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We have developed computational methods for the identification and optimal control of P

distributed parameter systems. Our work has consisted of a theoretical, an experimental, and a

numerical component. Using functional analytic techniques we demonstrate and study the

convergence properties of our schemes. Extensive numerical studies are then carried out in order to

fully assess their feasibility, performance, and limitations.

Central to our general approach is the notion of approximating infinite dimensional

optimization problems by sequences of finite dimensional ones. Typically this involves the

approximation of infinite dimensional state dynamics (in the form of distributed parameter systems

such as partial differential equations or hereditary systems) by sequences of finite dimensional

dynamical systems (such as ordinary differential or difference equations). In the case of the

parameter estimation problems, when it is functional (i.e. spatially or temporally varying)

parameters which are to be identified, the infinite dimensional admissible parameter spaces must

also be discretized.

In general, we have used polynomial and Hermite spline function, as well as modal function

based finite element methods to accomplish these tasks. We note that since we are not simply

solving the so-called forward problem, i.e. the straight forward integration of the underlying

dynamical equations, but rather are seeking to solve problems whose solutions depend in a highly

nonlinear fashion on the system's infinite dimensional state transition, input / output or parameter

space / output maps, the theoretical components of our investigations become especially important.

Indeed, methods which have been known to do a good job integrating differential equations often

perform less than satisfactorily when coupled with a scheme to solve a parameter estimation or

control problem. t..

On the other hand, we have found our numerical studies to be extremely useful in allowing us %.r.0

to observe the limitations and short comings of our methods and to identify important directions for

future research.

Below, we summarize our results and our progress in as yet incomplete but on-going projects.

In the body of the report, we simply provide a brief outline and broad summary of our findings.

The actual results are discussed in detail in the research papers which have been provided to

AFOSR, and a sampling of which have been included in the appendix to this report.
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1. Control

a. We have developed an abstract approximation framework for the discrete-time linear

quadratic Gaussian (LQG) control, estimator, and compensator problems for systems whose state

dynamics are described by linear semigroups of operators on infinite dimensional Hilbert spaces.

The computational schemes included in the framework yield finite dimensional approximations to

the optimal feedback control laws, estimator gains and LQG compensators. A convergence theory

has been established and numerical studies involving parabolic (heat / diffusion), hereditary, and

elastic systems have been carried out. Initially, our theory applied only to control systems whose .

continuous-time input and output operators were bounded. However, we have been able to extend

these results to apply to discrete-time systems whose underlying continuous-time formulations

involve unbounded input and/or output maps. An unbounded input operator is one that maps the

control space into a space larger than the standard state space in which the problem is usually

formulated. An unbounded output operator has domain smaller than the standard state space. We

have been able to successfully apply our abstract theory to distributed parameter systems with Z

boundary control, to hereditary systems with control delays, to boundary control systems with %
A11

control delays, heat/diffusion equations with pointwise measurement of temperature, beam

equations with pointwise measurement of strain or acceleration and distributed systems involving ,,

output delays. The computational schemes that we implemented and tested were either polynomial

spline, Hermite spline, or modal function based and were able to handle reasonably complex

problems when run on a micro-computer (an IBM PC - AT). This was joint work with Professor

J.S. Gibson of the Department of Mechanical, Aerospace and Nuclear Engineering at the

University of California, Los Angeles.

b. We have developed an a-shift technique which can be used in conjunction with schemes for

the optimal LQ stablization of hereditary systems. This leads to control laws which yield a

prescribed degree of stability, i.e. all system poles to the left of the line Re z = t in the complex

plane. Both the continuous and discrete time cases were considered. This was also joint work

with Professor Gibson.

c. We have started to investigate and develop a finite dimensional approximation theory for the

design of optimal fixed finite order compensators for distributed parameter systems. The approach

2'



we are taking is based upon and uses the Hyland-Bemstein optimal projection equations; a set of

necessary conditions for optimality which, in an infinite dimensional setting, take the form of a

coupled system of operator Riccati and Lyapunov equations. We replace the infinite dimensional

system operators (i. e. A, B, and C) by finite element approximations. The resulting finite

dimensional system of coupled matrix Riccati and Lyapunov equations are then solved using

effective and efficient finite dimensional optimal projection algorithms and software developed by

Hyland and Bernstein. At present, results from numerical studies carried out on examples

involving heat and beam equations and hereditary systems are promising. Further computational

studies along with theoretical analyses (i. e. convergence arguments, etc.) are currently underway

and continuing. This work is joint with Dr. D. S. Bernstein of the Harris Corporation in

Melbourne, Florida.

2. Parameter Identification

a. We have developed computational methods for the estimation of spatially varying material

parameters (specifically flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients) in

Euler-Bernoulli models for the vibration of flexible beams with and without tip appendages. Our

schemes involve spline-based finite element discretizations of the second order in time, fourth order

in space system of partial differential or hybrid system of ordinary and parital differential equations

and the function space admissible parameter set. A convergence theory was established and

extensive numerical studies using simulation data was carried out on both conventional (serial) and

vector computers. The schemes performed satisfactorily. This was joint work with Professor

H.T. Banks of the Division of Applied Mathematics, Brown University and Dr. J.M. Crowley of

the United States Air Force Academy.

b. We have tested our general approach for the estimation of unknown parameters in models

for the vibration of flexible structures on actual expermental data taken from the RPL experiment.

The RPL structure consists of four flexible beams cantilevered to a rotating hub. The structure was

designed and built (and currenty resides) at the Charles Stark Draper Laboratory (CSDL) in

Cambrigdge, MA with support from the Air Force Rocket Propulsion Laboratory (RPL) (now the

Air Force Astronautical Laboratory (AFAL)) at Edwards Air Force Base in California. Using

accelerometer data we were able to successfully identify parameters in a distributed parameter

3



model for the structure. We hope to continue to test our theories and methods on this structure in ,

the future. This was joint work with Professor Banks, Mr. S.S. Gates of CSDL and a former

student, Ms. Y. Wang who is currently a research associate in the Division of Applied

Mathematics at Brown University.

c. We have initiated a collaboration with Dr. Alok Das and his associates at the Air Force

Astronautical Laboratory (AFAL) at Edwards Air Force Base in California for the purpose of

collecting experimental data for use in the testing of our theory and computational schemes for the

identification of distributed parameter systems. Specifically, we have made two visits to AFAL and

taken data from an experimental flexible 5' x 5' alluminum grid which has been constructed by '.

Dr. Das and his group. We are planning to develop appropriate theory and computational methods

which can be used to fit a two dimensional distributed parameter model to the structure. In

addition, we are also currently planning a series of flexible structure experiments to be carried out

in the spring of 1988 in the 30ft thermal vaccuum chamber at AFAL. The purpose of these

experiments is the collection of data for use in the study of thermal effects on internal damping V.

mechanisms of composite materals. Our general approach will involve the identification of

appropriate distributed thermoelastic or thermoviscoelastic models. Appropriate models, theory

and computational schemes are being developed as the planning of the experiments and theand,

preparation of the vaccuum chamber and experimental structure continues. The primary motivation

for this investigation is the solar heating of orbiting large flexible spacecraft. This effort is joint

with Dr. H. T. Banks of the Division of Applied Mathematics at Brown University and Dr. D. J.

Inman of the Department of Mechanical and Aerospace Engineering at The State University of New

York at Buffalo. r

d. We have developed an abstract approximation framework for the identification of parameters

in nonlinear distributed parameter systems. Using the theory of monotone operators and nonlinear

evolution systems, we establish convergence results for Galerkin finite element methods for inverse

problems involving broad classes of autonomous and nonautonomous nonlinear partial differential %

equations. This new nonlinear theory completely subsumes the existing linear theory and serves to

generalize many of our earlier results. In addition, it can be applied to parameter estimation

problems for a frequently cited model for nonlinear heat conduction. In addition to the theoretical

4
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results, we have carried out some preliminary numerical studies on a vector machine with the aid of

a grant (of computer time) from the San Diego Supercomputer Center. This work is joint with Dr.

H. T. Banks of the Division of Applied Mathematics at Brown University and Dr. S. Reich of the

Department of Mathematics at the University of Southern California.
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3. Publications Carrying AFOSR Grant Number AFOSR-84-0393

1. A Numerical Scheme for the Identification of Hybrid Systems Describing the Vibration of
Flexible Beams with Tip Bodies, Journal of Math Analysis and Applications, 116 (1986),
262-288.

2. Spline-Based Rayleigh-Ritz Methods for the Approximation of the Natural Modes of
Vibration for Flexible Beams with Tip Bodies, Quarterly of Appl. Math., Volume XLIV
(1986) 169 - 185.

3. Approximation Methods for Inverse Problems Involving theVibration of Beams with Tip
Bodies, Proceedings, 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada,
December, 1984.

4. A Galerkin Method for the Estimation of Parameters in Hybrid Systems Governing the
Vibration of Flexible Beams with Tip Bodies, (with H.T. Banks), ICASE Report No. 85-7,
Institute for Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, VA, February, 1985.

5. Approximation Methods for the Solution of Inverse Problems in Lake and Sea Sediment
Core Analysis, (with H.T. Banks), Proceedings, 24th IEEE Conference on Decision and
Control, Ft. Lauderdale, Florida, December, 1985.

6. Numerical Schemes for the Estimation of Functional Parameters in Distributed Models for
Mixing Mechanisms in Lake and Sea Sediment Cores, (with H.T. Banks), Inverse
Problems, 3(1987), 1-23.

7. Numerical Approximation for the Infinite-Dimensional Discrete-Time Optimal
Linear-Quadratic Regulator Problem, (withJ.S. Gibson), SIAM J. Control and
Optimization, 26(1988), to appear.

8. Shifting the Closed-Loop Spectrum in the Optimal Linear Quadratic Regulator Problem for
Hereditary Systems, (with J.S. Gibson), IEEE Transactions on Automatic Control,
AC-32(1987), 831-836.

9. Estimation of Stiffness and Damping in Cantilevered Euler-Bemoulli Beams with Tip
Bodies, (with H.T. Banks and C. Wang), Proceedings, Fourth IFAC Symposium on
Control of Distributed Parameter Systems, Los Angeles, CA, June, 1986.

10. Computational Methods for the Identification of Spatially Varying Stiffness and Damping in
Beams (with H.T. Banks), Control - Theory and Advanced Technology, 3(1987), 1-32.

11. Methods for the Identification of Material Parameters in Distributed Models for Flexible
Structures, (with H.T. Banks and J.M. Crowley), Mathematica Aplicada e Computacional,
5 (1986), 139-168.

12. The Identification of a Distributed Parameter Model for a Flexible Structure, (with H.T.
Banks, S.S. Gates and Y. Wang), SIAM J. Control and Optimization, to appear.

13. Computational Methods for Optimal Linear - Quadratic Compensators for Infinite ,
Dimensional Discrete-Time Systems, (with J.S. Gibson), Proceedings of International
Conference on Control and Identification of Distributed Systems, Springer-Verlag Lecture
Notes in Control and Information Sciences, to appear.

14. Inverse Problems in the Modeling of Vibrations of Flexible Beams, (with H. T. Banks and
R. K. Powers), Proceedings of the International Conference on Control and Identification of
Distributed Parameter Systems, Springer-Verlag Lecture Notes in Control and Information ,%Sciences, to appear. e
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15. Approximation of Discrete-Time LQG Compensators for Distributed Systems with Boundai.
Input and Unbounded Measurement, (with J. S. Gibson), Automatica, to appear.

16. Approximation in Discrete-Time Boundary Control of Flexible Structures, (with J. S.
Gibson), Proceedings of the 26"h IEEE Conference on Decision and Control, Dec. 9-11,
1987, Los Angeles, CA, to appear.

17. Computational Methods for the Solution of Infinite Dimensional Discrete-Time Regulator
Problems with Unbounded Input (with M. A. Lie) Proceedings of IMACS/IFAC
International Symposium on Modeling and Simulation of Distributed Parameter Systems,
Oct. 6-9, 1987, Hiroshima, Japan.

18. Approximation of Discrete-Time LQR Problems for Boundary Control Systems with Control
Delays, Proceedings of IFIP Conference on Optimal Control of Systems Goverened by
Patial Differential Equations, July 6-9, 1987, Santiago de Compostela, Spain,
Springer-Verlag, to appear.

19. An Approximation Framework for the Identification of Nonlinear Distributed Parameter ,

Systems, (with H. T. Banks and S. Reich), in preparation.
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4. Meetings Attended, Talks Given, and Papers Presentedm

Invited Participant, Workshop on Control Systems Governed by Partial Differential
Equations with Application to Large Flexible Structures, The Pennsylvania State University,
Clearwater, FL, March 4 - 8, 1985.

Invited Speaker, Applied Mathematics Seminar, Department of Mathematics, Harvey Mudd
College, Claremont, CA., January 31, 1986.

Invited Speaker, Control Systems Seminar, Departments of Mathematics and Electrical
Engineering, The Institute of Technology, University of Minnesota, Minneapolis, MN, June
5, 1986.

Invited Speaker, Conference on Control and Indentification of Distributed Systems, The
Institute of Mathematics of the University of Graz, Vorau, Austria, July 6 - 12, 1986.

Invited Speaker and Session Chairman, Meeting of the Society for Engineering Science,
State University of New York at Buffalo, Buffalo, NY, August 25-27, 1986.

Invited Participant, Second Workshop on the Control of Systems
Governed by Partial Differential Equations sponsored by AFOSR, g
NSF and the University of Montreal, Val David, Quebec, Canada, October 5 - 9, 1986.

Invited Speaker, Control Systems Seminar, Department of Electrical and Computer
Engineering, University of California, Santa Barbara, Santa Barbara, CA, October 27,
1986.

Paper Presented, 1984 IEEE Conference on Decision and Control, Las Vegas, Nevada,
December, 1984.

Paper Presented, 1985 SIAM Fall Meeting, Arizona State University, Tempe, Arizona,
October, 1985.

Paper Presented, 1985 IEEE Conference on Decision and Control, Ft. Lauderdale, Florida,
December, 1985.

Invited Speaker, IFIP Conference on Optimal Control of Systems Governed by Partial
Differential Equations, July, 6-9, 1987, Santiago de Compostela, Spain.

Speaker and Invited Session Chairman, IMACS/IFAC International Symposium on
Modeling and Simulation of Distributed Parameter Systems, Oct. 6-9, 1987, Hiroshima, sf-

Japan. _

Attendee, ICIAM '87, First International Conference on Industrial and Applied Mathematics,
June 29 - July 3, 1987, Paris, France.
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5. Students Supported

1. Ms. Y. Wang, MSEE, University of Southern California, 1984, MS Applied Mathematics,
University of Southern California, 1986. Carried out computations for identification of RPL
structure. Thesis: An Inverse Problem for a Flexible Structure. Supported: 1 June, 1986 -
31 July, 1986.

2. Mr. M. Lie, BSEE, University of Southern California, Carried out computations for optimal .
discrete-time LQG compensators for infinite dimensional systems. Supported: 1 June, 1986
- 31, May, 1987

3. Mr. P. Feehan, MSEE, University of Southern California, Carried out computations for
preliminary studies on the identification of material parameters in distributed parameter models
for flexible structures using modal or spectral data. Supported: 1 June, 1986 - 31 August,
1986.

4. Mr. C. Lo, MSCE, University of Southern California, BSEE, George Washington
University, carried out supercomputer calculations for studies on the identification of
nonlinear distributed parameter systems. Attended San Diego Supercomputer Center Sunmer
Institute, Summer, 1987. Supported 1, June, 1987 - Present.

5. Mr. C. Mao, Sc. D. Mathematics, Wuhan University, carried out preliminary theoretical
studies on thermomechanical models in flexible structures. Supported 1, June, 1987 - 31,
August, 1987.

I

6. Equipment Purchased

1. IBM PC AT and peripherals. Used to carry out many of the computations reported on above.

2. AST Premier/286 and peripherals. Used by P. I. and students to carry out computations
reported on above. U-
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7. Abstracts

1. A Numerical Scheme for the Identification of Hybrid Systems Describing the Vibration of
Flexible Beams with Tip Bodies, I. G. Rosen.

A cubic spline-based Galerkin-like method is developed for the
identification of a class of hybrid systems which decribe the transverse
vibration of flexible beams with attached tip bodies. The identification
problem is formulated as a least-squares fit to data subject to the system
dynamics given by a coupled system of ordinary and partial differential
equations recast as an abstract evolution equation (AEE) in an appropriateinfinite-dimensional Hilbert space. Projecting the AEE into spline-based
subspaces leads naturally to a sequence of approximating finite-dimensional
identification problems. The solutions to these problems are shown to
exist, are relatively easily computed, and are shown to, in some sense,
converge to solutions to the original identification problem. Numerical
results for a variety of examples are discussed.

2. Spline-Based Rayleigh-Ritz Methods for the Approximation of the Natural Modes of
Vibration for Flexible Beams with Tip Bodies, I. G. Rosen.

Rayleigh-Ritz methods for the approximation of the natural modes for a
class of vibration problems involving flexible beams with tip bodies using
subspaces of piecewise polynomial spline functions are devloped. An
abstract operator-theoretic formulation of the eigenvalue problem is derived
and spectral properties investigated. The existing theory for spline-based
Rayleigh-Ritz methods applied to elliptic differential operators and the
approximation properties of interpolatory splines are used to argue
convergence and establish rates of convergence. An example and numerical
results are discussed.

3. Approximation Methods for Inverse Problems Involving the Vibration of Beams with
Tip Bodies, I. G. Rosen.

In this short paper we briefly outline two cubic spline based
approximation schemes for the solution of inverse problems involving the
vibration of flexible beams with attached tip bodies. The identification
problem is formulated as the least squares fit to data of a hybrid system of
coupled partial and ordinary differential equations describing the dynamics
uf the beam and tip bodies. The resulting optimization problem is infinite
dimensional and as such, necessitates the use of some form of
approximation. The schemes we have developed are based upon the
construction of a sequence of approximating identification problems in
which the underlying constraining state equations are semi-discrete finite
dimensional approximations to the infinite dimensional distributed system
which governs the original identification problem. Our study includes both
theoretical convergence results and numerical testing.

4. A Galerkin Method for the Estimation of Parameters in Hybrid Systems Governing the
Vibration of Flexible Beams with Tip Bodies, H Thomas Banks and I. G. Rosen.

In this report we develop an approximation scheme for the identification
of hybrid systems describing the transverse vibrations of flexible beams
with attached tip bodies. In particular, problems involving the estimation of
functional parameters (spatially varying stiffness and/or linear mass
density, temporally and/or spatially varying loads, etc.) are considered. The
identification problem is formulated as a least squares fit to data subject to
the coupled system of partial and ordinary differential equations describing

10
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the transverse displacement of the beam and the motion of the tip boodies a

respectively. A cubic spline-based Galerkin method applied to the state
equations in weak form and the discretization of the admissible parameter
space yield a sequence of approximting finite dimensional identification
problems. We demonstrate that each of the approximating problems admits
a solution and that from the resulting sequence of optimal solutions a
convergent subsequence can be extracted, the limit of which is a solution to
the original identification problem. The approximating identification
problems can be solved using standard techniques and readily available
software. Numerical results for a variety of examples are provided.

5. Numerical Schemes for the Estimation of Functional Parameters in Distributed
Models for Mixing Mechanisms in Lake and Sea Sediment Cores, H. T. Banks, and
I. G. Rosen.

We consider distributed parameter models for vertical mixing in lake
and sea sediment cores. Finite dimensional approximation schemes are
developed for the solution of associated inverse problems. The schemes
permit one to estimate temporally and spatially varying functional
parameters which appear in the parabolic partial differential equations and
boundary conditions constituting the models. Thecretical convergence
results are established. Numerical findings are presented which
demonstrate the potential of the methods. An example involving the
identification of a depth-dependent mixing parameter based upon volcanic S
ash data from the North Atlantic is included.

