
f-S 210 ELECTRWOANETIC SENSORti MlAS O NONDESTRUCTI l vi /
- EVMJMWTIGN AND3060? CONTROL(U) SRI INTERNATIONAL MENLO

PIN CR A J ~AN ET A.. OCT 97 AFOS-TR-97-1752
UMCLOSSIFIED F4 2 S-64-K-SIF/O 1/11 L

0 flfllflfmhhhlflfflf
,NONEfflllf~l~lf

Kill



' ) ~M~ ' - W ~-

.6.

to

%W __ 315
11%1w

% 1.'r12
YIIL 3



jiELEA2
AFOSR.T!. 8 7- 1 7 52

Final Annual Report October 1987

Covering the Period 1 September 1986 - 31 August 1987

0
ELECTROMAGNETIC SENSOR ARRAYS

": FOR NONDESTRUCTIVE EVALUATION

0 AND ROBOT CONTROL

By: A. J. Bahr A. Rosengreen

Prepared for:

Air Force Office of Scientific Research
Directorate of Electronic and Solid State Sciences
Boiling Air Force Base, Building 410
Washington, D.C. 20332

Attention: Dr. H. Weinstock
Program Manager, AFOSR/Electronic & Materials Sciences

Contract F49620-84-K-001 1

SRI Project 7711

Approved for public release; distribution unlimited. 
S

DTIC
ELECTE

JAN 06 19883

SRI INTERNATIONAL

333 Ravenswood Avenue
Menlo Park, California 94025 ,

(415) 326-6200
Cable; SRI INTL MPK
TWX: 910-373-2046"-'

!1n~tern~a~kma

-W N V

'~ /.' i pP~I*~.~s~' 4 .~: p "%



,%

Final Annual Report October 1987

Covering the Period 1 September 1986 - 31 August 1987 Uk

r0El ELECTROMAGNETIC SENSOR ARRAYS
~J FOR NONDESTRUCTIVE EVALUATION

AND ROBOT CONTROL

By: A. J. Bahr A. Rosengreen

Prepared for:

Air F -e Office of Scientific Research
Directorate of Electronic and Solid State Sciences
Bolling Air Force Base, Building 410
Washington, D.C. 20332

Attention: Dr. H. Weinstock
Program Manager, AFOSR/Electronic & Materials Sciences

< Contract F49620-84-K-001 1

SRI Project 7711 Aaoesslon For
NTIS GRA&I [€

Approved for public release; distribution unlimited. DTIC TABUnarmculic ed

Justifictc.

Approved by: _ _

TAYLOR W. WASHBURN, Director .. . ..

Remote Measurements Laboratory A va.?IbitIty C e*.3

LAWRENCE E. SWEENEY, JR., Vice President Z - t I Sp , Fia.,
System Technology Division

t< U,

SRI INTERNATIONAL, 333 Ravenswood Avenue, Menlo Park, California 94025

S R I (415) 326-6200, Cable: SRI INTL MPK, TWX 910-373-2046

* Internationall 'UP,-

''U"U



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE;

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED '

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBERIS,

FINAL ANNUAL REPORT, Project 7711 AFOSR.T-h 8 7 - 1 7 5
6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

SRI INTERNATIONAL T

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City State and ZIP Code) %

333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025 -. T -

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT iNSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if aPolicable)

USAF, AFSC AFOSR/NE

8c. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Building 410 PROGRAM PROJECT TASK WORK UNIT 0
ELEMNTJO. NO. NO ACCESSION NO

Boiling AFBDC 20332 Io 2306/4t

11 TITLE (.'nclude Security Classification)

Electromagnetic Sensor Arrays for Nondestructive Evaluation & Robot Control

12. PERSONAL AUTHOR(SI

A.J. Bahr and A. Rosengreen
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year Month. Day) 5 PAGE COUNT

FINAL ANNUAL FROM _gDJfLTOJ87nal_ 1987 OCTOBER 40
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse ,f necessary and dentfy Oy bloc* rumoel

FIELD GROUP SUB-GROUP > Sensor, arrays, nondestructive evaluation, robotics,-.%J1
01 electromagnetic, imaging, edge tracking- _- .

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The objective of this research program was to develop the theoretical models, design S
methodology, and technology needed for optimally applying near-'field electromagnetic

sensor arrays to nondestructive evaluation (NDE) and robot control. This program was
a collaborative effort by SRI International and Stanford University. This report
summarizes SRI's contribution to the program's third-year research activities.

SRI's work on this study has shown that small printedotircuit zingle-turn loops
exhibit good sensitivity when used as sensors. This technology allows ready fabrication

of high-tesolution arrays. By addressing different elements in the array and suitably Ile %
processing the resulting signals, different sensing functions can be realized with the P
same array. In particular, SRI has demonstrated the use of such arrays for edge tracking
and ranging (proximity sensing).,

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATIO •

rUNCLASSIFIEDUNLIMITED [ SAME AS RPT r OTIC USERS UNCLASSIFIED "a

22a N4AME OF REPQNSIBLE NDIVIDUAL 22b TELEPHONE Iticude Are Code) 22c OFF I E S' MS L N,,

Dr. H. einstock (207)767-4933 AFOSRNE p

DO FORM 1473, 84 MAR 83 APR eiton may ue ise Until exihawted SECURITY CLASSfICATICO CF Ti-iS P A3 E

All other editions are Obsolete

UNCLASSIFIED

%.



aorrmrrs I

LIST OF ILLUSTRATIONS ............. iii

I INTRODUCTION ........ ........................

