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s REVISED IMPACT DYNAMIC DESIGN-ANALYSIS METHOD (RIDDAM) X
INTRODUCTION
o BACKGROUND
3 . :
2 DDAM :
A particular dynamic design-analysis method. DDAM, has been Y
) applied to selected equipment on Navy ships since 1960. The DDAM is )
"l based on measurements of the responses of shipboard equipment to \
- controlled tests against ships with underwater explosions. )
Measurements from a variety of ships showed that the responses of )
- equipment to the shock from an underwater-explosion attack could z
. be approximated fairly well bv considering only the location of the P
~' equipment on the ship, the weight of the equipment, and its natural )
frequency of vibration. Collected measurements were fitted to simple
\ formulas depending on location, weight, and frequency that could be
X used to check the ability of equipment tc resist shocks from l
E underwater explosions. Z
s The DDAM can be looked at in modern terms as an approximate '
Al method of conducting a substructure analvsis of a complex dvnamic Z
) system. In the DDAM all of the effort in the analvsis 1s directed
i toward one particular substructure. representing the equipment of :
Ny interest. The main structure, consisting of all the rest of the ship, is N
?_: taken as a standard structure whose properties do nol need 10 be N
~ speciallv determined. The experimental measurements of the shock
b that the ship can transmit to equipment of dilferent weights and -
e frequencies during an underwater-exploston attack take the place of by
o7 an analysis of the ship's structure X
o The effort of the analvst in applving the DDAM s limited to "9
" determining the frequencies and weights associated with one :
P parucular item of equipment. The formulas [rom the DDAM then g
:Z provide the analyst immediatelv with the responses that would be N
-;I expected at each weight and frequency if the equipment were "
':,-'. mounted at a partjcular location on a standard ship during an attack Y
‘ against the ship with an underwater explosion The anaivst performs.
) ———— *u
:: Manuscript approved November 13, 1987. N
" .
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in effect, a substructure analysis without having to analyze the main
structure or consider location of the equipment bevond the broad
categories given in the formulas.

1DDAM

Calculations for the DDAM are based on the assumption that the
shock from an underwater explosion produces a translation of the ship
in a single direction, with all of the supports for the equipment
moving identically. This is generally a good approximation for
compact equipment or for explosions that take place in the water
some distance from the ship.

An extension of the DDAM. referred to as [DDAM (Impact
DDAM) was developed 1n 1977 in response 1o a request for a dynamic
design-analysis method that could be applied to the case of the impact
of exercise fnonexploding) torpedoes against the hull of a submarine.
Here thé shock abplied 1o the several supports for a particular item of
equipment attached to the hull could vary greatly, from a severe
shock to a support directly 1n way of the impact to shocks of smaller
and smaller severity with increase in distance from the pomnt of
impact.

Determining the response of a structure 10 independent motions
of multiple supports involved onlv a minor elaboration of DDAM.
However, the weight of the structure had to be distributed among the
separate supports in a self-consistent fashion in order to allow the
simple formulas involving weight and frequencv to be applied. When
all of the supports move 1denticaily. as in DDAM. the ull weight reacts
against the common motion. but when the motions are diferent the
weight appears as a combination of direct and cross lterms among the
supports, adding appreciablv to the complexitv of the method.

REVISION OF THE IDDAM

RIDDAM

The present report describes a new version of the IDDAM
referred 1o here as RIDDAM (Revised IDDAM). The RIDDAM simplities

the method of calculaung the effective weight of a structure with
multiple supports.
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s Computer-aided analvsis '
e
" The original DDAM was developed at a time when structural-
‘_Z'.‘.‘ analysis computations were regularly done using pencil, paper, and a

;"‘ desk calculator. Its procedures have been carried over to the present

o [DDAM.

.:" First, turn on vour computer. [n the following. the equations for
o the [IDDAM have been written using the matrix notation that s
by common for computer-aided analysis, on the assumption that a

L o computer rather than a desk calculator will be used o analvze the
-.;:; structure. Appendix A gives some of the elements of matrix algebra
- for readers who are not entirelv familiar with matrix notation

o Appendix B lists a computer program that can be used to analvze

:::: simple structures on any computer that has a compiler or interpreter

;: for the BASIC computer language.

):_ The rewritten equations for the [DDAM produce a more compact
' notation and simpler calculations but make no change 1n its
N procedures. ‘
N Effective weight
,‘b
y The RIDDAM does make a subsiantial change in procedures bv
. the method it uses to determine effective weight, however.

'e: In both the DDAM and the IDDAM the weight of a normal mode

\'.-: of vibration is considered as reacting against supports onlv to the

1”
i

extent that the supports are driven by a shock input. The weight of a
mode thus varies with direction of the input in the DDAM and varies

_;2 with the distribution of shock severities among the supports in the '
- IDDAM. )
::: The method of determining the weight of a mode in the )
oy RIDDAM presumes that the mode reacts agamnst all of the supports X
| whenever it responds to a shock delivered through any of them The

'::'. effective modal weight in the RIDDAM is thus independent of the

'.",'-:Z particular shock that is applied. Calculations are not onlv simplified.

L but reduced to the more-rauonal basis of assuming that the structure

reacts against all ol its supports whenever it is forced to undergo

X .- accelerations from anv cause
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PROCEDURE

Mathematical mode

The equipment (substructurei is modeled as a linear, elastic,
and undamped siructure. Details of the model depend on
requirements of the computer program that is used.

Frequencies

Frequencies are found by doing a standard normal-mode
analysis of the model with fixed interfaces at the points of attachment
1o the ship.

Partjcipatjoq factors

The normal-mode analysis provides a set of factors showing
how the motion of each support participates in producing a response
of each of the normal modes.

Modal wejghts

The critical feature of both the DDAM and the IDDAM is the
assignment of an effective mass to each normal mode of vibration.
The effective mass is used as a measure of the reactive force that the
mode applies to the supports for the equipment when the equipment
1s accelerating in response to a shock. In the RIDDAM this effective
mass 1S obtained simplv bv adding mass-normalized participation
factors by absolute value and squaring the sum.

I]IDQLS.

As for the DDAM, the 'inputs’ for the IDDAM are formulas
showing the response of a normal mode of vibration as a function of
its weight, frequency, and location on board ship. In the DDAM all of
the supports are assumed to move together in one particular direction.
The IDDAM relaxes this assumption by providing different inputs for
different supports. The RIDDAM uses the same inputs as the [DDAM
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~ . L9
. Stresses and deformations N
- ~
I t
* Responses of the modes are combined to estimate forces,
+ stresses, strains, and deformations throughout the model of the
% equipment. The stresses and deformations at critical locations are ,‘
¥ compared with allowable values to assess the ability of the equipment f
’:.' to withstand a particular shock. Deformations produced by
» differences in the motions of redundant supports are included tn both
N the IDDAM and the RIDDAM. N
\‘ [
-. o)
o OUTLINE i
”, &
N ;
The report begins with a brief overview of the theoretical basis .
i for the normal-mode method used in the RIDDAM. It continues with a 3
e discussion of some of the practical compromises that are necessary (o '
keep its implementation simple, and a description of some of the b
b problems that the compromises generate. There are some worked-out o
) examples of analyses of simple structures bv the RIDDAM. The object
"; 1s to supply enough information so that an analyst can apply the "
:E RIDDAM 10 his own item of equipment by following the discussions 2
. ]
W and examples given here. )
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THEORY
MATHEMATICAL MODEL
alance of force

Most computer programs for dvnamic analvsis represent the
structure by a matrix equation of the form

Ma + Kx - Fu, (1)

where a(t) is a time-varving column vector of accelerations at selected
points (nodes) on the structure and x(t} is a column vector of
displacements. The symmetric matrices M and K represent the mass
and stiffness of the structure. The column vector u(t) consists of
displacements of the supports [or the structure; the rectangular matrix
of support stiffnesses F converts displacements of the supports nto
forces applied to the coordinates of the structure. The equation
balances these forces against the forces Ma and Kx from the mass and
stiffness of the structure.

The motions represented bv Equation | can be translations in
any direction or rotations about any axis, with elements of M, K. and F
being mass, mass moment of inertia, force per deflection, or moment
per angle. It is assumed that all the translations and rotations are
small, the stiffnesses are constant. and there is no damping in the
structure.

Discussions here are framed in tlerms of translations
(displacements and forces) with the understanding that rotational
motions (angles and moments) are also included.

Some methods of structural analvsis are based on other than
the force-balance equation. For example. the displacement-balance
equation

K''Ma +x - K!Fu 12
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. has been popular for use with a desk calculator. Here K-1 tthe inverse X
of the stiffness matrix) {'s a matrix of influence coefficients that shows :
L the displacements of all the points on the structure when unit force is !
applied to one of the points. The support influence matrix K-IF
f. represents the position of the structure produced by the motion of its o
;.‘ _ supports. The equation balances these equilibrium displacements )
;" against the dynamic displacements that include forces from the s
accelerations of the masses. .
! The displacement-balance equation is not well suited to ;
s.: computer-aided analyses because the matrix K-!M 1s full of nonzero -
p : elements and is not svmmetric. A computer needs less memorv and .
?.- can run faster using the matrices M and K. both of which are sparse :
' and symmetric. “
. Discussions here are in terms of the force-balance equation as
I~ the equation most common in computer programs for dvnamic
_\ structural analysis.
”n
4 NORMAL MODES OF VIBRATION
% g
- a aljzat -
< B
> Manyv computer programs begin a normal-mode analyvsis bv .
generating a square or rectanguiar matrix Q that makes
'::
N QTMQ - I (3
: -
& be a unit matrix. Normalizing on the mass matrix in tus way K
_ produces a simple and efficient analysis, and has been assumed in the
:;'; following discussion. A later paragraph will consider the alterations
N that are necessary when other methods of normalization are used X
'J;; :
" Diagonalizing the stiffness matrix :
hE The matrix Q can also be chosen to make
:'-::f QTKQ = P? '4) ‘
3 \
n
ot =
I "
D)
! 3 ;
. , :
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be a diagonal matrix. There are manv different numerical methods
for generating a Q that will sausfv Equations 3 and 4 simultaneously.
Which is best depends on the size of the problem, the distribution of
the nonzero elements (n M and K, and how many elements of Q are to
be calculated. Many programs offer a choice of methods and mav also
have ways of decreasing the sizes of the structural matrices to speed
up the calculation.

Normal-mode equations

If the matrix Q s used to transform the accelerations and
displacements bv

a=-Qb. 1-0Qy. (S}
and if Equation 1 1s premultiplied bv QT, there results
b-Ply - QTF u gl

Because P2 s diagonal. each element of the acceleration b(tl and
displacement y(t) on the left side represents an independent oscillator
with a [ixed-base angular frequencv given bv the square root of its
element of P2. The responses of the oscillators can be converted back
to motions of the structure bv Equation S.

Standard form

Equation 6 can be reduced to standard form for each oscillator
by wriling it as

b-Ply - P2RTy (71
where
RT - P-2QTF i &1

1S a rectangular matnix called the parucipation factor The matrix RT
converts the displacements utt! of the supports to a generalized
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e )
s displacement representing the motion of the base of each one of the
o normal-mode oscillators. The participation-factor matrix has as many
KX columns as there are separate supports for the structure, and as many
& rows as there are normal modes.

'-,'S Each of the normal modes in Equation 7 responds as if it were a
?‘; single oscillator supported from a base whose displacement is given ;
o ) by one ol.‘ the elements gf RTu(t). Tpat is, if y(t) is the dxsplacemgm )
o and b(t) is the acceleration of one of the normal modes, the equation
4 for its response is
¥
?-.: b+ P2y = P2rTy, (9] ‘
Ve 1

v where rT is the row from RT that corresponds o the elements y{t) and
i b(1), and P2 is the square of the angular frequency of the mode.
1a U h
LA, :
_\- MODAL MASS
. What the modal magss does

o,
: :_-5" A force is required to produce an acceleration of a real structure
:j that has mass. This force reacts against the supports for the structure )
and, in all practical cases where the supports are attached to some
other structure, produces motions of the supporting structure.

" The displacements uitl of the supports need to be considered as A
e consisting of two componentis. One component is the motion for lack of !

" motion) that would be expected if the structure were not in place. The
N other component is the motion produced by the reaction force as the

) structure accelerates.

:'.\', If the structure is analyzed into its normal modes, each normal

:'.: mode needs to be assigned a mass $o its reaction force can be

.;': determined.
‘WA
= A simple example of modal mass
.f‘\..