6. Numerical Approximation for the Infinite-Dimensional Discrete-Time Optimal
Linear-Quadratic Regulator Problem, J. S. Gibson, and I. G. Rosen.

An abstract approximation framework is developed for the finite and
infinite horizon discrete-time linear-quadratic regulator problems for
systems whose state dynamics are described by a linear semigroup of
operators on an infinite-dimensional Hilbert space. The schemes included
in the framework yield finite-dimensional approximations to the linear state
feedback gains which determine the optimal control law. Convergence
agruments are given. Examples involving hereditary and parabolic systems
and the vibration of a flexible bean are considered. Spline-based finite
element schemes for these classes of problems, together with numerical
results, are presented and discussed.

9,'

7. Shifting the Closed-Loop Spectrum in the Optimal Linear Quadratic Regulator
Problem for Hereditary Systems, J. S. Gibson and I. G. Rosen.

In the optimal linear quadratic regulator problem for finite dimensional

systems, the method known as an a-shift can be used to produce a
closed-loop system whose spectrum lies to the left of some specified vertical ",
line; that is, a closed-loop system with a prescribed degree of stability.
This paper treats the extension of the a-shift to hereditary systems. As in
finite dimensions, the shift can be accomplihed by adding a times the
identity to the open-loop semigroup generator and then solving an optimal
regulator problem. However, this approach does not work with a new
approximation scheme for hereditary control problems recently developed
by Kappel and Salamon. Since this scheme is among the best to date for the
numerical solution of the linear regulator problem for hereditary systems, an
alternative method for shifting the closed-loop spectrum is needed. An
a-shift technique that can be used with the Kappel-Salamon approximation
scheme is developed. Both the continuous-time and discrete-time problems
are considered. A numerical example which demonstrates the feasibility of

11



the method is included.

8. Estimation of Stiffness and Damping in Cantilevered Euler-Bernoulli Beams with
Tip Bodies, H. T. Banks and I. G. Rosen.

We develop finite dimensional approximation schemes for the
identification of spatially varying material parameters, i. e. flexural stiffness
and viscous damping coefficients in hybrid models for flexible beams with
tip bodies. Our schemes are derived via an application of spline-based
Galerkin techniques to the conservative form state space representation for
the coupled system of ordinary and partial differential equations and
boundary conditions which describe the dynamics of the system. A
convergence theory is briefly outlined and a discussion of our findings
based upon extensive numerical studies carried out on both conventional
and vector processors is included.

9. Computational Methods for the Identification of Spatially Varying Stiffness and
Damping in Beams, H. T. Banks and I. G. Rosen.

A numerical approximation scheme for the estimation of functional
parameters in Euler-Bernoulli models for the transverse vibration of flexible
beams with beams with tip bodies is developed. The method permits the
identification of spatially varying flexural stiffness and Voigt-Kelvin
viscoelastic damping coefficients which appear in the hybrid system of
ordinary and partial differential equations and boundary conditions
describing the dynamics of such structures. An inverse problem is
formulated as a least squares fit to data subject to constraints in the form of a
vector system of abstract first order evolution equations. Spline-based finite
element approximations are used to finite dimensionalize the problem.
Theoretical convergence results are given and numerical studies carried out
on both conventional (serial) and vector computers are discussed.

10. Methods for the Identification of Material Parameters in Distributed Models for
Flexible Structures, H. T. Banks, J. M. Crowley and I. G. Rosen.

In this paper we present theoretical and numerical results for inverse
problems involving estimation of spatially varying parameters such as
stiffness and damping in distributed models for elastic structures such as
Euler-Bernoulli beams. An outline of algorithms we have used and a
summary of our computational experiences are presented.

11. The Identification of a Distributed Parameter Model for a Flexible Structure, H. T.
Banks, S. S. Gates, I. G. Rosen, and Y. Wang.

We develop a computational method for the estimation of parameters in
a distributed model for a flexible structure. The structure we consider (part
of the "RPL experiment") consists of a cantilevered beam with a thruster
and linear accelerometer at the free end. The thruster is fed by a pressurized
hose whose horizontal motion effects the transverse vibration of the beam.
We use the Euler-Bernoulli theory to model the vibration of the beam and
treat the hose-thruster assembly as a lumped or point mass-dashpot-spring
system at the tip. Using measurements of linear accleration at the tip, we
estimate the hose parameters (mass, stiffness, damping) and a Voigt-Kelvin
viscoelastic structural damping parameter for the beam using a least squares
fit to the data.

We consider spline based approximations to the hybrid (coupled
ordinary and partial differential equations) system; theoretical convergence
results and numerical studies with both simulation and actual experimental

12
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data obtained from the structure are presented and discussed.

12. Computational Methods for Optimal Linear-Quadratic Compensators for Infinite
Dimensional Discrete-Time Systems, J. S. Gibson and I. G. Rosen.

An abstract approximation theory and computational methods are
developed for the determination of optimal linear-quadratic feedback
controls, observes and compensators for infinite dimensional discrete-time
systems. Particular attention is paid to systems whose open-loop dynamics
are described by semigroup of operators on Hilbert spaces. The approach
taken is based upon the finite dimensional approximation of the infinite
dimensional operator Riccati equations which characterize the optimal
feedback control and observer gains. Theoretical convergence results are
presented and discussed. Numerical results for an example involving a heat
equation with boundary control are presented and used to demonstrate the
feasibility of our methods.

13. Inverse Problems in the Modeling of Vibrations of Flexible Beams, H. T. Banks,
R. K. Powers and I. G. Rosen.

The formulation and solution of inverse problems for the estimation of
parameters which describe damping and other dynamic properties in
distributed models for the vibration of flexible structures is considered.
Motivated by a slewing beam experiment, the identification of a nonlinear
velocity dependent term which models air drag damping in the
Euler-Bernoulli equation is investigated. Galarkin techniques are used to
generate finite dimensional approximations. Convergence estimates and
numerical results are given. The modeling of, and related inverse problems
for the dynamics of a high pressure hose line feeding a gas thruster actuator
at the tip of a cantilevered beam are then considered. Approximation and
convergence are discussed and numerical results involving experimental V
data are presented. -

14. Approximation of Discrete-Time LQG Compensators for Distributed Systems with
Boundary Input and Unbounded Measurement, J. S. Gibson and I G. Rosen.

We consider the approximation of optimal discrete-time linear quadratic
Gaussian (LQG) compensators for distributed parameter control systems
with boundary input and unbounded measurement. Our approach applies to
a wide range of problems that can be formulated in a state space on which
both the discrete-time input and output operators are continuous.
Approximating compensators are obtained via application of the LQG theory
and associated approximation results for infinite dimensional discrete-time
control system with bounded input and output. Numerical results for spline
and modal based approximation schemes used to compute optimal
compensators for a one dimensional heat equation with either Neumann or
Dirichlet boundary control and pointwise measurement of temperature are
presented and discussed.

15. Approximation in Discrete-Time Boundary Control of Flexible Structures, J. S.
Gibson and I. G. Rosen.

This paper treats discrete-time LQG optimal control of flexible
structures with boundary control and what normally are unbounded
measurement operators.

The application of recently developed approximation theory for infinite
dimensional discrete-time LQG problems to the problem here is discussed,
and numerical examples are presented.
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16. Computational Methods for the Solution of Infinite Dimensional Discrete-Time
Regulator Problems with Unbounded Input, I. G. Rosen and M. A. Lie.

An approximation framework for the closed-loop solution of
discrete-time linear-quadratic regulator problems for infinite dimensional
systems with unbounded control inputs is developed. Sufficient conditions
for the convergence of approximations to Riccati operators and feedback
gains which characterize the optimal control law are provided. General
theories for abstract partial differential systems with boundary control and
distributed systems with control delays are developed. Spline-based ,,
schemes and numerical results for heat and beam equations with boundary
control and a hereditary system with delayed control are presented and
discussed.

17. Approximation of Discrete-Time LQR Problems for Boundary Control Systems with
Control Delays, I. G. Rosen.

In this short note we consider the extension and application of the
approximation theory for discrete-time linear-quadratic regulator problems
with either bounded or unbounded inputs we developed earlier to boundary
control systems with control delays. We synthesize our earlier, existing
results for distributed systems with boundary controls and for systems with
control delays into a theory which is applicable to systems that
simultaneously exhibit both forms of unbounded input.
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ABSTRACT ,.

We consider the approximation of optimal discrete-time linear quadratic Gaussian (LQG)

compensators for distributed parameter control systems with boundary input and unbounded

measurement. Our approach applies to problems that can be formulated in a state space on which

both the discrete-time input and output operators are continuous. Approximating compensators are

obtained via application of the LQG theory and associated approximation results for infinite

dimensional discrete-time control systems with bounded input and output. Numerical results for

spline and modal approximation schemes used to compute optimal compensators for a one

dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise

measurement of temperature are presented and discussed.
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1. Introdluction

In this paper we develop an approximation theory for the computation of optimal discrete-time

linear quadratic Gaussian (LQG) compensators (combined feedback control law and state estimator)

for distributed parameter systems with boundary input or control and unbounded output or

measurement. In a continuous time setting, boundary input typically results in an unbounded input

operator. That is, the system's input operator maps the control input into a space larger than the

state space in which the open-loop system is usually formulated. In the discrete-time case, on the

other hand, for a wide class of distributed systems, the resulting input operator is bounded on the

usual underlying state space. An unbounded output, or measurement, operator has domain smaller

than the usual open-loop state space.

For continuous time systems, Pritchard and Salamon (1987) have established an abstract

semigroup theoretic framework for treating the linear quadratic regulator problem (control only) for

infinite dimensional systems with unbounded input and output operators. Their approach is based

upon a weak or distributional formulation of the Riccati equations which characterize the optimal

feedback control laws in an appropriate dual space. Curtain (1984) provides a procedure for the

design of finite dimensional compensators for parabolic systems with unbounded control and

observation. In (Curtain and Salamon, 1986) a finite dimensional compensator design procedure

for a wider class of infinite dimensional systems with unbounded input (but bounded output)

including hereditary systems with control delays and partial differential systems with boundary

control is developed. Lasiecka and Triggiani have looked at linear regulator problems for parabolic

(1983a, 1987a) and hyperbolic (1983b, 1986) systems with boundary control and obtained,

among other things, global and local regularity results for the optimal controls and state

trajectories. In (Lasiecka and Triggiani, 1987b) Galerkin approximations and an associated

convergence theory for closed-loop solutions to regulator problems for parabolic systems with

Dirichlet boundary input are studied. A more complete survey of the boundary control literature

including references to some of the poineering work in this area can be found in (Pritchard and

Salamon, 1987).

** ~ *%~' ~ . % % - - -. 7-



In our treatment here, we consider the discrete-time problem (i.e. piecewise constant input and

sampled output). Our interest in the discrete-time or digital fomiulation is motivated by 1) the fact

that it represents a more accurate or realistic description of how the linear-quadratic theory for

distributed systems would actually be applied in practice, and by 2) how the boundedness of the

discrete-time input operator in the usual underlying state space facilitates the development of an

approximation theory which can simultaneously handle both unbounded input and unbounded

output. Our approach is based upon an application of the theory we developed earlier in (Gibson

and Rosen, 1985 and 1986) for the approximation of optimal discrete-time LQG compensators for

infinite dimensional systems with bounded input and output. Our results are applicable to

boundary control systems in which a restriction of the state transition operator and the discrete-time

input operator are bounded on a space on which the output operator is bounded as well. To

illustrate our approach, in this paper we describe in detail the application of our theory to a one

dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise ..J

measurement of temperature. Elsewhere (see Gibson and Rosen, 1987) we have applied our

results to develop approximation schemes for the computation of optimal LQG compensators for "

flexible structures (i.e. Euler-Bemoulli beams) with shear force input at the boundary and a Y

pointwise measurement of strain.

An outline of the remainder of the paper is as follows. In Section 2 we describe an abstract

framework for the study of boundary control systems and their discrete-time formulation. In

Section 3 we review the LQG theory for infinite dimensional discrete-time systems and associated

abstract approximation results. In the fourth section, we discuss spline and modal subspace based

approximation schemes for the heat equation example. Section 5 contains some concluding %

remarks. "

2. The Boundary Control System and its Discrete-Time Formulation

We employ a semigroup theoretic formulation that has been used previously for a class of ,

abstract boundary control systems. See, for example, (Curtain and Salamon, 1986). Let W,V and

H be Hilbert spaces with W and V densely and continuously embedded in H. We

2



V. - - - - - S = a- S.

consider boundary control systems of the form

,"(2.1) v(t) Aw(t), t > 0

(2.2) w(0) =w

(2.3) Fw(t) = v(t), t > 0

(2.4) y(t) = Cw(t), t > 0

where A e Z (W,H), the boundary input operator F is an element in Z (W,R r ) and the output -,,,
A,z

operator C is an element in Z(V,RP). Note that the operator A need not be the Laplacian. Our

choice of A to denote a general, most often differential, operator satisfying the conditions set forth

below is consistent with the notation used in earlier treatments of boundary control systems

elsewhere in the literature.

We assume that 1) r is surjective and its null space, 7(1-) = { e W: rF = 01, is dense in

H, 2) the operator Cl, defined to be the restriction of the operator A to nR (ID, is a closed operator

on H and has non-empty resolvent set and 3) for each T > 0, all w0 e W, and v , C1 (0,T; Rm )

with rw 0 = v(0), there exists a unique w e C([0,Ti; W) fl Cl([0,T]; H) which depends

continuously on w0 and v and which satisfies (2.1) - (2.3) for each t e [0,T]. It then follows (see

Hille and Phillips, 1957) that the operator Cl : Dom (Qi) c H -4 H given by i = Aq for y e
.5

Dom(CI) = t(I") is the infinitesimal generator of a ' 0 semigroup, (r(t) : t > 0), of bounded

linear operators on H.

Define the space Z as the dual of Dom(Cl*) where the norm on Dom (CA*) is taken to be the

graph Hilbert space norm associated with the operator Ce*. Then H is densely and continuously

embedded in Z and ((t) : t > 0) can be uniquely extended to a C0 semigroup of bounded linear

operators on Z. Its generator is the extension of the operator Ci to an the operator CA in 2Z(HZ)
.1

given by (p)(W) = <9, QC*W.>H for cp e H and V e Dom(CA*).

Since r was assumed to be a surjection, it has a right inverse. Let I": Rm -4 W be any right

inverse of F. Since Dom ( I' ) = Rm, we have[I Z (Rm, W). For v F_ R', we define .,

13 e Z(Rm, Z) by 1v = (A - 1) r v. If r and F are two distinct right inverses of F then
1 2

Tt( r+ - F+ ) L ".(I-). Since 4 coincides with A on 4 ft(F) , it follows that the operator B3 is
1 2 Pp

op

3 .



well defined. It can be shown (see Curtain and Salamon, 1986) that for each w0 F I and v F_

L2(0,T; Rm ) there exists a unique w s C([O,T]; H) nl H1 (0,T; Z) which depends continuously on

w0 and v and which satisfies

% (t) = C.w(t) + 3v(t), t > 0

w(0) = w 0

in Z. The function w is given by
t ,

(2.5) w(t) = '"(t)w 0 + f T"(t - s) 13v(s)ds, t >0
0

and is referred to as a weak solution to the boundary control system (2.1) - (2.3).

The discrete-time formulation of (2.1) - (2.4) is found by considering piecewise-constant

controls of the form

(2.6) v(t) = uk, t e [kr, (k + 1)t), k =0,1,2,...

where t denotes the length of the sampling interval. Let wk = w(kt), k = 0,1,2,... where w(.)

is the unique weak solution to (2.1) - (2.3) given by (2.5) corresponding to w o e H and input v

given by (2.6). (We note that with piecewise constant input of the form (2.6), the solution w is in

fact a strong solution on each subinterval [kt, (k+l)t].) For each k = 0,1,2,... define

zk e C([kt, (k + 1)TI; H) by zk(t) = w(t) - l"u.,, t e [k, (k + 1)t]. Then

Zk(t) = w(t) = Ctw(t) + nu k  -

1 Qzk(t) + (Cl + nF)-'u..

= Ck(t) + AUk, t (kt, (k + l)t],

Z(kt) =wk-Fuk.

Therefore

4



Wk+= zk((k+l)t) + 'eUk

S (r)(wk - -u) + f T (s) A P1 ukds + -

= T(T)wk + (I - Trt)) f~uk + f' 's)AFrukds,
0

or

Wk+1 Twk + Buk, k = 0,1,2,...
wJ~eHWoe H

where T e Z (h and B e Z (Rm , H) are given by T = (r) and B =(I - T()) r+ +

fT SY(s)A-+ds respectively.

We note that as in the case of the continuous-time input operator 3, the discrete-time input

operator B is well defined and does not depend upon a particular choice for IF+ . Indeed if B1 and

B2 are the input operators which correspond to the choices F+ and 172+ then for u e Rm we have1

"-.4-

(B B)u =(I- T(,,))(I -r 2+)u + T (slA (r + - -2+)uds. * I1 1 0 1. ,

But (1 - F+ )u f (I) = Dorn(C) and therefore -.

1 2 f

0 0 S

f 1 , T(s)(1.+- F )uds =(9"(r) I)r 1+u.

- -1 1 2
0

In addition, if 1" is chosen so that It (r+) c: '%(A), B takes on the particularly simple form B •

(I - T(-t))r". It is worth noting that a simple calculation reveals that

B= f ' T(s) 3ds -
0

in agreement with the standard technique for obtaining the discrete or sampled time formulation of

a continuous time system in either a finite dimensional or bounded input setting.

5
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It is our intention here to apply the approximation theory we developed earlier in (Gibson and

Rosen, 1986) for the design of optimal discrete-time LQG compensators for infinite dimensional

systems with bounded input and output operators. We therefore require the additional assumptions
I

that 4) T = 9"(,t) e Z(V) and 5) R( "+) c V. Although not all boundary control systems we
,-

might formulate would satisfy these conditions, there are many interesting and important systems ,

which do (see, for example, Section 4 below and Gibson and Rosen, 1987). In this case, the

control system (2.1) - (2.4) takes the form -,

(2.7) Wk+ t = Twk + Buk, k = 0,1,2,...

(2.8) w0e V

(2.9) Yk = Cwk, k = 0,1,2...

3. LOG Theory for Infinite Dimensional Discrete-Time Systems and Finite

Dimensional AoDroximation

3.1. The Infinite Dimensional Probelm
P%

The discrete-time linear-quadratic regulator problem for the boundary control system (2.1) -

(2.3) is:

Find u* = ;Uk}= 0 e 22(0, -0; Rm) which minimizes the quadratic performance index
p,.,

J(u) <Qwk Wk >V + u Ruk

where Q e ,(V) is self-adjoint and nonnegative, R is a symmetric positive definite mxm matrix

and the state w = (wk) evolves according to the recurrence (2.7), (2.8).

An optimal control exists for each initial condition w0 if and only if the operator algebraic a-

Riccati equation .r

(3.1) 1- = T*(17I - FIB(R + B*FIB)-IB*I-)T + Q.

6v."
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has a bounded nonnegative, self-adjoint solution Hl. In this case, the optimal control has the

feedback form uk -Fwk where F = (R + B* FIB)-B*I-T. A control (sequence) u is admissible

for the initial condition w0 if the corresponding J(u) is finite. If there exists an admissible control

for each initial condition, then (3.1) has a bounded nonnegative, self-adjoint solution. If each

admissible control for each initial condition drives the state to zero asymptotically, then there exists ",.

at most one bounded nonnegative, self-adjoint solution to (3.1). The optimal trajectory w =

evolves according to w = Skw0, k = 0,1,2,..., where the closed loop state transitionk =O k -'"K.'

operator S e 2(V) is S = T - BF. If Q is coercive, then S has spectral radius less than one and is

uniformly exponentially stable. From the finite dimensionality of the control space we obtain -

*|

(3.2) u = <f >v k=0,1,2....

m

where f = (f1,f2,....fr) T e x V is called the optimal functional feedback control gain.
j= 1

The results stated here for the optimal linear-quadratic regulator problem are summarized from

(Gibson and Rosen, 1985).

