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SUMMARY

A new and simple method of finite-element grid improvement is presented.
cc The objective is to improve the accuracy of the analysis. The procedure is

based on a minimization of the trace of the stiffness matrix. For a broad
class of problems this minimization is seen to be equivalent to minimizing the
potential energy. The method is illustrated with the classical tapered bar
problem examined earlier by Prager and by Masur. Identical results are
obtained.

INTRODUCTION

In a general context, the finite-element method is an approximate proce-
dure for solving differential equations. The accuracy of the method depends
on (1) the number of elements, (2) the choice of interpolation functions, and
(3) the location of the grid points. The number of elements, and hence the
number of grid points, is usually restricted simply by computer capability and
by processing costs. Also, there have been many recent advances in improving
the accuracy of the finite-element method by using higher order interpolation
polynomials and shape functions (p-method) and by exhaustive analysis with
large numbers of elements (h-method). Some of these advances are described in
the references cited herein. However, optimal grid point location (r-method)
is far less advanced. Practical procedures for the analyst still need to be
developed and refined.

One of the earliest attempts to develop a grid optimization procedure was
that of Prager in 1975 (ref. 1). Prager's work provided a stimulus and a basis
for later grid optimization research as recorded in references 2 to 19. Note-
worthy among these efforts are the works of Shepard (refs. 11, 13, and 15),
Masur (ref. 2), Turcke (refs. 8 and 9), Carroll (ref. 7), NcNiece (ref. 4),
Carey (ref. 16), Diaz (ref. 12), Melosh (ref. 10), Durocher (ref. 17), and
their colleagues.

Prager examined a bar with a linearly varying cross section under tension.
He showed that the grid producing the desired least potential energy is the one
where the cross-section areas at the nodes form a geometric series. In this
configuration, the strain energy is divided equally among the elements.



Masur (ref. 2) observes that this latter result of equal element strain
energies is not a general characteristic of optimal meshes but instead is a
result of the simple geometry of Prager's problem.

In this paper we present a finite-element grid improvement technique which
is based on the minimization of the trace of the global stiffness matrix. We
show that this method leads to identical results to those of Prager. It has
the advantage of being simpler than traditional optimization procedures.

The method presented herein provides a mesh improvement which is based on
the geometry of the body. As such, it provides a significant improvement over
uniform meshes, and it produces a good first iteration for accommodating spe-
cial loading configurations.

In the usual finite-element procedure, the governing equations are
obtained by minimizing a functional T by varying the dependent variables of
the physical problem (ref. 20). For elastostatics this is equivalent to the
principle of minimum potential energy (ref. 21). This leads to the familiar
system of linear algebraic equations. Attempts to minimize i with respect
to the nodal coordinates, however, leads to a system of nonlinear equations.
These equations are generally extremely difficult to solve even for the sim-
plest cases. To avoid this difficulty we are proposing instead to examine the
stiffness matrix to obtain information about an improvement in grid point loca-
tion. Our motivation is the observation of the major role of the stiffness
matrix in the value of the potential ir. Also, the entries of the stiffness
matrix are dependent on the grid point coordinates.

NOMENCLATURE

"A area

AK nodal area

Aj end area

AO  base area

Ak area of kth element

c area ratio (see eq. (7))

E elastic modulus

{f} global force array

{f} transformed global force array

fi entries of {f}

[K] global stiffness matrix

[K] diagonal form of [K]
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k. entries of [K] 55"

L bar length

Qk length of kth element

n number of elements

P axial load

rij length ratio, Qi/2j

n

Sn sum of length ratios, E r
j=

T trace of [K]

[T] transformation matrix :

u axial displacement

{u} global displacement array

{u} transformed global displacement array ,,

ui entries of {u} .,
L, ID .. ],......

x axial coordinate .. ... ...

xk  nodal coordinate . . .

K element stiffness matrix L . . . . . .... .

Tr potential energy " " " ' P

F, dimensionless axial coordinate %

Fk dimensionless nodal coordinate l.
p

ANALYSIS ..PIN

Our objective is to develop a practical and efficient procedure of grid
enhancement tending towards optimization. Our thesis is that for many problems
the minimization of the trace of the stiffness matrix leads to a minimization
of the potential energy and, as a consequence, provides the optimal grid con-
figuration.

