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e Two new derivations of the Hotelling-Naiman results on volume of tubes about curves !
) in spheres are presented. The first involves simple differential inequalities. The second is h
U K
:‘.:‘ probabilistic, using the concept of upcrossing borrowed from the theory of Gaussian processes. :
b v,
!:"'o The upcrossings method is extended to a harmonic regression problem not covered by the '
‘... - 1
Hotelling-‘% aiman formulation.
s \
1' 4
h +
o .
fo“ 1
‘
'.4 AMS 1980 Subject Classification: Primary: 62E15; Secondary: 53A04
p «
y .0 )
,?'s Key Words and Phrases: differential inequalities, upcrossings J
%’ ;
:: A Research supported in part by NSF Grants DMS8600235, DMS8451750 (IJ) and ONR Contract )
\ ]
" N00014-87-K-0078 (DS). .
S .
" '
.
! &
WY
l' .l
R )
.:.: .:
o \X
ot (]
|.l ]
0
- (]
:::? SN -ﬁ‘a‘-‘ AL NI, .-l...- LA AR Dol GOSN RN ORI S 2 IR IO W TR NG .0'



o o o n as e

Y - -

S
' on T

g e ey, -

-~

<=

LN XX X

- -
-

-l e e -

o

-
Py

S e - Ty

e e e T " -

1

\

.
h)

N
'I

S Bg® NaB N oe.a e, ¥ > B g * - . . ‘ol - . - . -
O O T OO v W URMY VW UTUYLY O LW IR ON R 4 avh arg gt LW Y'Y MRS A NS vl 2t -4V, 3. (N AN XX

1.Q Introduction.

Motivated by the question of testing for a nonlinear parameter in a regression model
with independent, homoscedastic normal residuals, Hotelling (1939) was led to consider “tvhe TN -
geometric problem’ ?i c‘%n?}zt}.ngbthe volume of a tube of given radius around a curve in . "-lﬁ
the unit sphere in ZR®7’ The answer involves only the arc length of the curve and not its
curvature, providing the radius of the tube is sufficiently small that there is no self overlap in
the tube. Starting from a somewhat different statistical setting Naiman (1986) arrived at the
same geometric problem and showed that Hotelling’s result (properly interpreted) is an upper

bound for the volume of a tube of arbitrary radius.

The purpose of this note is to give two new derivations of the Hotellingﬁ‘liiman results.

v o w,

The first involves differential inequalities. The second is probabilistic, using the concept of
upcrossing borrowed from the theory of Gaussian processes. In the context of Gaussian pro-
cesses Knowles (1987) has observed that approximations obtained from Hotelling’s result and

bounds derived via upcrossings are related. =

Hotelling’s statistical motivation and geometric problem are reviewed briefly in Section

2, which also establishes our basic notation. Sections 3 and 4 contain our derivations.

For a more extensive discussion of applications and several numerical examples, see Jo-

hansen and Johnstone (1985) and Knowles and Siegmund (1988).

2. The Problem.

Assume y; = 3£i(0) + ¢ (i = 1,2,...,n), where the f; are known functions depending
on an unknown parameter § and the ¢; are independent N(0,o?) errors. In principle one can
also consider the more general model y; = (B8, zi) + Bp41fi(0) + €i, where 3 and the z; are

p—dimensional vectors, but for our purposes the simpler one suffices.

The primary example given by Hotelling is f;(8) = cos(ut; + w), where the t; are known

constants and § = (u,w). A second example is the broken line regression f;(8) = (t; — 8)*.

L)
“

See Davies (1987) for an interesting discussion of both these examples.

