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Section 1

Introduction

The goal of this program is to investigate, both theoretically and experimentally,
new approaches to constructing XUV and soft x-ray lasers. At these short wavelengths,
atomic spontaneous emission times are typically less than a nanosecond and, for levels that
autoionize, are often less than a few picoseconds. It is technically very difficult to excite
such levels directly to produce laser action in the way that is commonly done for visible
laser levels. Practical short wavelength lasers will have a significant impact in many areas
of critical national interest; applications include spectroscopy of surfaces, high resolution
lithography, microscopy, and holography.

The realization of the great promise of such applications, however, depends on
the properties and practicality of the lasers developed. Although there is a 20 year
history of proposals for XUV and soft x-ray lasers, most approaches require very high
pumping powers. We have developed systems which can produce useful gain using only

moderate input energies by combining the unique properties of particular atomic states

with innovative experimental techniques. >

To date, we have observed gain in two species: Xe at 108.9nm, and Zn at three lines

around 133nm. We have shown that useful gains, exp(3.6), can be achieved with input

energies of less than 1J, and we have achieved small signal gains exceeding exp(40) using

less than 4J input. In the latter case, an output energy of 20 uJ in a beam with 10 mrad o
S
, ~
divergence was measured at 108.9nm. -f-/ _al___'::
g,
Our basic approach makes use of a laser-produced plasma as a source of incoherent soft 3 2
O )
x-rays. This x-ray flashlamp photoionizes atomic core electrons producing populations in :"j'
e X
highly excited states. Our early work demonstrated that this process, combined with a new rﬁx m ;::a
[
L9
geometry with the gain species surrounding the plasma target, could produce very large ':'_4
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excited state densities with moderate input energies. Populations in excess of 10!5e¢m~? ]
¢ Pt
! were produced using less than 0.2J of 1064 nm energy on target. o
The program during this period emphasized a particular excitation process: :&
photoionization of a core electron followed by Auger decay to produce direct inversions. . )
)
These types of systems are particularly interesting because the decay is highly selective in
¥ some cases; yields as high as 25% into particular levels are possible. Thus, significant gains 2
o
can be achieved using only a few joules of laser pumping energy, rather than kilojoules. b,
s
) We first identified and proposed such systems in Zn, Rb, and Cs. b
d Gain in an Auger system was first observed at LLNL by Falcone in Xe at 108.9nm. o
U Y
: They measured a gain of exp(7.2) using a 55J laser. By optimizing the operating “
"l
i parameters, we were able to produce gains of exp(3.6) using only 1/100 of that energy, s
b 560mJ. A paper describing this work has been published in Optics Letters, and is included -r:
0 »
:: as Section 2. The key to this improvement is the discovery that laser-produced plasmas can "
3t o
! produce ~ 75eV incoherent x-rays even at an applied power density of 5 x 101° Wem™2. o
Thus a moderate energy laser can be used to create a line plasma of significant length. 'i'_
. :&
. We have also measured gain on three lines in Zn pumped by Auger decay. The gains were "
N, :\
. comparable to Xe, as expected from theory. The yield into the upper state of Zn, however, N
i is about 10 times greater than for Xe, and the Zn system should be capable of achieving -
\ >,
¥ -
Y higher efficiency under the correct conditions. The Zn work is described by a preprint v
i. included as Section 3. A
A Our work on Auger systems showed that useful gain can be created using as little as 7
L) - »,
p 1J of energy on target, but simply applying higher energy does not lead to proportionately f
« >
Y higher gains. The way to utilize greater energy is to pump longer lengths. As tie length 7
> of the gain medium increases, however, traveling wave excitation becomes essential to R
. utilize the length. We have developed an oblique incidence geometry which produces long, \ '
S
synchronously pumped lengths, and have obtained single-pass gain saturation of the Xe R
] .
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w laser using less than 4J. Section 4 contains a preprint of a paper describing the details of

this work.
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Section 2

Low Energy Pumping of a 108.9nm Xe Auger Laser
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Optics Letters, Vol. 12, page 331, May 1987

