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FINITE-ELEMENT GRID IMPROVEMENT BY MINIMIZATION OF STIFFNESS MATRIX TRACE
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Cincinnati, Ohio 45221-0072

and

Fred B. Oswald
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SUMMARY

A new and simple method of finite-element grid improvement is presented.
The objective is to improve the accuracy of the analysis. The procedure is
based on a minimization of the trace of the stiffness matrix. For a broad
class of problems this minimization is seen to be equivalent to minimizing the
potential energy. The method is illustrated with the classical tapered bar
problem examined earlier by Prager and by Masur. Identical results are
obtained.

INTRODUCTION

In a general context, the finite-element method is an approximate proce-
dure for solving differential equations. The accuracy of the method depends
on (1) the number of elements, (2) the choice of interpolation functions, and
(3) the location of the grid points. The number of elements, and hence the
number of grid points, is usually restricted simply by computer capability and
by processing costs. Also, there have been many recent advances in improving
the accuracy of the finite-element method by using higher order interpolation
polynomials and shape functions (p-method) and by exhaustive analysis with
iarge numbers of elements (h-method). Some of these advances are described in
the references cited herein. However, optimal grid point location (r-method)
is far less advanced. Practical procedures for the analyst still need to be
developed and refined.

One of the earliest attempts to develop a grid optimization procedure was
that of Prager in 1975 (ref. 1). Prager's work provided a stimulus and a basis
for later grid optimization research as recorded in references 2 to 19. Note-
worthy among these efforts are the works of Shepard (refs. 11, 13, and 15),
Masur (ref. 2), Turcke (refs. 8 and 9), Carroll (ref. 7), NcNiece (ref. 4),
Carey (ref. 16), Diaz (ref. 12), Melosh (ref. 10), Durocher (ref. 17), and
their colleagues.

Prager examined a bar with a linearly varying cross section under tension.
He showed that the grid producing the desired least potential energy is the one
where the cross-section areas at the nodes form a geometric series. In this
configuration, the strain energy is divided equally among the elements.

R L A T D S O AT S T A
il o™ ! . . - . -t . ~ - -t * £ » .



U € A L SRR A AL SRS Sl AA S gl tgtel gl SAa ial b S i Rl il et g Ma g At At aial i A it g ¥ gt po0 YU O W

W
0:1 A
»
N
9
\ Masur (ref. 2) observes that this latter result of equal element strain )
f energies is not a general characteristic of optimal meshes but instead is a
G result of the simple geometry of Prager's problem. "
Ky In this paper we present a finite-element grid improvement technique which n
:: is based on the minimization of the trace of the global stiffness matrix. MWe .
4 show that this method leads to identical results fo those of Prager. It has X
: the advantage of being simpler than traditional optimization procedures. b
R . {
_ The method presented herein provides a mesh improvement which is based on
" the geometry of the body. As such, it provides a significant improvement over N
‘e uniform meshes, and it produces a good first iteration for accommodating spe- :
cial loading configurations. v
ol ey
) In the usual finite-element procedure, the governing equations are by
obtained by minimizing a functional = by varying the dependent variables of
), the physical problem (ref. 20). For elastostatics this is equivalent to the :
K principle of minimum pctential energy (ref. 21). This leads to the familiar :
: system of linear algebraic equations. Attempts to minimize = with respect 3
# to the nodal coordinates, however, leads to a system of nonlinear equations. 7
These equations are generally extremely difficult to solve even for the sim- )
e plest cases. To avoid this difficulty we are proposing instead to examine the N
o stiffness matrix to obtain information about an improvement in grid point loca- :
- tion. Our motivation is the observaticn of the major role of the stiffness N
- matrix in the value of the potential w. Also, the entries of the stiffness ™
o matrix are dependent on the grid point coordinates. e
N )
w
> NOMENCLATURE K
: A area .
D K
~ Ag  nodal area v
’ Ay end area §
A
¥ ¥
7 A5  base area 0
>~ _ h
v Ay area of kth element )
25 c area ratio (see eq. (7)) .
o »
- E elastic modulus R
- BN
. {f} global force array v
- '’
. {f} transformed global force array -
B —~ - Ay
N . ™
> fi entries of {f} ‘
) fK] global stiffness matrix
r . R :.
! {K1 diagonal form of [K]
n L)
X 2
Y
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entries of [E]

