
DISTRIBUTIONS OF QUADRATIC FORMS

BY

MARY ELLEN BOCK and HERBERT SOLOMON

TECHNICAL REPORT NO. 398

NOVEMBER 24, 1987

.7-

Prepared Under Contract

NOC014-86-K-0156 (NR-042-267)

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted

for any purpose of the United States Government

Approved for public release; distribution unlimited. COPY

Accesion For

NTIS CRA&I

DEPARTMENT OF STATISTICS DT1C TAB
L1I

STANFORD UNIVERSITY -...---,.-".,

STANFORD, CALIFORNIA . . . . . . .

Fy

% -e
%w



Section 1. Introduction
For independent chi-uquare variablesy and x3"with m and n degrees of freedom, Jr

respectively, we consider the quadratic form .

ClX2m + C2Xn 0-.

where the positive ci are distinct.

This paper gives exact finite expressions for the distribution of Q in terms of available

functions such as the distribution function of chi-square random variables, modified Bessel

Functions, Dawson's integral. (tabled in Abramowitz and Stegun (1964)) as well as the

distribution of + C2X* (tabled in Solomon (1960)).?,These formulas are useful for

checking the accuracy of approximations and tables of the distribution of Q and provide a

simple alternative in their absence.

For large m and n, reasonable approximations to the distribution of Q are available.

For the general quadratic form Williams (1984}ompares algorithms for truncations of

infinite series expansions of the distribution. (See Johnson and Kotz (1970).) Oman and

Zacks (1981) give a mixture approximation and Davies (1980) provides an algorithm for

an approximation. For small values of m and n, tables for the distribution of Q are given

by Harter (1960), Johnson and Kotz (1967), Marsaglia (1960), Owen (1962), and Solomon

(1960).

Distributions of the form Q arise in a number of applications. Solomon (1961) noted

that probabilities of hitting targets frequently reduce to the distribution of quadratic forms

of the type Q. Pillai and Young (1973) show that the trace of a 2-dimensional Wishart

matrix is distributed as Q with m and n equal. The variable Qf arises in the engineering

literature described as a weighted unbiased Rayleigh variate of dimension two. (See Miller

(1975)). A very important application is the distribution of chi-square goodness-of-fit tests *

with estimated parameters. Certain two-sample chi-square tests described by Moore and

Spruill (1975) have asymptotic distributions of the form Q. Alvo, Cabillo and Feigen

(1982) show this for the average Kendall tau statistic. The distribution of Q for small m

and n for the average Kendall tau statistic is provided as an example in Section 3.
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The exact expressions for the distribution of Q may also be useful for approximations

for more general quadratic forms, especially in the case where there are essentially two

groups of coefficients nearly alike within groups, i.e. the distribution of Q is an approxi-

mation for the distribution of

where a, z Ci = 1,... ,m and a ft C2,i m + 1,...,m + n. The exact expressions for

the distribution function of Q are given in the next section.

Section 2. Exact expressions for the distribution function of a linear combination of

two chi-square random variables

The results in this section give exact expressions for the distribution function of

q = 2 X2

1m + C2X

where the positive c1 are distinct and X. and Xn are independent chi-square random

variables with m and n degrees of freedom respectively. The first theorem handles the

case where at least one of m and n are even. Corollary 2.5 gives an expression for the

distribution of Q in terms of that of a quadratic form with fewer degrees of freedom. This

corolary can be applied repeatedly to give the distribution function of

2 2
ClX2k+l + C2X21+l

in terms of modified Bessel functions Io and I1 and the distribution function of "

(1) 2 (2) 2
Q1 =c 1 x1 +€c2 XI

Tables of the distribution function of Q, are given by Solomon (1960) and tables of I0 and

I are given in Abramowitz and Stegun (1964). In an example, a representation for the
distribution function of .(1)x + () g .

The following theorem gives the distribution of Q unless both m and n are odd.

I
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Theorem 2.

