
I O-A1911 225 CO NIDITIONAL DESCRIPTIONS IN FUN4CTIONIL U IFICJATIOINI/

GRAMNAR(U) UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL
REV INFORMATION SCIENCES INST R KASPER NOV 87

UNCLASSIFIED ISI-RR-87-t9t F49620-87-C-985 F/6 12/5 HL

I2INg
l l gLIl

l/

Kll

dI

U;n 32 11111 2.2

L. I- IIIII
as 1111W

1 5 IIII1 I. -111.

MICROCOPY RESOLUTION TEST CHART

%
% %

'U '

*id

S o 1 FILE CofV

Robert Kasper

... Conditional Descriptions

in Functional Unification Grammar

-.

DTC
JAN 06 1988 .,:

IA for-f
.______

/ IA tV.SI(K: /O

6:

Unclassified
--. ; RITY CLASS.ICATiO% OF T'HS PAGE

REPORT DOCUMENTATION PAGE
a REPORT SECLRi Y CLASS ;'CATiON lb RESTRICTIVE MARK;I.GS

Unclassified

a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION, AVA!LAB!LITY OF REPORT
-__This document is approved for public release,

2b DECLASSIFiCATION/DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANiZATION REPORT NUMBER(S)

ISI/RR-87-19 1 ---------------

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITOR NG ORGANZATION

USC/Information Sciences Institute (If applicable) ---------------

6r ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292 ---------------

Ba NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
AFOSR F49620-87-C-0005

8c ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Air Force Office of Scientific Research PROGRAM PROJECT T ASK WORK UNIT
Bolling Air Force Base, Building 410 ELEMENT NO NO NO. ACCESSION NO.
W ashington, D C 20332 --- -...

1I1 TITLE (Include Security Classification)

Conditional Descriptions in Functional Unification Grammar [Unclassified]

12 PERSONAL AUTHOR(S) Kasper, Robert

'3a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Research Report I FROM TO_ 1987, November

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP artificial intelligence, computational linguistics, feature structures, grammar,
09 02 logic, natural language, parsing, syntax, systemic grammar, unification

grammar
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

0 Often, a grammatical description only applies to a linguistic object when that object has certain
features. Such conditional descriptions can be indirectly modeled in Kay's Functional Unification
Grammar (FUG) with functional descriptions that are embedded within disjunctive alternatives. An
extension to FUG is proposed that allows for a direct representation of conditional descriptions.
This extension has been used to model the input conditions on the systems of systemic grammar
Conditional descriptions are formally defined in terms of logical implication and negation. This
formal definition enables the use of conditional descriptions as a general notational extension to
any of the unification-based grammar representation systems currently used in computational
linguistics.

-V

, * 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

OUNCLASSFIEDUNLIMITED J0 SAME AS RPT 0IDTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL Sheila Coyazo 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Vict~or Brown 1 213-822- 1511 7
D FORM 1473,84 MAR 83 APR edition may be used until exhausted S

All other editions are obsolete
,~I O, 'J~assi f ied

"',V - " " , .'", ""/.W . . ,""'". ."", ,, ", ," " - " ,t "%'", ' ,'" '"% ,'" 4 "', '," "" -.- "..

ISI Research Report

[S[/RR-87-191
"November 1987

%

of Southern

California

Robert Kasper

Conditional Descriptions
in Functional Unification Grammar

-COP%

iri

INSPECTED)
i6

Accession For •
NTIS GRA&I

DTIC TAB
Unannounced

.4 Just If Ioat I on

By
-Distribution/

Availability Coda3s

Avail and/cr
Dist Special

pe, INFORMTfO
• . f ff

SCIEN CES 213/822-15//

JNSTITUTEJf
6 :lJ,,draiv UWi/farina del Rev/Cahfornia 90292-6695

Ths research is supported ry ,re A:r ;,r(e 0",ce -f err 1,a(,psar(n (C, ,)ntrac! No ;49620.87-C 0005 views and
ConclusiOnS contarned rn t',s reoo- are 'n j .tr), s, Ii, . 1 ', te .- '-oe',d as epresert nq " e offical opinion or
poicy of AFOSR. the U S Toverment, or any person ne o ,d " -e'

'4,
0*. %

A %

Conditional Descriptions in
Functional Unification Grammar *

Robert Kasper

USC / Information Sciences Institute

Abstract

Often, a grammatical description only applies to a linguistic object when that object
has certain features. Such conditional descriptions can be indirectly modeled in Kay's
Functional Unification Grammar (FUG) with functional descriptions that are embedded
within disjunctive alternatives. An extension to FUG is proposed that allows for a direct
representation of conditional descriptions. This extension has been used to model the
input conditions on the systems of systemic grammar. Conditional descriptions are
formally defined in terms of logical implication and negation. This formal definition
enables the use of conditional descriptions as a general notational extension to any of
the unification-based grammar representation systems currently used in computational
linguistics.

