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BREAKING WAVE SPECTRLUN IN WATER OF FINITE DEPTH IN THE

PRESENCE OF CURRENT

PART I: INTRODUCTION

1. There are many forms of wave energy spectrum. All of these spectra,

however, are for specific conditions. For example, the Pierson-Moskowitz

spectrum is for a fully developed sea, the Joint North Sea Wave Project

spectrum is for a fetch-limited developing sea, and the Wallops spectrum

(Huang et al. 1981) is derived based on wave dynamics but without considering

wave breaking.

2. When conditions differ from those for which these spectra are in-

tended or, as the waves move into regions where the conditions are changed,

these spectra undergo corresponding changes. For example, as the steepness o!

the wave increases, wave breaking occurs; the Wallops spectrum, which does not

consider wave breaking, must he modified. This problem was treated recently

by Yuan, Tung, and Huang (1986) and by Tung and Huang (1987) for deepwater

waves.

3. As the waves propagate from deep to shallow water, wave breaking

takes place when they reach the surf zone. There have been a number of publi-

cations or the subject of wave breaking in shallow water such as those by

Battjes and Janssen (1978) and Thornton and Guza (1983). These authors, used

the energy flux balance equation including energy diss'pation, and the results

are in good agreement with measurements. The equation, however, must be inte-

grated numerically, and the methods do not give the breaking wave spectrum

directlv.

4. Similarly, when a wave train encounters ar adverse current, wave

breaking results. The method usually employed to obtain the spectrum of the

waves interacting with current is to first resort -o the classical energy flux

balance equation without considering wave breaking (Huang et al. 1972 and

Hedges, Burrows, and Mason 1979). To account for the effect of wave breaking

,:1 the wave spectrum, Hedges, Burrows, and Mason (1979) applied the equilib-

rium range spectrum to limit the spectral ordinates. The equilibrium range

-pectrum, however, contains a numerical constant whose value is difficult to

,pecifv. Furthermore, the equil ibrium range spectrum onlv applies to



frequencies much higher than those corresponding to the peak of the spectrum

and therefore cannot be extended to cover the range of frequencies where most

of the wave energy resides.

5. In this study, we extend the method introduced earlier (Yuan, Turg,

and Huang 1986, Tung and Huang 1987) for a deepwater breaking wave spectrum to

waves in water of finite depth and apply the results to the situation where

the waves encounter a current. The method consists essentially of first

assuming that there exists an original ideal wave train at the locale under

consideration, the spectrum of which is obtained from the eouation of energy

flux balance without considering wave breaking. By imposing the Miche wave

breaking criterion (Battjes !974), an expression for the elevation of the

breaking waves is estab]ished in terms of the original ideal wave elevatiun

and its second derivative which are assumed to be iointly Caussian. Based on

this breaking wave model , the expressions for the mean value, the mean-square

valtue, and the spectrum of the breaking waves are derived. These re.sults are

then applied to the case in which a unidirectional deepwater wave train,

propagating .o rmallv toward a straight shoreline over a gentl v varying sei

bottom with straight and parallel contours, meets a steady current whose flow

velocity is tiniforr. l distributed in the vertical direction. Numerica l

rosu lts are obtained and given in graphical form. The simpler breaking wave

m,odel for dcepwater waves is first presented and modified for waves in water

,f 'inite depth.

6. It is emphasized here that the studies carried out in this report

ore based on heuristic wave breaking models and siplified current and coast

configurat ions. A number of approximations are introduced in the derivitions,

but the results have not yet been checked against either field cr laboraitorv

experiments. It is clear that the models have vet to he modified and that

more detailed studies should be performed to examine the effect of uti lizing

va erios spectral forms for the original ideal waves.

4



PART ]I: BREAKING WAVE MODELS

7. Stokes (1880) showed that in deep water, when the vertical downward

acceleration at the crest of the wave reaches a value of 0.5g* (g being gravi-

tational acceleration), the wave breaks and its amplitude is reduced according

to the ratio of 0.5g and the magnitude of the acceleration of the original

ideal wave at the crest. The following equation expresses this relationship:

a .5g = 0.5g(1
ab =a 2 2

where

ab = amplitude of the breaking wave

a = amplitude of the ideal wave

= frequency of this Ideal wave

8. Longuet-Higgins (196c' applied this criterion to a narrow-band wave

train in which the ampli tude of the breaking wave is given. by

0. 5g .
ab
b  -2

whore

_ . . S( )d[

- L sv.i[1

i t 1!f chiracttris tic wiv e frequent i nd S:. is thf-- enercv sptctrum of tho,

ideal wave.