(4

The likelihood ratio statistic for testing Hy : 3 = 0 against H, : 8 3# 0 is easily seen to be

N v < - d - g " Ry ) o L LAyt -y [ . . 1 M Ay iy - .~
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equivalent to
max {[S£:(0)u]"/[E2(6)Z4] }-
Letting f(8) = (f1(6),..., fa(8)) and y = (y1,---,¥n), We can write this as

max {(£(8),)*/ [ f@) "l wlI* ]}-

Putting v(8) = f(6)/ || f(8) || and U = y/ || y ||, we see that the rejection region of the
likelihood ratio test,

moa.x('y(O), U)? > w?,
is the union of the two tubes, one about v(8), the other about —+(8), of geodesic radius cos~! w.
Here the tube about v(8) of geodesic radius ¢ is the set of all points U € S®~1, the unit sphere
in IR™ , within geodesic distance ¢ of the curve ¥(8). Under Hg, U is distributed uniformly
on S™1, and hence the significance level of the likelihood ratio test is the normalized surface

area on S™! of the union of the two tubes.
U y,u€ S*1, then {y,u) =1 —-2"1 |}y — U||2. Hence the tube about 7(6) of geodesic
radius ¢ = cos™! w can also be defined as the set of all points in S®~! within Euclidean distance

[2(1- w)]l/2 of the curve. See Figure 1.

e

Figure 1. Hlustration of the relation
between g, © and d(7,U).
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A simpler geometric problem is to compute the volume of a tube about a curve in Eu-
clidean space. In this context Hotelling’s result is very easy to state. If the curve is smooth, ’

closed, and there is no self overlap in the tube (precise definitions are given below), the volume
of the tube is the product of the arc length of the curve and the cross sectional area of the tube.
If the curve is not closed, the volume of two hemispherical caps must be added to account for

parts of the tube associated with endpoints of the curve.

We shall use the following notation. Given a closed interval I of real numbers, a: I —
IR™ is a piecewise regular (continuous and piecewise continuously differentiable with non-
vanishing derivative) curve of arc length |af. The Euclidean distance between two points
is d(z,y) =|| z — y ||, between a point and a set is d(z,B) = inf{||z — y||: y € B}, and
between two sets is d(A, B) = sup {d(z,B) : z € A}. The tube (in IR™) of radius R about a is
af = {z : d(z,a(I)) < R}. For any (measurable) A C S*~1or A C R", V(A) = volume of A.

Also let §,, denote the volume of the n dimensional unit ball in JR® and wn.; the volume
(surface area) of S™~!, the unit sphere in IR™*(Q, = /2/T(n/2 4 1),wn_; = 222 /T(n/2)).
Finally, let a(t) = da(t)/dt.

)1}1-. P ¥

“y ¥
[

s .y

Hotelling’s result in IR™ says that if a is twice continuously differentiable and there is no

self overlap in the tube then
V(a®) = |a|Q_1R*! + Q.R" (2.1)
if the curve is not closed and
V(e®) = |a|Qu-1 R (2.2)
] if the curve is closed.

! If @ does not actually intersect itself, the condition of no self overlap is essentially the

condition that R be sufficiently small. Naiman (1986) has proved the elegant result that if a

is only assumed piecewise regular,
V(a®) < lalQaoy R + QLR (2.3)

for all R > 0.

3
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Precise analogues of (2.1) and (2.3) for tubes about curves in S™~! are given in Section

REMARK. It is illuminating to consider the case where a is the unit circle in JR?. One easily
verifies (2.2) for R < 1 and (2.3) for all R > 0. Also (2.3) is asymptotically sharp as R — oo.
We do not have a simple geometric explanation why the second term on the right hand side
of (2.3), which is obviously necessary when a is not closed, works efficiently and in complete

generality.

Anticipating applications to the examples presented above, we note that the broken line
regression requires Naiman’s formulation because the curve v(8) is only piecewise smooth.
Hotelling’s problem of testing for a periodic component in a regression model poses other
difficulties because the parameter § = (u,w) is two—dimensional and hence the “curve” ¥(6)
is a surface in S™!. Weyl (1939) in a companion paper to Hotelling’s calculates the volume
of a tube of small radius about an arbitrary closed differentiable manifold imbedded in IR™
or in S*~1, However, his results must be modified for manifolds with boundary before they
can be applied to the problem at hand. See Knowles and Siegmund (1988) for an appropriate
modification and numerical examples. In Section 4 we show that the special structure of
Hotelling’s problem allows one to use an upcrossing argument to give an upper bound for the

significance level of the likelihood ratio test.