When only a finite dimensional measurement y = {Yk} = 0 of the infinite dimensional state w

is available (recall (2.9)), a state estimator or observer is required. For a given input sequence u

and corresponding output sequence y, the optimal LQG estimator is

A(3.3) w1+= T' + BU + F Yk-" kk =0, 1,2,....,:

(3.4) W0 e V

where the optimal estimator or observer gain F e Z(RP,V) is F = T 1I C*(R. + C I C*)1 with

1I P - (V) the minimal, self-adjoint, nonnegative solution (if one exists) to the operator algebraic

Riccati equation
.',

(3.5) I=T(H -H C*(R+ C C*)-ICV)T*+ Q.

Since F s (RP,V), it has the representation

7'A



Fy=fTy y e RP

where f" (f , f .... f*)T5.. "

where f x(f 1' 2'***! f )T p x V is called the optimal functional observer gain.

The operator Q , Z(V) is self-adjoint, nonnegative and the pxp matrix R is symmetric, ¢0

positive definite.

In a stochastic setting, the operator Q and the matrix R are, respectively, the covariance

operator and covariance matrix for uncorrelated, zero-mean, stationary, Gaussian white noise .

processes that force the state and corrupt the measurement. In this case, if Q is trace class, (3.3), "o.

(3.4) is the infinite dimensional analog of the discrete-time Kalman-Bucy filter. In a strictly I

deterministic setting, Q and R are assumed to be determined via engineering design criteria

such as stability margins, robustness of the closed-loop system, etc. S,

Replacing operators in the control problem with the adjoints of the appropriate operators in the I

estimator problem yields the usual duality between the LQG optimal control and estimator
.,p.

problems. Hence sufficient conditions for existence and uniqueness of solutions of (3.5) and the N

closed-loop estimator stability properties are analogous to the results for the control problem. In .

particular, if ek = w^vk - Wk, then ek = 9k eo, k = 0, 1,2,..., where S = T - P C, and a sufficient
*5*

condition for 9 to be uniformly exponentially stable is that be coercive.

The optimal LQG compensator consists of the state estimator in (3.3) and (3.4) and the control I

law

(3.6) * F k =0,1,2....

The resulting closed-loop system is given by

90 1 " =' k = 0 , 1 ,2 .... , .-kS

where V w )T with (Wk}k0 the state trajectory that results from the input (3.6) ]khr Wk ' (w k  (Wk kk

and ,6 e Z(VxV) is

8 ,Sqq
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T -BF V

L FC T-BF-FCj

It is easy to show that tie spectrum of , is given by a(,/) = a(S) U a(Y), so that the stability of

the closed-loop plant-compensator system is determined by the stability of the plant with full state

feedback and the stability of the estimator error. "

3.2. A2oroximation

For each N = 1,2,..., let VN be a finite dimensional subspace of V and let PN be a bounded
linear mapping from V onto VN (for example, the orthogonal projection with respect to either the V

or H inner product). Let TN, QN, QN e Z(VN), BNe Z (Rm,VN) and CN e Z (VN,RP) and set -

#

FN= (R+ B11 rIB INT N

and

FN =TN UNCN(R + CNrUN C'N)' 15

where IN and IN are the minimal, self-adjoint, nonnegative solutions (assuming that they exist) to

the finite dimensional operator algebraic Riccad equations

(3.7) 7N = T ( 1-UN- FNBN(R + B* I-NBN) "I B fIN)TN + QN

and
A~~ ~ AA .I ~

(3.8) NR + C.( C CN N)IN +YN

respectively. The approximating optimal compensator is given by

u~ -FNW N  k =0, 1,2,..

N"k N,'

9.
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where w { v } is determined according to the approximating observer

w = TNw* +BNU* + FN(y* -CN W } k=0,1,2...
Nk+1 N~k Hk 24k N~k

w =PN W 8VN .
N ,* 0 N 0 N

The measurements Y* are given by y N CWNk k 0,1,2,... where

WNk+1 TwN,k -Bu k =0,1,2,... % J.
5,k-

WNO = W0 . I

The resulting closed-loop system is given by V = A V H 'N.0' k = 0,1,2,... where

qN,k (WN.k' W.,,k )T and ANe 6 (VXVN) is given by

N~N ':-

(3.9) AN [ TN F C

Let SN TN- BNFN and SN = TN - FNCN and assume that PN - I strongly on V as

N --+ o. Assume further that TNPN - T, T*PN -4 T*, QNPN -4 Q and QNPN --

strongly on V and that BN -+ B and CNPN -+ C in norm as N -4 -o. If the pairs (TN, BN)

and (T* , C*) are uniformly exponentially stabilizable and the pairs (TN, QN) and (T*. QN) are

detectable (see Kwakernaak and Sivan, 1972) then there exist unique, self-adjoint, nonnegative

solutions fIN and IN to the algebraic Riccati equations (3.1) and (3.5). If ITN and IN are

bounded from above uniformly in N, then 1INPN and [INPN converge weakly to 1-I and I,

respectively, as N -- .

If, in addition, SN and SN are uniformly exponentially stable, uniformly with respect to N,

then rINPN and f7NPN converge strongly. Weak convergence of I-NPN to H yields strong

convergence of FNPN to F and SNPN to S. If HINPN converges strongly then FNPN - F in

10



norm. Weak convergence of IINPN to H yields weak convergence of FN to F and SNPN to

S. When r1NPN -- 1 strongly, then FN -- F in norm and SNPN - S strongly in V as

N - ,o. Finally, if FN is the mapping of VxV onto VxVN given by rN(Wl. w 2 ) = (w1,

PNv2), then HNPN - FI weakly or strongly is sufficient to conclude that AN!N -A A weakly

or strongly depending only upon whether FINPN -+ H weakly or strongly as N -- o,. Under

appropriate additional hypotheses on the spectral properties of the open-loop system and on the

approximation scheme, it is possible to show that ,,NFN converges to A in norm. (We have been

able to obtain such a result only for modal approximations.) Norm convergence of the closed-loop

state transition operators is sufficient to conclude that uniform exponential stability of A implies

uniform exponential stability of AN for all N sufficiently large (see Gibson and Rosen 1986).

In practice, the finite dimensional approximating subspaces VN are often constructed using any

of a number of common finite element bases, e.g. polynomial and hermite spline functions, mode

shapes, orthogonal polynomials, etc. For the discrete-time boundary control systems of interest

to us here, the approximations to T and B, TN and BN, are obtained by approximating the

continuous time semigroup, { (t) : t >- 0), by a semigroup of bounded linear operators on VN,

(TN(t): t -> 0). In fact it is the infinitesimal generator Ql of the semigroup {"(t): t > 0}that is

approximated by a bounded linear operator PIN on VNwith ( TN(t): t > 0) then being defined by

%(t) = exp (C'Nt),t 0. With TN = TN(t) and BN = (I - 9"N(Ct))PNI" + J N(S)PNAr~ds, the

required convergence can usually be proved using the Trotter-Kato semigroup approximation

result (see (Kato, 1966) and (Pazy, 1983) ). The approximations to Q, Q and C, QN, QN and
CN, respectively, typically are taken to be QN = PNQ, QN = PNQ and CN = CPN.

Let {qN11 H denote a basis for VN and set ON= ((pN , (pNr TnNV

I J=1j=1

Adopting the convention that [L] denotes the matrix representation with respect to the basis

((pNj r  for a linear operator L with domain and/or range in VN, we find that

[FNI = (R + [BIT E N [BN])-I[B ]T E N[TN] and [FNI = [TN] E3N[CN]T(R + [CNI

E) N[CN]')- where VN and E N are the unique, symmetric, nonnegative solutions to the

nN x nN matrix algebraic Riccati equations

i11
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(3.10) ON =[TN]T ((EN -N[BNI(R + [8 N]T E N[BN])' [BNIT ON)[TN]

+ M[QN]

and

(3.11) ON = [TN]( N- E)N[CN]T(R + [CN]N[CNT)lI [CN](ElN)[TNIT

A[ N ( M N ) "1

The matrix MN is the nN x nN Gram matrix <(IN, ((DN)T> V .
^ * * * J*

If W ' k (D)T wkWith W' e R N , then u =-[FN] W kk=,1, 2,... with

W,~~~t+1 T]W i +[BN ,U + [F]{yri-t] Vt} k =0,1,2 ....

= (MN)-l < (D'W0>v .
,0

The approximating optimal functional feedback control gain, t=01 (f, f2, ...f"m)T P X VN

j=1

are given by tN = [FN](MNq)-'0N and the approximating optimal functional observer gain

fN~ ~ ~ = ,Of
PV

j=j
then fi -- fi, i-- 1,2..... m weakly (strongly) in V. If IINPN -- l weakly (strongly) then

then fi, -f = 1,2..., p weakly (strongly) in V. If the injection V c H is compact,rn tn fi

i = 1,2,.... m and f - , i = 1,2,...,p strongly in H if rINPN and -INPN converge only

weakly.

4. Examples and Numerical Results

We consider the one-dimensional heat equation

2
(4.1) 2" (tx) = a w (tx), O < x< 1, t > 0,

tax

,'
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where a > 0, with the homogeneous Dirichlet boundary condition,

(4.2) w(t,0) = 0, t > 0,

and either the Neumann boundary control

(4.3) x(t,1) =v(t), t> 0, -..

or the Dirichlet boundary control

(4.4) w(t, 1) = v(t), t > 0,
I

where v e L2(0, -c). For output we take a temperature measurement

(4.5) y(t) = w(t, ), t _> 0,

at some fixed point C e (0, 1). Initial conditions for these systems have the form

(4.6) w(0, x) w0 (x), 0!9x < 1

where w 0 e L2 (0, )..

Although the two control systems above appear to be similar, they are, in fact, quite different and

must be treated separately. We begin with the more straight forward of the two, Neumann boundary

control. Let H = L2 (0, 1), V = H 1(0, 1) -{e e H'(0, 1) :(0) = 0) and
L

W = H2 (0, 1) fl H' (0, 1). With H endowed with the usual L2 inner product, V with the inner
L

product < (p, iV >v = I Dp DiV and W with the inner product < p, V >w = DJ DJi V, we
j=1

have the continuous and dense embeddings W c V c H c V' W'. Define A e Z(W, H), r E Z(W,

RI) by A p = a D2 p, Frp = Dp(l) and Cq = p() respectively. With these definitions the boundary

13
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control system (4.1) - (4.3), (4.5), (4.6) has the form (2.1) - (2.4). The operator C: Dor (Q) c

H---H is given by Cop = a D2cp for (p - {(p F, H2(0, 1): (p(0) = Dcp(l)) = 01. It is densely defined,

negative definite, self-adjoint and it is the infintesimal generator of a uniformly exponentially stable I

analytic semigroup ((t): t > 0) of bounded, self-adjoint linear operators on H. Also, {"(t): t >

0) is a uniformly exponentially stable, analytic semigroup of bounded, self-adjoint operators on V

with generator Ct given by Ci(p = Ct (p for y) (F( E H3 (0, 1): (p(O) = Dy(1) = D2(P(0) = 0.

Choosing F+ , Z(RI, W) as (I"+u)(x) = xu for x e [0, 11, we have A( F+) c V, t( I'+ ) c '%(A)

and that conditions 1) -5) given in Section 2 are satisfied. For the optimal control and estimator

problems, we take Q = qI, =a I, R = r and r= r where I is the identity on V, q, a >_ 0 and r, r "

>0. The uniform exponential stability of the semigroup (T(t): t z> 0) on V implies that the algebrai

Riccati equations (3.1) and (3.5) admit unique bounded, nonnegative, self-adjoint solutions [I and tI

respectively. The optimal control (3.2) takes the form

I

(4.7) uk = - Df Dwk k= 0,1,2,...
0

where the optimal functional feedback control gain f and the optimal functional observer gain

fare elements in HI (0,1).

We construct an approximation scheme using a linear spline based Ritz-Galerkin approach. For

each N = 1,2,..., (pN) N denotes the usual linear spline or "hat" functions defined on the interval
. J- =0 -.

[0,1] with respect to the uniform mesh (0, 1/N, 2/N,..., 1 ). We discard the element centered
at x =0, 9N set VN = span ((pN) and choose PN tO be the orthogonal projection of V onto V N

I~et N n- cose1

with respect to the V inner product. Hence VN is an N dimensional subspace of V.

For (p e Dom (.), ICtPH - al(p.lv t -al(pl and therefore 0 e p(..) and C, 1 : H -- Dom(Q)

satisfies 1IC'TIv ! a'tkpil for (p e H. We define QN: VN VN as the inverse of the operator

C.U"1 = PN0 - restricted to VN. The operator -CA is positive definite becauseNN

<Q~ e P' 9q, >v -- -a'ItpJ for PN 6 VN, and it is self-adjoint since < CAt -N( ( 4N>V =

<PNZ 'l N' N>V = <C-1 YN- VN>V = a 1 < YN, WlN>H. Hence the operator Ls is well defined

and self-adjoint. For YN 6 VN and WN = CtN(N the estimate .

14



<QN(PNPN>V = <WN,O N N>V -all VN 12
".

-aI~~J !I -aI1PNCUQ I -alIQ-NI

2
-aI qNIv I

implies that Nl is the infinitesimal generator of a 'Go semigroup I N(t) t > 0) of bounded,

self-adjoint linear operators on VN satisfying IT"N(t)l < e-a t t > 0.

It can be shown that a<q(, y>v = <(_Q) 1/2, (-C)I/2'v>H. It then follows that the matrix

representation for the operator QN with respect to the basis {(PN) a is [QN ]I i ¢1

-a< p N, ,,N>- < qN, TN>V. This agrees with the system matrix derived by a standard

Ritz-Galerkin finite element approach. Note that even though QN is defined to be the inverse of the

operatcr PN(C)-1 restricted to the space VN, computing its matrix representation does not require

either QI1 or Q-1 explicitly. In general, the same approach can be used to obtain an operator

representation for the Ritz Galerkin approximation to any self-adjoint coercive operator. ..

Let IN denote the interpolation operator from V onto VN defined by (Ns p)(j/N) = (p(jIN), j 1, .

2,..., N. Then for (p e W, elementary approximation properties of linear interpolatory spline

functions (see (Schultz, 1971)) imply

l(PN" I)(PIV < - Div < __ 1D2( !I

Nir

and therefore, since W is dense in V, that PN- I strongly on V as N- 0*. Also, it follows that

Q= P Cl.-. -1 strongly on V as N-4 . If we define TN = rN(r), then the Trotter-KatoN

approximation theorem yields that TNPN - T strongly on V as N-4 o and, since T* = T= (t)

and T = TN = TN(t) that TNPN - T strongly on V as N-4 c.

Since t( "+ ) c VN (recall that (-'u)(x) = ux, 0 < x 1), we define the approximating input

operators BN by BN = (I - "N(t))I + and set QN = qI, QN = q I and CN = C. The strong convergence

of PN to the identity and TNPN to T together with the finite dimensionality of the domain of B and the

range of C are sufficient to conclude that QNPN - Q, QNPN -4 Q strongly on V and that BN - B

and CNPN -- C in norm as N -- co.

The uniform exponential stability of the semigroups { (t) t 0) implies

15
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(4.8) ITk Iv I(T )kI < rk, k = 0,1,2....N "

with r - e -31 < 1. Consequently the pairs (TN.BN) and (TN, C*) are uniformly exponentially

stabilizable and the pairs (TN,QN) and (TN, QN) are detectable. It follows that there exist unique

self-adjoint, nonnegative solutions I-IN and IN to the finite dimensional algebraic Riccati

equations (3.7) and (3.8) respectively. The uniform exponential bound (4.8) with r < 1 imples that

the zero control yields a uniform upper bound for RN and N and therefore the uniform.

exponential stability of SN = TN - BNFN and SN = TN - FNCN. We conclude that FTNPN and

liNPN converge strongly in V to 1N and 'N, respectively ,and that FNPN and FN converge to F

and F in norm as N -- c. The approximating optimal functional feedback control and observer

gains, fN and fN' converge respectively to f and f in the H1 norm as N -- ,,.

In implementing the approximation scheme just outlined above, eigenvector decomposition of

the associated Hamiltonian matrix was used to solve the matrix algebraic Riccati equations (3.10) and

(3.11) (see Pappas, et. al., 1980). The required matrix exponentials also were computed using

eigenvalue/eigenvector decomposition. All calculations were carried out via Fortran codes on an

IBM PC AT. We set a =lq = q = r = '= 1.0, = I/2 andr =.01 and obtained the

functional gains plotted in Figs. 4.1 and 4.2. We plot fN and f. as well as DfN and DfN to exhibit

the HI convergence. We note that Df (or DfN) appears as the feedback kernel in the optimal control

law (4.7).

We also simulated the operation of the closed-loop system with an approximating compensator.

Using a 20 mode model for the infinite dimensional system and N 12, we computed the closed-

loop spectrum of the approximating compensator (i.e. the eigenvalues of the operator 16 N given by

(3.9) with N = 12). These eigenvalues along with the first 20 open-loop eigenvalues (i.e. the first

20 eigenvalues of the operator T = T(t)) and the approximating closed-loop control and observer

eigenvalues are tabulated in Table 4.1 below. Table 4.1 reveals that the last seven open-loop

eigenvalues remain essent:ally unchanged in the closed-loop system-i.e. these modes are neither

controlled nor observed by the finite dimensional compensator. Also, as one would expect, o(A4N)

consists essentially of the union of a(SN), O(SN) and the eigenvalues corresponding to the

16



uncontrolled/unobserved modes of the open-loop system.

It is worth noting tha-t the scheme we have outlined above for the Neumann boundary control

problem is the same scheme that one would ordinarily use if the problem were formulated in the space

H - i.e. if the output operator C was bounded on L2 (0,1) (see Gibson and Rosen, 1986). This is
1

possible primarily because the space V = HL(0,1) is the natural energy space for the underlying

homogeneous or open-loop system. Consequently, the inherent self-adjointness and coercivity in the

problem is preserved when it is formulated in the stronger space. In the case of Dirichlet boundary

control, the situation is quite different.

For the Dirichlet boundary control system (4.1), (4.2), (4.4) - (4.6), we choose the spaces H, V

and W and their corresponding inner products to be the same as they were in the Neumann case.

The operators A e Z(W,H) and C e Z(V,R) also remain unchanged, however now we have

r e ,(W,RI) given by Fry = p(l). It then follows that the operator CA : Dom(el) c H - H is given ",

by Q9p = aD2y forp e H2(0,1) Cl H1 (0,1). It is well known that Ql is densely defined, negative
0

definite and self-adjoint and that it is the infinitesimal generator of the uniformly exponentially stable

analytic semigroup ( T"(t) : t -> 0) of bounded, self-adjoint linear operators on H. However this

time the operators "(t) for t > 0 are neither self-adjoint nor a semigroup on V. Indeed, since

. ,("(t)) c: H1 (0,1) for all t > 0 and H (0,1) is a closed proper subspace of H1 (0,1), T(t) is not
0 0 L i

strongly continuous in the V-norm at t = 0. (The fact that our general framework requires

rT" = l and R(r' ) c: V precludes our choosing V to be H* (0,1).) On the other hand,
0

(T(t) : t > 0) an analytic semigroup implies (see Pazy, 1983) that there exists a constant j > 0 fol

which IQr(t)lH < .t 1 for t > 0. Consequently, if we define T = 'rt), then it follows that

T e Z(V) and moreover, that

ITkl 2 -a'l<Q"(kt)p,T(kt)p> < a1 I C4T(kt)pl H I"(kT)IHp

-akt -ak'r

12 ! Ie 21
a H Vakxr akt
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for k = 1,2,... and 9 e V. We have therefore

(4.9) ITklv = I(T*)kIv Mrk , k = 0,1,2,...

where M > 0 and r < 1.