To see this, consider the governing matrix equation of finite-element
analysis:

[K]{u} = (f) (1)

where [K] is the stiffness matrix, {u} the array of dependent variables, and

{f} the force array. We can view [K] as an operator which maps {u} into

3"-
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{f}. In this context, since [K] is symmetric1 we can find an orthogonal
transformation [T] which diagonalizes [K]; that is,

[K] = [TjT[K][T] (2)

where [K] is a diagonal matrix. Let [T]{u} and [T]{f} be (u) and {f}. :o

Then the potential energy Tr may be expressed as

= - {f}T I - T[-](-} T(5 (3)

In terms of the array components, Tr becomes

n

T kiu fiui (4)

where the ki (i=l,...,n) are the diagonal entries of [K].-',a.

n
Observe in equation (4) that the last term - E fiui does not explicitly

i=1
n

involve the nodal coordinates. Therefore, - E f.ui does not affect the
i = l -2

minimization of Tr with respect to the nodal coordinates. Also, since the I
are positive and are independent variables in the minimization of Tr, the mini-
mization of n with respect to the nodal coordinates occurs when the sum of

the ki (the trace of [K]) is a minimum. Since the trace of a matrix is

invariant under an orthogonal transformation, minimizing the trace of [K] is .-:.
equivalent to minimizing the trace of [K].

In minimizing the trace, we will not adversely affect the diagonal domi-
nance of [K] required to avoid ill-conditioning. The improved stiffness
matrix we seek is the result of redistribution of the nodes and not of an arbi-
trary mathematical operation.

To illustrate the application of these concepts, consider the axially
loaded tapered bar shown in figure 1. (This is the same problem examined by
Prager (ref. 1) and Masur (ref. 2).) The objective is to determine a finite-
element mesh which best predicts the axial displacement. Let the bar have
length L and let it be divided into n elements with n + I nodes (numbered
0 to n) as shown. Let the areas at the ends of the bar be Ao  and AV. Let

be the nondimensional length parameter defined as

L (5) J.

IThe analysis which follows is based on the symmetry of [K]. If [K] I

)s not symmetric, a similar analysis could be developed using nonorthogonal
transformations.
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Then the area at any particular E along the bar is

A = Ao(l - c ) (6)

where c is

A° - A

= 0 < c < 1 (7)
Ao
0

Hence, the area at the kth node is

Ak = Ao(l - Ck) (8)

where k is (xk).

Let the individual elements have a uniform-cross section. For example,
let the kth element have cross-section area Ak and length K as in fig-
ure 2. (Note that the elements do not necessarily have the same length.) Then
Ak and 2k are

A + A0
k-l kk 2

",'.. -,

and (9)

Q k = k - k-l = L(k - kl

The element stiffness matrix for the kth element is (ref. 20)
'p ...

T~kE 1 -I "-,',

[ ] (10) S
9k  "., 1.

where E is the elastic modulus. Then the trace T of the global stiffness
ma t r i x i s

n n

2E E (Ai-I +  Aj)I )"- ''2E _ (I.)

i=l i=l-., .

The improved node location occurs when the trace is minimized with respect
to the nodal coordinates ,k(k=l,....n-i).2 Hence, by setting the derivative
of with respect to Fk equal to zero, we obtain "-"

2Ncdes numbers 0 and n are fixed at the ends of the bar and thus not
conside-ei for .optimization.
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-(A +A (A + A
aT AE k k-i k A k k k+1 Akl A Ak A Ak+l

0=- L k - Ck-l + k+l - Ck k - Ek-1l 2 'k+l -k

(12)

Using equation (9) and simplifying we obtain

AkAl = - + + L ') + 11(13)

kil k" -( +L9

To simplify the analysis it is convenient to introduce the length ratio
parameter rij defined as Qi/Qj. Then the ratio Qk+l/k may be written as

Q k+1

2k+l ,I rk+lI (14)
Q k- 9,k - rkl (4'p.-

Q

Then L/ k  is

n n

L' r.l '-L= = n (15)
Q k Q k rkl rkl

j=1 j=1l,

n
where Sn is defined as E rjl. Using this notation, we can rewrite

j=l
equation (13) as

12 ( 1 6)~
A kl ) + +A Sn  1 l k!,

Also, k may be written as

1+2 k. + 1 +r l 1+r1 + 2 + " "+ Pk 1 21 + 31 + ' ki 1 Sk",

L S n n s L nI = (17) .

