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Abstract.

Two new derivations of the Hotelling-Naiman results on volume of tubes about curves

in spheres are presented. The first involves simple differential inequalities. The second is

probabilistic, using the concept of upcrossing borrowed from the theory of Gaussian processes.

The upcrossings method is extended to a harmonic regression problem not covered by the

Hotelling aman formulation.
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1. Introduction.

Motivated by the question of testing for a nonlinear parameter in a regression model
with independent, homoscedastic normal residuals, Hotelling (1939) was led to consider the r

geometric problem of the volume of a tube of given radius around a curve in

the unit sphere in R?? ." The answer involves only the arc length of the curve and not its

curvature, providing the radius of the tube is sufficiently small that there is no self overlap in

the tube. Starting from a somewhat different statistical setting Naiman (1986) arrived at the

same geometric problem and showed that Hotelling's result (properly interpreted) is an upper

bound for the volume of a tube of arbitrary radius.

The purpose of this note is to give two new derivations of the Hotelling-Nlman results

The first involves differential inequalities. The second is probabilistic, using the concept of

upcrossing borrowed from the theory of Gaussian processes. In the context of Gaussian pro-

cesses Knowles (1987) has observed that approximations obtained from Hotelling's result and

bounds derived via upcrossings are related.

Hotelling's statistical motivation and geometric problem are reviewed briefly in Section

2, which also establishes our basic notation. Sections 3 and 4 contain our derivations.

For a more extensive discussion of applications and several numerical examples, see Jo-

hansen and Johnstone (1985) and Knowles and Siegmund (1988).

2. The Problem.

Assume y, = Off(e) + ej (i = 1,2,..., n), where the f, are known functions depending

on an unknown parameter e and the ci are independent N(O, cr2) errors. In principle one can %I

also consider the more general model yi = (/3,x,) + i3p+jfi(e) + ei, where j3 and the xi are

p-dimensional vectors, but for our purposes the simpler one suffices.

The primary example given by Hotelling is fi(O) = cos(Mt, + w), where the t, are known

constants and 0 = (,w). A second example is the broken line regression fi(O) = (ti - 0) + .

See Davies (1987) for an interesting discussion of both these examples.

The likelihood ratio statistic for testing H0 : = 0 against H,: 3 0 is easily seen to be
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equivalent to

max { [Ef(G)yij 2 / [EfJ'(0)Ey2] }.

Letting f(0) = (fi(0),. .. ,f(O)) and y = (y,-. vn), we can write this as

max {(f(G),y) 2/[ IIf(0)3I 21111 2 ]}.

Putting -C() = f(1)1 II (G) II and U = y/ 11 y 11, we see that the rejection region of the

likelihood ratio test,

max(-y(O), U) 2 > W2 ,

is the union of the two tubes, one about y(G), the other about -y(G), of geodesic radius cos - to.

Here the tube about y(O) of geodesic radius W is the set of all points U E S'- - , the unit sphere

in BV , within geodesic distance W of the curve 'y(O). Under H0 , U is distributed uniformly

on S -1 , and hence the significance level of the likelihood ratio test is the normalized surface

area on S"-I of the union of the two tubes.

If -,u E S"', then (-y, u) = 1 -2 - 1 -y - U ]12. Hence the tube about y(G) of geodesic

radius W = cos- to can also be defined as the set of all points in S"- within Euclidean distance

[2(1 - to)] /2 of the curve. See Figure 1.

I•

"I v

/ I

Figure 1. Illustration of the relation

betwenp, w and d(7,U).
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A simpler geometric problem is to compute the volume of a tube about a curve in Eu-

clidean space. In this context Hotelling's result is very easy to state. If the curve is smooth,

dosed, and there is no self overlap in the tube (precise definitions are given below), the volume

of the tube is the product of the arc length of the curve and the cross sectional area of the tube.

If the curve is not dosed, the volume of two hemispherical caps must be added to account for

parts of the tube associated with endpoints of the curve.

We shall use the following notation. Given a closed interval I of real numbers, a I -

1R" is a piecewise regular (continuous and piecewise continuously differentiable with non-

vanishing derivative) curve of arc length jl. The Euclidean distance between two points

is d(z,y) =11 z - y 11, between a point and a set is d(z,B) = inf{II z - y 11: y E B}, and

between two sets is d(A, B) = sup {d(z, B): z E Al. The tube (in 1R') of radius R about a is

-R = {z: d(z,a(I)) < R). For any (measurable) A C S"-1 or A C 1V, V(A) = volume of A.