Low Energy Pumping of a 108.9nm Xe Auvger Laser*

Guang-Yu Yin, C. P. J. Barty, D. A. King, D. J. Walker, S. E. Harris, and J. F. Young

Edward L. Ginzton Laboratory
Stanford University

Stanford, CA 94305

Abstract

We report extensive measurements of gain in the Xe III system initially observed
by Kapteyn, Lee, and Falcone. The dependence of this gain on pressure, pumping pulse
length. and pump energy is presented. By optimizing these parameters we have achieved a
gain of exp(3.2) using only 0.56J of 1064 nm energy on target, representing an efficiency
improvement of nearly 100. Total gains as high as exp(6.6) have been measured using
higher energies. Our data indicates that effective laser-produced plasmas can be created

with applied power densities as low as 5 x 10! Wcm=2.

* This work was jointly supported by the U.S. Office of Naval Research, the U.S. Air
Force Office of Scientific Research, the U.S. Army Research Office, the Strategic Defense
Initiative Organization, and Lawrence Livermcre Laboratories.
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Low Energy Pumping of a 108.9nm Xe Auger Laser®

Guang-Yu Yin, C. P. J. Barty, D. A. King, D. J. Walker, S. E. Harris, and J. F. Young

Edward L. Ginzton Laboratory
Stanford University
Stanford, CA 94305

Kapteyn. Lee, and Falcone' recently reported the first observation of gain at 108.9 nra
in Xe** pumped by incoherent x-rays from a laser-produced plasma. Total gains of
exp(3.6) were measured using a natural isotopic mix of Xe. We have studied the
dependence of this gain on pressure, pumping pulse length, and pump energy. By
optimizing these parameters we have achieved a gain of exp(3.2) using only 0.56J of
1064 nm energy on target. This represents an efficiency improvement of nearly 100 over
Ref. 1. Using higher energies, we have measured total gains as large as exp(6.6).

The key to this optimization is the discovery that laser-produced plasinas can
efficiently produce the required ~ 75eV incoherent pumping x-rays even when the applied
laser power density is only 5 x 10!1°W cm~2. Thus moderate energy lasers can be used
to create a line plasma of significant length. In addition, the gain region can be located
close to the target without exceeding reasonable pumping flux densities. This geometry
can increase the aspect ratio and reduce the effects of amplified spontaneous emission'
(ASE): in addition, higher pressures can be used to efficiently stop the pumping x-rays in
the region of interest.

Parameters of the relevant Xe levels have been reported;? a simplified energy level
diagram is shown in Fig. 1. Soft x-rays emitted by the laser-produced plasma photoionize
a 4d inner shell electron of neutral Xe producing Xe* 4d°5s?5p% D3/, 5,, population.

Rapid Auger decay produces a population inversion between the Xet* 54°5p° 'S, and the
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Xe**t 33'5p3 1P, levels. The calculated Auger yield to the upper laser level is 5% and the
gain cross-section is 3 x 10”3 cm?.

Our experimental configuration is similiar to that of Ref. 1 and is shown in Fig. 2.
The 1064 nm plasma-producing laser is focused by a 30cm focal length cylindrical lens
onto a solid Ta target in the Xe cell. The focal spot is a line 30 mm long by ~ 100 m
wide. as determined by measuring the resulting target pits. A 2mm x 2mm U-shaped
channel and an aperture determine the pumped region observed by the detection system.
The channel is positioned 2mm from and parallel to the target, and thus, the target
surface effectively forms the fourth side of the channel. The detection system consists of
a 1 m normal-incidence vacuum spectrometer with a microchannel plate detector having
a rise time of 350ps. A 1 mm thick LiF window separates the Xe chamber from the
spectrometer.