3. The Hotelling—Naiman Theorem.

We begin with a technical lemma which summarizes several well known facts about the

uniform distribution on S™1.

LEMMA 3.1. Suppose U = (Uy,...,Uy,) is uniformly distributed on S™1.

(i) The distribution of U? is Beta(1/2,(n — 1)/2); the probability density function of U, is

I'(n/2)

1@ = S - /2]

(1-z3H)-32 (1] < 1).
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(i)
E(U) = T(n/2)/{2x/’T[(n + 1)/2]}.

(iii) For k < n, given Uy, ..., Uy, the conditional distribution of (Uk41,...,Un) is uniform on

a sphere of dimension n — k — 1 and radius (1 — SXU?)1/2.

(iv) The random variable U? + U2 has a Beta(1,(n — 2)/2) distribution and is independent of
U3/U3.

Proor. All these results can be proved by means of the representation U; = Z; / (Z2+...+
Z2)Y/2 where Z,,...,2Z, are independent, standard normal random variables, and Basu’s

theorem (cf. Lehmann, 1986, p. 191). 1

A simple picture underlies the differential inequalities approach to Naiman’s inequality.
A sphere centered at one end of the curve is sliced along the plane perpendicular to the curve
at that endpoint. The hemisphere intersecting the curve is moved along the curve at unit
speed. The volume swept out is greatest when the curve is a geodesic, which leads to the

Hotelling-Naiman result.

It is easiest to begin with the version of Naiman’s bound for tubes in Euclidean space.

THEOREM 3.1. Let a : I — IR™ be a piecewise regular curve of length |a|, and for R > O let
af = {z e R" : d(z,a(I)) < R}. Then V(aR) satisfies (2.3) for all R > 0.

Proor. Without loss of generality we can assume a is parameterized by arc length, so [ =
[0,|al]. Let the image of @ on a subinterval [a, b] of I be denoted by ay, 4. Let v(s) = V(a[%',]).
Clearly v(0) = Q,R"™, and to complete the proof it suffices to show that v is absolutely

continuous and ¥(s) < Q,_1R*"! for a.e. s.

We say a point z is R—close to a4 if 7 € aﬁ'b]. Let § > 0. If a point is R—close to

a[0,4+5) but not R—close to ayg ,}, it must be R—close to af, ,45 but not R—close to af, ). Hence

v(s +8) - v(s) = V(afi . .g) - V(afs ) (3.1)

< V(a('f..+51) - V(a[’f‘,]).

5
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Recall that for two sets A and B, d(A, B) = infocasupyep || @ — b ]|, and observe that
d(A,B) < n implies AR C BR+7. Since a is right differentiable by assumption, the linear

approximation to a(s + t) for t > 0, namely §(t) = a(s) + ta(s+) satisfies

d(a[,’,+5],ﬂ[0'5]) = n(8) = o(98) (3.2)

uniformly in s provided we exclude left neighborhoods of length § of discontinuity points of &.

An explicit evaluation starting from (3.1) yields

0<v(s+8)—v(s) < V(ﬂ[’;}]") - V(aff',])
= 6Qu1(R+ )" + Qu(R + 0)" - QR (3.3)

= Q.1 R* + O(n(6)).

It follows that v is increasing and absolutely continuous, hence that v(8) exists a.e. and satisfies

the required bound. |

REMARKS. (i) One can avoid the appeal to Lebesgue theory by showing directly that v(s) is
Lipschitz continuous with Lipschitz constant M = Q,_;R*~!. Fix ¢ > 0. Formula (3.3) and
the analogous inequality for é§ < 0 imply that about each s € I thereis a neighborhood N,, open
relative to 7, of points s’ satisfying |v(s’)—v(s)| < (M +¢)|s'~s|. The compactness of I prcvides
a finite subcover {N,,} from which it follows by chaining that v(s) is Lipschitz (M + ¢) on I.

Since € > 0 is arbitrary, we recover (2.3) from the decomposition v(s) = v(0) + [v(s) — v(0)].