1 Introduction

Functional Unification Grammar [6] (FUG) and other grammatical formalisms that use
feature structures and unification provide a general basis for the declarative representation
of natural language grammars. These formalisms provide a rich information structure that

* can express a wide variety of linguistic generalizations. A particularly attractive feature of
these grammars is that they are readable by linguists and are also subject to interpretation
by general computational tools, such as those for parsing or generating text. In order
to exploit some of the computational tools available with unification grammars, we have
developed a mapping from systemic grammars [1] into FUG notation. This mapping has
been used as the first step in creating a general parsing method for systemic grammars [21.
The experience of translating systemic grammars into FUG has shown several ways in
which the notational resources of FUG may be improved. In particular, FUG has limited
notational resources for expressing conditional information.

This report describes how FUG has been enhanced by the addition of conditional de-
scriptions, building on research that has already been reported [2,3,4]. In previous work,
conditional descriptions were described informally as selection conditions. Selection condi-
tions were formulated specifically to facilitate the modeling of systemic grammar, but the
notion of conditional description developed in this report is more general.

*This research was sponsored by the United States Air Force Office of Scientific Research under contract
F49620-87-C-0005; the opinions expressed here are solely those of the author.

"-- ',. " . ,-. O . ' Jl~q~ " - - .. - % - .. .

Imperative
NONFINITIVE!Stem

Clause MOOD DeclarativeSUBJECT A FINITE
RANK Indicative INDICATIVE-] m c n a ~ l v e T Y P E

SUBJECT:Nominative
-Interrogative

Figure 1: The MoodType and IndicativeType Systems

Rank = Clause

Mood~pe =Imperative
NONFINITIVE = [Form = Stem]

MoodType = Indicative
SUBJECT = [Case = Nominative{[.IndicativeType = Declarative

pattern = (... SUBJECT FINITE ...)
[IndicativeType = Interrogative I

Figure 2: The MoodType and IndicativeType Systems in FUG

2 Motivation: Conditional Information
in Systemic Grammar

Conditional information is stated explicitly in systemic grammars by the input conditions
of systems that specify when a system must be used. Consider, for example, the two
systems (MoodType and IndicativeType) shown in Figure 1. The input condition for the

a MoodType system is the feature Clause, and the input condition for the IndicativeType
system is the feature Indicative. Because the features of a systemic grammar are normally
introduced by a unique system, these input conditions actually express a bidirectional type
of logical implication:

1. If a constituent has the feature(s) specified by a system's input condition, then exactly
one of the alternatives described by that system must also be valid for the constituent;

2. If a constituent has one of the feature alternatives described by a system, then it must
also have the feature(s) specified by that system's input condition.

Thus the input condition of the Indicative Type system expresses the following implications:

1. If a clause has the feature Indicative, then it must also have exactly ne of the alter-
natives from the Indicative Type system (either Declarative or lterrogattve).

2. If a clause has one of the feature alternatives described by the Indicativ. Type system

(either Declarative or Interrogative), then it must also have the feature Indicative.

While it is theoretically correct to regard the two directions of implication as exact converses
of each other, there is a subtle difference between them. The consequent of the first type
of implication is the description of the entire system, including systemic features and their

2

11 9 M -0
-~~~~ ~~~~~ % ~ * & *~~~~ *

realizations.' The antecedent of the second type of implication can be safely abbreviated by
the systemic features without their realizations, because the presence of a systemic feature
implies that its realizations also hold. We will return to this distinction when we provide a
formal definition of conditional descriptions in Section 3.

