ROSEN
F/G 1274

. (U UNIVERSITY t':?sﬁm

CALIFORNIA LOS ANGELES DEPT OF MATHEMA. .
UNCLASSIFIED 20 NOV 87 AFOSR-TR-87-1980 AFOSR-94-0393

OF DISTRIBUTED P.

R~
13
o
Ll
™
-y
-
2
| 2
-
| w
.m
¥
&
-y
[y
3
.m.




. E:ﬂ.“. — g&s- ka\b-l&l)ul-hl.n!\l .l' i anln N\CI h. g h- KE\::-(&\A f.-.al? LR N

d
) ."
‘?2
nt'
o
't:o
u
ot
'ﬁ.
o

v
£

"$'p A% B ¥ 1,098 9,8 2. "."';l"

-,

-

3

4=

2 EBEED ACE RN 0% 0% 85 ANVt 0 N et

Lo W o .
A3 2
EEEE <
m—m—muuuutm. Il"_____

w EEER

: v i = W.__ L=

: A:".vf*,l»'i.g’lh“in'lh‘d'.‘d'.’a“ L MR TR e R S

. LS ]
FARS AN

L e e

3 - e - -, N e’
- - g r SO R et - - - - - - L
- . Sl -




e ) (e R VR TL i " P g e TR A~ N " m- xR
OO T e s A'.J‘:‘l'u AT S MR T A Dot e AT AN A AT O | O . {\‘ #"“""\'- "\\ ) '\“

AD-A190 201

SECURITY S_ASSIFICAT.CN OF 7§ PAGE

s REPORT SECURIT? CLASSIFICATION ! 1p RESTRICTIVE MARKING

Unclassified
Za. SECURITY CLASSIFICATION

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approvedforpublicrn\ease;
distribution unlimited.

5. OECLASSIFICATION/OOWNGR

4 PERFOAMING QRGANIZATIO S. MONITORING ORGANIZATION REPORT NUMBERIS)

m-n. 87. ugn

RT NU ABER(S)
N,

4

a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL Ta. NAME OF MONITCRAING CRGANIZATION
University of Southern HIfopplicadle! AFOSR/NM
California
¢. ADORESS (City. State ond ZIP Code) T, ADORESS (City, State and ZIP Codes
Department of Mathematics ‘. Bolling AFB, DC 20332
Los Angeles, CA 90089-11'3 SN
L e
. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSYRUMENTlOENTIFICleN NUMBER
ORGANIZATION tIf applicodle)
AXEYW . TN (0 T ~ a2 )3
AF GOk [NATAR BFECIE. b O3 13
. méﬁs y. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORAK yNIT
Bldg 410 ELEMENT NO. NO. NO WS
Bolling AFBDC 20332-8448 GUORFE T 2041 A
. TITLE tlnclude Security Classification) Approximat ion Methods
‘or the Identification and Control of Distdibuted Paramgter Systefms

.PERSONAL AUTHORIS)
I. G. Rosen

1Ja. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo.. Day) 15. PAGE COUNT
Final Tech. Report erom 10/1/84 v 9/30/87 87, 11, 20

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Conlinue on reverse if necessary and icentify by block number)
FIELD GROUP sSuUB. GR. AN

19. ABSTRACT (Continue on reverse if necessary and identify by block numbers Ef fOorts to develop computational methods
for the identification and optimal control of linear and nonlinear systems governed by
distributed parameter systems are reported on. Specifically, approximation methods for
determining Optimal LOG compensators (feedback control and estimator gains) and func-
tional parameters in linear and nonlinear partial differential equations and hereditary
systems were developed, analyzed and tested. The study included theoretical, experi-
mental and numerical components. Convergence theories for spline-based and modal finitd
element schemes were established and extensive numerical studies on both conventional
(serial) and vector supercomputers were carried out.

A parameter estimation scheme was tested using experimental data taken from the
RPL structure, a laboratory experiment designed to test control algorithms for the
large angle slewing of spacecraft with flexible appendages, and other projects invdving
the identification of flexible structures based upon experimental data were initiated.

-
20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECUAITY CLASSIFICATION ‘
uncLassicieo/unuimiTed [ same as rer. J oTic users (D
22e. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPWONE NUMBER ¢ 22¢ OFFICE SYMBOL
Major J. M, Crowley (§6§§‘"?6?T2g£§fLJ AFOSR/NM
. DD FORM 1473, 83 APR EDI™ 7 L OF ¥ JAN 7315 OBSOLETE.
} 19 SECURITY CLASSIFICATION OF T 1S PAGE

.. L]




R R AT O AP U AN A AN WY LUY UY UM NN P WL LWL WHLY LY g $%2 % %8 #'0 4%, R Ve Rt 0.0 0.8 08 Bt Bt ™R ]

[) “l
-, B
»
RPOSR.TR. q Y
37-1980 123
i" .
Approximation Methods for the Identification and Control of Distributed ] :
Parameter Systems I,
ek
Y
Air Force Office of Scientific Research Contract No. AFOSR-84-0393 "
a
4
o
I.G. Rosen s
Department of Mathemtics N
University of Southern California
W
Los Angeles, CA 90089-1113 N
N
Y
o
ﬁ L]
Accesion For ] ',:‘ .
NTIS  CRAR! M Y,
LIS TeB 0 0
dirar o Ced 0 s,
Jerebicsron ] .
By e o
o 04
I Sy Codes :.f-‘
1‘-7“]”"/:?" '.--_.::,-"oT.- 9?
johe g: I\ L3¢} ‘ ::::':
A-| | 7
LI 5 S S A
20 November, 1987 y
Final Technical Report for Period of Grant: 1 October, 1984 - 30 September 1987 j:}f:
..,:‘
Prepared for e
Mathematical and Information Sciences ”E
Air Force Office of Scientific Research e
Department of the Air Force o
Bolling Air Force Base, DC 20332-6448 o4
»
.4
-
>,
\ £ n
ol

/

--------

...... AT A T R AT AT TR At T YA et . -(.‘f - _
: N A AN AT AT T O i TN AT o TS



L LR R A

Vo) 0 A7,

e g b b ) 08 g e e Y0.a'0 'R 4 0oa 8 2t T N T I S S oY 348 a¢

We have developed computational methods for the identification and optimal control of
distributed parameter systems. Our work has consisted of a theoretical, an experimental, and a
numerical component. Using functional analytic techniques we demonstrate and study the
convergence properties of our schemes. Extensive numerical studies are then carried out in order to
fully assess their feasibility, performance, and limitations.

Central to our general approach is the notion of approximating infinite dimensional
optimization problems by sequences of finite dimensional ones. Typically this involves the
approximation of infinite dimensional state dynamics (in the form of distributed parameter systems
such as partial differential equations or hereditary systems) by sequences of finite dimensional
dynamical systems (such as ordinary differential or difference equations). In the case of the
parameter estimation problems, when it is functional (i.e. spatially or temporally varying)
parameters which are to be identified, the infinite dimensional admissible parameter spaces must
also be discretized.

In general, we have used polynomial and Hermite spline function, as well as modal function
based finite element methods to accomplish these tasks. We note that since we are not simply
solving the so-called forward problem, i.e. the straight forward integration of the underlying
dynamical equations, but rather are seeking to solve problems whose solutions depend in a highly
nonlinear fashion on the system's infinite dimensional state transition, input / output or parameter
space / output maps, the theoretical components of our investigations become especially important.
Indeed, methods which have been known to do a good job integrating differential equations often
perform less than satisfactorily when coupled with a scheme to solve a parameter estimation or
control problem.

On the other hand, we have found our numerical studies to be extremely useful in allowing us
to observe the limitations and short comings of our methods and to identify important directions for
future research.

Below, we summarize our results and our progress in as yet incomplete but on-going projects.
In the body of the report, we simply provide a brief outline and broad summary of our findings.
The actual results are discussed in detail in the research papers which have been provided to

AFOSR, and a sampling of which have been included in the appendix to this report.
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1. Control )
R
a. We have developed an abstract approximation framework for the discrete-time linear \
0
quadratic Gaussian (LQG) control, estimator, and compensator problems for systems whose state .:
dynamics are described by linear semigroups of operators on infinite dimensional Hilbert spaces. "
4 The computational schemes included in the framework yield finite dimensional approximations to i
(W]
the optimal feedback control laws, estimator gains and LQG compensators. A convergence theory -
_ 2
l has been established and numerical studies involving parabolic (heat / diffusion), hereditary, and 1
] O
i elastic systems have been carried cut. Initially, our theory applied only to control systems whose ::
l- '
continuous-time input and output operators were bounded. However, we have been able to extend ::

these results to apply to discrete-time systems whose underlying continuous-time formulations

~aty "

involve unbounded input and/or output maps. An unbounded input operator is one that maps the

control space into a space larger than the standard state space in which the problem is usually

formulated. An unbounded output operator has domain smaller than the standard state space. We

have been able to successfully apply our abstract theory to distributed parameter systems with
boundary control, to hereditary systems with control delays, to boundary control systems with

control delays, heat/diffusion equations with pointwise measurement of temperature, beam

.-..,‘, ,.,
AN ANNAO N RIS

equations with pointwise measurement of strain or acceleration and distributed systems involving ::-:'
output delays. The computational schemes that we implemented and tested were either polynomial :\
spline, Hermite spline, or modal function based and were able to handle reasonably complex \
problems when run on a micro-computer (an IBM PC - AT). This was joint work with Professor
J.S. Gibson of the Department of Mechanical, Aerospace and Nuclear Engineering at the
University of California, Los Angeles. ',_,_‘
b. We have developed an a-shift technique which can be used in conjunction with schemes for ',EN
the optimal LQ stablization of hereditary systems. This leads to control laws which yield a g\-
prescribed degree of stability, i.e. all system poles to the left of the line Re z = o in the complex L
plane. Both the continuous and discrete time cases were considered. This was also joint work ::-_
with Professor Gibson. E:-:'
c. We have started to investigate and develop a finite dimensional approximation theory for the .
design of optimal fixed finite order compensators for distributed parameter systems. The approach :
3
'

R PN

g R S R e O M R G S L Ak S S S SNy
s B I N N AN N NN N A N NN AN



e dtsiate ARy
§

)

(R SRLNL WU LW LWL L L At AR A Sl € ap T AOCY 0NN ANl Ryl g B AR~ oS0’ ol i S e R e K M iR S A¥ 8 6 Gat

-------- e e e e

we are taking is based upon and uses the Hyland-Bemstein optimal projection equations; a set of
necessary conditions for optimality which, in an infinite dimensional setting, take the form of a
coupled system of operator Riccati and Lyapunov equations. We replace the infinite dimensional
system operators (i. €. A, B, and C) by finite element approximations. The resulting finite
dimensional system of coupled matrix Riccati and Lyapunov equations are then solved using
effective and efficient finite dimensional optimal projection algorithms and software developed by
Hyland and Bernstein. At present, results from numerical studies carried out on examples
involving heat and beam equations and hereditary systems are promising. Further computational
studies along with theoretical analyses (i. e. convergence arguments, etc.) are currently underway
and continuing. This work is joint with Dr. D. S. Bernstein of the Harris Corporation in
Melboumne, Florida.

2. Parameter Identification

a. We have developed computational methods for the estimation of spatially varying material
parameters (specifically flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients) in
Euler-Bernoulli models for the vibration of flexible beams with and without tip appendages. Our
schemes involve spline-based finite element discretizations of the second order in time, fourth order
in space system of partial differential or hybrid system of ordinary and parital differential equations
and the function space admissible parameter set. A convergence theory was established and
extensive numerical studies using simulation data was carried out on both conventional (serial) and
vector computers. The schemes performed satisfactorily. This was joint work with Professor
H.T. Banks of the Division of Applied Mathematics, Brown University and Dr. J.M. Crowley of
the United States Air Force Academy.

b. We have tested our general approach for the estimation of unknown parameters in models
for the vibration of flexible structures on actual expermental data taken from the RPL experiment.
The RPL structure consists of four flexible beams cantilevered to a rotating hub. The structure was
designed and built (and currenty resides) at the Charles Stark Draper Laboratory (CSDL) in
Cambrigdge, MA with support from the Air Force Rocket Propulsion Laboratory (RPL) (now the
Air Force Astronautical Laboratory (AFAL)) at Edwards Air Force Base in California. Using

accelerometer data we were able to successfully identify parameters in a distributed parameter
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model for the structure. We hope to continue to test our theories and methods on this structure in
the future. This was joint work with Professor Banks, Mr. S.S. Gates of CSDL and a former
student, Ms. Y. Wang who is currently a research associate in the Division of Applied
Mathematics at Brown University.

¢. We have initiated a collaboration with Dr. Alok Das and his associates at the Air Force
Astronautical Laboratory (AFAL) at Edwards Air Force Base in California for the purpose of
collecting experimental data for use in the testing of our theory and computational schemes for the
identification of distributed parameter systems. Specifically, we have made two visits to AFAL and
taken data from an experimental flexible 5 ' x 5 ' alluminum grid which has been constructed by
Dr. Das and his group. We are planning to develop appropriate theory and computational methods
which can be used to fit a two dimensional distributed parameter model to the structure. In
addition, we are also currently planning a series of flexible structure experiments to be carried out
in the spring of 1988 in the 30ft thermal vaccuum chamber at AFAL. The purpose of these
experiments is the collection of data for use in the study of thermal effects on internal damping
mechanisms of composite materals. Our general approach will involve the identification of
appropriate distributed thermoelastic or thermoviscoelastic models. Appropriate models, theory
and computational schemes are being developed as the planning of the experiments and the
preparation of the vaccuum chamber and experimental structure continues. The primary motivation
for this investigation is the solar heating of orbiting large flexible spacecraft. This effort is joint
with Dr. H. T. Banks of the Division of Applied Mathematics at Brown University and Dr. D. J.
Inman of the Department of Mechanical and Aerospace Engineering at The State University of New
York at Buffalo.

d. We have developed an abstract approximation framework for the identification of parameters
in nonlinear distributed parameter systems. Using the theory of monotone operators and nonlinear
evolution systems, we establish convergence results for Galerkin finite element methods for inverse
problems involving broad classes of autonomous and nonautonomous nonlinear partial differential
equations. This new nonlinear theory completely subsumes the existing linear theory and serves to
generalize many of our earlier results. In addition, it can be applied to parameter estimation

problems for a frequently cited model for nonlinear heat conduction. In addition to the theoretical
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results, we have carried out some preliminary numerical studies on a vector machine with the aid of

a grant (of computer time) from the San Diego Supercomputer Center. This work is joint with Dr.

EOR I W R
N )

H. T. Banks of the Division of Applied Mathematics at Brown University and Dr. S. Reich of the

-
Pt

Department of Mathematics at the University of Southern California.
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3. Publications Carrying AFOSR Grant Number AFOSR-84-0393

A Numerical Scheme for the Identification of Hybrid Systems Describing the Vibration of
Flexible Beams with Tip Bodies, Journal of Math Analysis and Applications, 116 (1986),
262-288.

Spline-Based Rayleigh-Ritz Methods for the Approximation of the Natural Modes of
Vibration for Flexible Beams with Tip Bodies, Quarterly of Appl. Math., Volume XLIV
(1986) 169 - 185.

Approximation Methods for Inverse Problems Involving theVibration of Beams with Tip
Bodies, Proceedings, 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada,
December, 1984.

A Galerkin Method for the Estimation of Parameters in Hybrid Systems Governing the
Vibration of Flexible Beams with Tip Bodies, (with H.T. Banks), ICASE Report No. 85-7,
Institute for Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, VA, February, 1985.

Approximation Methods for the Solution of Inverse Problems in Lake and Sea Sediment
Core Analysis, (with H.T. Banks), Proceedings, 24th IEEE Conference on Decision and
Control, Ft. Lauderdale, Florida, December, 1985.

Numerical Schemes for the Estimation of Functional Parameters in Distributed Models for
Mixing Mechanisms in Lake and Sea Sediment Cores, (with H.T. Banks), Inverse
Problems, 3(1987), 1-23.

Numerical Approximation for the Infinite-Dimensional Discrete-Time Optimal
Linear-Quadratic Regulator Problem, (withJ.S. Gibson), SIAM J. Control and
Optimization, 26(1988), to appear.

Shifting the Closed-Loop Spectrum in the Optimal Linear Quadratic Regulator Problem for
Hereditary Systems, (with J.S. Gibson), IEEE Transactions on Automatic Control,
AC-32(1987), 831-836.

Estimation of Stiffness and Damping in Cantilevered Euler-Bemoulli Beams with Tip
Bodies, (with H.T. Banks and C. Wang), Proceedings, Fourth IFAC Symposium on
Control of Distributed Parameter Systems, Los Angeles, CA, June, 1986.

Computational Methods for the Identification of Spatially Varying Stiffness and Damping in
Beams (with H.T. Banks), Control - Theory and Advanced Technology, 3(1987), 1-32.

Methods for the Identification of Material Parameters in Distributed Models for Flexible
Structures, (with H.T. Banks and J.M. Crowley), Mathematica Aplicada e Computacional,
S (1986), 139-168.

The Identification of a Distributed Parameter Model for a Flexible Structure, (with H.T.
Banks, S.S. Gates and Y. Wang), SIAM J. Control and Optimization, to appear.

Computational Methods for Optimal Linear - Quadratic Compensators for Infinite
Dimensional Discrete-Time Systems, (with J.S. Gibson), Proceedings of International
Conference on Control and Identification of Distributed Systems, Springer- Verlag Lecture
Notes in Control and Information Sciences, to appear.

Inverse Problems in the Modeling of Vibrations of Flexible Beams, (with H. T. Banks and
R. K. Powers), Proceedings of the International Conference on Control and Identification of

Distributed Parameter Systems, Springer-Verlag Lecture Notes in Control and Information
Sciences, to appear.
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15.  Approximation of Discrete-Time LQG Compensators for Distributed Systems with Boundar,

1987, Los Angeles, CA, to appear.

Input and Unbounded Measurement, (with J. S. Gibson), Automatica, to appear. ‘
3 o,

(]
| 16.  Approximation in Discrete-Time Boundary Control of Flexible Structures, (with J. S. :‘-
p Gibson), Procecdings of the 26" IEEE Conference on Decision and Control, Dec. 9-11, oy
' ,

" 17.  Computational Methods for the Solution of Infinite Dimensional Discrete-Time Regulator
Problems with Unbounded Input (with M. A. Lie) Proceedings of IMACS/IFAC
International Symposium on Modeling and Simulation of Distributed Parameter Systems,
Oct. 6-9, 1987, Hiroshima, Japan.

18.  Approximation of Discrete-Time LQR Problems for Boundary Control Systems with Control
Delays, Proceedings of IFIP Conference on Optimal Control of Systems Goverened by
Patial Differential Equations, July 6-9, 1987, Santiago de Compostela, Spain, :
Springer-Verlag, to appear. Ty

Rl PR Y

An Approximation Framework for the Identification of Nonlinear Distributed Parameter
Systems, (with H. T. Banks and S. Reich), in preparation.
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4. Meetings Attended, Talks Given, and Papers Presented

Invited Participant, Workshop on Control Systems Governed by Partial Differential
Equations with Application to Large Flexible Structures, The Pennsylvania State University,
Clearwater, FL, March 4 - 8, 1985.

Invited Speaker, Applied Mathematics Seminar, Department of Mathematics, Harvey Mudd
College, Claremont, CA., January 31, 1986.

Invited Speaker, Control Systems Seminar, Departments of Mathematics and Electrical
Engineering, The Institute of Technology, University of Minnesota, Minneapolis, MN, June
5, 1986.

Invited Speaker, Conference on Control and Indentification of Distributed Systems, The

Institute of Mathematics of the University of Graz, Vorau, Austria, July 6 - 12, 1986.

Invit aker and ion Chairman, Meeting of the Society for Engineering Science,
State University of New York at Buffalo, Buffalo, NY, August 25-27, 1986.

Invited Participant, Second Workshop on the Control of Systems
Governed by Partial Differential Equations sponsored by AFOSR,
NSF and the University of Montreal, Val David, Quebec, Canada, October 5-9, 1986.

Invited Speaker, Control Systems Seminar, Department of Electrical and Computer
Engineering, University of California, Santa Barbara, Santa Barbara, CA, October 27,
1986.

Paper Presented, 1984 IEEE Conference on Decision and Control, Las Vegas, Nevada,
December, 1984.

Paper Presented, 1985 SIAM Fall Meeting, Arizona State University, Tempe, Arizona,
October, 1985.

Paper Presented, 1985 IEEE Conference on Decision and Control, Ft. Lauderdale, Florida,
December, 1985.

Invited Speaker, IFIP Conference on Optimal Control of Systems Governed by Partial
Differential Equations, July, 6-9, 1987, Santiago de Compostela, Spain.

Speaker and Invited Session Chairman, IMACS/IFAC International Symposium on
Modeling and Simulation of Distributed Parameter Systems, Oct. 6-9, 1987, Hiroshima,
Japan.

Attendee, ICTAM '87, First International Conference on Industrial and Applied Mathematics,
June 29 - July 3, 1987, Paris, France.
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5. Students Supported

1.

Ms. Y. Wang, MSEE, University of Southern California, 1984, MS Applied Mathematics,
University of Southern California, 1986. Carried out computations for identification of RPL

structure. Thesis: An Inverse Problem for a Flexible Structure. Supported: 1 June, 1986 -
31 July, 1986.

Mr. M. Lie, BSEE, University of Southern California, Carried out computations for optimal

discrete-time LQG compensators for infinite dimensional systems. Supported: 1 June, 1986
- 31, May, 1987

Mr. P. Feehan, MSEE, University of Southern California, Carried out computations for
preliminary studies on the identification of material parameters in distributed parameter models

for flexible structures using modal or spectral data. Supported: 1 June, 1986 - 31 August,
1986.

Mr. C. Lo, MSCE, University of Southern California, BSEE, George Washington
University, carried out supercomputer calculations for studies on the identification of
nonlinear distributed parameter systems. Attended San Diego Supercomputer Center Summer
Institute, Summer, 1987. Supported 1, June, 1987 - Present.

Mr. C. Mao, Sc. D. Mathematics, Wuhan University, carried out preliminary theoretical
studies on thermomechanical models in flexible structures. Supported 1, June, 1987 - 31,
August, 1987.

6. Equipment Purchased

1.
2.

IBM PC AT and peripherals. Used to carry out many of the computations reported on above.