II MODELING....................... 2 %

A. Fourier-Transform Method ........ ............... 2

1. Fields Above an Imperfectly Conducting
Half Space .......... .................... 2

2. Fields Above a Perfectly Conducting Half Space. . 8

B. Image Method ....... ..................... .. 10

1. Model ........... ....................... 10
2. Induced Voltage ...... .................. .. 13
3. An Example of Using a Sensor Array

to Determine Proximity .... .............. . 14

C. Reciprocity Integral ..... ................. .. 16

III EVALUATION OF INDUCTIVE ARRAY FOR NEAR-FIELD
EDGE TRACKING AND RANGING ..... ................. .. 21

A. Edge Tracking ....... ..................... .. 23
B. Ranging ......... ........................ .. 28

IV SUMMARY .......... .......................... .. 30

APPENDICES

A A TRANSFORMATION FROM k SPACE TO REAL SPACE ...... 31
B PROJECT INTERACTIONS ...... .................. .. 36 e

REFERENCES .......... ........................... . 38

ro1

"S7



ILLUSTRATIONS -

1. Rectangular Single-Turn Coil Parallel to the Surface
of a Conducting Half Space ..... .................. 3

2. Array of Square Concentric Single-Turn Coils . ....... . 15

3. Lift-Off versus Sensor-Voltage Ratio .. ........... .. 17

4. Cases Used in Reciprocity Model for Computing
Step Response ........ ....................... .. 18

5. Sensor Array ........ ....................... .. 22

6. Measurement System for Testing Sensor Array .......... . 24

7. Measured Discriminator Characteristics for Different
Edge Rotations (Channel I - Channel 2) .. .......... 24

8. Edge-Tracking Characteristics ............... 26

9. Step Response of a Differential Sensor Pair ........ 27

10. Ranging Characteristic of an Inductive Sensor Array ... 29 •

.. e

,, , ,

. _

._* '.1



I INTRODUION --

The objective of this research program has been to develop the

theoretical models, design methodology, and technology needed for

optimally applying near-field electromagentic sensor arrays to non-

destructive evaluation (NDE) and robot control. This program was a

collaborative effort by SRI International and Stanford University,

supported by separate contracts. SRI has studied several types of

electronically scanned arrays composed of inductive sensors, whereas 0

Stanford has placed emphasis on the use of capacitive sensors.

At SRI, we have found that small printed-circuit single-turn loops

exhibit good sensitivity when used as sensors.2 This technology allows

us to fabricate high-resolution arrays readily. By addressing different

elements in the array and suitably processing the resulting signals, we

can realize different sensing functions with the same array. In parti- %

cular, we have demonstrated the capability of using such arrays for edge

tracking and ranging (proximity sensing).

4.. _

. %

,..?.-

%

I%
f E'V ~ - v* *,,,,,% -- d t '



I IMDDELING

An inductive sensor array located over an imperfectly conducting

half-space can be modeled using the same Fourier-transform principles

applied by Dodd and Deeds to model eddy-current coils. 3 ,4  If the sensor

elements are further than a skin depth from the imperfectly conducting

surface, it is also possible to use a simpler, but approximate, image

model.5 ,6  We have developed both types of models for rectangular coils

under the assumption that the fields produced by a system of coils can be

computed by superimposing the fields produced by each coil in the absence

of the others.

A. Fourier-Transform Method 0

1. Fields Above an Imperfectly Conducting Half Space

Consider a current source like the rectangular, single-turn coil

shown in Figure 1, but of arbitrary shape with a current density vector

i(?). The quasi-static magnetic vector potential in free space for such

a source located in a volume v' is Ao(Y)exp(jwt) where

I. 0
A(-i') dv' (1)

4 ?r

and AO is the magnetic permeability of free space.

If the half space along the negative z-axis in Figure 1 is filled with %

a homogeneous material of conductivity a, the new quasi-static vector

potential A(?)exp(jwt) can be found by solving the equation ,.-

VZA(T) - - poi(f) + jti 0oA(?) (2)

2

P P
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FIGURE 1 RECTANGULAR SINGLE-TURN COIL PARALLEL TO SURFACE OF CONDUCTING ':

HALF SPACE

subject to the boundary condition that the x and y components of the

electric and magnetic fields be continuous at z - 0. The solution to Eq.%= ~...,,,

2 is exponential in z. The x and y dependencies are usually found by %m

performing a two-dimensional Fourier transform to k space, and then 
= -

inverse transforming the solution to real space. The two-dimensional,

Fourier transform has the form:,.,

a (k z Ai ( z) e j - '  d2 p i= x'y (3) .

