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1. Introduction. The LNF-Plus system is an implementation of the LNF-Plus
language on a sequential machine (a Symbolics Lisp Machine) - i.e. it is a one
reduction at a time graph reduction system. The SUPER system, comprising both

the LNF-Plus language and the abstract SUPER machine (a many reductions at a time
graph reduction system), is described in [Robinson 19871. The LNF-Plus language, a

combined functional and relational language, is an extension of the purely
functional LNF language defined in (Greene 1985]. The LNF-Plus language results
from adding absolute set abstraction expressions (ASA-expressions), which take
the form: L

{remplae 1 3 (variables) predication) & ... predicaionP}

to the LNF language. The predicates present in the predications above may be
defined either by X-expressions (abstractions) or Horn clauses, thus allowing both

functional and relational styles of programming in the same language. •

It is assumed that the reader is somewhat familiar with the X-calculus, the
SKI-calculus, combinator graph reduction, the first-order predicate calculus (and
its Horn Clause subset), and the workings (at least the user interface) of a

Symbolics Lisp Machine. Descriptions of the X-calculus, SKI-calculus, and
combinator graph reduction may be found in (Greene 1985].

The LNF-Plus graph reduction machine is almost identical to the machine
employed by the LNF system. A detailed description of the LNF-machine may be

found in [Greene 1985). The extensions required to transform the LNF machine
in to th e L N F -P lu s m a c h in e a r e d e ta ile d h e re in . V' . O I'l

The purpose of this document is twofold. Besides providing a technical summary
of absolute set abstraction expression (ASA-expression) reduction, instructions
are provided which tell users how to initialize and utilize the LNF-Plus system. ,.

The document begins by providing the sequence of operations required to set up
the LNF- Plus environment. Following this the user interface is described to a

degree which will allow novice users to: ask for simple expressions to be •-
reduced, get online help from the system, define new symbols, monitor reduction

sequences, trace calls on user specified functors, record LINT-Plus sessions in
files, turn on/off garbage collection, interpret some of the reduction statistics
provided, and interact with both the Lisp Machine's text editor (ZMACS) and file

system.

'up'e ", *, 11 -. 1 e



The facility for simulating concurrent reduction in the system is then presented. e
The main use of this facility is for the reduction of ASA-expressions. AsA'

ASA-expressions are the only type of expression new to the LNF-Plus language (rlt
already present in the LNF language) their manner of compilation and reduction is

detailed. For details on the method of compilation and reduction for LNF-Plus
expression types which are also in the LNF language the reader is encouraged to
read [Greene 19851.

Each of the functors built into the LNF-Plus system and their associated reduction
rules have been placed in Appendix 1. Appendix 2 is a copy of the system's
standard prelude - a collection of definitions of some of the more commonly used
functions. A presentation of a series of example programs and their execution
on the system is included in Appendix 3.

2. Getting Started. Before the system can be used it must be created - the
next several sections detail how this is to be accomplished, explain the uses of
the various panes of the LNF-Plus frame (the system's interface), and explain how
to begin programming in LNF-Plus.

2.1 Setting up the LNF-Plus environment. It is assumed that the tape
containing the LNF-Plus system has been loaded onto disk and the
sys.sire;lnf-plus.translations file has been edited appropriately. If this has not
been done, please follow the instructions given in the hardcopy of the file
-read-me-.text provided with the tape.

To load the LNF-Plus environment, simply type (at a Lisp Listener):
-. e

Load System LNF-Plus

After the system has been loaded, an LNF-Plus frame (collection of window panes
making up the system - similar to the Lisp Machine's Document Examiner or

Inspector) can be created by either typing SELECT R (use the SELECT key) or

choosing LNF-Plus from the System menu. It takes about one minute for the

frame to be created. Mter creation, the LNF-Plus environment may be exited

and reentered just like the Lisp Machine's other systems (ZMACS, the Inspector,

et al.), e.g. to leave LNF-Plus for ZMACS type SELECT E and to return type
SELECT R.

2
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0
2.2 The LNF-Plus frame. The LNF-Plus frame is initially divided into two
panes. The pane on the left is called the interaction pane and the pane next to it
the statistics pane. User input and system output is typed on the interaction
pane. The interaction pa. e's prompt (initially) is LVF of. During each reduction,
statistics are gathered and then displayed on the statistics pane. Statistics on
all phases of the computation are recorded. Some of the more important ones
(to the user) will be discussed as this introduction proceeds. \,.,

In addition to the two panes which are present in the initial configuration of the
LNF-Plus frame, two more panes may be created: the monitor pane (for
monitoring the reduction sequence at a very fine grain) and the trace pane (for
tracing specific functors or user defined functions) and their arguments.
Descriptions of these optional panes will be given later. .' .

The mouse line (in reverse video at the bottom of the screen) reminds the user
how LNF-Plus' facilities may be invoked by the mouse. The use of the mouse will
also be described later.

2.3 The Read-Reduce-Print loop. As has been noted above LNF-Plus is a
reduction system. The user types in an expression in the LNF-Plus language and
asks the system to reduce it. The system does so and prints the reduced result.
If E is the input expression and RE is the result printed, then E and RE stand in
the following relation. RE is a reduction of E having the same denotation as E.

The reduction from E to RE is achieved by the following transformation:

RE = UNCOMPILE[REDUCE[COMPILE[E]]].

Compiling the LNF-Plus expression E involves first eliminating all occurrences of
bound variables from E via an abstraction algorithm (which is a generalized
version of D. A. Turner's) yielding a variable free applicative expression F and %
then producing from F its graphical representation G. This process is detailed in
[Greene 1985]. ,.

The graph G is then reduced to the graph RG (as specified by LNF-Plus' set of
reduction rules - see Appendix 1) and then uncompiled from a graph to the string
RE (the result displayed on the screen).

Note the difference here between LNF-Plus (a system with reduction semantics)
and Lisp (having denotation semantics). LNF-Plus accepts expressions as input
and produces expressions as output claiming that the output has the same ',

3---.
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denotation as the input. Lisp also accepts expressions as input but instead of ',. -.

producing expressions as output produces instead values (or denotations). If E is
the input expression to a Lisp system and V is the output, then Lisp claims that
V is the denotation of (value of), E. ,_.

In short, LNF-Plus is a denotation preserving system, whereas Lisp is a denotation
producing system.

How much reduction of the input expression is performed by LNF-Plus? The user,
to some degree, controls how much work is done by asking either for a
completely reduced result (no opportunities for reduction (redexes) left) - such an
expression is said to be in normalform - or for only the structure (outline or
shell) of the result to be determined (where many redexes may still be left but
the nature (type) of the result is known) - such an expression is said to be in
lazy-normal form. For precise definitions of these concepts and many related
ones as well please see (Greene 1985].

The user specifies how the result is to be presented (in normal form or .
lazy-normal form) by changing the prompt in the interaction pane. Initially the •

prompt is LNF of... is which is short for the lazy-normal form of... is. So,
initially the system will be providing only a partially reduced result. The prompt
is changed by clicking once on the middle button of the mouse and selecting from
the pop up menu the desired form in which future results will be displayed.
Choosing a different printing form from the menu changes the prompt.

In addition to the prompts LNF of ... is and NF of ... is there is a third prompt
corresponding to a third print form which affects how lists are displayed.
Normally, a list containing the two items A and B is displayed as [A, B]. If,
however, the NF of Members of... is prompt is selected, then subsequent lists 9h

are displayed without the surrounding square brackets and without commas
separating the lists' items. Thus, the list [A, B ] would be printed as AB. This
form is mainly used for graphical output as pictures are represented by lists of
lines and usually the lines are the only part of the output desired. The same
amount of reduction is performed when the prompt is NF of Members of... is as

when the prompt is NF of... is - i.e. the output is completely reduced.

2.4 Simple expressions. LNF-Plus expressions come in many flavors but the
simplest are atoms, combinations, and abstractions. An atom is either afunctor,
a constructor, or a variable. The set of functors is fixed by the system. They
are the atoms which have reduction rules associated with them. Please refer to .

Appendix 1 for the complete list of functors and their associated reduction rules.

4
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The atoms +, ED, W, APPEND, and IDIV are examples of functors. Variables are %

denoted by symbols whose first character is a ?. For example, ?1, ?x , and ?v12
are all variables. Constructors are all the rest. The symbol PAIR, all numerals, *d'"1

the truthvalues (TRUE and FALSE) are among the constructors.

Combinations are made by juxtaposing simple expressions. For example,

+ 3,
W +, and

(HD (PAIR 12 34))

are all combinations. The expression on the left of a combination is called the
operator and the expression on the right is called the operand. Parentheses are
used for grouping. The operation of combination associates to the left, so, for 0
example, the expression + 2 3 is a combination whose operator is + 2 and whose
operand is 3. The expression whose operator is + and whose operand is 2 3 % %
would be typed + (2 3).

Abstractions are expressions which denote functions. Their syntax follows: An
abstraction has a binding and a body and is written (X binding body). The
abstraction's body may be any LNF-Plus expression. Its binding is either a variable
or a parenthesized sequence of bound expressions. A bound expression (be) is
either a constructor, a variable, or a combination whose operator and operand
are both be's (with the restriction that the operator may not be a variable). Two
abstractions denoting the doubling function are: (X ?x (+ ?x ?x) ) and
(X ?x (* 2 ?x)) The function, applicable only to pairs, which returns the tail of
the pair could be written (it need not be as it is a functor and hence a language .

primitive): (X ([?x*?xs]) ?xs). 0

See the next page for some examples of reductions of simple expressions. Note
the differences in the displayed result when the prompt is changed. Note also
that [A-B] is syntactic sugar for (PAIRA B) and [A,B,C] is sugar
for (PAIR A (PAIR B (PAIR C [])

2.5 Functors and their reduction rules. Reduction takes place when an
expression matches the left-hand-side of afunctor's reduction rule. For
example, the expression (+ 2 3) reduces in one step to 5 because there is a
reduction rule for the functor + which says that whenever the functor + is the
initial-atom of an expression and the expression has two arguments which are
numbers, then the expression may be replaced with the expression representing
their sum. The expression (+ (- 3 5) 55) is also reducible as the functor + is
strict and its first argument is reducible. A functor is strict if it requires its •

55 *° o ",,
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arguments (some functors are only strict in some of their arguments - the functor
IF for example) to be reduced before it is applied. All of the arithmetic functors
are strict. The functor W, defined by the single reduction rule: W f x = f x x is
an example of a nonstrict functor.