AST Premier/286 and peripherals. Used by P. I. and students to carry out computations
reported on above.
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7. Abstracts :',_1
A
1. A Numerical Scheme for the Identification of Hybrid Systems Describing the Vibration of QY
Flexible Beams with Tip Bodies, I. G. Rosen. G
"
o
A cubic spline-based Galerkin-like method is developed for the or
identification of a class of hybrid systems which decribe the transverse ®
vibration of flexible beams with attached tip bodies. The identification 2
problem is formulated as a least-squares fit to data subject to the system <A
dynamics given by a coupled system of ordinary and partial differential N
equations recast as an abstract evolution equation (AEE) in an appropriate )
infinite-dimensional Hilbert space. Projecting the AEE into spline-based e
subspaces leads naturally to a sequence of approximating finite-dimensional o
identification problems. The solutions to these problems are shown to o
exist, are relatively easily computed, and are shown to, in some sense, v
converge to solutions to the original identification problem. Numerical l;'_:-f‘
results for a variety of examples are discussed. ::‘\i
2. Spline-Based Rayleigh-Ritz Methods for the Approximation of the Natural Modes of o
Vibration for Flexible Beams with Tip Bodies, I. G. Rosen. 3
Bt
Rayleigh-Ritz methods for the approximation of the natural modes for a :::-;“
class of vibration problems involving flexible beams with tip bodies using T
subspaces of piecewise polynomial spline functions are devloped. An Sy
abstract operator-theoretic formulation of the eigenvalue problem is derived Lo
and spectral properties investigated. The existing theory for spline-based ~n
Rayleigh-Ritz methods applied to elliptic differential operators and the -‘:.-:;
approximation properties of interpolatory splines are used to argue R
convergence and establish rates of convergence. An example and numerical '.:-rj
results are discussed. '.'\-"'*
3. Approximation Methods for Inverse Problems Involving the Vibration of Beams with ‘: )
Tip Bodies, I. G. Rosen. sﬁ%
N
In this short paper we briefly outline two cubic spline based '-::q‘
approximation schemes for the solution of inverse problems involving the AN
vibration of flexible beams with attached tip bodies. The identification !‘._.
problem is formulated as the least squares fit to data of a hybrid system of :.-‘_:1
coupled partial and ordinary differential equations describing the dynamics N
uf the beam and tip bodies. The resulting optimization problem is infinite e
dimensional and as such, necessitates the use of some form of e
approximation. The schemes we have developed are based upon the K
construction of a sequence of approximating identification problems in LI
which the underlying constraining state equations are semi-discrete finite 3 a
dimensional approximations to the infinite dimensional distributed system Y
which governs the original identification problem. Our study includes both N
theoretical convergence results and numerical testing. “:::4
v d
4. A Galerkin Method for the Estimation of Parameters in Hybrid Systems Governing the .
Vibration of Flexible Beams with Tip Bodies, H Thomas Banks and I. G. Rosen. Ao
NS
In this report we develop an approximation scheme for the identification :j:j
of hybrid systems describing the transverse vibrations of flexible beams g
with attached tip bodies. In particular, problems involving the estimation of =
functional parameters (spatially varying stiffness and/or linear mass 4
density, temporally and/or spatially varying loads, etc.) are considered. The T
identification problem is formulated as a least squares fit to data subject to "f:
the coupled system of partial and ordinary differential equations describing '-::"q
;-,;
10 L)
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. the transverse displacement of the beam and the motion of the tip boodies o
respectively. A cubic spline-based Galerkin method applied to the state

0 equations in weak form and the discretization of the admissible parameter
» space yield a sequence of approximting finite dimensional identification e
" problems. We demonstrate that each of the approximating problems admits :ﬁ
e a solution and that from the resulting sequence of optimal solutions a I
o convergent subsequence can be extracted, the limit of which is a solution to

the original identification problem. The approximating identification
problems can be solved using standard techniques and readily available g

A software. Numerical results for a variety of examples are provided. 2
N
5. Numerical Schemes for the Estimation of Functional Parameters in Distributed v
0 Models for Mixing Mechanisms in Lake and Sea Sediment Cores, H. T. Banks, and
I. G. Rosen. -
I
Kn We consider distributed parameter models for vertical mixing in lake -
K and sea sediment cores. Finite dimensional approximation schemes are bt
» developed for the solution of associated inverse problems. The schemes ~
W permit one to estimate temporally and spatially varying functional -

parameters which appear in the parabolic partial differential equations and
boundary conditions constituting the models. Thecretical convergence
results are established. Numerical findings are presented which
demonstrate the potential of the methods. An example involving the
identification of a depth-dependent mixing parameter based upon volcanic
ash data from the North Atlantic is included.

P - "y
o

N ETE

*

Numerical Approximation for the Infinite-Dimensional Discrete-Time Optimal
Linear-Quadratic Regulator Problem, J. S. Gibson, and I. G. Rosen.

e—
PN

An abstract approximation framework is developed for the finite and
r infinite horizon discrete-time linear-quadratic regulator problems for
s systems whose state dynamics are described by a linear semigroup of
operators on an infinite-dimensional Hilbert space. The schemes included
in the framework yield finite-dimensional approximations to the linear state
feedback gains which determine the optimal control law. Convergence
agruments are given. Examples involving hereditary and parabolic systems
and the vibration of a flexible beam are considered. Spline-based finite
element schemes for these classes of problems, together with numerical
results, are presented and discussed.
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7. Shifting the Closed-Loop Spectrum in the Optimal Linear Quadratic Regulator
Problem for Hereditary Systems, J. S. Gibson and I. G. Rosen.

LIV P g N

i O

In the optimal linear quadratic regulator problem for finite dimensional
o systems, the method known as an a-shift can be used to produce a
closed-loop system whose spectrum lies to the left of some specified vertical
line; that is, a closed-loop system with a prescribed degree of stability.
This paper treats the extension of the a-shift to hereditary systems. As in
finite dimensions, the shift can be accomplihed by adding o times the
identity to the open-loop semigroup generator and then solving an optimal
regulator problem. However, this approach does not work with a new
approximation scheme for hereditary control problems recently developed
by Kappel and Salamon. Since this scheme is among the best to date for the
numerical solution of the linear regulator problem for hereditary systems, an
alternative method for shifting the closed-loop spectrum is needed. An
a-shift technique that can be used with the Kappel-Salamon approximation
scheme is developed. Both the continuous-time and discrete-time problems
are considered. A numerical example which demonstrates the feasibility of
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the method is included. )
8.  Estimation of Stiffness and Damping in Cantilevered Euler-Bernoulli Beams with t::‘.:
Tip Bodies, H. T. Banks and I. G. Rosen. ()

We develop finite dimensional approximation schemes for the )
identification of spatially varying material parameters, i. €. flexural stiffness -

and viscous damping coefficients in hybrid models for flexible beams with i.
tip bodies. Our schemes are derived via an application of spline-based .
Galerkin techniques to the conservative form state space representation for o
the coupled system of ordinary and partial differential equations and N

boundary conditions which describe the dynamics of the system. A
convergence theory is briefly outlined and a discussion of our findings
based upon extensive numerical studies carried out on both conventional

A ad A

and vector processors is included. 2"‘ g
'l
9. Computational Methods for the Identification of Spatially Varying Stiffness and (:',
Damping in Beams, H. T. Banks and I. G. Rosen. ™
A numerical approximation scheme for the estimation of functional .
parameters in Euler-Bemnoulli models for the transverse vibration of flexible Y
beams with beams with tip bodies is developed. The method permits the Ny
identification of spatially varying flexural stiffness and Voigt-Kelvin o,
viscoelastic damping coefficients which appear in the hybrid system of v
ordinary and partial differential equations and boundary conditions el
describing the dynamics of such structures. An inverse problem is !{ ‘
formulated as a least squares fit to data subject to constraints in the form of a N
vector system of abstract first order evolution equations. Spline-based finite "
element approximations are used to finite dimensionalize the problem. N
Theoretical convergence results are given and numerical studies carried out _\:-
on both conventional (serial) and vector computers are discussed. -."“
| 10. Methods for the Identification of Material Parameters in Distributed Models for oy
Flexible Structures, H. T. Banks, J. M. Crowley and I. G. Rosen. \

In this paper we present theoretical and numerical results for inverse
problems involving estimation of spatially varying parameters such as

2

stiffness and damping in distributed models for elastic structures such as ,!.\
Euler-Bernoulli beams. An outline of algorithms we have used and a o
summary of our computational experiences are presented. N
-._\
11.  The Identification of a Distributed Parameter Model for a Flexible Structure, H. T. :'::
Banks, S. S. Gates, I. G. Rosen, and Y. Wang. ;'*
We develop a computational method for the estimation of parameters in )-:' ~
a distributed model for a flexible structure. The structure we consider (part )
of the "RPL experiment”) consists of a cantilevered beam with a thruster e
and linear accelerometer at the free end. The thruster is fed by a pressurized ~
hose whose horizontal motion effects the transverse vibration of the beam. -
We use the Euler-Bernoulli theory to model the vibration of the beam and 3
treat the hose-thruster assembly as a lumped or point mass-dashpot-spring N
system at the tip. Using measurements of linear accleration at the tip, we A
estimate the hose parameters (mass, stiffness, damping) and a Voigt-Kelvin -~
viscoelastic structural damping parameter for the beam using a least squares '.f:
fit to the data. -"“ ‘
We consider spline based approximations to the hybrid (coupled .

ordinary and partial differential equations) system; theoretical convergence i
results and numerical studies with both simulation and actual experimental N
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data obtained from the structure are presented and discussed.

: 12.  Computational Methods for Optimal Linear-Quadratic Compensators for Infinite
X Dimensional Discrete-Time Systems, J. S. Gibson and I. G. Rosen.

X An abstract approximation theory and computational methods are
' developed for the determination of optimal linear-quadratic feedback
controls, observes and compensators for infinite dimensional discrete-time
systems. Particular attention is paid to systems whose open-loop dynamics
¢ are described by semigroup of operators on Hilbert spaces. The approach
taken is based upon the finite dimensional approximation of the infinite
dimensional operator Riccati equations which characterize the optimal
feedback control and observer gains. Theoretical convergence results are
presented and discussed. Numerical results for an example involving a heat
equation with boundary control are presented and used to demonstrate the
feasibility of our methods.

o

-

PP T oy

13. Inverse Problems in the Modeling of Vibrations of Flexible Beams, H. T. Banks,
R. K. Powers and I. G. Rosen.

R o ad

The formulation and solution of inverse problems for the estimation of
parameters which describe damping and other dynamic properties in
distributed models for the vibration of flexible structures is considered.
Motivated by a slewing beam experiment, the identification of a nonlinear
velocity dependent term which models air drag damping in the
Euler-Bernoulli equation is investigated. Galarkin techniques are used to
: generate finite dimensional approximations. Convergence estimates and
N numerical results are given. The modeling of, and related inverse problems
for the dynamics of a high pressure hose line feeding a gas thruster actuator
at the tip of a cantilevered beam are then considered. Approximation and
convergence are discussed and numerical results involving experimental
data are presented.

- .

14. Approximation of Discrete-Time LQG Compensators for Distributed Systems with
Boundary Input and Unbounded Measurement, J. S. Gibson and I G. Rosen.

e

We consider the approximation of optimal discrete-time linear quadratic
Gaussian (LQG) compensators for distributed parameter control systems
with boundary input and unbounded measurement. Our approach applies to
a wide range of problems that can be formulated in a state space on which
both the discrete-time input and output operators are continuous.
3 Approximating compensators are obtained via application of the LQG theory
3 and associated approximation results for infinite dimensional discrete-time
control system with bounded input and output. Numerical results for spline
and modal based approximation schemes used to compute optimal
compensators for a one dimensional heat equation with either Neumann or
Dirichlet boundary control and pointwise measurement of temperature are
presented and discussed.

15. Approximation in Discrete-Time Boundary Control of Flexible Structures, J. S.
{ Gibson and I. G. Rosen.

y This paper treats discrete-time LQG optimal control of flexible
, structures with boundary control and what normally are unbounded
| measurement operators.

The application of recently developed approximation theory for infinite
dimensional discrete-time LQG problems to the problem here is discussed,
and numerical examples are presented.
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16. Computational Methods for the Solution of Infinite Dimensional Discrete-Time
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Regulator Problems with Unbounded Input, I. G. Rosen and M. A. Lie.

17. Approximation of Discrete-Time LQR Problems for Boundary Control Systems with

An approximation framework for the closed-loop solution of
discrete-time linear-quadratic regulator problems for infinite dimensional
systems with unbounded control inputs is developed. Sufficient conditions
for the convergence of approximations to Riccati operators and feedback
gains which characterize the optimal control law are provided. General
theories for abstract partial differential systems with boundary control and
distributed systems with control delays are developed. Spline-based
schemes and numerical results for heat and beam equations with boundary

control and a hereditary system with delayed control are presented and
discussed.

Control Delays, I. G. Rosen.

D KMl W

In this short note we consider the extension and application of the
approximation theory for discrete-time linear-quadratic regulator problems
with either bounded or unbounded inputs we developed earlier to boundary
control systems with control delays. We synthesize our earlier, existing
results for distributed systems with boundary controls and for systems with
control delays into a theory which is applicable to systems that
simultaneously exhibit both forms of unbounded input.

14
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ABSTRACT

’ﬁ > '1

We consider the approximation of optimal discrete-time linear quadratic Gaussian (LQG)

Wy
‘s

vy

compensators for distributed parameter control systems with boundary input and unbounded

y 2
Pd
X

measurement. Our approach applies to problems that can be formulated in a state space on which

o

both the discrete-time input and output operators are continuous. Approximating compensators are

obtained via application of the LLQG theory and associated approximation results for infinite
dimensional discrete-time control systems with bounded input and output. Numerical results for ;"2’
spline and modal approximation schemes used to compute optimal compensators for a one :Q'-
dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise s

measurement of temperature are presented and discussed. ats,
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Y 1. Introduction

o

i;:.' In this paper we develop an approximation theory for the computation of optimal discrete-time
,:: linear quadratic Gaussian (LQG) compensators (combined feedback control law and state estimator)
;';:i" for distributed parameter systems with boundary input or control and unbounded output or

::::s: measurement. In a continuous time setting, boundary input typically results in an unbounded input
;:L': operator. That is, the system'’s input operator maps the control input into a space larger than the
~‘ state space in which the open-loop system is usually formulated. In the discrete-time case, on the
:: , other hand, for a wide class of distributed systems, the resulting input operator is bounded on the
- usual underlying state space. An unbounded output, or measurement, operator has domain smaller
:;-.‘j than the usual open-loop state space.
::?:': For continuous time systems, Pritchard and Salamon (1987) have established an abstract

.:":; semigroup theoretic framework for treating the linear quadratic regulator problem (control only) for
0:.: infinite dimensional systems with unbounded input and output operators. Their approach is based
;:: upon a weak or distributional formulation of the Riccati equations which characterize the optimal
'::sl. feedback control laws in an appropriate dual space . Curtain (1984) provides a procedure for the
: design of finite dimensional compensators for parabolic systems with unbounded control and

‘-:: observation. In (Curtain and Salamon, 1986) a finite dimensional compensator design procedure
o for a wider class of infinite dimensional systems with unbounded input (but bounded output)

N including hereditary systems with control delays and partial differential systems with boundary
'\ . control is developed. Lasiecka and Triggiani have looked at linear regulator problems for parabolic
K (1983a, 1987a) and hyperbolic (1983b, 1986) systems with boundary control and obtained,

’j; among other things, global and local regularity results for the optimal controls and state

{’l trajectories. In (Lasiecka and Triggiani, 1987b) Galerkin approximations and an associated

f convergence theory for closed-loop solutions to regulator problems for parabolic systems with

5‘; Dirichlet boundary input are studied. A more complete survey of the boundary control literature
:'é including references to some of the poineering work in this area can be found in (Pritchard and

:'. Salamon, 1987).

o
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In our treatment here, we consider the discrete-time problem (i.e. piecewise constant input and
sampled output). Our interest in the discrete-time or digital formulation is motivated by 1) the fact
that it represents a more accurate or realistic description of how the linear-quadratic theory for
distributed systems would actually be applied in practice, and by 2) how the boundedness of the
discrete-time input operator in the usual underlying state space facilitates the development of an
approximation theory which can simultaneously handle both unbounded input and unbounded
output. Our approach is based upon an application of the theory we developed earlier in (Gibson
and Rosen, 1985 and 1986) for the approximation of optimal discrete-time LQG compensators for
infinite dimensional systems with bounded input and output. Our results are applicable to
boundary control systems in which a restriction of the state transition operator and the discrete-time
input operator are bounded on a space on which the output operator is bounded as well. To
illustrate our approach, in this paper we describe in detail the application of our theory to a one
dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise
measurement of temperature. Elsewhere (see Gibson and Rosen, 1987) we have applied our
results to develop approximation schemes for the computation of optimal LQG compensators for
flexible structures (i.e. Euler-Bernoulli beams) with shear force input at the boundary and a
pointwise measurement of strain.

An outline of the remainder of the paper is as follows. In Section 2 we describe an abstract
framework for the study of boundary control systems and their discrete-time formulation. In
Section 3 we review the LQG theory for infinite dimensional discrete-time systems and associated
abstract approximation results. In the fourth section, we discuss spline and modal subspace based
approximation schemes for the heat equation example. Section S contains some concluding

remarks.

2. The B jary C | Syst | its Discrete-Time F lati
We employ a semigroup theoretic formulation that has been used previously for a class of
abstract boundary control systems. See, for example, (Curtain and Salamon, 1986). Let W,V and

H be Hilbert spaces with W and V densely and continuously embedded in H. We
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consider boundary control systems of the form :'
.1 w(t) = Aw(t), t>0 :
(2.2) w(0) = wg :
2.3) Tw® =v(),  t20 4
2.4) y =Cw),  t20 :-':
where A € L (W,H), the boundary input operator I is an element in &(W,R™) and the output L';- ‘
operator C is an elementin &L (V,RP). Note that the operator A need not be the Laplacian. Our i{
choice of A to denote a general, most often differential, operator satisfying the conditions set forth ?—'

below is consistent with the notation used in earlier treatments of boundary control systems

elsewhere in the literature.

We assume that 1) I" is surjective and its null space, L(I') = {@ e W: ¢ =0}, isdensein
H, 2) the operator ¢, defined to be the restriction of the operator A to N, (I, is a closed operator

on H and has non-empty resolvent set and 3) for each T > 0, all Wo € W, and v e C}0,T; R™M)

L)

2RO TR

with T'wg =v(0), there exists a unique w € C([0,T}; W) N C!([0,T]; H) which depends

‘-

continuously on wg and v and which satisfies (2.1) - (2.3) for each te [0,T]. It then follows (see

-
Y,
Hille and Phillips, 1957) that the operator ¢ : Dom () c H — H given by Qg =A@ for @€ oy
by
Dom(Q) = N(I') is the infinitesimal generator of a T semigroup, {T°(1): t2 0}, of bounded *
n
linear operators on H. oA
Define the space Z as the dual of Dom(Cl*) where the norm on Dom (C{*) is taken to be the "
Pl
graph Hilbert space norm associated with the operator &*. Then His densely and continuously N
embedded in Z and {U7(t) : t= 0} can be uniquely extended to a Ty semigroup of bounded linear :E
operators on Z. Its generator is the extension of the operator & to an the operator & in BH,2) '_E ,
~ l.'.
given by ( & @)(y) =<eo, C{*w>H for ¢ € Hand y € Dom(Q *). 4
Since I" was assumed to be a surjection, it has a right inverse. LetI'™* : R™ —5 W be any right E
'
inverse of I". Since Dom (I'™*) = R™, we have It € ZL(R™, W). For ve R™, we define 3
BeBRM Z) by Bv=(A-C)I*v. If I‘;’ and F; are two distinct right inverses of ["then 4
R( F:’ - I‘; ) < N(D). Since & coincides with A on TL(I) , it follows that the operator T is < )
3
L'd
3 "o
o
J"\ ]
\ A
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well defined. It can be shown (see Curtain and Salamon, 1986) that for each wyeHandve
L,(0,T; R™) there exists a unique w € C([0,T}; H) N H! (0,T; Z) which depends continuously on

) and v and which satisfies

w(t) = Ow() + Bv(), t>0
w(0) = w,

in Z. The function w is given by
t

(2.5) wt) =T (Ow, + j T (t-s) Bv(s)ds, t=20
0

and is referred to as a weak solution to the boundary control system (2.1) - (2.3).
The discrete-time formulation of (2.1) - (2.4) is found by considering piecewise-constant

controls of the form
2.6) v(=u., tefkr (k+D1), k=0,1.2,.

where T denotes the length of the sampling interval. Let w, = w(kt), k= 0,1,2,... where w(:)
is the unique weak solution to (2.1) - (2.3) given by (2.5) corresponding to w, € H and input v
given by (2.6). (We note that with piecewise constant input of the form (2.6), the solution w is in
fact a strong solution on each subinterval [kt, (k+1)t].) Foreachk=0,1,2,... define

z, € C([kt, (k + 1)t]; H) by z (1) =w(1) - T*u,, te[kt, (k+ 1)t]. Then
z) (1) = w(t) = Aw(t) + Bu,
= Qz (1) + (A + BNy,
= Uz () + ATy, te kt, (k + 1)1],

z, (k1) = w -y, .

Therefore

N N A T N A N e T T e T T L
4 N . A L v ~

‘WA a

‘.;..-1'- [ I{_..Q_

&
Y

PO AL LS, W Pl
'. éﬁ"l h} :

5% Y
AN

w ‘-l;

7

d

P AN 30 o
P .

e
v

s

Y

g AL o,

P lv"/ 2

A AN
e % B S

(48 4



Wi = g ((k+1)1) + THuy

= T (T)(w, - THuy) + I; T (s) A Tru, ds + Ty, %
= T@OW+A-T @) Ty + [ T ©Aruds,
or
Wi =Tw +By, k=0,1.2,.
wyeH
where Te S(H) and B e BR™, H) are givenby T= (1) andB=(1-T () T+
| ; " (s)ATHds respectively.
We note that as in the case of the continuous-time input operator 3, the discrete-time input
operator B is well defined and does not depend upon a particular choice for I'*. Indeed if B, and

B, are the input operators which correspond to the choices I‘:‘ and I‘2+ then for u € R™ we have

B,-Bu=(- T@NT -Thu+ [ TEA@CF -, uds.