L bar length

2x  length of kth element
n number of elements
P axial load
rij length ratio, 27/25
n
Sn sum of length ratios, jzl rj]
T trace of [K]
[T] transformation matrix
u axial displacement
{u} global displacement array
~ N
{u} transformed global displacement array f}ﬁﬁé'~5;2&; K]
u; entries of {u} g 0
1 L\,H W,y .
.fd’i:l"’l‘,;i
X axial coordinate R
!
Xk~ nodal coordinate féioﬁxj;;‘;m."m,,"..”hm
b
«  element stiffness matrix ! I L RRTORIONIEIN
w  potential energy P
Pl e
£  dimensioniess axial coordinate ; % f
A-1 .
£« dimensionless nodal coordinate L_,.u;“,

ANALYSIS

Our objective is to develop a practical and efficient procedure of grid
enhancement tending towards optimization. OQur thesis is that for many problems
the minimization of the trace of the stiffness matrix leads to a minimization
of the potential energy and, as a consequence, provides the optimal grid con-
figuration.

To see this, consider the governing matrix equation of finite-element
analysis:

[(K1{u} = (f} (N
where (K] is the stiffness matrix, {u} the array of dependent variabies, and
{f} the force array. We can view [K] as an operator which maps {u} into
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{f}. In this context, since [K] s symmetric1 we can find an orthogonal
transformation [T] which diagonalizes [K]; that is,

(K] = (TITC(KICT] (2)

where [K] 1is a diagonal matrix. Let [TJ{u} and (TI{f} be {u} and ({f}.
Then the potential energy = may be expressed as

~ T o~

" a3

e 2 K - (AT = 5 WKW - F) ) 3)
[n terms of the array components, w becomes
n
1~ "2 =7
T = E (E kiu1 - fiui) (4)
i=1
where the ;, (i=1,...,n) are the diagonal entries of [K].

n . -
involve the nodal coordinates. Therefore, - L fiu. does not affect the

i=1 ~
minimization of w with respect to the nodal coordinates. Also, since the u2
are positive and are independent variables in the minimization of w«, the mini-
mization of w with respect to the nodal coordinates occurs when the sum of

the kj (the trace of (K1) is a minimum. Since the trace of a matrix is

invariant under an orthogonal transformation, minimizing the trace of (K] is
equivalent to minimizing the trace of [K].

In minimizing the trace, we will not adversely affect the diagonal domi-
nance of (K] required to avoid ill-conditioning. The improved stiffness
matrix we seek is the result of redistribution of the nodes and not of an arbi-
trary mathematical operation.

To illustrate the application of these concepts, consider the axially
loaded tapered bar shown in figure 1. (This is the same problem examined by
Prager (ref. 1) and Masur (ref. 2).) The objective is to determine a finite-
element mesh which best predicts the axial displacement. Let the bar have
length L and let it be divided into n elements with n + 1 nodes (numbered
0 to n) as shown. Let the areas at the ends of the bar be Ay and Ay. Let
£ Dbe the nondimensional length parameter defined as

X
£ = L (%)

"The analysis which follows is based on the symmetry of [K]. If [K]
i5 not symmetric, a similar analysis could be developed using nonorthogonal
transformations.
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Then the area at any particular § along the bar is

4
P R A

LA A N 4
[y 4

A
»,

A= Ag(l - cE) (6)

,
]

where ¢ s

z2.

“1
FrrLrsS

o
;.

c = ot 0¢cC ¢l (7

Hence, the area at the kth node is
Ak = Ao(] - Cgk) (8)

where £ is  E(x).
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Let the individual elements have a uniform_cross section. For example,

let the kth element have cross-section area Ay and length @ as in fig- o

ure 2. (Note that the elements do not necessarily have the same length.) Then 53: '
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The element stiffness matrix for the kN element is (ref. 20)
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where E is the elastic modulus. Then the trace T of the global stiffness

matrix is
;\‘ A. + A.
i £ i-1 i
T = 2F —_— = = (————ﬂ——AA) (1)
E b L } SRR

&

~
-
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The improved node location occurs when the trace is minimized with respect ;§g~
to the nodal coordinates &gtk=},....n-1).2 Hence, by setting the derivative NS
of T with respect to £k equal to zero, we obtain AN

o
- AT

5 . NN

¢Nodes numbers O and o are fixed at the ends of the bar and thus not ®
conside-ed for optimization. -

h":\:; ‘
NN
~.‘. J
sw\u.f
S g
; R
RGN
.‘:'{:I
S P - .. , ava nu . R " A" s e vme k" oty amary AR
X, NI AP IO N 4 ,p P J J-./- ‘ } J 'J'.'vl,‘l,xfxf\f\‘f "(.‘d' ..'.' AY At ., ._ " \ . A [TL % -\{. A \’ 2 _’\’-\,' . _ ,f-:\f