The length of the open side of the channel is limited to 28 mm by fixed shields in
order to minimize end effects. In addition, three equal-length movable shields permit us
to vary the length of the pumped region without varying the properties of the plasma
pumping source. Measurements of the 108.9nm output energy as a function of length
were used to determine gain: the frequency-integrated superfluorescence output energy

can be approximated as®

[exp(ad) — 1]3/2
[al exp(al)]/?

(1)

where a is the gain per unit length and [ is length. The points in Fig. 3 are measured
values of 108.9nm energy and the curve is the best fit of Eqn. 1 to those points. In
this case the fit indicates a = 2.36cm™! and a total gain of exp(6.6). This curve-fitting
method was used to determine all the gain values presented here. This technique, the slow
time-response of the detector, and shot-to-shot variations in pumping intensity combine

to limit our minimum detectable gain to a ~ 0.5cm™".
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Fig. 1-Simplified energy level diagram of Xe.
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Ideally. total gain is proportional to the product of active iength. pumping flux. and
Xe density, but a number of processes can interact to limit the gain. We have measured
the gain under a wide range of conditions in order to determine the optimum conditions.
Figure 4 shows a versus pressure for two pulse lengths at constant laser power density on
target. There is an optimum pressure for a given pulse length and the optimum pressure
is higher for the shorter pulse. This indicates that electron quenching and/or Stark
broadening may be important since raising the pressure increases not oniy the excited
state density but also the electron density. (Reduction of the pumping flux by absorption
before it reaches the active region is unimportant in our geometry.) The observed increase.
however. is somewhat less than the factor of 3 expected from these effects.

Figure 5 plots gain as a function of laser energy for a 600 ps pulse length. It is evident
that some process is acting to limit the gain to a = 2.3 at high energies. Faster electron
quenching at the higher pumping flux densities, parasitic ASE, Stark broadening, or a
combination are likely. At the other end of the scale, the gain decreases faster than linear
between the 2J and 1J data points. This indicates that the laser-produced piasma at
the lowest applied power density is less effective in pumping the system, either because
of a lower radiating efficiency and/or a shift in spectrum. The 1064nm power density at
this point is 5 x 10'°© Wem™2, 20 tiumnes lower than used previously.' If we assume the
plasma is a blackbody we can estimate its temperature from our measured gains using the
parameters of the Xe system. This yields a temperature of ~ 16eV at an applied power
density of 3 x 101°Wcm~2, and a corresponding conversion efficiency of about 3% from
laser to incoherent x-ray energy.

Because of the decreasing effectiveness of a plasma produced by low applied power
densities, further reductions in energy can be made only by decreasing the pulse length.
Figure 6 shows the gain as a function of pulse length for constant energy. At short pulse
lengths the gain falls because the transit time along the channel exceeds the excitation

time. For pulse lengths greater than 800 ps the gain is also reduced. probably for two
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reasons. First, the power density on target at 800 ps is 5 x 10!° W em™2; as seen above. at
this value the plasma is probably becoming less effective in pumping the system. Second.
800 ps is comparable to the effective lifetime of the upper laser level at these gains.

Gain measurements were made using isotopicly enriched Xe (84% !36Xe). Gain
increases of only ~ 10% were observed. even under low-gain conditions where ASE limiting
was not a problem.

This work is the first demonstration of the predictions of Mendelsohn and Harris* and
of Walker. Caro, and Harris® that Auger lasers could be constructed using only several
joules of laser pumping energy.

We acknowledge numerous helpful discussions with R. W. Falcone. C. P. J. Barty
acknowledges the support of an ONR fellowship; Guang-Yu Yin is visiting from the Shanghi

Institute of Optics and Fine Mechanics.
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1. Simplified energy level diagram of Xe.

2. Schematic of the experimental configuration. Not shown are tne aperture iimiting the
field-of-view of the spectrometer to the volume inside the channel and the shields used

to vary the active length.

3. Output energy at 108.9nm as a function of pumped length for a plasma-prcducing
laser energy of 10J in a 600 ps pulse length, and 2.5torr Xe pressure. The points are

measured values; the curve is a plot of Eqn. 1 with a = 2.36.