But T ; - I“: Yu e N (@) =Dom(C) and therefore

T T
JQ’(S)A(I‘; - T Juds = J‘J’(s) aqt - ) uds
0 0

T

d

=I.£ T ()T} - T Juds = (T(x) -D(ITF -T7)u.
0

In addition, if I'* is chosen so that R, (I'*) < N\ (A), B takes on the particularly simple form B =

(I- T (t)I'*. Itis worth noting that a simple calculation reveals that
B= I; T (s) Bds

in agreement with the standard technique for obtaining the discrete or sampled time formulation of

a continuous time system in either a finite dimensional or bounded input setting.
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’ It is our intention here to apply the approximation theory we developed earlier in (Gibson and :‘_‘:.u
oA
Rosen, 1986) for the design of optimal discrete-time LQG compensators for infinite dimensional :-‘;.,
RS
systems with bounded input and output operators. We therefore require the additional assumptions e
]
that 4) T=9(t)e BL(V)and 35) R (™) < V. Although not all boundary control systems we :“i-
it
might formulate would satisfy these conditions, there are many interesting and important systems ;l‘\-"
which do (see, for example, Section 4 below and Gibson and Rosen, 1987). In this case, the '_';.‘ '
R
control system (2.1) - (2.4) takes the form oy
j::.'r
7]
Q.7) W, =Tw, +By, k=0,12,. i
»
(2.8) WoEV t-r :
@.9) ¥, = Cw,, k =0,12,.. . &r

P
r"

e,

for Infini imensional Discrete-Tim

v
.

imension imati x
R
-~
Lo ..
3.1. The Infinite Dimensional Probelm ::;;
. . . . e
The discrete-time linear-quadratic regulator problem for the boundary control system (2.1) - ,.:‘_';
LAY 4
™ A
(2.3)is: i
Findu® = {u*y -0 € £,5(0,°0; R™) which minimizes the quadratic performance index E‘
N
T N
Ju) = ; <ka » W, >y + u Ru :t
L
where Q € L (V) is self-adjoint and nonnegative, R is a symmetric positive definite mxm matrix N
T
and the state w = [wk};" o evolves according to the recurrence (2.7), (2.8). X7
L
: : . . : . : e,
An optimal control exists for each initial condition wj if and only if the operator algebraic o
-."\-
Riccati equation :f'
Yl
v
* % .1 ¥ ]
3.1 [M=T {1-TIBR+B IIB)'B INT+Q. y.
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g
‘ ..'{\
A e T T A R A S AN R N Rt e




PP R 'R AR A . B - E— Py o
aMe [y PR WL - LWL e e . e St Pt Al AR A A AL RS A e 0 O A N AP S IR P I S R e " e A

e
NN

wrsleL S

v

VTR

has a bounded nonnegative, self-adjoint solution I1. In this case, the optimal control has the : ]
~
feedback form uy = -Fwy where F = (R + B* HB)“B*HT. A control (sequence) u is admissible -::"
e ]
for the initial condition wy if the corresponding J(u) is finite. If there exists an admissible control -l
b
for each initial condition, then (3.1) has a bounded nonnegative, self-adjoint solution. If each N
admissible control for each initial condition drives the state to zero asymptotically, then there exists ;'.:
8 ,f'\‘
at most one bounded nonnegative, self-adjoint solution to (3.1). The optimal trajectory w™ = -i.:
{w*"k }; 0 evolves according to w: = Skwo, k = 0,1,2,..., where the closed loop state transition ;}\- '
= ':\
operator S € £(V)is S =T - BF. If Qs coercive, then S has spectral radius less than one and is -~
uniformly exponentially stable. From the finite dimensionality of the control space we obtain =
)
D
: (3.2) uf = -<fwh>y, k=0,12,. b
l:.’
D
m '
where f = (f ,f,,...f,)T € x V is called the optimal functional feedback control gain. o
j=1 Y.
The results stated here for the optimal linear-quadratic regulator problem are summarized from :.
(Gibson and Rosen, 1985). )
- o
When only a finite dimensional measurement y = {y, },. _ o of the infinite dimensional state w o
\ A
is available (recall (2.9)), a state estimator or observer is required. For a given input sequence u =
.‘ L)
and corresponding output sequence y, the optimal LQG estimator is b_ ;
(3.3) W =Tw, +Bu +F(y, -CW¥]}, k=0,12,. R
. ¥|
3.4) wg €V )
A
where the optimal estimator or observer gain F ¢ L(RP,V) isF = TII C*(R +CII C"‘)'1 with I;::”.
IT € L(V) the minimal, self-adjoint, nonnegative solution (if one exists) to the operator algebraic ::l::
Riccati equation )
o)
e
~ A A ~ -~ A -~ Y
, (3.5) N=T(II -TT C*R + CIH CYY!ICIHT" + Q. o
) hY/
)
Since F g (RP,V), it has the representation :j\
t.’ ¢
7 ey
%
b
i N
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~ P
where f =(f,f,..., fp)Te x V iscalled the optimal functional observer gain.
j=1

The operator 6 € £(V) is self-adjoint, nonnegative and the pxp matrix ii is symmuetric,
positive definite.

In a stochastic setting, the operator (AQ and the matrix I’i are, respectively, the covariance
operator and covariance matrix for uncorrelated, zero-mean, stationary, Gaussian white noise
processes that force the state and corrupt the measurement. In this case, if 62 is trace class, (3.3),
(3.4) is the infinite dimensional analog of the discrete-time Kalman-Bucy filter. In a strictly
deterministic setting, (A) and ﬁ are assumed to be determined via engineering design criteria
such as stability margins, robustness of the closed-lcop system, etc.

Replacing operators in the control problem with the adjoints of the appropriate operators in the
estimator problem yields the usual duality between the LQG optimal control and estimator
problems. Hence sufficient conditions for existence and uniqueness of solutions of (3.5) and the
closed-loop estimator stability properties are analogous to the results for the control problem. In
particular, if e, = ?vf( - Wi, then e, = §k e k=0, 1,2, ..., where §=T- I?C, and a sufficient
condition for § to be uniformly exponentially stable is that Q be coercive.

The optimal LQG compensator consists of the state estimator in (3.3) and (3.4) and the control
law

A~ %k

(3.6) 8, =-Fw%', k=0,12,.
The resulting closed-loop system is given by
W= Akw, k=012,..

where W, = (w,, Cv'k )T with {w, )%, - ¢ the state trajectory that results from the input (3.6)

and & £ B(VXV) is
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It is easy to show that the spectrum of @8 is given by o(8) = o(S)U o(S), so that the stability of
the closed-loop plant-compensator system is determined by the stability of the plant with full state

feedback and the stability of the estimator error.

3.2. Approximation
ForeachN =1,2,..., let VN be a finite dimensional subspace of V and let Py be a bounded
linear mapping from V onto Vy (for example, the orthogonal projection with respect to either the V

or H inner product). Let Ty, Qu» Qy € B(Vy), Bye BR™Vy) and Cy & B(Vyq,RP) and set

* An*
FN =R+ BN I'INBN) lBN l'INTN
and

where ITyand ITy are the minimal, self-adjoint, nonnegative solutions (assuming that they exist) to

the finite dimensional operator algebraic Riccati equations

(3.7 My =TTy - TBy(R + B B! BI T Ty + Qy
and
(3.8) My =Ty( My - My C] R + Cyfly € ) 1Cy T TS+ Qy

respectively. The approximating optimal compensator is given by

0* =-Fyw" .k=0,1,2,.
N Xx N X
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3
R !
where w_ = { A;: }=  isdetermined according to the approximating observer ::
= ~
P ::
o=
o = ok " B vk . o * = ) o
ka” Ty WN)‘+BNu + FN{yN’k Cyw* }, k=0,1,2... ]
M
o
* ) * Al
The measurements y,, aregiven by Yy o Cwyi » k=0,12,... where .
E wN.k+l = TwN.k -B u}’: X k=0,1,2,. :‘:'E
f = w,. o2
WN,0 0 )
&
The resulting closed-loop system is given by Wye=dA N Wy k=0,1,2,.. where )._:._
~ 'w.
Wk = (Whge w;'k )T and 8ye B (VxV)) is given by ;r
b ;E:.‘
.
T -BFy :?_.
(3.9 Ay = 1. -~
B\C  Ty-ByFy- FC ’.
~ A ‘l-'::‘
Let Sy =Ty - ByFy and Sy =Ty - FyCy and assume that Py — I strongly on V as A%
strongly on V and that By — B and CyPy — Cinnormas N — oo, If the pairs (T, By) N
and (T ; , C;) are uniformly exponentially stabilizable and the pairs (Ty, Qy) and (T ; . QN) are ::,.
[
detectable (see Kwakernaak and Sivan, 1972) then there exist unique, self-adjoint, nonnegative ?}';.
-~ A "‘u'
solutions ITy and [Ty to the algebraic Riccati equations (3.1) and (3.5). If Ty and Iy are :';ﬁ
bounded from above uniformly in N, then ITyPy and TI Py converge weakly to ITand TI, f-'_t
[ ]
respectively, as N 3 o0 | FoF
e
If, in addition, Sy and Sy are uniformly exponentially stable, uniformly with respect to N, ;:‘_r
~ :.'I‘
then TIyPyand Il Py converge strongly. Weak convergence of IT Py to IT yields strong 4_-?:'
>
convergence of FyPy to Fand SyPy to S. If TIyPy converges strongly then FyPy — F in e
o
10 g,
ﬂ J
L.
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|
:::: norm. Weak convergence of ﬁNPN to fI yields weak convergence of I;N 1o E and §NPN to
::::': § When fINPN - fI strongly, then I':‘N - I? in norm and §NPN - § strongly in V as .
E:: N — co. Finally, if ®y is the mapping of VXV onto VxV\ given by P (w,. w,) = (wy, |
o Pyw,), then II\Py — IT weakly or strongly is sufficient to conclude that 5Py — & weakly :
SES or strongly depending only upon whether ﬁNPN - fI weakly or strongly as N — eo . Under :
i:? appropriate additional hypotheses on the spectral properties of the open-loop system and on the | :
;‘ y approximation scheme, it is possible to show that &8y ®, converges to & in norm. (We have been
?,:,-: able to obtain such a result only for modal approximations.) Norm convergence of the closed-loop ‘
S state transition operators is sufficient to conclude that uniform exponential stability of & implies ]
:" . uniform exponential stability of 4, for all N sufficiently large (see Gibson and Rosen 1986). J
s In practice, the finite dimensional approximating subspaces V) are often constructed using any :'
:’ of a number of common finite element bases, e.g. polynomial and hermite spline functions, mode ,
;,I' shapes, orthogonal polynomials, etc. For the discrete-time boundary control systems of interest '
a to us here, the approximations to T and B, Ty and By, are obtained by approximating the |
’: continuous time semigroup, {J°(t) : t>0}, by a semigroup of bounded linear operators on Ve
{TN®:t20}). In factitis the infinitesimal generator € of the semigroup { T (t): t = O}that is ‘
E approximated by a bounded linear operator ¢y on Vy with {J\(t): t2 0} then being defined by
‘. TN = exp (€Y, 12 0. With Ty=0'y(0) and By = (I - T()PNF + || T \(9PATHds, the
:.. required convergence can usually be proved using the Trotter-Kato semigroup approximation
; ‘result (see (Kato, 1966) and (Pazy, 1983) ). The approximations to Q, 6 and C, QN’ (3N and
“- Cx » respectively, typically are taken to be Qy=PyQ, (A)N = PNQ and Cy = CPy.
" Let {QJ.N};"NI denote a basis for Vy; and set ®N = (N .‘P:‘ yeos w,’fN )TenN;iIVN. ]
__z Adopting the convention that [L] denotes the matrix representation with respect to the basis
5 {(pi\T }jn=N1 for a linear operator L with domain and/or range in Vi, we find that
;E [Fy] =R + (BT ©N [B])[B\IT ©M[Ty] and [Fy] = [Tyy] OV[CHIT(R + [Cy]
E.i @) N[CN]T)‘1 where ©N and é) N are the unique, symmetric, nonnegative solutions to the "
A .

ny X ny matrix algebraic Riccati equations

e e et At At A tet et N, ey
R g O P N AN W
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1]

(3.10) OV = [T\T(ON - OV[BLIR + [B\]T © N[BL)) ' [ByIT OY)[Ty]
+ MN[Qy]

and

3.11) O = [Tyl( ON - ON[CLIT(R + [CyIONCIT)  [C]ONY Ty IT

+ QML
The matrix MNis the ny x ny Gram matrix <®N, (@MT>,, .

If wy x=(®MT Wy | with W; L& RnN,then u;‘ = (Fyl W;J,k'k=0:1’2v-- with

’

~
*

- A . A‘ A A‘ ) A . _
rxer= TN WL +[Bylut +[Flyy - (Cy Wy, ), k=0,1.2,..

A . } ~
WH .= MMy <N, wp>, .

m
The approximating optimal functional feedback control gain, fN=(f} ..., )T & x vy

j=1
are given by fN = [FJ0MN)'®N and the approximating optimal functional observer gain

~ A -~ A P A A
= (f 3., BT & x Vy by f = [FgToN. If [Py — ITweakly (strongly)
j=1

then f — fi,i=1.2,.., m weakly (strongly) in V. If II Py — II weakly (strongly) then
f > f;,i=12,.,p weakly (strongly) in V. If the injection V < H is compact, then fNof,
i=1,2,.,mand ;? - t":l = 1,2,...,p strongly in Hif IIyPy and TIyPy converge only

weakly.

4. Examples and Numerical Results

We consider the one-dimensional heat equation
2

@n  Max= aa—w(t,x), 0<x<1, t>0,
ot ax2
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where a > 0, with the homogeneous Dirichlet boundary condition ,
4.2) w(t0)=0, t>0,

and either the Neumann boundary control

4.3) ﬁ (t,1) = v(v), t>0,
ox

or the Dirichlet boundary control

4.4) w(t, 1) = v(), t>0,

where v € L,(0, ). For output we take a temperature measurement
(4.5) yO =w(0), t20,
at some fixed point { € (0, 1). Initial conditions for these systems have the form
(4.6) w(0, x) = w, (x), 0<x<1

where w,eL, (0, 1)..

Although the two control systems above appear to be similar, they are, in fact, quite different and
must be treated separately. We begin with the more straight forward of the two, Neumann boundary
control. Let H=L,(0,1), V= H' ©, D= {peHY0,1): ¢(0)=0} and

W=H2@,1)N Hl ©, 1). WithH endowed with the usual L, inner product, V with the inner

product < @, ¥ >, —f D¢ Dy and W with the inner product < @,y >y, = ﬁ I DI Dy, we
j=1

have the continuous and dense embeddings W Vc Hc V' c W'. Define Ag L(W, H), e T(W,
R') by A ¢ = a D%, I'¢ = D(1) and Co = ¢(§) respectively. With these definitions the boundary
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control system (4.1) - (4.3), (4.5), (4.6) has the form (2.1) - (2.4). The operator A: Dom (Q) <
H—oH is given by Q¢ =a D2 for 9 € {¢ e HX(0, 1): ¢(0)=D@(1))= 0}. Itis densely defined,
negative definite, self-adjoint and it is the infintesimal generator of a uniformly exponentially stable
analytic semigroup (7 (t): t2 0} of bounded, self-adjoint linear operators on H. Also, {J7(1): t2
0} is a uniformly exponentially stable, analytic semigroup of bounded, self-adjoint operators on V
with generator & given by Gl = Qo for g € {¢ € H3 (0, 1): 9(0) = Dg(1) = D2p(0) = 0}.
Choosing 't € BRI, W) as (Ttu)(x) = xu for x € [0, 1], we have R(TH) <V, R(TH) <N (@)
and that conditions 1) -5) given in Section 2 are satisfied. For the optimal control and estimator
problems, we take Q =qI, Q= I, R =rand R = T where I is the identity on V,q, @ 20andr, T
> 0. The uniform exponential stability of the semigroup {J7(t): t= 0} on V implies that the algebrai

Riccati equations (3.1) and (3.5) admit unique bounded, nonnegative, self-adjoint solutions IT and fI

respectively. The optimal control (3.2) takes the form
1

4.7) v = - J DfDw,, k= 0,12,..
0

where the optimal functional feedback control gain f and the optimal functional observer gain
f are elements in H1 (0,1).

We construct an approximation scheme using a linear spline based Ritz-Galerkin approach. For
eachN=12.., { cp;‘};t . denotes the usual linear spline or "hat" functions defined on the interval
[0,1] with respect to the uniform mesh {0, 1/N, 2/N,...,1}. We discard the element centered
atx =0, (pg‘, set Vi =span {(p’N};“_ . and choose Py, to be the orthogonal projection of V onto Vy

with respect to the V inner product. Hence Vyyisan N dimensional subspace of V.
For @& Dom (1), ICQtgl,; > alghy, > aigl,, and therefore 0 & p(€&) and @™ 1: H - Dom(Q)
satisfies ICA‘I(pIV < a’llgly forpeH. Wedefine Qy: Vy — Vy as the inverse of the operator
Q;II = PyQ"! restricted to Vy. The operator —Cl;“ is positive definite because
< Q;“ Pnp PNy = -a"l(lef{ for @€ Vy. and itis self-adjoint since < Q;‘ Pne VNV =
<Pl @ WPy = <A1 o Yoy = a7l < Wn>y - Hence the operator Oy is well defined

and self-adjoint. For ¢y € Vy and yy = U@y, the estimate

AR PP
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<UNON PNV =< ‘VN'Q;IWN>V =-all WN';
2 i 2
< -l hyyyS -alPyQ ‘\le3 = -al C{;\VNIV

2
=-a| ON'y

implies that Cl is the infinitesimal generator of a G semigroup { I () : t 2 0} of bounded,
self-adjoint linear operators on Vy satisfying 197Dl < edt t2>0.
It can be shown that a<@ , y>, = <(-Q)"/2g, (-Q1)2y>; . It then follows that the matrix
representation for the operator QU with respect to the basis {(ij} ;‘:‘l is [Qyl=
-a< cp?, cp]N>;{1 < (pfl, q>jN>V . This agrees with the system matrix derived by a standard
Ritz-Galerkin finite element approach. Note that even though Uy is defined to be the inverse of the
operatcr PN(C{)'1 restricted to the space V), computing its matrix representation does not require
either €72 or ¢! explicitly. In general, the same approach can be used to obtain an operator
representation for the Ritz Galerkin approximation to any self-adjoint coercive operator.
Let dy; denote the interpolation operator from V onto Vy defined by (9 9)(/N) = ¢(i/N), j = 1,

2,...,N. Then for ¢ € W, elementary approximation properties of linear interpolatory spline

functions (see (Schultz, 1971)) imply

IPy - Dol <1(dy - Doly, < i Dy,
Nr
and therefore, since W is dense in V, that Py — I strongly on V as N— e Also, it follows that
Cl;: = PNCl‘l——> ¢! strongly on V as N— o . If we define Ty, = T (1), then the Trotter-Kato
approximation theorem yields that TyPyy — T strongly on V as N— e and, since T =T= T (1)
and Ty =Ty = T \(7) that TxPy — T" strongly on V as N— oo,

Since R(I't) c Vy (recall that (T*u)(x) = ux, 0 < x < 1), we define the approximating input
operators By by By = (I- T (t))I"" and set Qy=ql, E)N = qIand Cy = C. The strong convergence
of Py to the identity and TPy, to T together with the finite dimensionality of the domain of B and the
range of C are sufficient to conclude that QuPy — Q, E)NPN - E) strongly on V and that By — B
and CyPy — Cinnormas N — eo,

The uniform exponential stability of the semigroups { T (1) : t 2 0] implies
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RN X

(4.8) IT; ly = I(T; Yy sk, k=0,1,2,..

withr=¢ ?* < 1. Consequently the pairs (Ty.By) and (Ty, C;) are uniformly exponentially
stabilizable and the pairs (Ty,Qy) and (Ty, aN) are detectable. It follows that there exist unique E
self-adjoint, nonnegative solutions Il and fIN to the finite dimensional algebraic Riccati ¥

equations (3.7) and (3.8) respectively. The uniform exponential bound (4.8) withr < 1 imples that x
the zero control yields a uniform upper bound for I and fTN and therefore the uniform :
exponential stability of Sy = Ty - ByFy and §N =Ty~ %NCN . We conclude that ITyPy and -
1':INPN converge strongly in V to Il and fIN , respectively ,and that FyPy and I;N converge to F -
and I:' in norm as N — . The approximating optimal functional feedback control and observer
gains, fy;and EN, converge respectively to f and E in the H! norm as N - oo,

In implementing the approximation scheme just outlined above, eigenvector decomposition of

the associated Hamiltonian matrix was used to solve the matrix algebraic Riccat equations (3.10) and

(3.11) (see Pappas, et. al., 1980). The required matrix exponentials also were computed using

TP

eigenvalue/eigenvector decomposition. All calculations were carried out via Fortran codes on an
IBMPCAT. Weseta=V.l,q=q=r=r=10, E=V2/2and 1= .01 and obtained the
functional gains plotted in Figs. 4.1 and 4.2. We plot fyand fy; as well as Df and Dfy; to exhibit

RN R

the H! convergence. We note that Df (or Dfy) appears as the feedback kernel in the optimal control

law (4.7).

R |

We also simulated the operation of the closed-loop system with an approximating compensator.

Using a 20 mode model for the infinite dimensional system and N =12, we computed the closed-

loop spectrum of the approximating compensator (i.e. the eigenvalues of the operator 4, given by

(3.9) with N = 12). These eigenvalues along with the first 20 open-loop eigenvalues (i.e. the first

20 eigenvalues of the operator T = J (1)) and the approximating closed-loop control and observer "4

eigenvalues are tabulated in Table 4.1 below. Table 4.1 reveals that the last seven open-loop Z

eigenvalues remain essent:ally unchanged in the closed-loop system-i.e. these modes are neither :
-
-

controlled nor observed by the finite dimensional compensator. Also, as one would expect, 6(A4.)

consists essentially of the union of o(Sy), o(Sy) and the eigenvalues corresponding to the

16
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| uncontrolled/unobserved modes of the open-loop system.
It is worth noting that the scheme we have outlined above for the Neumann boundary control
problem is the same scheme that one would ordinarily use if the problem were formulated in the space

H - i.e. if the output operator C was bounded on L,(0,1) (see Gibson and Rosen, 1986). This is

L e g gn e S~

possible primanly becausc the space V = HIL(O,I) is the natural energy space for the underlying
homogeneous or open-loop system. Consequently, the inherent self-adjointness and coercivity in the
problem is preserved when it is formulated in the stronger space. In the case of Dirichlet boundary
control, the situation is quite different.
' For the Dirichlet boundary control system (4.1), (4.2), (4.4) - (4.6), we choose the spaces H, V
! and W and their corresponding inner products to be the same as they were in the Neumann case.
The operators A € & (W,H) and C € Z(V,R!) also remain unchanged, however now we have
e T(W,RY) givenby o= ¢(1). It then follows that the operator ¢ : Dom(Q) c H — H is given
by Cl = aD?y for ¢ € H%(0,1) N H; 0,1). Itis well known that & is densely defined, negative
definite and self-adjoint and that it is the infinitesimal generator of the uniformly exponentially stable
analytic semigroup {J7(t) : t2 0} of bounded, self-adjoint linear operators on H. However this
time the operators J'(t) for t > 0 are neither self-adjoint nor a semigroup on V. Indeed, since
RT W) H; 0,1) forall t > 0 and H; (0,1) is a closed proper subspace of Hrl. 0,1), T'(t)is not
! strongly continuous in the V-norm at t = 0. (The fact that our general framework requires
IT*=1and R (") cV precludes our choosing V to be Hlo (0,1).) On the other hand,
. {T(1) : t= O} an analytic semigroup implies (see Pazy, 1983) that there exists a constant p> 0 for
which 1QT Oy < ut'l for t > 0. Consequently, if we define T = J7(1), then it follows lthat

T € &(V) and moreover, that

|qu>|‘2, =- 2l T kD)o, T (k)g> sall AT K)ol 19 kDel,
pe-akt ) pe-akt 5
< g < Il
akt H akt v
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fork=1,2,... and ¢ € V. We have therefore
(4.9) Tkl = KTk, MK, k=0,1,2,...

where M>0andr<1.
We again choose I't € B(RL, W) as (TTu)(x) = xu forx € [0,1]. Then R(I'") < N.(A) and we
have reformulated the boundary control system (4.1), (4.2), (4.4) - (4.6) in the general form of (2.1)
- (2.4) and conditions 1) - 5) are satisfied.