o. 'o obta in the spoctrum o the brea4 i n wave,; we assumI IPhi I Ii

that the w;, , breaks whenever the ](,cal verti,:,al downward icceleratiou

It ,1', 11,iT-t ,IT th ok ur: lace roaches a fract ion (t the gravitational accelera-

tin1. Rct ,erring ti, Fiuire I, let r(t) and (t) represent, respectively,

t',, .iev;t in:- )! the idea l and breaking waves at a fixed point in space where

"c V ~ i :I .'.ce , I'  and abbreviations are listed iii the Notation

¢.A~p e . !i t:,



A

blt ] qt (0), b (t)

B

Figure 1. Wave profile

t is time. Wave breaking mav cake place at points such as A and B where

t . (Here, and hereafter, overdot denotes differentiation with respect

to time. At points such as A where r(t) > 0 and when r(t) - -Kg ( -

'hw, to rangt, between 0.4 and 0.5 (Ochi and Tsai 1983)), the breaking wg':

elevation is giell bn

(t) = .(t)

'ihi e\pressio:i is a restatement of Equat ion or Equation 2: that is, shoe

the wve, breaks, tihe !,ocal wave elevatir i reduced :icc rdin4 to the ratio

the magnitude of the local acceleration, ,0 tht ideal wave.

. :\t n,,irt where >t 0 and whe', t -Kg , the breakiuc

s ,.,'.y eleva t o,: is Civep; l,-

1Kgt

I. Based nn the above considerat ions and n t ing that :-o wave break inc

take, place when (tl -Kg , in which case T. t remains tj'cl'h~inged t

may he written as

(H6 - - Kg4ll(-'i + >H( ± +Kg

'h KR. H(-" - Kg)H t) K



where H(.) is the Heaviside unit step function and, for brevity, the argu-

ment t in b(t) , (t) , and r(t) is omitted. In Equation 6, the first

and the second terms correcpond to the points such as A and B in Figure I when

wave breaking occurs, and the third term merely states that C remains un-

changed as long as r(t) l -Kg regardless of the point under consideration.

12. In Equation 0, the breaking wave elevation Cb is a nonlinear

function of _ and , the elevation and its second derivative of the

original ideal waves which are assumed to be stationary and jointly Gaussian

with zero mean values. The determination of the mean value, mean-square

value, and the spectrum of 'b may therefore be achieved in a straightforward

manner kPapoulis 1965).

13. in water of finite depth, for a single wave, the breaking wave

amplitude is (Battjes 1974

ab = 0.44d tanh kd (7)
kd

where d is the local water depth and k is the wave number. The above may

be expresed approximatelv in terms of k , the wave number in deep water;
0

that is, using

k = k tanh kd
0

and

k k tanh k d (1

we hxave

anh k d
0

a 0.44 k 10)

0

"'1e deepwater wave number is

1< = -- v



where wis thle wave frequency which rema in,, rnet.nt ndependeo t

depth ar,' is related to the local wave el evati on '11' t hL ur.

acceleation at the point under consideratonK

14. For random waves in water of finite depth, for reasons; pur,,-Io of-

mnathemat ical convenience, we replace a h i n Fqua ti 10 byV an0 K,

thle denoni nator by k -:g but substitute the ccame in the nimrirtor h

k </g ,the characteristic wave number in deep witer, so th~at, frr io~
C0

such as A in Figure 1 , the breaking wave elevat ion take,, the sawm I

that cshovin in Equat ion 4where

K = 0.44 tanh k- d
0

sb ich rediuce's to K . L in deep water.

Fol l~~~~~owioC, the samre arcument leading to iq~i0~frdesr

av es we se(e that the 1brealking war-ie elevationi in ,,ater (if fi ite 111.I

0 ,0 h ', Fquat ion r with F replaced hr. }&uat iou I In arrivi-iz it

th i a exp'-e.s. n wc 1),i,- inoree3 the K n r 'e c1ti

!"~t'41 i% e W'It x 't ion ',% ox\ e the waIter depth. h t

usL'I1 t'aplco-ir fthV to Tel that

I17 P t 0 1e 01 T-WI( T 'L

le r MI on, 0of the, exp11ress: fo ~or th . u

t .'e oc ',', I- c i , 'i t he spec t Ir o t1 h C e e cd t U -i ntt

nai'-e or t o'nsidr:it ion thalt tepoaiitOofocuene@

Ire 1. a piiut Ii ii Figure 1 tisiusally ralI especiallv wlies

t 0rto the woives :rlo cns iderait ionT is' rea;son~ably 1a w In th ,'