4. Gain coefficient as a function of pressure for excitation pulse lengths of 200 ps and

600 ps; the laser power dcasity on target is about 1.4 x 10! Wem™? in both cases.
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5. Gain coefficient as a function of 1064 nm laser energy on target; the pulse length was
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600 ps and the pressure was 2.5 torr.
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6. Gain as a function of pulse length for a constant energy of 2.5J and 4 torr Xe pressure.
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Saturation of the Xe 111 109 nm Laser

Using Traveling-Wave Laser-Produced-Plasma Excitation*

M. H. Sher, J. J. Macklin, J. F. Young, and S. E. Harris

Edward L. Ginzton Laboratory
Stanford University

Stanford, CA 94305

Abstract
We describe the construction and operation of a 109nm, photoionization-pumped,
single-pass laser in Xe 111. The laser is pumped by soft x-rays emitted from a laser-produced
plasma in a traveling-wave geometry. Using a 3.5J, 300 psec, 1064 nm laser pump pulse,
we measure a small-signal gain coefficient of 4.4cm™! and a total small signal gain of

exp(40). The laser is fully saturated and produces an output energy of 20 uJ in a beam

with 10 mrad divergence.

* This work was jointly supported by the U.S. Office of Naval Research, the U.S. Air
Force Office of Scientific Research, the U.S. Army Research Office, the Strategic Defense

Initiative Organizaton, and Lawrence Livermore National Laboratories.
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Saturation of the Xe 111 109 nm Laser :-:
| Using Traveling-Wave Laser-Produced-Plasma Excitation
| | "
:
| M. H. Sher, J. J. Macklin, J. F. Young, and S. E. Harris
| N
| Edward L. Ginzton Laboratory i
t Stanford University ':
Stanford, CA 94305
S
" ]
This Letter describes the construction and operation of a single-pass, 109nm, 'j:' !
'-I‘F' :
Xenr Auger laser.! The laser is pumped by soft x-rays, which are emitted from a laser- ';:
i
produced plasma in a traveling-wave geometry. Using only 3.5J of 1064 nm pump energy ." :
in a 300 psec pulse, we measure a small-signal gain coefficient of 4.4cm™~! and a total -r:'_
",
2N
small-signal gain of exp(40). The 109 nm laser is fully saturated over the second half of '.::E:
W)
its length and produces an output energy of 20 uJ in a beam with 10 mrad divergence. ;‘
Population inversion of the 109nm transition was proposed and demonstrated by =2
oy
Kapteyn et al.!'? The inversion mechanism, outlined in the energy level diagram of Fig. 1, ';::
\;\
is inner-shell photoionization of a 4d electron, followed by Auger decay to Xeru. In this ;-f\
row
system, the Auger branching ratio is about 5% to both the upper and lower laser levels. I
w
oo
The inversion results from the higher degeneracy of the lower level. Assuming only Doppler N
gt
broadening, and ignoring hyperfine splitting, the gain cross section is 3 x 10713 cm?. -'-"*‘
» |
Proposals for photoionization pumping of short wavelength lasers and for Auger- f::-:
BN
pumped short wavelength lasers were made by Duguay® and by McGuire.* The possibility N
of constructing such lasers at low pumping energies was delineated by the work of Caro L
®

et al.,% Silfvast et al.,® and Mendelsohn and Harris.” Recently, Yin et al.® showed that o

small-signal gain coefficients within a factor of two of those reported here could be produced

with several joules of pump energy and, in addition, that the Xer1rr 109nm gain can be

L .
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limited by competing processes. Their work suggests the most efficient use of pump energy

requires a long, high aspect ratio geometry.