We formulate the optimal control problem with the performance index

2
J(u) = 2 q <W, , W, >+
k=0

where q 2 0 and r > 0. That is, we take Q to be the bounded, self-adjoint nonnegative operator on
Hi‘(O,l) given by (Q@)(x) =q J E I ly ¢(z)dzdy and R to be r. For the estimator problem we set
E):&Iandﬁ:gwith q=0and r > 0.

The uniform exponential bound (4.9 ) implies the existence of unique, nonnegative, self-adjoint
solutions IT and fI to the algebraic Riccati equations (3.1) and (3.5). The optimal control is again of
the form (4.7) with the optimal functional gains fand f in H, .

The fact that {J7(t) : t= 0} is not a semigroup on V precludes the use of a semigroup - theoretic
approach to approximation. We therefore employ modal subspaces and approximate the open-loop
state transition operator T directly as a bounded linear operator on V.

Foreach N =1,2,... let V; = span {(pj}jN_ 5 where for x € [0,1], y(x) =x and ¢j(x) = sinjnx,

j=12,..,N. Letpy denote the orthogonal projection of H = L,(0,1) onto span {(pj } anl

and let Py denote the orthogonal projection of V onto V. Using the fact that V = Hé(O,l) ® @, it
is not difficult to see that Py@ = @(1)@q + pn(9 — @(1)¢,) for ¢ € V and hence, via elementary
properties of Fourier series (see Tolstov, 1962), that I(Py - Doly = I(py - D(9 — ¢(1)¢y)ly = 0

as N — o foreachpe V.

_ : - 1
We define Ty € L(Vy) by Tyg = PyT. Then, since R (T) = R (T (1)) Ho 0,1y,
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for Wy = 2 W ;€ Vyy we have 5
0 -
o,
N2 0 afe ;
Ty W = PNTVN = Py T (Y =P T (W = T (pwy = Z ( i YNt e ?;- "
j=1 o
;.0
It follows that T} =Py T",IT¥ Iy =T ¥y SMi¥, k=0,1,2,... with M > O and r < 1 independent o
Y
of N, and that P
e
!
I(TPy - T)ply < I(PTPy - PyT)@ly + I(Py - DToly, ;ﬂ_
< Mri(Py - Dgly + I(Py - DTply — 0 ;'"
.:_:5. .
. v
as N = co for @& V. Similarly, T;PN — T strongly on V as N — e, 1:_,. '
~ :NI'
The approximating input, output, and state penalization operators By, Cy, Qg and Qy take the ."’
form ‘_".:
26D e ]
+ - ~aj m o
Byu =(- Tl u =@uu+ Z'—-eaj ou, ]
PR L >
Cy =C.Qy =9qPyQ and Qy= qI Reasoning as we did in the Neumann case, the approximating :
-IJ .
algebraic Riccati equations (3.7) and (3.8) admit unique, nonnegative, self-adjoint solutions ITy and __ﬁ
ITy respectively, IIyPy — IT and I Py — ITstrongly on V and FyPy — F and f’N — F in norm .'.
as N — oo. The approximating functional feedback control and observer gains fy and fy; converge :';::.
- o
tofand f respectively, strongly in Hlas N = o, R
RS
Witha=1.0,q=q=r=10,7 = 5.0, £=V2/2 and 1=.01 and the scheme outlined above we '."'
obtained the approximating optimal functional feedback control and observer gains plotted in Figs. ::.
k‘
4.3 and 4.4 below. The first 12 open-loop and the approximating closed-loop control and observer "E:
~
eigenvalues for N = 12 are tabulated in Table 4.2. ;'"' '
Table 4.2 reveals an interlacing of the closed-loop control and open-loop eigenvalues. That is, :
‘ e
B!
the closed-loop control eigenvalues (i.e. the elements in the spectrum of S) are alternately more and ,\
.‘"n- g
less stable than the corresponding open-loop eigenvalues. We also have observed this phenomenon ."
in other numerical studies we are carrying out involving LQG boundary control for flexible '.i.:'.‘
::' \
b
N
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structures. In additon, in the Dirichlet boundary control system discussed above, if Q is chosen as

.

[
UGN

Ce

the identity operatoron V = H‘L(O,l), virtually all of the closed-loop control eigenvalues are less

o
stable than the corresponding open-loop eigenvalues. It is clear that this non-standard behavior :
results from the presence of the one dimensicnal subspace represented by R, ("), Indecd, the -
behavior of the closed-loop spectrum in the case of Neumann boundary control is as would be ’:-::
expected. We feel that what we are seeing can most likely be explained via infinite dimensional ':

‘; analogs of existing results relating the asymptotic properties of the closed-loop spectrum of a linear ;_

; regulator and the zeros of the corresponding open-loop transfer function (see Kwakemaak and Sivan, ;‘-{'_

: 1972 and Harvey and Stein, 1978). However, as of yet, we have been unable to establish this ‘E_;
conjecture satisfactorily and we consider it to be beyond the scope of this paper, which is primarily ..-
concerned with approximation. We leave it as an interesting open question. :0'.

.{:
S. ncluding Remark ’:’
We have developed a framework for the finite dimensional approximation of optimal discrete-time
LQG compensators for distributed parameter systems with boundary input and unbounded ‘: '

measurement. Our theory applies to the class of boundary control problems which can be formulated

.
S e

in a state space in which both the discrete-time input and output operators are continuous. We have

..
'l. "{.I.

, used a functional analytic treatment to develop a convergence theory and have demonstrated the

EXA

feasibility of our approach via examples involving either the Neumann or Dirichlet boundary control of

a one dimensional heat equation with point measurement of temperature. We have shown that while

Al

both problems outwardly appear to be quite similar, they in fact require very different approaches to

»
s
-~
approximation. Also in the Dirichlet case the observed behavior of the resulting closed-loop spectrum o)
]
) is, in some ways unexpected and its explanation remains open. L
\ _“_
; Finally, we have been looking at the application of our schemes to LQG problems for flexible =
structures with boundary inputs and unbounded measurement and systems with control and/or oy
)
observations delays. We have been considering vibration suppression for cantilevered beams via BN
(Y
h :l:'-
‘ shear or moment inputs at the free end and pointwise observation of strain or acceleration. These “\-
g
N
studies are currently underway with the results to be reported elsewhere. *5;
' _
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Figure 4.1
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L.
j,;-.:
Open-Loop a(A12) o(S12) o(S12) .
{ Ny
1 9975 9968 9968 .
2 9780 9780 9778 3
9769 9768
3 19402 .9408 , 9387 !
1 9371 9371 N,
' 4 8861 .8872 A
8778 8775 8798 N2
5 8188 .8194 N
7982 .7985 7998 5"
6 7419 7414 ’
! 7026 7019 7030 N
7 .6590 6573 7
.5960 .5921 .5946 i
8 .5740 5718 o
4891 4769 4804 v/
9 4901 4875 .
4433 4412 O
10 4104 4041 ]
] 3675 3675 3682 o
. 11 3368 3341 <2
2772 2763 2768 N
12 2711 .2705 )
2145 2129 2133 e
13 2139 2134 e
3 .1811 .1811 .1816 o
‘ 14 .1655 .1663 e
15 .1255 .1260
16 .0934 .0933 .
17 0681 0677 NN
18 0482 .0483 il
19 0341 .0340 N
20 0235 0236 N .‘
[ ]
Neumann boundary control; simulation results e
\-'\ g
Table 4.1 Z‘_:E'.‘,
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: first derivative of approximating optimal functional observer gain, Dfy.
Figure 4.4
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Open-Loop 6(S17) o(S12)
1 90601806 .90569591 78573771
2 67382545 68243047 57981918
3 41136911 40961171 40082268
4 20615299 20758391 20936323
h) .08480497 .08447005 08636884
6 02863695 .02873534 102892353
7 .00793790 .00791793 00792193
8 .00180617 00180978 .00178763
9 .00033753 00033682 .00033414
10 .00005172 .00005179 00005162
11 .00000651 .00000650 00000654
12 00000067 00000067 .00000068
13 .00000000 .00000000

Dirichlet boundary control; open and closed-loop spectrum
Table 4.2
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A numerical approximation scheme for the estimation of functional parameters in

Euler-Bemoulli models for the tansverse vibraton of flexible beams with tip bodies is developed.
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The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin

p S

[ _JEIN

viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial
differential equatons and boundary conditions describing the dynamics of such structures. An
inverse problem is formulated as a least squares fit to data subject to constraints in the form of a
vector system of abstract first order evolution equations. Spline-based finite element
approximations are used to finite dimensionalize the problem. Theoretical convergence results are
given and numerical studies carried out on both conventional (serial) and vector computers are

discussed.
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1. Introduction Ky
2
We develop here numerical approximation methods for the estimation of functional or more ]
I
precisely, spatially varying parameters that describe material properties in continuum models for .
ar
E elastic structures. In particular, we consider the identification of the flexural stiffness and ::
A
Voigt-Kelvin viscoelastic damping coefficients in Euler-Bernoulli models for the transverse ;3‘. v
vibraton of long, slender, flexible beams with tip appendages. The primary motivation for the ‘
4 study we report on here is the modeling and ultimately the control of the dynamics of large flexible \
:'. spacecraft. The type of structures to which we are referring includes satellites with flexible
appendages (solar panels and the like) antennas (reflectors as well as supporting structures) and ;.\
5 trussed masts and platforms, both shuttle attached and free flying. E}
The difficulties involved in the design of efficient and practical conwol laws and in particular the ;_ '
need for extremely high fidelity models for structures of these types are well documented (see, for .
example, [1], (8], [21], [22]). Their high flexibility, light damping, construction with new and Z‘
X
relatively untested composite materials (usually graphite-epoxy) and overall complexity together E:: 5
; o
with their use in a fuel limited and highly variable environment all contribute to making space !
structure stabilization and coniroi a formidable task. It is becoming increasingly clear that the use
wr
of continuum or distributed models with spatially and / or temporally varying functional parameters ,’::._
has the potential to offer several distinct and significant advantages. Included among them is the 'b {
. ~
‘ ability to, in some sense, capture the physics and inherent infinite dimensionality of the dynamics :'
! o
while at the same time greatly reducing the number of unknown or experimentally indeterminable :;'_
-~
material parameters which have to be identified (see [15], [18], [23], [28], [35]). bﬁ
In our study we have considered exclusively Voigt-Kelvin viscoelasdc damping which is based
on the hypothesis that the damping moment is proportional to strain rate. There exists considerable
evidence to suggest that damping mechanisms in composite materials are significantly more !_‘v |
; complex than the one described by the Voigt-Kelvin model. For example, it has been conjectured :‘;
by some investigators that an appropriate model might involve hysteretic or hereditary effects. ""-l'.
N
However, since there are a number of materials for which the Voigt-Kelvin assumption is ;:A
f appropriate and moreover, since at present many questons regarding the modeling of structural \
| A
: -,
‘ N
%
% N TODI P N> 2t - e a.:.'_:.f_: - ;.,: -.-._;1;\;-'\4‘.'.,"\5\'-u'-.-;f’-\, -,-," -,,"-. -.\ \,-:



damping mechanisms remain open, we feel that the Voigt-Kelvin model leads 1o a reasonable class
of examples and problems on which we can begin to develop, test, and cvaluate identification
schemes.

Our treatment here is similar in spirit to some of our earlier efforts and the work of others on
inverse problems for elastic structures (see (2], {3}, [4].{5], [6]), [14], [17], [26], [31]).
Formulating the identification problem as a least squares fit to data, the scheme we develop
involves a spline based finite element approximation to the hybrid system of coupled orcinary and
pardal differential equations describing the dynamics of the structure together with a spline based
discretization of the admissible parameter set.

Our approach here specifically differs from the one taken in [5], [6] in that the present scheme is
derived from an alternative state space formulation for the underlying dynamical equations. We
consider the higher order analog of the classical conservative formulation for a second order
hyperbolic equation as a first order vector system in the natural states of strain u, and velocity u,.
We have considered identification schemes based upon this formulaton previously in [31].
However by replacing the semigroup theoretic convergence arguments used there with weak or
variatonal arguments (in the spirit of those commonly found in the finite element literature) as used
in [5], we are able to significantly weaken the hypotheses necessary to ensure convergence. We
point out below that the weakening of these hypotheses has both theoretical and computational
significance.

Along with reporting theoretical convergence results, we discuss numerical findings. Our

computational results are based upon extensive numerical studies which involved a variety of

examples and two machines. In addition to testing our scheme on a conventional serial computer

(an IBM 3081) we vectorized our codes for the Cray 1-S and then benchmarked some of our runs
in order to explore the potential of vector architectures in the context of inverse problems for
systems described by distributed parameter models.

We provide a brief outline and summary of the remainder of the paper. In Section 2 we specify
the ordinary and partial differential equations which govern the underlying dynamics of the
structure and precisely formulate the identification problem. We reformulate the inital-boundary

value problem as an abstract second order evolution equation and then as a first order vector
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system. Existence, uniqueness and regularity results for solutions are summarized. Section 3
contains the abstract approximation theory and convergence results. A spline-based scheme is
discussed in detail in Section 4 and our numerical findings are reported and summarized in Section
5.

We use standard notation throughout. For X and Y Banach spaces, the Banach space of
continuous linear transformations from X into Y is denoted by L (X,Y). When X =Y we use the
shortha.  .otadon & (X). The spaces of (equivalence classes of) functions f from an interval 9

into X which satisfy

_[ |£0) 15 d8 <o or esssup |1(8) ], <o
g
b}

NN NA

are denoted respectively by L,(9; X) and L.(9 ; X). Fork =0,1,2... the space of X-valued

functions with k continuous derivatives on 9 are denoted by CX(d ; X). When k = 0 we use

BT
N

4

C(9 ; X). The completion of the space ck@ X) with respect to the norm

P

L)
s

L
2

.

T T

=

T
€l = (Z 1@ 1 o

,‘:,.,. .

is denoted by H¥(4; X). When X =R we use simply L,(9), L(9), CX(9) and HK(9).

I

»"

Y

2. The Identfication Problem

We consider the identification, or estimation, of the mass and/or material properties of a long,
slender, flexible, viscoelastic beam of length £ and spatially varying mass density p which is

clamped at one end and free at the other with a body rigidly attached at the free end (see Figure 2.1

P

below).
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We assume that the material behavior of the beam is that of an idealized Voigt-Kelvin solid with

RIS "

A 4 ""'

modulus of elasticity E and coefficient of viscosity Cpy (see {30 }). We assume further that E, Cp

and the cross sectional moment of inertia I of the beam are in general spatially varying. We take the

Y ‘.'f: .4‘: 'l

N

.

mass properties of the tip body to be mass m and moment of inertia J about the center of mass O

which is assumed to be located at a distance ¢ from the tip of the beam directed along the beam's tip

a8 N

tangent (see Figure 2.2 below).
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We note that there is no essential loss of generality in assuming that the mass center of the tip body
is not offset from the tip tangent of the beam. We refer the interested reader to [31] where the
more general situation is treated. Also, the problem with non-zero mass center offset can be
transformed into a problem of the general form of the one which will be considered here. See [32]
for details.

Letting u = u(t,x) denote the transverse displacement of the beam at position x at time t and
du :
assuming only small deformations (Iu(t,x) | << &, l—— (t,x) | << 1), the Euler-Bernoulli theory
dx

a1 elementary Newtonian mechanics yield the hybrid system of ordinary and partial differential

equations (see [19], [34])

8211 2 32 33
@1 p5t0 + 5 (B o+ Cl-l0) =
2 2
ot ox Jx Jx ot
3 du
—-— o—(tx) + f(t,x), xe(0,8), t> 0
Jx ox
9 3 2
2.2) mizi(t,x)mc 82“ 8- @&l .
3t acox ox  ax’
du du
CDI > )t,8) = o—(t,8) + g(1), t>0
ax’at ox
2 -
3 2
2.3) mcé—u-(t,,l)+(1+mc2) OU 4.0+ EIOY (t.2) +
2 2
ot ot dx ox
33u du
Col——t.8) = -co—(t,4) + h(v), t>0
3 2 ox
X ot
du
2.4) u(,0) =0, —{(1,0) =0, t>0
X
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Y
[
du
L (2.5)  u(0x) = ¢(x), o (0.x) = y(x), xe(0,2].
) t
b
.- Equation (2.2) and (2.3) are derived from the usual transverse and rotational equilibrium
y considerations at the free end. The geometric boundary conditions (2.4) are the zero displacement
: and zero slope constraints at the clamped end. The functions f = {(t,x), g = g(1), h = h(t) and
e o = o(t,x) denote externally applicd loads in the form of moments (h) and transversally (f and g) or
E axially (o) directed forces exerted on the beam or tip body. (In fact, h(t) = E(I) +cg(t) where His
o
< an externally applied torque on the tip body). The temporal boundary conditions (2.5) reflect the
- initial displacement and velocity distributions which are assumed to be given by the functions ¢ and
: Y respectively.
2 We treat the initial-boundary value problem (2.1) - (2.5) in the form of an abstract second order
- evolution equation which we then rewrite as an equivalent first order vector system. The particular
Y state space formulation we choose forms the basis for the finite dimensional approximation
4
. schemes we develop in the next section. It also allows us to easily establish existence, uniqueness
. and regularity results for solutions to (2.1) - (2.5) using the theory of abstract parabolic systems.
Let H denote the Hilbert space R2 x L,(0, £) with inner product
. <(1:.61,01) (M2,82,8,)>y =7 M2+ 818, +<01,8,>
and let V denote the Hilbert space
- V={(ME0)eH:0eH%0,£),0(0)=DB6(0)=0, n=06(L),&=D6(L))
N

with inner product

<6y, 85>, = <EI(D?81), D205,

,, for B; = (6;(2), D6; (£),8;) € V,i=1,2. In the above definitions the inner product <>y is
‘ .
Y d .
" the standard one on LZ(O' £) and D denotes the spatal differentiation operators o or ._Q__ With H as
; ax
the pivot space, we obtain the usual dense embeddings Ve H=H' c V'.
. We consider the system (2.1) - (2.5) in the form of the abstract second order initial value
.| 6
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problem
(2.6) Mg G0 + Tyu, ) + Kgi(t) = B AW + Fp0), t>0
(2.7)  (0) =9, u(0) =

20

el
AR

h e Ve g
'.\‘\‘., -,_,:.'

»
a

in the state S(t) = (u(t,£),Du(t, ),u(t, -)) € H. The abstract mass, damping and stiffness

n
L)

operators Tllg, Ty and Ky are given formally by

SN
/7,

My(n,6,0) = (mn + mc€, men + (J + mc2)E, p)
Ty(n,,8) = (-D(CpI(D?0))(L), Cpl(D?6)(2),DA(CI(D?6)))

"f" :;t' )

and

o I
",

KCo(.E.8) = (-D(EI(D?6))(L), EI(D?6)(£), D*(EI(D6)))

respectively. For each t> 0, the operator valued function B and input or forcing function Fo

-’f’.';-t

~
¥ o

take on the values

PN N A

Bp(0M,5,0) = (-o(t, £)(DO(L)), - co(t, £)(DB(L)), D(a(t, )(D8)))

Al

and

ST NS @

et P

F o0 = (g, h(), £(t,)).
The initial conditions § and V are given by

XA RV

%y .-'.n

& =(4(2), Do(L), 0)

Py
L T ]

b

and

W e

e

7= (v(L), Dy(2),v).

A

U e A Ay,

The formal definitions given above can be made precise and the existence and uniqueness of

solutions to the inital value problem (2.6), (2.7) can be established if we make the following

l."'-" LT

.."-

s

assumpuons.

A, The funcdons p, El and Cpl are elements in C[0, £] and there exists a positive constant o for

S i

'.'(If

which p(x) 2 &, EI(x) 2 &, Cpl(x) 2 @, x € [0, £].
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A, The mapping t — o(t,") is an element in L,((0,T); H'(0,2)) for some T > 0.

A, The mapping t — f(t,’) is an element in L,((0,T); [/2(0,3)) and g,h € L,(0,T).

A, The function ¢ is an element in H2(0,£) with $(0) = D$(0) =0 and w & L,(0,2) with y(£)
and Dy(£) defined.

Under the hypotheses A, - A, above, the operator Tl is a bounded linear operator from H onto H

and'Go: Dom (G)) € H = H and ¥5: Dom (¥4) € H — H are densely defined, nonnegative,

self -adjoint operators defined on Dom(T) = (BeVv: CDI(DZG) e H2(0,2)} and Dom () = (8

eV: EI(DZO) 3 H2(O,£)} respectively (see [32]). Foreachte (0,T), By(t) € B(V,H) and Fy() €

H while $ &V and ¥ & H. Italso follows that By € L,((0,T); B(V,H)) and F € L((0,T); H).
We shall call a mapping t — 0(t) from [0,T] into H a strong solution to (2.6), (2.7) if

i e C ([0, T} V) n CL((0,T]; V) » CL([0,T}; H) N CX(0,T}; H),

i(t) € Dom (‘}CO), 4,(t) € Dom (Co), t € (0,T], and G satisfies (2.6) and (2.7) where the time
derivatives are interpreted in a strong (norm) sense in H. We shall call a mapping t — f(t) from

(0,T] into H a weak solution to (2.6), (2.7) if
i € C([0,T]; V) » HI((0,T); V) n CI((0,T]; H) n HX((0,T); V")

and it satisfies the initial value problem (2.6), (2.7) with the operators T and 3 replaced by their

natural extensions to operators in L(V,V") and the ime derivatives are interpreted in a weak or
distributional sense (see [20 ], [27]). A function u = u(t,x) will be called a strong (weak) solution
to the initial-boundary value problem (2.1) - (2.5) if the mapping t — {(t) given by

u(t) = (u(t, £),Du(t, £), u(t,")) is a strong (weak) solution to (2.6), (2.7).