As mentioned several times before, the complete list of functors and their
associated reduction rules may be found in Appendix 1 of this document. This '

information is also made available to the user online. To get it, click once on V
the right mouse button, select the Document Functor(s) option from the menu, and
then choose the functor or functors on which documentation is desired. The
reduction rules for the selected functors will then be displayed in the interaction
pane.

3. Defining Symbols. As one types larger and larger expressions into the
LNF-Plus system one begins to feel the need for abbreviations. There is an
LNF-Plus facility which allows users to name an expression with a symbol and,
from that time on, use the symbol in place of the expression. This is
accomplished by clicking once on the left mouse button. The prompt changes to
Definition: and the system waits for a symbol definition to be input.

3.1 Equations. Symbols are defined in the LNF-Plus frame by typing equations
at the system's Definition: prompt. Equation templates are displayed below
which show the form these equations may take. Definitions may also be entered
in ZMACS buffers and saved in Lisp Machine files. The form of these definitions

differs only slightly from the form of the equations typed directly at the
interaction pane. The ZMACS utterance displayed just below each equation .-

template is the ZMACS equivalent of the equation above it.
'p.-

LNF-Plus FRAME DEFINITION.
x = LNF-Plus-exp

where x is a symbol and LNF-Plus-exp is any LNF-Plus expression.

e.g. the definition sum = (+ 3 45) sets up the symbol sum to name
the expression (+ 3 45).

ZMACS EQUIVALENT:
(define x LNF-Plus-exp), e.g. (define sum (+ 3 45)) t,.

70 4
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U/F-Plus FRAME DEFINITION:
f by 1 . bvN = LNF-Plus-exp,
where f is a symbol, the bvi's are bound expressions
(a variable or a construction whose arguments
are each bound expressions), and LNF-Plus-exp is a LNF-Plus expression. -
e.g. the definition
factorial ?x =5

if (zerop ?x) 1 (* ?)x (factorial (subi ?x)))
causes the symbol factorial to be associated with
the lambda expression (abstraction):
(k (?x) (if (zerop ?x) 1 (* ?)x (factorial (subi ?x)))))

ZMACS EQUIVALENT:
(define (f bvlI ... bvN) LNF-Plus-exp).

This method of defining the function f is equivalent to:
(define f (k (bvl ... bvN) LNF-Plus-exp)).

U/F-Plus FRAME DEFINTION:
(fbvI1 ... bvN =LNF-Plus-expl)

(f bv2l ... bv2N = LNF-Plus-exp2)&

(f bvMlI ... bvMN = LNF-Plus-expM),
where f is again a symbol, the bvij's are again bound expressions
(with the restriction that (bvil ... bviN) and (bvjl ... bvjN) 1 <i~j !M are
not unifiable), and the LNF-Plus-expi' s are LNF-Plus expressions.
The &s are optional.

ZMACS EQUIVALENT:
(define

(f bvlIl ... bvlIN) LNF- Plus-explI
(fbv2l ... bv2N) LNF-Plus-exp2v

(f bvMlI ... bvMN) LNF- Plus -expM)
This form of definition is sugar for the following definition:
(define f (), (vI ... vN)

(case (OPDS vl ... vN)
(OPDS bvI ... bvlN) -LNF-Plus-expl I
(OPDS bv21 ... bv2N) -*LNF-Plus-exp2I

(OPDS bvMl ... bvMN) -~LNF-Plus-expM

endcase))).

*.* *VPs'/'~. .



3.2 Horn Clauses. In addition to symbol definitions entered via equations, v
predicate definitions (used to deduce the normal form of some set expressions -
see the section on sets below) may be entered via Horn clauses having the
following syntax.

N.-

LNF-Plus FRAME DEFINITION: (defining the predicate p)
((p tll ... tlN) -Bll&...&B1K1) &
((p t2l ... t2N) -B21 & ... BIK2) &

((p tMl ... tMN) -- BMl BMI& M),"M
defines the predicate p via the M Horn Clauses.
The --s and &s are optional.

ZMACS EQUIVALENT:
(define

((ptll...tlN) ---BlI&...&BIKl)
((pt21 ... t2N) *- B21 & ....&BIK2)

((p tMl ... tMN) BM & ... & BMKM))

For example, the two relations naive reverse (nrev) and append (app) could be
defined in ZMACS as follows:

(define
((nrev [] []) 4-)

* ((nrev [?x.?xs] ?zs) *- (nrev ?xs ?ys) & (app ?ys [?x] ?zs)))

(define
iiii ((app [] ?X3 ?xs) 4-)

((app [?xoxs] ?ys [?xe?zs]) *- (app ?xs ?ys ?z3)))

* Please refer to the next page (which shows a sample session) for some examples

of symbol definition. Note the use of the character "@" (achieved by typing
SYMBOL-SH-+, i.e. the SYMBOL, SHIFT, and + keys struck simultaneously) as an infix

,," operator in the definition of thrice. The expression (f ED g) is simply sugar for
(B f g) - i.e. E is the infix functional composition operator whereas the B
combinator is the prefix functional composition operator.

4. LNF-Plus Facilities. The system provides several primitive facilities to

the user which enable him/her to easily interact with the Lisp Machine's editor
(ZMACS); load, save, and remove symbol definitions; monitor an ongoing
reduction, trace the action of specified functors, record a session with the

9
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system in a file for later perusal, and to control whether or not Lisp is
performing garbage collection underneath the system. Each of these facilities is
explained briefly below.

4.1 The interaction between LNF-Plus and ZMACS. As mentioned above,
the definitions entered in the LNF-Plus frame (shown on the previous page) could
have also been typed in a ZMACS buffer. To tell LNF-Plus about a definition
typed into a buffer, i.e. install the symbol definition in the LNF-Plus
environment, one simply evaluates the definition as one would a Lisp definition
typed in a buffer. This is done by typing C-SE-E (the CONTROL, SHIFT, and E keys
hit simultaneously) - after placing the cursor inside the definition. A buffer full
of definitions may be installed at once by invoking the extended ZMACS
command: M-X evaluate buffer. "..

Buffers of LNF-Plus definitions may be saved into (and retrieved from) the file
system just like any other file. It is suggested that a. LISP file extension be
used for LNF-Plus files so as to make use of the automatic parenthesis blinking,
automatic indenting, etc. of ZMACS' Lisp Mode. In order to make LNF-Plus
definitions readable by the Lisp reader, some characters (which the Lisp system
wants to treat specially) must be slashifled- i.e. prefixed with the slash
character (/). These three characters are , , . For example, the

LNF-Plus list [1,2,3], when entered in ZMACS, must be typed [1/, 2/, 31. The
font super-font has been created from the Lisp Machine's built-in font cptfont
which maps the key SYMBOL-SB-+ to ( (circle, the infix functional composition
operator).

The next page is a copy of the file lnf-plu.s:exs;digits.lisp demonstrating the
structure of LNF-Plus definitions in a Lisp Machine file. Note that circle prints as
circle-plus (a limitation of the laser printer software) - in a ZMACS buffer the
circle is displayed properly.

4.2 Loading, saving, and removing definitions. Files containing LNF-Plus
definitions may be installed directly from the LNF-Plus frame (without having to
go to ZMACS, read the file into a buffer, and then evaluate it). This is done by
clicking the left mouse button twice and selecting the Load Definitions option
from the pop-up menu. The file name is then entered and the box labeled EXIT
is clicked. Following this last click, the user's file is read and the definitions

installed.

Svmbol definitions, regardless of how they are installed, may be saved into a
Lisp Machine file from the LNF-Plus frame. To do this, perform a double left
click with the mouse and select the Save Definitions option from the pop-up
menu. The symbol definitions are saved into the file whose name you then enter.

, , II
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Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 10; -*-

;;; An example taken from Bird and Wadler's draft of their
;;; "An Introduction to Functional Programming" book -- pg. 132

";" (TAKE-WHILE p list) is the initial segment of list (init-list)
';" such that for all el in init-list (p el) is TRUE.
;;; An interesting definition of take-while in terms of PRIM-REC:
(DEFINE (TAKE-WHILE ?P) (PRIM-REC (NOT@D?P@HD) (PAIRE)ED) TL [])

;;; A concise and efficient definition of list reversal:
(DEFINE REVERSE (LREDUCE (X (?X ?Y) (PAIR ?Y ?X)) []))

;;; Two auxiliary functions.

;;; Division by 10 and remainder after division by 10:

(DEFINE REM-BY-10 (X (?X) (REM ?X 10)))
(DEFINE DIV-BY-10 (k(?X) (IDIV ?X 10)))

;;; The function DIGITS, which takes as input an integer (I) 'I"

;;; and returns as result the list of I's digits. Note that

;;; the definition makes use of lazy-evaluation, infinite
;;; lists, and higher order functions:
(DEFINE DIGITS

(REVERSE@D
(MAP REM-BY-1)e:
(TAKE-WHILE (NOT(ZEROP)) (a

(ITERATE DIV-BY-10)))

;; An example: (to be typed at LNF-plus' interaction pane)

(DIGITS 3981) -,

;;; (REVERSEG(MAP REM-BY-10)S(TAKE-WHILE (NOTSZEROP)))

;;; [3981,398,39,3,0,0,0,...]
;;; (REVERSE@(MAP REM-BY-10)) [3981,398,39,3]

;;REVERSE [ 1, 8,9, 31
[3, 9,8,1]

• • .'%'%%-%r. N,
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After having defined a symbol, one may want to undejfne it, i.e. remove its
definition from the system. This is accomplished by performing a double left
click on the mouse button, selecting the Remove Definitions option, and then
clicking on the symbol or symbols whose definition(s) is no longer desired.

4.3 Reduction monitoring. Reductions may be monitored - this means that not
only is the final result displayed but as many of the intermediate forms of the

result as desired by the user are also displayed. Monitoring is enabled, meaning
*1* that subsequent reductions will be monitored until monitoring is disabled, by

clicking twice on the middle mouse button. The interaction pane splits into two
panes one sitting on top of the other. The top pane is the interaction pane (now

reduced in size) and the bottom pane is the newly created monitor pane.
Following this restructuring of the LNF-Plus frame, the user is asked to supply
the monitor's period. The monitor's period is the number of reductions after which

* an intermediate result (along with its accompanying statistics) is displayed. Any
positive integer may be supplied as the monitor's period (the default being I,
requiring each intermediate form of the result to be displayed).