'_{: Suppose a single mass M s supported bv a set of parallel

springs having a total stftness K. The equaiion of motion can be
writlen

\. %
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Ma-Kx = Ty, 110)

where {T is a row vector whose elements are the stiffnesses of the
individual springs and u(t) is a column vector of the displacements at
the points where each spring is attached (0 some other structure.

Follow the method of analysis given in the preceding sections as
if the mass M and the stiffness K were matrices with just one row and
one cofumn. First define a modeshape Q that makes

OQMQ - 1. N
Notice that Q is the inverse square root of M. and that

0KQ = K/M = P2 1121
1s the square of the natural frequencv of the mass as supported by all

the springs.
Continue to find the participation [actor

el - p2QfT 113
and reduce it to
eT - (K/M)EM-12 (T - M 1T/K 141

Summing the elements of the participation-factor vector gives the
square root of M, and squaring the sum recovers M as the mass of the
single mode of the structure.

The same procedure can be applied 1o Equation 9 to determine
an effective mass for the mode whose acceleration 1s b(t). That is. add
the elements of the row from the participauon-factor matrix and
square the sum to find the mass that must be accelerated when the
structure responds with motions 1n one particular normal mode of
vibration.
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Avoiding an analysis of the supporting structure

The advance of the DDAM was in pointing out that the effect of
reaction forces on a particular structure can be found experimentally
by mounting substructures to it and measuring the responses of
substructures having different masses and frequencies. The results
from the tests can then be applied to predict the responses of modes
of other items mounted to the structure provided their masses and
frequencies are known. The supporting structure thus does not need
to be analyzed in order to estimate the shock response of items
attached to it. ‘

Some approximation is inherent in this assumption, especiallv if
responses measured for one particular structure are applied to
different but similar structures. Supporting structures can differ
because of other substructures mounted near the substructure of
interest, or even as a result of other modes of the substructure being
analyzed. However, the advantage of being able to esumate the
response of a particular item of equipment without having to make a
detailed analysis of the supporting ship's structure makes the method
attractive despite the potential errors.

S 3

Independent motj ultiple supports

2L

L

Squaring the sum of the elements in a row of the influence-
coefficient matrix, as shown in the simple example above, wil] give an
effective mass for the mode if all the reactions are in the same
direction. as thev were for the paralle! springs in the example. [f
some of the reactions are positive and some are negative. the squared
sum will give an effective mass producing a net force on all of the
supports taken together. This is the effective mass used in the DDAM.
where differences in the motions of different supports are not
considered.

If each point of support is taken as attached to a separate
structure, the reactions will produce independent motions of each
support in accordance with the direction and magnitude of each force.
In this case the effective mass acting against all the supports should
be determined by adding the participation factors by absolute value
fthat is, ignoring their directions) and then squaring the sum. Notice
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that with independent motions of multiple supports, the reactions
occur and the supports are moved whenever a mode is accelerated,
whether the acceleration was initiated by a shock delivered through a
particular support or not.

Using the square of the sum of the absolute values of the mass-
normalized participation factors as a measure of the mass of a normal
mode of vibration is the only substantial change that the RIDDAM
makes in the [DDAM. The [IDDAM distributed the mass of each mode
among the supports in accordance with the shock severity at each
support. In the RIDDAM each mode has a mass that is independent of
the shocks that are applied.

r

1 ] termini d a

In the original DDAM, the shock motion of a ship was considered
to be a rigid-body translation in a single direction. -All the supports
for an item of equipment underwent the same motion and the masses
of the modes were the effective masses reacting against that common
motion. In the RIDDAM each support is taken as attached to a
structure that can move independently of the other supports and the
effective mass of each mode reacts against all of the supports in
whatever direction applies at each support.

It is recognized. of course, that points located near one another
on the structure of a ship are neither tied rigidly together (DDAM) nor
completely independent (RIDDAM). The object of the procedures
adopted in each case is to provide a reasonable and simple method of
estimating the effects of the reaction forces without having to extend
the analysis into the details of the supporting structure.

Limitations

The example shown in Equations 10 to {4 was for a single mass
moving 1n a single direction. Later examples will show that the
procedure of adding influence coefficients bv absolute value and
squaring the sum gives an effective mass for 2 mode even when a
structural model includes translations in different directions or
rotations about different axes.
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The IDDAM inputs represent linear accelerations as a function
of effective mass and frequencv. Applied through different supports.
these accelerations can induce rotational and cross-axis responses of a
structure. However, no inputs are supplied to show how the response
of a structure to a rotation of one of its supports might depend on the
mass moment of inertia about that support.

The RIDDAM uses the inputs developed for the IDDAM. As a
result of the lack of rotational inputs, it is necessary that the structure
be modeled so that its response depends on translational inputs only.
This can be done in either of two ways: A support can be taken as
irrotational, so that moments applied to it do not cause any rotation.
Alternately, the joint at the support can be taken as pinned. so that
the structure can rotate freely about that point without producing any
rotation of the supporting structure.

INPUTS
Differential equations

The inputs to the analysis consist of predetermined solutions {0
the equations

Mc+ MP2z = MP2u, (1St

v,
; i’:
{-
J.
o,
. Py
»
Y .
i
o,
o,
L

where cft) is the acceleration and z{t) is the displacement of an
oscillator having mass M and frequency P Here ultt s the
displacement of the support for the oscillator. including both the
motion induced by an external force and the motion resulting from the
reaction of the mass of the oscillator against its support.

Because ol the reaction, the acceleration of the oscillator varies
with its mass as well as with its frequencvy [n the DDAM. all the
support motions are taken as identical, so ontv one tunction s needed
for the base motion utt), but in the [DDAM the supports can move

independently and there is a separate Equation 15 for the effect of
each support on each mode.
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the uts to the normal modes
The equation for the response of one of the normal modes.
b+ Py - PrTy (16

uses a row from the influence-coefficient matrix to take a linear
combination over the motions of all of the supports and uses that
combination to find the response of the mode. The process can he
reversed by calculating responses first and then taking the linear
combination to obtain

b =~ rlec, (171

where b(1) is the acceleration of the mode and ¢(M, P, t} is a column
vector of the solutions to Equation |5 for the mass and frequencv of
the mode and for the shock applied to each of the supports.

If the response accelerations c(M. P, 1) for each support are
already provided, Equation 17 will give the responses for the modes of
the substructure without the necessity ol solving any differential
equations.

ACCELERATIONS, FORCES, STRESSES, AND DEFORMATIONS

Accelerations

LR S I S B

Scale the matrix of modeshapes (o
A - QB (1R

where B(1) is a diagonal matrix of the accelerations bit} of the
individual modes and A'!l) 1s now. by Equation 5. a matrix whose
columns represent the accelerations of the coordinates of the structure
in each mode. [t is convenient at this paint to keep the responses in
the different modes separate because of approximations that wilj be
made [ater in combining responses in diuferent modes.
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I
\. ; Forces
e

‘ Multiply the matrix of accelerations by the mass matrix M to

obtain

;':;2

A G-MA (19)
{
'.' as a matrix whose columns represent the forces applied to the
' structural nodes by the accelerations of each mode.

7
o Stresse ations

The forces will produce time-varving stresses and deformations
, in the structure that are proportional to the combination of forces in
Py each mode. The stresses and deformations at critical points on the
R ' structure can be used, lo estimate the ability of the structure o
;."' survive the accelerations given by the inputs.
Pl X

WARPAGE

o
- Additional defor mations
:.

' The displacement-balance equation (Equation 2.
o
i r -K!Fu -KIMa (20

™
"" shows that the response x(t) of the structure depends on the motions
. of 1ts supports ull) as well as on 1ls acceleration ait) The preceding
N modal analysis accounts for the forces. stresses. and deformations
:.-; produced by acceleration only [t 1s necessary to supplement the
! acceleration-generated responses with a check of anv additional
N deformations tand resulting stresses) that mav be produced bv

differences in motions of individual supports.

Note that f the motions of the supports are all identical tas
assumed in the DDAMI there will a displacement response bul no
X addittonal deformation of the structure. There also 1s no warping
deformation if the supports are not redundant or (f the motions of the
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supports can be described by a -ombimnation of rigid-body N
displacements and rotations. S
ect of reaction forces .
%
The structure will resist warping deformation by generating b
static forces that tend to decrease the differences between the motions "'_.
of its supports. Again. as in the case of the effect of modal mass on :
acceleration responses, an estimate of the effect of the reaction forces "y
can be made in terms of an experimental or analytical decrease in N
warping with increasing static reactions of a structure against relatve ;'.:'
motions of a standard or typical supporting structure. ;"
SUMMARY ]
3
The preceding theory shows how the responses of substructures ";
can be estimated under standard conditions while mounted to a Y
particular supporting structure. The characteristics of the supporting )
structure are evaluated by determining the responses it can produce l::'_
in oscillators having diuferent masses and frequencies and the static =)
warpage it can produce in redundant supporis with  different N
reactions. N
The structure of interest is then analvzed into oscillators having
different masses and frequencies and into reactions against relative :
motions of 1ts supports. Direct comparison with the responses 3
determined for the supporting structure then allows responses of the -3
structure to be estimated BN
The theory has the potential for being exact f the supporting .
structure were identical from one substructure to the next. In i
application, however, supporting structures tend to be similar but not 2
identical. Then the accuracy of the method depends on how much Z:';
variety 1s allowed in supporting structures before a new set of 55
characteristics must be applied. "
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. APPLICATION ;
" by
e UNITS ;
N
by Convenience
N The [DDAM is based on user-friendly engineering units in which f
i~ Newton's law 1s satisfied for forces in pounds, masses in pounds, and ;
- accelerations 1n multiples of the acceleration of gravity. The ’
y acceleration of gravity is defined as 386 inches per second per second i
o (9 8044 meters per second per second with one inch equal to 0.06254
Y meters). A pound of force is then 4.447 Newtons. while a pound of 2
o mass 1s 0.4536 kilograms. h
; s -
" :
o The tabulated iputs tor the IDDAM give accelerations in X
i multuiples of the acceleration of gravitv (g as a funcuon of weignts in E
: pounds and {requencies in Hertz icvcles per second}. !
v Computer :'
[ : :_
:I Most computer programs will not allow forces and masses both p
‘~.' to be entered in pounds A common convention for using such h
- programs in the inch-pound-second svstem 1s Lo enter masses n units v
:: of 386 pounds. That 1s. weights in pounds are divided bv 386 1o :
obtain masses for entrv into the computer program. Forces can then .
R be entered in pounds. with stiffnesses in pounds per inch and elasuc Y
- moduls in pounds per square inch. There is no accepied name {or the
. unit of mass that weighs 380 pounds. although the term <shnch has "
N been suggested as a paraliel to the term 'sfug’ that is used !or the -
;:: similar unit 1n the foot-pound-second svstem )
Q 1
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“ SCALING OF MODESHAPES o
LY 3
r
N Arbitrary scaling :
: gy
; Some computer programs apply scale factors to the modeshapes ot
) to produce a modal matrix QS, where S is a diagonal matrix of scale jot.
¢ factors. One popular method of scaling makes the largest element in ;,' .
K each column of QS have the value unity, for example. The theory .
shown here was based on mass-normalized modeshapes in which ’:
# QTMQ - I was a unit matrix. Modifications are needed if modeshapes v
g have been scaled otherwise. o
: Ny
y Effect of the scafing
) |‘l
y With scaled modeshapes, 53'
N |
¥ (QSITM QS - 82 (21)
: is diagonal but not a unit matrix. Also,
- r d
l‘
- (QSITK QS - S2 P2 122) %
N ~
is diagonal but its elements are no longer the squares ol the natural -
frequencies. Using the scaled modeshapes in the transformations ;
Y ’
‘-‘ . (]
a - QSb. x -QSy (231 5
'y ‘b
converts the force-balance equation N
=3
, Ma -Kx =Fu (24} o
) :\
4 .:‘
q to -
. S2b - S2P2y - (QS)TFu 125) >
. as the analog of the normal-mode equations. f-_
o
¢
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A misinterpretation

N i
D The elements of S2 in Equation 25 have been referred to as f
v iR masses of the normal modes and even used as if they were masses in ,
::. some calcuiations. One popular computer program refers to them as )
. “generalized masses” in its printed output. The elements of S2 have ‘
N completely arbitrary positive vajues that depend only on what ;
A criterion was used to scale the modeshapes and have no physical
. significance.
“:-
:’_E Removing the scale factors

The scale factors contained in S must simply be removed step-
. by-step as the analysis proceeds. First, divide by the elements of S )
Y to obtain the squares of the naturai frequencies as /