For simple input conditions, the first type of implication can be expressed in FUG, as it
was originally formulated by Kay [61, by embedding the description of one system inside the
description of another. For example, we can capture this implication for the IndicativeType
system by embedding it within the description of the Indicative alternative of the MoodType
system, as shown in Figure 2. Note that the second type of implication expressed by systemic
input conditions has not been expressed by embedding one functional description inside
another. To express the second type of implication, we have used a different notational
device, called a feature existence condition; it will be defined in Section 3.4.

Not all systems have simple input conditions consisting of single features. Those input
conditions which are complex boolean expressions over features cannot be expressed directly
by embedding. Consider the DoingType system shown in Figure 3 as an example. Its
input condition is the conjunction of two features, Effective and Material.

One way to express a system with a complex input condition in FUG is to use a di3-
junction with two alternatives, as shown in Figure 4. The first alternative corresponds to
what happens when the DoingType system is entered; the second alternative corresponds
to what happens when the DoingType system is not entered. The first alternative also
includes the features of the input condition. The second alternative includes the features
of the negated input condition. Notice that the input condition and its negation must both
be stated explicitly, unlike in systemic notation. If the negation of the input condition was
not included in the second alternative, it would be possible to use this alternative even
when the input condition for the system holds. Thus the description of the system would
not always be used when it should be. Note that this method of encoding systemic input
conditions presupposes an adequate treatment of negated features. A formal definition of
negation will be developed in Section 3.3.

While it is formally possible to encode complex input conditions by disjunction and
negation, such encoding is not altogether satisfactory. It should not be necessary to state
the negated input condition explicitly, since it can always be derived automatically from the
unnegated condition. It is also rather inefficient to mix the features of the input condition
with the other features of the system. The features of the input condition contain exactly
the information that is needed to choose between the two alternatives of the disjunction
(i.e., to choose whether the system is entered or not). It would be more efficient and less
verbose to have a notation in which the features of the input condition are distinguished
from the other features of the system, and in which the negation of the input condition
does not need to be stated explicitly. Therefore, we have developed an extension to FUG
that uses a conditional operator (--l), as illustrated by the encoding of the DoingType
system shown in Figure 5. A description corresponding to the input condition appears to
the left of the -- symbol, and the description to be included when the input condition
is satisfied appears to its right. Note that using a bidirectional condition allows us to
capture both of the logical implications that are entailed by an input condition in systemic
grammar. A formal definition of what it means for a description to be satisfied will be given
in Section 3.1.

'A realization is a statement of structural properties that are required by a feature, such as the statement
that SUBJECT precedes FINITE for the feature declarative.

3

-Creative
E v -O N PROCESS:CreationVerbV Effective - ON

Material -

Dispositive
PROCESS:Dispositive

Figure 3: The DoingType System

5,.

"'V Rank = Clause
Agency = Effective
ProcessType = Material

DoingType = Creative 1
, PROCESS [VerbType = CreationVerb]

4"'u' E DoingType = Dispositive -
PROCESS =[VerbType = Dispositive

ProcessType = NOT Material

DoingType = none J

Figure 4: DoingType system in FUG, using disjunction and negation.

Rank = Clause L DoingType = Creative

[Agency = Effective - PROCESS = [VerbType = CreationVerb

ProcessType = Material DoingType = Dispositive
p. [PROCESS = [VerbType = Dispositive] J

Figure 5: DoingType system in FUG, simplified by using a conditional description.

Note that in systemic notation curly braces represent conjunction and square braces represent dis-
junction, while in FUG curly braces represent disjunction and square braces represent conjunction.

4

i@%

NIL denoting no information;

TOP denoting inconsistent information;

a where a E A, to describe atomic values;
-: €where I e L and 4 e FDL, to describe structures

in which the feature labeled by I has a value described by 4;
P< P>,..., < Pn > where each pi E L*, to describe an equivalence class

of paths sharing a common value in a feature structure;

01 A 4)2 or [01 ... 4.1 where 4i e FDL, denoting conjunction;

0, €1 V 02 or {01 .. .),} where 4i E FDL, denoting disjunction.

Note: A and L are sets of symbols which are used to denote atomic values and feature
labels, respectively.

Figure 6: Syntax of FDL Formulas.

3 Definitions

*The feature description logic (FDL) of Kasper and Rounds [3] provides a coherent frame-
work to give a precise interpretation for conditional descriptions. As in previous work, we
carefully observe the distinction between feature structures and their descriptions. Feature
structures are represented by directed graphs (DGs), and descriptions of feature structures
are represented by logical formulas. The syntax for formulas of FDL is given in Figure 6.
We define several new types of formulas for conditional descriptions and negations, but the
domain of feature structures remains DGs, as before.