Also let fl, denote the volume of the n dimensional unit ball in JRn and Wn_ 1 the volume

(surface area) of Sn- 1, the unit sphere in 1nW(11n - rn/2 /r(n/2 + 1),w_- = 2,r/ 2/r(n/2)).

Finally, let a(t) = da(t)/dt.

Hotelling's result in B?' says that if a is twice continuously differentiable and there is no

self overlap in the tube then

V(aR) = IaflnIR"'- + 11,R n  
(2.1)

if the curve is not dosed and

V(aR)= alfln-IRn 1  (2.2)

if the curve is closed.

If a does not actually intersect itself, the condition of no self overlap is essentially the

condition that R be sufficiently small. Naiman (1986) has proved the elegant result that if a

is only assumed piecewise regular,

V(aR) < lfa!I,_R n- 1 + SZR n  (2.3)

for all R > 0.

3



I
Precise analogues of (2.1) and (2.3) for tubes about curves in S' - ' are given in Section

3.

REMARK. It is illuminating to consider the case where a is the unit circle in JR2 . One easily

verifies (2.2) for R : 1 and (2.3) for all R > 0. Also (2.3) is asymptotically sharp as R - oo.

We do not have a simple geometric explanation why the second term on the right hand side

of (2.3), which is obviously necessary when a is not closed, works efficiently and in complete

generality.

Anticipating applications to the examples presented above, we note that the broken line

regression requires Naiman's formulation because the curve -f(0) is only piecewise smooth.

Hotelling's problem of testing for a periodic component in a regression model poses other

difficulties because the parameter 0 = (p,w) is two-dimensional and hence the "curve" 7(9)

is a surface in S"1- . Weyl (1939) in a companion paper to Hotelling's calculates the volume

of a tube of small radius about an arbitrary closed differentiable manifold imbedded in !R'

or in S" -. However, his results must be modified for manifolds with boundary before they

can be applied to the problem at hand. See Knowles and Siegmund (1988) for an appropriate

modification and numerical examples. In Section 4 we show that the special structure of

Hotelling's problem allows one to use an upcrossing argument to give an upper bound for the

significance level of the likelihood ratio test.

3. The Hotelling-Naiman Theorem.

We begin with a technical lemma which summarizes several well known facts about the

uniform distribution on Sn-
1
.

LEMMA 3.1. Suppose U = (U,,...,U,,) is uniformly distributed on Sn-1.

(i) The distribution of U2 is Beta(1/2, (n - 1)/2); the probability density function of U, is

r(n/2) U
- = 1/2r[(n - 1)/2] (1- )("- 3 )/2  (IzN < 1

4



E(U1*) = r(n/2)/{f2r'/ 2 r[(n + 1)/211

(iii) For k < n, given U.,..., Uk, the conditional distribution of (Uk+,..., U,,) is uniform on

a sphere of dimension n - k - 1 and radius (1 -

(iv) The random variable U12 + U22 has a Beta(l, (n - 2)/2) distribution and is independent of

Ui/U2.

PROOF. All these results can be proved by means of the representation U = Zi/(Z2 + ... +

Z,) 1 / 2, where Z,...,Zn are independent, standard normal random variables, and Basu's

theorem (cf. Lehmann, 1986, p. 191). |

A simple picture underlies the differential inequalities approach to Naiman's inequality.

A sphere centered at one end of the curve is sliced along the plane perpendicular to the curve

at that endpoint. The hemisphere intersecting the curve is moved along the curve at unit

speed. The volume swept out is greatest when the curve is a geodesic, which leads to the

Hotelling-Naiman result.

It is easiest to begin with the version of Naiman's bound for tubes in Euclidean space.

THEOREM 3.1. Let a - I --+ R be a pieceuwise regular curve of length jai, and for R > 0 let

aa = { EJR" : d(x,a(I)) _ R}. Then V(aR) satisfies (2.3) for all R > 0.

PROOF. Without loss of generality we can assume a is parameterized by arc length, so I =

[0, Jae]. Let the image of a on a subinterval [a,b] of I be denoted by a[,b]. Let v(s) = V( 10.).