#S.'h
2 P2 - $-2(S2P2) (26)
o Next, recognize two Kkinds of participation factors. The mass-
. normalized participation factor must be recovered from
4 |
o RT - S-1(P-2(QS)TFI (271
'.
N The responses of the scaled modes, however. must be found from the
-t equation '
o b - P2y = P2[P-252(QS)TF| u, (28)

o so that the participation factor for this operation must be obtained
(] f
N rom

48 RiT - P-2S5-2(QS)TF. €291

v Q ' t
‘;'.::; Notice that any computer program that displavs natural

Lo frequencies must have calculated a value of S2 in order to evaluate

o Equation 26, so it should not be necessarv to recalculate the scale

p 7o factors (Equation 21) in order to find what factors to remove.
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, Avoiding the scaling o
) )
! . o
Many computer programs begin a normal-mode analysis by .
choosing a modeshape matrix that reduces QTMQ to a unit matrix. v
. . o,
With such programs the mass-normalized modeshapes are N
fundamental and subsequent scaling may be an option that need not ;3
| be selected. ::
If only scaled modeshapes are available from a particular v
program, it may be more efficient to remove the scale factors directlv o
from the modeshapes by dividing each column of QS by its element of e
S and then proceeding in a mass-normalized fashion, rather than ;-;Z:
dividing repeatedlv by the scale {actors as results are being calculated N
]
SUPPRESSION OF TIME HISTORIES ‘.'_
Complication Py
C"J.
The theory indicates that a supporting structure must be .
characterized by a set of time-history accelerations ciM. P. 1) that f_:"
differ for each mass M and frequency P of oscillator that mav te _‘*
supported from it. Moreover, the time histories cannot be oscillations oYy
at the frequency P, because P is a /ired-base trequency. and the LS
essential feature of the supporting structure is that it cannot be '
considered to be a fixed base. o
In addiuion, the response of a multimode structure with b
multiple independent supports must be determined bv superposing :;«.
separate ume-historv responses for each mode and each support :’
: Such combinations were impractical for routine analvses when DDAM .
. was under development about 1960. o
Simplification T
L]
The IDDAM follows the lead established by the DDAM n i
suppressing the tume variation of the response acceleration. [t -
' characterizes supporting structures in terms of the peak (largest _‘_’.l
; absolute vajue) of acceleration that they can produce for an oscillator -
of mass M and fixed-base frequency P. )
:::
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Suppressing the time histories allows supporting structures to
be described by double-entry tables showing peak acceleration as a
function of mass and frequency. and eliminates the superposition of
time histories for multiple modes and multiple supports in
determining responses. [t leads 1o problems, however, in estimating
the combined effects of several modes whose individual responses are
given only in terms of their peak values.

TIME HISTORIES AND COMBINATION RULES
Ippe d lowe unds

It is clear that if the peak responses of several modes were all
to occur in the same direction al the same instant of time. the
combined response would be the sum of the individual peaks and that
this sum would be an upper bound for a time-historv combination of f
responses. A lower bound may also exist if one of the peak values 1s
large enough to dominate the combination even if all the other peaks
happened to occur simultaneous{v in the opposite direction. Either
occurrence is possible but unlikelv 1n a sum of time histories.

. Z

Simple and arbitrary rules can be defined to estimate a peak
from a combination of responses that are described only by their
individual peak values. Anv rule adopted ought to define a combined
peak falling in the range from the lower to the upper bound. The rule
should select a likely value in that range and should be adjusted to
avoid 100 much overconservatism or underconservatism.

The exact form of a combination rule is not important in areas l
of a structure where one mode predominates, so that the upper and
lower bounds do not differ greatly A combination of engineering
judgment, common sense. and experimental data are needed 1o |
determine combination rules when several modes have comparable ;
peak values so that there is a large spread between upper and lower
bounds. Under this condition the best rule would be one that avoids
obvious conditions of great overestimates or underestimates, rather

.y
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than a rule that attempts to recreate an actual combination of time- '.,
history responses. :2':'-
COMBINING PEAK RESPONSES FROM DIFFERENT SUPPORTS :\
o
Rule %
A suitable rule for estimating the peak acceleration b of one »
mode from a collection of peak response accelerations ¢ at different o
Supports is R
b = rlc, (301
»
where rT is the row for the mode from the participation-factor matrix. e
1SCy :\
. 2
Equation 30 is identical to Equation 17 that was used for :_v_
combining time histories. [t presumes that the peak responses of the :::j:
mode produced by the motions of each support all occur at the same -;Z;:
instant of time and in directions given by the signs of the elements of 7
the participation factor. Such a combination could actuallv occur ;"-n

under torpedo impact if the torpedo were to strike at the center of a
svmmetric array of supports, producing large responses to svmmetric _l','.-
modes of the structure and no response for antisvmmetric modes. g

Equation 30 also reconciles the RIDDAM with the DDAM bv
matching 1ts results with those of the DDAM for conditions 1n which all

of the supports would have identical motions in a single direction.
[n other cases the rule provides an estimated peak that falls *\-:l:
between the upper and lower bounds for the combination. '.-.-_‘ f
S

COMBINING PEAK RESPONSES FOR MODES OF DIFFERENT ;
FREQUENCIES f{;
. o5
The NRL Sum AV
AW
-\) .

An estimate of the peak stress or deformation from a »
combination of peak stresses or deformations from modes of different NG

'/';'f:'f-'f "{,5:’(]"':,\;":,"-”-/\{" .-\.r.'.-.;r-_ r.'r-'r"- _.- ..u 7. .‘-’N;.’
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frequencies is obtained by :2lecting the response having the largest
peak in absolute value and adding to it the square root of the sum of
the squares of the peak values of the other responses. This method of
combination is usually called the ARL Svm.

Estimated peaks obtained from the NRL Sum are always
positive numbers, but are to be interpreted as representing peaks that
may occur in either direction.

Warning

The NRL Sum is a nonlinear combination and must alwavs be
the last step in any calculauon. [n particular. if the NRL Sum 1s used
to estimate a peak acceleration or a peak force from a combination of
modal peaks, that estimated peak acceleration or force cannot be used
subsequently to find stresses or deformations.

Estimating peak stresses and deformations

Equations 18 and |9 were especiallv written in a form to keep
the responses of the structure in each of its modes separate down 1o
the point of calculating stresses and deformations. If B is a diagonal
matrix of the peak accelerations b in each mode. the peak
acceferations of the structure in each mode are obtained by scaling the
modeshape matrix according to

A‘OB 1511

The peak forces on the structure in each mode are given bv the
columns of

G-MA (521

The stresses and deformations for each mode are obtained bv solving
a separate static prohlem for the peak loads g that appear in each
column of the matrix of forces. The loads mav be positive or negative,
depending on the signs of the participation factors and the
modeshapes; these signs must be preserved through Equations 31 and
32.
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strain energy 0
3 e
‘ The strain energy associated with a peak response is o
proportional to the square of the strain multiplied by the elastic 'y
modulus of the material, or proportional to the square of the stress ‘
; divided by the elastic modulus. Summing the squares of the peak "
A responses thus gives a number proportional to the total energy a Ty
particular part of the structure must accept The square root of that \
sum represents the single deformation or stress that would account &
for the same energy. g\
The NRL Sum provides an estimated peak response that is
larger than the energy-equivalent peak, but not larger than the upper '.E:
bound o
=
N SELECTION RULES FOR THE NRL SUM ,.“‘.
. "
Peaks to be jgcjuded .
'
) Peaks from the following sources are combined into a single f'
. NRL Sum: =
, ] Stresses and deformations from normal operation of -:-‘.
equipment. N
2. The warping deformations and stresses from dilferences in L
motions of multiple supports )
5> Stresses and deformations from some butl not usually all of |
- the normal modes. The NRL sum overestimates the energies tor the 4 :
. modes that are included: this overestymate can be considered as an bat
allowance for additional modes of the structure thai were not included .
; in the sum. :j:
o
\ e
: Modes to be selected N
oA
| For simple structures that can be modeled with six or fewer :-_v
degrees ol freedom. the three modes of lowest frequency are usuailv N
sufficient for determining an NRL Sum. N
2. Structures of moderate complexity tup to 60 degrees of :3’
f[reedom) need only the lower-frequencv modes to be ncluded 1n the ;”
s
; =3
g
5
N,
H
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NRL Sum. About half as many modes as degrees of freedom is an
appropriate combination in most cases.

3. Complicated models with very many degrees of freedom (as
may be obtained from a finite-element model) may generate a "modal
thicket” in which many of the low-frequency modes represent
vibrations of lightweight parts of the structure. Here it may be better
to select modes in accordance with modal weight rather than
frequency. Modes having weights at least 2 percent of the weight of
the complete mode] are most likely to be significant.

Prestresses and bolted joints

Built-in stresses, including prestresses in bolts, are not included
in the NRL Sum of stresses. Bolted joints are expected to respond to
tensile 'loads by decreasing the clamping force rather than bv
stretching the bolts. Special checks need to be made, however. to be
sure than the clamping force is not exceeded by a peak load or that
shear stress from a transverse load does not combine with the tensile
stress in a bolt to produce an excessive value of maximum normal
stress.
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The procedures for applying the theory to practical calculations
with the RIDDAM can be summarized 1n eleven steps:

. Make a mathematical model of the structure.

2. Find the fixed-base normal modes and the mass-normalized
participation factors for the supports of the model.

3. Add the participation factors for each mode by absolute
value and square the sum (o find the effective mass of each mode.

4. Refer to tables and formulas showing peak accelerations as a
funcuion of the weight, frequency. and the location of an oscillator
relative to the point of 1mpact of a torpedo.

5. Combine the product of the participation factors and the
tabulated accelerations for each support to find the peak acceleration
of each mode.

6. Scale the modeshapes by the peak accelerations to find the
peak acceleration of each point on the structure in each mode.
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7. Multiply the peak accelerations of the structure by the mass
matrix to find peak forces in each mode.

&. Solve the static problem for each mode to find peak stresses
and deformations at critical parts of the structure.

9. Calculate stresses and deformations from warping of the
structure caused by different motions of redundant supports..

10. Use the NRL Sum to combine stresses and deformations
from operation, warping, and selected modes at critical points in the
structure.

11. Compare the estimated peak stresses and deformations
with allowable vajues.
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SPECIAL PROBLEMS .
DESIGN SPECTRA 1
. . - \
The accelerations c(M, P) representing the peak accelerations N
for oscillators having masses M and fixed-base frequencies P can be g
called a design specirum  Each point in a design spectrum 1S taken »
from a particular time-history response of a massive oscillator. That N
time history has been suppressed for simplicity.

The special problems described here arise from the suppression X

of the time histories associated with the design spectra.
REPEATED FREQUENCIES p
- ( s .
Suppose P
cy » Py2z) =P2u (351 v
and ’
c2 « Pp¢zp =P2u (34) )
A
are the responses of two oscilfators to a support motion utt! [f the I
. . [t
two frequencies are the same, P = P2 = P the time histories will be o
identical and the peak accelerations will occur simultaneouslyv :
As the accelerations are scaled bv participation factor and bv .
modeshape. and then used to calculate forces. stresses. and N
. . . . [
deformations. the peaks will remain coincident n tme but mav ’
represent responses of different magnitude occurring in either the 7
same or opposite directions. The combined peak is given by the 3
algebraic sum of the individual peak values -
v
)
h%
w
L%
o
N
N
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NRL Sum

if Modes | and 2 are the onlv two modes of the structure. the
NRL Sum will add their peak stresses and deformations bv absolute

~ value (absolute value of the larger plus square root of the square of

the smaller). This is an appropriate combination if both responses are
in the same direction, but it may be a very large overestimate if the
modes actually produce responses 1n the opposite directions.

If the structure has more than two modes, either or both of
Modes | and 2 mayv be part of the square root of the sum of the
squares in the NRL Sum. Here their combined response will be
underestimated i thev respond in the same direction. and wiil be
overestimated if theyv respond in opposite directions.

Specijal rule

Modes with 1dentical frequencies should have their peak
responses added algebraically rather than bv NRL Sum.

CLOSELY-SPACED MODES
Dul s |
Formal solutions for Equations 33 and 34 can be written

l

c] = P12 J vit) cosiPitt - 1) dt i3S
0
and
l
c2 = P2 J vit i coslPait - (] dt L6
0
where
28
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1s the velocity of the support.
-history combjnati

When the two accelerations are scaled by participation factor.
modeshape, mass. and stress factor they will produce a contribution

t

sit) = Dy [ v(t1 cosPitt - )] dt
0

4

- Dz [ vit) coslPalt - 0)f dt
0

to a particular stress, where Dy and D; are combinations of all the
relevant factors for the two modes.

