonably good results for projectile velocity, barrel launch

efficiency, etc., they are totally inadequate for the evaluation of barrel

deformation and dynamics. The reason for this is that implicit in these calcu-

lations is the assumption that the rail current has fully penetrated the rails

and is uniform. In fact, at reasonable velocities, the current sheet may be

JC. G. Homan and W. Scholz, "Evaluation of Superconducting Augmentation on Rail
Gun Systems," IEEE Transactions on Magnetics, Vol. MAG-20, 1984, p. 366.
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limited to the surface by the skin effect and is nonuniform along the barrel as

suggested in Figure 3. It is obvious that a systematic evaluation of barrel .

dynamics is not a trivial process, but requires the solution of the electrody-

namics of the system as well. At the present time, computer codes have been

developed to try to evaluate barrel dynamics, however, no closed form solutions

have been developed to date.

WOW5

Figure 3. Distribution of current in a rail gun. Region A indicates i.
full current penetration changing to symmetric surface .,
currents in the mid region 8, and finally, to the asymmetric .
surface distributions at the armature. -
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ACTUAL RAIL GUN PERFORMANCE AND ANALYSIS

In this section we present the analysis used to evaluate the performance of

a series of launches of a small rail gun at Los Alamos (ref 1). In particular,

we chose special launch conditions to illustrate dynamic behavior which is

peculiar to the electromechanical nature of rail gun systems.

Consider the circuit of Figure 1. If the crowbar switch is not closed for

whatever reason, then the circuit remains a classical damped electromechanical

oscillator. If all the circuit elements (rails, inductors, etc.) are rigid,

then the system can be analyzed as an electrical oscillator obtaining the

current

I(t) = -Q/LCw * e-bt * sin wt (6)

where w = o - b2, w0
2 = 1/LC, and b = R/2L. Interestingly, if the current

decays to zero before the projectile exits the gun, we recover Eq. (2), i.e.,

LEO  (7)
vF 21 2(R

Thus, for low velocity systems, a suitable EM design could eliminate this

complication of a crowbar switch, however, subjecting the mechanical system to

an oscillatory driving force.

In Figure 4 we show the actual current response of an uncrowbarred rail

gun, in which the mechanical behavior manifests itself through the temporal

variation of wo and b. Also shown are the calculated currents from Eq. (6)

using constant mean values of wo and b. In this system, these variations were

found to be primarily due to the mechanical oscillation of the pulse shaping

coil.

1C. G. Homan, C. E. Cummings, C. M. Fowler, and M. L. Hodgdon, "Superconducting
Augmented Rail Gun (SARG) Development," presented at the Fourth International
Conference on Megagauss Magnetic Field Generation," Santa Fe, NM, 14-17 July
1986.
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RAIL DAMAGE

In this final section, we describe the typical damage solid armature rail

guns experience during launch. The type of rail damage can be characterized

principally by the materials present and, to a lesser degree, by launching con-

ditions. On the other hand, the extent of damage is principally controlled by

firing conditions. We will focus on the types of rail damage herein, relating

when necessary to effects of firing conditions on the type of damage.

Before we proceed, we can make some general comments about the extent of

rail damage due to launch conditions. Two major factors in the extent of damage

are projectile velocity and armature condition. Since most rail damage is due

to surface heating, it is obvious that a nonarcing solid armature will have less

extensive rail damage than a plasma armature. Likewise, a fast moving armature

is less damaging that a slow one. For these reasons, solid armature rail guns

with projectile injection will probably be used for multi-shot tactical weapons.

Two different armature designs were tested in the Los Alamos launches. In

this 3/8-inch square bore rail gun powered by a 15 kJoule capacitor bank through

a 5 microhenry pulse shaping coil, projectiles were either Lexan rectangular

parallelopipeds having an armature of niobium wires imbedded in a copper matrix

or monolithic aluminum projectiles of the same shape.

The Lexan projectile armatures were made by etching the copper matrix

material from the niobium wire of a superconducting cable, resulting in rather

stiff, short bristle niobium brushes contacting the copper rails.

The aluminum projectiles had narrow contactor leaves machined into the rear

of the projectile to concentrate the current and to be deformable by a Lexan

plug to insure contact with the rails.

10
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Both armatures suffered severe metallurgical damage characterized by

melting, however, since armatures are expendable in a rail gun system, we will

concentrate on the type of damage to the rails caused by the different arma-

tures.

As mentioned earlier, the Lexan projectiles' niobium copper armatures

experienced severe plasma arcing as witnessed by performance and rail damage.

The as-received rail material was a high conductivity copper bar containing

traces of zinc, aluminum, zirconium, titanium, cadmium, iron, magnesium, and

cadmium with a hardness of Rockwell B53. Careful metallographic examination

after each launch revealed three basic elements to the severe erosion which

occurred at the initial projectile position. The primary modification was a

metallurgically bonded columnar layered structure characteristic of melting and

solidification. In addition, weld pools suggesting eddy current flow patterns

and a spongy surface layer of copper oxide were observed. EDAX analysis of

these areas detected elemental niobium and carbon in abundance, however, no com-

pounds or second phases of niobium or copper were found with the exception of

the surface oxides. This is not unexpected since the phase diagram indicates

almost complete miscibility of the two elements. Figure 5 shows the typical

damage obtained at the projectile initial position. Of course, farther down

bore, much less damage occurs as the projectile accelerates. In the high

velocity regions, the principal damage is a heavy surface coating of soot (CuO)

caused by the plasma arc.
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Figure 5b. Photomicrograph showing columnar recrystallization typical 
.:

of niobium armature launch (200X). :%

When the aluminum projectiles were used, hardly any arcing occurred and t.

less severe rail damage was seen at the projectile origin position. However,

the character of the damage was quite different. Careful metallography revealed ,%

an acicular type microstructure as shown in Figure 6. From preliminary EDAX

analysis, at least two different compounds of aluminum copper were identified in

this region. Examination of the aluminum copper phase diagram revealed several

compounds (bronzes) for this system which explains the complex metallurgical

behavior occurring in this zone.
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CONCLUSIONS

The purpose of this report was to present some of the new problems that can

occur in rail guns and that may be of some interest to the gun dynamics com-

munity.

The uncrowbarred rail gun was presented in some detail to illustrate the

rail gun as an electromechanical system, which is normally damped, but can be

excited in a resonant condition.

Finally, a brief glimpse of rail damage as being related to the conditions

of launch as well as the materials involved, was presented to introduce the gun

dynamics community to these important factors which may play a strong role in

any analysis of rail gun behavior.
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