Wh4G e

RSN

JEOIKA © ot s b

e

B &
L,

*
WEER

Using equation (9) and simplifying we obtain

2 2
2 2 L 0
k1 k+1 K+l k+l
M = A ( Qk) "N Ak-1<a—k> ' C%(T) ( o) ) i

To simplify the analysis it is convenient to introduce the length ratio
parameter rjj defined as 23/2j. Then the ratio Qk,+1/% may be written as

L/Qk is

where Sn is defined as A we can rewrite

equation (13) as

2 2
Tkal kel AsTka1, 1 | Tkl 0
Aeer = Al ARGy * TS r +
Kl Kl n K]

Also, £, may be written as

Q]+Q2

b = L

DT 200 T ST T g S T T AT G RPN A S
Ld

o

« .
AR A N A SR S S A R A LT



TS

L - -

DI I NSNN AN

N N 8 0at Ba? et 00 Bat S \J Dt fe et Ga® Sa® (2" L5 ¥yt et |

Then, from equation (8), A

 may be written as

Sk
A= A1 - c §;) (18)

and A are

Specifically, A] 2

and

AZ :AO{] - C

To obtain the element area ratios let k =

2 2
A2 = A](rZ]- 1) + Aor21
Then, by using equations (19) to eliminate
Sn(l - rz‘)
From the first of equations (19) we have
Ay = AgTo
or
h
Ao 21

Similarly, the second of equations (19) leads to

A2=Aor
or

2
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+ r2) ) :l
Sn J
in equation (16). A2 is then
r + 1
21
+ CATy T (20)
n
A] and AZ‘ we obtain
- c (2n
j
\ (22)
\
(23)
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Next, let k =2 in equation (16). By using the same procedure we obtain

c

32 S,

1 - r (1 - r32 + rz]) (24)

But, in view of equation (21) this becomes

1 - r32 = (1 - r21)(1 - r32 + r2 )
(25)
or
rzl(r32 - rz]) =0
Thus,
r32 = rz] (26)
From equation (18) we have
A, = A [1 - C {EQ)J =Ar 2n
37 "% ksn 21
Therefore, we obtain
2; = ;g Sk Tyt Ty (28
2 ] o)
Proceeding similarly for k = 3,4,.., we obtain
A A A
n n-1 ]
—— s ——— = .. = — =T,y = Tan o= ... =T (29)
An- An_2 AO 21 32 n,n-1
Thus, we have the relations
Yoy = ool r2
31 - 2132 0 21
(30
U JUN r rk_l
4y~ "43°32°21 C 210kl T 21
Hence, Sk is the geometric series
} rk
k-1 A
Sk=]+r2]+r2]+ +l"2] =T;r7 (31
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Then, from equations (18) and (21), we have

k k
Ak = Ao[l - (1 - rZ])] = Aor21
and then (327
An = AOrZ] = AQ
Then, from equation (7) we see that Fo) is
1/n
foy = - <) (33

Finally, by substituting into equation (17) we have

QT 1 + rZ] + rg] oL+ r;;]
gk =T (i o+ r21 + r3] + .+ rk]) = (1 - FZ]) c
k
T - r k/n
21 1 - (1 - ¢©)
= c = c (34)

This is the result obtained by Prager (ref. 1) in his analysis of the same
problem.

DISCUSSION

First, observe that in equation (34) for a uniform thickness beam ¢ = 0
and thus &g 1is undetermined. This means that for a uniform thickness beam
the nodal positions are arbitrary; that is, all meshes are equally optimal for
a uniform thickness beam.

Next, consider again the element stiffness matrix of equation (10). From
equations (8) and (34) the scalar multiplier is

EA, E(A, , +A ) Ac /] +r
K k-1 * A L( 21) (35)

Qk ZL(Ek - Ek—1) 2L 1 - Yoy

Since this is a constant (independent of k) the element stiffness matrix is
the same “cr each element. This means that each element has the same strain
ere~gy. Masur {ref. 2) has suggested that this result is due to the simple
jecmetr, =f the problem.

Even with this simple geometry, however, the analysis needed to determine
the cptimal nodal positions has been extremely detailed. With more complex
geometries the analysis will become intractable. Alternatively, a more conven-
ient methcd of improving the nodal positions is to examine the trace of the
stiffness matrix and to adjust the nodal positions to minimize the trace. The
criteria for minimizing the trace of the stiffness matrix is a comparatively
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simple procedure - readily amenable to the development of computer algorithms
for optimal nodal locations.