3.1 Satisfaction and Compatibility

In order to understand how conditional descriptions are used, it is important to recognize
two relations that may hold between a particular feature structure and a description: sat-
isfaction and compatibility. Satisfaction implies compatibility, so there are three possible
states that a description may have with respect to a particular structure:

% 1. the description may be fully satisfied by the structure;
2. the description may be compatible with (but not satisfied by) the structure;

3. the description may be incompatible with the structure.

To define these terms more precisely, we say that an atomic feature description, f : v, is:

satisfied by A if f occurs with value v in A;

(merely) compatible with A if f does not occur in A, and any feature existence condi-
tions for f are compatible with A;

incompatible with A otherwise, i.e., if f occurs with value X in A, for some x :A v, or if
f has a feature existence condition which is incompatible with A.

Logical combinations of feature descriptions are evaluated with their usual semantics to
determine whether they are satisfied or compatible with a structure. Thus, a conjunction is
satisfied only when every conjunct is satisfied, and a disjunction is satisfied if any disjunct
is satisfied.

5

'0e

i subj

e numbe r gender

3 sing neut

Figure 7: Example feature structure (A).

Consider, for example, the structure (A) shown in Figure 7, and the three descriptions:

subj : (person: 3 A number: sing) (1)

subj: (person : 1 A number: sing) (2)

subj: (case: nom A number: sing) (3)
Description (1) is satisfied by A, because A is fully instantiated with all the required feature

values. Description (2) is incompatible with A, because A has a different value for the feature
subj : person. Description (3) is merely compatible with A (but not satisfied by A), because
A has no value for the feature subj : case. Because feature structures are used to represent
partial information, it is possible for . to be extended (i.e., by adding a value for the feature
subj : case) so that it either satisfies or becomes incompatible with description (3).

In the following definitions, the notation A means that the structure A satisfies the
description 0.

3.2 Conditional Description

We augment FDL with a new type of formula to represent conditional descriptions, having
the syntax:

and the interpretation:

A v= ce. (4)

We often refer to formulas of this type simply as conditionals.
Our definition of conditional descriptions is formally equivalent to material implications.

This interpretation of conditionals presupposes an interpretation of logical negation, which
4/ is given below. To simplify the interpretation of negations, we exclude formulas containing

path equivalences and path values from the antecedents of conditionals.
A bidirectional condition operator (,-+) is also used with its normal interpretation:

. ~C a, -=€ 3- A 3 -oz
-- = (oAfiV -a A

6

%O4

3.3 Negation

We use the classical interpretation of negation, where A - 4) z4 A €. Negated
descriptions are defined for the following types of formulas:

1. A -'a A A is not the atom a:

2. A -(1 :) t A = 1:-' -or A/1 is not defined;
3- -4 ¢) 4 0

4. A. A A-

Note that we have not defined negation for formulas containing path equivalences or path
values. This restriction makes it possible to reduce all occurrences of negation to a boolean
combination of a finite number of negative constraints on atomic values. While the classical
interpretation of negation is not strictly monotonic with respect to the normal subsumption
ordering on feature structures, the restricted type of negation proposed here does not suffer
from the inefficiencies and order-dependent unification properties of general negation or
intuitionistic negation [7,8]. The reason for this is that we have restricted negation so that

%, all negative information can be specified as local constraints on single atomic values.

*1 3.4 Feature Existence Conditions

Conditional descriptions have been defined as an implication relation between two feature
descriptions. A slightly different type of conditional description is needed when the an-
tecedent of the conditional is an existence predicate for a particular feature, and not a
regular feature description. We call this type of conditional a feature existence condition.
Feature existence conditions are needed to model the second type of implication expressed
by systemic input conditions - namely, when a constituent has one of the feature alterna-
tives described by a system, it must also have the feature(s) specified by that system's input
condition. A feature existence condition can be stated formally as:

3f - 40,

where A 3f A A/f is defined. This use of 3f is essentially equivalent to the use of
f = ANY in FUG, where ANY is a place-holder for any substantive (i.e., non-NIL) value.