(ii) Lalley and Robbins (1987) have also exploited the idea of volume swept out by a moving

sphere in a differential games setting.

To see that equality holds in (2.3) when a is continuously differentiable, not closed, and
R is sufficiently small, we define the cross section C[a(s)] of the tube a® at the point a(s) as
the set of all z € af such that (z — a(s),&(s)) < 0, = 0, or > 0 according as s = 0,s € (0, |al),
or 3 = |a|. Clearly
ol = U,epo,1aCla(s)]s
and we say that no self overlap occurs in the tube if this union is disjoint. For a closed

curve, we require only that the union over s € (0,|a|) be disjoint. The critical radius is

»
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R. = inf{R > 0 : self overlap occurs}. If the curve does not actually intersect itself, R. > 0,

oy

but its exact value may be difficult to determine analytically. Johansen and Johnstone (1985)

- e e - -

give an easily computed bivariate function whose minimum is R..

THEOREM 3.2. Ifa: I — IR" is regular and closed (resp. not closed) then the equality (2.2)

B (resp. (2.1)) holds for all R < R..

4

‘ ProoF. Assume first that a is not closed. Again assume a is parameterized by arc length and
'

:; that R < R.. The key is to show that equality holds in (3.1): indeed if a point is R—close to
Y

Q[,,5+6) Dut not to ay, ,), then it lies in Usg(,,ja)Cla(t)] but not a[’f’,] and hence not in a[{‘;"].

| ' If we combine equality in (3.1) with the inequality V(a{f S +6]) > V(ﬂ[‘g_ﬂ") and calculate
:,, as in (3.3) we obtain in addition to (3.3) the inequality “
\
o v(s+ 8) — v(8) > 6Qu_1R™! + O(n(6)). =
3
! The two inequalities show that 9(s) = Q2,1 R*~! for all s € [0, |a|]. Combined with the initial .
: »
K, value v(0) = 2, R", this implies (2.1). .
Finally, suppose that a is closed. The idea is to split « into two non—closed curves and .
E: apply what we have just proved. Choose a pair (so,%p) maximizing the distance function .
.
X (s,t) =l a(s) = a(t)||*. By reparameterization, we may assume that so = 0. Since a(0) — a(to) R

is orthogonal to both @(0) and a(to) it follows that || a(0) — a(to)||> 2R. In turn, this implies

A that neither of the tubes afg'to] and ago lad] suffers any self-overlap. Equality (2.1) applies to f
) ! .
x: each of these non—closed curves. Since the two tubes intersect in precisely two disjoint balls, -
¢ -
s equality (2.2) is established by subtracting the double counted portions. 1 3

-' -
~ REMARK. It is interesting to note that the curvature of a plays no role in the preceding ’
- argument. This contrasts with Hotelling’s argument where the curvature appears and then is >
A Y

found after an integration to have a coefficient of zero.

l' )
o A
}“ ) N
, To discuss tubes in spheres, let $"~! be the unit sphere in IR™ and let v : I — S™~! be :\'

t
L) .
" a piecewise regular curve parameterized by arc length. .
3
X ' 3
" w,
B R i/ R A AL AN A e A 0 O S A € N S




Although it is appropriate to use geodesic distance to define tube radii, in order to adapt
as directly as possible the preceding arguments we shall think of $*~! imbedded in IR™ and

use Euclidean distance. The relation between geodesic distance ¢, w = cos¢, and Euclidean

distance R = [2(1 — w)] /2 is illustrated in Figure 1. The tube of radius R about v in S™~! is .

\
ol

‘.
:'\._%' AN

R = {ye s :m’a.x(y,‘y(s)) >cosp} = {ye S :d(y,v(I)) < R}.