Clearly v(0) = 11,R", and to complete the proof it suffices to show that v is absolutely

continuous and i.(s) < tn_ Rn- for a.e. s.

We say a point z is R-close to af.,b] if x E ca-,b. Let 6 > 0. If a point is R-close to

a[O.+sl but not R-close to a[0,, it must be R-close to a[,+61 but not R-close to G(a,]" Hence

-~s 6) - ) - V(aR,.) (3.1)

5 4
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'a,

Recall that for two sets A and B, d(A, B) = infdEA SUPbEB 11 a - b 11, and observe that

d(A, B) < r implies AR C BR+n. Since a is right differentiable by assumption, the linear

approximation to a(s + t) for t > 0, namely fl(t) = a(s) + t&(s+) satisfies

= q/(6) = o(6) (3.2)

uniformly in s provided we exclude left neighborhoods of length 6 of discontinuity points of 6.

An explicit evaluation starting from (3.1) yields

0 < v(s + 6)- V(S)< V(#R0,,) - V( ,R

= &Q._,(R + 7)n-I + Zn,(R + v7)" -!QRn (3.3)

= . + _i(7(b)).

It follows that v is increasing and absolutely continuous, hence that u(s) exists a.e. and satisfies

the required bound. | a

REMARKS. (i) One can avoid the appeal to Lebesgue theory by showing directly that v(s) is

Lipschitz continuous with Lipschitz constant M = lt,_:R" - . Fix e > 0. Formula (3.3) and

the analogous inequality for 6 < 0 imply that about each s E I there is a neighborhood N,, open

relative to I, of points a' satisfying Iv(s')-i(s) < (M+e)Is'-s. The compactness of I provides

a finite subcover {Nj} from which it follows by chaining that v(s) is Lipschitz (M + e) on 1.

Since e > 0 is arbitrary, we recover (2.3) from the decomposition v(s) = v(0) + [v(s) - v(0)].

(ii) Lalley and Robbins (1987) have also exploited the idea of volume swept out by a moving

sphere in a differential games setting.

To see that equality holds in (2.3) when a is continuously differentiable, not closed, and ,"-

R is sufficiently small, we define the cross section C[a(s)] of the tube aR at the point a(s) as

the set of allx E a such that (x- a(s), &(s)) < 0, = 0, or > 0 according as s = 0,s E (0,1 a),

or a = IaI. Clearly
aR' =.UE[,1-C:(3I

and we say that no self overlap occurs in the tube if this union is disjoint. For a closed

curve, we require only that the union over s E (0, Jai) be disjoint. The critical radius is

6
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R= inf{R > 0 : self overlap occurs}. If the curve does not actually intersect itself, Rc > 0,

but its exact value may be difficult to determine analytically. Johansen and Johnstone (1985)

give an easily computed bivariate function whose minimum is R,.

THEOREM 3.2. If a I -- IIR is regular and closed (resp. not closed) then the equality (2.2)

(resp. (2.1)) holds for all R < Re.

PROOF. Assume first that a is not dosed. Again assume a is parameterized by arc length and

that R < R.. The key is to show that equality holds in (3.1): indeed if a point is R-close to

a[,,,+b but not to a[,,I, then it lies in UtE(.,,IQICJ[a(t)] but not a, ] and hence not in a R

If we combine equality in (3.1) with the inequality V(a,m+]) > V(i3[, ] ) and calculate

as in (3.3) we obtain in addition to (3.3) the inequality

v(s + b) - v(s) > 6f,.,R ' + 0(,7(b)).

The two inequalities show that 1&(s) = ft,,_ Rn- 1 for all . E [0, lal]. Combined with the initial

value v(0) = f/,R , this implies (2.1).

Finally, suppose that a is dosed. The idea is to split a into two non-closed curves and

apply what we have just proved. Choose a pair (so, to) maximizing the distance function

(8, t) _11 a(s) - a(t)11 2. By reparameterization, we may assume that s0 = 0. Since a(0) - a(to)

is orthogonal to both &(0) and &(to) it follows that 11 a(0) - a(to) 1> 2R. In turn, this implies

that neither of the tubes a0,to] and aR, suffers any self-overlap. Equality (2.1) applies to

each of these non-dosed curves: Since the two tubes intersect in precisely two disjoint balls,

equality (2.2) is established by subtracting the double counted portions. I

REMARK. It is interesting to note that the curvature of a plays no role in the preceding

argument. This contrasts with Hotelling's argument where the curvature appears and then is

found after an integration to have a coefficient of zero.