Our approximation theory for the estimaton problem to be developed below is based upon the

reformulation of the initial value problem (2.6), (2.7) as a first order vector system. This

reformulation is formally equivalent to n:‘wrin'ng the initial-boundary value problem (2.1) - (2.5)
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B e,

as a first order system in the states D2u (strain) and u, (velocity) (see [3], [31]). We note that

since the stiffness operator ¥, is nonnegative and self-adjoint it has a unique nonnegative,
selfadjoint square root ‘}C:)n: V cH — H. Itcan be written in factored form as
Ko=LEL
where L: V< H — Ly(0,4) is given by
L9 = D2,
for §=(8(2),D8(2), 8) eV, and L : Dom (LE) < L,(0,£) - Hby

Dom (Lyp) = {8 € L,(0,2) : EI0 £ H(0,2)}

(2.8) . LEIO = (-D(EIB)(L), EI8( %), Dz(EIG)).
If, for T € C[0,2] with 1(x) 2 a > 0, x € [0,£], we let L2,1: denote the Hilbert space L(0,£)

endowed with the inner product

<91,92>0’t = <191,92>0
then LY given by (2.8) with EI replaced by t is the Hilbert space adjoint of L as a mapping from
VcHintoL, ;.

We note that L € S(V,IQ’EI) is a Hilbert space isomorphism with

172 12
<61’ §2>v =<Ky 61, Ko §2>H = <L61'L§2>o.sx

and L1 : L,(0,2) — V given by

2 x . X
co = (] [ ecydyax fe(xmx, [ Jecnasan.
00 0 00

We also have

Y P
-
- <

s, @ P
,'?n“) " ‘.‘\‘5

<

X

o
Ly

]

~ N
s,

RIS P PYETY L ARRRNRRA
l.l.“‘."l. .'...f’." l.l'{a R 4'.','._','.

oy,

FALS

a_ 8_* » - . v « . 2 L] ¥
s'_s.'s'_-.)-.;, MR

o

Nl AR

S PP L@ T
SCRRA SN ,‘-‘,'..'_-..-_.' e

AN

2y

h Al
» P

’-
’.
‘.
»




g

........

Letting % = L,(0,£) x H with inner product
2.9 <@y X NO(M2Eu N> = <01’02>0,EI + <M oM pE1x )y (M8 X2)>y
and U =L1,(0,8) x V with inner product
<81, A (O A)> s = <0100 g1 + <X APy
we have the dense imbeddings U < ¥ < V'. We consider the initial value problem for
2(t) = (w(t), v(t)) €6 given by
(2.10) w() = LY()
(2.11) Mo v =Ly w(O - Le Ly + B OL'w+F,0 0<tsT

(2.12) w0 =L3, VO =¥
which we rewrite as
(2.13) z(t) = GMz(ty + F(1), 0<t<T,
(2.14) 2(0) = z,
where
(2.15) A =TU+B (@)
with &: 0 c % —%, Be L ((0,T); B(H), F &Ly((0,T); %) and 7, € ¥ given by

~ ~ -~ -l e -1 ~

U®,0 =Ly -MyL08-T, LCDILx)
for (8,£) e = Dom(Lg)x Dom(CO),

‘: -1 -1
BOO.M,5x) = O,M, B (DL 6),
for (8,(n,5,x)) € %,
-1
F() =0T, Fy)
and
zo = (L3, Y).
In formulating the inverse problem, we keep technical details to a minimum by considering only
10
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the estimation of the beam's spatially varying flexural stiffness EI and viscous dumping coefficient
Cpl. Extending the finite dimensional approximation methods and corresponding convergence
theory which are developed below so as to be applicable to the identification of other structural or
input parameters, for example mass properties (of the beam and/or tip body), initial conditions or
loading, is, at least in principle, routine (see [7] [ 12] [14] (16] [ 31]).

Let G =C[0,£] x C[0,2] with norm
(2.16) lq|q=l(ql,qz)fq=lqlfm+|q2|w

= sup lql(X)l + sup iqZ(X)|.
xe{L, ) xe[0, 8]

We take the admissible parameter space Q to be a compact subset of G (compact with respect to the
metric topology induced by the norm (2.16)). Recalling assumption (i) we assume further that the
set Q has the property that all q = (q;.q,) € Q satisfy q;(x)2a and qy(x) 2, x€[0,2].
We formulate the identification problem as a least-squares fit-to-data over the admissible parameter
space Q. We assume that the structure has undergone a time varying elastic deformation in
response to the initial conditions described by ¢ and y and the input loads represented by f,g,h and
o. Denoting the observation space by Z, we assume that at times t;, i = 1,2,...,v measurements
4 (t)e Z (e.g. displacement, velocity, slope, strain, etc.) were taken from the structure.

We require that Z be a linear space endowed with a norm - 7 and let T" denote an
appropriately defined continuous mapping from ¥ into Z . For example, suppose that
displacement measurements have been taken at the points x;, j = 1,2,...,t along the span of the

J
beam. We choose Z as Euclidean p-space, R*» and take I to be

[(z) = (8(x,); 8(x)),- 80, )T
where z = (W,G) e ¥ and
B=(6(2), Do(2),8)=Llwe V.
With distributed strain or velocity observations, we would take ['(z) = w or ['(z) = v respectively.

We formulate the identification problem as follows
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(ID) Given{()eZ,i=12,.,, find q* € Q which minimizes

Lt

OE 2 IrGe;; an -t

i=l '
where foreachq =(q;,.9) € Q,z (- ; @) = (w(- ; q), \7(~ ; Q)) is the solution to the initial value

problem (2.13), (2.14) or (2.10) - (2.12) with El set equal to q;, and Cpl setequal to q,. '

It is immediately clear that the optimization problem given above is inherently infinite
dimensional. The admissible parameter set Q is a subset of a function space and the evaluation (and
therefore minimization) of the least-squares performance index g requires the solution of an infinite :
dimensional evolution equation. The introduction of finite dimensional approximations is essential 3

to the development of practical computational methods. Fundamental to the approach we take here

is a weak, distributional, or variational formulation of the initial value problem (2.13), (2.14). We '\‘

derive the weak form and briefly outline existence, uniqueness and regularity results for solutions. -

In the usual manner, we extend the operator Q(t) given by (2.15) to an operator in & (V, V") E

via 3
@OMM =a®OwY),  vIeV :

where the bilinear form a (t)(-,-) : ¥ x U — R is given by E

a()((@1, X183, %2)) = <EI L £,,8,5 — <EI 8}, LZ5>g — <Cpl L%; LXy>g - B

(2.17)
1 .
co(t,2) J Bl(x)dx(sz(,z)) ~ <o(t,) J‘ el(x)dx, PR
0 -~ 0

Standard estimates can be used to demonstrate the existence of positive constants k, A and § for

which

la([)(VI,V2)I <k |V1!¢U' lelfU' , ViE V,i=1,2,

and

a(t)(v,v)+k|v|%(;2[3|v|2, ve V, te [0,T].

AR '-_'-.":' EAPELL LA

Consequently (see [27 ]) the system (2.13), (2.14) interpreted as an initial value problem in V" or

equivalently, written in weak form as
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(2.18) <z (,v>q = a(®)(z(t),v) + < F(),v>qq ve VU,t €(0,T]

(2.19) 2(0) = 7,
admiis a unique solution z with z(t) € V, t € (0,T] and
2 £ L,((0,1%; V) A C((0,T]; %) MHI((0.T); V).
If z = (w,v) is the unique solution to (2.18), (2.19) then
a®) =L lw(@), t €[0,T]
is 2 weak soluton to (2.6), (2.7) and it is unique.
Under somewhat stronger hypotheses than those given in A, and A, above, the existence of

strong solutions can be established. Indeed, if in addition to A and A,, we assume

A, The mapping t — o(t,) is an element in C!((0,T]; H'(0,£)) for some T >0

A, The mappingt — f(t,) is an element in clo,Ty}; L,(0,4))and g,h € C!{0,T] (in fact,
Holder continuity will suffice, see [29], [37])

then the family of operators {cl(t)}te[O,T] given by (2.15) generates a unique evolution system
{U(t,s):0<s<t<T}on ¥ andzgiven by
t
(2.20) z(t) = U(t,O)zO +j U(t,s)F (s)ds, 0<t<T,
0

is the unique solution to the inital value problem (2.13), (2.14) and satisfies z(t) € D, te(0,T]
with z € C([0,T]; %) ~ C1((0,T]; %) . Once again, with z = (w,v) now given by (2.20),

G(t) =L lw(), te [0,T], is a strong solution to (2.6), (2.7) and it is unique.
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3. An Abstract Approximation Framework N
h
We turn next to a discussion of a general approximation framework and convergence theory for e
S
the identification problem (ID) formulated above. In the following section we formulate a specific o
spline-based scheme to which the general theory developed here applies. ~
~
-~
Fundamental to our approach is the construction of a sequence of finite dimensional (with regard )
>~
to both the state dynamics and the admissible parameter set) approximating identification problems et
each of which, under appropriate hypotheses, can be shown to have a solution that in some sense <
(specifically, subsequential convergence) approximates a solution to the original infinite E j
l,‘
dimensional estimation problem (ID). "
In the discussion to follow, we exhibit the explicit dependence on q = (q;,q;) € G of the ¥ \
inner product <-,->q; and the bilinear form a(t)(-,-) given in (2.9) and (2.17) respectively by ‘
using the notation <-,->q and a(t;q@)(-,’). Foreach Ny =1,2,..and each Ny =1,2,... let Ny
Nl N2 ."‘.
W “and V © be finite dimensional subspaces of L,(0,£) and V respectively. If, for N,
N Ny N, N \-‘
N=(N,N)) wedefine V =W XV ,thenV is a finite dimensional subspace of both I::.
)
% and V. Let ® N:3% — U Ndenote the projection map of % onto U N given by =y
o
L
N N N ~ ::
(3.1) P (w,v) = (P, W, P, V) :
.
7
N, . N N %
where P1 is the orthogonal projection of LZ(O,J.’) onto W and P2 is the orthogonal N
N, - '
projection of Honto V , both computed with respect to the standard (unweighted) inner -_'.:::
products on the respective spaces L,(0,£) and H. \
The Galerkin equations in ‘UN corresponding to the system (2.18), (2.19) and q €4 are !
N NN 7
32 <2, vN>q =a(t; POV + <FQ, vN>q , VeV 0<t<T =
)
(3.3) 2N(0) = PNz, . X
’ -'-
s N
)
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'
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ForeachM;eZ, = (1,2,...},i=1,2, let SM and SM be finite dimensional subspaccs of
C[0,2]) and for M = (M|, M,) define ‘QM cq 12)y SIVE SM, X SMZ Let JM and QM
denote mappings from C[0,4] onto SM, and SMz respectively and define 9y, a mapping from
G onto Gy 1, by

1 2
gm(Q) = gm((Qsz)) = (9 v@p 91\,1((12)). q=(q;,qp) € g .

We define a sequence of approximating admissible parameter spaces {Qy}, M€ Z, X Z_ by

(3.4) QM =g M(Q)

and formulate the sequence of approximating identification problems as follows:

(ID;‘[) Given {(t)e Z.i = 1,2,...,v, find (q:; ) € Q, which minimizes

N N,
ﬂ(q)=§|1"(z (&) -LR 2

over Qy, where N (; @) is the solution to the initial value problem (3.2), (3.3) in N,

2
We choose bases {6, }1_11 ) { f‘ :c_;:, {¢M}1- and [qf'M}:{ for the finite dimensional

V .
spaces w ! V Sbld and Siiz respectively. Then qM € SM q:t € Sif and the solution
2

2
2N(- ; Q) to the initial value problem (3.2), (3.3) with q = qpq = (q\I Q) can be written as
1

q&=§,a‘miw

2o
i*ly
G =D, o Wi

i=1 *
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respectively. Moreover, ZN(-; oty is the solution to the initial value problem in

12

given by

.-
ERERLNES
PP
RS

.
o
)

. e e - g o

3.5 MNa)ZN@ = AN o0 2N + Y, te (0,T]

“.?‘-".'. T e

36 Z(0)=2j .

RIS
s iz;ﬂ¢ R

A

Here the positive definite matrix TLN(cyy) is of the form

AR
LT ek,

[}

[ N >
ml(aM) O .

N
M (o) =

, P

®
.
'l

N
L o) ‘JTLZ-

' AT

e'L IR PLISS .
‘.5}.‘ .':'.'-'.: e ... ot

where 'ITL'N(OLM) isa K:‘-square matrix with components
1

Ly

N kK kN N o
(M. () = 2 ot <O8;+ 85> - ]
k=1 ‘:"._

and T\ is K)-square matrix with entries

(M35 = <Moxf', 13>

PRl N
s, % Y
P~

»_2_7
r'e
RO,

For each t 2 0 the matrix AN(t ; &ty) is given by AN(t; o) = AN(a ) + BN(1) with
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[ N
o) E (o)
N
A (aM) =
N T N
-E - (ayy) -C ey ) J
and
0 o]
BN(t)=
N
_D Q) O

where EN(at ) is a K;“ X K;‘ matrix with components

1
Y
N _ k kN 2N
[E (aM)]U - kzl aM <¢Mei ’ D XJ >Q'
CN(ayp isa K;‘ -square matrix with components
2

N X k*"zlw Kk 2N
(el = D, oy M <y D DS,

k=1

and DN(t) is a K;‘ X KlN matrix with components
2 .
N A
D (o), = cc(t,z)je;‘(x)dxuxf‘(z) - <a(t, -)J' OjN(x)dx, Dy >, -
0 0

The nonhomogeneous term EN(t) is given by N = (0, F‘:(t)) where F;I(t) isa K? vector with

entries g
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[Ff;(z)]i = <F (), x>y -

a N

The initial data is of the form

AR AR R
(R

e ®

AR

Zy =G Zgy + Zgp)'

v

\( $f~l .:' ..l \l ..t".

N N N N . .
: where the K| vector Zy; and the K, vector Z, are given component-wise by

LSRN

e r s
ll‘

N 2, N
(Zg )y = <D0, 8, >,

NS

and

¥ N A ~N

[Z02]j =<V, X >y

respectively, and

N
Y
N
.
"\
'.
"'\.
2

Ha aadrared
Z

Y

Y warad
Q
]
@
Q
Z
R

P

with G}’ a KIN-square matrix defined by

(G55 =<6, 8>,

-....
¥ L)

u . 7w
{.lf'l(‘l‘ 'r’ ) !"

and Gg‘ a KzN—squarc matrix with cOmponents

e
PY S B

[GS‘]ij =<, iy

« s BT,
e e e e
PR A
A
L AN
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[t is now easily seen that the finite dimensional identification problem (ID;) in fact

PrES S
S5 5%

involves simply the minimization of a least-squares performance index over a subset of

; Lo

N
R . Furthermore, the evaluation of the functional § requires only the solution

-
“h Yy

'l
|

& s

Y

of the KT + K;‘ dimensional, linear, non-autonomous ordinary differential equation (3.5)
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with initial conditions specified in (3.6). If the existence of solutions to the finite dimensional "
P
optimization problems can be established, it is immediately clear that they can, in principle, be E-."
computed using standard techniques. Conditions which guarantee the existence of solutions to %
]
problem (ID:JX) and the fact that they in some sense approximate solutions to the original -
N
A
infinite dimensional estimation problem (ID) are given in the following theorem. N
)
Theorem 3.1 Suppose
H, the mappings 9,, are continuous from Q into &, ,
H, foreachqeQ, 9,(q) - qas M| — « with the convergence being uniformin q forq € Q,
H, the spaces UN and projections PN are such that if (g™} is a sequence in Q with '
AV
qN_) qQ = (q, 92 EQas lNl - oo manN(t;qN) —z(t; g)in L/Z(O,g) x Hforeachte :N ]
.
[0,T)as |N| — e where 2N(- ; @™ is the solution to the initial value problem (3.2), (3.3) ;5'
withq=qN and z(-; a) is the solution to the initial value problem (2.18), (2.19) :i"
I
-~

corresponding to EI = al and Cpl = a?_.
Then, each of the problems (ID;) has a solution (qx)‘. Furthermore, the sequence {(q;)‘}

admits a &-convergent subsequence whose limitq " is a point in Q and is a solution to problem

T ."-'_'-"‘-‘,"-.,"‘,"‘;, ,'~. - -'1;.-{‘ oy

(D).
v\',
In the statement of the theorem, for an element K = KK, € Z xZ, we have adopted the -:.';
oo
RS
notation |K | = e to denote KK, —» > . We remark that itis also true that the limit point of 5;_)
N’
N - . )
any G-convergent subsequence [(qN:.r) } of {(q;) } with | M| , IN| = = as jk meoisa e
N NG
I‘,ﬂ
solution to problem (ID) as well. Moreover, if problem (ID) has a unique solution, q*. then the :-;:
sequence {(q;).} itself converges to q‘. It is also important to note that the hypotheses of the ] i
\:_3
theorem do not require that Qu =Q ‘}_Z::
~ Y
We have established results analogous to those given in Theorem 3.1 for inverse problems ol
involving parabolic and hyperbolic systems (see, for example [12], [13], [16]) as well as for -
Y
related methods for higher order equations for elastic structures (see [4], {5], [6]). For the flexible o
\.
>
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structure problems treated here, the essential features of the argument remain, for the most part,
unchanged. We therefore only briefly sketch them below.
Standard continuous dependence results for linear ordinary differential systems, the continuity

assumptions on ﬂM and I (and therefore on N as well) and the fact that Q is a compact subset of

. . N.* N
G, are sufficent to conclude that there exists a solution (q‘“) € Q\( to problem (ID“) .

The definition of the space QM (see (3.4)) implies the existence of a c—l:‘( € Q for which

(q;)‘ = ﬂM(a::). Since Q is compact, there exists a subsequence {E{N:} of [as{} with
3

ﬁMJ - q. € Qasjk — e . The subsequence { ::} can always be chosen with

]Mj|, INK] o asj,k — . Itfollows that

N e N
I (@)1 @ qeQy
and consequently that
(3.7) :1Nk« ¥ e :lNk(ﬂ @
. qM" M‘l Q) ’ q € Q'
Assumption H, above and

|(q)-q| <9 (q)q

M q

N N"| v 3 N N
M
imply (q::.). - q‘ as j,k — oo . Taking the limit as j,k — o in (3.7) above with an

application of assumption H;, we find 994" S (@, qeQ,and hence thatq” is a solution to

problem (ID).

4. A Scheme Using Polynomial Splines

In this section we outline a scheme which uses piecewise polynomial spline functions and show
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that it satisfies the conditions and hypotheses of Theorem 3.1. We first treat the discretization of
the admissible parameter set Q.

ForeachM =M ,M)€eZ, xXZ_ let A:\( and A;& denote the uniform partitions of the interval
[0,£] determined by the meshes (0,£/M,,22/M,...,2} and (0,£/M,, 24/M,,. .., £)
respectively. Form=1,2,... and A apartition of [0, £] let Sp(m,A) denote the usual spline
space of functions in sz’z[O,ﬁ] which are polynomials of degree 2m-1 on each subinterval of
A (see [36]). We then define S1 =Sp(1, A),i=1,2. In this case we have dim S]M = Li{ =DM; +
I,1=1,2, with the usual ‘hat” funcuons forming a cardinal basis for each of the spaces S\f , 1=

1,2. Fori=12,let d\t C[0,2] —» SM be the interpolation operator defined by
i ] j )
(QMV) —) =Y _y_f') , §=012,. .. M
h’Ii 4

for v C[0,2]. The theory of interpolatory splines (see [33]) yields the continuous dependence
result
A S ) N
I~ IMR e S 1Y Yyl i=12
where v;, ¥, € C[0,2] and consequently that hypothesis H, of Theorem 3.1 is satisfied. Also,
the approximation result (see [36])
i
l9vr=vle < wlr 17M)
where @(¥,d) is the usual modulus of continuity of y € C[0,£] with respect to 3, together with the

assumption that Q is a compact subset of § = C[0,£] x C[0, £] and the Arzela-Ascoli theorem

yield that hypothesis H, is satisfied as well.

Next we define a state approximation and verify that hypothesis H; holds. As above, given
N=(N,N)eZ,_ x Z_, we define the uniform partitions ANof the interval [0,£] determined by

the meshes (0,£4/N,, 2&/N,,.. ,£),i=1,2. We may then choose either

N
w ' =sp(t, A0




R In the first case, once again the "hat" functions may be chosen as a basis with

N
: dim W . Kl;‘ = Nl + 1. In the second, the standard cubic B-splines (see [33]),

! N1N+l

{Bj }j 1 - corresponding to the partition 4  form an appropriate finite element basis with

N
dim W = =N, +3. Ineither case, approximation results for interpolatory splines can be used

T

to obtain

@1  |pNe-0l,50as N, 5o

; for 6 e L,(0,2).
We set
N.
_ V = (1), Dx()0) e H: 12 SpR2AN), x(0) = Dy(0) = O} .
N

Then V > <V and defining

N. N. N, N,
, B, =B, -2B,°-2B °,
)
)

N, N,
! B.2=B,2,i=23,....N,+1

and -
\ N N N N
~ B.2=B, (DB, (DB D i=12,..., N, +1,
N, N, +1 N, N. N

the collection { z)ij forms a basis for V >with dim V = I(? =N, +1. With V 2

as defined above, it is not difficult to show (using arguments similar to those in [31])

4.2) |PYmEx) - MEXN g0 asN; o e

22

- - - e e

s B¥a W%

’.’ A ﬁ’ I‘. > -! -. ‘f‘.{‘ -Ji'. ". -\.-"--' .‘.)‘h" AW Y W \.’\'.\'.\’\‘.'\ "!’\."\-.\'*\’ﬁ-.\'.\-.\..\u-i\'.’-J\'{\J\'..-..-.\;.-;.\-N..:.\-._.-..4;‘. .
" . A% W " . . v Mo 3 A

0

A oty

e

f~l'~I

il

L el T R

Y

s
R

T
6,

v

SR

-,\F-

NN T AR,
ettt § 4"','.'.

a
‘ld

VR g
).