We again choose F1+ e (R,W) as (F+u)(x) = xu for x e [0,1]. Then 3(F + ) c 2(A) and we

have reformulated the boundary control system (4.1), (4.2), (4.4) - (4.6) in the general form of (2.1)

- (2.4) and conditions 1) - 5) are satisfied.

We formulate the optimal control problem with the performance index

2J(u) k P < 'Wk >H + rlk ,,.,

where q > 0 and r > 0. That is, we take Q to be the bounded, self-adjoint nonnegative operator on

IX 41
HL(0,1) given by (Q(p)(x) = q Jo J>y y(z)dzdy and R to be r. For the estimator problem we set

Q=qlandR=rwith > 0 and r^> 0.

The uniform exponential bound (4.9 ) implies the existence of unique, nonnegative, self-adjoint

solutions Hl and rI to the algebraic Riccati equations (3.1) and (3.5). The optimal control is again of

the form (4.7) with the optimal functional gains f and f in HL. N

The fact that { (T(t) : t _> 01 is not a semigroup on V precludes the use of a semigroup - theoreti(

approach to approximation. We therefore employ modal subspaces and approximate the open-loop

state transition operator T directly as a bounded linear operator on V.

For each N = 1,2,... let VN = span {y.} N where for x e [0,1], gpo(x) x and (pj(x) = sinjntx,

j = 1,2,...,N. Let PN denote the orthogonal projection of H = L2(0, 1) onto span (p .) N
J• j

and let PN denote the orthogonal projection of V onto VN. Using the fact that V = HI(0,I) E o, it
0

is not difficult to see that PN9( = ((l)P00 + PN(Y - p()p 0) for (p e V and hence, via elementary
I

properties of Fourier series (see Tolstov, 1962), that I(PN -
1(PN - I)(9p - g(l)0)lv -4 0

as N--> for each g e V.

We define TN E 2(VN) byT N = PNT. Then, since R.(T) = R (" (T)) c H1 (0,1),

0D

N) IyT P
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N
for WN =  NJ N we have

2 (-j 1F- 0 Vjj=O -

2( 0__ e- 
2 

7tp.

TN -t"N =PNTVN = PN ()WN = PN"(Et)VN = r(t)pNJN = 2  4N + VNDj=1 J7E1"

It follows that T* = PNT*, iT Iv I(T)klv < Mrk , k = 0,1,2,... with M > 0 and r < 1 independent

of N, and that

I(TNPN - T)(plv :_ I(PNTPN - PNT)hIV + I(PN - I)TypIv

< MrI(PN - I)(PIv + I(PN - I)Tplv -- 0

as N -- o for q e V. Similarly, T PN - T* strongly on V as N -o.

The approximating input, output, and state penalization operators BN, CN, QN and QN take the

form

N2
+ 1 )J eajn 2"t"

BU u (I - TN)F u = u + j u,
.i=1 PTC

CN = C,QN = qPNQ and QN = q 1. Reasoning as we did in the Neumann case, the approximating

algebraic Riccati equations (3.7) and (3.8) admit unique, nonnegative, self-adjoint solutions 1-N and

FIN respectively, rINPN - 1-1 and INPN - II strongly on V and FNPN - F and FN -- F in norm

as N -- oo. The approximating functional feedback control and observer gains fN and fN converge
A

to f and f respectively, strongly in HI as N - ,,* .,

With a = 1.0, q = q= r = 1.0, r = 5.0, 4 = /2/2 and t = .01 and the scheme outlined above we

obtained the approximating optimal functional feedback control and observer gains plotted in Figs.

4.3 and 4.4 below. The first 12 open-loop and the approximating closed-loop control and observer

eigenvalues for N = 12 are tabulated in Table 4.2.
I

Table 4.2 reveals an interlacing of the closed-loop control and open-loop eigenvalues. That is,
'.,,

the closed-loop control eigenvalues (i.e. the elements in the spectrum of S) are alternately more and

less stable than the corresponding open-loop eigenvalues. We also have observed this phenomenon

in other numerical studies we are carrying out involving LQG boundary control for flexible
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structures. In additon, in the Dirichlet boundary control system discussed above, if Q is chosenas .

the identity operator on V = HI(0,1), virtually all of the closed-loop control eigenvalues are less

stable than the corresponding open-loop eigenvalues. It is clear that this non-standard behavior

results from the presence of the one dimensional subspace represented by -(F-+). Indeed, the

behavior of the closed-loop spectrum in the case of Neumann boundary control is as would be

expected. We feel that what we are seeing can most likely be explained via infinite dimensional1

analogs of existing results relating the asymptotic properties of the closed-loop spectrum of a linear

regulator and the zeros of the corresponding open-loop transfer function (see Kwakemaak and Sivan,

1972 and Harvey and Stein, 1978). However, as of yet, we have been unable to establish this

conjecture satisfactorily and we consider it to be beyond the scope of this paper, which is primarily

concerned with approximation. We leave it as an interesting open question.

5. Concluding Remarks

We have developed a framework for the finite dimensional approximation of optimal discrete-time

LQG compensators for distributed parameter systems with boundary input and unbounded

measurement. Our theory applies to the class of boundary control problems which can be formulated

in a state space in which both the discrete-time input and output operators are continuous. We have

used a functional analytic treatment to develop a convergence theory and have demonstrated the

feasibility of our approach via examples involving either the Neumann or Dirichlet boundary control of

a one dimensional heat equation with point measurement of temperature. We have shown that while

both problems outwardly appear to be quite similar, they in fact require very different approaches to

approximation. Also in the Dirichlet case the observed behavior of the resulting closed-loop spectrum

is, in some ways unexpected and its explanation remains open.

Finally, we have been looking at the application of our schemes to LQG problems for flexible

structures with boundary inputs and unbounded measurement and systems with control and/or

observations delays. We have been considering vibration suppression for cantilevered beams via

shear or moment inputs at the free end and pointwise observation of strain or acceleration. These

studies are currently underway with the results to be reported elsewhere.
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Open-Loop (A12) CY(S 12 ) S*

1 .9975 .9968 .9968
2 .9780 .9780 .9778

.9769 .9768
3 .9402 .9408 .9387

.9371 .9371
4 .8861 .8872

.8778 .8775 .8798
5 .8188 .8194

.7982 .7985 .7998
6 .7419 .7414

.7026 .7019 .7030
7 .6590 .6573

.5960 .5921 .5946
.5740 .5718

.4891 .4769 .4804
9 .4901 .4875

.4433 .4412
10 .4104 .4041

.3675 .3675 .3682
11 .3368 .3341

.2772 .2763 .2768
12 .2711 .2705

.2145 .2129 .2133
13 .2139 .2134

.1811 .1811 .1816
14 .1655 .1663
15 .1255 .1260
16 .0934 .0933
17 .0681 .0677
18 .0482 .0483
19 .0341 .0340
20 .0235 .0236

Neumann boundary control; simulation results

Table 4.1
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Open-Loop G(S 12 ) C( 2

1 .90601806 .90569591 .78573771
2 .67382545 .68243047 .57981918
3 .41136911 .40961171 .40082268
4 .20615299 .20758391 .20936323
5 .08480497 .08447005 .08636884
6 .02863695 .02873534 .02892353
7 .00793790 .00791793 .00792193
8 .00180617 .00180978 .00178763
9 .00033753 .00033682 .00033414
10 .00005172 .00005179 .00005162
11 .00000651 .00000650 .00000654
12 .00000067 .00000067 .00000068
13 ___.00000000 .00000000

Dirichiet boundary control; open and closed-loop spectrum

Table 4.2
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ABSTRACT

,1i

A numerical approximation scheme for the estimation of functional parameters in

Euler-Bemoulli models for the tansverse vibration of flexible beams with tip bodies is developed.

The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin

viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial

differential equations and boundary conditions describing the dynamics of such structures. An

inverse problem is formulated as a least squares fit to data subject to constraints in the form of a

vector system of abstract first order evolution equations. Spline-based finite element

approximations are used to finite dimensionalize the problem. Theoretical convergence results are

given and numerical studies carried out on both conventional (serial) and vector computers are

discussed.
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1. Introduction

We develop here numerical approximation methods for the estimation of functional or more

precisely, spatially varying parameters that describe material properties in continuum models for

elastic structures. In particular, we consider the identification of the flexural stiffness and

Voigt-Kelvin viscoelastic damping coefficients in Euler-Bernoulli models for the transverse

vibration of long, slender, flexible beams with tip appendages. The primary motivation for the

study we report on here is the modeling and ultimately the control of the dynamics of large flexible

spacecraft. The type of structures to which we are referring includes satellites with flexible

appendages (solar panels and the like) antennas (reflectors as well as supporting structures) and

trussed masts and platforms, both shuttle attached and free flying.

The difficulties involved in the design of efficient and practical control laws and in particular the

need for extremely high fidelity models for structures of these types are well documented (see, for

example, [1], [8], [21], [22]). Their high flexibility, light damping, construction with new and

relatively untested composite materials (usually graphite-epoxy) and overall complexity together

with their use in a fuel limited and highly variable environment all contribute to making space

structure stabilization and conrol a formidable task. It is becoming increasingly clear that the use

of continuum or distributed models with spatially and /or temporally varying functional parameters

has the potential to offer several distinct and significant advantages. Included among them is the

ability to, in some sense, capture the physics and inherent infinite dimensionality of the dynamics

while at the same time greatly reducing the number of unknown or experimentally indeterminable

material parameters which have to be identified (see [15], [18], [23], [28], [35]).

In our study we have considered exclusively Voigt-Kelvin viscoelastic damping which is based

on the hypothesis that the damping moment is proportional to strain rate. There exists considerable

evidence to suggest that damping mechanisms in composite materials are significantly more

complex than the one described by the Voigt-Kelvin model. For example, it has been conjectured

by some investigators that an appropriate model might involve hysteretic or hereditary effects.

However, since there are a number of materials for which the Voigt-Kelvin assumption is

appropriate and moreover, since at present many questions regarding the modeling of structural

'"".
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damping mechanisms remain open, we feel that the Voigt-Kelvin model leads to a reasonable class

of examples and problems on which we can begin to develop, test, and evaluate identification

schemes.

Our treatment here is similar in spirit to some of our earlier efforts and the work of others on

inverse problems for elastic structures (see [2], [3], [4],[5], [6], [141, [17], [26], [31]).

Formulating the identification problem as a least squaes fit to data, the scheme we develop

involves a spline based finite element approximation to the hybrid system of coupled ordinary a:.d

partial differential equations describing the dynamics of the structure together with a spline based

discretization of the admissible parameter set.

Our approach here specifically differs from the one taken in [51, [61 in that the present scheme is

derived from an alternative state space formulation for the underlying dynamical equations. We

consider the higher order analog of the classical conservative formulation for a second order

hyperbolic equation as a f'-st order vector system in the natural states of strain u and velocity ut.

We have considered identification schemes based upon this formulation previously in [31]. N

However by replacing the semigroup theoretic convergence arguments used there with weak or

variational arguments (in the spirit of those commonly found in the finite element literature) as used "-

in [5], we are able to significantly weaken the hypotheses necessary to ensure convergence. We '

point out below that the weakening of these hypotheses has both theoretical and computational

significance. :4k.
Along with reporting theoretical convergence results, we discuss numerical findings. Our %

.%

computational results are based upon extensive numerical studies which involved a variety of

examples and two machines. In addition to testing our scheme on a conventional serial computer

(an IBM 3081) we vectorized our codes for the Cray 1-S and then benchmarked some of our runs

in order to explore the potential of vector architectures in the context of inverse problems for

systems described by distributed parameter models.

We provide a brief outline and summary of the remainder of the paper. In Section 2 we specify

the ordinary and partial differential equations which govern the underlying dynamics of the

structure and precisely formulate the identification problem. We reformulate the initial-boundary

value problem as an abstract second order evolution equation and then as a first order vector

2%



system. [Existence, uniqueness and regularity results for solutions are summarized. Section 3

contains the abstract approximation theory and convergence results. A spline-based scheme is

discussed in detail in Section 4 and our numerical findings are reported and summarized in Section

5.S

We use standard notation throughout. For X and Y Banach spaces, the Banach space of

continuous linear transformations from X into Y is denoted by Z (X,Y). When X = Y we use the

shortha. .,otation 1; (X). The spaces of (equivalence classes of) functions f from an interval I

into X which satisfy

.'

fI f(O) 12XdO< -or ess sup IfO -

are denoted respectively by L2(0 ; X) and L,,(l ; X). For k = 0,1,2... the space of X-valued

functions with k continuous derivatives on I are denoted by Ck(I ; X). When k 0 we use

C(I ; X). The completion of the space Ck(i ; X) with respect to the norm

k 2 )2

Ifik " I f (0) a

is denoted by Hk(j; X). When X = R we use simply L2(1), L,(J), Ck(j) and Hk(J).

I.

2. The Identification Problem

We consider the identification, or estimation, of the mass and/or material properties of a long,

slender, flexible, viscoelastic beam of length Z and spatially varying mass density p which is

clamped at one end and free at the other with a body rigidly attached at the free end (see Figure 2.1

below).
K04
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Figure 2.1

We assume that the material behavior of the beam is that of an idealized Voigt-Kelvin solid with

modulus of elasticity E and coefficient of viscosity CD (see [30 1). We assume further that E, C D

and the cross sectional moment of inertia I of the beam are in general spatially varying. We take the

mass properties of the tip body to be mass m a-nd moment of inertia J about the center of mass 0

which is assumned to be located at a distance c from the tip of the beam directed along the beam's tip

tangent (see Figure 2.2 below).

-.
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Figure 2.2
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We note that there is no essential loss of generality in assuming that the mass center of the tip body

is not offset from the tip tangent of the beam. We refer the interested reader to [31] where the

more general situation is treated. Also, the problem with non-zero mass center offset can be
transformed into a problem of the general form of the one which will be considered here. See [32'

for details.

Letting u = u(t,x) denote the transverse displacement of the bean at position x at time t and

assuming only small deformations (I u(t,x) I << t, - (t,x) I << 1), the Euler-Benoulli theory

a.:. a elementary Newtonian mechanics yield the hybrid system of ordinary and partial differential

equations (see [19], [34])

2U2 2 3

(2.1) P-2 (tx) + - {EI-(t x) + C (tX) a =u..
at aX2 a 2  D x2attX)

-' aua a--(t,x) + f(t,x), x e (0,.), t > 0
ax ax

(2.2) aau 3u 2E1u

m-(t,t ) + mc - (t,) - -+at2  at2ax ax ax2

CD )(t,2) = o-(t,.) + g(t), t > 0axat ax
2au

a2 U2 b 3 u @2u(2.3) mc- )+(J + mc ) (t,2) + EI- (t,2) +
2' 2 2'

at at2ax ax

a3 U a
= -co---(t,,) + h(t), t > 0

ax x t

(2.4) u(t,0) = 0, -a-t,0 = 0, t > 0
ax

5
4 ~* *\~j....--U
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au

(2.5) u(O,x) - )(x), A), O Wx x £ [0, e.

Equation (2.2) and (2.3) are derived from the usual transverse and rotational equilibrium

considerations at the free end. The geometric boundary conditions (2.4) are the zero displacement

and zero slope constraints at the clamped end. The functions f = f(t,x), g = g(t), h = h(t) and

= T(t,x) denote externally applicd loads in the form of moments (h) and transversally (f and g) or

axially (Y) directed forces exerted on the beam or tip body. (In fact, h(t) = h(t) + cg(t) where h is

an externally applied torque on the tip body). The temporal boundary conditions (2.5) reflect the

initial displacement and velocity distributions whch are assumed to be given by the functions ¢ and

V respectively.

We treat the initial-boundary value problem (2.1) - (2.5) in the form of an abstract second order

evolution equation which we then rewrite as an equivalent first order vector system. The particular

state space formulation we choose forms the basis for the finite dimensional approximation

schemes we develop in the next section. It also allows us to easily establish existence, uniqueness

and regularity results for solutions to (2.1) - (2.5) using the theory of abstract parabolic systems.

Let H denote the Hilbert space R2 x L2(0, Z) with inner product

<('"1 '1.1 ,0 (T122,02)>H = 
11I12 + i 2 + <01,02>0

and let V denote the Hilbert space

V = {(1,,0) E H 0 E H2(0,t), 0(0) = DO(0) =0, T= 0(Z), =D()}

with inner product

< 61, 62>v = <EI(D20 1), D' 0 2>0

for a= (0-(t), D0i (t), Oi) E V, i = 1,2. In the above definitions the inner product <',.> is

the standard one on L2(0, ) and D denotes the spaial differentiation operators -. or .With H asP't dx ax

the pivot space, we obtain the usual dense embeddings V c f = H' c V'.

We consider the system (2.1) - (2.5) in the form of the abstract second order initial value

6 .~
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problem

(2.6) Mn10  utt(t) + C0oU(t) + KOtU(t) = 0(tu(t) + D 0(t), t > 0 .UP

(2.7) ^(o)= = %,

0

in the state u(t) = (u(tj),Du(t,Z.),u(t,)) , H. The abstract mass, damping and stiffness

operators l 0, T0 and are given formally by

Th0(ml,O) = (mrl + mc , mcn + (J + mc 2 ),, pO)

= (-D(CDI(D 20))(t), CD1(D 20)(Z.),D 2(CDI(D 20)))

and

W.(Tj, ,0) = (-D(EI(D20))(Z.), EI(D20)(2), D2(EI(D 20)))

respectively. For each t > 0, the operator valued function no0 and input or forcing function 0

take on the values

0(t(q, ,0)= (-'(t,.e.)(D 0(.g)), - ca(t,.)(D 0(.g)), D(o(t,)(D 0))),"

and

r0(t) = (g(t), h(t), f(t,.)).

The initial conditions $ and ^g are given by

= (4,( ), D¢(Z.), qb)

and

=f (V/(Z), DxV(Z-),V)-

The formal definitions given above can be made precise and the existence and uniqueness of

solutions to the initial value problem (2.6), (2.7) can be established if we make the following

assumptions.

A1  The functions p, El and CDI are elements in C[0,. ] and there exists a positive constant c for

which p(x) a a, EI(x) a a, CDI(x) a a, x E [0, e,.

7
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A2 The mapping t - o(t,.) is an element in L,,,((O,'1); 1l(0j)) for some T> 0.

A3 The mapping t -> f(t,.) is an element in L2((O,T); L2(0,.)) and g,h F_ L2 (0,T).

A4 The function is an element in H2(0,.) with (O) = D4,(O) =0 and V e L2 (0,t) with V(t)

and DV(t.) defined.

Under the hypotheses A, - A4 above, the operator MTh0 is a bounded linear operator from H onto H

and-0: Dom (Co) c H - H and %: Dom (0) c H -* H are densely defined, nonnegative,

self -adjoint operators defined on Dom(G 0) = { V: CDI(D 2 0) F H2(O,-&)} and Dom ( 0) = {7

P V: EI(D 2 0) e H2 (O,.)} respectively (see [32]). For each t e (0,T), n30 (t) e Z(V,H) and T 0(t) e

H while $ E V and ijie H. It also follows that no e L,((0,T); Z(V,H)) and E L2 ((0,T); H).