I

A monitored reduction (with period N) of the expression E proceeds as follows. N Wo
reductions are performed on E, the result, say En, is displayed in the monitor
pane and the reduction pauses. Just above the display of En is a line of V
statistics of the form:

Step: n APs: m Fnctr: f Fwded: k IPs Flwd: I RPQ: o
i.4 expression

where n is the number of reduction steps taken so far, m is the number of ,

application (combination) vertices created to this point,! is the functor whose
rule was just applied, k is the number of forwarding pointers created, I is the the

number of forwarding pointers followed, and o is the current length of the process
queue.

The first three items in the line are self explanatory, the others require some

discussion. Graph reduction is performed by overwriting unreduced graphs with

equivalent reduced graphs. Sometimes this requires that a vertex (at the root of
a redex) be forwarded to another vertex. The effect of forwarding a vertex v to
a vertex u is to have all references (pointers) to v in the graph forwarded to u,
i.e. v is no longer looked at but looked through to see u. The statistics k and ! in

the monitor line should now be clear. It remains to explain the statistic o. Theprocess queue is discussed below in connection with ASA-expression reduction. .,

The relevance of the statistic o, displaying the length of this queue, will be
appreciated only after that discussion.

13
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See the following page for a simple example showing the monitoring of the
reduction of the expression thrice addl 1.

4.4 Functor tracing. Instead of monitoring a reduction, the user may only wish

to see the action taken by specific functors. The trace facility is provided for

this purpose. Tracing is enabled by clicking once on the right mouse button,

selecting the Start Tracing / Add Some Symbols to Trace List option, and then

choosing which functor(s) is(are) to be traced. The set of functors being traced

may be changed from problem to problem. Functor tracing is disabled by again
clicking once on the right mouse button and then selecting the End Tracing!
Remove Some Symbols from Trace List option.

The page after next shows the result of tracing the functor addl during the 1%,

reduction of the expression thrice addl 1. Additionally, this snapshot of the
LNF-Plus frame shows the menu which pops up when the user performs a single
right mouse click.

4.5 Reduction statistics. Many detailed statistics are recorded and displayed
for each reduction. Most of them were recorded to facilitate the design of the

system but are not of general interest Several of them, however, might be of
interest to users. These, more generally useful statistics, are given brief

explanations in the table below

Statistic Meaning .

Reductions number of reductions performed
Elapsed Time time to perform reduction

(compile time not included) "
Reduction Rate number of reductions performed per second % .

Size of Result number of combinations + number of atoms

Max Concurrency maximum length of process queue,

Avg Concurrency average length of process queue

Combinations Const. number of combination cells created
during the reduction

4.6 Recording sessions in files. Sessions with the LNF-Plus system may be

recorded in files for later inspection. To begin recording, click once on the right

mouse button, select the Start Session Recording option from the pop-up menu, ,..

and enter the name of the file into which the record of the session is to be

placed. To stop recording, simply click once on the right mouse button and

select the End Session Recording option. 7 "%J!
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4.7 Controlling garbage collection. Garbage collection is performed by the
Lisp Machine, not by the implementation of the LNF-Plus system. The garbage
collector (the ephemeral garbage collector - an on the fly collector) is initiallyU
enabled. It may be disabled (or enabled) by clicking once on the right mnouse
button and then selecting the option Turn on Garbage Collector (Turn off Garbage
Collector).

5. Reduction Processes and Simulated Concurrency. The LNF-Plus system
implements a pseudo-parallel graph reduction system. That is to say it can
simulate the behavior of a collection of graph reducers working concurrently.
Most reductions only activate one reduction process. Many processes may be
activated, however, during the reduction of ASA-expressions - it is for this
purpose that the PAR annotation (placed by the system not the user) described
below has been added. The implementation ideas can be found in [Hughes
1986b]. In this paper Hughes adds the annotation PAR (with the following
semantics) to a sequential reducer of a purely functional language yielding an
implementation in which (simulated) parallel reductions may take place.

The application (PAR f x) reduces to the same expression as does the
expression (f x) but instead of reducing (f x) sequentially, the expression

-' (f x) and its subexpression x are reduced concurrently. Of course, since there
is only a single processor, this must be simulated. Informally, a process queue
is maintained which contains the list of processes (represented by roots of the
graph - remember expressions are programs in this system!) which would be
active (on a multiprocessor system) but (in this single processor system
simulating a multiprocessor environment) must wait for the (single) Lisp machine
processor. Each process in the process queue runs (is reduced), in turn, for some
time. A running process either finishes (gets reduced to lazy normal form) or
runs out of its alloted fuel and is swapped out to the end of the queue. Each
process is not actually given a time s/ice per se but, instead, is given an
allotment of reduction steps that it may perform. Each process is given the
same number of reduction steps - a number determined by the user. This number
may be changed from problem to problem. Changing the reduction allocation is V
accomplished by clicking once on the right mouse button and selecting the Select
Process Time Slice option and then providing a positive integer as the amount of
reduction fuel each process will receive for subsequent reductions.

1%17
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6. Sets. Set expressions are one of several very-high level constructs made
available to programmers by the LNF-Plus language. Sets in the LNF-Plus
impleme.itation are, in reality, LNF-Plus lists with duplicates removed. For
example, if the user asks for the normal form of the expression:
1, 2,3, 2, 3,4,5) then LNF-Plus will respond with: [1, 2, 3,4,5]

A user may think of the LNF-Plus set: {... } as syntactic sugar for the
application: (mkset [... ]), where mkset is a functor which, when given a list L
as input, returns as result a list M, where M is L with duplicates removed - the
ordering of elements in L is preserved in M.

Since LNF-Plus sets are lists in disguise, all of the functions which accept lists
as arguments (e.g. hd, tl, nullp, append, ...) also accept sets. For example, if
the expression: (tl (2,2,3,3)) is reduced to normal form, the result would be
the expression: [3] since the set (2,2,3,3) represents the list [2, 31 and the
tail of [ 2, 3] is ( 31.

The LNF-Plus language provides a set union operator union which expects to be
given two sets (lists without duplicates) and produces their union (again
represented as a list). For example, the following expression:
(union (1,2,3,4,5) (3,4,5,6)) has the expected normal form: [1,2,3,4,5,6].

In addition to explicit set representations, e.g. (el, ... , eN} where the elements
of the set are spelled out, the language supports two flavors of implicit set *-

representations: relative (Zermelo-Frankel) set abstraction expressions and
absolute (Godel) set abstraction expressions.

6.1 Relative set abstraction. The usefulness of Zermelo-Frankel set
expressions (ZF-expressions) in functional languages has been ably demonstrated
by David Turner in several papers. ZF-expressions, as a construct in a functional
language, first appeared in Turner's Kent Recursive Calculator (KRC) language.
Turner has also made them a part of his latest functional language Miranda. The P.
syntax of the ZF-expressions in LNF-Pus (which differs only slightly from
Turner's) was inherited from Greene's LNF language. As an example, given the
existence of a list of people (people) and predicates male and smokes, the set
of all non-smoking males could be represented by the expression:

".'*. {m I m people; (male m); (not (smokes M))}.

18
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The first occurrence of m in the above expression is called the template, the
phrase m e people is called a generator and the phrases (male m) and
(not (smokes m) ) are called guards. In general, a ZF-expression, takes the
form:

{template I generator; O-or-more-intermixed-guards-and-generators}..

The only difference between the syntax for ZF-expressions in KRC (or .4iranda
and LNF-Plus is the epsilon (e) -- KRC uses an arrow (<-) ZF-expressions are
reduced to explicit sets by, essentially, a generate-and-test scheme. This
scheme is implemented by translating the ZF-expression into an equivalent
(variable free) expression involving the functors: map, filter, flatmap, and
enumerate.

For example, the sample ZF-expression above is compiled into the following
expression:

(MKSET (MAP I (FILTER (S- AND MALE (B NOT SMOKES)) PEOPLE))) ,

before it is reduced to normal form. Note that all occurrences of the bound
variable m have been removed. This is equivalent to the following expression m
the X-calculus:

( SET
- (MAP

(X m m)

(FILTER
(X (mn) (AND (MALE mn) (NOT (SMOKES i))

PEOPLE))).

The next page is another LNF-Plus session snapshot; this time showing some
examples of the use to which ZF-expressions may be put

6.2 Absolute set abstraction. Sets described by absolute set abstraction
(called ASA-expressions) are reduced by a wholly different mechanism. The
ASA-expression is the vehicle by which programmers invoke the Horn Clause
resolution mechanism available in the language.

1(.4 .4d A p %'e
%. % %.%
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In general, an ASA-expression, takes the form:

{template I 3 (variables) predicationl & ... &predicarionP}

where

a' - template is any LNF-Plus expression, its free variables are considered ?'
binding instances whose scope is the set's conjunction part, --.

- variables are auxiliary variables with the same scope (as the template
variables), and

- each predication is a LNF-Plus expression.

Instead of giving a blow-by-blow account of the low level steps involved in the
reduction of ASA-expressions, an imprecise but informative high level
description of their reduction will be given. Let the following expression be our"p.,.,
prototypical ASA-expression:

X: {template I 3 (variables) pred & restps}.

The meta-variables pred and restps stand for the first and remaining predications
of the conjunction respectively. X is reduced by first reducing pred to lazy.'-.,

normal form. If this happens to turn out to be the atom true, then X reduces to.

(template 13 (variables) restps}.

If pred reduces to the atom false, then X reduces to { (represented by I. If,
however, pred reduces to an expression of the form (p al ... ak) (call it predr)
and p has been defined by a collection of Horn clauses (call it assertions - whose
first clause is head - body), then X reduces to the following union of two subsets:

(union
(template I 3 (variables]) body & resrps} 
(constrained-set template variables predr resrps remaining-assertions))

if predr unifies with head, and to:
9<.

(constrained-set template variables predr restps remaining-assertions))

if predr and head fail to unify.

21
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A constrained set expression differs from an ASA-expression (or unconstrained
set expression) by limiting the ways a single predication may be proved. This
distinction is illustrated by the following simple example. Given the three Horn
clauses defining the unary predicate person:

((person Kevin) --)
((person Alan) 4-)_AZ

((person Tracy) 4-)

the (unconstrained) set expression {x I (person x) } reduces to the three-list
(Kevin, Alan, Tracy] but the constrained set expression

(constrained-set
x ; template •
[] ; variables
(person x) ; selected goal

; remaining goals
[((person Alan) 4-), ((person Tracy) 4--)] ; remaining assertions

reduces to only the two-list [Alan, Tracy].