[f the frequencies are Py = P - Eand Py - P - E. with an average
frequency P and a difference of 2E. the stress can be written

t

stt) = (D - Do) f vit ) cos(Ett-t] cosfPri-t 1] gt
0

t
- 1Dy - D J vit) sinfEtt-t 1 sin[Pte-t] du
0

Approximatjon for closely-spaced frequencies

[f Et1s less than W/2, the factors cos{Eft-1 ] and sin(Et ¢ !] can
be treated as positive-valued windows applied to the velocity vig !
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sin(Et) g 1 - cos(Et)

with average values Et and ——p "~ over the range of

integration from O to t. The averages can be considered as weighting
factors applied to the velocity of the support. The first average begins
with a value of unity at the beginning of the response and decreases
with increasing time. while the second begins at zero and increases.

_—

An Et of 11/4 produces an average of 0.900 for the first window
and an average of 0.373 for the second. For frequency differences and
times up to this limit the stress mav be approximated bv

L

sit) = (Dy+ D2t f vit 1 cos{Pt-t ] dt, 140
0

1o reasonable accuracy That is. both time histories approiimate the
response of an oscilator at the average frequency P and therr
combined stress 1s obtained from an algebraic sum of the factors D
and D7, as was the case for identical frequencies.

If the frequency duference 2E 1s S Hertz. for example. Equation
40 can be used to estimate combined peak stresses for umes up to SO
milliseconds alter a transient motion of the support begins

Convenience 1s served U the responses of modes having
identical or closelv-spaced frequencies are calculated independentiv in
terms of their weights and frequencies Then when peak responses
are 10 be combined tor stresses ur deformations peaks lor pairs or
clusters of modes having neariv the same frequency should be
combined bv aigebraic sum (¢ produce 3 single response That
response should be treated as the response of a single mode and
combined with cther responses by *he NRL Sum

Measurements and analvses of the responses of oscillators to
torpedo impact against a submarine regularlv show that peak
responses occur less than Su miliiseconds afwer the initiai impact The
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peak stresses and deformations from pairs or clusters of modes that

fall within a S-Hertz range can then be combined algebraicaily rather
than by NRL Sum.

RULES OF THUMB

Suppression of the time histories is seen to require a number of
fairly-arbitrary rules concerning selection of modes and methods of
estimating peak values from combinations of responses.

The combination rules suggested here appear to be based on
rational criteria. The rules were chosen mainiv to avoid obviousiv-
inappropriate resuits and are subject to revision and renterpretation
in light of statistical results from experimental data.
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EXAMPLES

A TEXTBOOK EXAMPLE
Structure

Rigid masses weighing 325 pounds and 200 pounds are
supported by springs having stiffnesses of 10,000 and 30,000 pounds
per inch, as shown in Figure 1. Each mass is prevented from rotating
by a set of roller guides that are not considered part of the supporting
structure. The masses are connected bv a thin and massless beam 30
inches long. The cross-section of the beam has an area moment of
inertia of 1.29 int and the beam 1s made of a material with elastc
modulus 30 million pounds per square inch.

The structure is devised to illustrate the calculations; it is not
intended to represent anything realistic.

Mass matrix

For coordinates xj{t) and x2it) representing displacements of
the masses, the mass matrix is
ra -
r32s 0’ ‘
- (
M L0 200! pounds. (411

Suffaess matrix

Moving x; by one inch and holding all the other coordinates
fixed requires a force of 10.000 pounds to stretch the spring and an
additional force of

12 (30E6}) 1.25
(3(3(”5 =S = 16,666.67 pounds 1421

to bend the beam as a double cantifever An equal and opposite force
must be apphed to x2 o keep the other end ol the beam from moving

a‘_.r.z..r_.-_.-_-',.r L S RS S e L L AT S R S L ey TRy
» - .

I s e *.\\ S

v RP

'3

(Ll X AR o g o g v w

P

L N ]

. reE OO o

e 2 B I )

s



FRAAS

WITJ'I’. l’"‘

J'n'f:f,'

g Seee,
foud - -

PR A
3\t

re

P LR

I N ¢ "."
e

¥
»

‘t‘l .\.' ;

30,000

2 Q

T Pl ot o
"

“r %
.

Fl

rigure 1. Textbook structure. Ri1g1d masses are iabe
in pounds. Massless springs are labeled 1n pouncs ge
inch. The masses are connected by & massless thin beam
30 1nches long with area moment 1 2S5 inches 0 “ne
fourth power and elastic modulus 30 million counds per
square inch. The masses ara on frictioniess guices that
prevent them from rotating
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Here and in the following the usual computer notation of E6 is used.
for example, to indicate multiplication by 10 to the 6th power.

Moving x2 while the other coordinates are held fixed stretches
its spring and also bends the beam. The forces from unit displacement
of one coordinate at a time can be assembled into the stiffness matrix

" 2666667 16666677 N
" L-16666.67 46666.67 | Pounds per inch. 43)

Support stiffness

A one-inch displacement of uj (with evervthing else held fixed!
will put a force of 10,000 pounds onto x;. A similar displacement of

u2 will put a force of 30,000 pounds onto x2. The support-stiffness
matrix becomes

710000 0° . )
= 0 30000 pounds per inch. (441

Equatjon of motion

The three matrices M. K, and F allow the structure 1o be
described by the force-balance equation Ma - Kx - Fu. shown earlier
as Equation | in the section on Theory.”

Diagonalizing the matrices

The next step in the analvsis i1s to find 2 matrix Q that will make
QTMQ be a unit matrix and also make QTKQ be a diagonal matrix. as
shown in Equations 3 and 4 This can be done most easiiy by using an
avaijlable computer program. such as in the example shown as Case |

o s,

in Appendix B. For the simple structure here. the modeshape matrix Q ':,_\
can be calculated by hand. using the formula listed in Line 4120 of the :‘5
computer program to normalize on the masses and the [ormulas \',"
beginning on Line 5610 to diagonalize the stiffnesses. The modeshape E;:
matrix g
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T0.05198516  -0.01935114" A :
T 1002466795 006626833, 4! y
isfrom a | 0-digit pocket calculator. A direct check shows that it X
reduces ’
1.000 0.000"
T™™MO - | . |
Q"MQ - p000 1000 = ! (46)
1o the unit matrix and )
"S7717 00007 f
QTKQ - “4000 257668. = P* 1471
L5
to a diagonal matrix. )
The matrix Q can be used to represent the accelerations and '
displacements of the structure in terms of normal-mode coordinates
by a - Qb and x - Qy. as shown in Equation S.
Participation factor \
The participation-factor matrix is o
" 9007 12821 3
20TF - - C . RT ‘ 4
PEQF - o751 7716 © R 48! :
The participation factor lets the equation for the normal-mode )
coordinates be wrilten n the standard form b - P2y - PZRTu :
(Equation 7). Each element of RTu is the effective displacement of the N
base of one of the normal-mode oscillators. ~
Moda) weights
Add along the rows of the participation-factor matrix bv :
absolute value and square the result to obtain :
(9.007 - 12.821)2 - 476 pounds 1491
p
35
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for Mode | and

Y
e

(0751 + 771612 = 72 pounds (S0}

IRt 2N
S

for Mode 2. This is the new procedure of the RIDDAM, as shown by
example in Equation 4.

A

5
»

Mode frequencies

When masses are in pounds and stiffnesses in pounds per inch,
frequencies are given by the formulas

o LA RR AR |
.;.,(?ﬁ?'\ '.'J-’l’-’?

1 N
55 V386 (57717) - 238 Hertz ST

! and

, | ,_
397 386 (257.668) = 50.2 Hertz 52, <

/ for Modes | and 2. The normal-mode equations for motionjess

supports. b - P2y = 0, identifv the diagonal elements of PZ as squares ]
of the fixed-base natural frequencies of the modes. The factor of 386 7\-5'
- is the acceleration of gravity in inches per second per second. as l;-"
’ needed in the inch-pound-second system when pounds are used for iy
both masses and forces. ?;.
’

uts

The weights and frequencies of the modes serve as entr:ies Lo
tables showing the peak accelerations of the modes. As an example.
suppose that the tables specify a peak acceleration of 26 times the
acceleration of gravity g for a weight of 476 pounds and a frequencv
of 238 Hertz. and an acceleration of 119 g for 72 pounds at 50 2 Hertz
These are values at the point of impact for a torpedo Al a paint on
the hull 30 inches awav from the point of impact the response

LREN

SRR LR
Anhhiikl

)
. accelerations would be 1! 70 g and 5355 g These values represent .
) peak accelerations of oscillators of mass M and fixed-base lrequency P .
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Y
ps measured during tests with torpedo impacts or calculated from
L) . . , . N .

RA Equation 15 during a computer simulation of an impact.

D Peak accelerations of the modes

2]

~
-:':: If the torpedo impacts in way of uj, with u2 located 30 inches
A away from the impact, the peak accelerations of the modes are
) obtained by multiplying the tabulated responses by the participation
25 factors, or
a :
i~

--'.:; 9.007 (26) + 12.821 (11.70) = 384.19¢g (53)
w‘?v

- for Mode | and

% -0.751 (119)+ 7716 (53.55) = 323.82¢ (54)
‘::: - )

O for Mode 2.

. Equations 53 and 54 correspond to applving the participation
-_.;: factors to the predetermined responses, rather than applving the
(- participation factors 1o the support motions and then calculating the
‘__fo: responses. The two procedures give equivaient results for time-
2 history calculations, as explained in Equations 16 and 17. The same
combination method is recommended for peak values in Equation 30 if
e the time histories have been suppressed.
x4

“~

':: Peak accelerations of the rasses

Scale the shape for the first mode (the first column of Q) bv
-7 584.19 and the shape for the second mode by 323.82 10 obtain
L~
1

o "1997 -627°

- = | B £55)

L 948 21.45!

.‘}_'. as the peak accelerations of the masses in each mode. The first
- column of A shows the peak acceierations of x; and x2 in Mode | and
e the second column shows their peak responses in Mode 2. Peak
. accelerations are shown separately for each mode, as recommended 1n
A Equation 31.
3
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b j
:: Forces :
" X
Multiply the masses (pounds) and the acceierations tg) to find ;
Py
‘ o
r6490 -2038] . ;
) = | - 3
¢ MA -i1896 4290 Pounds (56) _
.! .
y as the peak forces that were applied to each mass in each mode. ’
o t s and deformatjons

Each mode is treated as a static problem to check for stresses

a and deformations at critical points on the structure. Suppose that the

P critical points are the bending moments at each end of the beam and

i~ the tensile loads applied to bolts restraining the springs A %
’u redundant-structure analysis provides deflections \
» 70.3460 -0.02431 , "
¥ X' - 01642 00832 tnches 1571 :
R 7 f
’,h for each mass in each mode when the forces of Equation 56 are ‘
‘ applied as static forces to the structure. The deflections produce .
b forces of 3460 pounds at uj in Mode | and -243 pounds in Mode 2. At N
2 uz the torces are 4926 pounds in Mode | and 2496 pounds in Mode 2 :
¥ :
L Warping ~
‘3 Relative motions between the supports will distort the structure

H through its redundant supports. Suppose. for exampie. that the :
s warping formulas specify a displacement of 0 200 inch at the impact .
" point and a displacement of 0090 inch a distance of 30 inches from R
’. the 1mpact point. A redundant-structure analvsis shows that x| will 2
~.;j have an equilibrium displacement of 01451 inch and x2 a N
displacement of 0 1090 inch under these support displacements The N
:I'- resulting tensions in the hold-down bolts are -569 pounds a. Support N
- I and an equal and opposite 569 pounds at Support 2. .
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NRL Su

Loads on the supports are to be combined bv NRL Sum, subject
to the selection rules described earlier under "Application.” The forces
from warping and two modes {assuming no operating stresses)
combine by the rule of the largest plus square root of the sum of the
squares in the form

3460 + \(-243)2 + (-569)2 = 4079 pounds (58)

as an estimate of the peak force applied to the bolts at uy, and

4926 - \(2496)2 + (56912 - 7486 pounds

for the bolts at uy.
Continuing

The peak forces of Equations S8 and 59 are interpreted as
applying in either direction to the hold-down bolts. The bolts need to
be tight enough so that the peak force, applied in tensicn., will not
cause the joint to separate. Simitar calculations allow peak moments
at the ends of the beam to be estimated for comparison with allowable
moments.