where and kare the vector components of the position vector Y and the

wave vector in the xy plane, respectively (see Figure ). "

y%

From Eq. 2, the following equations for ai are obtained. For z :

1 %

,%



Kk

a2a > r
-k 2 a > + 2  i (,z) e j E ' d2p , (4)•8z 2  2w

and for z < O:

-k 2 a <  <
k2a< + -- j <-ai 0 (5)

az2

Following Beissner and Sablik4, the solution to Eq. 4 can be written as:

00
a>(k,z) - a?(kz) + Pi(k)e - kz (6)

and for Eq. 5:

a<(k,z) - yt1(k)eAZ (7)

*, In these equations

A- k2 + jwpoa , k - jkj (8)

* and

0- I 1
a0(k z) A n ii( ,z )e- ' -k Iz -z ' dv' (9)

4 irk

.
0-where a (k,z) is obtained from a two-dimensional Fourier transform of

AO(r) given in Eq. 1.

The unknown coefficients fi (k) and 7j (k) are found by matching tangen-

tial components of the electric and magnetic fields at the conducting

surface z - 0. From this condition, Beissner and Sablik derived the

following expression for the magnetic vector potential in the conductor:

4



A1Z)- 2 7 
a < (k,z) e 'P d2 k (10)

where < ky1
ax(k,z) - 2 k(A + k) [ka0(k'0) ka(k 0) I (11)

<- <-
a(z) - ---x a<(kz) (12)

and

a(k,z) - 0 (13)

However, in analyzing an electromagnetic sensor array, the electric and

magnetic fields above the conducting surface are of particular interest.

These fields can be determined by matching the expression for a (k,z)

(Eq. 6) and a<(k,z) (Eqs. 11-13) at z - 0. The resulting equations are

> [ k-A e 1Z
a,(k,z) - a0(k,0) ekz + -kzJ (14)

>-k > -(
a (k,z) - - a>(k,z) (15)

and
C> -

az (k,z) - 0 (16)

The electric and magnetic fields above the conducting surface, E> and H,

are then determined from

5
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-.

E (Y) - - j A>( ,z) (17)

and

H>(r) > Y 7 x A >(,z) (18)
0-

where

P

Aj ,z) - a>(,z)ejP d2k .(19)

Now consider the special case shown in Figure 1, where we have a single-

turn, infinitely thin, rectangular coil carrying a current I in a plane

parallel to the surface z - 0. To find the electric and magnetic field

for this configuration, we must find the current density ii so that
0-

aj (k,z) can be calculated from Eq. 9. These current-density components

can be written as

ix(x,y,z) - IS(z-zO)(6[y-(yO-a) 6 y-(yo+a) rectL2 (20)

and -. '.'

iz(x,y,z) - 0(22)zbb(

Inserting these expressions into Eq. 9 we obtain -'.

a°(k, z) - j kk x sin(kxa) sin(kyb) e-J -'P0 e-z-0 (23) \.

(kz) - a(x(2)

ky %"

6
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and

(k, z) 0 (25)

Combining Eqs. 23 and 14 and inserting the resulting a>(k,z) into the

integral of Eq. 19 results in very complex integrals because of the

factor (k-A)/(k+A) that occurs in the expressions for a>(k,z). This

factor also appears in the image theory for this problem 5 , where it is

shown that it can be approximated by

k-Xk- "exp(-kd) (26)

k+A

when the receiver (sensor array) is more than a skin depth away from the

conductor surface. The factor d in this expression is related to the

skin depth

6 - J2/(wpOa) (27)

by the relation

d - (l-j)6 (28)

Using the approximation given by Eq. 26 we obtain

> .- 2d kO

a (k,z) =2aO(k,) exp(-kd/2) sinh[k(z + ) (29)X X 2

For a perfect conductor (a m), d = 0 and Eq. 29 simplifies to

a>(k,z) = 2a0 (k,0) sinh(kz) (30)

7
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Comparing Eqs. 29 and 30, we note that, if the factor exp(-kd/2) is

I included in the expression for a0 (k ,0 ) in Eq. 23, the approximate solu-"-

tion for the case of a conducting half-space with finite conductivity is %

the same as that for a perfectly conducting half-space, except that z isg

replaced by z + d/2. This result will be discussed further in a sub- a

sequent section on image theory.

2. Fields Above a Perfectly Conducting Half Space

When ax(k,z) in Eq. 30 for a perfect conductor is used in Eq. 19, the

following expressions for the electric and magnetic fields are obtained
from Eqs. 17 and 18 for z x i: d

i Edythe expr sinh or a 0() nk,O)et' t d2k (31)olu

X(xyz) as ta fy cosh(kz) a 0 ( ,p)e , xcp d2k (34)

Hy(x'Y'Z) " --. k c osh (k z ) a0(kO)eji-'T d2 k  (35) ..

Hr (xy z ) - 0 (36) -.
%

The integration onns are evaluated usingtheory

sine and cosine tranforms that are discussed in Appendix A. The results .. '

are:..