To discuss tubes in spheres, let S'-' be the unit sphere in R" and let 7 : I - S'-' be

a piecewise regular curve parameterized by arc length.

V - d ' d'.~.~- V,' -" w5- ~ 5- V 5-b~\s\7



I

Although it is appropriate to use geodesic distance to define tube radii, in order to adapt Vol

as directly as possible the preceding arguments we shall think of Sn- 1 imbedded in IR" and N

use Euclidean distance. The relation between geodesic distance v, w = cos Wp, and Euclidean -'I

distance R = [2(1 - w)1/2 is illustrated in Figure 1. The tube of radius R about -y in S' - ' is

R = {y E S' 1 : max(y,-Y(s))> cos o} = {y E S' 1 : d(y,-y(I)) < R}.

Now the "lidear continuation" of 7(s) is continuation along a geodesic, defined by /3(t) =

-y(8)cost + i(j+)sint. Since Euclidean distances on S"- 1 are inherited from b?", (3.1) and

(3.2) remain valid with this new definition of/3.

To complete the calculation analogous to (3.3), we must evaluate v(0) and V (/R0.) Let .

U = (U,,..., U,) be uniformly distributed on S - 1 and assume without loss of generality that '\

7(0) = (1, 0,..., 0). Then

V(O) =V {(u .. ,U) E S-' U, >w}

= Wn,-IPUI > W}

j(1 - "3)/2d
_ T2)(n

= ,-2 (1 -z ) " s/ d.T,

V/.Ru.

by Lemma 3.1. To compute v~o3s( ] observe that since ((s),7(s+)) = 0 we can without

loss of generality assume that -y(s) = (1,0,...,0) and i(s+) = (0,1,,...,0). Then 0(0,,1 is

a portion of the equator subtending an angle 6 at the origin. The portion of the tube which
does not involve the two caps, B = {u E Sn-  :i>3 uW - 2 0

has volume

V(B) = 4-'wn-IP{UjU2 + U22 w 2, U2/U2 < tan2 6},

which can be evaluated by Lemma 3.1. Hence F

1 )A = (2 ") -lw , ( l - w 2 )( n 2)/2 w n 2  j 
1 ( 1 - -x 2 )(n - 3 )/2 d :z .

If = R-,- q, the corresponding ti = 1-Rf 2 /2 = w-R /+ 772/2 = w+O(rq). A calculation ]
like (3.3) yields

0 < v(s + b) - v( ) < (2 r 1 w, (I - ,,,1n-2)/2 + o (77( )),

% _ N
%'% "**" " ' " ,%-- # " % "I "t.".% ", " " • "" """'o 

%
" " " 

% "
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from which follows ,(s) _5 (27r)- 1w,_1(1 - W2)(1- 2)/2 a.e. s since 7(b) = o(b). From this

inequality we obtain Naiman's bound for a tube in Sn- 1.

An argument analogous to that of Theorem 3.2 shows that there is equality in the

Hotelling-Naiman bound for tubes in Sn-1 whenever the curve is smooth and the tube ra-

dius is less than R,, the radius of first overlap. Details of the definition of R, together with a I
computational method for evaluating R. and some statistical examples are given in Johansen
and Johnstone (1985).

The Naiman-Hotelling result we have just derived is summarized in Theorem 3.3, which

is then proved by a different method. I
THEOREM 3.3. Let 7 [0, to] - S n- 1 be a regular curve. Let U be uniformly distributed on

S'- 1 and put Z(t) (7 (t), U). Then for any 0 < w < 1,

PJ max Z(t)>2 w}< :5L( ,2 x+(7r-1t~ 2(-) (3.4)
, °<'<t'o - 1-211

If no self overlap occurs in the tube 7[o-,where R = [2- )] 1, there is equality in (3.4).

The inequality (3.4) continues to hold if 7 is only assumed to be continuous and piecewise

regular.