@t s v 0,
XA
A

Now the “lisear continuation” of v(s) is continuation along a geodesic, defined by 8(t) =

!
o
v(s) cost + ‘?(3+) sint. Since Euclidean distances on S™~! are inherited from IR"™, (3.1) and :‘.:"‘i
I* 3
(3.2) remain valid with this new definition of 3. 3
!
To complete the calculation analogous to (3.3), we must evaluate v(0) and V(ﬂg';]"). Let L8 .
W
U = (Uy,...,Uy,) be uniformly distributed on $™~! and assume without loss of generality that A
.:\'.:-
7(0) = (1,0,...,0). Then :.:;:3

.~

v(0) =V {(u1,...,us) € S* 1 1 4y > w}

ot

LS
]

P

= wn—lP{Ul > w}

1
= Wp-2 / (1 - 2:2)("-3)/2(12'

P

e W'l"v"- Ip

ALY,

2>’
I&

by Lemma 3.1. To compute V(,BSS—‘]')) observe that since (y(s),7(s+)) = 0 we can without

E s 1'4

loss of generality assume that 7(s) = (1,0,...,0) and 7(s+) = (0,1,0,...,0). Then Bio.5) is

Pl

a portion of the equator subtending an angle § at the origin. The portion of the tube which ::3',.
Tu
does not involve the two caps, B = {u € S™1: £i>3 u? < 1 - w?,0 < up/uy < tané, uy > 0}, 'y
has volume )
V(B) = 47 'wq_1 P{U} + U2 > w?, U2/U} < tan?$§}, :
]
which can be evaluated by Lemma 3.1. Hence ®
, o
- "~
V(BRW) = (20)Mwna (1 - w2)® D fu, g / (1= 22)"=3)24,
w -’.:f
J'.'d‘
- - bt
If R = R--n, the corresponding & = 1- R?/2 = w— Rn+1n?/2 = w+O(n). A calculation ®

like (3.3) yields

0 < v(s+8)—v(s) < (27) Yown-1(1 ~ w2)"=D2 4 O(n(8)),
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from which follows v(s) < (27) lwn_1(1 — w?)(*=2/2 a6 s since n(8) = o(§). From this
inequality we obtain Naiman’s bound for a tube in $™!,

An argument analogous to that of Theorem 3.2 shows that there is equality in the
Hotelling-Naiman bound for tubes in S®~! whenever the curve is smooth and the tube ra-
dius is less than R, the radius of first overlap. Details of the definition of R, together with a
computational method for evaluating R. and some statistical examples are given in Johansen

and Johnstone (1985).

The Naiman-Hotelling result we have just derived is summarized in Theorem 3.3, which

is then proved by a different method.

THEOREM 3.3. Let v : [0,t5) — S™ ! be a regular curve. Let U be uniformly distributed on
S$™=1 and put Z(t) = (7(t),U). Then for any0 < w < 1,

I'(n/2) ' n— - n-
Pl 202 o) s g D [ - e Gl 6

If no self overlap occurs in the tube 7[13',’01 ,where R = [2(1 - w)]l/ 2, there is equality in (3.4).
The inequality (3.4) continues to hold if v is only assumed to be continuous and piecewise

regular.

ProoF. The argument uses the notion of an upcrossing of the level w, which plays an important
role in the theory of Gaussian processes. See Leadbetter, Lindgren, and Rootzen (1983, Chap-
ter 7) for the definition and basic properties. Let N, (o) denote the number of upcrossings of

the level w by Z(t), 0 <t < ty. Then

P{ Jmax Z(t) > w} = P{Z(0) > w} + P{Z(0) < w, Ny(to) > 1}

< P{Z(0) > w} + E{Nu(t0)} (3.5)

The proof of (3.4) is completed by the evaluation of the right hand side of (3.5) given in

Lemma 3.1 and Lemma 3.2, which follows.