The calculations need to be repeated for a case in which a
torpedo impacts in wav of u2 rather than u;. The most severe
conditions can be taken as those in which one of the supports for an
item 1s directly inboard of the point of impact. Then a check of
impacts at each support is sufficient to evaluate the ability of the
equipment to withstand an impact at any potnt near it.
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AN EXAMPLE WITH CROSS-AXIS RESPONSE

Structure

." -" -‘. l&.l...'l.}ﬁ.:.,

A point mass 1S supported by two equal springs battered at
angles H above and below the horizontal. as shown in Figure 2. The
mass can move both horizontally (x;) and verticatlv tx2! 1n response to
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Figure 2. Structure with cross-axis response. Mass mis
supported by two springs of stiffness k. Each spring

. siopes at an angle H from the horizontal The dots

. represent pinned joints
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the horizontal motions of its two supports. This is another textbook
example not intended to represent a realistic structure.

In this and in the following two examples the analysis is
presented in a form parallel to that used for the first example, but
without back-references to the sections of the report on theory or
application. Please refer to corresponding sections of the lirst example
for appropriate references.
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Matrices

The mass matrix.

(607

=

represents motion of the mass in either of the two orthogonal
directions. The stiffness matrix

ey 3{" 3 l,‘:r'i J > :,\('y{‘. \.;r

5

(2 k cosé(Hi 0 1
K-1" 9 2 k sin2(H). (61

‘?_;:' Py

By

includes factors for the components of force and deflection in each
spring produced bv small displacements of the mass in each direction.
The support-stiffness matrix

i
»
)
o

LY

I\'-‘f 4

...
[ 3
A

Tk cos2(H) k cose(Hj : o)
® | -k siniH) costH' & sintH) costH!. <

;'.'

F

C . -

@

shows the horizontal and vertical force per displacement on the mass
produced by small horizental displacements of each support.
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normalizes the mass matrix 10 a unit matrix, gives a [requencv-
squared matrix

"2 (k/m} cos2(H) 0 )
t :
) QTKQ - - 0 2 ik/mi sin2(H). 641

and a participation-factor matrix

: p2glp .. w2 dw2 65)
- L -(ym/2) cotiH) t,;m/2) cotiHi
Modal weights
’I
)
. Mode | thorizontal motion) has effective mass m. as obtamned

from the squared sum of the first row of the partucipauon-factor
{ matrix. Mode 2 (vertical motion! has elfective mass m cotZiH: with
the square of the cotangent representing the effect of the lever arms

¥ that act to magnify or diminish the effects of a vertical force on ihe
:; horizontally-directed supports and also act to magnifv or diminish the
y motions of the mass.
: Warping
}
\ Relative horizontal motions between the two supports will
N simply displace the mass in the vertcai direction without producing
S any stresses or deformations (The joints at the supports are pinnec -
., [nterpretation
. The simple example here shows that the matrix formalism 1s
. not limited to unmdirectional responses [l cross-axis responses are
. expected from unequal motions of supports. thev should be included
A in the model of the structure. and can be treated on the same basis as
on-axis responses.
~
- 42
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AN EXAMPLE WITH ROTATIONAL INERTIA

Structure

A steel plate is bridged between the flanges of two frames 10
carry a weight made from a stack of steel plates, as shown in Figure 3
Four structures like this were built, installed in hulls. and tested with
torpedo 1mpacts. The one analyzed here was tested 1n [985 on the
SITV (Submarine Impact Test Vehicle) There 1t served as simulated
equipment for research purposes.

Qunci

The structure was especiallv designed 1o be svmmetric and
nonredundant with two simple modes of vibration [n one mode the
weight would transfate as a rigid bodv and bend the plate as a beam
The stiffness of the piate 135 inches iong, 22 inches wide, and | inch
thick. with equai loads 6.5 inches from each endi can be obtained {rom
handbook formulas as

12 (28E6) 22 (1)3/12

\ ~ - = ;'q-f.z W
(6512 [3(33) - 4(65)] 99724 pounds per inch FO6G

The stack of plates (859 pounds! and the center 20 inches of the
flexible plate (124 pounds! both participate n the bouncing motien,
while the 6.5 inches at each end of the flexible plate connect {rom the
fixed support to the moving load i<av one-thurd of 8] poundst A
rough estimate of the totai mass in the bouncing mode 18 thus (014
pounds The {requency should be

| . 386 (199724

n (010 = 44 Heriz 1A

Analysis of measurements from the SITV test showed that the
bouncing mode had a fixed-base frequency of 44 Hertz
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Figure 3 Structure with rotational trnert:a
(8 stack of steel plates) i3 bolted to &

bridges between the flanges of two successty
stiffeners af a submarine hull. Half-round
illustrated) provided nearly moment-fra

the ends of the flexible plate and at the Conn
between the plate and the weight

AL

LA L L

.‘l‘." .. . -" ) -"- 2

P IR

s av AN




R
.
Mo ,
N |
‘ Rocking
'. If the weight rotates about an axis through the center of the
:i plate and parallel to its ends, each half of the plate will -bend as a
~ simply-supported beam with a point load. Handbook formulas give
'. the stiffness of each half as
v 3 (28E6) {22 (1)3/12] 165 , ‘
o = = {68
3,; (652 (165 - 65)2 601,420 pounds per inch. (681
)
2 Two such loads are each 10 inches rom the center of the plate. and a
small rotation produces deflections of 10 inches per radian. The
N angular stffness 1s thus 120.284 million pound-inches per radian. ;
: The mass moment of inertia for rotations about an axis through :
‘;‘.: the center of the plate can be obtained by starting with the moment 3
2 about the center of gravity of the weight (a block 25.5 bv 7 by 17
- inches), ,
: (2552 « (7)2 |
. 859 2.2 = 50,055 pound-in2 (691
, 12
W
»

Transfer to a parallel axis through the middle plane of the plate (9
inches from the center of gravity of the weight) by

T‘ Iy
.{‘.(_' A SN

859 (92 - 21.475 pound-in2, (701

4

and add an estimate for the center part of the plate.

\ 1
SR

(2012 - {112

124 [2

= 4,142 pound-inZ, (711

lo obtain a total moment of inertia of 75,682 pound-inZ. Frequency is
then

]
. "-."J\ )

I.I
LY B

I . /386 (120.284E6) ,
o 75682 = 125 Hertz (721

*
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Data from the test showed a fixed-base frequencv of [ 37 Heriz for the
rocking mode

Matrices
The mass matrix,

r1010 0 O .
L0 75682 173

contains a mass in pounds and a mass moment of nerta in pound-
inches squared. The stiffness matrix,

199724 0o |
K= 0 120284E6. 174)

has elements in pounds per inch and in pound-inches per radian. The
support-stiffness matrix

r 99862 99862

.3.645E6 -3.64SEG. (73)

shows that a one-inch displacement of both supports would apply a
force of 199,724 pounds to the translauonal coordinate.
Displacements of +1 and -1 inch would cause a rotation of 1/165
radians and apply a2 moment of 120.284E6/16.5 pound-inches to the
rotational coordinate.

Normal modes
The modeshape matrix

"31 46584E-3 0o -
Q- 0 363499E-3. '76)

normalizes the mass matrix to a unit matrix and gives a {requency-
squared matrix

46
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that gives the frequencies of 44 and 125 Hertz.

Participation factor
The participation-factor matrix is

715.8903 15.89053° -

-2 T = ~a A : = T \ ’\
P2Q'F - 53365 -33365. ~ R* 78
Add along the rows by absolute value and square the sums to {ind
that Mode | (bouncing) has effective weight 1010 pounds and Mode 2
(rocking) has effective weight 278 pounds.

Responses

From this point onward, the analvsis proceeds in the usual
fashion. The IDDAM inputs at each support for the first mode are
obtained trom its weight (1010 pounds}. its frequency 144 Hertz! and
the location of each support refauive 1o the point of impact of the
torpedo. Muluply each input bv its factor from the first row of the
participation-factor matrix and sum to ind the accelerauion of lhe
mode. Scale the first column of the modeshape matrix bv that
acceleration to obtain the acceleration in the bouncing niede of
response and continue to calculate forces. stresses. and deformations

Calculations for the second mode will be similar except that its
accelerations will be rotational accelerations 1n units of 386 radians
per second squared. Muluply bv the mass moment of inertia In
pound-inches squared to obtain moment 1n pound-inches. and
conlinue to calculate stresses and deformations from the applied
moment.

Finallv. the NRL Sum is used to combine stresses from the (wo
modes with warping stresses and operating stresses (0 estimate peak
stresses at critical points. The particular structure of the example had
neither warping nor operating stresses Checks were made [or tensile

47
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, loads 1n the bolts, stresses in the flexible plate, and stresses in the Q
Y welded brackets. -
‘ [nterpretation SR

o
y The example here shows that the formalism applies as well to .
q rotational responses as it does to translations, with the rotations given N

in radians, stiffnesses represented by moments per radian. and

masses represented by mass moments of inertia. )
i ::
i Alternate models using translations -
. |“'
] Figure 4 shows four wavs in which the two coordinates (one
{ translation and one rotation) for the example could be replaced by a 5
' pair of transiational coordinates. [n each case the total mass of 1010 g,
3 pounds is represented bv point masses located so as to reproduce the )
g mass moment of inertia about an axis through the center of the plate. Ne
The case marked (al) 1s of special interest, since it shows that
A placing two weights of 1359 pounds each directly over the support 11;
: points not only gives the correct mass moment of inertia but provides jT.:
] a total of 278 pounds to match the effective mass of the rocking mode.
Each of the configurations in Figure 4 can be analvzed to ~
" produce results identical to the results obtained using a rotational .
N coordinate. A :;
]
s A REAL EXAMPLE 5
B Source -
] :::
X Figure 5 is adapted from a sketch in Appendix E of a report of 3
'S engineering analyses of submarine equipment done bv a Navv ;"
shipyard.! The figure shows a 4-cubic-foot arrtlask supported '
- between two hull stffeners bv four beams built of quarter-inch steel y \
3 iy
: 3
: IM A Hattamer and M W Yargus. Analysis of MSW Cooling Pump & Piping and ".".
Miscellaneous Air Flasks using Dvnamic Analysis Method for Impact )
Bremerton. Washington  Puget Sound Naval Shipvard Engineering o
3 Document 449 (22 April 1977) Ry
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Ly piate. Calculations from the analvsis are summarized here witn some '
™ changes in notation and revisions in procedures.

14 :

" Coordinates .
&

- The airflask was taken to have three degrees of f{reedom, -
N represented by an athwartship translation of the center of gravity

- fxy), rotation about a vertical axis (x2). and rotation about a fore-and- :
2 aft axis (x3). ]
-:..: «
o Mass matrix
b Masses were represented in units of 386 pounds islinches], as \
k- required by the computer program that was to be used to find normal A
modes. The mass for the translational motion was .17 slinches. The v
mass moment of inertia about the vertical axis (along the axis of the ‘

) flask) was taken as that for a thin circular shell with radius 9 inches. .
o or hy
.‘-‘ -
> .
<o) .17 (932 = 95 Ib-in-s2. (79] :
N
" The shell was taken as 42 inches long l'or its moment of inertia about
':-: the fore-and-aft axis. or .
:’-: .
L 2 4

- 6(9)2 - 4(42)2 - 9
e 117 = - 11712112 = 219 |b-in-s@ 180 -

. K
7 The mass matrix was thus 2
7. B
- L1700 07 3
‘¢ M-,0 95 0. 81 |
- L0 0 219,

L .
s -
7, -
-:. Beams .
o :
7, . .