We shall call a mapping t - 8(t) from [0,T] into H a strong solution to (2.6), (2.7) if

a p C ([0,T]; V) n C1 ((0,T]; V) r) C1 ([0,T]; H) n C2 ((0,T]; H),

a(t) e Dom (K0), Ot(t) e Dom (?0), t e (0,1, and a satisfies (2.6) and (2.7) where the time

derivatives are interpreted in a strong (norm) sense in H. We shall call a mapping t -a 0(t) from

[0,1 into H a weak solution to (2.6), (2.7) if

a F C([0,T]; V) n H1((0,T); V) n C'([0,T]; H) n H2((0,T); V')

and it satisfies the initial value problem (2.6), (2.7) with the operators C 0 and F-0 replaced by their

natural extensions to operators in Z(V,V') and the time derivatives are interpreted in a weak or

distributional sense (see [20 ], [27]). A function u = u(t,x) will be called a strong (weak) solution

to the initial-boundary value problem (2.1) - (2.5) if the mapping t - 0(t) given by

(t)= (u(t,t ),Du(t,2), u(t,.)) is a strong (weak) solution to (2.6), (2.7).

Our approximation theory for the estimation problem to be developed below is based upon the

reformulation of the initial value problem (2.6), (2.7) as a first order vector system. This

reformulation is formally equivalent to rewriting the initial-boundary value problem (2.1) - (2.5)

8



as a first order system in the states D21, (strain) and ut (velocity) (see [31, [31]). We note that

since the stiffness operator W% is nonnegative and self-adjoint it has a unique nonnegative,
1/2 .,,i

selfadjoint square root X. : V c H --- H. It can be written in factored form as

where L- V c H - L2(0, ) is given by

LO-D 20,

for = (O(Z),D0(z), 0) 8 V, and L[: Dom (L*1) c L2(0,.) -H H by

Dom (LE) = (0 E L2(0,-) EIO F -2(0, t )}
.4 ,

S

(2.8) L*1 0 = (-D(EIO)(t), EI0(t), D2(EIO)).

If, forte C[Oj] with -t(x) >_ a> 0, x E [0,j], we let L2,, denote the Hilbert space L2 (0,2j)

endowed with the inner product p

<OI, 0 2>0,T = <t01,02>0

then L* given by (2.8) with EI replaced by t is the Hilbert space adjoint of L as a mapping from

V c H intoL 2,t.

We note that L F, Z(V,L2,EI) is a Hilbert space isomorphism with

V/2 1/2 4

1 2V 0 1'0 2 2 0,E1

and L - L2(0,Z) -- V given by

2x ,2 x, -'

LtO = Of 0(y)dydx, 0(x)dx, 0(y)dydx).
00 0 0 0

We also have S

9 3
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Letting % = L2(0,) x 1i with inner product

(2.9) <(0,(11 1 ,XI)),(O2 ,(Tr 2 A2 ,X 2))>A <0 1' 02>0,EI + <Th0 (r1 1I, XI), (r12 A2 ,X2)>

and 'if = 2(0,j) x V with inner product

ixl),(02,^2)>V =O, 0 2>OEI + <,>V

we have the dense imbeddings 15 c X c V'. We consider the initial value problem for

z(t) = (w(t), v(t)) E% given by

(2.10) wt(t) = L?(t)

(2.11) 110 vT(t) =- L E w(t) - Lc 1Lv(t) + no (t)L w(t) + T 0 (t) 0 <t < T

(2.12) w(O) = L , ?(0) =^

which we rewrite as

(2.13) zt(t) = C(t)z(t) + T(t), 0 < t <T,

(2.14) z(0) zo

where

(2.15) Q(t) =it + B (t)

with .0 • c - %, e Lc((O,T); Z(H)), T e L2 ((0,T); %) and z0 E % given by

A *-l(O,^ = (L^, L~ LEO-M L2 LX~)

(X, - MO LFA

for (,j) E = Dom(LI)x Dom(Z 0 ),
-t

(t)(O,(,,) ) = (O,Tl o no(t)L 0),

for (0 ,(n,",X)) e ',
-a-

Dr'(t) =(0, M 0 TOWt)

and

= . )

In formulating the inverse problem, we keep technical details to a minimum by considering only
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the estimation of the beam's spatially varying flexural stiffness El and viscous damping coefficient

CDI. Extending the finite dimensional approximation methods and corresponding convergence

theory which are developed below so as to be applicable to the identification of other structural or

input parameters, for example mass properties (of the beam and/or tip body), initial conditions or ",'

loading, is, at least in principle, routine (see [71 [ 121 [141 [16] [ 31J). ',-

oo

Let 0b = C[Oj] x C[Oj] with norm

(2.16) lqI = I(qt,q,) = q, + q2 ,,

- sup 1q(x) I + sup 1q2(x)I.

We take the admissible parameter space Q to be a compact subset of q (compact with respect to the

metric topology induced by the norm (2.16)). Recalling assumption (i) we assume further that the

set Q has the property that all q = (ql,q2) a, Q satisfy ql(x) >_ cc and q2(x) _ a , x a [0,$.].

We formulate the identification problem as a least-squares fit-to-data over the admissible parameter

space Q. We assume that the structure has undergone a time varying elastic deformation in

response to the initial conditions described by q and V and the input loads represented by f,g,h and

cF. Denoting the observation space by Z, we assume that at times t, i = 1,2,...,v measurements

N(t-) e Z (e.g. displacement, velocity, slope, strain, etc.) were taken from the structure.
a,

We require that Z be a linear space endowed with a norm 2- z and let r denote an ,.

appropriately defined continuous mapping from M into Z. For example, suppose that

displacement measurements have been taken at the points xj, j = 1,2,...,g along the span of the

beam. We choose Z as Euclidean g-space, RI, and take F to be

r(z) (0(x 1 ) O(x2) .... (X1 ))T

where z =(w,v) e % and

= (O(t), DO(.),O) = Llw a V.

With distributed strain or velocity observations, we would take r(z) = w or F(z) = v respectively.

" We formulate the identification problem as follows

S --a



(ID) Given ((t i) E Z, i 1,2,...,v, find q * Q which minimizes

(q) = I r(z(ti " q)) - (tj) 12

where for each q = (ql,q2) e Q, z (. ; q) = (w(. ; q), v(. • q)) is the solution to the initial value

problem (2.13), (2.14) or (2.10) - (2.12) with El set equal to q1 , and CDI set equal to q2,

It is immediately clear that the optimization problem given above is inherently infinite

dimensional. The admissible parameter set Q is a subset of a function space and the evaluation (and

therefore minimization) of the least-squares performance index I requires the solution of an infinite

dimensional evolution equation. The introduction of finite dimensional approximations is essential

to the development of practical computational methods. Fundamental to the approach we take here

is a weak, distributional, or variational formulation of the initial value problem (2.13), (2.14). We

derive the weak form and briefly outline existence, uniqueness and regularity results for solutions.

In the usual manner, we extend the operator 2(t) given by (2. 15) to an operator in Z ("1,t')

via

(Q(t)(v))(v) = a (t)(v,v), v,ve V

where the bilinear form a (t)(V,) :f x 'V -+ R is given by
a(t)((01,Z),(02,X2)) = <El L X1,0 2>0 - <EI O, L^ 2>0 - <CDI LX., LX2 >0 -

(2.17)

ca(t,2) f 0 1(x)dx(D2(2)) - <a(t,.) 01(x)dx, .2>0.
0 - 0

Standard estimates can be used to demonstrate the existence of positive constants k, X and j3 for

which

1a(t)(vl,v 2 ) g k Ivl1j lv21,, vi e V, i = 1,2,

and

a(t)(v,v)+Xvl _Ivl , v+ v H',

Consequently (see [27 ]) the system (2.13), (2.14) interpreted as an initial value problem in f' or

equivalently, written in weak form as I
12

p. =
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dnd

z E K.((O,T);CU) rn CUO,T]; %) rn H ((0,T); ').S

If z =(wj'
7) is the unique solution to (2.18), (2.19) then

-() L- Iw(t), t a- [0,T]

is a weak solution to (2.6), (2.7) and it is unique.

Under somewhat stronger hypotheses than those given in A2 arid A3 above, the existence of

strong solutions can be established. Indeed, if in addition to A1 and A , we assume

A2  The mapping t -* (t,.) is an element in C1 ([O,TI; H'(0, t)) for some T>O0

A3  The mapping t -4 f(t,.) is an element in C1 ([0,T]; L.2(0, t)) and -,h e C [0,T] (in fact,

HZ5lder continuity will suffice, see [29], [37])

then the family of operators (Ct(t))tC[o', given by (2.15) generates a unique evolution system

{I(t,s):05s! t Tjon% andLgivenby

t

(2.20) z(t) =U(t,0)z + fU(t,s)TY(s)ds, 0: t T,0 1
0

is the unique solution to the inital value problem (2.13), (2.14) and satisfies z(t) P- .9, t E A0,1] .

with z F. C([O,TJ; V%) n C c 1((0,11; X) . Once again, with z = (w,Q") now given by (2.20),

i7(t) - 1w(t), t e [0,TJ, is a strong solution to (2.6), (2.7) and it is unique. N

13a



3. An Abstract Approximation Framework

We turn next to a discussion of a general approximation framework and convergence theory for

the identification problem (ID) formulated above. In the following section we formulate a specific

spline-based scheme to which the general theory developed here applies.

Fundamental to our approach is the construction of a sequence of finite dimensional (with regard
-S.

to both the state dynamics and the admissible parameter set) approximating identification problems

each of which, under appropriate hypotheses, can be shown to have a solution that in some sense

(specifically, subsequential convergence) approximates a solution to the original infinite

dimensional estimation problem (ID).

In the discussion to follow, we exhibit the explicit dependence on q = (ql,q 2) E q of the %

inner product < .,.>, and the bilinear form a(t)(-,.) given in (2.9) and (2.17) respectively by

using the notation <-,->q and a(t;q(-,.). For each N1 = 1,2.... and each N2 = 1,2.... let

N1  N2  .".

W and V be finite dimensional subspaces of L2(0,2) and V respectively. If, for

N Yt Y N "'

N = (N1,N2) we define f = W x V, then Vlf is a finite dimensional subspace of both

% and V". Let F N. V ... / N denote the projection map of %onto V Ngiven by

.5.

(3.1) F (w, )= (P1w, P 2 v)

where PN is the orthogonal projection of L onto W and P2 is the orthogonal
N'4 -.

projection of H onto V , both computed with respect to the standard (unweighted) inner

products on the respective spaces L2 (0,2) and H.

The Galerkin equations in V N corresponding to the system (2.18), (2.19) and q Eq are

N N N 'J N IN N
(3.2) <z t (t), v > =a(t;q)(z (t),v )+ <(t),v >q v eV ,V0_tT

t qq

(3.3) zN(0) p Nz 0

14
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2
For each M i e Z+ = {1,2...., i = 1,2, let SM and S be finite dimensional subspaces of

11 22

C[0,f]andforM=(MiM 2) define McO bycM= S, IM x SM, LetIM and J,\,
1 2

denote mappings from C[0,2] onto SM1 and SM respectively and define IM, a mapping from ,
3 onto qM' by

1 2
JI(q) = d\1 ((q1 ,q2)) = ( 9M(q2))' q = (q, q2) e q

We define a sequence of approximating admissible parameter spaces [QM}' M e Z Z+ by

(3.4) QM = I(Q)

and formulate the sequence of approximating identification problems as follows:

) Given r(ti) e Zi = 1,2 ,...,v, find (q ) E QM which minimizes

jI',r 2 (zSN(tq) 1
N ' ''''

i= 1

over QM, where zN(-; q) is the solution to the initial value problem (3.2), (3.3) in V1 N.

We choose bases (0i } , 1 10 ) and {VMi for the finite dimensional

spaces W 1 V2 S1 and S 2 respectively. Then qM I SM , 2 e S2 and the solution

sa M1 M 2
1 2

zN( qM) to the initial value problem (3.2), (3.3) with q = qM = (qNI qM) can be written as

.1
1

LM

" qM =  aCMo M ,

0* i=l1

2

2'S
q M am+ 4

i=1l

15



-b AiI f.

U and

K K
N X' J4

z (t; q) e2Z(t; cz,)O. + Z~ ~ (t; cz- X a t E [,]
Ni+

respectively. Moreover, ZN(. am~N) is the solution to the initial value problem in I

R given by

(35 Tf m~\)ZN(t) 0 A(t a.,) ZN(t) + FI%(t), t F- (0,T]

(3.6) enZ ()ZN

Here the positive definite matrix '~M'X is of the form

N
I (CM)0

N

0

where T7tN(ctM) is a KN-scquare matrix with components

k=1I

and 'TLN is Ky-qur a-.trix with entries
N~~ % r~~

[2]i <JbX1 XjH

For each tt 0 the matrix AN(t; aZm) is given by AN(t; am) =AN1*(am) + BN(t) with

16



' Do E(cM) " '

AN , \) =

,'-A () -(

I

'."
and

'

0 0

D) 0

where ENDSm) is a K, x K1 matrix with components
2 2

L1M

k k N 2 N[EN(cm)= j <O, D j>o'
k=lI•.,

CN(zM) is a KN -square matrix with components ,
2 -. p

2
LMf
Ck+4 k2N 2 N

[C (04)]ij =k M <VMDXZ, Di j >0

and DN(t) is a KN x KN matrix with components
2 1

[ID (t)ij=ca(t,2) f 8. (x)dxD' (2) - <a(t, ) 0(x)x, D >
0 0 ,'

The nonhomogeneous term FN(t) is given by FN(t) = (0, FN(t)) where FN(t) is a KN vector with V-

entries

17 1 7 % ,,,



[F 4(t)] i <T0(t), XzN>tt ,
42

The initial data is of the form

0 ' 1 '02

N NN ar gie co p n n-ieb
where the Kt vector Z,' and the I( vector Zare iven component-wise by

%2

[Z.'( 1I = <D2 , >0

and
N ^ _N

[Z0oz]j = X')j >H

respectively, and --,

NoI

0 G
'I'2

with Gr4 a KN-square matrix defin&d by
1 "10

2-qae[G~lij = <ON 0 N> 0  ",

and GN a KN-square matrix with c6inponents

•.9

ft is now easily seen that the finite dimensional identification problem (LD,) in fact

involves simply the minimization of a least-squares performance index over a subset of

1 2 NF

R 4 I Furthermore, the evaluation of the functional J requires only the solution

N N
of the KI + dimensional, linear, noa-autonomous ordinary differential equation (3.5) .-S.,

% 8'

|1



I..

with initial conditions specified in (3.6). If the existence of solutions to the finite dimensional

optimization problems can be. established, it is immediately clear that they can, in principle, be

computed using standard techniques. Conditions which guarantee the existence of solutions to

N
problem (IDI) and the fact that they in some sense approximate solutions to the original

infinite dimensional estimation problem (ID) are given in the following theorem.

Theorem 3.1 Suppose

Ht the mappings IM are continuous from Q into 5,

H2 for each q e Q, .M(q) - q as IMI -- o with the convergence being uniform in q for q EQ,

H3 the spaces V s. and projections V4 are such that if (qN} is a sequence in Q with

qN - q= (q1, q2 ) 6 Q as I N -- then z'(t; qs.) - z(t; q) in L2(0,) x H for each t E

[0,T] as IN - - where zN(• ; qN) is the solution to the initial value problem (3.2), (3.3)

with q qN and z(-; ) is the solution to the initial value problem (2.18), (2.19)

corresponding to EI = q and CDI = q2"

N N
Then, each of the problems (IDM) has a solution (q,). Furthermore, the sequence f (Q0)

admits a q-convergent subsequence whose limit q is a point in Q and is a solution to problem

(ID).

In the statement of the theorem, for an element K = (K1 ,K2) Z+ x Z+ we have adopted the

notation I K 1 -4 0 to denote K1 ,K2 - ,. We remark that it is also true that the limit point of

Nk"any S-convergent subsequence ((q) of {(q.) with IMI, INI -asjk- isa

solution to problem (ID) as well. Moreover, if problem (I]) has a unique solution, q , then the
IN

sequence ((q.) ) itself converges to q . It is also important to note that the hypotheses of the

theorem do not require that QM c Q.

We have established results analogous to those given in Theorem 3.1 for inverse problems

involving parabolic and hyperbolic systems (see, for example [12], [13], [16]) as well as for

related methods for higher order equations for elastic structures (see [4], [5], [6]). For the flexible

19
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structure problems treated here, the essential features of the argument remain, for the most part, %

unchanged. We therefore only briefly sketch them below.

Standard continuous dependence results for linear ordinary differential systems, the continuity

assumptions on tIM and F (and therefore on 5,4 as well) and the fact that Q is a compact subset of

a are sufficent to conclude that there exists a solution (qt) FQ to problem (IDt).

The definition of the space Q, (see (3.4)) implies the existence of a qt e Q for which

(qM) = ,,). Since Q is compact, there exists a subsequence { }of {q} with,

-Nk Nk
q -4 q E Q as j,k - -,. The subsequence [ q can always be chosen with

IMJ I, INk I -4oasj,k-,o. Itfollowsthat I,

Nkk Nk Mt((qmj) (q ,".F Q

and consequently that

J,.,

(37) ~Nk N k
(3.7) ((q) (I (q)), q s Q.

Assumption H2 above and

(Cl q NN )4 1+ Iq -q*I

imply - q as jk -.. Taking the limit as j,k , in (3.7) above with an
M ~ ~

application of assumption H 3, we find 9(q*) < (q), q E Q, and hence that q is a solution to

problem (ID).

4. A Schen .ina Polynomial Spline

In this section we outline a scheme which uses piecewise polynomial spline functions and show

20
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that it satisfies the conditions and hypotheses of Theorem 3.1. We first treat the discretization of

the admissible parameter set Q.
I 2

For each M = (M, M2) e Z+ x Z+ let AM and AM denote the uniform partitions of the interval

[0, ] determined by the meshes (O,./M 1 , 2./M 1 , . . . ,t } and (0, /M 2, 2 t/M 2.... It)

respectively. For m = 1,2,. . . and A a partition of [0, t] let Sp(m,A) denote the usual spline

space of functions in C2 m -2(0,.&] which are polynomials of degree 2m-1 on each subinterval of
i i i

A (see [36]). We then define SM1 = Sp(l, A), i = 1,2. In this case we have dim SMi = LM  1 +

I, i = 1,2, with the usual "hat" functions forming a cardinal basis for each of the spaces SM, i =

1,2. For i = 1,2, let .,: C[0,21] -4 S, be the interpolation operator defined by

for y e C[O,2Z]. The theory of interpolatory splines (see [33]) yields the continuous dependence

result
yi -i2 i ,

Myl MY2

where y,, y2 e C[O,f] and consequently that hypothesis Hi of Theorem 3.1 is satisfied. Also,

the approximation result (see [36])

[ ]MYY W (y, 1 / M i)

where co(y,5) is the usual modulus of continuity of ye C[0,J] with respect to 5, together with the

assumption that Q is a compact subset of q= C[= , ] x C[QO,] and the Arzela-Ascoli theorem

yield that hypothesis H2 is satisfied as well.