PROOF. The argument uses the notion of an upcrossing of the level w, which plays an important

role in the theory of Gaussian processes. See Leadbetter, Lindgren, and Rootzen (1983, Chap-

ter 7) for the definition and basic properties. Let N.(to) denote the number of upcrossings of

the level u; by Z(t), 0 < t < to. Then

P{ max Z(t) >w} = P{Z(0) > w} + P{Z(0) < w,N..(to) > 1}
O<t<to

< P{Z(O) > w} + E{N,,(to)} (3.5)

The proof of (3.4) is completed by the evaluation of the right hand side of (3.5) given in

Lemma 3.1 and Lemma 3.2, which follows.

If there is no self overlap in S" - 1 in the tube of geodesic radius cos-l(w) about yf, then

no sample path Z(t), 0 < t < to, can leave and subsequently re-enter the tube. It follows that

P{Z(O) > w, N,,,(to) > 1} + P{N,(to) > 2} = 0, so equality holds in (3.5), hence also in (3.4).



Since a continuous, piecewise regular curve is the uniform limit of a sequence of regular

curves, the arc lengths of which also converge to that of the given curve, one sees from Fatou's

lemma that (3.4) continues to hold under the weaker condition of continuity and piecewise

regularity. I

LEMMA 3.2. If 7 is a regular curve in S n - 1 , the expected number of upcrossings N,(to) of the

level w by the process Z(t), 0 < t < to, is given by

EN.(to) = (2 )-I11(1 _ W2) (n- 2)/ 2.

PROOF. Assume without loss of generality that -f is parameterized by arc length s = s(t),

and let So = s(to). Then i(s) = du/ds E Sn- '. A standard argument (cf. Leadbetter,

Lindgren, and Rootzen, 1983, Chapter 7) shows that if as h --* 0 the joint density of Z(s) and

[Z(s + h) - Z(s)] /h satisfies certain regularity conditions discussed below, then

ENd(so) = f._ 1(w) lim 2- E E[z+(k2r)IZ(k/2n) = I
k=1

where f,,-, is the density function of Z(s) given in Lemma 3.1. Since (y(s),i(s)) = 0, for the

purpose of evaluating the conditional distribution of Z(s) = (i(s), U) given Z(s) = (y(s), U),

we can let U = (U 1,.. .,U,,) and by a rotation of the coordinate axes assume that y(s) =

(1,0,...,0) and i(s)= (0, 1,0,...,0). This means that

EN,,(so) = sof,-.i(w)E[U+IUi = w]. (3.6)

The conditional expectation in (3.6) is evaluated with the help of Lemma 3.1 (ii) and (iii).

To justify the preceding calculation it suffices that as h --+ 0 the joint density function

of Z(s) and [Z(s + h) - Z(s)] /h, say p,.,h(z, y), converge uniformly in s and x, at least for x

in a neighborhood of w, to the joint density of Z(s) and Z(s) (cf. Leadbetter, Lindgren, and

Rootzen, 1983, Theorem 7.2.4).

By a rotation of the coordinate axes so that 7(s) = (1,0,...,0) and Y(s) = (0, 1,0,...,o),

we see that the joint density function of Z(s) and [Z(s + h) - Z(s)] /h = Z(s) + ( [Z(s + h) -

t0



Z(s)]1h - Z(s)} has the form

P{Z(s) Ed:, [Z(a + i)- Z(.s)/h E dy}=P {U E d-, U2 +E4U, Ed (3.7) o
i>1 ;

where the ei - 0 uniformly in s as h - 0, because -f is regular.

Given U, = z, (U2 ,..., U,) are uniformly distributed on an n - 2 dimensional sphere of

radius (1 - :2)1/2 (cf. Lemma 3.1), and consequently the right hand side of (3.7) equals

f,"-I(x)dzP { 2 (1 + 6 2 ) + iiE (dy - C -)/(l _ X2)12>

where (0 2 ,..., Cf) is uniformly distributed on S "- 2 .This last probability can be written as

an integral with respect to the joint density of 02 and E,>3 ej 0j, and by a similar conditioning

argument it can be shown to converge uniformly in a and 1J1 bounded away from I to P{0 2 E

dy/(1 - X2)1/2) = P{(f(s), U) E dyg(Iy(s), U) = z}. The details are omitted.