1s' t 1-i ix It I ,-s 1 ouc lr t ere (,d , an d ouir compu it a t on sh ows- tha.it th1-e

r cr 1)V Iln, the oec 71, t Urm i n i.-q uat 0 o - ist i !-J ed~ irOp kirC 'P t



PART III: MFAN VALUE, MEAN-SQUARE VAI.UE, AND SPECTRUM OF

17. Although the original ideal waves are a zero mean process, fr',m

Equation 6 it is obvious that the elevation of the breaking wave is not. Fros.

Equation 6 (with the second term deleted), it is not difficult to show that

SE1- -2f7 C2 Z(H)
(14)

+ -- ,, -62

where

Ef.I expected value of the quantity enclosed in brackets

S = wave breaking parameter (defined in equation 19)

= spectral bandwidth parameter (defined in Equation 18)

Z(-) = probability function (defined in Equation 20)

Let

r fJS M dd. (15)

r (2 f -0 S(-d (16)

(4 f S (.)d,, (17)

where H A is the spectrum of the original ideal wave!. The quantity

[ r (2)]12(11= 1 (4) (18)

r r

lies between zero and unity and is known as the bandwidth parameter of S(M)

(Cartwright and Longuet-Higgins 1956) and

-9



ia measure of the extent of wave breaking as wi'l he shown later. The

funct ions

Z(x) 2 (20)

cC - px
L c~C,, p) f Z(x)Q(u,)dx ,W (2 1

where

K , *) probabil itv function

cl,,pa r armet er s

p parameter

probabilitv functior

V) dv 2

,itr prOhhili 1ty, fUnet ions (Abramovi tz and Stegun 1 968) , 'Irc

- V

i s tlhe exponent ioj1 i itegrai (Ahraniowi t; : ind S tegiin I I)h8 , And du~hmnv

van alMle It is, seeln that thle meac~n value of b is -I Inulzero cWt ot lTiCh

depend(s onl the va Inc of water depth d through F inr ' in Fqua it i,; P rd

the zeroth , second, and fourth spectral moments, (I the idea) wves

10



18. Similarly, it may be shown that the mean-square value of Cb is

(with the second term in Equation 6 deleted)

b 4Tf

2 /2) +JC]

wL.ere + (I - E ) L( N (24)

N J Q(_1_xC dx (25)

19. To obtain the spectrum of b we first form its autocorrelation

function. For convenience, let subscripts 1 and 2 refer to quantities

evaluated at time instants tI  t + T (where 7 is time lag) and t2 = t

respectively. Furthermore, let H = H() , H" H , and

H" = H(- - Kg) .B anticipating that b is stationary, the auto-

correlation function of b denoted Rb(T) , is, from Equation 6 (with the

second term deleted)

..(Kg).2 E] HHIH H

1 (26)

-2Kg H" H" H + EVTI 2 " "E2I _ 2+1 2i1+j2+
L"I

The expected values in Equation 26 involve the random viriables C, '

and 2 which are jointly Gaussian with zero mean values. These

expected values may all be obtained, although the task is tedious. In Ap-

pendix A, the last expected value of Equation 26 is evluated to illustrate

the techniques emploVed in obtainIng these expected values.

II



20. The resulting autocorrelation function is a nonlinear function of
(2)(T [I 2  n

the correlation functions r 1 2 (T) = E[ I2 (T) = and

r(4)(T) = E[ IC]of the original wave elevation and its second

derivative C evaluated at time instants t 1 and t2 ' The autocorrelation

function %() , viewed as a function of the correlation coefficient

fuctos) (2) (4) (4)
o 1 2 \r , r1 2 (T)/r , and r12 (T)/r may be expanded by

Taylor's series (Borgman 1965). By retaining only the zeroth and the first-

order terms of the series, it may be verified that the zeroth order term is

equal to the square of the expected value E[Cb] of Cb *Ihe first-order

approximate autocovariance function

2

Kb(7) = Rb(T) - E2 [ b] (27)

is therefore a linear function of r((2) 2(4)

12 12 12
Fourier transforms of which are, respectively, S(w) , -w S(w) , and

4
W S(W) . Thus, by taking the Fourier transform of Equation 27, we have the

approximate spectrum of the breaking wave simply related to S(w) as

Sb(W) = F(w) S((w) (28)

in which

9

F(w) = A( 29)

is a fourth order polynominal function of w and may be looked upon as a

filter function which accounts for the effects of wave breaking on the

spectrum S(u)) of the ideal waves.