The set is constrained by being limited to using only the remaining available
assertions when attempting to prove the selected goal. Other occurrences of the
goal (either in restps or predications generated later) are not thus constrained.

The functor union is realized by creating a reduction process for each of the
subsets and letting them reach lazy normal form concurrently. Using this
technique, the depthfirst runaway problem of Prolog imlementations is avoided
as solutions found in the reduction of the subsets are added to the union as they

are found ! Since the set is constructed lazily (elements of the set are computed
only as needed), sets with infinitely many members may be specified by
ASA-expressions and used in larger computations which only require a finite
number of their members.

6.3 Unification. The unification algorithm employed by the functors which .,

perform resolution inferences is a rather sophisticated one. Its job is to
determine the truth of statements of the form: 3 VS A=B where VS are the 1,.,

variables existentially quantified and A and B are expressions in lazy normal
form. The algorithm may answer either NO, YES, or YES under the condition C is
true. It answers NO in the case that there are no expressions which can -

substituted for the variables in VS in the expressions A and B which make A and B 7

22
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identical, it answers YES if it can find such expressions, and it answers
conditionally YES when it can find such expressions but only if some other
equations can be solved. Some examples of inputs and outputs might clarify the
actions of the algorithm. -b

Inputs Output
VS: 0 A: 3 B: 3 YES
VS: () A: 2 B: 3 NO
VS: (?x) A: 3 B: ?x YES
VS: 0 A: 3 B: ?x YES, if ?x=3
VS: 0 A: [l,(addl 3)] B:[(subl 2).4] YES .

VS: ( A: [l(addl 3)] B:[(subl 3).4] NO %,oil
VS: (?x) A: [?xe(addl 3)] B:[(subl 2).4] YES

VS: 0 A: [?x*(addl 3)] B:[(subl 2).4] YES, if ?x=l
VS: 0 A: [?x*(addl 3)] B:[(subl 2),5] NO
VS. (?x) A: [lo(addl ?x)] B:[(subl 2 )o?y) YES, if (addl ?x)=?y

The conditional YES answers are given when not enough information (about one of
the equatees) has been given to determine unconditionally if the equation can be
solved. If some of the equation's free variables (those variables in A or B but
not in VS) become (at some later time in the computation) instantiated, then
these conditional answers may become definite. These equations (the conjunction
of which make up the condition C mentioned above) returned by the unfication 0
algorithm are added to the end of the current goal list. It is hoped that by the
time these equations become selected that enough of their free variables will
have become instantiated so as to be able to determine whether or not they can
be solved.
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The Lisp realization of the system's unification algorithm (copied in from the
system's source code file lnf-plus.'sys;sers.lisp) is displayed below:

(defun unify (x y bindable-vars &optional eqns) NO
"returns NIL if unable to unify x and y in the scope of

bindable-variables, or makes x and y unifiable (via graph
modification) and returns possibly reduced bindable-vars
structure and equation list"

(cond ((same-atoms x y)
;; equation of the form: a=a (a, an atom) so
;; return an unconditional YES
(values bindable-vars eqns))
((and (variable-p x) (bindable x bindable-vars))
;; equation of the form: v=-E (v, a variable in VS) so

bind v to E, return an unconditional YES
(values (bind x y bindable-vars) eqns))
((and (variable-p y) (bindable y bindable-vars))
,; equation of the form: E=v (v, a variable in VS) so
;; bind v to E, return an uncond.tional YES
(values (bind y x bindable-vars) eqns))
((or (unknownp x) (unknownp y))
;; equation of the form: unk=E or E--unk
;; (i.e. not enough info to make a decision), so
;; return a conditional YES
(values bindable-vars (cons (make-equation x y) eqns)))
((combinationp x)
;; equation of the form (oprx opdx)=Y, so check on Y's form 0

(cond ((combinationp y)
;; Y also a combination, say (opry opdy) so split
;; the job into two parts: oprx=opry and

(LNF-OF opdx)=(LNF-OF opdy)
(multiple-value-bind (new-bvs extended-eqns)

(unify (operator x) (operator y) bindable-vars eqns)
(if new-bvs

;; oprx=opry equation can be solved, so try to solve
(LNF-OF opdx) =(LNF-OF opdy)

(unify (lnf-of-subexp (operand x))
(lnf-of-subexp (operand y))
new-bvs -

extended-eqns))))))
;; otherwise, fail

24
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GJoals of the form (=A B) in the goal list of an ASA-expression are solved via the
unification algorithm above. For example, given the ASA-expression:

(?x 1 3 (?y) (= (addi ?x) (subi ?y))
((factorial 4) ?x)
(?y 26)}

as input, the following reduction sequence would take place:

{?x 1 3 (?y) (= (factorial 4) ?x)£
(?y 2 6)£

* (= (addi ?x) (subi ?y)))

(24 I3 (?y) (= ?y 26)&
(25 (subi ?y)))}

(24 13 ()(2525)1

N (241.

The next page demonstrates how some simple predicates can be defined and
used in the specification and reduction of ASA -expressions.
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Appendix I - LNF-Plus Reduction Rules

Combinators

S f g x -* f x (g x)
Kxy - X

IX -4 X

B f g x - f (g x)
C f g x -4f X g

f X -+ f XX
Y f -4 f (f (f ))

Rxy -* y x
SA k a g x - k (a x) (g x) 0

BA kc a g x - k a (g X)
NBA k a g x -4 k (a (g x))
CA k a g x - k (a x) g

Arithmetic Functors

NUNBERP n -+ TRUE -.

NUMBERP cfn - FALSE, if cfn not a number •

+ n m -+ n+.
- n m -4 n-m .

ADD1 n -4 n+l "Z .%,_%

SUB1 n - n-i
MINUS n -n 0

• n n -4 n*m-

EXP i j -4 the integer 'i to the j', if j.O
EXP i j -4 the float 'i to the j', if j<O

EXP s i -* the float 's to the i'

EXP n s -+ the float 'n to the s'

DIV n m n/m, if m...
IDIV n m - integral quotient after n/m, if m-O
REM n m -4 remainder after n/m, if m*O

< nm -- n<m 0

> nl - n>-

ZEROP n - n=O
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Boolean Functors Ile

BOOLEANP b -4 TRUE W

BOOLEANP cfn -* FALSE, if cfn not a boolean S

OR TRUE y -4 TRUE

OR FALSE b -b
AND FALSE y -+FALSE

AND TRUE b -- b
NOT TRUE - FALSE

NOT FALSE - TRUE

IF TRUE a b -a
IF FALSE a b -b

List Oriented Functors

RD [xoy] - x

TL [x~y] -4 y
APPEND [] list -* list

APPEND [xOxs] list -* [x*(APPEND xs list)]

NTH 1 [xoxs] - x
NTH n [x*xs] -- NTH (n-1) xs, if n>l"
MAP f Exoxs] -4 [(f x),(MAP f xs)]
MAPf
FILTER p [ - [] "..
FILTER p [x.xs] - IF (p x) [x.(FILTER p xs)] (FILTER p xs)
MEMBER x [] -p FALSE
MEMBER x [zezs] -+ OR x=z (MEMBER x zs)
REDUCE fix] - X
REDUCE f [x,y.r] -- (f x (REDUCE f [yor]))
RREDUCE f nv (] -4 nv.

RREDUE f nv [xer] -+ (f x (RREDUE f nv r))
LREDUCE f acc (1 -4 acc :"
LREDUCE f acc [x.r] - (LREDUCE f (f acc x) r)" ..

ACCUMULATE f acc [] - [acc]
ACCUMULATE f acc [xor] -4 [acc.(ACCUMULATE f (f x acc) r)]

ITERATE f x -4 [x,(iterate f (f x))]
MKSET list -4 removes duplicate elements from list
INTERLEAVE [xer] list -- [x*INTERLEAVE list r]

INTERLEAVE [] List -+ list

FLATMAP f [x'xs] - INTERLEAVE (f x) (FLATMAP f xs)

FLATHAP f (] -4 I]

29
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UNSAFE-MERGE [aerest] y -[a* (PAR (UNSAFE-MERGE y) rest)]

UNSAFE-MERGE [I y - y
UNSAFE-MERGE y [aerest] -(a* (PAR (UNSAFE-MERGE y) rest)]

UNSAFE-MERGE y J y ~A
otherwise swap this process out
ND-MERGE x y -4 PAR (PAR UNSAFE-MERGE x) y

Resolution Oriented Functors

LO n m t-fn p-list-fn -.

LIST-OF <tv> (t-fn vars-n) nm-ht (p-list-fn vars-n-m)
LIST-OF var template vars goals -9

[intantiated-template*LIST-OF var' template' vars' goals'] or [1
C-LIST-OF var template vars goals assertions --

[intantiated-templateorest] or (]

Other Functors

= cfl cf2 - cfl=cf2

cfnl cfn2 -+'. %%q

AND (= (OPERATOR cfnl) (OPERATOR cfn2))
(= (OPERAND cfnl) (OPERAND cfn2))

e< cnl cn2 -4 cnl 'less than (in the lexicographic ordering)' cn2

NULLP cfn -* if (= [] cfn) TRUE FALSE

ATOMP cfn -4 num-args[cfn]=O
PAIRP cfn - if cfn of the form [xey] then TRUE else FALSE

FB n 0 - [n,n,..]
FB n m -9 [no(FB ^ (+ n m) m)], if m#0

FBT n 0 lim - [n,n,..]

FBT n m lim -

if ( n lim) then (no(FBT^ (+ n m) m lim)] else [ , m>0
FBT n m ia -li

if (> n lim) then [ne(FBT^ (+ n m) m lim)] else [], m<0.
FBA n m - [no(FB^ (+ n m) m)] %".-

COMBINATIONP cn - if cn a combination then TRUE else FALSE

A-S c n f (c Al An) - f Al ... An

A-SAcnf (cAl .. An) -+ f Al ... An

A-S-E c n then-exp else-exp test-exp -.