If there is no self overlap in S™~! in the tube of geodesic radius cos~!(w) about v, then
no sample path Z(t), 0 <t < to, can leave and subsequently re—enter the tube. It follows that

P{Z(O) > w, Ny(to) > l} + P{Nw(to) > 2} = 0, so equality holds in (3.5), hence also in (3.4).
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Since a continuous, piecewise regular curve is the uniform limit of a sequence of regular
curves, the arc lengths of which also converge to that of the given curve, one sees from Fatou’s

lemma that (3.4) continues to hold under the weaker condition of continuity and piecewise

regularity. |

LEmMMA 3.2. If v is a regular curve in S™~1, the erpected number of upcrossings N, (to) of the

level w by the process Z(t), 0 < t < to, i3 given by

ENy(to) = (27) 7 7](1 - w?)*=D/2,

ProOF. Assume without loss of generality that v is parameterized by arc length s = s(t),
and let sp = s(to). Then ¥(s) = dvy/ds € S™!. A standard argument (cf. Leadbetter,
Lindgren, and Rootzen, 1983, Chapter 7) shows that if as A — 0 the joint density of Z(s) and
[Z(s + h) = Z(s)] /h satisfies certain regularity conditions discussed below, then

2Mso
ENu(30) = fa-1(w) lim 27" 3" E[Z*(k/2™)|Z(k/2™) = w],
k=1

where f,_, is the density function of Z(s) given in Lemma 3.1. Since {y(s),7(s)) = 0, for the
purpose of evaluating the conditional distribution of Z(s) = (7(s), U) given Z(s) = (v(s),U),
we can let U = (Up,...,U,) and by a rotation of the coordinate axes assume that v(s) =

(1,0,...,0) and 7(s) = (0,1,0,...,0). This means that
ENy(s0) = 30.fn-1(w)E[U2+|Ul = w]' (3.6)

The conditional expectation in (3.6) is evaluated with the help of Lemma 3.1 (ii) and (iii).

To justify the preceding calculation it suffices that as A — 0 the joint density function
of Z(s) and [Z(s + h) — Z(s)]/h, say psu(z,y), converge uniformly in s and z, at least for z
in a neighborhood of w, to the joint density of Z(s) and Z(s) (cf. Leadbetter, Lindgren, and
Rootzen, 1983, Theorem 7.2.4).

By a rotation of the coordinate axes so that ¥(s) = (1,0,...,0) and 7(s) = (0,1,0,...,0),
we see that the joint density function of Z(s) and [Z(s + h) - Z(s)] Jh=2(s)+ {[Z(s+h)-
10
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:' Z(s)]/h - Z(s)} has the form p
' ;
R P{Z(s) € dz, [Z(s + h) - Z(s)] /h € dy} = P} U, € dz,U Uied 3.7 ]
{ (")E 2,[ ("+ ‘) (3)]/ € y} 1 €adz,Uz + &U; € Ve ( . ) 2]
i>1 "
v - ‘v
:: where the £; — 0 uniformly in s as A — 0, because v is regular. ’
[ Iy
: Given Uy = z,(Us,...,Uy,) are uniformly distributed on an n — 2 dimensional sphere of -_":-'
radius (1 — z2)1/2 (cf. Lemma 3.1), and consequently the right hand side of (3.7) equals -
:
fa-1(z)dzP {0,(1 +e2)+ Ze,-(]g € (dy - e12)/(1 - 12)1/2} , )
>3
d ] 7
4 - -
where (Uz,...,Uy,) is uniformly distributed on $™~2. This last probability can be written as ]
- . b
q an integral with respect to the joint density of U; and 3,5 ;¢;U;, and by a similar conditioning D
.. argument it can be shown to converge uniformly in s and |z| bounded away from 1 to P{f]z €
" . W
4 dy/(1 - z2)Y/2} = P{(¥(s),U) € dy|(7(s),U) = z}. The details are omitted. Ryt
B
; REMARK. It is possible (although not particularly natural) to derive Theorems 3.1 and 3.2 : .4
N by a (down) crossing argument. Since the tube cannot be defined by an inner product, the h
appropriate process is Z(s) =|| U — a(s) ||, where U is uniformly distributed in a box large i
) enough to contain of. )
L) ’
; 3
N 4. Testing for an Harmonic.
! As indicated in Section 2, Hotelling’s problem of testing for an harmonic of undetermined N,
0 | .l
; frequency and phase does not fall within the scope of the results of Section 3 because it involves i
- N
f, two nonlinear parameters. However, by writing )
. B cos(put; + w) = By cos ut; + P2 sin pt;, "
v ":'
¥ where 81 = fcosw, B = —fBsinw, and observing that 3 = 0 if and only if 8y = 8, = 0, we s':,
] )
reduce the number of nonlinear parameters to one. The upshot is a likelihood ratio test with A
": a rejection region of the form "§
M 1)
:' W1
¥l