Let x and X2& be independent chi-square variables with m and 2k degrees of freedom,

respectively. Then

[k-I

2[4  + > 1] Pxn>al+E8p X(-)>ado 4 =OI

where
a;= o -a , - r (-) (+

If aI > ao,-y isP 2 < a, - ao If a, < ao, and m is odd,

2D e(1) (Go-61)t+(.

c 7r r(t + )

where D(y) is Dawson's integral tabled in Abramowitz and Stegun (1964).

Remark: Note that the result in the theorem is completely general since we may write
*1

P c1X2 X+c2X > D [ + X2 > 1 ..

where ao= cc, and al C=c21

Proof:

=P X2 <aandX2 k> aX ]
r r 2 11l

= (X2< GJX2k > -ja Ix •

Hence,

=f u 1 e ~ (k1 j&T~ (- --i (.±LZ.r) '
241= 1 Z ;=o du

rVM2- j=0

r(m)2L (Fi -!
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Equation 3.393, #1, p. 318, of Gradshteyn and Ryzhik implies that the integral above is

+10 (M,j+ 1)1 Fi, + 1 + --; (ao- a1)/2) where IF1 is the confluent hypergeometric

function.

For ao < a,, a theorem of Bock, Judge and Yancey (1984) implies that for odd m,

1'(7) 1(a, - ao)/2]~ i,,(fn,, + 1 + m; (do - a,)/2)
2 T'

_ (~1(m1)/2 j+(-+ 1)/2 -)-2.)EP 2 _ < a, o

(r(- +j+ 1F) 1  (- m1)(j+ 2 -t=(m+1)/2 2 2

Applying these to the integral we have we may write () as

r_ 2) -(a I- ao)j 2

+ (t- , ).-., -'P[x _ < a,-o]

(t- ( - l))I(j + (m+) -

Interchanging the orders of summation and setting = t - (+') above gives (*) as

S+ -_- )-P )I,+U <a ,- ao]
.. r(1j ) , i!(- -2) ( 1 - o)a -d=

Because

.5~19 ____ i ,
2 ->

we can substitute this in the last expression for () and the theorem is shown for do < a I

and odd m. A corresponding evaluation of 1F1 (-,j + I + '; (ao - a,)/2) for even m gives

the same result here and the definitions of "y, and 8, complete the proof of the result for

a1 > ao. If a, < ao, then a theorem of Bock, Judge and Yancey (1984) implies that for

5.. 0 S*'. ,d



odd m, r(m) M . .r( 1 ,F( ,j + 1 + -; (a - a,)/2)

r(-+ ++1) 2+-)

V! -o) ,o r(t + ] c

Thus

/ _ _ _+ )•:::

2 2p

Setting i =j - .s and interchanging the order of summation for i and j gives "

2 2==

,- 
+

Thereuloote - r(i+ 3 )-

Sheut o a nditheorem follows because

I = ,X( 0
a ce tra. c( d b ti nt o L3

',2

T c onr la ry toi-qu e nex diter emt i ves and epre ent ton. for ( the driityo of in
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Q= W + cox2 where co > 0. For c > 0, and n > 2, .

P [W + Cox2 > c] = (2co)fQ.(c) + P [W + COX2. 2 > C]

If n= 2,

P [W + Cox > c] = (2co)fQ,(c) + PLW> (W.

Corollary 2.3. For the quadratic form

Q I2 + C2X2n,

we have

I[Q > c] =2C2Q(C) + p [CIX + C > c]

where fQ(x) is the density of Q and X2 0. 

Proof of Theorem 2.2. Let Qn = W + coX,. Let fQ. (z) be the density of Qn. Then

d[p [W + CoX2 < C]].J

fQ -(C) =7cn

We may write P-<

n,, dFw du
COPt~/- [1/2+-t)/C0<t] a d

where t = c - cou is the change of variable. _.

Differentiating this last expression implies -L

--. - -)

fQ,,(c) = (2o)'{I(n > 3) o/ dFwdt.