, 2.,

8
P%



SiF
* E~ [F.,(-z~p,, -p;) + Fx(-Z,-pxl -p.) +

Fx(z,p ,p;) + Fx(z,-p ,p;) -

Fx(-z,px,p,) + Fx(-z,-p.,p;) +

Fx(z,p,,,-p) + Fx(z,-p,,-p;) (37)

where

Fa(z, p,+p) - n + (a ± p) + (b ± + ( 0 ± z
F( (±z' 1."I (b ± p; + (z± z)J

(38)

and p; and p; are the x and y components of the vector P-TO" Ex

consists of eight terms containing all possible combinations of the

* variables ±z, ±p;, and ±p;. Ey is obtained by changing the sign of the

right side of Eq. 37 and making the following substitutions in Eqs. 37

and 38;

a ,b, b a, P; -; and ' -' (39)

Finally,

Ez -0 (40)

Similarly, H can be written as

~ s~gnS~jgn

~ - - ~ ~±,±p,-P-,Py) (41)
H / - s g Gy(___z +-PX',-Py) - Gy(__Z -.z ' P )( 1

9,...

L~



where

(z0 ± z) (a ± p;)

(b ±p;) + (zo ± Z) 2 (a_ p; 2 + y (b-p2

(42)

sign
The symbol in Eq. 41 denotes the sum over all possible sign %

combinations of the variables in G so that each sum appearing in Eq. 41

consists of four terms. Hx is obtained by making the substitution shown "

in Eq. 39 in Eqs. 41 and 42. Finally,

Hz - 0 (43)

B. Image Method

1. Model :j

The Fourier-transform method used in the previous section is quite

powerful and provides an exact solution to the problem of calculating

the fields generated by a coil over an imperfectly conducting half

space. However, this method leads to integrals that must be evaluated

over infinite domains in the complex plane, which may be difficult to -

do. Therefore, for such half-space problems, it is usually simpler to .
use image theory. Of course, image theory is only exact for perfect.0

conductors, but, as has been mentioned in Section II-A-I, it can be

extended to apply to imperfect conductors in an approximate, but simple,

way.

To develop the image theory for a rectangular coil lying in a plane

parallel to a conducting half space, we again refer to Figure 1. The

current, I, flowing in the coil produces a vector potential, A+, in the 0

absence of the half space given by

10



B'pi

*x +a
A:()-/OI[ (e-)j k  

- e'kR 3  dx' (44a)
"X-w- [ R1  R3

xo -a

and

Yo +b

AO-jkR 2  e-jkR 4  dy(4b
+ e
4 )j { 2 R

Y0 -b

where

R, - (x - x')2 + (r; + b) 2 + (z - z0)z (45a)

R2 - (r; -a) 2 + (y - y') 2 + (z - z0 )
2  (45b)

R3 - (x - x') 2 + (r; b) 2 + (z - z 0 ) z  
(45c)

and

R4 - (rx + a)4 + (y y,)2 + (z - z (45d)

The quantities r;, r; in Eq. (45) are the x and y components of F'.

The integrals in Eqs. 44 are easily evaluated under the quasistatic

approximation kR << i. The results are

%'
%.



+ 0 1  R(f;-a, b) - (r-a) [R( ';a,-b) (r,+a) IA, ()-f I- n (46a) A

,'a,b) (r,'+a)][R(Y';-a,-b) (r-a)j}

and

[R(-f''-a,-b) (r-b)][R(Y''a b) - (r;+b) , S1401 , ,
(r (46b)

{[(';-a,b) (r +b)][R(?';a,-b) (r -b)]

where

R(/';+a,+b) (r, + a)2 + (r; + b)2 + (z z0 )2  (47)

For a perfectly conducting halfspace, the vector potential, A-, due to
the image current can be obtained from Eq. 46 by letting I - -I and = 0
z- -z 0 . The total vector potential is just the sum of the two parts, (WV-

viz.,

A(r) - A+(F) + A (Y) (48) -

Finally, the electromagnetic fields can be found from the vector

potential by using the relations

E(?) =-jwA(-f) (49a)

and

H(Y) - (i/po) V x A(?) (49b)

12
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It can be shown that these equations are identical to those obtained in

Section II-A-2 using the Fourier-transform method.

For an imperfectly conducting half space, it has been shown5 that the -

fields above the half space can be determined to good approximation by

placing the image at a complex depth -(zo+d) where d is given by Eq. 28.

Similarly, for an imperfectly conducting layer of thickness t on top of

an imperfectly conducting half space, an approximate image model can be

6% a-obtained by using6

.- %

d = (1 - j)SQ (50)

where

I - e-4t/(1j)6

Q (51) 0
1 + e-4t/(1 

j )
-

% %

Although approximate, these formulas allow us to model imperfect

half-space and layered half-space problems in a very simple way.