Next we define a state approximation and verify that hypothesis H3 holds. As above, given

N = (NJ, N2 ) E Z+ x Z+, we define the uniform partitions Arof the interval [0,21 determined by

the meshes (O,e/Ni, 2Z/N i,. . .), i = 1,2. We may then choose either

NI N
W Sp(l,A )

or

N1
N= Sp(2,A 1 ).
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1.71 ,Lt ,X. :. .-x4. V , .: , . .- , . , ;.' L. . . ,,. ,. . , : . . ,. V . 4 . . V V V,, Vt . .' ,.' ;,

In the first case, once again the "hat" functions may be chosen as a basis with C
I= N=

dim W = K1 = N1 + i. In the second, the standard cubic B-splines (see [33]),

N N1 +-1 N
{B I)j _t , corresponding to the partition z\ form an appropriate finite element basis with

w N1  ,'I

dim W N + 3. In either case, approximation results for interpolatory splines can be used

to obtain

(4.1) PNO -0 o-0asN,

for 0 e L2(0,

We set

PN

2= NV = ((X(2), DX(2),X) e H X e Sp(2,A ), x(O) = DX(O) = 0}.
2

N2
Then V c V and defining

N2 "2 "2 "2j3~ B0  2B1  2B-1 ,
N 0 1

)N 2  ."2
P -B. ,Bi= 2,3 .. N2 + +

and

N2  N2  N2  "I
2=~(2),Dp3 (A1j3. 2) i 1,2,., N2+ 1, '

thcllci N N N+1 N 2  N 2  LN 1.W NhV
the collection{ .- forms a basis for V withdimV =I N2+ 1. With

as defined above, it is not difficult to show (using arguments similar to those in [31])

(4.2) PN(r1, ,X) -(r,,x)l.-40 as N2 -- 0

22



for (ri, ,X) e H and

b
(4.3) ILPtx- L I 1 1~ 0 asN 2 -*c

for 7 P_ V.

So as to avoid obscuring the essential features of our argument with technical details, we verify

hypothesis H3 for the spline-based scheme described above in the case a -0. The term which

results from axial loading is a bounded perturbation and does not involve the unknown parameters.
I

Showing that the desired convergence continues to hold in the presence of a non-zero axially

directed acceleration requires only a routine extension of the proof which we give below (see [14]).

Suppose that [qN } is a sequence in Q with qN __ q eQ as INI-- oo. Let zN = (wN, vN.)
S

denote the solution to (3.2), (3.3) with q = qN and let z = (w,v) denote the solution to (2.18),

(2.19) corresponding to . We shaU require the assumption that z is a strong solution.

In the estimates which follow, we simplify our notation by referring to the inner products

(norms) and (- )on 'A by <.,.>N(I-N)and <,>
Nq N ad<

P>%q"

(1- ) respectively. Also note that with a = 0, we have a (t; q)(.,.) = a

SinceI

IlzN - zll < IIzN - ZNzll + II(FIN - I)zII

where 11.11 denotes the usual (unweighted) product norm on % = L2(0, .) x H, (3.1), (4.1) and

(4.2) imply that we need only to consider the term IIzN - NzII. Letting yN(t) - zN(t) -FNz(t),

using (2.18), (2.19), (3.2), (3.3) and the fact that VN c V we find

N N N N N N<Yt 'v > N = < (z ' F z)t~v >N + <zt'v >-<zt pv >IN -

+ a(qN)(yN,vN) - a (qN)(z - pNz,vN) + a(qN)(z,vN) - a(q)(z,vN) ,4,'-

+ <T,vN> N -<OvN> vNE8 IN, O<t <T

(4.4) yN(O) = 0. .i
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Choosing vN = yS EUN, we obtain

--- d I N,2+ I qNL(v - p" 1)2
2dt N 2 2

F~, N N N-N/( - yaN N + <q - q N ,-.p W
N 11 01"

<qNL( - P, ), wN - pNw> + <qNcw- PNw), L(v' - P -)>

- qz~ 2 v) w Pw 0  q1( 2-J 0A

<qL(v - PQ), L(v' - P v)>o + <(q N - ql)Lv-, wN - PNw> o -

<q,- qlw, L(v1. PNv)> - <(q - 2)Lv^,L(v - PN> 0 .

Recalling that Q is a compact subset of Cb and that for q (q1 , q2) s Q, El = q, and CDI =q2 are

assumed to satisfy assumption A1 of Section 2, we find

d lly N 12 + IL ,,,N e- N I 2 (IVI(I ZN_)L1

dw N p 2 2It V+ I (-Pq i)Iv J1 0+IW -I1 +

-2 12 + .LN - p W +

L(I -P')V^l+ Iw~~I ~iIIP)w

+ , L(_ -iP') 1I + -L IL(qT- -L °  +

44 -

- ~ +N i ,'. r~v3 Iwl
44

I~~ L( - ) 12~ + 1iIq 2 I~IL

24' .
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d N 2 NN 22 IL(- PN) 1 2 +
II <cI Z ~ 11i+ iq1 I 2+ I q_212. lop

1(1- )wI + Iq' - q 1 2IL12+ Iq,- q 12I1WI2+w I q -+ qIIyN 2

where K and rc2 are positive constants. Integrating both sides of the above inequality from 0 to t

and recalling (4.4) we obtain

t "

"2 + N Ksl2ds "-
(4.5) 1Wy(t)II < 5 + K2  s ds

0

where

T

1 2 1 2 qL P2)(s) Np211s

= q, q,(- S)z 1s)2 + I q- 12 IW(S) I qM - oq _

0 2 0

Since qN as I NI - e and z = (w,v)T was assumed to be a strong solution, (4.1), (4.2),

(4.3) and (4.5) together with an application of the Gronwall inequality yield the desired result,
%S.

A close inspection of the estimates above reveals that they depend, to a large extent, on the .'

presence of the viscous damping term <CDI L ^, L?2 >0 in the bilinear form a (t)(-,.) given in

(2.17). That is, we require that q2 
> a > 0 for some a > 0 for all q = (qt, q2) e Q. In the

absence of the Voigt-Kelvin damping we can still argue the convergence of zN to z; however, we ..

must assume that Q is H2-compact. If one is to enforce the compactness constraint on Q when

solving the finite dimensional optimization problems (a desirable implementation feature in many

cases - see [101,[11]), this stronger assumption becomes especially unappealing. On the other

hand, by employing a somewhat different (but closely related) factorization of the stiffness

operator W.0 than the one which was used here (one which is formally equivalent to rewriting the

initial-boundary value problem (2.1) - (2.5) as a first order system in the states El D2u and ut as

opposed to D2u and ut) hypothesis H3 of Theorem 3.1 can be verified for the resulting spline-based

25



scheme under the present assumptions on Q. Unfortunately this scheme is also difficult to

implement and from a numerical standpoint, has not performed as satisfactorily as the one based on

the formulation given in this paper. The present scheme performed well whether or not damping

was present in the equation and hence the assumption that C I > c > 0 may be an artifact of our

proof of convergence (see Example 5.3 below). N',

5. Numerical Finding$
.Js,

We present and discuss some of the results which we obtained from our numerical studies of the

scheme that was described in Section 4. All codes were written in FORTR-\N, and tested and run

on the IBM 3081 at either Brown University or the University of Southern California. The same

codes were, with only minor modification, run on the Cray I-S at Boeing Computer Services in
Seattle with support made available to us through the National Science Foundation's Super

5,

Computer Initiative program. Examples were benchmarked so that the potential benefits of

vectorization to our research program could be accurately and effectively assessed- Our findings ,

are described below. This information will become especially important to us when we begin to

consider the extension of our general approach to inverse problems involving the vibration of two

dimensional structures, such as flexible plates or platforms, or vibrations of structures in which

nonlinearities play a significant role. The finite dimensional optimization

problems (IDM) were solved using the IMSL routine ZXSSQ, an implementation of the iterative

Levenberg-Marquardt quasi-Newton algorithm. The finite dimensional initial value problems

(3.5), (3.6) were solved in each iteration of the minimization procedure (for the evaluation of the

least-squares performance index J and its gradient with respect to the parameters) using Gear's

method for stiff systems (IMSL routine DGEAR).

Our codes were written to take full advantage of the banded structure of the generalized mass,

stiffness and damping matrices afforded by the use of polynomial B-spline elements. All necessary

inner products were computed using a two point composite Gauss-Legendre quadrature scheme.

All of the examples presented here involve fits based upon displacement measurements obtained
%4
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through simulation. "True" values (which, in the examples below will be denoted with an asterisk,

for example El*, CDI, etc.) for the unknown parameters were chosen. The resulting initial

boundary value problem (2.1) - (2.5) was then solved using an independent integration scheme.

OVe used a seven element, quintic spline based Galerkin method applied directly to the second

order system (2.6), (2.7)). This procedure produced sufficient noise in the data so that the use of a

random noise generator was not required.

In addition to the test example numerical studies we report on here we have successfully used
5%

methods similar to those developed above with experimental data. These results are presented in

detail in [9].

In the examples which follow we took the axial loading to be induced by an acceleration of the

base or root of the structure in the positive x-direction. In this case we have (see [34]) -

cY(t,x) =-a 0(t) (m + p(y)dy}
0

where m is the mass of the tip body, p is the linear mass density of the beam and ao is the time

dependent base acceleration.

In Examples 5.1 thru 5.4 below we took 1 =, p(x) =3 - x for 0 < x 1, f(t,x) = eXsin 2nrt,

g(t) = 2e-t, h(t) = e- 2 t, a0(t) = 1 for 0 <5t < 1.5, a0(t) = 0 for t > 1.5, m = 1.5, c =.1 and J = .52 .

and considered the estimation of the flexural stiffness coefficient El and/or the viscoelastic damping

coefficient C I only. In Example 5.1, 5.2 and 5.4, the fits we describe are based upon

observations at times t = .2i, i = 1,2,... 5 at locations xj= .5, .75 and 1. In Example 5.3

observations at times t = .5i, i = 1,2,..;,10 at locations xj= .75 and 1 were used. In all of the
N I

examples we discuss here the space W was generated by cubic splines (i.e. as Sp (2,A1 ))

with N1 = N2 = N. This corresponds to the approximation of the first and second components of

z with respectively N + 3 and N + 1 piecewise cubic C2 elements.

The compacmess constraints on the spaces Q were not enforced when the finite dimensional

N .
optimization problems (IDM) were solved. When M, and N12 became large, the inherent

ill-posedness of the inverse problem became apparent as the performance of our schemes

deteriorated. There is evidence strongly suggesting that this situation can be remedied either by
27
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imposing the compactness constraints on the admissible parameter space and then solving the

minimization problem using a constrained optimization procedure (see [10], [11]) or by

regularizing the least squares performance index (see [241, [25]). We intend to direct our attention

to these ideas in the near future.
,%

Example 5.1

In this example we consider the simultaneous estimation of a constant flexural stiffness -

coefficient, EI* =.15, and a damping coefficient given by CDI*(x) =y(1.5 - tanh (3x - 1.5)),

x E [0,1], with y =.01. With N = 4, M1  = and M 2 = 3 and taking start up values (for the least

squares minimization algorithm) El° = .1 and CDI°(x) = .015, x e [0,1] we obtained the results

shown in Figure 5.1 below. This particular run required approximately 30 seconds of CPU time

on the IBM 3081

":Ii
M 50.01 S

0.02

(Lis

~,50.1..

0.3 (.o 0.8 0.4 0 0.4 0.4 04G 0.6

EI

Figure 5.1

We observed that how well the scheme performed depended upon the magnitude of the scaling

factor y. As y was decreased, so too did the "sensitivity" of the least squres performance index to

the damping coefficient. Results similar to those shown in the figures above were obtained with

y .005. With y= .001, on the other hand, we were unable to simultaneously identify both of the

unknown parameters. However, again with y .001, but this time fixing El at the true value, we
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were able to identify CDI alone.
* * 1

When we replaced the constant EI with the linear function El (x) = 1 - I x and took
2

y= 1, the performance of the scheme, from a qualitative point of view, remained unchanged.

Example 5.2

We again consider the simultaneous estimation of the stiffness and damping coefficients. We

again set EI* = .15 but this time choose CDI*(x) = .01 (1.5 - tanh (20x - 10)), x s [0,1]. The

identification of this steeper hyperbolic tangent function has, in past test examples, proven to be a

somewhat stiffer challange for our methods (see [5],[6]). With N = 4, I 1, M2 = 3, E10 = .1

and CDI0(x) = .015 for 0 < x < 1, we obtained the estimates which are plotted along with the true

parameters in Figure 5.2.

0.03

G.O 0] a6 0.4 0.0I 1 a. 0.2 0.4 as4 0.4I

o~0.8

EI CDI

Figure 5.2

Also, although the theory was not explicitly treated here, we note that elements other than linear

splines can be used to'discretize the admissible parameter space. Our investigations have included

numerical studies with 0-order splines (i.e. piecewise constant functions) and cubic spline

elements. Using two linear elements to approximate EI (i.e. M t = 1) and nine cubic elements to

discretize CDI we obtained the estimates,shown in Figure 5.3. We have obtained an acceptable
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estimate for CDI with as few as six cubic elements.

In the tests reported on for the present example, residuals were typically in the range 10-6 to

10-8 with CPU times from 25 to 40 seconds.

E.1.

El CD,

Figure 5.3

Exam0le 5.3

In this example we identify only the spatially varying flexural stiffness coefficient".
0EI *(x) = 1.5 -tanh (3x - 1.5), x e [0,11, in a model with no viscoelastic damping (CI= 0). In.

Section 4 we remarked that our convergence arg0ments required either the presence of viscoelastic

damping in the model or that the admissible parameter set Q be compact in the stronger H2

topology,. The results shown in the figure below suggest that this is only an artifact of our proof

and not a fundamental requirement for the convergence of our approximation (i.e. the absence of

damping does not appear to effect the overall performance of our scheme).

Taking IN = 4 and M, equal to I thru 8 we produced the results shown in the series of graphs in
Figure 5.4. Ile initial estimate or start-up value for El was taken to be the constant function

EI0(x) = 1 for 0 x -1.

Recalling our earlier remarks, the oscillations which appear in the graphs corresponding to
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p%

MI= 6, 7 and 8 due to the inherent ill posedness of the estimation problem ,are not unexpected.

In fact, as Mt or N-1 , the appearance of the undesirable oscillations in our final estimates

occurred in virtually every test we ran. As we have noted earlier however, preliminary findings in b

related studies [10] and [11] regarding the enforcing of the compactness constraints and the

subsequent use of constrained optimization techniques to solve the approximating finite

dimensional identification problems suggest that this difficulty can be overcome. Our t-i

investigations in these directions are continuing.

In addition, the series of tests corresponding to the graphs in Figure 5.4 were benchmarked on

the IBM 3081 and the Cray 1-S. The same estimates were obtained on both machines. However,

we were able to achieve a speed-up factorf, of 7 - 10 on the vector machine. The CPU times are

reported in Table 5.1. In comparing the CPU times on the 3081 for this example with the times

reported for the previous examples it is important to note that the results here were based upon

observations taken over the longer time interval, [0,5], versus the interval [0,1] for examples 5.1

and 5.2.
,'.5

Example 5.4

In Figure 5.5 below we plot the final estimates obtained when we attempted to use our scheme

to simultaneously identify the spatially varying flexur.l stiffness coefficient

El (x) = .5 + 4x(1 - x), x e [0,1], and viscoelestic damping coefficient, .5.

CD1*(x) = .1 (1.5 - tanh (3x - 1.5)), x e [0,1] . The start-up values for the iterative least squares

minimization routine were taken to be the constant functions EI0(x) = 1 and CD0(x) = .15 for 0 < x

-< 1. The graphs in the figure were obtained with N =4 and a linear spline discretization of the

admissible parameter set Q with M= M= 3. In all of our tests with this example the minimum

sum of the squares of the residuals was in the range 10- - 10"8 with the optimization typically

requiring 50 - 70 seconds of CPU time.
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NfIBMv 3081 CRAY 1-Sf
I(CPU sec.) (CPU sec.)

1 110 12.5 8.8

2 164.1 20.8 7.9

3 207 23 9

4 249 32 7.8

-L5 245.5 36 6.8

6 404.4 41.6 9.7

7 346.5 45.6 7.6

8 437.9 49.1 8.9

Table 5.1

a,.3
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Figure 5.7

For this example we also tried a cubic-spline based discretizafion for Q. We considered all .

DD

EI* together with linear splines for CDI, etc. Although small values for the sum of the squares of.-,

the residuals were obtained in each instance, our by far best approximation to the true parameters is !

p..

the one shown in Figure 5.5 which corresponds to a linear spline based discretization for both "

components of the admissible parameter set. ,,

Holding CDI fixed at the true value and using cubic splines to identify El and then holding El

aft

fixed at the true value and using cubic spinfes to identify CDI* we were able to obtain the estimates

plotted in Figuzres 5.6 and 5.7 respectively. The estimate for EI* graphed in Figure 5.6 was

obtained with 10 cubic elements while the estimate for CDI* in Figure 5.7 is a linear combination• -

0 *o

of 6 cubic elements. An inspection of these figutres reveals that while the approximations obtained '

are at least marg-inally acceptable, it is also not surprising that our scheme had some difficulty when ,

we attemped to identif'y both parameters simultaneously with a cubic spline-based discretization for .

either one or both components of Q.-""

For this example we also looked at the robustness of our iterative scheme with respect to theinitial values chosen (i.e., EIO and CDI°). In Figure 5.8 we plot those points in the CDI E °
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plane which correspond to the start up values we tried. The point marked with "corresponds to

the startup values which produced the approximations shown in Figure 5.5. The points marked

with " x " correspond to start-up values which led to essentially the same extimates as those shown

in the figures. The points marked with an " E " correspond to start-up values for which the

scheme did not converge. The region whose boundary is denoted with dashed lines corresponds to

a "convergence envelope" for the vector valued function ( CDI*, EI*). An analogous study was

carried out for Example 5.2, for which similar robustness results were obtained.

00
3.0 "

2.0"

, ,,

II I

0.1 0.2 0.3 0.4 0.5 0.6

CDI

... Figure 5.8

Finally we offer several summary comments on some of our other numerical findings. In

virtually all examples we tried, we found that the estimates yielded by the scheme which we

develop here based oni state space coordinates (D2u,ut) and the ones yielded by the scheme based

on a state space formulation in coordinates (u,u) described in [5] and [6] were comparable.
I

Although in any given example one scheme or the other may produce a somewhat better

approximation to the true parameters, we found it impossible to designate or identify a clear favorite
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anong the two methods.

We also ran a series of tests in which we varied the boundary conditions at the free end of the

beam. That is, in addition to the tip body end condition we considered a beam which is clamped at

one end and free at the other with either a point mass (c = J = 0) or no mass (in = c = J = 0) rigidly

attached at the tip. We also studied the effect that the presence or absence of external forces and/or

moments at the tip of the beam (i.e. g and h) has on the performance of our scheme. Based upon

these tests, we found it difficult to make definitive statements regarding "best" experimental

procedures for identification of structural parameters with our schemes. However, we are able to

offer several observations. For example, with a point mass at the tip, the schemes performance

was enhanced when an external moment was applied at the tip (i.e. h # 0). On the other hand, the

presence of an externally applied force in the transverse direction (i.e. g # 0) did not appear to have

any effect at all. Also, with no mass at the tip, the scheme was most effective when

g = h = 0. In general we found the scheme to be most dependable with tip body end conditions.

Acknowledgement: The authors would like to gratefully acknowledge Mr. Chunming Wang of the

Division of Applied Mathematics at Brown University for his assistance in carrying out a

significant portion of the computations (and producing the graphical results) reported on in this

section.
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We develop a computational method for the estimation of parame-

ters in a distributed model for a flexible structure. The structure

we consider (part of the "RPL experiment") consists of a cantilevered

beam with a thruster and linear accelerometer at the free end. The

thruster is fed by a pressurized hose whose horizontal motion effects

the transverse vibration of the beam. We use the Euler-Bernoulli
I

theory to model the vibration of the beam and treat the hose-thruster

assembly as a lumped or point mass-dashpot-spring system at the tip. :.7

Using measurements of linear acceleration at the tip, we estimate the

hose parameters (mass, stiffness, damping) and a Voigt-Kelvin d,

viscoelastic structural damping parameter for the beam using a least

squares fit to the data.