10 3) o(2jWa22-1 1

+ I(n = 2) dFw] + (-1/ Cor)]dFwldt}

- (2co)- 1 {l(n > 3)P[W + CoX,-2 el + J(n 2)PW <c - PW + Cox" <c c}.
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-, The following theorem gives the density of Q in terms of a confluent hypergeometric

function.

Theorem 2.4. Let n and n be positive integers and let CI,C 2 and c be positive. Then the

density of

Q = CIX2 + 2

is
Y (m+n)/2-Ie-v/2cj n, m + n .-1 IfQ (Y) = r(-+)(2c,)-/2(2C2 )n/2' IF ,- ;, -; ) 1) ,,

for y > 0 where X2 and X2 are independent chi-square random variables and 1F1 is the

confluent hypergeometric function.

Proof. Let Wi and W 2 be independent random variables such that WI/cl has a chi-square

(m) distribution and W 2/c2 has a chi-square (n) distribution. Then the density of W , is

xm/2-1 e - z/2c1

for x > 0.
..

The density of W2 is
zn/2-1e-z/2c2

for > 0.

Then the density of Q = WI + W 2 is

e-h')= f((y - x)h2(z)dz

The integral in parentheses can be written as

n m +

r f n+,%) IF( 2 l C

8
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"t..1

Thus, for y > 0,

J2cf~m+vt2-1vv, (nI . -1.-
_2,Thus, for ZT, -r-> O-C 2 J3

=' r+)--t(- )(2e.)m/(2,c,)/2 .II

The following is a direct result of Corollary 2.3 and Theorem 2.4.
.

Corollary 2.5. Let co, cI and c be positive and assume that chi-square variables are inde-

pendent in the following expressions. Then if m > 2,

P[CoX, + CX, > C1 = P [CoX, 2  + CX, > +

.. ft.
-2n m.n >C

CcC)m+n/2-1 Cc/2co nm+nc
p(m+n) ,m/2Cn/2 c- C).r( _~c 2~2 C ( 2 2 2(~

For m = 2,

P[CoX2 + C1X2 > C] = + x',> +

2c__, c/2 coF

r(. + 2) 2 1 2 o

Remark: Repeated applications of Corollary 2.5 enable one to evaluate the distribution of

Q when m and n are odd since

(mr-,m, Yt) r ()m •

where I(M_1) is the modified Bessel function. (See Equation 13.6.3 of Abramowitz a.nd

Stegun (1964).)

Examples:

(a) For C2 < c1 and y/= T - c'), we have

PcixI + C2X 2 > cl = P x> ]

9



andP[CixX' + C2 4 >] -]+

- 2c rC
e 00 ( D ~(-. +- [iY-]) - ___

(b) For d, =c/4ci, I = 1, 2,

cX2 > C1 pI41Cx + (2)2
PCX3+ C21 1= i C2 Xi > -'+

Vi4dYd C'-' {Io(d 2 - di) + I, (d2 - dl)).

and
2 (2) '2 pCIX + (2)X2>C]

P[C~i X3 +C 2 X32 >i- C 2 1 1 ()..2 1

(d, +d2 (d, + d2 )
e- 4dI d) 0 ( I- d2 ) +d - 1 (dI - d2 )}

For instance with cl .25, C2 = .75 and c = 1.8, we get after substitution,

P[.25 X2 + .7X > 1.8] 22

Furthermore with ci C2 3 and c = 8, we get after substitution

X11 2 +2 (2) X >81

It is instructive to test an approximation for the two probabilities Just evaluated. We

replace the random variable Q = c 1 X 1 M -- 2X by (c)' and obtain values of c. p. and k

by equating the first three moments around the origin of the two random variables. When

the three parameters are computed we need refer only to the usul values for p degrees

of freedom to obtain percentiles of the distribution. If the first three moments of Q about

the origin are p, M', and u'3, we have p

p=(2C)kr(k + v)/C V

ju2 =(2C)kr(2k + v)/C

ju 3 =(2c)
3k13k + v)/C

10k
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where v = p/2 and C = r(t).