21. In Equation 29,

2 Al r(4)

WI1 A 2 r(2)

A1 =BN + Q(-B) >0 3f

12



and

A2  = RN - BZ(B)Q - - + SZ(O) (32)

where

=f Z W dx (33)

Q

22. To examine the properties of the filter function F(w) and the
reaking wave spectrum S (w) , it is first noted that the value of B , which

b

is the ratio of Kg and the standard deviation V77 of the surface accel-

eration of the ideal waves, may be given a rough estimate. By referring to

Figure 1, let us assume that the acceleration in those portions of the sur-

face, where reaches or exceeds Kg , remains at the value of Kg ; but

in the remaining portion of the surface the acceleration vanishes. The stan-

dard deviation V of is therefore equal to KgVAB /A , and

I/tA B /A where A B and A are, respectively, the area of wave surface

with " Kg and the total area. The ratio AB/A is normally a small

quantity so that t may he expected to be larger than unity. For example, in

stormy situations, the ratio A /A may he as high as 1/4 giving , = 2

whereas in calmer situations, if the ratio A B/A is equal to 1/9, is

approximately equal to 3.

23. Having established that '- is larger than unity, by employing

variously the series representation and the asymptotic behavior of Q() for

large values of its argument (Abramowitz and Stegun 1968), it may be verified

that A,, > 0 ard A iA,, >> I . Since r(4 )rr/ ( r  d2)
e i> yr( rn

the latter quantity is in fact the characteristic wave frequency w (see

Equation 3), it is seen that in view of Equation 30. The

filter function F(,) is a monotonically decreasing function f w for2

. , decreasing from F(o) = A2 to F(.;) = 0 . Beyond w = w1

F(,) increases indefinitelv. The range of frequency of wind waves of

1 3



practical interest, however, is usually limited to within 0 < w < w I (>>

as the numerical results to be presented later will show. The manner in which

F(w) varies with 6 , a measure of the sea state, may be seen by taking the

derivative of A I with respect to . It may be verified that AI is a

monotonically increasing function of 6 , and A I approaches unity as B

approaches infinity which means that in mild seas 6 and w are both rather

large so that F(w) = 1 for 0 < w < w I and S () = S(w) No wave

breaking takes place, and the original ideal wave spectrum remains unchanged.

In high seas, on the other hand, A1 < I and so is F(w) for 0 < w < LI

Thus, the original wave spectrum is reduced as a consequence of wave breaking,

as expected.

14
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PART TV: WAVE-CURRENT INTERACTIONS

24. Consider a unidirectional linear wave train entering a region of

current. Let the current be steady in time and the flow velocity U , con-

sidered positive in the direction of the waves, be uniformly distributed in

the vertical direction. For each wave component, the apparent frequency Wa

in a stationary frame of reference, is related to the relative or in'rinsic

frequency w in the frame of reference moving with the current asr

W r + kU (34)
a r

where r and the wave number k are related as
r

u: = gk tanh kd (35)
r

25. Ignoring wave breaking and using the energy flux balance

(Huang et al. 1972) or the conservation of wave action (Hedges, Burrows, and

Mason 1079), it was shown that the wave spectrum S(w ) , under the influence

of current, is related to S (-) , the spectrum in quiescent deep water, aso a

c
C . o -r s (3)6)

a + c 0 a
gr a

where

c =-- ( 37)
go 2 a9

a

and

c = + 2kd r (38)
gr 25 sinh 2kd k

The subscript "o" Is used to refer to quantities evaluated in deep water in

zero current condition.

26. In the relative frame of reference, the wave spectrum Sr ) may.r

he obtained from S(a ) in Equation 36 by changing the frame of referencea

(Hedges, Burrows, and Mason 1979) as

15



dw
S(( ) = S(U ) a (39)r ado 39

r

27. The above is but a brief exposition of the basic equations for the

determination of the ideal wave spectra S(a ) and S(w ) for waves in watera r

of finite depth in the presence of current. Details of many of the considera-

tions and operations involved are well explained in Hedges, Burrows, and Mason

(1979). For example, the report gives an account of the solutions of Equa-

tions 34 and 35 given the values of w , d , and U , discusses the cutoffa

frequency of , r (and -a ) in a negative current (c gr  U), and shows a

numerical scheme by which the transformation of the spectrum from the station-

arv to the relative frame of reference and vice versa may be achieved.