The two beams connecting to Frame 90 were angles made ol -
.»" quarter-inch plate 4 inches long, 3 inches wide. and 6 inches deep N
- The cross-sectional area was 2 25 square inches and the area moment :
-y 4
)

. 1
o~ >
Pre sl
[} =
N ;
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about the neutral axits was 94 in* Therr bending stuffness as
cantilevers fixed to the frame and pinned to the [lask would be

30E6(9.4) . .
3 3_(4_)%_ = 13.2 miilion Ib/in. 1821

Shear stiffness (neglecting any shear factor) would be

———2'25‘4”56) - 6.2 million Ib/in. 'R3)

giving a combined stiffness of

15.2(6.2) L L
52 - 62 - 4.2 million ib/1n (R4

for each beam.
The two beams connected tc Frame 89 were 12 inches long. 3
inches wide, and || inches deep. with area 3 5 square inches and an

area moment of 46.4 1n* The combined suffness in bending and shear
was

2.413.2) | 4 million ib/i oy
54 - 32 32 " million ib/in 3

All four beams act against an athwartship displacement of the
flask, producing a stffness of [1 2 milhon pounds per inch lor
Coordinate | The beams are attached 7 inches forward and 7 inches
af't of the centerline of the flask. so that when the flask is rotated
about a vertical axis thev applv a moment of 548 & muliion pound-
inches per radian to Coordinate 2 Moment arms for rotation about a
fore-and-aft axis are 12 inches above and below the center ol the

flask for a suffness of 16128 million pound-inches per radian In
Coordinate 3
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[n addition, when the flask is displaced to starboard (out of the

paper in Figure S} the beams will apply a moment about the vertical
axis of

(-4.2-4.2)(7) + (-1.4-1.4)(-7) = -39.2 million Ib-in/in (86)

that must be reacted by an equal and opposite moment to keep the
flask from rotating. Similarly, rotation about the vertical axis will
produce a net force per angle of 39.2 million pounds per radian to port
that must be reacted bv an equal force to starboard to keep the flask
from transiating. The stiffness matrix needs to be written as

["1 1.2E6  39.2E6 0 K
K = IS 2E6 548.8E6 0 5 (R7)
L0 0 1612.8E6
Support stifness

A displacement of Frame 90 in the starboard direction at the
upper support (uy) will apply 4.2 mullion pounds of force per inch of
displacement to Coordinate |. The force acts through a moment arm
of 7 inches to appiv 294 pound-inches of moment per inch of
displacement to Coordinate 2. and acts through a moment arm of 12
inches to apply 50.4 million pound-inches per inch to Coordinate 3.

Similar calculations for the other three supports lead to a
support-stiffness matrix

T42E6 42E6 14E6 1.4E6 °

F - 1294E6 29.4E6 -9R8E6 -9 8E6 ) i28)
L50.4E6 -50.4E6 16.8E6 -16.8E6

Normal modes

Data were entered into Computer Program RGGG] using the
special format it required. The program returned three modes with
natural frequencies 298 424, and 536 Hertzz It provided a
modeshape matrix,
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1.
-0.0661, 189)
0 |

that had been scaled to make the largest element 1n each column have
a value of unity.

Program RGGG! did not display the scale factors that it used.
They were recalculated by hand in a tabulation scheme that was
equivalent to

442 0 0"
S2 - (QSTMQS =: 0 219 0 -
Lo 0 1.58;

The original analysis continued with rounded calculations to remove
the squares of the scale factors from individual results as thev
appeared. The following calculations depart from that method to
remove the scale factors from the modeshape matrix directly bv
dividing each column by the square root of its element of $2, Lo obtain

‘0476 0000 0796
Q - 0088 0000 -0053: (911
10.000 0068 0.000

LT ALY
iy

s
-y

S

Alternate calculation

A recalculation of the normal modes was made using a [0-digit
pocket calculator to obtain a mass-normalized modeshape mairix
directly as

L M

<

"0.483 0.000 + 0.788"
Q - -0.087 0.000 0.054,
L 0.000  0.068 0000

» R V™
LIS
e,
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L}

PEELAA T SN,
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Differences in the third significant figure between this modeshape
matrix and the rescaied matrix from RGGG! appear to result from
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rounding of the scaled modeshapes in Equation 89.. Frequencies of the
modes are given as 298, 4352, and 548 Hertz {rom the revised analysis.

The signs are reversed for rotation about the vertical axis in
Equation 92 because the data were entered into RGGG! using a left-
handed coordinate system. (Direction x pointed aft, y upward, and z to
starboard.)

The modeshape matrix from Equation 92 has been used in the
following calculations.

Participation factor

The participation factor is

7-0.156 -0.156 0.438 0438
RT-P2QTF -} 0.462 -0.462 0.154 -0.154, 193]
10412 0412 0049 0.049]

Modal weights

Sum each row of the participation-factor matrix bv absolute
value and square the sums to find modal masses 1n the units of 3RG
pounds used in the mass matrix. Muluplv bv 386 1o find modal
weights of 550 pounds for Mode 1. S87 pounds for Mode 2. and 328
pounds for Mode 3.

IDDAM inputs

One of the IDDAM tables. used for the sake of an example.
shows that, at the point ol impact. a weight of S50 pounds mounted at
298 Hertz would respond with a peak acceleration of 1264 g A
weight of 587 pounds at 452 Hertz would respond to i451 g. and 328
pounds at 548 Hertz would respond t0 2297 g.

One frame away from the impact point the responses would be
0.45 times as large, and at a distance of 24 inches around a frame
from the impact point the responses would be (.60 times as large
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Accelerations

If a torpedo were (o strike in way of the upper support at the
after frame (support uy), the [DDAM inputs for the four supports,
multiplied by the participation factors, predict peak accelerations for
the three modes of

"84 0 7
0 304 0
0 0 159

B - |
The scaled modeshape matrix is

40 0 1259
A-QB-i7 0 8 . 195

|

L0 21 0

with accelerations in g for the translational coordinate (first row of the
matrix) and angular accelerations in multiples of 386 radians per
second per second for the rotational coordinates tsecond and third
rows).

Forces and moments
Multiplv

i 8 568 °
G -0386MA = -2069 0 3156
. Q 1739 0 .

- -

to obtain peak forces (thousands of pounds) applied to Coordinate |
and peak moments (thousands of pound-inches! apphed to
Coordinates 2 and 3 in each of the three modes The factor of 00 386 1s
needed o return the mass matrix to convenient units |
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Static analvsis

The force and moment from Mode | place a load of -5 thousand
pounds on each of the two after supports, and a ioad of 14 thousand
pounds on each of the forward supports.

The moment from Mode 2 applies a load of 36 thousand pounds
to each of the upper supports and -36 thousand pounds to each of the
lower supports.

Mode 5 puts loads of 254 thousand pounds on each after
support and 30 thousand pounds on each forwvard one

Warping

Suppose that the warping formula gives a displacement 0 200
inch at the impact point tuyl, 0.120 1nch at uz, 0090 inch at us and
0.054 inch at ug. The static formula for the motion of the arrflask can
be solved most easily by writing i1t 1n the form

TS Yo 1 Yo W S

s

1 =K!Fu-=-iQP2QTiFu -QRTu 1971

N WM
[N ‘

LN

that avoids inverting the stiffness matrix. The equilibrium positions
of the coordinates are

»

[ : 'J‘...'%}. '

70.1160007
x - 0.006286: (98
0002875

R, &,

The displacement (translation and two rotations! at support uy
is 0.194502 inch, deflecting the beam there bv 0 005498 inch and
producing a force of 23 thousand pounds Simtiar calculations show
balancing forces of -23 thousand pounds at uz, -235 thousand pounds
at uz, and +23 thousand pounds at ug.

Stress analvsis

The outermost fibers of the beams at Frame 90 were 4 inches
from the neutral axis and would have stress
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4
4& = 1702 (99

ps! 1n bending per pound ol force applied at the end of the beam.
Shear stress wouid be

l . (
75 * 0.400 (100]
psi per pound.

The beams at Frame 89 had their outermost fibers 6 inches

from the neutral axis. with stress 1733 pst per pound there n
bending, and with shear stress 0. 286 psi per pound.

\RL S

The upper aft beam fuj) has loads, in thousands of pounds, of -5
tMode 1), 36 (Mode 2). 254 fMode 3). and 23 twarping! Bending
stresses are -9 62, 433, and 39 thousand pounds per square inch. The
NRL Sum of the bending stresses is

433 -v1-922 - 16212 - 13912 = SO7 thousand psi. 11017

Shear stresses are -2, 14. 102, and 9 thousand pounds per
square inch, with an NRL Sum of 119 thousand psi.

Check

The calculation might as well stop here tas 1t did in the originai!
because there 1$ no chance that the support at the tmpacted frame
couid withstand the bending siress of 507 thousand pounds per
square inch or the shear stress ol 119 thousand pounds per square
inch. The bending stress 1s more than ten times the vield stress for a
medium steel and the shear siress is more than [our tuimes yield in
shear. A redesign of the supports tor the airflask 1s obviously needed.
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APPENDIX A
A SHORT INTRODUCTION TO MATRIX ALGEBRA

MATRICES
A computer statement similar to

DIMENSION M(4.5) (A-1)

will reserve 20 memory spaces for numbers that can thereafter be
referenced as M(J L), with J an integer in the range from | to 4 and L
an integer in the range from 1 to 5. The numbers are usually thought
of as arranged i1n a rectangular array with four rows and five columns.
designated simplv by the letter M:

M(1.1) M(1.2) M(1.3) M(1.4) M(L5]
y . | M2 M(22) M(23) M(2.4) M(25) ey
* 1 Mi3.1) M(3.2) M(3.3) M(3.4) M35 | A

LMI4.1) M(4.2) M(43) M(4.4) M(45)

SOME DEFINITIONS

The matrix with dimension M(4.51 is called a recrangular mairiv
because il has a different number of rows than columns. A matrix
with dimensicn M(4.4) would be calied a sguare matrir . The
elements M!11) are called the Jdragonal e/ements . they would be the
elements M1 1 Mi2.2) M(3.3), and Mi4.4) for the matrix here

The sum of the diagonal elements 1s called the srace of the
matrix: the trace of the matriy here would be M(1.1) ~ Mt2.21 - Mi3 31
- M(4.4) A svmmetric malrsy 1s one in which everv Mi] L) s equal to
the corresponding MIL.J) - that s, M(1.2) = M2 11 M(I.3) = Mis10
and so on for all the pairs.

SOME OPERATIONS

If matrix Q has elements Q(JL1 the matrix with elements QtL [
is called the transpose of Q designated bv QT Transposition
corresponds (o interchanging rows and columns n the arrav I the
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| transposed matrix s equal to the ortginal matrix \OT - Q). then the j:‘_
: matrix must have been both square and symmetric. S
Matrices of the same dimension are added or subtracted by ‘.'_\
adding or subtracting the corresponding elements. Matrices of 4
. . . )
different dimensions cannot be added to or subtracted from one -
h o+
. another. <y
I o
‘ MATRIX MULTIPLICATION ¥
:h
The product of two matrices is written as if it were ordinarv ;:;
multiplication. That is. 2
, Z-MQ (A-3) T
. A
u 1s the product of M and Q. The operation is not an element-by- A
; element multiplication, however, but involves muluplving each ::
element in a row of the first matrix by the corresponding element in a Ny
. column of the second matrix and summing the products. Each element :I:
b of Z is generated as -
4 ZON) = MULDQUIN) - M(1.2) Q(2.N) - M(1.3) QI3.N0 H)
‘ - M(].4) Q(4,N) - . {A-4) _
. | . R
- The equation can be abbreviated as .S
: . . %
4 ZUJN) = MIJL)QIL.NI. ra-51 o
) ’ Lol
5 where 1t 1s understood {the summauon convention ) that the product A
| 15 to be summed over all possible values of the repeated index L. .‘.:'_
X The product matrix Z will have as many rows as there were g
3 rows in M, and as many columns as there were columns in Q. NG
Moreover, M must have exactly as manv columns as Q has rows, so ]
3 that the index L can be assigned to both and run through a single el
range of values. 'j:
Because of the rule for multiplication, it 1s not surprising that ‘;'
the matrix product QM 1s a different matrix from the product MQ. e
5
N
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MORE DEFINITIONS

A dragonal/ mairsy 1s one in which all of the elements other than
the diagonal elements have values of zero. A wan mairir (usually
designated by I) is a diagonal matrix in which each diagonal element
has a value of unity.

The /nverse of a matrix K is the matrix K-! that makes

K-1K = 1 (A-6)

be a unit matrix. Not all matrices have inverses. The definition of an
inverse is reciprocal: K is also the inverse of K-! so that

KK! = I (A-7)

If the transpose of a matrix is also its inverse. the matrix is said
to be unsrary. That s,

UTu = 1 fA-RI
defines U as a unitary matrix. A simple example is

fcos(tH)  -sintH)" _
u- _sin(H) costH) (A-9!

which 1s unitary for anv angle H.
VECTORS

A matrix with only one column is called a co/vma vector. I a
matrix X has dimensjon X!5,1), for example, it is a column vector with
five elements. [t 1s usual to suppress the unit cesignation and show
its dimension as X(5). Column vectors are designated bv [ower-case
boldface letters. such as x. 1n the present report.