It is convenient to define 60 ,

R2 = ,/2=cI(2k -rt±J~ -- V)

R 3 = P'/p' = c2 r(3k + r)/{'(k 3 
1)RN

We first calculate R 2 and R 3 from the moments of Q and solve for k and t. then

c is obtained. Computer routines are a-ailable to perform these operations and then to

calculate probabilites of L2 even with non-integer degrees of freedom. Thus probabilities

for Q may be approximated. since we have

P{Q < q} =PJX < (ql/k)/C

See Solomon and Stephens (1977. 1980) for further description of the procedure.
In our examples. suppose firstly Q = .25k + 75. Fitting (cX)k , we get c = -

0.13015,p = 9.08011. k = 1.70, and so Q - (0.13015 oso1) ° and P{Q > 1.808( ._91 .)

By exact methods we obtained P{Q > 1.84 = .2920.
Secondly consider Q = -+ 2 By equating moments we get c = 0.32851.p

7.54926. k = 1.18 and Q - (0.3285X3-54926) 1 18 and P{Q > 8} = .01834 as contrasted

with .018318 from direct calculations. It can be seen that the (cX )k approximation gives

excellent results. Other examples are given in Solomon and Stephens (1977, 1980).

Section 3. Example: the average Kendall tau statistic

For the rankings of r objects by n judges, the average Kendall tau statistic, f, is

the average of Kendal's rank correlation between each of the (2) pairs of judges. The

null hypothesis is that the r rankings of the judges are picked at random from a uniform

distribution on the r! possible rankings. As n --* oo, the null distribution of

3r(r - 1)(nf, + 1) 3r-

i that of

11Z
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Q = (, + )x2_1 + X 2,)

where ( 2 1 is the binomrial coefficient. (See Alvo, Cabilio and Feigein (1982) for this result

and discussion.) The results in this section are derived from the results of Section 2 using

algebra.

For r = 3,16

For r 4,

+ -- e _ 7 5 1 o( ) + 1.5 1,( j I)

where Io and r, ae modified Bessel functions tabled in Abramowitz and Stegun (1964).

Tabes f PcM 2 c(2) X2 >c] aegiven in Solomon (1960). If tables of non-central chi-
Tables ~ ~ ofPcIX 2  1]> r

square distribution functions are available, we may use the exact expression that follows%

where A and B ae non-centrality paramneters.

PS)X1 +( X1 > t]

P[X2 A <  - P[X, B] -

where

t 3.

72p

B = (3 + 0 ).

72S

Now for r 5 ,

[X + X2 > t]

=P[X2 > t]+ p [X2< 5_] (_')(")3p [X2, 6]

2 5t (6 p[X > t]+.(-) +

Ty¢ (.6912 + .144t)P x -

1 -"

whre(~)i tebioma cefiint (e Av, a i j ndFigi (98)fo hi1esl



The asymptotic distribution of T is summarized in the table below for small values of

r number of items Q = asymptotic P [Q > tj
ranked distribution of

13r(r- 1)
(nT, +1 2
as nl -~ 00

32 2, +?p[X2 > tj + 2 e-I4p [X2 < .

4 c.l0. 2 +(2). 2 D!5(l)X2 +(2)X2 >I tj+ -. 3t__

X3 x + - (Io.22)}
+ 2x[X > t] + 1te3+

ci*(.6912 + .144t)Px < 6i

13'
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20. *BSTRACT

Exact expressions for the distribution function of a random variable of the
form

C1)X C2 )(

2 2
are given where and Xn are independent chi-square random variables with

.5, n

m and n degrees of freedom respectively. (The positive ci are distinct.)

In particular, the exact asymptotic function for the average Kendall tau statis-

tic is written as a function of tables of Solomon (1960) and some found in

Abramowitz and Stegun's Handbook of Mathematical Functions.
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