! sup [(11(6), U)* + (72(8),0)""? 2 w,

) Il ‘e
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where 7;(0) € ™1, (11(8),72(6)) = 0 for all 6, and under Hy : By = B2 = 0 U is uniformly
distributed on S™~1. Although in this form the rejection region does not have a simple geo-
metric interpretation, its one dimensional structure permits one to obtain an inequality based
on an upcrossings argument. The following theorem is similar to a result of Davies (1987),
who assumes that o2 is known and therefore can modify known results about upcrossings of

x? processes.

THEOREM 4.1. For i = 1,2 let ; : [0,29] = S™! be regular curves. Assume (71(t),72(t)) = 0
for allt. Let U be uniformly distributed on S™=1 and put Z(t) = {(v1(t), U2+ (72(t), U)2}'/.
Then for0 < w < 1

_ 2\(n=2)/2
P {or?‘asaso Z(t) > w} <(1-w?) (4.1)

I(n/2)w(1 — w?)(»-3)/2
2x3/2T'[(n — 1)/2]

to 2r . . . 1/2
/ [|71 cosw + T2 sinw]|? —(11,72)*] " “dwdt.
o Jo

REMARKS. (i) Theorem 4.1 has been formulated with a view towards application to
Hotelling’s problem of testing for an harmonic of undetermined frequency and phase. There

has been no attempt at generality.

(ii) A special case of Knowles and Siegmund’s (1988) formula for the volume of a tube about
a surface imbedded in S™~! shows that equality holds in (4.1) for all w sufficiently close to 1.
However, their method does not yield the inequality (4.1) for all w.

(iii) See Knowles and Siegmund (1988) for a numerical example related to Theorem 4.1.

ProoF oF THEOREM 4.1. The inequality (3.5) is again applicable. The probability density
function of Z(t) is (cf. Lemma 3.1)
() = (n - 2)z(1 - 2?)r-9/2 (4.2)

and hence P{Z(t) > w} = (1-w?)("=?/2, The standard recipe for calculating EN,(to) yields

ENulto) = [ () [ E[2*(012(0) = w]at (4.3)
o]

12
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Since
> (71'; U)(‘Yl, U) + <72, U)(721 U)

Z=
U, U)? + (12, UYH/2
after rotation of axes so that 71 = (1,0,...,0) and 72 = (0,1,0,...,0), the conditional expec-

tation in (4.3) equals

w E(E{[Ur(11,U) + Us(12,U)] T U1, U2} U] + UF = w?). (4.4)
Defining a; and a2 by 7; = (‘?1,72)12 +0;and 72 = (‘?2,71)71 + a,, we see that a; and a5 .,'_‘
NS,
are orthogonal to both 1; and 72, and satisfy .::
o
2_pa 12 _{~ 2 2_y~ 42 v \2 LA :’:‘.
Ner I2=l711? =(F1,72)% a2 2=l 72l* —(711,72)"s (@1, @2) = (11, 72)- (4.5) W
Since (71,72) = —{71,72), we easily obtain Uy(¥1,U) + U2(¥2,U) = Ur{en, U} + Uz{e2, U}, .’c'
A
and hence the inner conditional expectation in (4.4) equals :::
]
¥
?
E{[U1(e1,U) + Uz{az, V)] *1U4, U2} N
By decomposing a3 into a component along a; and a component orthogonal to a; and then Y
I,
rotating the coordinate axes while leaving the first two coordinate directions fixed, we see that ,'.'::
A
this conditional expectation equals "
o
4
lerls + a2Uz || E(US|U1, Ua) (4.6) b
-
Using (4.5) and Lemma 3.1 in (4.6) and substituting the result into (4.4), one can easily 7 :
L
complete the proof of the theorem. t
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