2. Induced Voltage

To compute the voltage induced in different sensor coils by a ,/'p

separate exciting (driver) coil, we use Faraday's Law 0

Vsense -jw (VXA) dS (52)

where S is the surface area enclosed by the coil. Alternatively, we can

use Stoke's Theorem to write this equation as a line integral along the A.1
conductor that defines the coil, viz.,

13
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€0"

VSense -jw A din (53) 

I..

This latter equation is simpler to evaluate since it uses A directly.

Note that throughout our development, we assume that wire in the coil has

very small cross sectional dimensions so that the current in the coil can

be represented by a delta function in this cross section plane.

3. An Example of Using a Sensor Array to Determine Proximity

The response of an inductive sensor array depends on its proximity

to (lift-off from) a nearby conducting half-space. Thus, it is of

interest to examine the possibility of inverting the array response to

provide a quantitative measure of the distance of the array from the half

space .

As a simple example, consider the array of concentric rectangular

coils shown in Figure 2. The outermost coil is an exciting coil, and the

inner coil is a sensor. The coil axes are assumed to be perpendicular to

a perfectly conducting half space, and the coils are located at a

distance zo above the half space (if the half space is imperfectly

conducting, the approximations discussed in Section I1-B-1 can be used in

analyzing this problem). The problem is to determine zo, given the array

response.

From Eq. 53, the voltage induced in the inner coil by the outer coil

is .

p.. --

14 V,,

o,.',

.9 A&
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-v aues o A+ a of Eq.•4to E

nosadr inegage tefrm}(4."

JLD
S.

=%

-- a

FIGURE 2 ARRAY OF SQUARE CONCENTRIC SINGLE-TURN COILS •1
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In f X + Y - X dX (55)

This integration has been carried out symbolically using a computer

program called MAXIMA, and the result is

/ X2 + + y + X In [X +Y2  X (56)

To avoid a need for system calibration, we assume there are two sense 0

coils, one inside the other, and calculate the ratio of the voltages

induced in them by the exciting coil. For this calculation, we assume

that both the source and detector impedances are large enough so that

back reaction of the sense coils on the exciting coil is negligible, as

is interaction between the sense coils.

The normalized lift-off distance, z0 = z0/a is shown in Figure 3

plotted versus the voltage ratio computed using Eq. 54. The scale of the

inner sense coil was taken to be a - 0.2, while the size of the outer 0

sense coil was allowed to vary through the values of a shown in the

figure. We see that, the larger the outer sense coil, the better the

resolution for determing z0 . For a - 0.8, the lift-off, z0 , can be

determined most accurately for values of z0 between about 0.03a and 0.3a. •

C. Reciprocity Integral

So far, our modeling has been concerned with a relatively simple

geometry, namely, a half space. It is also important to model situations ,

where the sensor array is scanned parallel to the surface of the half

space in order to detect or track discontinuities in this half space.

The reciprocity method described by Auld7 is useful for this purpose. We "

illustrate this method for the case where there is a step in the surface

of a perfectly conducting half space.

16
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To compute the result of scanning a perfectly balanced differential

sensor pair across a small step in a conducting plane requires that the E

and H fields produced by the two coil configurations shown in Figure 4 be

computed. Using these fields, the step response of the sensor pair can

then be computed by evaluating the following reciprocity integral for

each sensor-pair position (xO ,yO ,zO):

H() X (2) (2) X z dxdy (57)

Va VaVb

In this equation, the superscripts refer to the two cases defined in

Figure 4 and 9, is a unit vector in the z direction. The integral is

evaluated on the plane z - 0.

CASE Id*

Az

# DRIVE
COIL

77Z//27777777/7a - -J~

DRIVE COIL EXCITED; e."
TEST PIECE PERTURBED

* CASE 2

--SENSOR

LOOPS eZ
¢¢ -.

Vb 
".-%

4 0.
SENSOR COILS EXCITED;

TEST PIECE UNPERTURBED

FIGURE 4 CASES USED IN RECIPROCITY MODEL FOR COMPUTING STEP RESPONSE

a.,.-a

%'
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For a perfect conductor, Eq. 57 can be simplified by making use of the

vector identity

A
rE X9) E- ( X H- (i. X(58)

Since az x E is proportional to the component of E tangential to the x-y

plane, (E(2) x H(1)) " 0 everywhere on the plane z - 0. Similarly, Si,

(E(1) x H(2)). Z also equals zero on this plane for y < 0. Hence, Eq. e

57 reduces to 0

V2 b (1) (2) (1)-(2

-4)H 1 H dy (59)

This formula is exact. However, there are no analytic formulas for S

calculating the electric fields in case 1, and approximations are often

used. The approximation we have used to compute the results given in

Section III-A is to assume that there is no step in the conducting half

space, but, rather that the half space is displaced downward everywhere

from z - 0 by the step height. This should be a good approximation if

the step height is small compared to the radius of the drive coil used in

case 1. -'. '

Similar simplifications to Eq. 57 can also be achieved when the

stepped half space is imperfectly conducting. For example, if we assume p

that the tangential fields Et and Ht are approximately related by a

scalar surface impedance B , Z , viz.,

Z..