28. To account for wave breakiihg, the spectrum S(Cr ) given by Equa-r

tion 39 may be used as the original ideal wave spectrum in place of S(A

in Equations 19, 16, and 17 for the calculation of r, r (2) and r from

which the mean value E[ b] and the mean-square value E b/  of the breaking

waves ,b are obtained from Equations 14 and 24, respectively. Similarly,

the breaking wave spectrum in the relative frame of reference, denoted by

Sb(ur) may be obtained from Equation 28 with the ideal wave spectrum S(a)

replaced by S(., ) in Equation 30. Finally, the breaking wave spectrum in
r

the stationary frame of reference is determined from

d.,
Sbr a  s b(r) d (40)

a

by changing the frame of reference.
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PART V: NUNERICAL RESULTS

29. The preceding development enables a consideration of the effect of

wave breaking on the mean value, the mean-square value, and the spectrum of a

unidirectional deepwater wave train that is free of current, propagating over

a gently varying sea bottom with straight and parallel contours nornally

incident toward a straight shoreline, where it meets an adverse horizontal

variable current steady in time and uniformly distributed with depth. The

following computation, though not entirely realistic, treats the current speed

as a constant.

30. Let the deepwater wave spectrum be the Wallops spectrum

(Huang et al. 1981) which takes the form

2 [
S (w) - ag exp 0 (41)
o m 5-m 4 w

L~W W m(

where

= coefficient defined in Equation 44

Wo parameter of Wallops wave spectrum

The quantity m gives the magnitude of the slope of the spectrum (on log-log

scale) in high frequency range and is given by

m= log( 2 § (42)
log 2

where

yr (43)

0

is the significant slope of the waves, 0 = 2r//k bei'ng the characteristic
0 0

wave length. The quantity - is given by

17



rn-i
m (2TT§)2

r- = m-4)2 (44)
4- --

where r(-) is the Gamma function (Abramowitz and Stegun 1968). The Wallops

spectrum, therefore, is seen to depend on two parameters, § and c , the

frequency corresponding to the peak of the "single-peak" Wallops spectrum.

31. For current speed of U = -2m/sec , § = 0.015 (the value of §

rarely exceeding 0.025 in the field), and w - 0.6 rad/sec , the quantities

Ef bI , EL2] , Sh() , and Sh(,) are computed for various values of

water depth d . The solutions are carried out in an iterative manner; that

is, upon obtaining b (ur ) in Equation 28, it is treated as the original

ideal wave spectrum, and the solution process is repeated until convergence is

reached. Based on the final values of Sb ( ) , the quantities E[r ]

2
F b , and S b ( a ) are then determined. The results presented in the

following are obtained after four cycles of iteration. It should be mentioned

that the above iterative scheme, strictly speaking, is not valid since some of

the assumptions underlying the derivation of these quantities are violated

because it was original lv assumed that the ideal waves must be zero mean and

Gaussian. Our results show, however, that the mean value of b is insig-

nificantly small, and preliminary investigation indiCates that the breaking

wave elevation b deviates but slightly from Gaussian.

32. in Figure 2, Fl b ] is plotted as a function of k" d for k d

ranging between 3 and 0.5 where k o 7 ?/g is the characteristic deepwater0

wave number, being given by Equation 3 with Sf() replaced h S (.)

the Wallops spectrum. If we denote by k =k /tanh k d according to0 0

Equation 8, these values of k d correspond to kd 4.1 and I (or d0

8 1.3m and 13.6 m). It is seen that F[I bI is alwayF negative, as expected,

and indeed very small.

33. Figure 2 also gives the standard deviation 'r (see Equation 1'0

of the elevation of the ideal waves and v'rb = K]- Ftt
breaking waves. Wh ile / decreases monotonically from deep to sha! low

b

water, 7r first decreases slightly. Beyond k dp= 0.6 shoreward, however,

it begins to rise because of shoaling. Owing to the relatively small value of

18
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Figure 2. Mean value E[ b] of breaking waves, standard deviations Vr

of ideal waves, and Vr b of breaking waves plotted against k 0d for

§=0.015 , ~=0.6 rad/sqec, and 1: = -2 rn/sec

$ and the strong negative current speed used, wave breaking is seen to occur

every-where but more so in shallower than in deeper water.