The antecedent (3f) might also be described by the FDL formula f : NIL, however
this notation could be confusing. Using the formal interpretation that we have given for
formulas of the type I : 4, we can derive

A f : NIL A 3f,

since A f : NIL Al A/f is defined and A/f NIL, and any value for the feature
f satisfies NIL. The confusion in the interpretation of f : NIL arises because some im-
plementations of unification for feature structures, such as PATR-I [91, have often freely
introduced features with the value NIL.2 In these implementations f : NIL has been

2 NIL values are introduced when two paths in a feature structure are unified and one or both of those

paths does not yet exist. When one of the paths already has a value, then introducing a NIL value for
, the other path simply allows the unification to succeed in all cases, and the NIL value is replaced by a

substantive value during unification. When two nonexistent paths are unified, a NIL value remains in the
structure after unification, indicating that nothing is known about the value of the paths that have been
unified. These NIL values are usually regarded as unbound variables, not necessarily implying the existence
of any substantive value for the paths that have been unified.

7

dm= - - - - - -~ '- .- -. - - -. -. - ,- - - .- .-. b -- - 1 - ,- -- * m- : -S : _ - - -' ;

defined to be equivalent to NIL out of convenience, because the irmplemeritors did not have
any need to state feature existence conditions.

The primary effect of a feature existence condition, such as 3f -- €, is that the
consequent is asserted whenever a substantive value is introduced for a feature labeled by
f. The treatment of feature existence conditions differs slightly from other conditional
descriptions in the way that an unsatisfiable consequent is handled. In order to negate the

antecedent of If - 0, we need to state that f may never have any substantive value. This
is accomplished by unifying a special atomic value, such as NONE, with the value of f.
This special atomic value is incompatible with any other real value that might be proposed
as a value for!.

4 Unification with Conditional Descriptions

The unification operation, which is commonly used to combine feature structures (i.e., non-
disjunctive, non-conditional DGs), can be generalized to define an operation for combining

' the information of two feature descriptions (i.e., formulas of FDL). In FDL, the unification
of two descriptions is equivalent to their logical conjunction, as discussed in [4]. We have
shown in previous work [5] how unification can be accomplished for disjunctive descriptions.

* This unification method factors descriptions into definite and indefinite components.
The definite component contains no disjunction, and is represented by a DG structure that
satisfies all non-disjunctive parts of a description. The indefinite component of a description
is a list of disjunctions. When two descriptions are unified, the first step is to unify their

. definite components. Then the indefinite components of each description are checked for
compatibility with the resulting definite component. Disjuncts are eliminated from the
description when they are inconsistent with definite information. When only one alternative
of a disjunction remains, it is unified with the definite component of the description.

This section details how this unification method can be extended to handle conditional
descriptions. Conditionals may be regarded as another type of indefinite information in
the description of a feature structure. They are indefinite in the sense that they impose
constraints that can ue satisfied by several alternatives, depending on the values of features
already present in a structure.

4.1 How to Satisfy a Conditional Description

Let us focus on how a conditional description can be used to impose constraints on a fea-
ture structure. The constraints imposed on a feature structure by a conditional description
can usually be determined most efficiently by first examining the antecedent of the condi-
tional, because it generally contains a smaller amount of information than the consequent.
Examining the antecedent is often sufficient to determine whether the consequent is to be
included or discarded.

Given a conditional description, C a -. , we can define the constraints that it
imposes on a feature structure (A) as follows. When A:

' satisfies a, then A 0;3

Is incompatible with c, then C imposes no further constraint on A, and can therefore
• . be eliminated;

8 Rad this constraint as: 'make sure that A satisfies 0.

-p 8

0,5'':'..2 : ',... '2 .:.: : : "'-. ,, ' "', -uY ?"", """' " "", """', , . . ." -" %. % " %, . ,

-,

is merely compatible with a, then check whether fi is compatible with A.

If compatible, then C must be retained in the description of A.
If incompatible, then A z -a (and C can be eliminated).

These constraints follow directly from the interpretation (4) that we have given for con-
% ditional descriptions. These constraints are logically equivalent to those that would be

imposed on A by the disjunction -'a V fi, as required by our definition. However, the con-
N straints of the conditional can often be imposed more efficiently than those of the equivalent

disjunction, because examining the antecedent of the conditional carries the same cost as
examining only one of the disjuncts. When the constraints of a disjunction are imposed,
both of the disjuncts must be examined in all cases.