A matrix with onlv one row 1s called a row vector It s
dimensioned Xil.54 for example. and 1s designated here using the
symbol for transpose. xT Again the unt designation 1s usually

6l
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suppressed to show a row vector as dimension X(3), although this has ;'-:
the defect of not distinguishing it from a column vector. -
All of the rules for adding. subiracting. and multiplying v
matrices apply to vectors provided the unit dimension (s understood. .‘,c;
o Y
SOME HELPFUL RELATIONS Ny
L]
The following rules can be verified by working out some simple N,
examples. First, the transpose of a matrix product is obtained from .
the transposes of the factors taken in the reverse order. or e
s'.:
(MQIT = QT MT. PA-100 ,

. . . . . :-‘n
Similarly, the inverse of a product involves inverting and :',:.
interchanging the factors, as N

o~
(MQ)! = Q"I M-I (A-111 :-;
o L . A o~
[f a matrix is svmmeltric. ils inverse is also symmetric. "y
However, the product of two symmetric matrices. such as M-! and K. '_"._.
is not a symmetric matrix. since i
L.
(M-LK)T - KTMT - K M! (A-12) .
is different from the original product M 1 K ;_'-'_'.-
Both the mass and stiffness matrices M and K for a structure ""
are necessarily symmeiric. If a stffness matrix were nol symmetric.
for example, the structure could be run as a perpetuai-motion ;\'-.'
machine by moving it around a cvcie in which the smaller off-diagonal ;'-“.;
element was worked during the compression phase and the larger :;?_-
offdiagonal element was used to provide power during the return Vo
stroke. e
Matrix elements for a structure can often bv generated or :Zf-;
checked bv using the useful relauions that x' K x/2 1s the potential ‘or :::-'_
strain) energy and vI M v/2 1s the kinelic energy. where I is a e
column vector of displacements and v a column vector of velocities 2
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USEFULNESS OF MATRIX ANALYSIS

The rules for addition, subtraction. and multiplication of
matrices were chosen specifically so that matrix equations verv
similar to scalar equations. such as

Ma-+Kx=Fu (A-13)

would expand into precisely the set of coupied differential equations
needed to represent a structure with multipie coordinates. The great
compaction of the notation and the resultant improvement in
comprehension are exactly what 1s needed in analvzing complicated
structures.
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: APPENDIX B S
» A COMPUTER PROGRAM FOR RIDDAM [
PROGRAM :
-3
1000 REM THIS PROGRAM 1S WRITTEN [N CORE BRSIC s
w 1100 REM IDENTIFY THE PROGRAM R
! 1110 PRINT “877F7 R!DDAN" &k
1120 PRINT *  ACCEPTS & DIAGONAL MASS MATARIX (N
: 1130 PRINT "  POUNDS OR POUND INCHES SOURPEC. ™
1140 PRINT *  STIFFNESSES IN POUNDS PER INCH OR*
f 1150 PRINT *  POUMD-INCHES PER PADIAN."
T 1160 PRINT “R L BORT, NAUAL RESEARCH LAB, WRSHINGTON, OC"
\ 1170 PRINT "JULY 15, 1987."
1180 PRINT

1200 REM DIMENSION THE URRIABLES

2T om0 nQ), KT T T T

1220 DIn Q(10,10), P(10,10}, R(10,10)

1230 Oin F1(10), w(10), DC10), F2(10),B(10)
1240 0In A(10,10),6(10,10)

1300 REM CASE NUMBER GR TEST CASE

1310 PRINT "ENTER A NUMBER FOR YOUR CASE, OR"

1320 PRINT "ENTER 0 (ZERO) TG RUN A TEST CASE."

1330 INPUT T

1340 IF T>0 THEN 1410

1350 PRINT “CRSE 0 1S A tC0N0-POUND BAR SUPPORTED"

1360 PRINT “INDEPENDENTLY AT EACH ENO. IT IS NQOELED AS"
1370 PRINT "NV EQUAL MASSES WITH N1+1 EQUAL SPRINGS.®
1380 PRINT

g s ¢ W™ & - K g
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........................

» ..
g 1400 REM ASSIGN DEGREES OF FREEDOM )
. 1410 PRINT "ENTER DEGREES OF FREEDOM (1 TOQ 10} N
P 1420 INPUT N1 ~
A 1430 IF NI<1 THEN 1410 o
*» 1440 IF N1>10 THEN 1410 3
o 1500 REN CLEAR SOME MATRICES 3
7 1510 FOR J=1 TO NI ;
Y, 1520 FOR L=1 TQ NI -
v 1530 LET n(J,L)=0 b
1540 LET K(J,L)=0 .
X 1550 LET Q(J,L)=0 h
. 1560 NEXT L i
> 1570 NEXT J S
1580 IF T>Q0 THEN 1310 "
Ry
1600 REM TEST CRSE, MASS AND STIFFNESS N
1610 LET N2=2 R
1620 FOR J=1 TO NI o,
Lood kT t\'l\u,djzin;l\:ii:ll"(n\i'l*]/ -
; 1640 LET K(J,J)=2%20000%(N1+1) A
R 1650 NEXT J .
X 1660 FOR J=1 T0 H1-1 N
e 1670 LET K(J,J+1)=-20000%(N1+1) -
¥ 1680 LET K(J+1,J)=K(J,J+1)
- 1690 NEXT J 2
N 2
N 1700 REM TEST CASE, SUPPORT STIFFNESS i\
5 1710 FOR J=1 T0 NI ;
. 1720 LET F(J,1)=0 _
2 1730 LET F(J,2)=0 3
) 1740 NEXT J o
- 1750 LET F(1,1)=20000%(N1+ 1) e
1760 LET F(N1,2=20000%(N1+1) -
1770 60TO 2410 -
, 2
¢ o
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A A
-

1800
1810
1820
1830
1840

2000

2100
2110
2120
2130
2140
2150
2160
2170

2200
2210
2220
2230
2240
2230
2260
2270

2300
2310
2320
2330
2340
2350
2360
2370

REN ASSIGN NUNMBER OF SUPPORTS

PRINT “ENTER NURBER OF SUPPORTS (1 70 10}"
INPUT N2

[F N2<1 THEN 1810

IF N2>10 THEN 1810

REM ENTER THE NATRIX ELENMENTS

REN DIAGONAL MASS NMATRIX N
FOR J=1 TO N!

PRINT "ENTER NMRSS";J

INPUT R(J,Jd)

IF 1M1(J,J)>0 THEN 2170

PRINT "MASSES nUST BE POSITIVE. TRY AGARIN."

60TO 212
NEXT J

REM SYNMETRIC STIFFNESS MATR.K K

FOR J=1 TO NI

FOR L=J TO NI

PRINT "STIFFNESS MATA!x RZWL™ . "T7LURN"
INPUT K(J, L]

LET X(L,2)=Ki0, L)

NEXT L

NEXT |

PEM SUPPLRT-ST FFNEZID ™m™2 o £
FOR J=! T N

FOR L=1 TG N2

PRINT ST EENESS TONRD NE7TH TCoropefeTs
INPLT €0
NEXT _

NEXT
PRINT
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2400 REM LABEL THE CASE 3
i 2410 PRINT “THIS IS CASE";T ‘
. 2420 PRINT 5
: 2500 REM ECHO THE MASS MATRIY Lk
b 2510 PRINT "MASS MATRIX 1 =" R
N 2520 FOR J=1 TO N! _
i 2530 FOR L=1 TO NI :
N 2540 PRINT n{J,L), ”
k- 2550 NEXT L 2
- 2560 PRINT 2
2570 NEXT J -
N 2580 PRINT o]
l.|
N 2600 REM ECHO THE STIFFNESS MATRIZ :
N 2610 PRINT "STIFFNESS MATRiIX K =" >
_ 2620 FOR J=1 T0 N1 i
- 2630 FOR L=1 TO NI ]
3 2640 PRINT K(J,L), "
A 2650 MEXT L ot
5 2660 PRINT R
_ 2670 NEXT ~
s 2680 PRINT =
2700 REM ECHO THE SUPPORT-STIFFNESS MATRIX ;g
270 PRINT “SUPPORT-STIFFNESS MATRIX F ="
2715 FGR U=l TOON )
2730 FOR L=t T3 N2 -
2740 PRINT FUJ L), .
. 2750 MENT L iy
4 750 98 w7 )
. 1770 NEHT ] -
- 2780 SAnT w
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...........

). . -
3 3
A.I
{: ) ‘
h W.
! 3000 REM CHANGE OR CORRECT MATRIX ELEMENTS ,
. 3100 REM CHECK THE MATRICES <
48 3110 PRINT "PLEASE CHECK THE MATRICES. IF THEY ARE GOOD"
A 3120 PRINT "ENTER 0. IF YOU WANT TO CHANGE ANY, ENTER 1.” z
N 3130 INPUT J -
- 3140 IF J=0 THEN 4110 -
e 3200 REM CHANGE THE MASS MATRIX M ﬁ
v 3210 PRINT “MASS TO BE CHANGED OR O IF NO .CHRNGE" ~
o 3220 INPUT J
3230 IF J<I THEN 3310
o 3240 PRINT M(J,J);"1S OLD MASS™;J;". ENTER NEM URLUE:" ;
X 3250 INPUT N(J,J) f
; 3260 IF M(J,d)>0 THEN 3210 ;
a 3270 PRINT *MASSES MUST BE POS!ITIVE HUMBERS!® A
3 3280 GOTO 3240 .
" g
.- 3300 REM CHANGE THE STIFFNESS MATRIX K e
xR 3310 PRINT "ENTER ROW, COLUMN OF ELEMENT T BE" ;
R 3320 PRINT "CHANGED IN K. ENTER 0,0 IF NO CHANGE."
3330 (NPUT J,L

o 3340 IF J=0 THEN 3410 ~
o 3350 PRINT K(J,L);"1S OLB";J;L;". ENTER NEW UVALUE:" f
o 3360 INPUT K(J,L) :
% 3370 LET K(L,d)=k{J,L) 2
o 3380 6074 3310 5
N
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............

3400
3410
3420
3430
3440
3450
3460
3470

4000
4100
4110
4120
' 4130

4200
4210
4220
4230
4240
4250

4300
4310
4320
4330
4340
4350
4360
4370
4380

--------

"N ath 1 0" 0.0" 0,0 0.0 04 ag ¥ ) gl o 24 " a P e dia ghe 4% O

REM CHANGE THE SUPPORT-STIFFNESS MATRIX F
PRINT "ENTER ROM, COLUNN OF ELEMENT TQ BE"

PRINT "CHANGED IN F. ENTER 0,0 IF NO CHANGE."

INPUT J,L
IF J=0 THEN 2410

PRINT F(J,L);“1S OLD";J;L;". ENTER NEW UALUE:"

INPUT F(J,L)
GOTO 3410

REM START NORMAL-MODE ANALYSIS

REM NORMALIZE ON THE MASS MATRIK, QT*N*Q = |
FOR J=1 TO N1

LET Q(J,Jd)=1/5QR(N(J,J))

NEXT J

REM SYMMETRIC DYNAMIC MATRIX, OT*K*Q
FOR J=1 TO NI

FOR L=1 T0 NI

LET P(J,L1)=0(J. 3)*K (4, Li*0(L, L)

NEXT L

NEXT J

REM SHOU THE OVYNAMIC MATRIY

PRINT “SYMMETRIC OYNAMIC MATRIX QT*Kx{ ="
FOR J=1 TO N1

FOR L=1 TO NI

PRINT P(J,L),

NEXT L

PRINT

NEXT J

PRINT
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5000 REM DIAGONALIZE THE DYNANMIC MATRIX

S100 REM SET COUNTER AND RUN THROUGH OFFDIAGONAL ELEMENTS
5110 PRINT “CALCULATING...."