Figure 2 is a schematic diagram of the traveling-wave laser-produced-plasma excitation
source. A 1064nm laser is incident upon a cylindrical lens at § = 68 deg from normal
and is focused onto a target which is parallel to the lens. This oblique focusing geometry
has several advantages over the normal incidence arrangements used in previous work. !-8
The large angle of incidence expands the length of the line focus by 1/ cos ; therefore, our
3.3cm diameter beam produces a 9cm long plasma. In addition, the pump laser sweeps
across the target, and the leading edge of the plasma travels at a speed, ¢/sin4, only
8% greater than that of light. The emitted soft x-rays thus provide nearly synchronous
traveling-wave excitation of the ambient gaseous medium.

In order to reduce the pump energy lost to grazing incidence reflection, grooves were
cut into the target surface at a 45 deg angle, as shown in the inset of Fig. 2. The grooved
surface decreases the local angle of incidence of the p-polarized pump laser from 68 deg to
23 deg and divides the input beam to form many small, separated plasmas rather than one
continuous line. The combined length of these plasmas is only slightly greater than the
input beam diameter. As a result, the extended gain length can be pumped with increased
1064 nm intensity and improved soft x-ray conversion efficiency.

All of the experiments described here were performed with a 3.5J, 300 psec FWHM
pump laser with a repetition rate of 1 shot every 5 minutes. The 3.3 cm diameter, spatially

{
uniform, input beam was compressed (using normal incidence cylindrical optics) to 1.7cm o
in the focusing dimension to increase the f-number of the lens and reduce aberrations. The

s 3 2
AL

focal length of the oblique cylindrical lens can be approximated by the sagital focal iength

of a tilted spherical lens; for f; = 20cm and 8 = 68deg, the focal length is 12cm. A

A

) .
. l'l'l'

2.5cm diameter stainless steel rod, threaded at 19 grooves cm™! and electroplated with

gold, served as the target. This arrangement produced a focal line width of 200 um and \
an intensity on target of about 2 x 10!! Wem™2. The ambient Xe pressure was 4 torr. :,.
v
N
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U
W
s
::':., The observed excited volume was defined by two plates separated by 1.5mm, through
:!::: which the 1064 nm pump laser was focused, and by two 2mm diameter pinholes on an
':'.'\:: axis 1.5mm above the target and located 2cm from the ends of the line focus. We
'::.' monitored the 109nm emission in the forward and backward directions simultaneously
R using two 0.2m VUV monochrometers coupled to windowless channel electron multipliers.
‘; A 1 mm thick LiF window isolated each of the monochrometers from the Xe cell. To avoid
! E saturation of the electron multipliers, we used calibrated LiF and O, gas cell attenuators
oo to achieve the 10° dynamic range required in these experiments.
: .‘r. The small-signal gain on the 109 nm transition was determined from measurements
:.5 of time-integrated emission (the 109 nm pulses were shorter than the 700 psec response
-f time of the detection system) as a function of length. The length of plasma on the target,
b3 and hence of the gain medium, was varied by masking the input laser beam. Figure 3
' shows the increase in forward-propagating emission with length for three short sections of
" the target. A simple exponential fit to the data yields an average, time-integrated, small-
g ’ signal gain coefficient of 4.4cm™!. This is a 70% improvement over the value obtained
\: with a smooth, gold-plated target. Based on the measured, uniform small-signal gain
-,.!‘ coefficient, unsaturated amplification along the full 9c¢m of length would provide a total
N gain of exp(40), or 170dB.
‘ ",:.i The large-signal behavior of both the forward and backward 109 nm laser emission is
,"-: shown in the semi-log and linear plots of Figs. 4a and 4b, where each symbol represents
.;.: the average of at least three data points. For short gain lengths, the slopes of the forward .
:: and backward energy vs. length curves (on the log scale in Fig. 4a) are approximately
_:.g the same. Beyond 4cm of length, the forward beam grows linearly (Fig. 4b) while the
e backward emission remains constant. This behavior indicates that the forward beam is
.:":" fully saturated and is extracting nearly all the stored energy from the second half of the
_, length.
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The vertical scale of Fig. 4 was calibrated in units of energy by replacing the
monochrometer-based detection systems with a fast (350 psec), NBS-calibrated vacuum
photodiode (Al;O; photocathode) and calibrated LiF window. The increase of energy
with length was identical to that in the emission measurements made using the

monochrometers. The maximum energy output was 20uJ in the forward direction and

.l \

0.4 uJ in the backward direction, yielding a forward-to-backward emission ratio of 50 : 1.

et Y
P A
I.‘.