j="

6
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Then, from equation (8), A may be written as
k

A= Al - (18)k O[

Specifically, A1  and A2 are
20

A 0[A1 0 SJ

and (19)

A -A -c1 r2
2 o[ - Sn I

To obtain the element area ratios let k = 1 in equation (16). A2  is then

2( 2 r 21+1
A = A l 1 + Ar2 1 A 21 (20)2 p 1( 21 2 or2 1 1 n

Then, by using equations (19) to eliminate A1  and A2, we obtain

Sn(1 - r2 ) = c (21)

From the first of equations (19) we have

A1  Aor
2 1

or (22)

A

A- r2 l

0

Similarly, the second of equations (19) leads to

A - A r2

2 0 21

or (23)

A22ii r2
A 2 1 S-

. | .

7
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Next, let k = 2 in equation (16). By using the same procedure we obtain

r = (1 - + r (24)
S32 = Sn r32  21

But, in view of equation (21) this becomes

I-r =(1l-r M)(+l-
32 21 r3 2 + r21

(25)

or 
.

r-r r )0r21(r32  21 =

Thus,

r3 2 =r 2 1  (26)

From equation (18) we have

A =Al -1_ c -Ar 3  (27)

3 ~021

Therefore, we obtain

A3  A2  A1
3 2 1
A2 -A 1 -A 0 -r21 = r32 (28)

Proceeding similarly for k = 3,4,.., we obtain

An  An_ A
An A n-l 1 =r r =..r (29)

An-I - An-2 A r21 = 32 n,n-1

Thus, we have the relations

2
,r 3  -r r -r

31l 21 32 - 21
(30)

3 k-ir r 3 r 32r r r -r41 r43r32 21 =  21'' kl =  21

Hence, Sk is the geometric series

4J k

1~~~ + rk 2 +k- -~2 1 (1 - r 2 (31)
k  21 21 21 (1 21

8I;,
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Then, from equations (1) and (21), we have

A= A°[1 - (I - r'l) = Aor21  -O

and then (32)

An =Ar 2 1 = A

Then, from equation (7) we see that r2 1  is A

21

r 21= (1 - c)n (33)

Finally, by substituting into equation (17) we have

2 2 + 2  k-i
1 (1 r - - l 1 21 +. r 2 1

k L r2 1  31 + . + rkl - (1 r2 1  c

k~

S21 1 - (1 c)k /n
C - C ~( 34). '

This is the result obtained by Prager (ref. 1) in his analysis of the same
problem.

DISCUSSION,. "

First, observe that in equation (34) for a uniform thickness beam c= 0 *m'.5 ,I~

and thus k is undetermined. This means that for a uniform thickness beam
the nodal positions are arbitrary; that is, all meshes are equally optimal for
a uniform thickness beam.

Next, consider again the element stiffness matrix of equation (10). From
equations (8) and (34) the scalar multiplier is

EA k E(A kl + Ak) A 0 l r'
S(35)
k 2L( k - k-l)  2 21, )-":-:

Since this is a constant (independent of k) the element stiffness matrix is
t'e same -r each element. This means that each element has the same strain
ere-gv. Masur 'ref. 2) has suggested that this result is due to the simple
le 7e.r , cf the -rolem.

Even Nith this simple geometry, however, the analysis needed to determine
the optimal nodal positions has been extremely detailed. Nith more comaPlex
geometries the analysis will become intractable. Alternatively, a more conven- 0
lent method of improving the nodal positions is to examine the trace of the
stiffness matrix and to adjust the nodal positions to minimize the trace. The
criteria for minimizing the trace of the stiffness matrix is a comparatively

%-.,-



simple procedure - readily amenable to the development of computer algorithms
for optimal nodal locations.

In the preceeding discussion, we have ignored any consideration of the
effects of concentrated loads or boundary/edge effects. It is common engineer-
ing practice to use a fine (dense) grid in highly loaded regions and to place
a grid point specifically at the point of application of a concentrated load.
The trace minimization suggested here is intended to aid in the discretization
process at locations removed from concentrated loads. Our justification is
based on Saint-Venant's principle that localized effects disappear at short
distances.