34. For k d = 3, 2, 1and 0.5 ,the spectra S 0. ( ,, FL )( r and

S b. are in Figure,; 1, 5, 7, and 9, respect ively;, and those in thle

qtt rIona r% frame of reference S ( -, ) S(.- ) I and S ( ) are giver. in,

Figures 14, 6, 8, and 10, respectively,. An adverse current teeds energ,. into,

the wave system so that the ideal wave spectra always exceed those in deep)

tite~r where there is no current. Wave break ing, however, d issipateq wave

eenrgx, and the breaking wave spectra are seer. to fall be low S C I -u

exa)mina;tion of these spectra also s-hows that this PaIttfero Ot Vairiat ionI With

wvoter depth is consi stent with that o f the standriard de% a;t i)rls 'I o-wn inl

Figure 2.

35. As mentioned ear;lier, the quaintity, r gl~j mn %- :,a , t i )n '-' I h

ext ent of wave breaking and is expected to he ar):e r than it% \W it t io.

larg~er vailues corresponding to milder sea staite. I t 1as aioo showWI thait a

quanlt i tv V (6 the cutoff frequency (if the breaking wavt, -ectrr ni:" 0

Equation 30, is expected to he much larger than I, thecbar 'tte '

frequency. I t is, therefore, of interest to exaniint the vit i it i ,i ! I)-

two qlua.nt iti1es as the waves move toward the slio re . In F i cure 1 the
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Figure 3. Deepwater wave spectrum S (w) , idealO r

wave spectrum S(w r) , and breaking wave spectrum

S b(r) in relative frame of reference for k d

= 3.0 , § = 0.015 , wo = 0.6 rad/sec, and

U -2 m/sec
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Figure 4. Deepwater wave spectrum
S o(w a ) , ideal wave spectrum S(w a

and breaking wave spectrum S. (w a)

in stationary frame of reference for

kd = 3.0 , § = 0.015,

0.6 rad/sec, and U = -2 rn/sec
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Figure 5. Deepwater wave spectrum S (- , idealo r

wa.e spectrum Sr) , and breaking wave spectrum

S bt-r in relative frame of reference for kd

-2.n , § 0.015 , .o = 0.6 rad/sec, and

m/sec
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Figure 6. Deepwater wave spectrum

S (:. ) , ideal wave spectrum S( ,o a ,a

and breaking wave spectrum S b ( a

in stationary frame of reference for

k d = .0 , § = 0.015 , ,

0 0
= .0's rad/sec , and 1 = -2 rn/sec
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Figure 11. Wave breaking parameter 6 and cutoff frequency w of breaking

wave spectrum plotted against k d for § = 0.015 , ', = 0.6 rad/sec , and

U -2 m/sec

quantities 8 and are plotted against k d . The value of 8 decreases

from 1.8 in deep water to about 1.4 at k d = 0.5 and that of ui from

b.0 to 4.0 rad/sec.

36. Although our primary objective in this study is to devise a method

for the calculation of the breaking wave spectrum under the influence of an

adverse current, the method, as is obvious, may be applied to the special case

in which there is no current. The results presented in the following are for

U = 0 , § = 0.015 , and ; = 0.6 rad/sec for k d = 3 to 0.5 corresponding

to kd 3 to 0.74

37. In Figure 12, E[b v'r , and rh are civein as funct ion-i of

kd . As expected, E[ 1)] is always negative and even smaller than when

U = -2 m/sec in Figure 2. Because of the small wli W-f signiIicant slope

= 0.015 used, the two curves vr and vr b are practicalv indistin-

guishable until k d - 1.5 (kd , 1.6, d < 4 1 .7m) when w.iv, breaking, becomes

noticeable and they begin to diverge from each other.

38. The variation of the quantities q and . with kod io shown in

F igulre 13. The value of 8 changes from 2.9 to 1.9, and that of I from

20 rad/sc to I rad/sec as k d goes from 3 to 0.5. (Compari so, o t Figure 1

24
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Figure 12. Mean value E[,b] of breaking waves, standard deviations Vr of

ideal waves, and rb  of breaking waves plotted against d for
b 0

§ = 0.015 , o 0.6 rad/sec , and U = 0
o
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Figure 13. Wave breaking parameter &and cutoff frequency w21 of breaking

w;ve ;pectrtim plotted aainst d ( for § 0.015 w = 0.6 rad/sec , and
0 ) 0 "

U' = 0



w'ith Figure 1 I for the case of U[' -2 m/sec shows that the quantitie; 

and I undergo more variation in the present case of I' = 0 thap in the cai5:(

U = -? m/sec because in the latter case the current dominates- the flnw fieldI

so that wave breaking is unif'ormly present regardless of the 'ocale under

consideration.