By visual observation of fluorescence on a scintillator located 90cm from the target,

W

LEJ
,

| and by translation of the vacuum photodiode in this plane, we estimate a forward beam

divergence of 10mrad. This small divergence is consistent with the large aspect ratio "::
(length / width = 60) of the geometry. The pulsewidth of the 109 nm laser emission was E;
less than the 350 psec time resolution of the photodiode, which implies an output power ".".T
greater than 50kW. ':

Assuming the measured energy is extracted predominantly from the last 6 cm of gain ':';:;

igi'.'

length, the total energy stored in the observed volume is 30uJ, or about 10~% of the

55 <@

1064 nm pump energy. Taking the cross sectional area of the laser to be 0.03cm?, we

calculate an energy density of 110 uJcm™3 stored in the 109nm inversion. Given the

L™

atomic parameters of the system,? i.e. an average 4d photoionization cross section of

®

15Mb between 70 and 130eV, the 5% Auger yield, and ~ 12% quantum efficiency, we ;;:.:
can deduce a conversion efficiency of 1064 nm light to useful soft x-rays of approximately f“?
29%. "::
L

The relationship of the observed gain behavior to the measured stored energy is :.}
complicated by the transient nature of the population inversion. The spontaneous lifetime :?‘;;.
of the upper level is 4.75 nsec,? but the inversion lifetime and pulse length are governed ,‘:
by stimulated decay and are on scale with the transit time of the gain medium. The \E‘_lj
large forward-to-backward emission ratio imparted by the traveling-wave excitation can \f_al
be explained in terms of competition between the two beams. Although the slopes of the .:‘

forward and backward energy vs. length curves in Fig. 4a are similar for the shorter lengths. YOS
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the forward beam reaches saturation earlier and, therefore, dominates in the second halif
of the length.

In this work we have demonstrated single-pass gain saturation of a photoionization-
pumped laser. We have employed a traveling-wave laser-produced-plasma geometry which
efficiently excites an extended gain length using only a few joules of pump energy. These
results represent a significant step in the development of practical photoionization-pumped
lasers.
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Observation of Super Coster-Kronig Pumped Gain in Zn 1r*

D. J. Walker, C. P. J. Barty, G. Y. Yin, J. F. Young, and S. E. Harris

5

Edward L. Ginzton Laboratory
Stanford University

Stanford, CA 94305

Abstract

We report the observation of laser gain in the vacuum ultraviolet pumped by super

Coster-Kronig decay. Using a 5J, 300 psec pump pulse of 1064 nm radiation, we have
observed gain on transitions in Znur at 127.0nm, 130.6 nm, and 131.8 nm with total
gains of exp(2.4), exp(5.1), and exp(3.2), respectively. The large branching ratios of the

rapid super Coster-Kronig decay into a small number of final levels makes high efficiency

operation possible.
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Observation of Super Coster-Kronig Pumped Gain in Zn 111

D. J. Walker, C. P. J. Barty, G. Y. Yin, J. F. Young, and S. E. Harris

Edward L. Ginzton Laboratory
Stanford University

Stanford, CA 94305

The use of selective Auger decay to produce population inversion and gain in the soft x-
ray and ultraviolet spectral regions was proposed by McGuire! in 1975. The first successful
experiments were performed by Kapteyn et al.? in 1986; in those experiments 55J of
1064 nm pump energy was used to produce incoherent soft x-rays which photoionized Xe1.
These atoms Auger decayed to Xe11 to produce a gain of exp(7) at 109nm. Experiments
by Yin et al.® showed that comparable gains on this transition could be obtained with
less than 1J of pumping energy. Very recently, Sher et al.* have used a traveling wave
geometry to obtain a small signal gain of exp(40) and a saturated output energy of 20 uJ
at 109nm.