REMARK. It is possible (although not particularly natural) to derive Theorems 3.1 and 3.2

by a (down) crossing argument. Since the tube cannot be defined by an inner product, the

appropriate process is Z(s) =11 U - a(s) 11, where U is uniformly distributed in a box large

enough to contain aR. .

4. Testing for an Harmonic.

As indicated in Section 2, Hotelling's problem of testing for an harmonic of undetermined

frequency and phase does not fall within the scope of the results of Section 3 because it involves

two nonlinear parameters. However, by writing

/3cos(Ati + w) = 01 cos4ti +,32 sin Ati,

where 1 = Ocosw,0-2 = -/3sinw, and observing that / = 0 if and only if t1 = 12 = 0, we

reduce the number of nonlinear parameters to one. The upshot is a likelihood ratio test with

a rejection region of the form

sup [Y1(1), U)2 + (12(0), U)2] 1/2 > W,

* -5% .%1~* 5



where -yi(0) E S"- 1 , (71 (0), 7 ()) = 0 for all 0, and under H0 : -= 1#2 = 0 U is uniformly

distributed on Sn-
I. Although in this form the rejection region does not have a simple geo-

metric interpretation, its one dimensional structure permits one to obtain an inequality based

on an upcrossings argument. The following theorem is similar to a result of Davies (1987),

who assumes that a 2 is known and therefore can modify known results about upcrossings of

X processes.

THEOREM 4.1. For i = 1,2 let -i : [0, to] - Sn -' be regular curves. Assume (-y(t), 7 2 (t)) = 0

for all t. Let U be uniformly distributed on S - I and put Z(t) = { ( 7 1 (t), U) 2 + (72 (t), U)2 1 1/2 .

Then for 0 < w < 1

p I Max Z(t) > W}I < (1_ -W 2 )(n- 2 )/ 2 (41o<t<to_ -,

r(n/2)w(1 - W2 )(n- 3 )/2  t 2
+ 2 3 /2[ [(11 )/ I1cosw + i2 sinw 1 2 -(i, Y2 )211/ 2 dwdt.

REMARKS. (i) Theorem 4.1 has been formulated with a view towards application to

Hotelling's problem of testing for an harmonic of undetermined frequency and phase. There

has been no attempt at generality. p

(ii) A special case of Knowles and Siegmund's (1988) formula for the volume of a tube about

a surface imbedded in S'n- shows that equality holds in (4.1) for all w sufficiently close to 1.

However, their method does not yield the inequality (4.1) for all w.

(iii) See Knowles and Siegmund (1988) for a numerical example related to Theorem 4.1.

PROOF OF THEOREM 4.1. The inequality (3.5) is again applicable. The probability density

function of Z(t) is (cf. Lemma 3.1)

f-2(x)= (n - 2)x(I - )(4.2)

and hence P{Z(t) > w} = (1 -w 2 )(n -2 )/2. The standard recipe for calculating EN,(to) yields -

EN.(to) = f( (w) o E[Z+(t)IZ(t) = w]dt. (4.3)

12



Since

after rotation of axes so that 71i =10...,0) and 72 =(1,,.,),the conditional expec-

tation in (4.3) equals

w_1E(EI[Ul(il,U) +U 2( 2 ,U)]+ I U,U 2 I U12+U22 = W2). (4.4)

Defining al and a2 by ii = (i1, 72)72 + Ctl and 72=(i2, 1/1)71 + a2, We See that a, and a 2

are orthogonal to both 71l and 72, and satisfy

II ai 112=11j111 -' 7)2, 12 1 2=171 (-i') 2, (01,C2) = (i 1,i 2). (4.5)

Since (71,72) = -(71,72), we easily obtain U1(i 1, U) + U2 (i 2 , U) = Ul(Cl, U) + U2 (a'2 , U),

and hence the inner conditional expectation in (4.4) equals

E{( [Ui (al, U) + U2 (a2, U)] + IU1 , U2 }

By decomposing a2 into a component along a, and a component orthogonal to al and then

rotating the coordinate axes while leaving the first two coordinate directions fixed, we see that

this conditional expectation equals

Ial U1 + a2U2 1 E(U3+IUi, U2) (4.6) '

Using (4.5) and Lemma 3.1 in (4.6) and substituting the result into (4.4), one can easily

complete the proof of the theorem.

13
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