IF (AND (= c (initial-atom test-exp))
(= n (number-of-args test-exp)))

then-exp
else-exp 30
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A-S-E c n then-exp else-exp test-exp -

IF (AND ( c (initial-atom test-exp))
(n (number-of-args test-exp)))

then- exp
else -exp

ARG n (c-or-f elie2 .. eM) -en
CONSTRUCTOR (c el e2 eN.) -) c
CONSTRUCTIONP (c el e2 .. eN) -+ (constructor-p c)
FUNCTIONP (c el e2 .. eN) -4 (functor-p c)

UNXNOWNP exp -+ (not (or (functionp exp) (construct ionp exp))) '

ARITY (a .1 e2 .. eN) -4 (MAX 0 (- (arity a) n)) '
NUM-ARGS (c-or-f ei e2 ... eN) --+ N

APP-TO-ARGS n f exp -4 f (ARG I exp) .. (ARG n exp)
UNION seti set2 -4 union of the two lists representing sets
PAR f x --+ f p: (ACTIVE X plist) with p put on end of *RPQ*
PRIM-REC donep op next base d~s -4
(IF (donep ds)
base
(op ds (PRIM-REC donep op next base (next ds))))0

I ,-. ,
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Appendix 2 -The Standard Prelude

The standard prelude is a file (lnf-plus:exs;standard-prelude.h'isp) which contains
definitions of many of the most commonly used functions. This is a file which

may be loaded by the user by clicking twice on the left mouse button and then
selecting the Load Standard Prelude option from the pop-up menu. V

In order two make LNF-Plus definitions readable by the Lisp reader, some
characters must be slasified. These three characters are: ", q, "I " and ";.Another

note: the infix functional composition operator prints as (@ - sorry.

The contents of the standard prelude follows:

,THREE FUNCTIONS FOR LISP HACKERS

,;Lisp's cons '

(define (cons ?I ?r) [?l9.)r])

;Lisp's car
(define car hd) -...

,;Lisp's cdr
(define cdz tl)

,;first n elements of a list .-

*(define (first ?n ?list)
(if (or (< ?n 1) (nullp ?list)) 5,

((hd ?list)* (first (subi ?n) (tl ?list))]))

,last element of a non-empty list
(define (last (?x*'r])

(if (nullp ?r) ?x (last ?r)))

,determines the length of a list
(define length

(lreduce (X (?x ?y) (addi ?x) ) 0))

prefix of list L, each element of which satisfies P,
,but the next element of L does not.

(define
(take-while ?p)
(rreduce (X (?x) (if (?p ?x) (pair ?x) (k [))()

32 \
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;; Prefix of list L, each element of which fails to satisfy P, except
;; for the last, which does. -.i
;; P.S. If no element satisfies P, then output list will be all of Ldfi
(define,

(until ?p) (rreduce (X (?x) (if (?p ?x) (k [?x]) (pair ?x))) (]))

;; list suffix of L, all elements following first to satisfy P

;; P.S. We assume that at least one does.
(define (after ?p [?xor])
(if (?p ?x) ?r (after ?p ?r)))

;" prefix consed to suffix
(define (until-and-after [?x.?r] ?p)
(if (?p ?x)

[[?x].?r]
(add-to-prefix ?x (until-and-after ?r ?p))))

A (define (add-to-prefix ?x [?liste?r])

[[?x.?listj*?r])

;; zip two lists into one
(define
(zip fxOIXS3 fY*?YS]) [fxeY]*(zip ?XS ?YS)]
(zip ? ?) [)

(define (cartesian-product ?listl ?list2)
(for-each ?x e ?listl and ?y e ?list2 instantiate [?xoy]))

;; lookup in an association list
(define

(assq ?item)
(rreduce (X (?hd) (if ( ?item (hd ?hd)) ?hd)) (]))

;; predicate which returns true iff (pred el) true
;; for each element el in list
(define (true-for-all ?pred)
(rreduce (X (?x ?y) (and (?pred ?x) ?y)) true))

;; true iff length of list > 1
(define (more-than-one-in ?list)
(and (pairp ?list) (pairp (tl ?list))))

33 2,
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deletes the nth element from a non empty list
(define (delete-nth ?n [?xosr])
(if (= 1 ?n) ?r [?x * delete-nth (subl ?n) ?r]))

;; sums a list of numbers
(define sum (Ireduce + 0))

;; multiplies a list of numbers
;; NB: if 0 a member of the list,
"" then the function immediately returns 0.
(define product
(rreduce (X (?x) (if (zerop ?x) (k 0) (* ?x))) 1))

;; appends a list of lists
(define append-list (rreduce append []) )

;; like flatmap, but appends instead of interleaves %.%
(define (fmap ?f) (rreduce (appendGD?f) []))
;; alternate definition of FLATMAP, works almost as fast! 0

(define (flatmap2 ?f) (rreduce (interleavee?f) [))

;; and's a list
(define alltrue (rreduce and true))

;; or's a list
(define anytrue (rreduce or false))

;; sorts a list, using the quicksort algorithm 0

(define (quicksort ?list)
(if (nullp ?list)

(append (quicksort (filter (> ?head) ?tail))
(?head * (quicksort (filter (note(> ?head)) ?tail)) ]

where [?headetail] = ?list))) -

;; list difference

(define (ldiff ?ll ?12)
(if (nullp 112)

(if (member ?11 (hd 112)) I
(remove (hd ?12) (ldiff ?11 (tl ?12) ))
(idiff ?11 (?tl ?12))))) -.

34 7p
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;;removes element ?x from list ?r
(define (remove ?item) o
(prim-rec %_
nullp .0
(X (?list) (if (= ?item (hd ?list)) (tl ?list) (pair (hd "list)))

-, tl
.,',. [1)) K] i

;; all permutations of a list
(define (perms ?list)
(if (nullp ?list)

[[?aoperm] / ?a £ ?list /; ?perm z perms (remove ?a ?list)]))

;; reverses (naively) a list
(define (slow-reverse ?list)
(if (nullp ?list)

. (append (slow-reverse (tl ?list)) [(hd ?list)])))

N.'

;" reverses a list
(define fast-reverse (Ireduce (X (?x ?y) [?y-?x]) [))

_..' ; ; lisp's CONDitional (almost) I

(define cond (rreduce (X (?x ?y) (if (hd ?x) (tl ?x) ?y)) undef))

-- SOME FUNCTIONS DEALING WITH NUMBERS

*: ;; even predicate
(define (even ?n)

-. (zerop (rem ?n 2)))
%:

;odd predicate
(define (odd ?n) (not (even ?n)))

;; maximum of two numbers
(define (max ?m ?n)

(if (> ?m ?n) ?m ?n))

;; maximal element of a list
(define maximum (reduce max))

35
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;; minimum of two numbers ,P lo

(define (min ?m ?nI
(if (< ?m ?n) ?m ?n))

; minimal element of a list
(define minimum (reduce min))

integer square root function (not too smart)
(define (integer-square-root ?n)
"" exp n 1\2 rarely is an integer
((if (nullp ?root-list) .- w

doesnt-exist
(hd ?root-list) )

where ?root-list =

[?x/I?xE[1/, . ./, (addl (exp ?n 1\2))] /; (= ?n (* ?x ?x))

;; absolute value function
(define (abs ?x)

(if (< 0 ?x) ?x (minus ?x)))

;; nth power of function f
(define (nth-power ?f ?n) (X (?x) (nth (addl ?n) (iterate ?f ?x))))

;; a higher order combining form:
• Similar to RREDUCE on lists.
(define (num-red ?f) (prim-rec zerop ?f subl))

;; some defns of factorial
(define factorial (num-red * 1))
(define (factorial2 ?n) (Ireduce * 1 [1/, ./,?nl))
(define (factorial3 ?n)

(if (zerop ?n) 1 (* ?n (factorial3 (subl ?n))))) S

(define (nth-power2 ?f) (num-red (X (?x) (b ?f)) i))

36
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Appendix 3 - Examples.

The following pages are alternately copies of Lisp Machine files containing
symbol definitions and snapshots of LNF-Plus sessions making use of them.

The examples are in order:

- utility of higher order functions in declarative programming
- Root Finding [Hughes 1986a] (one snapshot for four examples)
- Matrices (matrices as lists of lists)

- Polya's Sigma Function (demonstrates the importance of memoizing)
- Graph Traversal (using both FP and LP)
- Peter Henderson's Functional Geometry 0

- Lee routing (adapted from LP implementaion [Sterling 19861)
our implementation is purely functional

0 (
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These examples illustrate the usefulness of higher order functions

• "";Some of the examples below taken from RJM Hughes' paper:
"Why Functional Programming Matters"

; ; Program Methodology Group Memo PGM-40

;;; The definitions of four useful higher-order functions:
;; (built-in functors of the LNF-Plus system)

;;; REDUCE f [x] = x
;;; REDUCE f [xl,x2oxs] = (f xl (REDUCE f [x2exs]))

;;; RREDUCE f a [] = a
;;; RREDUCE f a [xoxs] = (f x (RREDUCE f a xs)) - -

• LREDUCE f a (] = a
;;; LREDUCE f a [xoxs] = LREDUCE f (f a x) xs
;;; ACCUMULATE f a [ = (a]
;;; ACCUMULATE f a [x~xs] = [ae(ACCUMULATE f (f a x) xs)]
;;; ITERATE f a = [a*(ITERATE f (f a))]

;;; SUM sums a list of numbers: S

(DEFINE SUM (LREDUCE + 0)) A
S%" i-

;;; PRODUCT multiplies a list of numbers together:
(DEFINE PRODUCT (LREDUCE * 1))

;;; The infamous FACTORIAL function, defined using PRODUCT: .

(DEFINE (FACTORIAL ?N) (PRODUCT [li,../,?N]))

;; ANYTRUE returns TRUE iff at least one •
• element of the input list is TRUE:
(DEFINE ANYTRUE (RREDUCE OR FALSE))

;;; ALLTRUE returns TRUE iff all elements of the
;;; input list are TRUE:
(DEFINE ALLTRUE (RREDUCE AND TRUE)) ,

;; an alternate definition of APPEND
;;; (it's a built-in in LNF-Plus) :
(DEFINE (APPEND-VIA-RREDUCE ?Ll ?L2) (RREDUCE PAIR ?L2 ?LI))
;; NB(1): APPEND-VIA-RREDUCE compiles to the

;;; very compact code: (C (RREDUCE PAIR))! . "

• NB(2): APPEND-VIA-RREDUCE executes AS FAST AS .'..as,

;; ; the built-in APPEND!

38
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* ;;; MAP is another built-in that could j
;;; have been defined with RREDUCE: '
(DEFINE (MAP-VIA-RREDUCE ?F) (RREDUCE (PAIR@B?F) [))
;;; NB: This definition is not quite as efficient

;;; as the built-in (about 15-20% worse)

;;; LENGTH returns the length of the input list:
(DEFINE LENGTH (RREDUCE (K ADD1) 0))

;;; REV reverses a list!