In the preceeding discussion, we have ignored any consideration of the
effects of concentrated loads or boundary/edge effects. It is common engineer-
ing practice to use a fine (dense) grid in highly loaded regions and to place
a grid point specifically at the point of application of a concentrated load.
The trace minimization suggested here is intended to aid in the discretization
process at locations removed from concentrated loads. Our justification is

based on Saint-Venant's principle that localized effects disappear at short
distances.

A principal guestion with the minimum trace method is: What is the range
of applicability? The authors have found the method to lead to significant
decreases in potential energy from tha%t of a uniform mesh for structural and
heat-transfer problems. The range of applicability is currently being
explored. Numerical algorithms using this procedure are being developed.
Finally, the influence of values of second and higher invariants of the stiff-
ness matrix needs to be explored.

NUMERICAL EXAMPLE

To illustrate the value of optimizing the mesh, consider an axially loaded
bar which tapers to 1/3 the base area as in figure 3. Specifically, let P,
Ao, ¢, E, and L have the following values:

P-20N h

2
Ao = 0.0015 m

2
€=3
£ - 2.0700"" n/md

L=4m

The objective is to find the axial displacement.

From elementary mechanics the axial displacement u at anv iocation

PL

.

A Ec
0

C(\
L

> 2ompare the displacement results of finite-element mcde’s with egqua-
tron (375, four models of the bar, each having four elements, were examined.
Ore ~f the models nad a uniform nodal distribution. Another had the "zptimal”
mesn a5 Jeseloped in equation (34). The remaining two models had arbitarilty
selectel nodal distriputions.  The nodal displacements were evaluated using tre
fou meage 't and compared with the displacement calculated by equation (37).
Tab'e I shcws the vesults. Table 1D presents an error analysis and also an
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A new method of “inite-a2lement 3rid “Tovoveme” s 2atet Tn the poinciple o7
minimization of the trace »f *he stiffrness Tat v« was e Tpes This proace
dure is equivalent to minimizing the pot ' ‘

stertiat oereryy f tre moael by
the strain energy ejually among tne eiements. Tne foi'cw'ng conc us!
made:

1. The analysis and the numerical results demonstrate the potential use-
fulness of the trace minimization mesh improvement method.

2. Minimization of the trace of the stiffness matrix is a relatively
simple mesh optimization procedure. It is readily adaptapble to algorithm
development.

3. Trace minimization can be used in combination with other qrid optimiza-
ticn tecnhniques. Indeed, it can provide a starting mesh for iteration tecn-
niques, useful for specialized loading.

4. The principal benefit of the trace minimization method is accuracy of
analysis as opposed to efficiency of analysis.
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TABLE I. - COMPARISON OF AXIAL DISPLACEMENTS FOR THE BAR OF FIGURE 3 CALCULATED
USING VARIOUS MODELS

Axial Exact displacement | Displacements computed using various models,
Yocation, (eq. (37)), 10°9 m
X, 10°9 m - -
m Uniform "Optimum' Mesh 3 Mesh 4
mesh mesh
(Prager)
0.0 0.0 0.0 0.0 0.0 0.0
.5 33.6276 33.60639 33.60639
1.0 70.46244 70.2679 | =—memwem 70.41338 [ ——————mme
1.4409860 106.1461 —————— 105.482
2.0 156.702 156.1509 15.56506
2.5 208.3078 206.8158 207.1804
2.5358986 212.2923 ——————— 210.9648
3.0 267.883 266.5719
3.3678522 318.4384 ——————- | 316.4529
4, 424,5845 421.1612 | 421,940 417.6195 417.9814
TABLE II. - ERROR ANALYSIS
Axial Error for various meshes,
Tocation, 10-% m
X,
m Uniform “Optimum" Mesh 3 Mesh 4
mesh mesh
(Prager)
0.0 0.0 0.0 0.0 0.
.5 02121 02121
1.0 .194541) | —m—eeemee .04906 ——————
1,441 | cmemmeeae .664118
2.0 .5506105 1.0514
2.5 1.492 1.1274
2.536 e | 1.32769
3.0 1.311108
3.368 emmme———— | 1.985439
4.0 3.423228 2.64433 6.965 6.6031
Lo-Norm 3.7119418 | 3.6246009 | 7.1232118 | 6.780697
e KTH ELEMENT
Yo [——+—+ t
K k4
12 K + Ay
! L
FIGURE 1. - LINEAR TAPERED BAR.
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