'l

i T N A N R I I
.'I('{{-‘,' A



AN"p? WG Wi Wi WU W W o W W T AW I W RO TR Bt Sl et KNS A NN A [Basatas the gl Spia e il Bhy - P

NS
‘J‘
’
&0
¥
for(M,€,) e H and ::
NS
NA A »
4.3) LYy -Lgl ;=0  asN, > A
A
A
for L& V. N
So as to avoid obscuring the essential features of our argument with technical details, we verify o
y »
hypothesis H, for the spline-based scheme described above in the case ¢ = 0. The term which ‘_’,'-:
”a
results from axial loading is a bounded perturbation and does not involve the unknown parameters. 72
Showing that the desired convergence continues to hold in the presence of a non-zero axially .‘:5
]
directed acceleration requires only a routine extension of the proof which we give below (see [14]). !
!
Suppose that {gN} is a sequence in Q with ¢N = e Q as IN| 5 0. LetzN =N, VN bR
»
denote the solution to (3.2), (3.3) withq=qNand let z = (w,v) denote the solution to (2.18), " -‘,:
(2.19) corresponding to §. We shall require the assumption that z is a strong solution. \
In the estimates which follow, we simplify our notation by referring to the inner products ::::'
|
(norms) <-,> N (| . ! qN) and <-,->a (| . | a) on ¥ by <>y ( I - | N) and <,> F:
e
(- respectively. Also note that with o=0, we have a (t; Q)(;,’) =a (@Q(,). f.:_.»
S
Since 0.
-
HZN - zit < 1izN - PNzl + (PN - Dzl o
<
=
where II-ll denotes the usual (unweighted) product normon ¥ =L,(0,£) x H, (3.1), (4.1) and !'
» '.i
(4.2) imply that we need only to consider the term llzN - ®Nzll . Letting yN(t) = 2N() - PNz(v), p:
.'_.-
using (2.18), (2.19), (3.2), (3.3) and the fact that VN < V we find o
> J
_’\

N N N N N N
<y, »V >N=<(z-?F’ ),V >y +<Z,V >-<z,,V >y

k4

Y
- _ %
+ a@NVN) - a (@ - PNzvN) + a@E v - a(@zvY) N
a0y
+ <F VN> - <F VN> wWeUN 0<t<sT Y
b
(4.4) y¥(0) =0. .
- ’I
S
23 N
"]-
R N S e e R e e I N s :
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Choosing vN = yN g UN, we obtain

et ‘.. + "‘.. -.l - - . v } - - - A 2 At . ;- X W - - a [ * L] I--
Y

Jl

CaA
‘I!J' 1

L

e

Y,

2

%

'

2d[I N|2+| / Lo - v)l2

= <(z- PNz, YN + <(q, - qowy, wN - PRw>

EAd A AT

Yy .'i"‘. -

Tty

- <q“VL(v“ - PY9), wN - PNwsg + <qNow - Pf’w), L(vN - PY9)>, -

)

<qNL(V - P39, LN - PRV)>; + <(qfY - qULV, wN - PNw>, -

<(qN - gYw, LA - PYW)>g - <@} - GLv,.L(VN - PEV)>,.

Wl e Th S
e

Recalling that Q is a compact subset of 4 and that forq =(q;,q,) € Q, EI =q; and Cyl =g, are

< %

assumed to satisfy assumption A, of Section 2, we find

%

2

-

d 6 N2 N _Na 12 N 2
Sy W+ L@ - By 12 < (- ® )zl

Y
S

+lly [ +fq1 qll2 |w|2 + W - P, wl2+

8y 4
P Pl

Iy

FAAs
oy

A2 N N 1 N
lLa-eeloe - pwlz + - —la-pwl2

~N ~ ._1_ N, ~ i"
+e L@ -2+ 48|LG-F2)V|§+ )
LGB 2o 103, 12151

|w" PNW'“—- |<111-ql|2 lwl2+ N
4e

y)

‘n.'r_ g
l’ l' l- (.

e

AN ~ N e 2 ~
eIL(v -Pr;v)lg+&l;|qz -qZLILvlg
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s

relL@ -9 2

A
v

where K, is a positive constant and € is an arbitrary positive constant. Gathering up like terms

n5 c‘

a_R
I
Y

v

and choosing € <i— we obtain
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M2 < (-2 0z + 1t -3 12 Jw 124 La- PYye)2 +
EE b4 =™ t ql ql o t'o 2 0

Ny o2 N =12 |1 J]2 N = 12]|w]2 N =12l7 012 N2
l@-pDw 2 + 1q) - 12 [Lvl2+ 1qy - qy 12 [wl2+ gy - G, 12 ILO12 iy
where X, and K, are positive constants. Integrating both sides of the above inequality from O to t

and recalling (4.4) we obtain

t
@3 Iy orf<s+ K, _f Iy (s)¥ds
0

where

T
N ~
§=x, J'[na- Pz + ) - g 12 lw |2+ [La- ppvs 2+ la-phwe) 12+
0

03,2130 3+ a3, 2wl 2+ 1a) - 3,210 e

B g an an gt a8

Since N —  as |N| — e and z = (w,")T was assumed to be a strong solution, (4.1), (4.2),
(4.3) and (4.5) together with an application of the Gronwall inequality yield the desired result,
lyNmI—0.

A close inspection of the estimates above reveals that they depend, to a large extent, on the
presence of the viscous damping term <Cpl Lfl, L)'E2>O in the bilinear form a (t)(,’) given in
(2.17). Thatis, we require that qp 2 o.> 0 for some &> 0 forall q=(q;,q,) €Q. Inthe '
absence of the Voigt-Kelvin damping we can still argue the convergence of zN to z; however, we
must assume that Q is H2-compact. If one is to enforce the compactness constraint on Q when
solving the finite dimensional optimization problems (a desirable implementation feature in many
cases - see [10],[11]), this stronger assumption becomes especially unappealing. On the other
hand, by employing a. somewhat different (but closely related) factorization of the stiffness
operator Xy than the one which was used here (one which is formally equivalent to rewriting the
initial-boundary value problem (2.1) - (2.5) as a first order system in the states EI D?u and u; as
opposed to Du and u,) hypothesis H; of Theorem 3.1 can be verified for the resulting spline-based
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scheme under the present assumptions on Q. Unfortunately this scheme is also difficult to
implement and from a numerical standpoint, has not performed as satisfactorily as the one based on
the formulation given in this paper. The present scheme performed well whether or not damping
was present in the equation and hence the assumption that Cyl 2 « > 0 may be an artifact of our

proof of convergence (see Example 5.3 below).

5. Numerical Findings

We present and discuss some of the results which we obtained from our numerical studies of the
scheme that was described in Section 4. All codes were written in FORTRAN, and tested and run
on the IBM 3081 at either Brown University or the University of Southern California. The same
codes were, with only minor modification, run on the Cray 1-S at Boeing Computer Services in
Seattle with support made available to us through the Natdonal Science Foundaton's Super
Computer Initative program. Examples were benchmarked so that the potential benefits of
vectorization to our research program could be accurately and effectively assessed. Our findings
are described below. This information will become especially important to us when we begin to
consider the extension of our general approach to inverse problems involving the vibration of two
dimensional structures, such as flexible plates or platforms, or vibradons of structures in which

nonlinearities play a significant role. The finite dimensional optimization

problems (ID:;) were solved using the IMSL routine ZXSSQ, an implementation of the iterative

Levenberg-Marquardt quasi-Newton algorithm. The finite dimensional initial value problems
(3.5), (3.6) were solved in each iteration of the minimization procedure (for the evaluaton of the
least-squares performance index ¢ and its gradient with respect to the parameters) using Gear's

method for stff systems (IMSL routine DGEAR).

Our codes were written to take full advantage of the banded structure of the generalized mass,
stiffness and damping matrices afforded by the use of polynomial B-spline elements. All necessary
inner products were computed using a two point composite Gauss-Legendre quadrature scheme.

All of the examples presented here involve fits based upon displacement measurements obtained
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through simulation. "True" values (which, in the examples below will be denoted with an asterisk,
for example EI*, CDI*, etc.) for the unknown parameters were chosen. The resulting initial
boundary value problem (2.1) - (2.5) was then solved using an independent integration scheme.
(We used a seven element, quintic spline based Galerkin method applied directly to the second
order system (2.6), (2.7)). This procedure produced sufficient noise in the data so that the use of a
random noise generator was not required.

In addition to the test example numerical studies we report on here we have successfully used
methods similar to those developed above with experimental data. These results are presented in
detail in [9].

In the examples which follow we took the axial loading to be induced by an acceleration of the

base or root of the structure in the positive x-direction. In this case we have (see [34])
2
o(t,x) = -ay(1) {m +'[ p(y)dy}
0

where m is the mass of the tip body, p is the linear mass density of the beam and a; is the time
dependent base acceleration.

In Examples 5.1 thru 5.4 below we took £ =1, p(x) =3 - x for 0 <x <1, f(t,x) = eXsin 2nt,
g(t) = 2e’t h(t) = e'zt, ag)=1for0<st<15,851)=0fort>15m=15c=.landJ=.52
and considered the estimation of the flexural stiffness coefficient EI and/or the viscoelastic damping
coefficient Cylonly. In Example 5.1, 5.2 and 5.4, the fits we describe are based upon
observations at times L= 21,1i=12,...,5atlocations x; =.5, .75 and 1. In Example 5.3

]
observations at imes 4= Si,1=1,2,...,10 at locations x; = .75 and 1 were used. In all of the

J
: Ny : N
examples we discuss here the space W~ was generated by cubic splines (i.e. as Sp (2,4))
with N; =N, = N. This corresponds to the approximation of the first and second components of

z with respectively N +3 and N + 1 piecewise cubic CZ elements.

The compacmess constraints on the spaces Q,; were not enforced when the finite dimensional

optimization problems (ID:() were solved. When M1 and M.2 became large, the inherent

ill-posedness of the inverse problem became apparent as the performance of our schemes
)

deteriorated. There is evidence strongly suggesting that this situatdon can be remedied either by
27
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imposing the compactness constraints on the admissible parameter space and then solving the
minimization problem using a constrained optimization procedure (see (10}, [11]) or by
regularizing the least squares performance index (see {24], [25]). We intend to direct our attention

to these ideas in the near future.

Example 5.1

In this example we consider the simultaneous estimation of a constant flexural stiffness
coefficient, El" = .15, and a damping coefficient given by CDI*(x) =v(1.5 - tanh (3x - 1.5)),
x € [0,1], withy=.01. WithN=4,M,=1andM, =3 and taking start up values (for the least
squares minimization algorithm) EI®=.1and CDIO(x) =.015, x € [0,1] we obtained the results
shown in Figure 5.1 below. This particular run required approximately 30 seconds of CPU time

on the IBM 3081
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We observed that how well the scheme performed depended upon the magnitude of the scaling

R A

2

factor Y. As?y was decreased, so too did the “sensitivity" of the least squres performance index to

» ..'
[N S _'-

the damping coefficient. Results similar to those shown in the figures above were obtained with

%17 %

y=.005. With y=.001, on the other hand, we were unable to simultaneously identify both of the

LS

unknown parameters. However, again with y=.001, but this time fixing EI at the true value, we
28
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e
A were able to identify Cl alone.
:l‘o' * * 1
h:: When we replaced the constant EI  with the linear function EI (x) =1 - 7 X and took
e
( Y
v y =1, the performance of the scheme, from a qualitative point of view, remained unchanged.
g
Y
R)
L Example 5.2
D)
) We again consider the simultaneous estimation of the stiffness and damping coefficients. We
g™ .
:} again set EI* = .15 but this time choose CDI*(x) = .01 (1.5 - tanh (20x - 10)), x € [0,1]. The
~
’ ’
‘ :' identification of this steeper hyperbolic tangent function has, in past test examples, proven to be a
e
somewhat stiffer challange for our methods (see [5],[6]). With N =4, M, =1, M, =3, E=.1
; and CDIO(x) =.015 for 0 € x £ 1, we obtained the estimates which are plotted along with the true
g
W parameters in Figure 5.2.
Ov,
wh ]
.Y
Y
1.: : L2 a0
o
ﬁ as
Wy a2
5 n} o
oot I
e " ,‘
e
() s9g ) ) e 09 i b o o s [ i
‘g
2 r EI oI
5
.-N: \.
}'_:.
:;" Figure 5.2
' Also, although the theory was not explicitly treated here, we note that elements other than linear i
3 . y
‘:E splines can be used to discretize the admissible parameter space. Our investigations have included 1
L <
:‘5 numerical studies with O-order splines (i.e. piecewise constant functions) and cubic spline i
I
elements. Using two linear elements to approximate EI (i.e. M; = 1) and nine cubic elements to 1
e o : , :
5{ discretize CyI we obtained the estimates,shown in Figure 5.3. We have obtained an acceptable
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- estimate for Cpl with as few as six cubic elements,

In the tests reported on for the present example, residuals were typically in the range 10610

10'8 with CPU times from 25 to 40 seconds.

£
" ) S — ;
‘ ) : sa
#
‘3 T - B S ™ LA
: EX : &I
2
: Figure 5.3
. Example 5.3
_ In this example we identify only the spatally varying flexural stiffness coefficient ‘f
. EI*(x) = 1.5 - tanh (3x - 1.5), x € {0,1], in a model with no viscoelastic damping (Cpl=0). In E
' Section 4 we remarked that our convergence arguments required either the presence of viscoelastic i-
; damping in the model or that the adnrissiblc parameter set Q be compact in the stronger H? I-
: topology. The results shown in the figure below suggest that this is only an artifact of our proof -r
; and not a fundamental requirement for the convergence of our approximation (i.e. the absence of =
X damping does not appear to effect the overall performance of our scheme). 3
.' Taking N =4 and M, equal to 1 thru 8 we produced the results shown in the series of graphs in E
o Figure 5.4. The initial estimate or start-up value for EI" was taken to be the constant function :
EI%x)=1for0Sx<1. |
:‘: Recalling our earlier remarks, the osciilau’ons which appear in the graphs corresponding to
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M, =6, 7 and 8 duc to the inherent ill posedness of the estimation problem are not unexpected.
In fact, as M, or M, — oo, the appearance of the undesirable oscillations in our final estimatcs
occurred in virtually every test we ran. As we have noted earlier however, preliminary findings in
related studies [10] and [11] regarding the enforcing of the compactness constraints and the
subsequent use of constrained optimization techniques to solve the approximating finite
dimensional identification problems suggest that this difficulty can be overcome. Our
investigations in these direcdons are continuing.

In addition, the series of tests corresponding to the graphs in Figure 5.4 were benchmarked on
the IBM 3081 and the Cray 1-S. The same estimates were obtained on both machines. However,
we were able to achieve a speed-up factor f, of 7 - 10 on the vector machine. The CPU times are
reported in Table 5.1. In comparing the CPU times on the 3081 for this example with the times
reported for the previous examples it is important to note that the results here were based upon

observations taken over the longer time interval, [0,5], versus the interval [0,1] for examples 5.1

and 5.2.

Example 5.4

In Figure 5.5 below we plot the final estimates obtained when we attempted to use our scheme
to simultaneously identify the spatially varying flexural stiffness coefficient

EI*(x) =.5 +4x(1 - x), x€[0,1], and viscoelestic damping coefficient,

CDI*(x) =.1 (1.5 - tanh (3x - 1.5)), x € [0,1] . The start-up values for the iterative least squares
minimization routine were taken to be the constant functions EI%x) = 1 and CDIO(x) =.15for0<x
< 1. The graphs in the figure were ogmned with N =4 and a linear spline discretization of the
admissible parameter set Q with M; = M, = 3. In all of our tests with this example the minimum
sum of the squares of the residuals was in the range 1077 - 10°8 with the optimization typically

requiring 50 - 70 seconds of CPU time.
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F’* t
"
For this example we also tried a cubic-spline based discretization for Q. We considered all Q
’
L possible combinations, linear splines for EI* together with cubic splines for CDI*, cubic splines for o~
b A0
X
ET* together with linear splines for CDI*, etc. Although small values for the sum of the squares of ".t
the residuals were obtained in each instance, our by far best approximation to the true parameters is .
e
: the one shown in Figure 5.5 which corresponds to a linear spline based discretization for both ::::_
) N
"5"'
components of the adrissible parameter set. -~
oy
Holding Cp[ fixed at the true value and using cubic splines to identify EI and then holding EI E.:\ :
?l
72
. . . !
fixed at the true value and using cubic splines to identify CDI* we were able to obtain the estimates .;..
N
4
plotted in Figures 5.6 and 5.7 respectively. The estimate for EI* graphed in Figure 5.6 was .’\
- =
A
obtained with 10 cubic elements while the estimate for CDI* in Figure 5.7 is a linear combination ;1',::1
~
of 6 cubic elements. An inspection of these figures reveals that while the approximations obtained Dot
< S
are at least marginally acceptable, it is also not surprising that our scheme had some difficulty when !._
s
)

we attemped to identii'y both parameters simultaneously with a cubic spline-based discretization for

[N

either one or both components of Q.

PN
M

For this example we also looked at the robustness of our iterative scheme with respect to the

v vijwe

initial values chosen (i.e., EI? and CpI°)" In Figure 5.8 we plot those points in the Cpl?- EI°
3s

L. . - . e et p e
AT AN T T T e A ST T
X



plane which correspond to the start up values we tried. The point marked with " * " corresponds to

the startup values which produced the approximations shown in Figure S.5. The points marked

with " x " correspond to start-up values which led to essentially the same extimates as those shown

in the figures. The points marked with an " @ " correspond to start-up values for which the

scheme did not converge. The region whose boundary is denoted with dashed lines corresponds to
a "convergence envelope" for the vector valued functon ( CDI*, EI*). An analogous study was

carried out for Example 5.2, for which similar robustness results were obtained.
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r
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e
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0.1 0.2 0.3 0.4 0.5 0.6

-~ Figure 5.8

Finally we offer several summary comments on some of our other numerical findings. In

virtually all examples we tried, we found that the estimates yielded by the scheme which we

develop here based on state space coordinates (D?u,u,) and the ones yielded by the scheme based

on a state space formulation in coordinates (u,u) described in [5] and (6] were comparable.

Although in any given example one scheme or the other may produce a somewhat better

» . ’ - . . . . . .
approximation to the true parameters, we found it impossible to designate or identify a clear favorite
36
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among the two methods.

We also ran a series of tests in which we varied the boundary conditions at the free end of the
beam. That is, in addition to the tip body end condition we considered a beam which is clamped at
one end and free at the other with either a point mass (¢ =J =0) or no mass (m=c =J =0) rigidly
attached at the tip. We also studied the effect that the presence or absence of external forces and/or
moments at the tip of the beam (i.e. g and h) has on the performance of our scheme. Based upon
these tests, we found it difficult to make definitive statements regarding "best" experimental
procedures for identification of structural parameters with our schemes. However, we are able to

offer several observations. For example, with a point mass at the tip, the schemes performance
was enhanced when an external moment was applied at the tip (i.e. h # 0). On the other hand, the

presence of an externally applied force in the transverse direction (i.e. g # 0) did not appear to have
any effect at all. Also, with no mass at the tip, the scheme was most effective when

g=h=0. In general we found the scheme to be most dependable with tip body end conditions.
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ABSTRACT

We develop a computational method for the estimation of parame-
ters in a distributed model for a flexible structure. The structure
we consider (part of the "RPL experiment") consists of a cantilevered
beam with a thruster and linear accelerometer at the free end. The
thruster is fed by a pressurized hose whose horizontal motion effects
the transverse vibration of the beam. We use the Euler-Bernoullil
theory to model the vibration of the beam and treat the hose-thruster
assembly as a lumped or point mass-dashpot-spring system at the tip.
Using measurements of linear acceleration at the tip, we estimate the
hose parameters (mass, stiffness, damping) and a Voigt-Kelvin
viscoelastic structural damping parameter for the beam using a least
squares fit to the data.

We consider spline based approximations to the hybrid (coupled
ordinary and partial differential equations) system; theoretical
convergence results and numerical studies with both simulation and
actual experimental data obtained from the structure are presented and

discussed.
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-: 1. Introduction L
The difficulties involved in the design of practical and effi- "
f cient control laws for large flexible spacecraft (e.g. the inherent ;:
2 infinite dimensionality of the system, a large number of closely E
spaced modal frequencies, high flexibility, light damping, a fuel- -
1limited, hostile, highly variable environment, etc.) have stimulated Ej
p research into the development of system identification and parameter 53
l estimation procedures which will yield high fidelity models. A partic-
ular area of interest involves schemes for the estimation of material ;
parameters describing, for example, mass, inertia, stiffness or ’é
‘ damping properties in distributed models for the vibration of ﬁ
5 viscoelastic systems-specifically, mechanical beams, plates and the i;
' like. 1In addition, since the resulting inverse problems are often gﬁ
infinite dimensional, substantial attention has been focused on S
: approximation; see, for example, [1], [2], [3], [4], (8] and [12]. g:
¥, In these treatments, the parameter estimation problem is formulated as gs
a least squares fit to measurements of either displacement or ,:'
a velocity. Although significant gains have been made in the development Eﬁ
of instrumentation to measure displacement and velocity (e.g. laser ﬁ;
technology, etc.), one of the least expensive, most reliable and most T
commonly used sensors is the linear accelerometer. While in principle ;f
it is possible to integrate acceleration measurements once or twice §§
to obtain respectively velocity or displacement data, in practice this ;;T
task can pose significant challenges. For example, integration of the 3

‘ signal could result in the amplification of low frequency measurement

noise or dynamic effects which have not been included in the underly-

ing model. 1In 1light of this, we have undertaken to show here, both
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theoretically and computationally, that a scheme in the spirit of

those developed in the previously cited references can also be
effectively used with acceleration measurements. In particular we
note, this involves the nontrivial extension of the familiar
variational arguments which are used to demonstrate the convergence of
the finlte element state approximations upon which the identification
schemes are based. Indeed, it must be shown that in addition to the
convergence of the displacement and velocity, the convergence of
acceleration can be obtained as well.

The other primary motivation for the present effort is that while
these methods have been extensively tested and evaluated with simula-
tion dati, they have never been tried with actual experimental data.
We have tested our scheme with data obtained from an experimental
structure which was designed and constructed at the Charles Stark
Draper Laboratory in Cambridge, Massachusetts with funding provided by
the United States Air Force Rocket Propulsion Laboratory (RPL). The
RPL structure (as it will henceforth be referred to as) was designed
to serve as a test bed for the implementation and evaluation of
control algorithms for large angle slewing of spacecraft with flexible
appendages. The structure was specifically designed to exhibit
structural modes and damping characteristics representative of
realistic large flexible space structures.

In Section 2 we describe the RPL structure (its geometry,
instrumentation, etc.) and formulate an inverse problem involving a
distributed system. In Section 3, we use the resulting infinite
dimensional estimation problem to motivate the development of a finite

dimensional, finite element based approximation scheme. We also
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discuss our theoretical convergence results. In Section 4 we present

numerical findings.