39. The spectra of the deepwater waves S (w) , the local ideal wav(.s

S(w) , and the breaking waves Sb ('o) will not be shown; but the peak values

(in square metres per second) are recorded in the following tabulation:

0 d S (, Sb())

o 0

22.3 22.0 21.7

2 22.3 21.1 20.8

1 22.3 19.5 18.3

O.5 22.3 20.7 15.0



PART VI CONCLUSTON

40. We have given iii this report a method to compute wave spectra in

water of finite depth taking into account the effect of wave breaking and con-

sidering the presence of current. The breaking wave spectrum is simply

related to that of the original ideal waves. The method, however, is approxi-

mate because the following is assumed: (a) there exists an ideal original

wave train which is linear and Gaussian; (b) the wave breaking model is

heuristic, and some approximations have been introduced; and (c) the higher

order terms in the expression of the breaking wave spectrum are ignored. As

such, the model should oilv be applied to the energy containing part of the

,ptctrum and must not be used for points too close to the shore where all the

assumptions underlying this model will be violated.
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APPENDIX A: DERIVATION OF E[r, H H'
1+ 12+

1. To Obtain El[1 .2H"+ H" the concept of conditional probability
'I 2 1+ 2+

and conditional expectation to reduce the number of random variables is used,

thus (Papoulis 1965),*

. ...' H F F , (Al)
+±HK]2h 1+ + =+E 2['12

where

ff )d d
_ 1' 2 1V

is the conditional expected value of g: i ven ' and , and

7: 12 l

' 1 - 2 -(I 1( '

is tht2 ointlY Gaussian coditional probabilitv densitv function ol f and

c'i "en T and " where

12 conditional covariance coeficient function of and

= conditional variance fInctions of and

L, conditional mean value functions of and

-'. The five parameters, 12 ' I 2 and , ma\ all he

deterniinc, using the linear mean-square estimation technique (Papoulis 196 )

that 1-,

* Ref,,rences cited in the Appedix can be found in the Reierences at the end
of the main text.
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~ a 1 ~ +hK2 (A4

ad

a2 l + b2

where a1 b , a. , and b, are determined hased on the condition that

1 -
) and (-2 2 are orthogonal to, and hence independent of, i rnd

giving

r(2)r(4) (2 (4) Ah

121- 2 [ r

r r(4jr - r ] An

The uti izat io of the ' rrhogonai propert i lead" to

K = LY' - j'1 [ 1 ' , = E) ] r - ,:t - bir] K,'

wfhich may be -I .n to be the sore rn

n the above, r r- o r = r 1 o id I- r

are given in term,, of S( ) as Indicated in I quit ionc; I I, h i~ I ,Id I

/ ') ( r (2) . an r 2

tively. The argument T the time lag in r r ind I

i,, omitted for brevity. The quantities L , 1, , aTnd I r

A2



(4

all functions of r 1 )([) ,r ( 2 )(T) and r( 4 ) ( T )  and hence are functions of
12 ll12 uncndohncefrefn(tnso

4. The conditional expected value E 2 ]  is seen to be the
conditional correlation function of r and and is therefore by defini-

tion given by

EK12 K1 1~ ~ j 2 + 1 2 1O

(All)

+ (K K 1r7 ib(

The expected value sought is, therefore, from Equation Al,

2+ H"f"1 2+ ' + 12 o2.il2 1±+--+ b L 2 + alb1  QI P2I 1

-Kg

(A 12

f.... U , )d d''
>1 2 10

Q.l.t 2) is the jointly Gaussian probability density function

t erc-meanr random variables and :2;, whose variances are1 I ) ( 4 )
V T = ,and whose correlation coefficient function is 12.2

(iA (4) i/r
-* , . r = r r

'Tie abv' integral , rav all be carried out giving

1±- -H I (a + bl)F 1 
+  o blF 2 

+  I.2F3(I

F ' it 21 + 2+ F (A 1 3

e~t r et

(4) (4) 1 ( )
F - Z()Z(,L ) - , + 2 F),, +t 1?