We consider spline based approximations to the hybrid (coupled

ordinary and partial differential equations) system; theoretical

convergence results and numerical studies with both simulation and

actual experimental data obtained from the structure are presented and

discussed.
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1. Introduction

The difficulties involved in the design of practical and effi-

cient control laws for large flexible spacecraft (e.g. the inherent

infinite dimensionality of the system, a large number of closely

spaced modal frequencies, high flexibility, light damping, a fuel-

limited, hostile, highly variable environment, etc.) have stimulated

research into the development of system identification and parameter

estimation procedures which will yield high fidelity models. A partic-

ular area of interest involves schemes for the estimation of material

parameters describing, for example, mass, inertia, stiffness or

damping properties in distributed models for the vibration of

viscoelastic systems-specifically, mechanical beams, plates and the

like. In addition, since the resulting inverse problems are often V

infinite dimensional, substantial attention has been focused on

approximation; see, for example, (1], [2], [3], [4], [8] and [12].

In these treatments, the parameter estimation problem is formulated as

a least squares fit to measurements of either displacement or

velocity. Although significant gains have been made in the development

of instrumentation to measure displacement and velocity (e.g. laser

technology, etc.), one of the least expensive, most reliable and most

commonly used sensors is the linear accelerometer. While in principle

it is possible to integrate acceleration measurements once or twice

to obtain respectively velocity or displacement data, in practice this

task can pose significant challenges. For example, integration of the

signal could result in the amplification of low frequency measurement

noise or dynamic effects which have not been included in the underly-

ing model. In light of this, we have undertaken to show here, both

S>''
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theoretically and computationally, that a scheme in the spirit of

those developed in the previously cited references can also be

effectively used with acceleration measurements. In particular we

note, this involves the nontrivial extension of the familiar

variational arguments which are used to demonstrate the convergence of

the finite element state approximations upon which the identification

schemes are based. Indeed, it must be shown that in addition to the

convergence of the displacement and velocity, the convergence of

acceleration can be obtained as well.

The other primary motivation for the present effort is that while

these methods have been extensively tested and evaluated with simula-

tion dat;, they have never been tried with actual experimental data.

We have tested our scheme with data obtained from an experimental

structure which was designed and constructed at the Charles Stark

Draper Laboratory in Cambridge, Massachusetts with funding provided by

the United States Air Force Rocket Propulsion Laboratory (RPL). The

RPL structure (as it will henceforth be referred to as) was designed

to serve as a test bed for the implementation and evaluation of

control algorithms for large angle slewing of spacecraft with flexible

appendages. The structure was specifically designed to exhibit

structural modes and damping characteristics representative of

realistic large flexible space structures.

In Section 2 we describe the RPL structure (its geometry,

instrumentation, etc.) and formulate an inverse problem involving a

distributed system. In Section 3, we use the resulting infinite

dimensional estimation problem to motivate the development of a finite

dimensional, finite element based approximation scheme. We also
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discuss our theoretical convergence results. In Section 4 we present

numerical findings.

We use standard notation throughout. For X a normed linear

space, L(X) denotes the space of bounded linear operators from X into

X. For a an interval and k = 0,1,2,.--, C (f1;X) denotes the space of

functions from n into X which are k times continuously strongly 2
differentiable on a. When k = 0 we shall simply write C(QL;X). A

function f from n into X will be said to belong to L,(f;X) if

If(t)1 2 dt . For k = 0,1,2,.-., Hk(Q;X) denotes the completion

of Ck (n;X) with respect to the norm

dQ) 2

J (t)L dt)

If, in addition, X is a Hilbert space with inner product *''' then

k
k (n;X)is a Hilbert space with inner product

'

k(f'g> k E n (f (j ) (t ) ' 9(,J)(t)> X at.

When X R, we use the abbreviated notations C (fl), L,(a) and H (a). .

Note that HR(n) - L,(a) and . is the standard inner product on

L.(!n).

"F,
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2. The Identification Problem

The RPL structure (see Figure 2.1 below) conststs of four

J

flexible appendages which are cantilevered at right angles to one

another from a rigid central hub. The hub is mounted on an air

bearing table thus permitting the near frictionless rotation of the

structure about the vertical axis.

I Lu

Figure 2.1

Two of the appendages (which are mounted to the hub 180" apart) are

active"; each has two nitrogen cold gas thrusters mou.ted in opposing

directions at its tip. The remaining two appendages are "passive"

with only counter-balancing masses affixed to their free ends. The

presence of the tip masses on the passive arms serves to preserve the

................J..-..........*-........
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overall symmetry of the structure. Nitrogen gas from tanks mounted on

the central hub is supplied to the thrusters via two stainless steel

mesh-wrapped high pressure hoses. The expulsion of propellant from

the thruster nozzles is controlled by electro-mechanical or solenoidal

valves. Each of the four appendages is equipped with a sensor in the

form of a linear accelerometer attached at its tip. Data from the -.

accelerometers is processed and recorded and control input signals to

the thrusters are generated by a MINC 11/23 microcomputer. A detailed S

description of the structure's design specifications can be found in

[61 and [151.

The problem which is of primary concern to us here involves the 5

modeling of the effects of the nitrogen supply hoses on the transverse

vibration of the active members. We consider therefore, the structure V

with the central hub immobilized and look only at the vibration of one

of the active appendages and view it as a simple cantilevered beam

(see Figure 2.2).

S
.7.,

rV

Figure 2.2
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P

We treat the thruster assembly as a point mass that is rigidly attach-

ed to the beam at the tip and propose a model for the hose effects in

the form of a proof mass which reacts against the tip mass. In

effect, we consider the idealized, simplified structure depicted in

Figure 2.3 below involving a single, cantilevered, flexible, uniform

beam with a two-mass-dashpot-spring system affixed to its free end.

,,,

h~

I

C.

..2 X

Figure 2.3

'

In formulating a mathematical model for the structure shown in

Figure 2.3 above, we assume that the beam is of length Z with uniform

rectangular cross section of height h and width b. We let u(t,x) and

y(t) denote respectively the transverse displacement of the beam at

position x along its span and the displacement of the proof or hose

mass, each at time t. Both are measured relative to the x-axis in the

coordinate frame determined by the longitudinal axis of the beam in

I
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its undeformed state with origin located at the beam's root or fixed

end. Assuming the beam undergoes only small deformations (i.e. -

Iu(t,x)l < Z and au-(t,x)l (( 1) and has a small height to span
lax

length ratio, the Euler-Bernoulli theory (see [51) including Voigt-

Kelvin viscoelastic structural damping (see [101) yields the partial
9.

differential equation

8Z a au t  a'u

(2.1) p a u(t,x) + COI -- (t,x) + E au(tx) - 0,
atz ax' at ax'

0 ( x 2., t 0

where p is the linear mass density of the beam, E is the modulus of

elasticity, cD is the coefficient of viscosity and I is the second

moment or moment of inertia of the cross sectional area A about the

neutral axis. For the beam we consider here with constant rectangular

cross section, I = bh /12. Since the beam is assumed to be uniform,

the parameters p, E and cD are taken to be constant in time and space.
D

Balancing forces at the free end, elementary Newtonian mechanics

yields the equations of motion
S-au

a 2u aV au V~u
(2.2) mT -(t,z) - cDI -- t,L) - El -(t,.)at D x3 at ax3

- H cdYct) -Uct,,)) + dy ayut) - u(t,j)) + f(t), t > 0
dt at

and

(2.3) m - )(-t) -- (t,,)) + k (y(t) - ut,2)) - 0,
dt2 dt at

t 0
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for the tip and hose masses m and nH respectively. Here kH is the

hose stiffness, 0H is the hose damping coefficient and f(t) is the

externally applied force at time t due to the firing of the thrusters

mounted at the tip.

Making the assumption that the rotatory inertia of the proof mass

system is negligible, rotational equilibrium at the tip can be

expressed as

82 au 8xu
(2.4) C DI--a(tL) + ElI- (tL) =0, t >0.

The zero displacement and zero slope constraints at the fixed end are

given by

(2.5) u(to) - 0 and -(tO) - 0, t > 0

respectively. Taking the structure to be initially at rest we have

the initial conditions

an
(2.6) u(Ox) - 0 and -(ox) - 0, 0 S x S -

at

and D

(2.7) Y(O) -0 and -() 0Sc-(0) - 0.

dt

In the mathematical model given by (2.1) - (2.7) above the parameters ..

P, m T and I can be measured or computed directly. The modulus of ,1

elasticity E is typically determined in the laboratory. For the most
D

commonly used materials (including aluminum which is the material from

Ir 11%4
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which the structure of interest to us here is made) its value can be

readily looked up in standard engineering tables. The parameters oD ,

mH. 0H and kH on the other hand, must be determined experimentally;

that is, they will have to be identified based upon the observed

response of the structure to a given input disturbance. This is one

class of inverse problems which we formulate and consider below. In

the system of equations (2.1) - (2.7) we explicitly modeled (albeit, /-

in a rather simple fashion) the dynamical effects of the hose. The

unknown hose parameters are then determined as the solution to an

inverse problem.

An alternative approach to obtaining a model which exhibits a

reasonable degree of fidelity involves a technique which is sometimes

referred to as model adjustment. Starting with a simple model, the

parameters are then "adjusted" so as to compensate for unmodeled

dynamics. The choice of parameters to be adjusted and the resulting

variations may or may not be motivated by physical considerations.

In our problem for example, we might consider a simple cantile-

vered beam with tip mass (i.e. mH = CH - kH - 0) and then adjust the

theoretical or measured values of E and mT to compensate for the

dynamical effects which result from the hose mass and motion. A value

for the parameter cD could also be identified if damping effects are

considered significant. Model adjustment was used in (6] to obtain a

model for the RPL structure upon which control design could be based.

We define an inverse problem which encompasses both of the

general approaches which have been outlined above. We assume that an

input disturbance described by the function f(t), t E [0,T] is applied

to the structure via the tip thrusters and that the linear accelera-

RNA
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tion at the free end of the beam, z(t), is measured and recorded for a,

each t E [t.,t,] where 0 .t, S t T. (Of course, in actual

practice, z could in fact only be sampled discretely). Let R+ denote

the positive real numbers and let Q be a closed and bounded subset of

R6 . We seek a q E Q which minimizes

t'I u 2 "

J(q) - z(t)I2t I d
tati

where u(.,.;q) denotes the solution to the initial-boundary value

problem (2.1) - (2.7) corresponding to q - (mTEOD,mHcH,kH) E Q.

Our primary concerns in the next section will include well-

posedness of the system (2.1) - (2.7), existence of a minimizer for J,
• ' S.,

and development of approximation techniques to find this minimizer.

i

I.

N

5)

i "N,



3. Approximation Theory

A computational method for the solution of the estimation problem

posed above will invariably involve finite dimensional approximation

of the initial-boundary value problem (2.1) - (2.7). We have been

successful in solving inverse problems for distributed parameter

models for flexible structures (see, for example, [1], [21, [3]. []4,

[12]) using spline-based Ritz-Galerkin techniques. We apply those -

ideas here and derive finite element approximations based upon an

abstract Hilbert space formulation of the hybrid system of ordinary

and partial differential equations and boundary conditions given in

(2.1) - (2.7). This abstract formulation is also useful in I

establishing existence, uniqueness and necessary regularity results

for solutions. We briefly outline the essential features of our

general approach (including theoretical convergence results) in the

context of the particular problem of interest to us here.

Let H - RI x L,(O,Z) be endowed with the usual product space

inner product

-X + 'n' + (,~

and let

V - (( ,Ti,) E H: P E H'(OL), (00) - DO(O) - 0, n - O(k)}

be endowed with the inner product

( ) ( ) - ( -c(t))(X-?CL)) + cD,D', 0
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where the symbol D is used here and below to denote the spatial

d W
differentiation operator -. The space V together with the innerdx

product (, *V form a Hilbert space which is densely and compactly

embedded in H. L

We rewrite the system (2.1) - (2.7) as the abstract second order

initial value problem in H

(3.1) Mu tt (t) + Cu t(t) + Ku(t) F(t), t > 0

(3.2) S(u~t) + eu t(t)) - O, t > 0

(3.3) u( ) 0 ( 0 Ft

in the states u(t) - (y(t),u(t,%),u(t,.)). The operators M E L(H),

C:D C H - H and K:D C H - H are given by

(3.4) MM1,n,¢) - (mH ,m TI,P(P)
T

CM(,0) - (CH( -.n),CH(I-) - CDI D,¢(t),cDI D'),

and

- (kH (-),kH (-) - El D3¢(Z),EI D'4)

where D - {(Em,€) E V: € E H'(0,%)}. For each t , 0, F(t) -

(O,f(t),O) E H, 8: D C H - R is given by 6(( ,m,)) - D2€(t) and c -

cD/E.

The restrictions C and K of the operators C and K that appear in
equation (3.1) above to N(S), the null space of the operator 6, have
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natural extensions to bounded operators from V (which is the V-closure

of N(S)) into V', the dual of V. The extensions are defined in terms I

of the bilinear forms c(-,.): V x V - R and k(.,.): V x V - R given by

(3.5) (C0)( ) - c(0,w) - I(Dz0,Dzv> 0

and

(3.6) (Kp)(,) k(;,) kH(- ))(X-(£)) + EI(DzD 0

for E - ( ,€(L),€) E V and V - (X,4(),V) E V.

The finite element method we develop below could be derived from

standard energy considerations. While this is not the approach we

take, it is worth noting that the usual energy expressions can be

given in terms of the forms, operators and inner products defined

above. The kinetic energy is given by

T - _ ut(t),ut(t)H,
0 2 t t H

I

the potential or strain energy by

U = k(u(t),u(t))
0 2

and the Rayleigh dissipation function byIp

FO - C(ut(t).ut(t)).

2
P.'

Written in its weak, variational or distributional form

I

(3.7) (Mutt(t),0 H + c(ut(t),O) + k(u(t),O) -F(t), ,

t,0, 0EV

P.



(3.8) U(0) - o ut(o) -

the initial value problem (3.1) - (3.2) in H becomes an initial value

problem in V'. If we assume that f E L,(0,T) and rewrite (3.7), (3.8) V

as an equivalent first order vector system, the theory of abstract

parabolic systems (see [9], £14]) yields the existence of a unique

mapping "

u G C([OT];V) n H1((OT);V) n C'([OT];H) n H((O,T);V')

which satisfies (3.7), (3.8). If we are willing to assume further

that f is H6lder continuous then there exists a

(3.9) u E C([O,T];V) n C'((O,T];V) n Cl([O,T];H) n Ct((O,T];H)

with u(t) + eut(t) E D, t > 0 which uniquely satisfies the initial

value problem (3.1) - (3.3).

In order to demonstrate the convergence of the approximation'.

schemes we develop below, we shall require a somewhat more regular

solution to the initial value problem (3.7), (3.8) than either of the

conditions on f stated above can guarantee. In addition to (3.9), we

shall require that u E Hz((0,T);V). This can be guaranteed (see £71)

if we assume that f E H(-T,T) for some T > 0 with f(t) -0, t 0 and

we modify our original mathematical model so that

(3.10) F(t) - f(t);, t E [-T,T]

S

for some e - (o,e(z),e), a fixed element in V. We note that with e
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chosen appropriately in V, F given by (3.10) may in fact represent an

improved model of reality when compared with our present choice of F
^ .4.

where e - (0,1,0) E H.

Central to our approach is a cubic spline based Galerkin approxi-

mation to the initial value problem (3.7), (3.8). For each N -1,2,

N 2 2}n
let A denote the uniform mesh {0, } on [0] and let

N N+N

{B } denote the usual cubic B-splines defined with respect to the
J j--1

NN 2
nodal set A (see [1], [13]). Briefly, each B is a C function on

[0,A] which is a cubic polynomial on each subinterval [(k-N)-,k-],
N N

N 2. 2
k - 12 ,N. The support of B is [-2)-,(+2)-] n [02. with

jN N
N 2. N £ N Z N 2 N
B j-) - 4, DB (J-) = 0, B ((J±I)-) = 1, and DB ((J±)-) = -

jN N ,j N jN 2.

NN+1 N N N N N N
Defining (8 } by 5 = B -2B -2B and 8 = B J, 2,3,-.-,N+I,.1 j-I 1 0 1 -1 .1' ,

N N
we ove 8 (0) = DO (0) = 0, j - 1,2,.--,N+1. With 30 (1,0,0) and

-N g )SN N N N+1
8 = (0,8), j - 1,2,--.,N+, V - span (8a} is an N+2

.1i, 1 ,J-0
dimensional subspace of V.

N
The Galerkin equations in V corresponding to (3.7), (3.8) for

^N( N
u(t) E V are given by

."

-N N ^N ^N -N ^N -N

(3.11) (Mu (t),8 ) + c(u (t),8) + k(u (t),8) - ,F(t),8,,
tt JH t J J JH

t 0, J. - 0 I2 -'',N+"
.N ^N'"

(3.12) u (0) - 0 u (0) - 0.
t
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Setting

-N N+I N -N
U (t) E J (t)a0

N
the initial value problem (3.11), (3.12) in V is equivalent to the

linear, nonhomogeneous, second order N+2 - vector system

N diwN dwN NN N
(3.13) N _(t) + C -(t) + K w (t) = F (t), t 0dt2 dt

N"N dwN''

(3.14) w (0) - 0 -(0) 0
dt

N N N N T
where w (t) = (w (t),w (t),...,w (t)) The entries in the (N+2)

0 1 N+1

N N N
x (N+2) matrices M ,C and K are given by

N -N^N -N
M - <M , H' I;' :

N N -NC = c(S i ,8S),
i,,i ij

and

N -N-
K =k( , j), .
ipi i jIN.

i,J - 0,1,2,-..,N+I respectively. For each t > 0 the components in .
N N ^N N

the N+2 - vector F (t) are given by F (t) <F(t),3 > f(t)8 (t)
i iH i

or, recalling (3.10), by 'N

U-N * -. - . ~'-
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N -N N N
F (t) - f(t)e .0, - f(t)(e()0 (2.) + e,o )

i - 0,1,2,-.,N+1.

We consider the sequence of approximating finite dimensional iden-

tification problems which consist of finding q E Q which minimizes

't,.NuN  2
(3.15) J N(q) It t (t,Z.;q) -z(t)J dt

-N(Nt q, N (t.~)uNwhere for each q E Q, u (t;q) - (yN(t;q),uN(t,L;q),uN(t,.;q)) is the

NIunique solution to the initial value problem (3.11), (3.12) in VN

corresponding to q - (mTE,CD,mHcH,kH) E Q. In actual practice, for

a given q E Q, JN(q) is computed as

jN~q ftlN t N N2
J (q) f w _(t;q) 4w(t;q) + wN(t;q) z(t) dt

;N N+1

N N N T
where w (-;q) = (w (-;q),-..,w (;q)) is the unique solution to the

0 N+l
N+2 - vector system (3.13), (3.14) corresponding to q E Q.

With finite dimensional state constraints, the solution of the

Nt h estimation problem above is, at least in principle, routine. For

inverse problems which are closely related to the one we treat here,

our earlier numerical studies have shown that satisfactory results can

be obtained using any one of a number of standard computational

techniques for least squares minimization (for example, Newton's

method, conjugate gradient, steepest descent, Levenberg-Marquardt,

etc., see (2]).
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Our fundamental theoretical result is that each of the approxi- 1

mating identification problems and the original problem have

solutions. Moreover, we show that the solutions to the approximating

problems, in some sense, approximate solutions to the original

problem. We require the following lemma.

L Suppose {qN} C with qN - q0 as N Let UN(.;qN

denote the unique solution to the initial value problem (3.11), (3.12)

corresponding to q and let U(.;q 0 ) denote the unique solution to the

initial value problem (3.7), (3.8) corresponding to q0. If u(-;q 0 ) E

H'((0,T);V) then

(3.16) 0T ;q u - (t;q ) dt02
* Ot'tt

as N-.

