
I -A196 273 CK-LOG SYSTEM CONVERSION (USER'S MANUAL AND USER 1/1
INTERFACE)(U) JAYCOR VIENNA VA 16 JUN 87

I NO8814-86-C-2352

UNCLASSIF lEO F/G 12/6 L

MEEE.'.'.



1.0 i~~L
____ 

3~ 22

I1.

MICROCOPY RESOLUTION TEST CHART

--44,

@4 5 0 0 5 0 0



DTI

USER'S ANA 4 USRI NEMC

SmTOTICEaTP-MU104q8VD
jkpivo f ubiczeeD,

Distibuton inliit4

1901N. Baureard tree

Suite 50

Aexadria Virinia2231-170

si it 6' 086NT

pubJIM



CK-LOG SYSTEM CONVERSION,

USER'S MANUAL & USER INTEFACE

UELECTE>
16 June 1987

Prepared by:

JAYCOR
1608 Spring ill Road

Vienna, VA 22180-2270

For:

Naval Center for Applied Research in Artificial Intelligence

Naval Research Laboratory
4555 Overlook Avenue, SW

Washington, DC 20375

In Response to:

Contract No. N00014-86-C-2352
Deliverable A003 & A004

D DITRIPt3ON STTMEN A'Approved for public releafte



1. RLIP to COMMONLISP Conversion

.. > The CK-LOG code written in TOPS-20 ELISP has been converted to Common
LISP, and is running on the LMI Lambda. This required both across-the-board syntactic
changes in functions as well as entire rewriting of functions. There was no need to
change any domain data, as the domain was rebuilt from scratch in Common LISP. The
following is an example:

ELISP code

*: (DE LOCALNP (CONTEXT)
(AND (EQ (NTHCHAR

(SETQ CONTEXT
(xseq (OR CONTEXT CONTEX!)))1)

(EQ (NTHCHAR CONTEX 2)' x))1

COMMON LISP code

(DEFUN LOCALXP (CONTEXT)
(AND (EQ (ELT (STRING (SETQ CONTEXT

(x-seq (OR CONTEXT CONTEXT!))))
0)
11)

(EQ (ELT (STRING CONTEXT) 1)' x

Because the code is now written in standardized Common LISP, it was transferred
to the Symbolics LISP machine with very little difficulty.

2. CK-LOG/Oplan-Consultant User Interface

-. A user interface/display for Oplan-Consultant was created. It uses both CK-LOG
routines and LMI windowing facilities. There are two categories of information that can
be displayed. the lattice of time events and the lattice of claw information.

Time events are markers in the CK-LOG domain (database of information, or
world state) which indicate that some change has occurred at a particular time. The
change could be an addition to the domain, a deletion, or a change .in a pre-existing con-
dition. CK-LOG is unique in that it associates a time with these changes, thereby allow- .r
ing for logical reasoning about the feasibility of assertions made to the domain.

The time lattice displays event numbers, representing events in time, in a bottom-
up tree. All events fall between BOTENUI, which is represented by EnO, and
TOPENXM, which is represented by Enl000000. An event can come before or after
another event, or just before or just after another event. When an event is before or
after another event, events can occur between them. Before and after relationships are .,tiI
represented by a single line connecting two event numbers. When an event is just before
or just after another event, no event can occur in between the two events. Just before
and just after relationships are represented by a double line connecting two event
numbers.

14 \1



-2-

Events can also be incomparable. This could occur when you know that, say, Eni
is after EnO, and En2 is after EnO. This statement contains no information about the
relationship between Enl and En2. They would be displayed on the lattice at the same
level, both connected to EnO, but not connected to each other.

Events can occur not only at relative times, but at absolute times as well. The
absolute time of BOTENUM] is defined at year 0, month 0, day 0, hour 0, minute 0,
and second 0. All other absolute times come after this. Events with absolute times can be
put before or after each other. They are never incomparable with each other, but can be
incomparable with events having no absolute time associated to them.

Events can define intervals, specifying start and stop times. Events can also be
added and subtracted from each other. This is useful when increasing or decreasing an
absolute time by a certain amount. These operations generate resultant times, which are
represented by event numbers in the lattice.