az X E ZHt , (60) r. W,
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then

*E( X H(2) E(2 x H(1) AZ 5 _H(' j(2) (61)

where

0AZ~ O z1 ( 2) (62)

IfZ is known at the conducting surface, then Z, on z =0 for y > 0

can be estimated using the well-known transmission-line impedance-

S transformation formula. Although, in general, the ratio of Et/Ht varies

with position on the surface under a coil9 , use of a surface impedance in

this manner should be a good approximation for good conductors.
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* III EVALUATION OF INDUCTIVE ARRAYS
FOR NEAR-FIELD EDGE TRACKING AND RANGING

In previous work on this project, SRI demonstrated that small

single-turn printed loops can be used as sensors with sufficient

sensitivity to be useful in NDE and robotics and that printed-circuit

techniques facilitate the fabrication of arrays of small loops to provide

electronic scanning with high spatial resolution. To further evaluate

this capability, we have built such an array and have evaluated its use

for closed-loop edge tracking and for ranging (proximity sensing).

The sensor elements used in this work consisted of single-turn

rectangular loops with inner dimensions of 0.030 by 0.050 in. The loops

are printed on circuit boards using standard techniques, and the width of

each printed line is 0.005 in. A typical arrangement of two rows, each

with four loops, is shown in Figure 5(a). The center-to-center spacing

of adjacent loops in a row is 0.070 in., and the distance between ad-

jacent printed lines of two neighboring loops is 0.010 in. To complete

the probe system, a magnetic drive field is provided by a 30-turn, 0.5-in.

square coil (not shown), with its axis perpendicular to the circuit board.

This arrangement results in a two-port probe (called a reflection probe

in eddy-current testing); the drive coil is the probe's input, and the

sensor loop(s) is (are) its output.

To detect an edge or groove in a metal surface, it is best to mini-

mize lift-off sensitivity by connecting an adjacent pair of sensor loops

differentially as shown in Figure 5(b). For the edge-tracking experiment

described below, we used the signals from the two staggered pairs of

sensor loops designated as Channels 1 and 2 in Figure 5(a). On the other

hand, for ranging (lift-off) measurements, we used the signals obtained

separately from each of the four loops in a row.
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Addressing the loops in pairs or individually was accomplished using a '

thin-film, four-channel read/write amplifier made by Silicon Systems (SSI

520). Channel selection in this amplifier is controlled by the data

acquisition computer. The two l-kO potentiometers shown in Figure 5(b)

~are used to balance the inputs from the two loops (for the differential

~connection) and to provide the proper input impedance for the amplifier.

For single-loop measurements, the resistance of each potentiometer was

set to 100 0.

A block diagram of the measurement system used on our experiments

is shown in Figure 6. The probe's drive coil is excited by a stable

generator operating at 250 kHz and an available power level of 0 dBm.

This drive level gives a sensor-loop voltage level of the order of 10

AV. The output from the differential amplifier is filtered by a 250-Hz".

crystal filter, amplified by 60 dB, and measured by a Solartron computing..

voltmeter (Model 7151). The level of the signal voltage measured by the

voltmeter is of the order of 1 V, and the corresponding background noise
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level is about i mV. The digital value of the voltage measured by the

voltmeter is then fed to an HP1000 computer. This same computer also "A

selects the channel to be measured, performs any required computations on

the measured voltages, and using a suitable algorithmic interpretation of

these voltages as a basis, controls the position of the X-Y stage.

A. Edge Tracking

Tracking an edge requires that the sensor array generate a discrimi-

nation function such that a change in the sign of the measured voltage "%

indicates the proximity of an edge. Such a discrimination function can

be generated by subtracting the outputs of Channels I and 2 shown in S

Figure 5(a). Three discrimination functions measured using our array I

are shown in Figure 7. These functions were obtained by scanning the

array over a 0.25-in. -deep, 0.5-in. -wide slot in a flat aluminum plate

(only the response from one edge of the slot is shown). 0

The discriminator voltage is plotted in Figure 7 as a function of the

relative position of the array center, y0 , with respect to the edge. The

array center was located as close as possible to the center of the drive

coil. Because the two sensor pairs that make up Channels I and 2 are ,

displaced assymetrically with respect to the array center, the discrimi-

nation function crosses zero when the array center is to the right of the a.>

edge (about 0.035 in. when the edge is perpendicular to the scan direc-

tion). The slope of the discrimination function depends on the relative •

displacement of the two sensor pairs, which is 0.070 in. The noticeable

assymetry of these functions around the zero crossing is caused by the

nonuniformity of the drive field, the relative setting of the potentio- 0

meters, and the influence of the other edge of the slot at large values 7-

of Y0.

As can be seen in Figure 7, the shape of the discrimination function

varies with the angle 8 between the scan direction and the edge. When e

.a%
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decreases, the two peaks of this function move apart by an amount propor-

tional to 1/sin e, and the peak values decrease. This kind of behavior ?

occurs because the connections that are used in these experiments produce -6

an array that is polarized along the rows of sensor loops.