For each N - 1.2,--- let pN denote the orthogonal projection of H

onto VN defined with respect to the standard inner product on H,

'''H" Using the approximation theoretic properties of interpolatory

splines, it is not difficult to show that (see [3])

(3.17) lim 1(N - I)(mO,¢)IH - 0

for each (E,) E H and that
a.

N N(3.18) lim (P 1 0 0

-' ~. N ~ N..~ &~h
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for each € E V.

For q - (mTEcD,mHcH,kH) E Q it is immediately clear that M,

c(.,.) and k(.,.), the operator and forms defined in (3.4), (3.5) and

0 0 00 00 0
(3.6) respectively depend upon q. For q = (m ,E 0 c 'm c 0 k 0 ) E Q

T D H H H
N N NoN N N Nand q - ( m ,E N cNm0O,k) E Q we adopt the shorthand notation

T D H H H
M0 q0 0 0 q0 MN qM- 1{(c ), ( .,.) - c(c )(.,), k(,) = k(q )(.,.), I M(q ),

cN(-,) - c(qN)(.,.) and kN(,.) - k(qN)(.,.). Similarly, we denote
u(-;q ) and u 1(.;c N by^ 0

Nby and uN respectively. O%

From (3.17), the assumption that U0 E H2((0,T);V) and the

inequality

- u (t)Idt

f0 t HfT 2 T 12dt-
tt - PN0 t (t)Idt + 2JfI(IPN ut(t)ld

0 H0H

it is clear that we need only to consider the first term on the right

hand side of the above estimate.

Letting vN(t) m uCt) -pNu0(t) for t k 0, (3.7), (3.8), (3.11),

(3.12) and VN C V imply .£

(319 N-N ^N N ^N ^N N ^N -N(31) Mv tt,~ H + 0 NvO, + k (v ,
'

- <MN(I-P )tts H + (M - M )u tt >

N N ~0 N 0 0t' -N+ cN((I-p );N) + -0(u0N) k (t 0PE

'U,
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-N "(3.20) v (0) 0 vt(O) - 0.

"N "N N
Choosing . vtt(t) E V , from (3.19) we obtain

0NN N ^N ^NNN

mN N 0 "N + .0- N 0 "N(I-n )Utt.vtt >H M )Utt.vtt .H

+ . QN((I-pUN)0t vt ) N( )N t1 N) t)

+ -to00"N N^0 -N 0 0 "N N -0 ^N
(U t vt o (uttv t)} - {c (U tt~v V c (u tt, v1

N d N0 -NN N O0"Nd+ kN((I p )u0,vt) - kN( p )utvt)

0 N N -0 -N { 0(u0 N 0 -N)~. 0 u0 , v) k ( N - t Nt - ,Nu )N

-dt kN(..N ) + kN(v N "N t > 0.

Integrating the above expression from 0 to t and recalling (3.20), we

find ,

(321 r - dsN 1 N-"N -N
(3-21 <M.V H v s (vt, vt)0 <Vss,Vss H"

t "J.t (M(I pN)UO N , o- vNu 0 N
-, v - <(M - )U SS S5>

- °cN(I-pN)u~ s 'v ) - Cc°C0 ss.s) -(us .C Uu
- kN((I._PN)uo v) _- o~ vk~ N) N(0o "N

+ k (Vs# s ))ds

* 0 *(%'JU )U v%.(o%(uPvf 0 mUC

t t t t
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+ ((I P) ° Q ) + (kO(U°O°vN k OQ° , ) -vN(. v k N(

We recall that Q has been assumed to be a closed and bounded subset of

R and observe therefore that the forms o 0(., -) 0 N ), k0 (., -) and

kN(-, .) are uniformly bounded. These two facts together with the

repeated application of the inequality

aabi, lall a b ; lal 2  + Ibl2 1 a 0
4a

in (3.21) yield the estimateIt 1 2ds
0 ss "H RiV

t 1 2 2 2

Y0 10 (4 I(:p^ssi H+aI sH

I 2I-I + 2 + I(IP )UmcT-T us ss) ssH H V

+I°Iv 0 + 0 2 ++ -c-)I + 2 1I N 2v

2 ~~~ 2 0 121-P12 1-u 2

L Nv N_ v
, + lvI v )U 1 l I- +l I k k°1 I EI EU v

+ ~)ds + J(I-k P 2 + E a~ 2~.I +aQI

+ .*%1 V 4atV
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+ 1 N2 + a 2 t.
0 V V0

where yis a positive constant. Choosing a 0 sufficiently small,

we find

2t^ + ^~)2 rt rtIN 2 d

where

rtvNI+ IIQN- 0 l2

d + - a (t + + ds

H 2 2 '

iq _ q cI (10(t l + u (tcSIv ) +'I2. 2

and i' -(,t, Yr pstieonsat + hc d(~p o ot dpndo N

^N VN V

heed y., (see,2, re yie

.,.,.

2hosn 0~ - 4%)EVi 31) rgmnssmlrt hs

a0(t) T~j(PN)0() 1  + ut)t)

(3.23) lm v 0.

N V V "'

.

for each t E [0,T]. Using U0 E H1'((O,T);V), (3.18) and an application

of the Gronwall inequality to (3.22) we obtain the desired result. ,

We note that we also obtain

+ + I~t~t)
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,^N 12

(3.24) arm Ivt(t)I - 0
N-+O V

for each t E [0,T]. From (3.23) and (3.24) we find juN(t;qN)-U(t;qo)I
I |V

0 and N q-. 0 as N - c for each t E [0,T].

We remark that it is the L, convergence (more precisely, H

convergence) in (3.16) which necessitates, at least in theory, that we

be provided with distributed time observations (i.e. observations

which are continuous in time). It is clear from (3.23) and (3.24)

that for fits based upon displacement, velocity or slope, time-sampled

measurements are sufficient. Of course when the approximating

optimization problems are solved, the integral least squares

performance indices (3.15) are discretized. Consequently, in

practice, only discrete measurements of linear acceleration at the tip

are required.

Theorem 3.1 Each of the approximating identification problems has a
solution qN The sequence -qN C Q admits a convergent subsequence

Nj N

{q } with q J 
- q E Q as J - . If for each q E Q, u(.;q), the unique

solution to the initial value problem (3.7), (3.8) corresponding to q,

is an element in Hz((O,T);V) then q is a solution to the original

identification problem. In addition, the limit point of any convergent

_N
subsequence of {q } is a solution to the original identification

problem as well.

Proo Standard continuous dependence results for linear ordinary

differential equations, the fact that Q has been assumed to be a
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closed and bounded subset of R6 and the form of JN are sufficient to

are s

conclude that a solution qN E Q to the Nth approximating identifica-

tion problem exists. Once again since Q is a closed and bounded (and

therefore compact) subset of R6 , the sequence (N C Q admits a

N N
convergent subsequence. If (q Jwith q -q EQ as j and

q is any point in Q, then two applications of Lemma 3.1 (the second

one with the constant sequence {q}) yield

N(Nj Nj

J(q) - lim J ( ) S lim J J(q) - J(q)

-4 CO

and the theorem is proved.

Although Theorem 3.1 above guarantees only subsequential

convergence, in all test and simulation examples we have considered,

we in fact observe the convergence of the sequence [-N itself to the

optimal parameters q. Also, it is not difficult to verify that with

only minor modification (see £2]) the approximation scheme reported on U
here (together with the convergence theory outlined in the lemma and

theorem above) could be applied to inverse problems involving the

estmation of spatially varying parameters (such as linear mass density

p, flexural stiffness EI, or damping coefficient cDI) which appear in

the equations (2.1) - (2.4). We note of course that when either EI or

cDI are spatially varying, the Euler-Bernoulli equation and

corresponding boundary conditions are of a slightly different form

than those given in (2.1) - (2.4) (see (3]).

I.'a-a
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4. Numerical Results

We used our scheme to attempt to solve the inverse problem which

was posed above with data obtained from an experiment on the RPL

structure. We report on our findings and observations here.

All computer codes were written in Fortran and run on the IBM

3081 at the University of Southern California. The approximating

finite dimensional least-squares minimization problems were solved

using the IMSL implementation of the Levenberg-Marquardt algorithm

(routine ZXSSQ), an iterative Newton's method-steepest descent hybrid

(see[2]). The second order N+2 - vector systems (3.13), (3.14) were

solved (integrated) in each iteration (for the evaluation of JN and

its gradient) using Gear's method for stiff systems (IMSL routine

DGEAR). The integral least squares performance index was approximated

by a discrete sum over a uniform mesh on Et.,t,]. The integral inner

products in the definitions of the matrices MN, CN and KN were

computed using a composite two point Gauss-Legendre quadrature rule.

The second time derivative of wN or generalized acceleration,

diwN
was computed using a second order centered difference on the

dt

generalized displacement,

d w N  w N(t+A) - 2w N(t) + w N(t-A)(4.1) (t)
dt A2

We found this to be a somewhat more stable method for computing

acceleration (an unbounded measurement) than was a first order

centered difference on the generalized velocity,

-,

5,

g " ' z. . ; -; ¢, ,.., )' ,€ ,,.,-?,," €;-. .--'CN? - "-.-?> -" "
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dwN A dwN A
- (t + -) - -(t - -)

d1w dt 2 dt 2
(4.2) dt (t)

dt' A

Either of the time differencing formulas (4.1) or (4.2) proved to be

significantly more stable than using the differential equation (3.13)

N_

directly to compute (t) via an inversion of MN. As to why this
dtz 1'

was so, we can only offer the conjecture that the time differencing

provided, at least to a certain extent, some filtration of the signal.

Before turning our attention to the experimental data, we tested

our scheme with simulated data. "True" values for the unknown

parameters cD (actually cDI), mHP cK and kH were chosen and a quintic

spline-based semi-discrete Galerkin scheme applied to the initial

value problem (3.7), (3.8) was used to generate data.

Setting p .03, m T" .15, El - 80.0, t - 4.0 and

1.0 0 5 t S 0.05
f(t) - f

0.0 0.05 c t S 5.0,

the fit was carried out based upon observations of linear acceleration

at the tip at times ti - .1i, i - 2,3,.--,50. We note that this is

equivalent to taking t, - .1, t, = 5.0 and using a standard rectangle

rule with uniform mesh spacing .1 to discretize the integral appearing %e

in the definition of the least squares performance index jN. The

aiitial estimates cDI - .0035, mH - .035, and k. - .4 were used to

start the iterative optimization procedure. In (4.1), A was taken to

be .1. Our results are summarized in Table 4.1 below.

N - *., '% • '% , . ,, , . , . - - - - 'V %' fp €
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-N I -N -N kN N -N

D H H H Jq

2 .037537 .039471 .003428 .298626 2.57x10 1

3 .066997 .039485 .003907 .298875 4.37x10 2

4 .005063 .039777 .003997 .299455 5.06x10- 3

5 .005667 .039899 .003971 .299787 7.66x10-4

6 .005049 .040035 .004006 .300087 4.63X10 -5

True .005000 .040000 .004000 .300000

value

Estimate .003500 .035000 .003500 .400000 _

Table 4.1

The experiment which we describe below was carried out for us on

the RPL structure by Dr. Michel A. Floyd, formerly of the Control and

Flight Dynamics Division of the Charles Stark Draper Laboratory and

the Department of Aeronautics and Astronautics, MIT.

The air bearing table was clamped so that the central hub could

not rotate. The thruster lines for one of the active appendages was

set to 300 psi and the thruster was fired for .05 seconds (50 milli-

seconds). With the appendage initially at rest, the firing of the

thruster was assumed to have begun at time t - 0. Linear acceleration

at the tip was observed over the time interval 0 to 5 seconds. With a

sampling period of .005 seconds (5 milliseconds) a total of 1000

measurements were recorded. The data is plotted in Figure 4.1 below. "p

The scale factor for the accelerometer is 5 volts/g (g - 32 ft/sec').
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Figure 4.1

The noticeably higher frequency (- 14 Hz) component of the data

is a torsional mode of the arm excited by the motion of the thruster

valve mechanisms and inertial and elastic forces applied to the tip of

the arm by the nitrogen supply hose. The opening or closing of the

solenoidal valve in the thruster generates an inertial force which

acts as a torque on the tip of the arm. Consequently, torsional modes

are excited. Also, in addition to modifying transverse bending

characteristics, since the hose is attached to the top of the arm, its

horizontal motion will tend to generate torques which have a

"twisting" effect. Although the accelerometer is mounted at the
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center of the arm (and therefore on a nodal line of the longitudinal

torsional modes, if we assume vertical symmetry), as the arm twists,

the accelerometer picks up a component of the earth's gravitational

force. Since the first torsional mode has a much higher frequency

than either of the first two flexible modes (.75 Hz and 7.5 Hz, as

identified from an FFT of the data) and since it is rapidly damped, we

neglected its contribution to the accelerometer signal, treating it as

white noise, and left it unmodeled. A detailed discussion of the

causes of the excitation of the torsional modes and its effect on the

transverse bending characteristics of the active appendages can be

found in [6].

The physical characteristics of the structure are as follows.

The arm is made of aluminum and is 4 feet in length, 6 inches in width

and .125 inches in height. From this we obtain 9 - 4.0 ft, p - .027

slug/ft and I = 4.71 x 10 - 8 (ft)4 . The theoretically predicted value

for E is 15.84 x 108 lb/(ft)2 . The mass of the thruster assembly was

determined to be mT - .149 slug. From the calibration table in [6],

we find that a hose pressure of 300 psi is equivalent to a force of

.297 lb. We set therefore

0.297 lb 0 S t 1 0.05
f(t) - {

0.0 0.05 < t S 5.0

To serve as a basis for comparison, we neglected the hose effects

and structural damping (i.e. we chose cD - mH - oH - kH - 0) and used

the standard Euler-Bernoulli model with the parameters p, E, I and mT

and input f as specified above to generate the plot of linear

acceleration at the tip given in Figure 4.2.
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Figure 4.2

The plot was obtained by integrating the initial value problem (3.13),

4,(3.14) with N - 4 and then using (4.1) to compute the acceleration at."
the free end. The residuals (c8Ut, 2) 8"N (t")oertetm

a) t2

interval [0,5] are plotted in Figure 4.3. The sum of the squares of

the residuals (at intervals of .1 seconds) was found to be 3.03.

,p.

I
, m * .WI
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Using the data on the interval 3.0 to 5.0 (where the contribution

from the torsional modes has been significantly damped) with a

sampling period of .1 seconds we used our scheme with N - 4 to obtain

optimal estimates for the coefficient of viscosity c and the hose
D

parameters mH, CH and kH. In the set of runs we are about to describe

_ the values of E and mT were held fixed at their theoretically

5* predicted values. A rough calculation based upon "matching' the first

two observed natural frequencies of the data with the first two modal

frequencies of the model was used to obtain a crude initial estimate

' 'i , , •,. , ,:,. -- ,-., .- -" ,".. -" ."..-...% .'-..-",; ." ,"--. ..'., -.'.-'..'...;'-.' ."... '..';.-;'- -.' .;'' '.T.-?- ;' :, ', ' -
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for the ratio k /m Then, using our scheme to minimize over theif H'

parameters mH and kH only, we obtained the optimal values shown in

Table 4.2 below. Integrating the system (3.13), (3.14) over the time

interval [0,5] with m and k set to the values in the table and c -H H D
CH - 0 the sum of the squares of the residuals (at intervals of .1

seconds) was found to be .73.

m H(slug) k H(lb/ft)

.039269 .339935

Table 4.2

Next, holding mH and k fixed at the values shown in Table 4.2, a
H HU

search on cH was carried out (the initial estimate for cH was taken to

be zero and cD was held fixed at zero). Then using the resulting %

values of m c and k as initial estimates, a fit over all three

H' H H
parameters was performed. The result is shown in Table 4.3. The sum

of the squares of the residuals was found to be .728.

mH(slug) cH(lb-sec/ft) kH(lb/ft)

.043431 .004056 .351385

Table 4.3

Continuing to use the same procedure to generate "start up" values, we

| % j~j m ,m
T

'• m' h ' m~m m' m , m% -, , .' %,' % .. * • ."C'. "
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eventually used our scheme to search over all four parameters oDP m H '

oH and kH simultaneously obtaining the values given in Table 4.4 and

the fit plotted in Figure 4.4. The residuals are plotted in Figure

4.5. The sum of their squares was computed to be .70.

2c D ( lb-•se / (f t)) mH (slug) 0 H (lb. sec / ft) k H (lb / ftg)"

127.40 .0801 .007804 .412977

Table 4.4

S.

x Data

0 Fit

V. aa" X

(D oI '

(.2 : .

0

0.00 i.00 2.00 3.00 4.00
* Time (Seconds)

Figure 4.4
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In designing a controller for the RPL experiment, Floyd in [61

used model adjustment to tune a simple, undamped, cantilevered beam

with tip mass model for the active arms (i.e. the arms with the hoses)

of the structure. He used the following procedure. The air bearing I
table was locked in a stationary position. With the hose depressur-

ized, an impulsive force was applied to the beam and linear accelera-

tion at the tip was measured and recorded. Based upon the physical 'i

assumption that with the hose depressurized, the presence of the hose

serves only to add mass to the tip of the arm, the parameter m T was

" ' ', " * ,' '/" , " % °,' .• " % "-% " '- "- , " % " .'"% " "•". -'- ." ." v" ' ' ." '' " ' " d
=

= S
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V,

adjusted so that the first mode or frequency of the model agreed with

the first observed cantilever mode (obtained via an FFT) of the data. m

Then, with the hose pressurized, the same experimental procedure was

carried out. This time however, the modulus of elasticity E of the

beam was adjusted to compensate for the variation in stiffness which

results from the presence of the hose. The adjusted values of the tip

mass, mT and modulus of elasticity, E, obtained by Floyd are given inT'

Table 4.5 below.

mT (slug) E (lb/(ft)
2)

.

.254 17.31 x 108

Table 4.5

We integrated the system (3.13), (3.14) using the adjusted values of

mT and E given in the table (and c -in = c k -0) and obtained ITD H H -H
the plot shown in Figure 4.6. The corresponding residuals are

plotted in Figure 4.7. The sum of the squares of the residuals was

computed to be 5.1.

Starting with the same basic model, we used our scheme to -

determine the values of mT and E which minimize the sum of the squares

of the residuals over the time interval [3.0, 5.01 with a sampling

period of .1 seconds. Taking the theoretically predicted values of mT

and E (mT .149 slug, E - 15.84 x 108 lb/(ft)2 ) as start up values %

for the optimization routine yielded the results given in Table 4.6. 1
I
Qr

- ~ I~%~%~.V % ~ ' %~\ \~W~U~e'
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The corresponding fit and residuals are plotted in Figures 4.8 and 4.9

respectively below. The sum of the squares of the residuals (over the

interval [0,5]) was computed to be .73.

mT (slug) E (lb/(ft) )

.185 21.95 x 108

Table 4.6

I

o Data ,

O Fit

xX

- X X
x, V

x XX

XX
x

SI I I I

Figure 4.6

x xx x X"''
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In summary, we have seen that analysis of the RPL experimental

data can be carried out in several ways with a number of different

models. Our techniques can be used to provide reasonable fits of the

data to models with or without hose and/or beam damping. Even if one '

attempts to leave the physics of the hose - beam dynamic interaction

unmodeled and perform "model adjustment" (by adjusting the values of 'V

the tip mass mT and beam modulus of elasticity E), our estimation p

techniques provide a much better fit than that obtained using "modal

matching" methods common in engineering practice.

One of the primary objectives of our effort here was to

demonstrate the efficacy of our scheme and in particular, to assess

its effectiveness when provided with actual experimental data. While

we are pleased with the results obtained for the RPL data, we are

careful to point out that to provide a fair and complete evaluation of
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the usefulness of our models for the RPL experimental structure, a

more complete and in-depth study involving extensive experimental work j

and statistical analysis would necessarily be required.
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