4.2 Extending the Unification Algorithm

The unification algorithm for disjunctive feature descriptions [51 can be extended to handle
conditionals by recognizing two types of indefinite information in a description: disjunctions
and conditionals. The extended feature-description data structure has the components:

definite: a DG structure;

disjunctions: a list of disjunctions;

conditionals: a list of conditional descriptions.

The part of the unification algorithm that checks the compatibility of indefinite components
of a description with its definite component is defined by the function CHECK-INDEF,

S,' shown in Figure 8.

An equally correct version of this algorithm might check conditionals before checking

disjunctions. In our application of parsing with a systemic grammar it is generally more

efficient to check disjunctions before conditionals, but other applications might be made

more efficient by varying this order.

5 Representing Systemic Grammars
by Conditional Descriptions

In Section 2 we introduced conditional descriptions by showing how the systems of systemic
grammars can be represented by a type of bidirectional condition. In practice it is useful

to decouple the two directions of implication so that they can be applied at different times.
Generally, a system named f with input condition a and alternatives described by 0, can
be represented by two conditional descriptions:

1. a -. ;

2. 3f --+ a.

Note that the second conditional is not an exact converse of the first. A feature existence
condition can be used as the antecedent of the second conditional instead of the entire

description of the alternatives of the system (fl). For example, the DoingType system,

originally shown in Figure 3, is represented in FDL by the two conditional descriptions

shown in Figure 9.
It is important to note that the second type of formula used in this translation - a

feature existence condition - is used for systems with simple input conditions as well as for

9

Function CHECK-INDEF (desc) Returns feature-description:
where desc is a feature-description.

Let D = desc.definite (a DG).
Let disjunctions = desc.disjunctions.
Let conditionals = desc.conditionals.
Let unchecked-parts = true.

While unchecked-parts, do:

unchecked-parts := false.

Check compatibility of disjunctions with D.

Check compatibility of conditionals with P.
Let new-conditionals = 0.

For each a --+ P in conditionals:
test whether P satisfies or is compatible with a:

SATISFIES: P := UNIFY-DGS (P, #.definite),

disjunctions := disjunctions U #.disjunctions,
unchecked-parts := true;

COMPATIBLE: If P is compatible with D,
then new-conditionals := new-conditionals U {a --

else let neg-ante = -'a,
V... P := UNIFY-DGS (D, neg-ante.definite),

disjunctions := disjunctions U neg-ante.disjunctions,
unchecked-parts := true;

INCOMPATIBLE: this conditional imposes no further constraint.
end (for loop).

conditionals := new-conditionals.
end (while loop).

Let new-desc = make feature-description with:
new-desc.definite = D,
new-desc.disjunctions = disjunctions,

0.9 new-desc.conditionals = conditionals.

Return (new-desc).
V..

Figure 8: Algorithm to check compatibility of indefinite parts of a feature-description.

10

%1 - .

-qtO . , . P : = .N! .P . . -. ,. .7,
"

- . P ., ' . , , P J: f - . V*.. Jt2. -. J.
m

. , .V - : = = .

[DoingType Creative

[Agency Effective 1 PROCESS VerbType CreationVerb
ProcessType: Material [DoingType Dispositive] I

PROCESS VerbType Dispositive

S DoingType [Agency Effective j
ProcessType : Material

Figure 9: Translation of DoingType system, using two conditional descriptions.

those with complex input conditions. The use of the feature existence condition is essential
in both cases to encode the bidirectional dependency between systems that is implicit in
a systemic network. In our implementation of a parser, feature existence conditions are
checked in a more efficient manner than other conditional descriptions: a feature existence
condition with 3f as its antecedent only needs to be checked immediately after a feature
with label f is added to a structure.

.. 6 Potential Refinements" "Several topics require further investigation regarding conditional descriptions. The imple-
*" mentation we describe has the constraints of conditionals and disjunctions imposed in an

arbitrary order. Changing the order has no effect on the final result, but it is likely that
the efficiency of unification could be improved by ordering the conditionals of a grammar
in a deliberate way. Another way to improve the efficiency of unification with conditionals
would involve indexing them by the features that they contain. Then a conditional would
not need to be checked until some feature value determines whether it is satisfied. The
amount of efficiency gained by such techniques clearly depends largely on the nature of the
particular grammar being used in an application.