A principal question with the minimum trace method is: What is the range

of applicability? The authors have found the method to lead to significant
decreases in potential energy from that of a uniform mesh for structural and
heat-transfer problems. The range of applicability is currently being
explored. Numerical algorithms using this procedure are being developed.
Finally, the influence of values of second and higher invariants of the stiff-
ness matrix needs to be explored.

NUMERICAL EXAMPLE

To illustrate the value of optimizing the mesh, consider an axially loaded
bar which tapers to 1/3 the base area as in figure 3. Specifically, let P,
Ao , c, E, and L have the following values:

P=20N

2

c 2 36)
3

1 1 2E = 2.07x10 N/m

L=4m

The objective is to find the axial displacement.

From elementary me-hanics the axial displacement u at any location
is

PL 1(37)u = A Ec '
AU 0 E n -

7, :om ae the displacement results of finite-element models wi tn equa--
t~on (37), 'our models of the bar, each having four elements, were examined.
,Ore f the moJels had a unifo-rm nodal distribution. Another had the *2.t~ma"
Tesh as JeieloQed in equation (34). The remaining two models had a'Oitar y
sele-te -odal distributions. The nodal displacements wel-e evaluated sing tne
f , mcle', aid .ompa e. with the displacement calculated by equation (37)
race sro~s te eso Its. Table V Dresents an error analysis and also anl, a l

. . . . . . . . . . . . . . . . . . .'
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L2-norm of the error. i: e :'e]. ,

error.

A new method of linite-e'e-'en r T:- CC u,' e4 :n e "nc e
minimizaton of the trace )f "he etiffne >. . ; .e.'. <: Tni s:.ie

dure is equivalent to minimi ing the . .te't ee ]/ i e g j e vice c b i

the strain energy e.lually among tne e eme rt. tne rowrg rsu o nZ a-e
made:

1. The analysis and the numerical results demonstrate the potentia ue-
fulness of the trace minimization mesh improvement method.

2. Minimization of the trace of the stiffness matriX is a relative S

simple mesh optimization procedure. It is readily adaptable to algorithm

development.

3. Trace minimization can be used in combination with other grid optimiza-
tcn tecnniques. Indeed, it can provide a starting mesh for iteration tecn-
niques, useful for specialized loading. 0

4. The principal benefit of the trace minimization method is accuracy of
analysis as opposed to efficiency of analysis.
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TABLE I. - COMPARISON OF AXIAL DISPLACEMENTS FOR THE BAR OF FIGURE 3 CALCULATED

USING VARIOUS MODELS
ON

Axial Exact displacement Displacements computed using various models,
location, (eq. (37)), 10- 9 m

x, 10- 9 m
m Uniform "Optimum" Mesh 3 Mesh 4

mesh mesh
(Prager)

0.0 0.0 0.0 0.0 0.0 0.0
.5 33.6276 ------- 33.60639 33.60639

1.0 70.46244 70.2679 70.41338 --
1.4409860 106.1461 --- 105.482 -,
2.0 156.702 156.1509 15.56506
2.5 208.3078 ---- 206.8158 207.1804
2.5358986 212.2923 --- 210.9648 -------
3.0 267.883 266.5719 -----
3.3678522 318.4384 316.4529---------- ------
4.0 424.5845 421.1612 421.940 417.6195 417.9814

TABLE II. - ERROR ANALYSIS

Axial Error for various meshes,
location, 10- 9 m

X,

m Uniform "Optimum" Mesh 3 Mesh 4
mesh mesh

(Prager)

0.0 0.0 0.0 0.0 0.0.5S- - -- - - - .02121 .02121

I0 .1945411 ---- .04906 --

1.441 .664118 ------ -
2.0 .5506105 -------- 1.0514
2.5 ---- --- 1.492 1.1274
2.536 --- 1.32769 a?
3.0 1.311108

3.368 ----- 1.985439--------- --
4.0 3.423228 2.64433 6.965 6.6031 %
L2 -Norm 3.7119418 3.6246009 7.1232118 6.780697
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