(DEFINE REV (LREDUCE (C PAIR) [])) 0

;;; if TREES are represented as (NODE x (LISTOF trees))

;;; where x is the label on the root of the tree
;;; and trees are the immediate offspring of x,

;;; then the following higher-order function is to
;;; trees as RREDUCE is to lists
(DEFINE

(REDTREE ?F ?G ?A (NODE ?LABEL ?SUBTREES))
(?F ?LABEL (REDTREE ?F ?G ?A ?SUBTREES))

(REDTREE ?F ?G ?A (PAIR ?SUBTREE ?RESTTREES))
(?G (REDTREE ?F ?G ?A ?SUBTREE)

(REDTREE ?F ?G ?A ?RESTTREES))

(REDTREE ?F ?G ?A [1) ?A)

;;; Another (more compact) way of defining the same function:
(DEFINE

(REDTREE ?F ?G ?A (NODE ?LABEL ?SUBTREES))
(?F ?LABEL (REDTREE ?F ?G ?A ?SUBTREES))

(REDTREE ?F ?G ?A ?L)
(RREDUCE (?GG (REDTREE ?F ?G ?A)) ?A ?L))

;;; SUMTREE sums all node values of the tree:
(DEFINE SUMTREE (REDTREE + + 0))

;;; an average tree:
(DEFINE ATREE (NODE 1 [(NODE 2 [])/,(NODE 3 [(NODE 4 [)])]))

;"; returns all labels of the tree in a list
;;; (INORDER traversal)

(DEFINE LABELS (REDTREE PAIR APPEND [])

;;; applies the function f to each label in the tree:
(DEFINE (MAPTREE ?F) (REDTREE (NODE@?F) PAIR []))

39
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;;; Newton-Raphson square root finding via
;;; infinite lists of approximations.

;;; given a number N, which we are trying to find the
;;; square root of, and an an approximation X, the function 6

;;; NEXT, produces the next approximation.
(DEFINE (NEXT ?N ?X) (DIV (+ ?X (DIV ?N ?X)) 2))

;; So, (ITERATE (NEXT num) guess) produces the infinite list
;;; of approximations of the square root of num.

, ,,We will terminate this process when two successive
;;;approximations are within epsilon of each other.
(DEFINE (ABS ?X) (IF (< ?X 0) (MINUS ?X) ?X))
(DEFINE

(WITHIN ?EPS ?AS)

((IF (< (ABS (- ?A ?B)) ?EPS)
?B

(WITHIN ?EPS ?TLAS))
,.,. WHER*..-

?TLAS = (TL ?AS) 1;

?A = (RD ?AS) I;

?B = (D ?TLAS)))

(DEFINE (SQRT ?N ?EPS)
(WITHIN ?EPS (ITERATE (NEXT ?N) (DIV ?N 2)))

-... ,

(DEFINE ESA)V
(RELATIVE ?EPS ?AS).
((IF < (ABS (SUB1 (DIV ?A ?B))) ?EPS)

?B

(RELATIVE ?EPS ?TLAS))
WHEE!*

?TLAS = (TL ?AS) I;
?A = (ED ?AS) /;

?B = (ED ?TLAS)))

(DEFINE (RSQRT ?N ?EPS)
(RELATIVE ?EPS (ITERATE (NEXT ?N) (DIV ?N 2))))
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If a matrix is represented as a list of its rows, .% .."
.,, (which are lists of its elements), e.g.:

I 1231
;;; I 7 961

;;; 1 10 11 12 1

;;; represented as:.
(DEFINE MAT [[1/,2/,3]/,[4/,5/,61/, [7/,8/,9]/,[10/,11/,12]])

.. or an N by M matrix by: J..P

(DEFINE (MATRIX ?N ?M)
?I (SUB1 ?M))] /?I C [I,../,?N]])

;;; then summing all elements of a matrix is accomplished
;;; by the function SUM-MAT:
(DEFINE SUM-MAT (SUM@ (MAP SUM)))

• NB: Constructing and summing a 25 by 25 matrix is accomplished
in a bit over a second.

;;; RREDUCE-N f init [[al,al,a3],[bl,b2,b3]] ->
• ' [(RREDUCE f init [al,bl]), "
;;; (RREDUCE f init [a2,b2])

;;; (RREDUCE f init [a3,b3])]

;;; defined with PRIM-REC:

(DEFINE

(RREDUCE-N ?F ?INIT)

(PRIM-REC (NULLP@BD)
1X (?LISTS ?RES) -

[(RREDUCE ?F ?INIT (MAP RD ?LISTS)).?RES)

(MAP TL) 0(1) ) ---

(DEFINE (DOT-PRODUCT ?V ?W) (SUM (RREDUCE-N * 1 (?V/,?W])))

(DEFINE (MATRIX-TIMES-VECTOR ?M ?V) (MAP (DOT-PRODUCT ?V) ?M))

(DEFINE TRANSPOSE (RREDUCE-N PAIR []))

(DEFINE (MATRIX-TIMES-MATRIX ?M ?N)

(MAP (MATRIX-TIMES-VECTOR (TRANSPOSE ?N)) ?M))

42
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,;; Polya's Sigma Function:

~;; sigma n = sum of prime factors of n
;; e.g. sigma 4=1 + 2 + 4 = 7

sigma 5 =1 + 5 = 6 (sigma p = for all primes p (I + p)) .

;;; sigma n = (sigma (n - 1)) + (sigma (n - 2)) -

(sigma (n - 5)) - (sigma (n - 7))
+ +

• sigma (neg) does not contribute
sigma (0) = n .

;; [1,2,3,4,...] •

;;; [3,5,7,9,...] .
;;merged is [1 3 2 5 3 7 4 9 ... ]

[1 2 5 7 12 15 22
diff-list 1 [nlorestns]
dl n [mer] = [n+m.(dl n+m r)]

;;; sigma 6 = 1 + 2 + 3 + 6 = 12
•;" sigma 6=sigma5+sigma4 -sigmal=6+ 7 - 1= 12

;;; First n elements of a list
(DEFINE (FIRST ?N [?XoR])

(IF (ZEROP ?N) [] [?X*(PIRST (SUB1 ?N) ?R)])) -\

;;; TakeWh p list = longest initial segment of list s.t.

;; (p el) = true for each element el in the segment
(DEFINE (TAKEWE ?P)

(RREDtCE (X (?X) (IF (?P ?X) (PAIR ?X) (K []))) []))

;;; Positive integers
(DEFINE POS-INTS C ,2/, 2 .,1

''" Positive odd integers starting at 3

(DEFINE ODDS [3/,5,..])

(DEFINE (ACC ?N [?M*?R]) ..
((?S.(ACC ?S ?R)] WHERE ?S = (+ ?N ?M)))
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;; The list of coefficients for the infinite sum:

•'; [1,2,5,7,12,15,22,...)
(DEFINE FUNNY-NUMS (l(ACC 1 (INTERLEAVE POS-INTS ODDS))])

• Sigma WITHOUT memoizing

(DEFINE (SIGMA ?N)

(MAP (X (?U) (IF (ZEROP ?U) ?N (SIGMA ?U)))

(TAKEWH (X (?Z) (NOT (> 0 ?Z)))

(MAP (X (?X) (- ?N ?X))
FUNNY-NUMS)))))

p .% . '

;; ; Sigma with memoizing
(DEFINE (MEMO-SIGMA ?N)

(PPMQ,

(MAP () (?U) (IF (ZEROP ?U) ?N (NTH ?U SIGMAS))) V
(TAKEW (X (?Z) (NOT (> 0 ?Z)))

(MAP (X (?X) (- ?N ?X)) S
FUNNY-NUS)))))

;;; [(sigma 1), (sigma 2), (sigma 3),...]
(DEFINE SIGMAS (MAP MEMO-SIGMA [1/,.. ]))

(DEFINE
(P!O (]) 0 v-

(PMMP [?X?)REST]) (+ (NMPP ?REST) ?X))

(DEFINE

(MMPP (]) 0(MMPP [?X.?)RST]) (- (MM ?REST) ?X)) ---
(DEFINE

(MPPM [) 0 ..,

(MPPM [?X.?REST]) (- (PPMM ?REST) ?X))
(DEFINE

(PP)Q4 (1) 0
(PPMQ [?X?REST]) (+ (PMiM ?REST) ?X))

(DEFINE (DIVISORS ?X)

[1.(?D /I ?D e (2/,../,?X] /; (ZEROP (REM ?X ?D))]]) "'
(DEFINE (ALTERNATE-SIGMA ?X) (LREDUCE + 0 (DIVISORS ?X)))
(DEFINE ALTERNATE-SIGMAS (MAP ALTERNATE-SIGMA [1/,..]))

(DEFINE AS-FOR-SHOW (MAP AS ALTERNATE-SIGMAS)) S

44
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;;; Assuming there is a logic program defining an undirected
;;; graph via a collection of clauses of the form (arc ?x ?y)
;;; stating that there isan arc between nodes ?x and ?y, then
;;; following program, when providedwith starting and ending
;;; nodes (S and E), produces a listof all acyclicpaths from
,;" S to E in the graph. A path from S to E, having
;;; intermediate nodes Nl,...,Nk will be represented by the list
;; ; [S,NI,... ,NkE].

(DEFINE (ACYCLIC-PATHS ?S ?E) (PATHS-EXCLUDING ?S ?E []))

- (DEFINE .p

(PATHS-EXCLUDING ?S ?E ?NS)
(IF (= ?S ?E)

[[?E])
(MAP (PAIR ?S)

(FLATTEN
[(PATHS-EXCLUDING ?N ?E [?S.?NSJ) /I

?N £ (NEIGHBORS ?S) /;

"A.(NOT (kE14ER ?M ?NS))]))))

(DEFINE FLATTEN (RREDUCE APPEND []))

(DEFINE (NEIGHBORS ?S) [?N /I (ARC ?S ?N)1)

(DEFINE
((ARC ?X ?Y) *.- (DARC ?X ?Y))
((ARC ?X ?Y) <-- (DARC ?Y ?X)))

(DEFINE
((DARC 1 2))
((DARC 1 3))

((DARC 1 4))
((DARC 2 3))

((DARC 2 5))
((DARC 3 4))
((DARC 4 2))
((DARC 5 6))
((DARC 5 7))
((DARC 7 2)) "v

((DARC 7 3)) -'

(IDARC 1 8))
((DARC 8 2)))
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* ;;; An implementation of Peter Henderson's "Functional Geometry-
;;; in LNF. PH's paper was presented at the 1982 Lisp Symposium.
;;; This implementation makes use of the fact that all
;;; LNF functions are "Schonfinkeled".