The display of the time lattice can be pruned to show only those events which occur
after a given event. In other words, the bottom of the tree need not be EnO, but can be
specified by the user.

The CK-LOG code that creates the time lattice was fully debugged and expanded in
the past year. The display of the time lattice was crucial to assisting in the debugging
process.

The second category of information that can be displayed is the class lattice. This
includes the clam hierarchy, dimensions defined on classes, instances of the clam, and
relations defined on the constants.

A clas is a type description for any object entered into the domain. Classes may
have subclasses, or specializations. These subclasses inherit all the properties of their
parent classes, or generalizations, in addition to having properties of their own. An
example of a clas is REGION, which could have the subclasses LAND-REGION,
WATER-REGION, and AIR-REGION. LAND-REGION could in turn have the subc-
lasses PENINSULA, COUNTRY, and RECTANGLE. RECTANGLE could also be a sub-
class of WATER-REGION, so it would inherit the properties of both LAND-REGION
and WATER-REGION

These properties are called dimensions. They define what kinds of operations are
acceptable for their associated classes, and they set limits on the number of classes that
can have this property. For example, (IS-ADJACENT-TO REGION REGION) indi-
cates that it's valid to describe one region as being adjacent to another. The maximum
number of regions that can have this property is infinite, and the minimum number is 0.
The dimension (STRONGLY-DEFENDS FORCE REGION) states that a force
strongly defends a region. The maximum number of regions a force can strongly defend
is infinite, while the minimum number is 0. When defining a dimension, its converse is
also created. In this case, the converse dimension would be (STRONGLY-
DEFENDED-BY REGION FORCE), stating that a region is strongly defended by a
force. The maximum number of forces a region can be strongly defended by is one, while
the minimum number is 0.

When an instance of a class, or constant, is created, it represents a real entity in
the domain, rather than just a type of entity. The class definition contains limits on the
number of instances that can be created. An example of an instance of the class LAND-

6K



-3-

REGIONis NORTH-PACIFIC. This is also an instance of the class IV4TER-
REGIONFR.

Relations are instantiations of dimensions, with constants plugged in instead of class
names. So, assuming that an instance of REGION is ATTU (this could actually be an
instance of ISLAVD, which is a subclass of REGION and thus inherits its dimensions),
and assuming that an instance of FORCE is WHITE, the assertion (STRONGLY-
DEFENDS WHITE ATTU) could be an acceptable relation in the domain.

The class lattice is represented by a top-down tree. By typing (menu), the user can
select the root node of the tree from a pop-up menu listing all of the immediate speciali-
zations of the starting root CLASS. After selecting the starting class, the user then selects
the specific information to be displayed. The choices are the following:
- dimensions: displays the dimensions defined on the chosen class

- inherited dimensions: displays the dimensions defined on the chosen class as well as
those inherited from its sncestors

- immediate instances: displays the instances created of the chosen class
- adopted instances: displays the instances created of the chosen class as well as those
created of its specializations

Class nodes in the lattice are represented by node numbers, such as N1, N2, etc. A
legend on the right of the screen indicates the class names which correspond to the node
numbers in the tree. When the mouse cursor moves over a node number, a box surrounds
the node. Wben the mouse button is pressed over a boxed node, information about that
node's clas is displayed according to the user's choice of displays. Dimensions are shown
at the bottom of the screen. Instances are contained in a pop-up window over the node.
The user can then select an instance name by clicking on it, and the relations defined on
that instance will appear at the bottom of the screen.

For a more direct approach, the user can type (display-class <classname>).
The lattice will show the class hierarchy with <classname> as the root, and at the
bottom of the screen will be a display of the dimensions and instances defined on the
class. By typing (display-constant <constant>), the same information will be displayed,
in addition to the relations defined on <constant>.

The CK-LOG code for creating classes, dimensions, instances, and relations, was
fairly functional when it was translated from the original ELISP. A good amount of
debugging was necessary, though, and the display of this information was valuable to the
process.