A simple edge-tracking algorithm was programmed into the computer to ,N.O
demonstrate experimentally that such a sensor array can be made to follow

an edge. The resulting measured edge-tracking characteristics of the

system are shown in Figures 8(a) and 8(b) for edge angles of e - 60 and

30, respectively. These characteristics were produced as follows: the ...

search for the edge starts with a sensor location corresponding to the

left side of the zero crossing in the discrimination curve. The sensor

steps along the horizontal y axis (0.010-in steps were used in this

case) until the discriminator voltage changes sign. At this point, the

sensor steps in the positive x (vertical) direction. If this step

increases the discriminator voltage, the scan direction is reversed;

otherwise the scan continues in the same direction. The x scan continues
until the discriminator voltage changes sign again. At this point, the %%

probe steps one step in the y direction and the cycle is repeated.

The staircase-shaped curves shown in Figure 8 depict the endpoints of

the probe's movement; any backtracking that is required to reach these *5

endpoints is not explicitly shown. There was no backtracking in the step

sequence depicted in Figure 8(a). For this case, the probe stepped

vertically along the discriminator curve from A-A'-B, then horizontally

from B-C, then vertically from C-D, and so forth. On the other hand, the

step sequence shown in Figure 8(b) did involve backtracking. One verti-

cal step was required to go from A-B. Then one horizontal step moved the

operating point along the discriminator curve from B-C with no change in ...

sign. However, the next vertical step moves one from C-C'', which is in

the wrong direction. The probe, therefore, reverses direction, moving

the operating point from C'-C''--because of backlash, C'' and C do not

coincide. Because no change in sign occurred as a result of this last

step, another vertical step is taken, which results in the move C''-D.
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Both of these characteristics were generated in real time, thereby

demonstrating the feasibility of tracking an edge using such a sensor

array. No significant difference in tracking was noted between the 30*

and 60° cases, even though the respective discrimination functions are

different. Similar tracking characteristics were also generated using

0.002-in. steps, thereby demonstrating that excellent signal-to-noise

ratios were obtained. Finally, the straight lines drawn in Figure 8 are

for angle-reference purposes only; they do not represent the position of

the edge. Determining the edge position with respect to the track

requires additional calibration of the probe.

In addition to this experimental work, the step response of the array

was modeled using the approximate theory described in Sectio II-C. The

computed differential response of a pair of rectangular sensor loops to a

0.004-in.-step in an alluminum plate is compared with the corresponding

experimental results in Figure 9. The array position has been normalized

to one half the inner dimension of the drive coil. In this case, the

peak response occurs when the sensor pair is located symmetrically over

the edge of the step. Because the measurement is uncalibrated, the
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experimental and theoretical curves were arbitrarily normalized to make

the peak values equal for this comparison. We see that the theoretical

response curve is noticeably wider than the measured curve. Determining

the reason for this discrepancy will require further study.

B. Ranging

Experiments were also performed to demonstrate that the distance from %

the sensor array to the workpiece surface can be determined from the mea-

sured outputs of the array elements without moving the array. This is

different from the case of a single absolute eddy-current probe, in which

the distance of the probe from the underlying surface can only be deter-

mined if the probe output is measured at several different distances

above the surface. Our ability to determine range, using a stationary

array, is based on the fact that different elements in the array sample
the spatial-frequency content of the drive field differently.

To eliminate the effect of the measurement-system transfer function

in determining range, we measured the ratio of two voltages sensed by

different elements in the array as a function of lift-off distance. For

maximum range resolution, the elements used to generate this ratio should

be located in regions where the drive field differs as much as possible

with respect to spatial variation. We used one row of four loops and

formed the desired ratio by dividing the sum of the voltages sensed by

the two loops furthest from the center of the drive coil, by the sum of

the voltages sensed by the two loops closest to the drive coil's center.

The resulting measured ranging characteristic is shown in Figure 10, in

which the lift-off distance (normalized to one half of the inner dimen-

sion of the drive coil) is plotted versus voltage ratio. It is seen that

a 10-percent change in voltage ratio corresponds to about a 50-percent

change in lift-off distance for a normalized lift off of less than about

0.3. This sensitivity is usable, but not large. We expect that a

different array geometry might improve this sensitivity. "

Using the image theory discussed in Section II-B, we computed the

theoretical ranging characteristic for this array and also plotted it "

28 
%

Pi



Figure 10. The shapes of the theoretical and experimental curves are

similar, but they exhibit significant quantitative differences. We

attribute these differences to the fact that the model ignored the -

conducting tape that was used to shield the sensor leads on the circuit .=

board in the vicinity of the loops.
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IV SUMMARY ",."

It has been demonstrated that an array of small single-turn printed

sensor loops can be used for high-resolution edge tracking. Also, with

proper calibration, absolute range can be determined from a ratio of

sensor voltages without moving the array. Other possible uses for such

an array are in material characterization and two-dimensional eddy-

current imaging. Finally, an approximate model for computing the array

response has been developed, but further work to improve its accuracy is

required.
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APPENDIEX A

TRANSFORMATION FROM k SPACE TO REAL SPACE s -

Transformation of the electric and magnetic fields given by Eqs. 31-36

from k space to real space is obtained by transforming Ex and HY, and

noting that Ey and Hx can be obtained by making a simple substitution in

the expressions for Ex and Hy and a sign change in Ex .

