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PROGRAM AND ACCOMPLISHMENTS

1 Backlund transformation and the Schwarzian
derivative

1.1 Introduction

This report is on work supported by the AFOSR for six moaths during the
period from January 1986 to June 1987. During this time we have developed
a method for systematically deriving the connection between finite and infinite
dimensional dynamical systems. That is, the periodic fixed points of Backlund
transformations are finite dimensional invariant manifolds of the infinite di-
mensional system. When the system is integrable the invariant flow is a finite
dimensional, integrable system. In earlier work supported by the AFOSR we
have showa how do find Backlund transformations through use of the Painlevé
property. The current set of results demonstrate that Backlund transforma-
tions can obtain nearly complete information about the system. For instance,
the relationships between systems is made evident. On the invariant finite di-
mensional manifold an infinite dimensional system with a hamiltonian structure
is described by commuting hamiltonian fiows in the space and time variables.
It is important to note that the reduction takes place in the original (phase
space) variables and not in the inverse scattering variables that are commonly
used to stndy integrable systems. In our opinion this allows & more intuitive
and direct approach to the finite dimensional reductions and their stability to
perturbation. Also, the method applies to systems with any number of indepen-
dent variables which possess a Backlund transformation. The system need not
be integrable. In this case, the reduction by fixed points need not be integrable
either. In general, the study of periodic fixed points makes the use of Backlund
transformations an effective procedure with important advantages over the use
of inverse scattering in classifying the behavior of integrable systems. The anal-
ysis is local {not tied to boundary data), algebraic (almost algorithic) , direct
and unifying.

1.2 Specific results

In reference (gl] we introduced the method of periodic fixed points and applied
this to the odd order fixed points of the Korteweg-de Vries equation. The dual-
hamiltonian formulation of the invariant manifold is found and the integrals are
obtained by an explicit constraction. The construction applies a linear operator
to the casimir integral to find a complete set of integrals in involution.
Reference [2] contains the results of the work supported by this grant. This
paper will appear in the Journal of Mathematical Physica in September or
October of 1987. Therein, we complete the discussion of the Korteweg-de Vries
system by showing that the even order fixed points are a completely integrable
system. We find that the KdV fixed points (modulo some technical stuff} are
equivalent to the Kac-Van Moerbeke systems and for even order contain the
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periodic Toda lattice systems. The periodic Toda lattices are known to deter-
mine the finite zone potentials of the AKNS hierarchy of equations. Thus, the AN
periodic fixed points unify the KdV and AKNS hierarchies of equations. :g:'.:n
For the periodic fixed points of the Boussinesq system we find bamiltonian 'y
invariant manifolds that are similar but inequivalent to the KdV systems. For in- :':a:{
stance the integrals are found by the operator method but the dual-hamiltonian e
formulation does not follow in the same manner as the KdV case. The sys-
tems are intrinsically more complicated and exhibit for different orders of fixed :,
point an interplay between constraints and casimir integrals which determines | ‘.:
the six possible subsequences of hamiltonian systems. These are a reflection i
of the even-odd parity of the casimir integrals and the triplet structure of the "I: !
constraints. We have found a complete set of integrals for these systems. X
By inspection of the KdV and Boussinesq systems we formulate a generic »
form of hamiltonian system that is conjectured to be completely integrable. A 0
subset of the integrals is found and it is shown how the structure through the :',:
various hierarchies of equations becomes increasingly complex. This complexity o:.
is caused by the presence of an increasing number of casimirs and constraints !
with each new sequence. '::Q'g
1.3 Examples ::,'s"
We illustrate some of the above remarks with an example. The periodic fixed ':':::
points of degree seven define the following systems. :::.;
(]
o The Korteweg-de Vries system. ; a
\J
€z + &itra = & — &t T

e The Boussinesq system.

st i1,z + &2 = &5 — &g

_ 'ijr_f

-

o The next system.

I <

rE

§rz + &ivra + Ej4az + €ise = &5 — Eigs

e j=123,..., (mod?7)

All three systems have a casimir integral of degree seven
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" and define hamiltonian systems of three degrees of freedom. N
" The KdV system has additional integrals of degree five, three and one. The Y
A Boussinesq system has integrals of degree four, two and one. The last system
: has integrals of degree three, two and one. These independent integrals are in .
" involution and the systems are completely integrable [2,3]. '
X Within the systems of this form the above represent the unique, nonequiva- ¢
::E lent forms. Some orbits of these are shown in the appendix. ::
i ;
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3 Appendix: Numerical orbits

Typical orbits for
1. Korteweg-de Vries system.

2. Boussinesq system.

3. Next system.

o ALY

The phase portraits show £, 2 with the initial conditions
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plotted for z € (0, 100).
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3.1 The Korteweg-de Vries orbit
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The Boussinesq orbit

N

-’

ARt

.f.'
’
5,

Ay




. " -— . [t . VI - "' 1‘\. p
SFESS o % i N o ..\.Hbtl_\.! IO A ) ! -ta a 102 'a 3P F falfa s B SSHNIS Talr el A %y % ol g A «

")

@
]
&
v
=)
o
@
w

A
d
=]

oy

=2
<
=)
o
L]

%
H
v

]

-3

)
=)

i

Rl

M

2

]

PP T, SIXEITIS S s e

e
L%

\ _’_\v'

BN
\\i‘.‘

-
\n'

’

Pl

£

e

T

o

»

AT AN CRSC CL  PL LN

o
AFTAY

O n
P MY

|I‘5

X stl.t’,u WY

-
\
9

ot
Hy
W)

)
)

'
]
(]
.

X

&

W)

v

o

L%

L

‘bat

W
0
i
. 14
0
¥
»
&
)
Y
t
I
W
¥
.l
¢
ﬂ‘
W
L)
N
¥
L)

]
4y
b
4