In this Letter we follow the proposal of Mendelsohn and Harris® to obtain gain by
selective super Coster-Kronig decay of photoionization pumped Zni. A super Coster-
Kronig decay process iz a sub-class of an Auger process in which the initial hole, the
jumping electron, and the departing electron all occupy the same n shell. As a result, the
decay rate is very fast (typically > 10!3sec™!) and therefore, the process dominates other
Auger processes. In particular, the branching ratio to the upper level for the Zn system
described here is 27% while that to the lower laser level is < 1%. For the 109 nm Xe
system, the Auger decay rates to the upper and lower laser levels are about equal,’ and
an inversion results from the higher degenercy of the lower level.

We have observed gain on transitions in Zn1r at 127.0nm, 130.6nm, and 131.8 nm

with total gains of exp(2.4), exp(5.1), and exp(3.2), respectively.
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The relevant energy levels of the Zn system are shown in Fig. 1. Photoionization
of Zn1 3p®3d'%4s? ground level atoms by the x-rays emitted by a laser-produced plasma
results in the production of highly excited Zn1r 3p33d'%4s? ions. These ions undergo
rapid, selective, MMM super Coster-Kronig decay into levels of Zn1. Calculations® ~
have shown that about 48% of this decay produces the Zn11 3p%3d®4s2 G, L-S basis
level. Configuration mixing of the Zn 111 3d%4s2 configuration with the nearby Znm 3d°4d
configuration results in several levels of both configurations having significant components
of the 3d84s2'G, basis level. Thus, they receive a large fraction of the super Coster-Kronig
decay. The energy levels relevant to the transitions on which we have observed gain, and
the branching ratios into them, are shown in Fig. 2. The level positions are from Dick,?
and the branching ratios and gain cross-sections are from Refs. 5 and 7.

Our experimental configuration, shown in Fig. 3, is similiar to that suggested by
Harris et al.® and demonstrated by Caro et al., !0 Silfvast et al.,!! and Lundberg et al.'*
The 5J, 300psec, 1064 nm pump laser is focused by a 30cm focal length cylindrical
lens, producing a focal line 28 mm long by ~ 100 um wide. The beam passes through
a 1.5 x 28 mm long slotted aperture positioned 2mm from, and parallel to, the solid Ta
target in the Zn cell. This slot defines both the pumped volume and the volume observed
by the detection system. The detection system consists of a 1 m normal-incidence vacuum
monochromator followed by a p-terphenyl scintillator and a fast visible photomultiplier
tube. The system has a total response time of about 5ns FWHM. The Zn cell is a heat
pipe oven with He buffer gas operating at about 500 C. Because the operating temperature
is so close to the melting point of Zn, 418 C, the heat pipe wicks are not very effective in
returning condensed Zn to the hot zone, and the cell has a tendency to deplete after about
1 hr of operation. The Zn cell is separated from the spectrometer by a LiF window.

The gains of the Zn transitions were measured by blocking parts of the pump beam
to vary the length of the pumping plasma and measuring the resulting output energy. The

actual output beam of our laser is 32 mm in diameter, but 2mm of each edge of the beam

35

SN Y AN AN N e M e e T T N el )
Loy Lyt gt N ":\_‘_5.{_;&'.\'_'_5'_-; A AT AN A i aed hataAada




- " S P . - . ~ r - TR

- » p o L3 14 ’ A (A N R ! \\\\\ .

PrALEE R EEL S Ll L e aaaNSST, ol o W [N T P RO A AL AL S AT ' . AR RN
SRR avasSE NS e AN AR ol el @ @ ST A e Al el s NS e b, el v \

-------
.

¥,

219360cm-1

18%

216464cm-1

W01 X 97 = wedo

14063535 cm-1

2-Energy level diagram of the transitions on which gain was

Fig.

observed.