Using Eqs. 23 and 31, Ex can be written as,

Ex  sinh(kz) sin(kxa) sin(kb)e J -'(P -PO)e-kzO dkx  dky

-. D - (Al)

If we write this equation as

Ex X2 o f(kx ,ky)ej - (5 -;0 ) dk dky kA2)

and use

k ,kx + ky2 (A3) %

we note that f(kx ,ky ) is even in kx and odd in ky. Hence, the only

part of 0JF( -) expressed in terms of sine and cosine functions that

contributes to the integral is jcos(kp)sin(kyp ) where p; and p are

the x and y components of the vector P-7. Eq. Al can therefore be

rewritten as . ',.
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Ex  j k 1 e-k (zO -z) e-k (zo+z sin(kxa ) cos (kX UN

O of 1 
-X

sin(kyb) sin(kya) dkc dky (A4)

for 0 _5 z _s z o .

Using the identities

sin(kxa) cos(kxpx) - [sin(kx(a-P; ) + sin(kx(a+px) (A5)

20

sin(kyb) sin(kp;) 2 [cos(ky(b-p;) - cos(ky(b+p;)] (A6)

-he expression for Ex splits up into 8 terms, each of which can be

expressed in the form

WI I
e - j 2 f (±z ,±P. ) cos ky (b p; ".":-

- cos ky(b + PC dk x dky (A7) 1%

%

where

fl1 (±z,±PX) = e- ez sin k(a t p;) (A8)

sign :

The symbol s indicates that f, is a sum of all possible sign

combinations of z and p; in the expression on the right-hand side of the

equation. Integrating over ky we see that the integral is a cosine

transform that has the form and solution I shown below for 0 < z < z0 .
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(x2,2)1/ ex 6 x , cos z zy) dx Kb iC, I (A9)

0

r 11 °",.J a- sn~y cos xy"x U-(A9

where

x k, a k, zo +z, y.bp; %

and K( ) is the modified Bessel function of the second kind of order

zero.0

The remaining integral is a sine tranform and has the form and

solutionA
2

%

2Fy -A + 1) t
I2 2 2 .- '..

x~ K,(ax) sin(xy) dx
j 2A C2 -A

0

2 j A -i 3 2
2 F1  ' 2 2 'aJ (AlO)

where

x kx, y -a ±p, a (b± p) 2 
+ (z ±Z)2] 1/

I =1,

r,( )is the gamma function, and 2 F, ( )is a hypergeometric function.

With the values of A and A given above, the hypergeometric function

simplifies toA3

F,-t 2 ) 1 n ( l (+t 2 )1 / 2 ) Al
2 2 2 J t d' V

with
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a p, Px

J (b + p) 2 + (z0 + z)-

Using the fact that r(;) - .--r, the final form of Ex becomes that given

in Eqs. 37 and 38. ,

Eqs. 23 and 24 show that, in the integration to obtain EY, the role of

kx and ky will be interchanged from that used in the integration for Ex.

Hence, Ey can be obtained from Ex by performing the substitution given

in Eq. 39, and changing the sign.

In deriving the expression for the magnetic field, it is convenient to

start with Eq. 35 for HY. Using manipulations similar to those used for

EX, the integration can be expressed as the following cosine transformA
4

in k"

exp(-O(x 2 + Q2)1/2) cos(xy) dx = p/3(y2 + 02)-1/2 K1 [a(y2 + 02)1/2.

0 (A12) S
e

where the parameters are the same as those given in connection with Eq.

A9, and Kj( ) is the modified Bessel function of the second kind of order

one. The integration over kx involves the sine transformA5

1 y2 )-1/2
Kv(ax) sin(xy) dx = -ira-v csc( vlr)(a2 +? %.)- ,

4 2 ,

0 0

(y2 + a2)1/2 + y (y2 + a2)1/2 y (A13"

where v - 1, a - [(b + p) 2 + (z ± z0 )211/2 and y a ± p. Using this

result, the y component of the magnetic field can be written as shown in

Eqs. 41 and 42. Hx is obtained using the same substitution that is used

to convert the equation for Ex to that for Ey.
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2. A. J. Bahr, "Electromagnetic Sensor Arrays--Experimental "
Studies," presented at the review of Progress in Quantitative O
NDE, Williamsburg, VA, June, 1985, and published in the
conference proceedings.

3. B. A. Auld and A. J. Bahr, "A Novel Multifunction Robot Sensor,"
presented at the 1986 IEEE International Conference on Robotics
and Automation, San Francisco, California, April 1986, and
published in the conference proceedings.

4. A. Rosengreen and A. J. Bahr, "Inductive Sensor Arrays for NDE
and Robotics," presented at the Review of Progress in
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