We use standard notation throughout. For X a normed linear

BRREE,

space, L(X) denotes the space of bounded linear operators from X into

F A
X. For 0 an interval and k = 0,1,2,---, ck(a;X) denotes the space of L
S
functions from Q into X which are k times continuously strongly =
S
differentiable on Q. When k = O we shall simply write C(Q;X). A =~
e
function f from Q into X will be said to belong to L,(Q;X) if -
NS
J |f(t)|2 dt <« w. For k = 0,1,2,---, H5(Q;X) denotes the completion N
Q X ,'.:‘
|
of c¥(a;x) with respect to the norm ia
.
N
k 1/2 N
3 2 o4
el = (F Ja 1EPw]E an™, 4
LSt
%
s
If, in addition, X is a Hilbert space with inner product Loy then )
g
AS(0;X)is a Hilbert space with inner product Qﬁ
\l
k .'.Ei'.
f,8>, = L In<f(3)(t), g(”(tbx dt. W
= ]
J_O 'x.;
When X = R, we use the abbreviated notations Ck(ﬂ), L.(Q) and Hk(Q). ?E
' Note that E°(Q) = L,(0) and «<-,->4 is the standard inner product on -
J
L,(ﬂ.). :.:.
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2. The Identification Problem

The RPL structure (see Figure 2.1 below) consists of four

flexible appendages which are cantilevered at right angles to one
another from a rigid central hub. The hub is mounted on an air
bearing table thus permitting the near frictionless rotation of the

structure about the vertical axis.

FLECBLE HCSES

CENTRAL NUR ASSEMSLY
i (MCLYL ES ANGLE ENCIOEN
S\, FULL STORACE TANXS

ACTIVE STAN T
GRCLUGLS THRUITIAL,
ACTILLRDMETEA ARG
VAMASLE MAS

Py © o stamng \ o
e Talg >
: &

PasTIvE 1AM TP
aRCLuc Il ATTeLRCwTIE
ABD VARLALLL MASE

Figure 2.1

Two of the appendages (which are mounted to the hub 180° apart) are
"active”; each has two nitrogen cold gas thrusters mounted in opposing
directions at its tip. The remaining two arperdages are "passive"

with only counter-balancing masses affixed to their free ends. The

presence of the tip masses on the passive arms serves to preserve the
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overall symmetry of the structure. Nitrogen gas from tanks mounted on
the central hub is supplied to the thrusters via two stainless steel
mesh-wrapped high pressure hoses. The expulsion of propellant from
the thruster nozzles is controlled by electro-mechanical or solenoidal
valves. Each of the four appendages is equipped with a sensor in the
form of a linear accelerometer attached at its tip. Data from the
accelerometers is processed and recorded and control input signals to
the thrusters are generated by a MINC 11/23 microcomputer. A detailed
description of the structure’'s design specifications can be found in
(6] and [15].

The problem which is of primary concern to us here involves the
modeling of the effects of the nitrogen supply hoses on the transverse
vibration of the active members. We consider therefore, the structure
with the central hub immobilized and look only at the vibration of one

of the active appendages and view it as a simple cantilevered beam

(see Figure 2.2).

Figure 2.2
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We treat the thruster assembly as a point mass that is rigidly attach-
ed to the beam at the tip and propose a model for the hose effects in
the form of a proof mass which reacts against the tip mass. 1In
effect, we consider the idealized, simplified structure depicted in
Figure 2.3 below involving a single, cantilevered, flexible, uniform

beam with a two-mass-dashpot-spring system affixed to its free end.

BN

» y(t)
l’ : :\/{,%/,A/CH
2 _?
s — ey |
: wa
> Bp
h % N —
Lbj L {
Figure 2.3

In formulating a mathematical model for the structure shown in

Figure 2.3 above, we assume that the beam is of length % with uniform

" Y _"' .“:'. ‘;-.'.'\m

rectangular cross section of height h and width b. We let u(t,x) and

o~ %%
A

Y(t) denote respectively the transverse displacement of the beam at

, 7

position x along its span and the displacement of the proof or hose

® e
'NJI(

mass, each at time t. Both are measured relative to the x-axis in the

coordinate frame determined by the longitudinal axis of the beam in
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its undeformed state with origin located at the beam’s root or fixed

end. Assuming the beam undergoes only small deformations (i.e.
ou

Iu(t,x)l <¢ L and 5—(t,x) ¢¢ 1) and has a small height to span
X

length ratio, the Euler-Bernoullil theory (see [5]) including Voigt-
Kelvin viscoelastic structural damping (see [10]) yields the partial
differential equaticn

d*u d* 2du dtu

(t,x) + CDI —(t,x) + EI
ot? ox* 3t ox*

(2.1) P

(t,x) = 0,

where p is the linear mass density of the beam, E is the modulus of
elasticity, cp is the coefficient of viscosity and I is the second
moment or moment of inertia of the cross sectional area A about the
neutral axis. For the beam we consider here with constant rectangular
cross section, I = bh3/12. Since the beam is assumed to be uniform,
the parameters p, E and Cp are taken to be constant in time and space.

Balancing forces at the free end, elementary Newtonian mechanics

vields the equations of motion

(2.2)  m, 80y - epI 97 i) - BT 2%t 0)
ot:? 9x* 3t ox?3
d
- og o) - (e,00) + ky (g(8) - u(t,R)) + £(8), &> O
dt ot
and
dy dy au
(2.3) m (t) + ¢ (—(t) - —(t,2)) + (g(t) - u(t,r)) = O,
B g¢: H gt 3t “x

t » 0
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for the tip and hose masses Mo and My respectively. Here kH is the
hose stiffness, cy 1is the hose damping coefficient and f(t) is the
externally applied force at time t due to the firing of the thrusters
mounted at the tip.

Making the assumption that the rotatory inertia of the proof mass
) system is negligible, rotational equilibrium at the tip can be

expressed as

d* du du
—(t,2) + EI —(t,2) = 0O, t » 0.
ox* 9t ox?

(2.4) cDI

The zero displacement and zero slope constraints at the fixed end are

given by
ou
(2.5) u(t,0) = 0O and -g;(t,O) = 0, t» 0

respectively. Taking the structure to be initially at rest we have
the initial conditions

u
(2.8) u(0,x) = O and %;{O.X) = 0, 0 S x s 2
and

d
(2.7) y(0) = 0 and E%(O) - 0.

In the mathematical model given by (2.1) - (2.7) above the parameters
P, Mp and I can be measured or computed directly. The modulus of
elasticity E is typically determined in the laboratory. For the most

commonly used materials (including aluminum which is the material from
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which the structure of interest to us here is made) its value can be
readily looked up in standard engineerlng tables. The parameters Cp»
My, Cy and kH on the other hand, must be determined experimentally;
that is, they will have to be identified based upon the observed
response of the structure to a given input disturbance. This 1is one
class of inverse problems which we formulate and consider below. 1In
the system of equations (2.1) - (2.7) we explicitly modeled (albeit,
in a rather simple fashion) the dynamical effects of the hose. The
unknown hose parameters are then determined as the solution to an

inverse problem.

An alternative approach to obtaining a model which exhibits a
reasonable degree of fidelity involves a technique which is sometimes
referred to as model adjustment. Starting with a simple model, the
parameters are then "adjusted" so as to compensate for unmodeled
dynamics. The choice of parameters to be adjusted and the resulting
! variations may or may not be motivated by physical considerations.

In our problem for example, we might consider a simple cantile-
vered beam with tip mass (i.e. my = Cy = kH = 0) and then adjust the
theoretical or measured values of E and R, to compensate for the
dynamical effects which result from the hose mass and motion. A value
for the parameter Cp could also be identified if damping effects are
! considered significant. Model adjustment was used in [6] to obtain a
model for the RPL structure upon which control design could be based.

We define an inverse problem which encompasses both of the
general approaches which have been outlined above. VWe assume that an
input disturbance described by the function f(t), t € [0,T] is applied

to the structure via the tip thrusters and that the linear accelera-

[ LR RS TRT Tt -'.' ’l‘.-:-aial(l'!v"v---{-JI”--."-. ----- A «_w .
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tion at the free end of the beam, z(t), is measured and recorded for
each t € [t,,t,] where 0 s t, s t, S T. (Of course, in actual

practice, z could in fact only be sampled discretely). Let R_ denote
the positive real numbers and let Q be a closed and bounded subset of

Rf. We seek a q € Q which minimizes

t,,3°? 2
Jlq) = Jt.lgt—u(t.l;q) - z(t)| dt

 §
where u(:,-;q) denotes the solution to the initial-boundary value
problem (2.1) - (2.7) corresponding to q =~ (mT,E.cD,mH.cH,kH) € Q.
Our primary concerns in the next section will include well-
posedness of the system (2.1) - (2.7), existence of a minimizer for J,

and development of approximation techniques to find this minimizer.
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3. Approximation Theory ..;:
A computational method for the solution of the estimation problem [v
posed above will invariably involve finite dimensional approximation E%E
of the initial-boundary value problem (2.1) - (2.7). We have been i}
successful in solving inverse problems for distributed parameter \‘
' models for flexible structures (see, for example, (1], [2], (3], [4], 55
[12]) using spline-based Ritz-Galerkin techniques. We apply those Eé
ideas here and derive finite element approximations based upon an :‘
abstract Hilbert space formulation of the hybrid system of ordinary ?t.
and partial differential equations and boundary conditions given in ;i
(2.1) - (2.7). This abstract formulation is also useful in g:
E establishing existence, uniqueness and necessary regularity results ?ﬁ
for soluticons. We briefly outline the essential features of our 3{
o)

general approach (including theoretical convergence results) in the

ot

*y

s

context of the particular problem of interest to us here.

Py
n") -

1 Let H = R* x L,(0,%) be endowed with the usual product space ~3
o

inner product b
‘(g:'ﬂ.@)»()\.u.\l’)’H - ck + T]u + (¢,\p)0 l:::‘

-l
it
I
l,l.

: g

. 02
P
P

- o

and let

Nt o 4 A o an
-
[ ]

v = {(g,mn,0) € B: ¢ € E*(0,%), ¢(0) = D$(0) = O, m = o(R)}

be endowed with the inner product

<(§.¢(&).¢).(k.w(1).w)>v - (T-0(2))(A-v(R)) + <D*¢,D*v>

-.-'.'

L
- ; ';.-1.’ » E(-{-{I{ ( - ...."'l":.. "‘-."-:'.':f. ..':.‘.'.




where the symbol D is used here and below to denote the spatial
d
) differentiation operator = The space V together with the inner
X

product oy form a Hilbert space which is densely and compactly
embedded in H.
4 We rewrite the system (2.1) - (2.7) as the abstract second order

w initial value problem in H

-~

(3.1)  Mu_ () + c&tct) + Ku(t) = F(%), t > 0
(3.2) s(u(t) + eﬁt(t)) - 0, £ 50

(3.3)  u(0) = 0 1, (0) = 0

in the states u(t) = (y(t),u(t,2),u(t,-)). The operators M € L(H),

C:DCH -+ Hand K:D CH » H are given by

(3.4) M(T,m,9) = (mHC,an.p¢).

AT R T

[}
2
’ C(T,m,0) = (og(T-n),05(n-1) = cpI D*o(R).cpI D*6), o
and ;:

x
! 'J‘-
! RK(T.m.¢) = (kp(g-m),kz(n-37) - EI D*¢(R),EI D*¢) -
where D = {(Z,n,¢) € Vv: ¢ € H*(O,%)}. For each t > 0, F(t) = ji

(0,£(t),0) € H, 6: DCH - R is given by 6§((T,n.9)) = D*¢(L) and € =

CD/E.

The restrictions C and K of the operators C and K that appear in

equation (3.1) above to N(8), the null space of the operator &, have

--------------------------------------
. -,
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natural extensions to bounded operators from V (which is the V-closure a:-
oo

of N(8)) into V', the dual of V. The extensions are defined in terms §~
KKy

of the bilinear forms o(-,-): V x V » R and k(-,-): V x V = R given by ‘
o
e ¥

(3.8)  (COI(¥) = c(0,¥) = cu(T-0(R)I(A-¥(2)) + cpID*,D*v>
N

and e
l"

A - -~ - 2

~ o’

(3.6) (Ke)(¥) = k(o,¥) = ky(T-0(2))(X-v(L)) + EI<D*¢,D*v>q S
]

~ ~ l\
for ¢ = (T,9(R),¢) € Vand v = (A, v(R),v) € V. ~
n‘_’
The finite element method we develop below could be derived from ;:q
B

standard energy considerations. While this is not the approach we 3
-
take, it is worth noting that the usual energy expressions can be f:
i
given in terms of the forms, operators and inner products defined fs§
-
above. The kinetic energy is given by

Y
oy
1. 3

- — v

T Mu (8),u (8)>p, o

2 >

>

the potential or strain energy by o
ala

'\'I

) %

U, = — k(u(t),u(t)) y
2 Eh

X

and the Rayleigh dissipation function by =
RN

Lo - 3

Fo - C(ut(t),ut(t)). LAY

2 ot

o
f::f

¥ritten in 1ts weak, variational or distributional form :ﬁ

]

(3.7) Mo (%),0 (0, (8),0) + k(u(t),0) = F(t),6 2
. < utt ‘¢’H + C ut v¢ + (u( r¢ -« '¢>H' 'b::;

t >0, ¢€V ’

S

A
G T AT B " & "a "N " A" A" N " A" a" A" a’ ( "m "™ g™ LA L L I W W, W w - ‘:'::
A e e NN A A e, "'\L'\ aAON ™ J, N f-.'.\__\"\;.\
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(3.8) u(0) = O u, (0) = O

€. f‘.{'. hd LY

the initial value problem (3.1) - (3.2) in H becomes an initial value

<

problem in V'. If we assume that f € L,(0,T) and rewrite (3.7), (3.8)
as an equivalent first order vector system, the theory of abstract

parabolic systems (see [9], [14]) yields the existence of a unique

s e et i i e cnee st

mapping

w € CCl0,T1;V) A H*((0,T):V) N C ([0, T];H) N E:((0,T):V")

.

which satisfies (3.7), (3.8). If we are willing to assume further ’
S

that f is Holder continuous then there exists a 3
NS

~ \:

(3.9)  u € ¢([0,TI;V) n C*((0,TI;V) n C*((0,T]1;H) N ¢*((0,T];H) o
)

“« o u®
» % Ce

Pa (‘r' v.c'

with u(t) + eut(t) € D, t > O which uniquely satisfies the initial

R
A

value problem (3.1) - (3.3).

In order to demonstrate the convergence of the approximation
schemes we develop below, we shall require a somewhat more regular
solution to the initial value problem (3.7), (3.8) than either of the
conditions on f stated above can guarantee. In addition to (3.9), we
shall require that & € H*((0,T);V). This can be guaranteed (see [7])
if we assume that f € H*(-1,T) for some T » O with f(t) = 0, t « O and

we modify our original mathematical model so that

(3.10) F(t) = f(t)é, t € (-1,T]

for some 6 = (0,8(),8), a fixed element in V. We note that with 6
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chosen appropriately in Vv, F given by (3.10) may in fact represent an Ej
'
improved model of reality when compared with our present choice of F iﬂ
~ :\n
where 6 = (0,1,0) € H. N
) N
Central to our approach is a cubic spline based Galerkin approxi- -
mation to the initial value problem (3.7), (3.8). For each N =1,2,--- L
“
N L 2 oy
let A denote the uniform mesh {0, —, —, ---, &} on [0,2] and let -
N N ':,,.
r N N+1 5
{Bj}j N denote the usual cubic B-splines defined with respect to the N
' N N 2 X
nodal set A (see {1.], (13]). Briefly, each B, is a C function on o
J A
{ L R Y
i (0,2] which is a cubic polynomial on each subinterval [(k_l}E'kE]' )
N 2 2 R
k =1,2,---,N. The support of 13J is [(J—Z)E,(j+2)-§] n [0,2] with "L
3 :.:
1 N 2 N 2 N 2 N ] N
B (3=) =4, DB (=) = 0, B ((J#1)=) = 1, and DB ((J+1)=) = ¥ —. )
3 x 3 * 3 e 3 =5 L b,
N N+1 N N N N N N ~
Defining {8 } by 8. =B -2B -2B _and 8 =B , }=2,3,-.:,N+1, e
J J=1 1 0 1 -1 J J e
N N - N
we ..ave B (0) = DB (0) =0, j=1,2,---,N+1. With 8_ = (1,0,0) and T
J J 0 .;,-.
“N Ig N N N N+1 s
BJ = (O.BJ 1),BJ), j=1,2,---,N+1, V = span {8} is an N+2 N
= (.
dimensional subspace of V. X
)
N n
The Galerkin equations in V corresponding to (3.7), (3.8) for e
N N R
u (t) € VvV are given by A
A
, ) N N NN N N N &
3.11 «Mu_ (£),8 >+ c(u (8),8 ) + k(u (£),8 ) = «F(%),8 »_,
tt j H t 3 3 JHE N
t >0, J=0,1,2,---,N+1 T
N N ]
(3.12) w (0) =0 ut(O) - 0. %3
g
r.':‘:
o
o
1
g e N T LA L SRR LR R L SR



Setting

~N N+1 N ~N
u (t) = ¥ w ()8 , t 2 0,
J=0 J
N
the initial value problem (3.11), (3.12) in V 1is equivalent to the

linear, nonhomogeneous, second order N+2 - vector system

2 N N
Ny ' N v N N N
(3.13) M (t) + ¢ ——(t) + K'w (t) = F(E), t >0
t2 dt
N
N dw
(3.14) w (0) = O —(0) =0
ds
N N N N T
where w (t) = (wo(t),wl(t),---,wN+1(t)) . The entries in the (N+2)

N N N
x (N+2) matrices M , C and K are given by

N ~N .N
M = «(MB ,B .
1,9 173’
N N N
C = C(B ,B )v
i,] i3]
and
N AN N
K - k(s .B »
i,] i J)
1,3 = 0,1,2,---,N+1 respectively. For each t > O the components in

N N N N
the N+2 - vector F (t) are given by Fi(t) = <F(t).Bi>H = f(t)Bi(l)

or, recalling (3.10), by

e N e N N N A
bd ) .

5 v ¥ oy oy 8 & &
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N ~ AN

N N
Fi(t) - f(t)<9.81>H - f(t)(e(l)Bi(l) + <6.Bi>0).

i=-0,1,2,---,N+1.

Ve consider the sequence of approximating finite dimensional iden-

tification problems which consist of finding &N € Q which minimizes

.. N
(3.15) JN(q) = th|a -
t,i9t?

2
(t.%;q) - z(t)l dt

where for each q € Q, &N(t;q) = (yN(t;q),uN(t,z;q),uN(t,~;q)) is the
unique solution to the initial value problem (3.11), (3.12) in v
corresponding to q@ = (mT’E'CD’mH'CH’kH) € Q. In actual practice, for
a given q € Q, JN(q) is computed as

N t. N N N 2
) = t; 4 R t; - t dt
(@ It, wN_l( Q) + wN(t q) + wN+1( q) - z(%)
N N N T
where w (-;q) = (wo(-;q),---,wN+1(-;q)) is the unique solution to the

N+2 - vector system (3.13), (3.14) corresponding to q € Q.

With finite dimensional state constraints, the solution of the

Nth estimation problem above is, at least in principle, routine. For

inverse problems which are closely related to the one we treat here,
our earlier numerical studies have shown that satisfactory results can
be obtained using any one of a number of standard computational
techniques for least squares minimization (for example, Newton's

method, conjugate gradient, steepest descent, Levenberg-Marquardt,

etc., see [2]).
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Our fundamental theoretical result is that each of the approxi-

mating identification problems and the original problem have
solutions. Moreover, we show that the solutions to the approximating
problems, in some sense, approximate solutions to the original

problem. We require the following lemma.

Lemma 3.1 Suppose {qN} C Q with qN - qo as N - ». Let uN(-;qN)
denote the unique solution to the initial value problem (3.11), (3.12)
corresponding to qN and let u(-;qo) denote the unique solution to the

initial value problem (3.7), (3.8) corresponding to qO. If u(-;qo) €
H:((0,T);V) then

N

T .N . 0. 2
(3.16) Io|utt(t;q ) - u (big )IHdt -0

as N = o,

Proof

For each N = 1,2,-.. let PN denote the orthogonal projection of H

onto Al defined with respect to the standard inner product on H,
< uog- Using the approximation theoretic properties of interpolatory
splines, 1%t is not difficult to show that (see [31])

) f.:'%.’.'f,if..-‘ )

N
(3.17)  1in [P - I)(g,m.0)| =0
N-w H
for each (T,m,¢) € H and that

N ~
(3.18) lim (P - I)¢ =0
N~ v

A RSTI  , Y -’-"'\"- " .‘\n"\"q"\,"-".f'\- \J' ._\ v
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for each ¢ € V.
For q = (mT,E,cD,mH,cH,kH) € Q it is immediately clear that M,

c(-, ) and k(-,-), the operator and forms defined in (3.4), (3.5) and

(3.8) respectively depend upon q. For qo = (mg,Eo,cg.mg,cg,kg) €Q

N N N N.N

and qN - (mN.E ,c_,m_,c_,k ) € Q we adopt the shorthand notation
T D H H H

0

#0 - M(q®), PC-. ) = a@® (-, ), ¥0C, ) = k()L ), MY = ue),

cN(-,-) - c(qN)(-.-) and kN(-,-) - k(qN)(-,-). Similarly, we denote

&(-;q°> and ﬁN(-;qN) by wC ana o¥ respectively.

0

From (3.17), the assumption that u~ € H:((0,T);V) and the

inequality
T . . 2
H
T . . 2 T . 2
s 2[ luN (t) - pMa@ (t)| at + 2] I(I-PN)uO ()] dt
olitt TR o A

it is clear that we need only to consider the first term on the right
hand side of the above estimate.

Letting v (t) = ut(t) - PYul(t) for t 2 0, (3.7), (3.8), (3.11),
(3.12) and VN C v imply

(3.19) N oM+ Nl o) + kNN, o)
t5'® ’x t
N ~ ~ ~ ~
= az-pud Lo+ c® - Wl e

+ Nez-PHud, o) + Pl.0™) - Nul, oM

N)uO .