36

o

eI A -"'- DSRISLIA JATN
OB RTINS S T RN

">

R
Ialaiatlalarl e

..
a'!--' "!'o

{4'- ‘

7o
A

"
ava:

f‘c‘ ~’.'




o ol O Ve ™ 0a " Pe AN A Ay i AR A L Sk Cag R S L’K.'T

P
PR PRy ORGP .

—_—

CHANNEL
A 1.5mmx28mm | 2mm

i
o
b
[

- TARGET

BEAM FOCUS
100 um x 28 mm

s

%

TO
DETECTOR

' e

.

)
L

CYLINDRICAL
LENS

- LN
1’?&'}.(

PN S U Y WY

’

e

= [
l“l’\"l A _{'l

- -
A F R F o BoEE
PAFAENUNEREN -

PR VSR WP Wy

A A m_ A

x“ .
e

% \- .kd.‘.{ ~l

a4

Fig. 3—Schematic of experimental configuration.

s

Y.
2%

&
-

37

.
.
; ]
» T U
' - - - - R . I I B - '.- -.I - h .'l .J d " e --. '. ™ - » '. - - .- »
,..' R R S A G Rt T S N R S R AN X RO T
'S 0V SN AT AT I P AP A I C



.'.. 9190 g A" ‘b Y VRS R N P Rt g ] R RO R e “3a% Bat a® B et

t
U3 -
" .
!00
, :
,,: .
N 3
:‘." was permanently blocked to equalize the energy per unit area of different vertical strips -
[ 2 '
= of the beam. The measured energy as a function plasma length was fit to the theoretical
o frequency-integrated emission function of a line radiator, which can be approximated as!® o
[ ]3/” !
‘exp(al) — 1]3/2 3
(ad exp(al)|t/? ' g
2 -
- where « is the gain per unit length and ! is the length. The points on Fig. 4 are measured N
!.‘.' -
. values of 130.6nm energy and the curve is the best fit of Eq. 1 to those points. In this
ot
case the fit indicates @ = 1.7cm™! and a total gain of exp(4.8). This method was used to
',": determine all of the gain values presented here. We estimate our minimum measurable gain '
)
’al to be about 0.7¢cm™!. The measured values varied about 20% from day-to-day, largely N
v ]
3 because of variations in the performance of the Zn cell.
by r‘ |
- Figure 5 shows that the gain at 130.6 nm maximizes at a Zn pressure of about 1.2 torr. )
Lol i
- The decrease in gain at higher pressure is probably due to electron quenching of the upper :
} L}
. level population. In Zn1i, the largest photoionization cross section is for the removal of .
:: a 3d electron, not a 3p electron.'* Thus, a large number of electrons are produced that
>
P2 are not involved in creating excited states, but which can act to destroy the inversion by a
AS K
e processes such as electron de-excitation or ionization of the upper level.
: In addition to measuring the gain at 127.0nm, 130.6 nm, and 131.8 nm, we also looked
5
:: for gain at 130.3nm, 133.2nm, 135.9nm, and 136.3nm, using the 1.2torr optimum
& pressure. These transitions have upper levels that are populated by super Coster-Kronig
- decay and could conceivably have gain. We did not observe gain above our minimum
"-‘_ threshold at any of these wavelengths. We note that the 133.2 nm transition, which shares
B an upper level with the 130.6nm transition, was predicted® to have the higher gain; we
4
. did not observe this to be the case.
it
- In summary, using only several joules of laser energy, we have observed super Coster-
.+ Kronig pumped gain on several transitions near 130nm. As shorter wavelength systems
-; and deeper holes are accessed, the high selectivity and ease of identification of the super
’
o
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~

of 1.2torr.
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Coster-Kronig process will make it important not only for directly pumped systems, bu:
: also for systems which are pumped by Auger cascade.
; The authors thank A. J. Mendelsohn for helpful discussions. This work was jointly
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5. Gain coefficient as a function of Zn pressure at 130.6 nm for a 5J, 300 psec long pump

pulse.
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