,J0

;; A PLOTTABLE-PICTURE is simply a list of PLOTTABLE-LINEs -4

;; where a PLOTTABLE-LINE is a construction of the form
LINE (VEC xO yO) (VEC xl yl).

;, LINE and VEC are constructors. -.

A PICTURE is a function, which when applied to

three arguments (each a vector of the form (VEC x y)), is
' -" "a PLOTTABLE-PICTURE.;

TWO HELPER FUNCTIONS:

-vector-vector addition
(define (vec+vec (vec ?xO ?y0) (vec ?xl ?yl))

(vec (+ ?xO ?xl) (+ ?yO ?yl)))

;" scalar-vector multiplication
(define (scalar*vec ?n (vec ?x ?y))

(vec (* ?n ?x) (* ?n ?y)))

THE BASIC FUNCTIONS:

-" Implements PH's nil (the empty picture), i.e. a function
;; of arity 3 which, when applied, ignores its arguments and
;; returns the empty list.
(define (empty-pic ? ? ?) (1)

;; Implements PH's: plot(grid(m,n,s),a-vec,b-vec,c-vec)
;; (grid m n segs) -> picture

;; (grid m n segs avec bvec cvec) -> plottable-picture
V ;; NOTE: plot is unnecessary in this implementation.

(define (grid ?m ?n ?segments ?a-vec ?b-vec ?c-vec)
(for-each (segment ?xO ?yO ?xl ?yl) in ?segments
instantiate
(line (vec+vec ?a-vec

(vec+vec (scalar*vec (div ?xO ?m) ?b-vec)

(ee(scalar*vec (div ?yO ?n) ?c-vec)))
(vec+vec ?a-vec

(vec+vec (scalar*vec (div ?xl ?m) ?b-vec)
(scalar*vec (div ?yl ?n) ?c-vec))))))
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;;FRACTALS

(define (fractalize ?n ?fractal-fn ?pic ?a-vec ?b-vec ?c-vec)
((if (zerop ?n)0

?plottable-picture
(fractalizel (subi ?n)

?fractal-fn
(flatmap ?fractal-fn ?plottable-picture))

where ?plottable-picture = (?pic ?a-vec ?b-vec ?c-vec)))

(define (fractalizel ?n ?fractal-fn ?plottable-pic)
(if (zerop ?n)

?plottable-pic
(fractalizel (subi ?n)

?fractal-fn
(flatmap ?fractal-fn ?plottable-pic))))

(define (make-lines [?v1/, ?v2e~vecs])
[(line ?vl Iv2)e
(if (nulip ?vecs)

* (make-lines (?v2e~vecs]))])

;a not so terrible fractal function
(define (fractal-fn-1 (line (vec ?xO ?yO) (vec ?xl ?yl)))

((make-lines
[(vec ?xO ?YOU ,

(vec (+ ?xO (*1\3 ?sum))
-(-?yl (*1\3 ?length)) (*2\3 ?height)))/,

(vec (+ (+ ?xO (* 1\3 ?height))
(2\3 ?length)) (- ?yl (*1\3 ?sum)))/,

(vec ?xl ?yl) I)
where* 'length = -?xl ?xO) I

?height = -?yl ?yO) I
?sum =(+ ?length ?height)))

(define man-and-wife
(beside 1 1 man (fractalize 3 fractal-fn-1 man)

(vec 100 100) (vec 500 0) (vec 0 500)))
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(define (pyraman ?n) .3..

(if (= 1 ?n)

man
(above (subl ?n) I (pyraman (subl ?n)) (men-in-a-row ?n))))

(define (men-in-a-row ?n)
(if (= 1 ?n)

man
(beside 1 (subl ?n) man (men-in-a-row (subl ?n)))))

.'efine (men-on-men ?n) (menl ?n 'addl ?n)))

(define (menl ?n ?.m)
(if (zerop ?n)

empty-pic I

(beside 1

(above (- ?m ?n) ?n man man)
(menl (subl ?n) ?m))))

(define poodle "
(fractalize 4 fractal-fn-1 triangle

(vec 100 100) (vec 500 0) (vec 0 500)))

(define replicated-pod
(fractalize 4 fractal-fn-1 (square 100 99)

(vec 100 100) (vec 500 0) (vec 0 500)))

(define four-men (fractal-quartet man fractal-fn-1))

(define (fractal-quartet ?pic ?fn)
((quartet ?pic ?f-1 ?f-2 (fractalize 1 ?fn ?f-2))
where* ?f-1 = (fractalize 1 ?fn ?pic) /;

?f-2 = (fractalize 1 ?fn ?f-1)))

IF.-
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;; Some examples from PH's paper:
;; PB's man
(define man

(grid 14 20

(segment 6 10 0.05 10/,
segment 0.05 10 0.05 12/,
segment 0.05 12 6 12/,
segment 6 12 6 14/,
segment 6 14 4 16/,
segment 4 16 4 18/, 0

segment 4 18 6 19.95/,
segment 6 19.95 8 19.95/,
segment 8 19.95 10 18/,
segment 10 18 10 16/, "
segment 10 16 8 14/, .

segment 8 14 8 12/,
segment 8 12 12 12/,
segment 12 12 12 14/,.
segment 12 14 13.95 14/,

segment 13.95 14 13.95 10/,
segment 13.95 10 8 10/,
segment 8 10 8 8/,
segment 8 8 10 0.05/,

segment 10 0.05 8 0.05/,
segment 8 0.05 7 4/,
segment 7 4 6 0.05/,
segment 6 0.05 4 0.05/,
segment 4 0.05 6 8/,
segment 6 8 6 10]))

(define fatboy (above 1 1 empty-pic man))

(define boy (beside 1 1 fatboy empty-pic)) .

(define (rectangle ?grid-size ?x ?y
(grid ?grid-size ?grid-size ...

(segment 0 0 0 ?y/,
segment 0 ?y ?x ?y/,
segment ?x ?y ?x 0/,
segment ?x 0 0 0]))

(define (square ?grid-size ?x)
(rectangle ?grid-size ?x ?x))
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;; Escher drawing components and functions:

;; PH's p, figure 18
(define mce-p
(grid 36 36

(;; left eye
segment 0 7 6 9/, segment 6 9 0 18/, segment 0 18 0 7/,
;; line between eyes
segment 13 0 9 9/,

right eye
segment 9 12 9 23/, segment 9 23 16 14/, segment 16 14 9 12/,

side of head
segment 24 0 22 9/, segment 22 9 18 18/,
segment 18 18 9 30/, segment 9 30 0 36/,

top of tail
segment 0 36 13 34/, segment 13 34 18 36/,
segment 18 36 26 27/,segment 26 27 36 27/, :ZOO

; line in tail
segment 18 27 36 23/, 1. '

bottom of tail
segment 18 18 27 21/, segment 27 21 36 18/,

tiny line in upper right
segment 32 36 36 34/, N%%

next one down

segment 27 36 29 34/,segment 29 34 36 32/, .,

and the next
segment 22 36 26 32/,segment 26 32 36 29/,
;; first line below tail
segment 20 14 27 16/,segment 27 16 36 14/,

the next

segment 22 9 29 11/, segment 29 11 36 9/,
and, finally, the last .,g' .

segment 24 0 31 5/, segment 31 5 36 5]))

;- PH's q, figure 19
(define mce-q
(grid 36 36

[;; left side of fish I,

segment 0 27 7 29/, segment 7 29 11 31/,
segment 11 31 16 34/, segment 16 34 18 36/,

line in middle of fish

segment 0 23 16 25/,
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left edge .,

segment 0 27 0 36/, segment 0 0 0 18/,
right side of fish .

segment 0 18 9 16/, segment 9 16 13 16/,
segment 13 16 27 22/, segment 27 22 36 36/,
;; leftmost line above fish
segment 4 36 7 29/,
;; next one
segment 9 36 11 31/,

rightmost line above fish

segment 14 36 16 34/,
left eye

segment 18 34 25 34/,segment 25 34 20 30/, segment 20 30 18 34/,
right eye

segment 20 27 27 27/, segment 27 27 22 23/, segment 22 23 20 27/,
right side of tail

segment 36 36 34 22/, segment 34 22 36 18/,
segment 36 18 29 9/, segment 29 9 27 0/,

three lines to the right of the tail
segment 29 0 36 14/, segment 32 0 36 9/, segment 34 0 36 4/,

line in tail
segment 32 25 23 0/,

four lines left of tail (left to right)
segment 5 0 9 11/, segment 9 11 9 16/,
segment 9 0 13 11/, segment 13 11 13 16/,
segment 14 0 18 13/, segment 18 13 18 18/,
segment 18 0 22 14/, segment 22 14 22 20]))

; PH's quartet
• (quartet picture picture picture picture) -> picture
(define (quartet ?pl ?p2 ?p3 ?p4)
(above 1 1 (beside 1 1 ?pl ?p2 ) (beside 1 1 ?p3 ?p4))) sm..