+ BCT-PHu%, 0™y + k00, o™) - x¥%,6Y), t > 0, N e

o J%e ]

thy ¢ o J% | ) i (o] s 8% a N W, W wv-‘"( "~I,‘1 "-fq'd"d"f‘f'l"d"f‘f' -“n-iyf‘-(,-*\
AN ol L0 ..l‘:'l’- SO NI o. ':‘l oo l-"l. Pl A INTA TN g .. AR

A !u'(.«-. ‘.-“a\.'
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(3.20) vV(0) = 0 vi(0) - o. N
%
Choosing aN - (%) € v, from (3.19) we obtain é&
tt ’ . F:\
NN °N N,”N °N ..h:
M Vep Vegy + O (Vi Vi) '
N,. N\"0 =N 0, N\20 =N )
= M(I-P UG Ve + M Dup  Veeoy ]
'd
%
d N N 0 2N N N0 N 0
+ 3% © ((z-pP )ut,vt) - ¢ ((zI-P )utt'vt) 5
0
d 0,70 °N N,.70 °N 0,70 N N,’0 °N O
+ dt {C (ut.vt) - C (ut'vt)} - {c (utt.vt) - C (uttyvt)} .i:
el
d  Nooo N."O Ny N, N 0 ~A
+ 3z £ ((T-Pu",ve) - & ((I-P)ug,vy) 3
rand
, - ~ - - ~ - ~ - U
| d_ 0,70 5Ny _ N0 2Ny, _ 0,50 Ny _ . N,20 °N
: + 3¢ B G ,vt) k7 (u”, v} {x (ug,ve) - k (ut'vt)} A
‘ d . N,°N o
| 4 “N N NN N "y
dt k (V rvt) + k (Vt.vt). t > 0- >
| .:'TN
| -,
| Integrating the above expression from 0 to %t and recalling (3.20), we :j
| find vy
| o
| NN oW 1 N, N °N X
-~ ~ e
= “
| (3.21) I MV Vg ds + 5 C (vt.vt) S
| 0] H NG
| - It (N er-P"n0 N . - Oyl N, >
| ss''ss ss’'ss ST
| 0 H H W,

_ WNecr_pNy20 Ny _ . 0,70 2N, _ N,20 2N
¢ ((I-P )uss.vs) (c (uss.vs) c (uss.vs))

N N0 °N 0,70 °N N,20 N
k((I-P )us.vs) - (k (us.vs) -k (us.vs))

+

N.°N °N
k (vs,vs)]ds

+

N N0 °N 0,20 °N N,70 °N
¢ ((I-P )ut.vt) + (e (ut.vt) -c (ut'vt))

R AP O e A e
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We recall that Q has been assumed to be a closed and bounded subset of
R? and observe therefore that the forms oo(-.-). cN(-.-). ko(-,-) and
N(.

k ,+) are uniformly bounded. These two facts together with the

repeated application of the inequality

<a,b> § [a][p]| S ala]?

in (3.21) yield the estimate

t . 2 anp, 2
[0 e+ 1

s YO{ I (4a |(I _pN + alv

SSIH SS!

(a2 o [n8nd] 5[0 |7 ¢ a] S

" ssl * I(I_PN)&gs

v

any 2

A1+ ool « [oB-oBI [0+ ]

a3 e S [ |EN—E°|2>|£2|2+ kA
|;g|j>ds e @R v el

2 .~ 2 aqp . R
decleiogl” + [olel 817+ oL + Ll o0

~yp, O 2 2 .~ 2 -
o7 dachad)® a0 i)’




22

1 N N
+ o—|v + alv }
LI+ alvyl
where Yo is a positive constant. Choosing a > O sufficlently small,
we find
t ~N 2 ~N 2 t t ~N 2
(3.22) I lvss(s)l ds + Ivt(t)l s oo(t) + J ol(s)ds + YII Ivs(s)| ds
0 H v 0] 0 v
where

0q(t) = Yz{[(r—pN)ﬁoct)lz + |(1-pN)£2(t)|j
2 A - -
e @] @]+ [ [ - [Few])
N\"0,, |2 N\ "0 2
ol(t) = YS{ICI—P )ut(t)lv + |(I—P )utt(t)lv
2 . 2 - 2
ol | 2D )

and Yy i1 =1,2,3 are positive constants which do not depend on N.
°N °N N
Choosing ¢~ = vt(t) € V' in (3.19), arguments similar to those

used above (see [2], [3]) yield

~y 2
(3.23) 1im |v (t)l -0
N~ v

for each t € (0,T]. Using 2 ¢ H*((0,T);V), (3.18) and an application

of the Gronwall inequality to (3.22) we obtain the desired result.

We note that we also obtain

AR S i R AT
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“N 2
(3.24) lim ‘vt(t)‘ - 0
N- v

for each t € [0,T]. From (3.23) and (3.24) we find uN(t;qN)—u(t;qo)

- 0 and ﬁz(t;qn)—ut(t;q0)| +0as N » » for each t € [(0,T].

We remark that it is the L, convergence (more precisely, H
convergence) in (3.16) which necessitates, at least in theory, that we
be provided with distributed time observations (i.e. cobservations
which are continuous in time). It is clear from (3.23) and (3.24)
that for fits based upon displacement, velocity or slope, time-sampled
measurements are sufficient. Of course when the approximating
optimization problems are solved, the integral least squares f
performance indices (3.15) are discretized. Consequently, in

practice, only discrete measurements of linear acceleration at the tip

are required.

Theorem 3,1 Each of the approximating identification problems has a

solution &N. The sequence {EN} C Q admits a convergent subsequence
_NJ —Nj _ -
{g “} withq ' +qg€Qas J » w. If for each g € Q, u(-;q), the unique

solution to the initial value problem (3.7), (3.8) corresponding to q,
is an element in H*((0,T);V) then q is a solution to the original
identification problem. In addition, the limit point of any convergent

subsequence of (&N} is a solution to the original identification

problem as well.

Proof Standard continuous dependence results for linear ordinary

differential equations, the fact that Q has been assumed to be a

e LV
LSS,

. N R T T T . AT LS TR PL L RS I PR A
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closed and bounded subset of R6 and the form of JN are sufficient to

th

conclude that a solution iN € Q to the N°" approximating identifica-

tion problem exists. Once again since Q is a closed and bounded (and

]

therefore compact) subset of R-, the sequence {&N} C Q admits a

N

N N
convergent subsequence. If {q 3y ¢ {g } with q J . q €Qas j -~ = and

q is any point in Q. then two applications of Lemma 3.1 (the second

one with the constant sequence {q}) yield

N, N N
I = 1un g 3G I s 1n g I = (O

Jue I

and the theorem is proved.

Although Theorem 3.1 above guarantees only subsequential
convergence, in all test and simulation examples we have considered,
we in fact observe the convergence of the sequence {iN} itself to the
optimal parameters q. Also, it is not difficult to verify that with
only minor modification (see [2]) the approximation scheme reported on
here (together with the convergence theory outlined in the lemma and
theorem above) could be applied to inverse problems involving the
estmation of spatially varying parameters (such as linear mass density
p, flexural stiffness EI, or damping coefficient cDI) which appear in
the equations (2.1) - (2.4). Ve note of course that when either EI or
¢yl are spatially varying, the Euler-Bernoulli equation and

corresponding boundary conditions are of a slightly different form

than those given in (2.1) - (2.4) (see [3]).
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4. Numerical Results

We used our scheme to attempt to solve the inverse problem which
was posed above with data obtained from an experiment on the RPL
structure. We report on our findings and observations here.

All computer codes were written in Fortran and run on the IBM
3081 at the University of Southern California. The approximating
finite dimensional least-squares minimization problems were solved
using the IMSL implementation of the Levenberg-Marquardt algorithm
(routine ZXSSQ), an iterative Newton’'s method-steepest descent hybrid
(seel2]). The second order N+2 - vector systems (3.13), (3.14) were
solved (integrated) in each iteration (for the evaluation of ¥ and
its gradient) using Gear’'s method for stiff systems (IMSL routine
DGEAR). The integral least squares performance index was approximated
by a discrete sum over a uniform mesh on [t,,t,]. The integral inner
products in the definitions of the matrices MN, CN and KN were
computed using a composite two point Gauss-Legendre quadrature rule.

The second time derivative of wN. or generalized acceleration,

d‘wN

dt:
generallized displacement,

» was computed using a second order centered difference on the

aru . w(t+A) — 208 ¢t) + wN(t-a)
dt? A

(4.1)

We found this to be a somewhat more stable method for computing
acceleration (an unbounded measurement) than was a first order

centered difference on the generalized velocity,

PO R PR RARE TR RN TR IR "\."' RN
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N

A awl A

Z(t+2) - ——(t - )
d*w dt 2 dt 2

dw
N
(4.2)

FrraS A

Either of the time differencing formulas (4.1) or (4.2) proved to be

significantly more stable than using the differential equation (3.13)

d’wN

tl

N

directly to compute (t) via an inversion of M . As to why this

was so, we can only offer the conjecture that the time differencing
provided, at least to a certain extent, some filtration of the signal.
Before turning our attention to the experimental data, we tested

our scheme with simulated data. "True" values for the unknown

o

parameters cj (actually cpl), mg, Cg and k, were chosen and a quintic

7

v

P

spline-based semi-discrete Galerkin scheme applied to the initial

=

value problem (3.7), (3.8) was used to generate data.

o 7

Setting p .03, m o= .15, EI = 80.0, % = 4.0 and R

L

1.0 0st s 0.05 N

£(£) = { -

0.0 0.05 « t 5 5.0, p,

-"-D

the fit was carried out based upon observations of linear acceleration iﬁ

at the tip at times ti = .11, L1 = 2,3,--.-,50. Ve note that this is

I

equivalent to taking t, = .1, t, = 5.0 and using a standard rectangle
rule with uniform mesh spacing .1 to discretize the integral appearing

in the definition of the least squares performance index JN. The

h A - 'u/".
SN S
Sar s T Ll

initial estimates cDI = 0035, m

start the iterative optimization procedure. In (4.1), A was taken to

™ .035, and kH = .4 were used to

G

LA
"I_'n._"-"

be .1. Our results are summarized in Table 4.1 below. bty
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Tl N

_N _N _N _N N, -N
N cpl My Oy ki J(q)
2 037537 |.039471 |.003428 |.208626 |2.57x107}1
3 0686997 |.039485 |.003907 |.2088%75 |4.37x1072
4 .005063 |.039777 |.003997 |.200455 |5.06x107°
5 .005667 |.039899 |.003971 |.200787 |7.eex107%
6 .005049 |.040035 |.004006 |.300087 |4.63x107°

True

ooe . |-00s000 |.040000 |.004000 |.300000

Initial

otinar |.003500 |.035000 |.003500 |.400000

Table 4.1

The experiment which we describe below was carried out for us on
the RPL structure by Dr. Michel A. Floyd, formerly of the Control and
Flight Dynamics Division of the Charles Stark Draper Laboratory and
the Department of Aeronautics and Astronautics, MIT.

The air bearing table was clamped so that the central hub could
not rotate. The thruster lines for one of the active appendages was
set to 300 psi and the thruster was fired for .05 seconds (50 milli-
seconds). VWith the appendage initially at rest, the firing of the

thruster was assumed to have begun at time t ~ O. Linear acceleration

at the tip was observed over the time interval O to 5 seconds. With a
sampling period of .005 seconds (5 milliseconds) a total of 1000
measurements were recorded. The data is plotted in Figure 4.1 below.

The scale factor for the accelerometer is 5 volts/g (g = 32 ft/sec?).
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The noticeably higher frequency (= 14 Hz) component of the data

OO

is a torsional mode of the arm excited by the motion of the thruster
valve mechanisms and inertial and elastic forces applied to the tip of

the arm by the nitrogen supply hose. The opening or closing of the

e

\J

solenoidal valve in the thruster generates an inertial force which

acts as a torque on the tip of the arm. Consequently, torsional modes .
.
&

are excited. Also, in addition to modifying transverse bending ﬂ:
. ’-\

characteristics, since the hose is attached to the top of the arm, its ;:
. ’--

horizontal motion will tend to generate torques which have a )
-
o

"twisting" effect. Although the accelerometer is mounted at the :;
N
-\..
X
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center of the arm (and therefore on a nodal line of the longitudinal
torsional modes, if we assume vertical symmetry), as the arm twists,
the accelerometer picks up a component of the earth’'s gravitational
force. Since the first torsional mode has a much higher frequency
than either of the first two flexible modes (.75 Hz and 7.5 Hz, as
identified from an FFT of the data) and since it is rapidly damped, we
neglected its contribution to the accelerometer signal, treating 1t as
white noise, and left it unmodeled. A detailed discussion of the
causes of the excitation of the torsional modes and its effect on the
transverse bending characteristics of the active appendages can be
found in [6].

The physical characteristics of the structure are as follows.
The arm is made of aluminum and is 4 feet in length, 6 inches in width
and .125 inches in height. From this we obtain £ = 4.0 ft, p = .02%
Slug/ft and T = 4.71 x 10°8 (£t)%*. The theoretically predicted value
for E 1s 15.84 x 10% 1b/(£t)%. The mass of the thruster assembly vas
determined to be m;, = .149 slug. From the calibration table in (el,
we find that a hose pressure of 300 psi is equivalent to a force of
.297 1b. VWe set therefore

0.297 1b 0st s 0.05
0.0 0.05 « t 5 5.0

£(8) = {

To serve as a basls for comparison, we neglected the hose effects
and structural damping (i.e. we chose CH = My = Cy = ko = 0) and used
the standard Euler-Bernoulli model with the parameters p, E, I and Mo
and input f as specified above to generate the plot of linear

acceleration at the tip given in Figure 4.2.
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The plot was obtained by integrating the initial value problem (3.13)

(3.14) with N = 4 and then using (4.1) to compute the acceleration at

al al
the free end. The residuals (———(t L) - 5;—-(t ,£)) over the time

interval [0,5] are plotted in Figure 4.3. The sum of the squares of

-
.
-

the residuals (at intervals of .1 seconds) was found to be 3.03.
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Using the data on the interval 3.0 to 5.0 (where the contribution

from the torsional modes has been significantly damped) with a

Ly
1
\?k-‘l

sampling period of .1 seconds we used our scheme with N = 4 to obtain

.
RhN

'y
o

optimal estimates for the coefficient of viscosity cp and the hose

PR R

parameters mH, cH and kH. In the set of runs we are about to describe

a

the values of E and m, were held fixed at their theoretically

2l

- e e

. predicted values. A rough calculation based upon "matching" the first
two observed natural frequencies of the data with the first two modal

" frequencies of the model was used to obtain a crude initial estimate
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for the ratio kH/mH' Then, using our scheme to minimize over the
parameters my and kH only, we obtained the optimal values shown in
Table 4.2 below. Integrating the system (3.13), (3.14) over the time
interval (0,5] with m, and k. set to the values in the table and oy =
Cq = O the sum of the squares of the residuals (at intervals of .1

seconds) was found to be .73.

mH(slug) kH(lb/ft)
.038269 .339935
Table 4.2

Next, holding My and kH fixed at the values shown in Table 4.2, a
search on Cy was carried out (the initial estimate for Cy vwas taken to
be zero and Cp was held fixed at zero). Then using the resulting
values of My, Cg and kH as initial estimates, a fit over all three
parameters was performed. The result is shown in Table 4.3. The sum

of the squares of the residuals was found to be .728.

mH(slug) cH(lb-sec/ft) kH(lb/ft)

.043431 .004056 .351385

Table 4.3

Continuing to use the same procedure to generate "start up" values, we
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L
S eventually used our scheme to search over all four parameters op, my,
»
Cy and kH simultaneously obtaining the values given in Table 4.4 and
R )
N the fit plotted in Figure 4.4. The residuals are plotted in Figure :
)
o !
o 4.5. The sum of their squares was computed to be .70. ]
! t
Wy .
- _
-, 9
el 2 .
"7 cp(lb-sec/(£4)7) mH(slug) cH(lb-sec/ft) k (1b/£ft) %
-
127.40 .0801 .007804 .412877 iy
s 4
" ;
\:. i
b ' Table 4.4 3
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In designing a controller for the RPL experiment, Floyd in (6] Eﬁ
used model adjustment to tune a simple, undamped, cantilevered beamn i:‘
with tip mass model for the active arms (i.e. the arms with the hoses) E?
of the structure. He used the following procedure. The alr bearing EE
N

table was locked in a stationary position. With the hose depressur-
ized, an impulsive force was applied to the beam and linear accelera-

tion at the tip was measured and recorded. Based upon the physical

7."1’ ;('-{{'-q -

vl
assumption that with the hose depressurized, the presence of the hose )
“r

serves only to add mass to the tip of the arm, the parameter m, was o

o
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v
...'
v
ad justed so that the first mode or frequency of the model agreed with o
‘.
the first observed cantilever mode (obtained via an FFT) of the data. b
Then, with the hose pressurized, the same experimental procedure was ﬁi
-,.
carried out. This time however, the modulus of elasticity E of the E;
o
>
beam was adjusted to compensate for the variation in stiffness which
results from the presence of the hose. The adjusted values of the tip ;'
mass, my, and modulus of elasticity, E, obtained by Floyd are given in R
k Table 4.5 below. >
‘ £
\ A
1 X
| m, (slug) E (1b/(££)%) N
x
| .254 17.31 x 10° "]
: e
DY
| R
| Table 4.5 L.
D .\:.-
Y
f&
¥e integrated the system (3.13), (3.14) using the adjusted values of 'ﬁﬁ
S
mp and E given in the table (and Cp = Wy = Cy = ky 0) and obtained z:d
the plot shown in Figure 4.6. The corresponding residuals are :E'
T
plotted in Figure 4.7. The sum of the squares of the residuals was o
computed to be 5.1. %
Starting with the same basic model, we used our scheme to :ﬁ
determine the values of m, and E which minimize the sum of the squares ;f
of the residuals over the time interval (3.0, 5.0] with a sampling .
A
>
period of .1 seconds. Taking the theoretically predicted values of M {;
NS
)
and E (m, - .149 slug, E = 15.84 x 10% 1b/(£t)%) as start up values 2
for the optimization routine yielded the results given in Table 4.6. 3,
R
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¥
)
]
.:.s
-
~is

B N N R R e S 2 SR R N



128° M M e W X A% &%t N A TR WK T At AL AN [N S T VeV a ViR e W oW
4
. 36
The corresponding fit and residuals are plotted in Figures 4.8 and 4.9
respectively below. The sum of the squares of the residuals (over the
{ interval [0,5])) was computed to be .73.

n, (slug) E (1b/(£%)%)
5)
, .185 21.95 x 10
Al
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In summary, we have seen that analysis of the RPL experimental
data can be carried out in several ways with a number of different
models. Our techniques can be used to provide reasonable fits of the
data to models with or without hose and/or beam damping. Even if one
attempts to leave the physics of the hose - beam dynamic interaction
unmodeled and perform "model adjustment" (by ad justing the values of
the tip mass My and beam modulus of elasticity E), our estimation
techniques provide a much better fit than that obtained using "modal
matching" methods common in engineering practice.

One of the primary objectives of our effort here was to
demonstrate the efficacy of our scheme and in particular, to assess
1ts effectiveness when provided with actual experimental data. While
we are pleased with the results obtained for the RPL data, we are

careful to point out that to provide a fair and complete evaluation of
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the usefulness of our models for the RPL experimental structure, a

FEPES
R

nmore complete and in-depth study involving extensive experimental work

LT N1 A

)

L4

and statistical analysis would necessarily be required.

Acknowledgement  The authors would like to thank Dr. Michel A. Floyd L
of Integrated Systems Inc. in Palo Alto, California for his willing- .

~
ness to discuss the technical details of the RPL structure and for N

providing us with the experimental data upon which this research was

(4
-

"

-

based. ' .

SRR sy
XN : s

-l';_ fl

'.) .' '.I l.. "‘ 1

RAFNE 4V oF ol ST . J

e85

R

. -
LY
e

SRS

»
v

.
h¥h)

oy
Yot

» l’-"?
LY

v

P

SN

s
[}

T H4h
LA

Ny

PR AR

S'. .l

XA

4

............ e n Mt . v o
T e W LY .:‘f:“\"'h COREN \.\a::_:; R

alaas




Lo 0 S P A R L P E g L PR Y

40

References

)
W
§E
)
(1]
X
: [2]
Y
-\

H. T. Banks and J. M. Crowley, Parameter identification in

continuum models, J. Astronautical Sciences, 33 (1985),
pp.85-94.

H. T. Banks, J.M. Crowley amd I. G. Rosen, Methods for the
identification of material parameters in distributed models
for flexible structures, ICASE Report No. 84-66, Institute
for Computer Applications in Science and Engineering, NASA
Langley Research Center, Hampton, VA, 1984, Mat. Aplicada e
Computacional, to appear.

H. T. Banks and I. G. Rosen, A Galerkin method for the
estimation of parameters in hybrid systems governing the
vibration of flexible beams with tip bodies, ICASE Report

No. 85-7, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA, 1985.

H. T. Banks and I. G. Rosen, Computational methods for the
identification of spatially varying stiffness and danping in
beams, ICASE Report No. 86- , Institute for Computer
Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA, 1986.

R. W. Clough and J. Penzien, Dynamics of Structures,
McGraw-H11l1, New York, 1975.

M. A. Floyd, Single-step optimal control of Large Space
Structures, Ph.D. Thesls, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology,
Cambridge, MA, 1984 and Report CSDL-T-840,The Charles Stark
Draper Laboratory, Cambridge, MA, 1984.

A. Friedman, Partial Differential Equations of Paraholic
Iype, Prentice Hall, Englewood Cliffs, New Jersey, 1964.

K. Kunisch and E. Graif, Parameter estimation for the Euler- ¢

Bernoulill beam, Mat. Aplicada e Computacional, 4, (1985),
Pp.95-124.

Jd. L. Lions,
Differential Equations. Springer-Verlag, New York, 1971.

P. P. Popov, Introduction to Mechanlcs of Solids,
Prentice-Hall, Englewood Cliffs, New Jersey, 1968.

.-

o m

P. M. Prenter, Splines and Variational Methods., Wiley-
Interscience, New York, 1975.

i et S A W s

W,




N 8o et a0 s T e A AL AR AN AR A S P ST L AL ARAG A At g St PSR et i A S A S AL CL T

41

(12} I. G. Rosen, A numerical scheme for the identification of
hybrid systems describing the vibration of flexible beams
with tip bodies, J. Math. Anal. Appl., 116, (1986),
pp.262-288.

(13] M. H. Schultz, Sp , Prentice Hall, Englewood
Cliffs, New Jersey, 1973.

[14] R. E. Showalter, Hilbert Space Methods for Partial
Differential Equations, Pitman, London, 1977.

{15] R. Strunce, et. al., Verification of RCS Controller Methods
for Flexible Spacecraft (RPL-EXP), Report CSDL-P-1653, The
Charles Stark Draper Laboratory, Cambridge, HA, 1982.

O e e NG e S N D T Tl S B e Tl




» . i
S R Mk Slngnt AN s AR E. VEE s I P A
w......\_‘.....\u e \..f\..\..\ 2 A L el .fh..!.,....r.......d P |..u.\...-.w.\-b. P assBANA NS o NN R R YAV AT

n

V

W

R L

T

A AR SR

v, -

A A

-
Caf \‘v "

Lt LSt S ARL AL T

ad
-

‘

E nNd
DATE
FILMED

AN IYEYUNDRH O VWL LS e a5 e *ate “pd 008, ¥ o

Bl P .

)

\u-
54

lI

“
FALs

55

A

%

.

--n.\n-\ *
5 WSS @