Al



F r(4) [1 - 1 (4)

(A1 5)

- [I + ( )]z )o() + F3

and

F= 1 -, -V, ) (A I

4
(see Abramowitz and Stegun 1968). Here, the argument 1 in i , is

omitted

)1/2
I 1 2,1

aiid , , ( , and W) are defined in Fquat i oin I, 20, and 2?

respec t ive

9. Thp expected value in Fquation A] is a nonlinear function of

r , r12 ( ) , and r ( T and may be expanded by the Taylor series.

by retaining only the zeroth Ind the first order terms, it is given

,approimartelv by

, ,, ' 4' " • (.4 (4,p

H' ' H '- = r (K) + a r - (7 ) +

(AI "

(4)± f'a h r (I(-") I- / (:: #* .(-t-s + <' " .. , -

a1 = Xl

rr

A4



i[ r~* r (A,'

(4 2

I-, r r r L-- (A2 I
12 (4) 12 (4

Th e mt g ~iti i n Fq u at 1 T Al2 maY also be fici I itnted by empioy.in.

[tnc ir,,rmte pci''vr"-ina I series repres ertii ion (Erdelv er 11l 1953) asq foI low~s:

(A 2 ~

2 Zp ,,h(x h (v)(x)Z(v')

n n

z-I (X)

lihermite Xoluomna tncton Ipon dxpan Ti- tI L' 1nt IV (-tlanI IT

T, ri I i t' d-cens i t f tuc t icr. f , 'ntihejrmite eries

represenrtation, it is s;een thait the integrails in fquaf A12 mayv he carried

lit aiy ' reta in ig only the terms inlly Vllu 1 1) and I in the

seresliqat onA18 mayv be obtained.
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AIPM)lN 1: \)l'AT I(IN

A,% lota l wave surface area and wave surt aco area wit i.

A. A - onant it h-s de f irned in lotiat ionns 31 and 32,

re~pectilyelv

Ama1  AnpI itutite of i dealI and break ing waves , respe ct ive>l

a a II O Uaint i t i es del i ned in Equat ions A6 and A7 whose
approximate va 1 tes- are given in Eqiiat insF Alt) and .7:0O

S ota rt i t i e c- de f inedl in Equations A7 and A6 whose
apjroY imate value,, are giver. in Equations A20 and' Al

;ruveloc ities defined in Equat ions, 31 and3,

C * Pa namerrtons used in Equation 3"I

C' W~ater depth

Fr Expected value of the quantityv enclosed in the

E (o'it iona] expected valtue

F ( Exponent ialI i n tegral de f ined i n Equat ion. 2 3

Fl , : F Quart it ies d~f ined in Equat ions, A14 , Al 5, and Al 6~

F ~FilIt er funct ion die fined i n EnMimat i on 29

I , Joint prohahi I i tv densi ty function o' the Gaussian
wuro-mean random var i ab 1es and

( , I Pond iti oal in' tprOhahi li tv de~nsi t% funaction .
7 andl civn 7 and

g Bravi tat i01-alI acce lera'tionPT

Hk Hleaviside un it step funct ion

S,H'H" Abreviations for HU7) , H(7 F g) , and

f( - Kg) , respectively

Hi) iermi te polvn-ominal funcr ion def ined in- 1 quait ion A-'-

K l(Oef f ici cut clef ined in lonat ion I-'

K CI Autocovairiance furICt ion of) hreakine wave( tl evat ion
h h

k, k Wave number and charact cr1stir wa-io( number, respec-

tivelv, in Water of finite depth

Fk Wave num1-.ber and charalcteristic wave numb-n hc, re-pc--
ive]V, in de-ep water

Proba- -iliv funct ion defined in Equation d
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(4)
P- )_  Correlation coefficient function ()f I and• '2

ol , CT Conditional standard deviation of tI and 2
respectively, given I and 2

T Time lag

Quantity defined in Equation Al7

Wave frequency

Characteristic wave frequency defined in Equation 3

, ,Wave frequency in stationary and relative frames ofr
reference, respectively

0Parameter of Wallops wave spectrum
0

Cutoff frequency of breaking waves given in
Equation 30

Subscripts

1, 2 Quantities evaluated at time instants t and t,

respect ively

0 Quantities evaluated in deep water in zero current

condition

Symbols

Differentiation with respect to time

§ Significant wave slope defined in Equation 1.3
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