5120 LET E=0

5130 FOR J=1 TO N1-1

5140 FOR L=J+1 TO N1

5200 REM SORT COLUNNS BY INCREASING FREQUENCY
5210 IF P(J,Jd)<=P(L,L) THEN 5410

5220 FOR Ji=1 TO M1

5230 LET 2=Q(J1,J)

5240 LET Q(J1,J)=00J1,L)

5250 LET Q(J1,L)=2

5260 LET 2=P(J1,J)

5270 LET P(J1,d)=P(J1,L)

5260 LET P(J1,L)=2

5290 NEXT JI

530C KEM AND INTERCHANGE RGUS OF P A5 UELL
S310 FOR Ji=t T0 NI

5320 LET 2=P(J,J1)

5330 LET P(J,J1)=P(L,J1)

5340 LET P(L,J1)=2

5350 NEXT Ji

5400 REMN SKIP SHALL UALUES
5410 IF ABS{P(J,L)+P(L,J))<.0) ThEN 5920

5500 RER DON'T DIVIDE BY C2ERC
SS10 IF PO, J)<P(L,L) THEN S61C
5520 LET C=50R(.S)

5530 LET S=C

5540 GOTO S710
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P

5600
S610
5620
3630

3700
5710
5120
5730
5740
3730
5760
5770
3780

5800
5810
5820
5830
3640
5830

5900
5910
5920
3930

6000
6100

6110
5120

REM JACOB! ROTATION

LET H=.S*ATN((P(J,L)}+P(L, )2/ (P(J,J)-P(L,L)))
LET C=COS{H)

LET S=SIN(H)

REN UPDATE THE COLUNMNS OF THE NATRICES
FOR J1=1 TO NI

LET 2=C*Q(J1,J)+S*Q(J1,L)

LET QCJ1,L)=C*Q(J1,L)-5*Q(J1,J)

LET Q(J1,J)=2

LET Z2=C*P{J1,J)+S*P(J1, L)

LET P{J1,L)=C*P(J1,L)-S*P(J1,J)

LET P{Jt,4)=2

NEXT J1

REN AND ALSO THE ROWS OF P

FOR Ji1=1 TO NI

LET Z=C*P(J,g1)+S*P(L,J1)

LET PCL,J1)=C*P(L,J1)-S*P(dJ,J1)

LET P(J,d1)=C
NEXT J1
REM STEP THE COUMTER AND END THE LOQP

LET E=E~1

NEXT L

NEXT J

FEM SHOW AND TELL THE NORNAL MODES

REM 1S P D!AGONAL YET?

PRINT "28PPED" E,"0F THE OFFCIAGONAL ELEMENTS

IF E>0 THEN S120
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REN SHOW NODESHAPES

PRINT "NMODESHRPE MATRIX Q ="
FOR J=1 TO NI

FOR L=1 TO NI

PRINT Q(J,L),

NEXT L

PRINT

NEXT J

PRINT

v-f."-.-.-l’

¥ w

\? 'b"l \J‘\ "ﬁ 7

REM SHOW FREQUENCY-SQUARED NMATRIX

PRINT "FREQUENCY-SQUARED MATRIX QT#K*g ="
FOR J=1 70O N!

FOR L=! TO N1

PRINT P(J,L),

NEXT L

PRINT

NEXT J

PRINT

REM CHECK FOR LOOSE PARTS
FOR J=1 T0 N1

tF P(J,J)<>0 THEN 6440
LET P(J, J)=-.01

NEXT
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REM PRARTICIPATIAON-FACTOR MATRIX R
FOR J=1 70 NI

FOR L=1 70 N2

LET R(J,L)=0

FOR Jr=1 70 W

LET ROJ L)=ROJ LIeQ0 01 Joef0 1 L
NEAT U1

LET Ri G Li=Rid Ui /7Pl g

NEXT L

NEXT o
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- X
P 6600 REM SHOW THE PARTICIPATION FACTOR ﬁ
- 6610 PRINT "PARTICIPATION FACTOR R =" >
6520 FOR J=1 TO NI "
N 6630 FOR L=1 T0 N2 :
2 6640 PRINT R(J,L), 24
f 6650 NEXT L “
[ 6660 PRINT '
. 6670 NEKT J 5
6680 PRINT o
l|
6700 REM CHECK FOR NEGATIVE E1GENUALUES N
6710 FOR J=1 T0 NI
6720 |F P(J,J)>0 THEN 6770 N\
6730 IF P(J,J)>-.011 THEN 6760 R
6740 PRINT "STRUCTURE COLLAPSES IN MODE"; o)
6750 PRINT "THERE 1S A MISTAKE IN YOUR STIFFNESS MATRIX.* N
6760 LET P(J,J)=0 .
! 6770 NEXT J
L
N 6800 REM CALCULATE FREQUENCIES X
b 6810 FOR J=1 TO NI -
6820 LET F1(J)=SQR(386*P(J,J))/6.283185 .
- 6330 NEXT J .
6900 REM CALCULATE MODAL WEIGHTS =
6910 FOR J=1 TO NI w)
6920 LET U(J)=0 0
\ 5930 FOR L=1 T0 N2 N
- 6940 LET W(J)=W{J)+ABS(R(J,L)) Q
. 6950 NEXT L v
: 6960 LET U(J)=U(J)*u(J) "
» 6970 NEXT J 2
v ,::




e e -

7000

7100
7110
7120
7130
7140
7150

7200
7210
7220
7230
7240

7300
7310
7320
7330
7340
7330

7400
7410
7420
7430

7500
7310
7520
7330
7540

REM FREQUENCIES, UEIGHTS, AND INPUTS

REN REARL OR FAKE INPUTS
{F T=0 THEN 7410

PRINT "ENTER 0 TO GET FAKE INPUTS (EXAMPLE GONLY),”

PRINT “OR ENTER 1 TO SUPPLY INPUTS FRON TRBLES."
INPUT J
IF J=0 THEN 7410

RENM ENTER INPUTS
FOR J=1 TO NI

PRINT "INPUT FOR";U(J);"POUNDS AND";F1(J}; "HERTZ:"

INPUT D(J)
NEXT J

REN ENTER FRRNE FACTORS

FOR J=1 TO N2

PRINT "FRRME FACTOR FOR SUPPORT";J
INPUT F2(J)

NEXT J

60TO 7610

REM INPUTS (FAKE) FOR TEST CARSE

FOR J=1 TO N1

LET D(J)=.3*P(J,J)/50R(1+. 000001 *U(J)*P(J,J))
NEXT J

REN FRANE FACTCRS (FAKE) FOR TEST CASE
LET F2(1)=1
FOR J=2 TO N
LET F2(J)=.5
NEXT J

2
rE2(J-1)
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7600
7610
7620
7630
7640
7650
1660

7700
7710
7720
7730
7740
7750
7760

8000

8100
8110
8120
8130
8140
8150
8160

8200
8210
8220
8230
8240
8250

REN SHOW THE MODES
PRINT "MODE", "FREQUENCY", "WHEIGHT", “INPUT"

PRINT ,“(HERTZ)","(POUNDS}","(G)"
FOR J=1 TO NI

PRINT J, F1(J),H(J),0()

NEXT J

PRINT

REN SHOW THE FRANE FACTORS

PRINT "FRANE FACTORS (RATi0 TO iNPACT POINTY"
FOR J=1 T0 N2
PRINT F2(J),
NERT J

PRINT

PRINT

REN PERK RESPONSES

REM CALCULATE ACCELERATIONS QF NODES
FOR J=1 TO N1

LET 8(J)=0

FOR L=1 TO N2

LET B(J)=B(J)+R(J,L)*F2(L)*0(L)

NEXT L

NEXT J

REM CONUVERT TO RCCELERATIONS JF MASSES
FOR J=1 TO NI

FOR L=1 TC NI

LET A(J,0)=00J,L)*B(L)

NEXT L

NEXT J
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8300
8310
8320
6330
8340
8350

8400
8410
8420
8430
6440
8450
8460
8470
8480

8500
8510
8520
8530
8540
33550
8560
8570
8580

9000

9100
9110

8120
9130
9140
9150
9160
8170
9180

REN FIND PERK FORCES IN ERCH NOOE
FOR J=1 TO NI

FOR L=1 T0 M

LET G(J,L)=n(J,)*A{J,L)

NEXT L

NEXT J

REM SHOW THE RCCELERATIONS

PRINT "PEAK ACCELERATIONS (G) !N EACH nOOE"
FOR J=1 TO NI

FOR L=1 TO NI

PRINT R(J,L),

NEXT L

PRINT

NEXT J

PRINT

REM SHOW THE FORCES

PRINT "PEAK FORCES (POUNDS) iN ERCH NMODE"
FOR J=1 TO NI

FOR L=1 TO NI

PRINT G(J,L),

NEXT L

PRINT

NEXT J

PRINT

RENM WINCUP

REN WHMAT SHALL UWE DO NENTT

FRINT "THIS 1S ALL THIS PROGRAM DOES. CHOOSE:*

PRINT "1 - NEW {MPACT POINT"
PRINT "2 - NEU INPUT TRBLES"
PRINT “3 - CHRNGE THE SUPPURTS"

PRINT "4 - CHANGE THE STIiFFNESS MATRIX"
PRINT "3 - CHANGE THE MRSS [1RTRIX"

PRINT "6 - NEW STRUCTURE"
PRINT "9 - END THIS RUN"

---------------
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X
9200 REN CHOICE N
9210 INPUT J .~
8220 IF J=1 THEN 7310
! 9230 IF J=2 THEN 7210 o
J 9240 IF J=3 THEN 3410 =
’ 8250 IF J=4 THEN 3310 -.
' 9260 IF J=5 THEN 3210 .
. Q270 IF J=6 THEN 1310 ”‘,:
9280 IF J=9 THEN 9910 =
92%0 GOTO 9110 )
9900 REM END '
9910 PRINT “THANK YOU FOR RUNNING THIS PROGRAM.” e
/ 9920 PRINT “FINISHED" s
9930 END b
.':-
COMMENTS v
. 5
; Documentation E'-;'.
The program is self-documented by remarks. [t uses the :
same procedures and most of the same svmbols as are ',
described in the text of this report e
.
N
Core BASIC i
~
The program 1s wrilien 10 primitve 2AN]T ang.age y
without anv of the enhancements that are avaiiat;e i var.oLs -
dialects of BASIC. As such, it s long and siow but should run as 3
1S on any computer that has a BAS!C compiler or nierpreter ;;7.::
The program s also wasteful of memory since ir Caro ot '::'.-_‘,
does not use anv shortculs and defines new variables tor eacn ’
step 1n the calculation =
'
=
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SAMPLE OUTPUT

—
i

esl case, Case (

The program (s loaded with an example consisting of a
undorm bar with weight 1000 pounds and axial stffness
20,000 pounds per inch. The bar can be represented by from
one to ten lumped masses evenly spaced along a massless
spring A simple analvtical sojution 1s available for the fixed-
base frequencies and modeshapes of the string of equal
masses -

Following 1s part of the output from Case J The bar was
modeled using four stations. each representing the motion of a
200-pound mass lump The remaining mass was iumped with
the supports at each end of the bar

The test case uses a simple formula to generate [DDAM-
ltke tnputs  The inputs are for sake of the example onlyv and are
not intended to apply 1o anv particular situauon.

THiS 1S CASE O

TASS MRTRIXK M =

200 0 n 3

0 200 0 0

J J <00 J

J 0 i 260

c e e mr amme

SoorrNEss TRIRn.Xx K=

22000C -12C00¢0 z c

-1000ce 200¢Cr0e 'Tuogce 2

2 -1nceen Jeoaqn - 0coe

a g AT 200000
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SUPPQRT-STIFFNESS MATRIX F =
100000 3

0 G

0 0

0 100000

SYMMETRIC DYNANMIC NARTRIX QT*K*Q =
1000 -500 0
-500 1000 -500
0 -500 1000
0 0 -500

CRLCULARTING. ...

ZAPPED 6 QF THE OFFDIAGONAL ELERENTS.
2APPED 6 QF THE OFFDIAGONAL ELERENTS.
2APPED S OF THE OFFDIAGONRL ELEMENTS.
ZRPPED O OF THE QFFD{AGONAL ELEMENTS.

NOBESHAPE MATRIX Q =

2.628614E-62 -4.25328E-02 $.253267E-02
4.253229E-02 -2.628698E-02 -2.628675E-02
4.25328E-02 2.628614E-02 -2.628635E-0<
2.628698£-02  4.253229E-02  4.253241E-02

FREQUENCY-SQUARED NATRIX QT*K*Q =
190.983 4.936953E-03  2.26589E-05
4.912365e-03  690.983 -5.086626E-06
3.227984E-05  4.2046S54E-06  1309.017
-7.09665E-06 2.624094E-05 -2.425924E-03

PARTICIPATION FACTOR R =
13.7636 13.76404

-6.155405 6.153331
3.249208 3.249187

-1.453074 1.453097

“ et T TN P S N
-"I'I.‘.‘.'f‘.f.'f.'):’ » '\*\"-* .".Ff ,\-"hf\{ﬁ""-"‘-* J'f‘yf‘: ‘\' n{'\', -‘,”

-2.628634E-02
4.25324€-02
-4.253267€-02

2.628677E-02

5.789629E-00
-2.625585E-05
-2.479627E-03

1809.017
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PCAK FORCES (POUNDS) IN EACH nODE
' 6491.047 -2036. 402
1893.463 4291.506
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