;PH's cycle
• (cycle picture) -> picture

(define (cycle ?pic)
((quartet ?pic

(rot ?rot-rot-pic)
?rot-pic
?rot-rot-pic)

where* ?rot-pic = (rot ?pic) /;
?rot-rot-pic = (rot ?rot-pic))) S
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;; Pa's r, figure 20
(define mce-r
(grid 36 36

[;; top of fish
segment 24 36 27 28/, segment 27 28 36 18/,

;; bottom of fish
segment 0 36 4 27/, segment 4 27 10 22/, segment 10 22 17 18/,
segment 17 18 31 14/, segment 31 14 36 9/,
; line thru fish
segment 13 36 25 23/, segment 25 23 36 14/,

l;; Lines above fish

segment 27 28 36 36/, segment 29 30 36 23/,
segment 31 32 36 28/,segment 33 34 36 32/,
;; bottom semi-horizontal lines
segment 2 2 8 0/, segment 4 4 18 0/, segment 7 7 18 4/,
segment 18 4 27 0/, segment 10 11 27 7/, segment 27 7 36 0/,
;; lower diagonal lines
segment 0 0 17 18/, segment 0 8 10 22/,
segment 0 18 4 27/, segment 0 27 2 32]))

;; PB's t, figure 22

(define mce-t
(quartet mce-p mce-q mce-r mce-s))

;PH's U, figure 23
(define mce-u
(cycle (rot mce-q)))

;; PB's s, figure 21
(define mce-s
(grid 36 36

[;; left fish
segment 18 36 16 30/, segment 16 30 16 23/, segment 16 23 16 18/,

segment 16 18S 18 14/, segment 18 14 23 9/, segment 23 9 36 0/,

,line in fish
segment 23 36 25 23/,

right fish

segment 27 36 30 30/, segment 30 30 32 25/,
segment 32 25 34 21/, segment 34 21 36 18/,

; right eye

segment 29 16 34 18/, segment 34 18 34 11/, segment 34 11 29 16/,
,;left eye
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segment 22 14 27 16/, segment 27 16 27 9/, segment 27 9 22 14/,
lines right of fish

segment 30 30 36 32/, segment 32 25 36 27/, segment 34 21 36 22/,
; bottom hump
segment 0 0 9 5/, segment 9 5 17 5/, segment 17 5 36 0/,
;; next up

segment 0 9 4 2/, segment 0 14 16 9/,
segment 0 18 18 14/, segment 0 23 16 18/,
segment 0 28 16 23/, iegment 0 32 16 30/,
; top border lines

segment 0 36 18 36/, segment 27 36 36 36]))
'-p

;; AND THE REST:

(define sidel (quartet empty-pic empty-pic (rot mce-t) mce-t))

(define side2 (quartet sidel sidel (rot mce-t) mce-t))

(define cornerl (quartet empty-pic empty-pic empty-pic mce-u))

(define corner2 (quartet cornerl sidel (rot sidel) mce-u))

(define pseudocorner
(quartet corner2 side2 (rot side2) (rot mce-t)))

(define pseudolimit (cycle pseudocorner))

(define (nonet ?pl ?p2 ?p3 ?p4 ?p5 ?p6 ?p7 ?p8 ?p9)
(above 1 2

(beside 1 2 ?pl (beside 1 1 ?p2 ?p3))
(above 1 1

(beside 1 2 ?p4 (beside 1 1 ?p5 ?p6))
(beside 1 2 ?p7 (beside 1 1 ?p8 ?p9)))))

(define corner
((nonet
corner2 side2 side2
?rot-side2 mce-u ?rot-mce-t
?rot-side2 ?rot-mce-t (rot mce-q))

where ?rot-side2 = (rot side2) /&
?rot-mce-t = (rot mce-t)))

* (define squarelimit (cycle corner))
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;;; Lee routing:

(DEFINE (LEE-PIC ?S ?D ?OBS)
(APPEND LEE-GRID S(APPEND (SO (ADJ-VEC ?S) 6)

(APPEND (SQ (ADJ-VC ?D) 6)

(APPEND (OBSTACLES (ADJ-OBS ?OBS))
,, (LEE-MAP (LEE-WAVES-AND-ROUTE ?S ?D ?OSS)))))))

(DEFINE (ADJ-VEC (VEC ?X ?Y))
(VEC (+ 10 (* 30 ?X)) (+ 10 (* 30 ?Y))})

(DEFINE ADJ-OBS (MAP ADJ-OB))
(DEFINE (ADJ-OB (O ?V1 ?V2)) (OS (ADJ-VEC ?JV1) (ADJ-VEC ?V2)))

Some examples (P6 pictured after code)
(DEFINE P5

(LEE-PIC (VEC 4 11) (VEC 16 5)
[(OS (VEC 6 8) (VEC 9 10))/,
(OB (VEC 2 3) (VEC 3 5))/,
(OB (VEC 5 1) (VEC 10 7))/,
(OS (VEC 10 9) (VEC 12 15))]))

(DEFINE P6
(LEE-PIC (VEC 2 15) (VEC 16 5)

[(OS (VEC 5 9) (VEC 9 10))/,

(OB (VEC 2 3) (VEC 3 5))/,
(OB (VEC 5 1) (VEC 10 7))/,
(OB (VEC 10 9) (VEC 12 15))]))

(DEFINE P7
(LEE-PIC (VEC 2 15) (VEC 3 15)

[(OB (VEC 5 9) (VEC 9 10))/,
(OB (VEC 2 3) (VEC 3 5))/,
(OB (VEC 5 1) (VEC 1C 7))/,
(OS (VEC 10 9) (VEC 12 15))]))

(DEFINE MAX 500)

(DEFINE LEE-GRID
[(LINE (VEC 10 10) (VEC MAX 10))/,
(LINE (VEC 10 10) (VEC 10 MAX))*
(LEE-POINTS 10)])
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(DEFINE (LEE-POINTS ?X)
(IF (> ?X MAX) V-

(APPEND (LEE-LINE-OF-POINTS ?X)

(LEE-POINTS (+ 30 ?X)))))

(DEFINE (LEE-LINE-OF-POINTS ?X) '-

(LLPTS 10 ?X)) ..

(DEFINE (LLPTS ?Y ?X)
(IF (> ?Y MAX)

[]

(APPEND (CROSS (VEC ?X ?Y) 4)

(LLPTS (+ 30 ?Y) ?X))))

(DEFINE (SQ (VEC ?X ?Y) ?L)
((LINE (VEC (- ?X ?L2) (- ?Y ?L2)) (VEC -?X ?L2) (+ ?Y ?L2)))/,

(LINE (VEC (- ?X ?2) (+ ?Y ?L2)) (VEC (+ ?X ?L2) (+ ?Y ?L2)))/ ,.

(LINE (VEC (+ ?X ?L2) (+ ?Y ?L2)) (VEC (+ ?X ?L2) (- ?Y ?L2)))/,

(LINE (VEC (+ ?X ?L2) (- ?Y ?L2)) (VEC (- ?X ?L2) (- ?Y ?L2)))]

WHERE ?L2 = IDIV ?L 2))

(DEFINE (CROSS (VEC ?X ?Y) ?L)
(((LINE (VEC (- ?X ?L2) (- ?Y ?L2)) (VEC (+ ?X ?L2) (+ ?Y ?L2)))/,

(LINE (VEC (- ?X ?L2) (+ ?Y ?L2)) (VEC (+ ?X ?L2) (- ?Y ?L2)))]

WHERE ?L2 = IDIV ?L 2))

(DEFINE OBSTACLES (RREDUCE (B APPEND RECTANGLE) []))

(DEFINE (RECTANGLE (OB (VEC ?XLL ?YLL) (VEC ?XUR ?YUR)))

[(LINE (VEC ?XLL ?YLL) (VEC ?XUR ?YLL))/,

(LINE (VEC ?XUR ?YLL) (VEC ?XUR ?YUR))/,
(LINE (VEC ?XUR ?YUR) (VEC ?XLL ?YUR))/,

(LINE (VEC ?XLL ?YUR) (VEC ?XLL ?YLL))])"-,A

(DEFINE (LEE-MAP [?WAVES*?ROUTE])
(APPEND (MAP LEE-WAVE ?WAVES)

(LEE-PATH ?ROUTE)))
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(DEFINE (LEE-PATH ?R)
(IF (NULLP (TI, ?R))

[(LEE-SEG (ED ?R) (RD (TI, ?R)))e
(LEE-PATH (TL ?R))]))

(DEFINE (LEE-SEG (VEC ?X ?Y) (VEC ?Z ?W))6
(LINE (ADJ-VEC (VEC ?X ?Y)) (ADJ-VEC (VEC ?Z ?W))))

(DEFINE LEE-WAVE (MAP (X (?V) (SQ (ADJ-VEC ?7V) 8))))

(DEFINE REV (LREDUCE (C PAIR) [)

(DEFINE (LEE-WAVES-AND-ROUTE ?S ?D ?OBS)

((?WS*?Pl WHEPE*
?WS =(WAVES-LEADING-TO, ?D lf?S]/,[]] ?OBS) I
?P (PATH-LEADING-TO ?D (TL (APPEND (REV ?WS) [[?S]/,[]))

(DEFINE (WAVES-LEADING-TO ?D ?WS ?OBS)
(IF (MEMBER ?D (ED ?WS))

((?NW9(WAVES-LEADING-TO ?D [?NW*?WS] ?OBS)l
WHERE ?NW = (NEXT-WAVE ?WS ?OBSf))

(DEFINE (NEXT-WAVE (?W1/, ?W2*?] ?OBS)
[?N /I ?N F. (MKSET (FIATMAP NEIGHBORS 'Wi))I;-

(AND (NOT (MEM4BER ?N 'Ni))

(AND (NOT (MEMBER ?N ?W2))
(NOT (OBSTRUCTED-BY-ANY ?N ?OBS))))J) .-

(DEFINE (OBSTRUCTED-BY-ANY ?N ?OBS)

(MEMBER TRUE (MAP (OBSTRUCTED ?N) ?OBS)))

(DEFINE (!5 ?X ?Y ?Z)

(AND (OR (< ?X ?Y) 7= X ?Y)) (OR (< ?Y ?Z) (=)Y ?2))))

(DEFINE (OBSTRUCTED (VEC ?X ?Y) (OB (VEC ?XL 'YL) (VEC ?XU ?YU)))
(OR (AND (OR ( X ?XL)

( ?X ?XU))
(:5 ?YL ?y ?YU))

(AND (OR (= ?Y ?YL)
(= y ?YU))

(!5 ?XL ?X ?XU))))
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II ,
(DEFINE (PATH-LEADING-TO ?D ?WS)

[?Do(IF (NULLP (TL ?WS))
[1 -

(PATH-LEADING-TO

(RD [?NBR /I ?NBR e NEIGHBORS ?D /;
(MEMBER ?NBR (RD ?WS))])

(TL ?WS)))])

(DEFINE (NEIGHBORS (VEC ?X ?Y))

(APPEND [(VEC ?N ?Y) /I ?N E (NEXT-TO ?X)]
[(VEC ?X ?N) /I ?N E (NEXT-To ?Y)]))

(DEFINE (NEXT-TO ?N)

(APPEND (IF (< ?N 16) [(ADD1 ?N)] () -()

(IF (< 0 ?N) [(SUB1 ?N)] [1)))

(DEFINE SAMPLE-WAVES
(MAP (X (?N) [ (VEC ?N 15)/, (VEC ?N 14)/, (VEC ?N 13)1)

(DEFINE SAMPLE-ROUTE [(VEC 15 15)/,(VEC 15 14)/, (VEC 15 13)1)
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