II? II



N 1-MOVEMENT
N RFERENCE

PI4V3ICAL-OBJECT N3REOION
N4aCODIENAME
NB.COE -WORD

N7..AOORESS

* NO.IEAOOUARTERS
N lO-COMNOASIONAL
N iI -OPPREFACE

N 2 N 0 N 9 N8 N12OOCUPMENT
N Is-RESOURCE
N 1 4-INSTALLATION
N 15-FORCE

3 ~ N l6MIUTARV-BASE
N 17-NAVAL-OFFICER4

N, N IS:TME-ZONE
N 6N 4N3N12N 11 6 7 Ne6 N ,A -A~EGJON

N20-LAND-REGION
ON~9 N 6N2 1-WATER-REGION

N0N9NO8N N22-MANGE
S ~N23:CU8E1 / N N s 7N 6N 6 N24.BA IC-AEION

N25-LOCATION
N26- VILLAGE

N29.PENINSULA
NOO:STATE

N N N3 I-OUNTRY
* N32-ISLANO

N33-CONTINENT
N34-CRL
N36.RECTANGLE

NO -POND
1417-RIVER
N30-LAKE
N39-SEA
N40-OCEAN
441-MAP

R EGION: N42-C4ART
(T Is .eesive-rangO REGION (FORCE (NIL 0) (NIL 0))) NA3-SB-ResouRCE
(T Is-offosfive-FCIn REGION (FORCE (NIL 0) (NIL 0))) N44 -SS1-INSTALLATION
I controffed-by REGION (FORCE (1 0) (NIL 0))) N46.AkTTAC4MENT
(T is-accessimiOt REGION (FORCE (NIL. 0) (NAIL 0))) N46-DETACH4MENT
(T adjacent-to REGION (REGION (NIL 0 Y I))) N47-FORICE-UNIT
T contains REGION (PHYSICAL-OSJECT (NIL 0) (NIL 0))) N48-TASK-FORCE
T center-of REGION (LOCATION (1 1) (1 1))) N49-TASK-GROUP
T is-strongly-deefided-by REGION (FORCE (NIL 0) (NIL 0))) 14:13EE
(Is-region REGION (I-CON(1 1) (1 1))) IN 53OON

I is-regitim REGION (BUILD-BASE (NIL 0) (1 1))) N62-6SN

I t ds~f REGION (REGION (NIL 0 ) (N L 0X1))) N6 -6S

(r PI4VSICAL-OBJECT (PI4VSICAL-O&JEC T-STATUS- TERMS (NIL 0) (NIL 0))) N65-ODO
(T location-of PHYSICAL-OBJECT (LOCATION (1 1) (NIL 0))) N5e-FF
(T Is-a-pIhy-objective PYIA-BET(P-CIN(I )(I ))N70
IT is-deftneed-by PHYSICAL-OBJECT (FORCE (NIL 0) (NIL 0))) NO-CLG
(T 13sttlcked-by PI4YSICAL-0BJECT (FORCE (NIL. 0) (NIL 0))) N611CG
(T Is-cand-phy-objective PHYSICAL-OBJECT (OPLAN (NIL 0) (NIL 0))) Nei-C
(T IsIn P44YSICAL-OBJECT (REGION (NIL 0) (NIL, 0))) Ne 1-COMMANDER
(T can-be-attacked-by PI4VBICAL-OSJECT (FORCE (NIL 0) (NI 0))) INe2--COMMANOER
(T can-be-diefeided-by P4YSICAL-OS.ECT (FORCE (NIL, 0) (NIL 0))) 0163-STAF-OFICER

Iblse Lattice I

0615,9 1:39:39WES USE: Run-

A Typical Display Produced by the User Interface



-4-

References

Srinivasan, C.V., "Advanced Planning Systems & Development of a Planning Consultant
for Naval Operational Planning'", Rutgers University, Department of Computer Science,
TR #DCS-TR-107, June 1986.
Srinivasan, C.V., "Problems, Challenges, and Opportunties in Naval Operational Plan-
ning ", Rutgers University, Department of Computer Science, TR #DCS-TR-187, May
1986.



.h_

04 0- 0 0 0 0 0 0 0 0 0 0 0 0 0 0'...