A slightly different type of conditional might be used as a way to speed up unification
with binary disjunctive descriptions. If it is known that the values of a relatively small
number of features can be used to discriminate between two alternative descriptions, then
those features can be factored into a separate condition in a description such aq

IF condition THEN alt1 ELSE at2.

When the condition is satisfied by a structure, then alt, is selected. When the condition
is incompatible with a structure, then alt2 is selected. Otherwise both alternatives must
remain under consideration. As it often requires a considerable amount of time to check
which alternatives of a disjunction are applicable, this technique might offer a significant
improvement in an application where large disjunctive descriptions are used.

Remember that we have restricted conditionals by requiring that their antecedents do
not contain path equivalences. This restriction has been acceptable in our use of conditional
descriptions to model systemic grammars. It is unclear whether a treatment of conditional
descriptions without this restriction will be needed in other applications. If this restrictionis lifted, then further work will be necessary to define the behavior of negation over path

equivalences, and to handle such negations in a reasonably efficient manner.

Il

VY,--r -l e11

7 Summary

We have shown how the notational resources of FUG can be extended to include descrip-
tions of conditional information about feature structures. Conditional descriptions have
been given a precise logical definition in terms of the feature description logic of Kasper
and Rounds, and we have shown how a unification method for feature descriptions can be
extended to use conditional descriptions. We have implemented this unification method
and tested it in a parser for systemic grammars, using several hundred conditional de-
scriptions. The definition of conditional descriptions and the unification method should be
generally applicable as an extension to other unification-based grammar frameworks, as well

,~ as to FUG and the modeling of systemic grammars. In fact, the implementation described
4 has been carried out by extending PATR-II [9], a general representational framework for
*unification-based grammars.

It is theoretically possible to represent the information of conditional descriptions using
several notational devices already present in Kay's FUG. Conditionals descriptions can be
represented by disjunctions, as we have shown in Figure 4, and feature existence predi-
cates and their negations can be represented using the special values ANY and NONE.
Although theoretically possible, encoding conditional descriptions by disjunctions entails
approximately doubling the size of the description and slowing the unification process.
Therefore, by adding conditional descriptions, we have not changed the theoretical limits
of what FUG can do, but we have developed a representation that is more perspicuous, less
verbose, and computationally more efficient.

References

[1] G.R. Kress, editor. Halliday: System and Function in Language. Oxford University
Press, London, England, 1976.

[2] Kasper, R. Systemic Grammar and Functional Unification Grammar. In J. Benson
and W. Greaves, editors, Systemic Functional Perspectives on Discourse: Selected Pa-
pers from the 1 2 th International Systemics Workshop, Norwood, New Jersey: Ablex
(forthcoming). Also available as USC/Information Sciences Institute, Technical Report
RS-87-179, May 1987.

[3] Kasper, R. and W. Rounds. A Logical Semantics for Feature Structures. In Proceedings
of the 2 4 th Annual Meeting of the Association for Computational Linguistics, Columbia
University, New York, NY, June 10-13, 1986.

[4] Kasper, R. Feature Structures: A Logical Theory with Application to Language Analy-
sis. PhD dissertation, University of Michigan, 1987.

[5] Kasper, R. A Unification Method for Disjunctive Feature Descriptions. In Proceedings
of the 2 5 " Annual Meeting of the Association for Computational Linguistics, Stanford
University, Stanford, CA, July 6-9, 1987.

[6] Kay, M. Functional Grammar. In Proceedings of the Fifth Annual Meeting of the Berke-
ley Linguistics Society, Berkeley Linguistics Society, Berkeley, California, February 17-
19, 1979.

[71 Moshier, M. D. and W. C. Rounds. A Logic for Partially Specified Data Structures. In
Proceedings of the ACM Symposium on Principles of Programming Languages, 1987.

12

04

NI . I,

[8] Pereira, F.C.N. Grammars and Logics of Partial Information. In Proceedings of the
International Conference on Logic Programming, Melbourne, Australia, May 1987.

[9] Shieber, S. M. The design of a computer language for linguistic information. In Proceed-
ings of the Tenth International Conference on Computational Linguistics: COLING 84,
Stanford University, Stanford, California, July 2-7, 1984.

13

,d~ h

04% I/'
,6

it
V ,

