
NI-ftM I" NN hEhNMTXON KNONI MNCESSIU 1O UNEo(U) 1
SMUS UI Y JN 1 NC IS-T4-165-MO-2 F30M-4-K-Nft

UWCLORSSIFIED F/9 12/5 IL

mhhhhhmmhhhlm

smmhhmomhhhhml

L 6

.2.

II.-.

-,] ppp p,~% ~ % % #~% .-

AD-A 190 166 O FILE

RADC-TR-87-165, Vol I, (of three)
PAlW Teftaleal Report
cte 1187

NEW GENERATION KNOWLEDGE
PROCESSING

DTIC "I.,
Syracuse University ELECTE

J. Ama Robinson and Kevn J. Greene U E 1 W

ROME AIR DEVELOPMENT CENTER,,'<,,.,," ''

005

, %~ ',,% %

Air Force Systems Command •
Griffiss Air Force Base, NY 13441 -5700

08 2 i, o
" "

n0

This report has been reviewed by the RADC Public Affairs Office (PA) and (
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-165, Vol II (of three) has been reviewed and is approved for
publication.

APPROVED: 4f4~ ~J4

NORTHRUP FOWLER III
Project Engineer

APPROVED: %. '00
TechicaP. URTZ, JR.Technical Director e ,

Directorate of Command & Control

FOR THE COMMANDER: LA-%

RICHARD W. POULIOT N% ,
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

% '.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

L
p's ~IL

UNCLASS I FI ED
SECURITY CLASS,F;CATION OF T-s PAGE -i

REPORT DOCUMENTATION PAGE OMBo 0704.0188

la REPORT SEcUR-TY CLASSIFICAT,ON 1b RESTRICTIVE MARKINGS

UNCLASSI FlED N/A
2a SECLRITY CLASSIPCAT:ON :AUTHORITY 3 DISTRIBUTiON, AVAILABLITY OF REPORT
N/A i,- l ,r por i , , -a e;
2b DECLASYFPCATiON DOWNGRADING SCHEDULE distribut ho' i lit

N/A
4 PEPFORMN.G ORCANZAT!ON RPORT NUMBER(S) S MONITOPING ORGAN:IZATiON REPORT NUMBER(S) %

N/A RADC-IR-87-t65. Vol II lot three)

SNAME OF PESFORMNG C AN 2AON bo Ol7FICE SYMBOL a NAME OF MONITORING ORGANIZATION %IN

Syracuse U!niversity] (alae) Rom- Ai P, v-l opIIIt Center (CCLS) - %

SAUL 'D . City State and ZIPCode; 7b ADDRESS City, State, and ZIP Code) O

Syracuse NYi 1324 EGriffiss AlB NY 13441-570Il

A, %Av';- O'P) WN O RNG B Rb OFF'Cr SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
i /) i 3~ igA], .,Pi(if applicable)

Rome Air Developme~nt Ce-ntir rOES F30Oh2-RA-K-0001

Rom Air IeYop, S ent Ctt If ZIaPcCabo 10 SOURC E OF FUNDING NUMBERS 1 O

.ROGPAM PROJECT TASK WORK UNIT

PROG)2 NO8 27OP UNI

Griffiss AFB NY 13441-S700 ELEMENT NO NO NOACCESSTON NO

'I r LE (Include Security Claisficaton7 27

NEW CENrERATION KNOWLEDGE PROCESSING

12 PERSONAL AUTHOR(S)
J. Alan Robinson. Kevii. J. Greene

13a TYPn OF REPORT 13b T:ME COVERED '4 DATE OF REPORT (Year Month, Day) 15 PAGE CO IN-
Final FR.OM Doc 83 TO, Jan 87 October 1987 200

16 SUPPLEMENTARY NOTATO.

N/A

17 COSAI CODES 18 5IBJET TERMS (Continue on reverse if necessar) and identify by block number)
FIELD GRCUP 5.tj.u' Artificial Intelligence, Graph Reduction,

12 n Logic Programming, Comhinators,

Functional Programming,, Prog ramming Languages
19 ABS'RACT (Continue on reverse if riecessar) and dentify by block number)
Ihe main goal of this project was to desi<,n a high-l,v,--l i)ri)Irimming system (which we have

named SUP!R, an acronym for "Syracuse [University Par;il I ,1 xprtssion Redtwf.r") with two
parts: 1.)langa.e which would combine the functional (as in LISP. SAS;L or ML) with the
relati,,nal (as in PRO[LOC) programming concepts into *i single new paradigm and a machine
which would execute programs written in the languagI-, osing rtdtt ion and a multiprocessor

architecture.

The SUPER language is an extension of the basic 1amhda-,alcitIs which we call lambda pus.,
Tt is formally a collection of expressions together with some rules and definitions which ,.N N N

give them meaning and make it possible to do deductive reasoning and computation with them.
The expressions of the SUPER language fall into three main syntactic categories: atoms,
abstractions, and combinations. /)

Volume I describes the SUPER system, and discusses the conceptual backeground in terms of (ove

20 DISTRIBUTION AVAILAB1,!TY OP ARSTRA /T 21 ABSTRACT SCJQ
T
" CIAS'FICATION .. m

ER)NCLASSIFIED'LNLIMITED C1 gAMF AS RPT [DTIC USE S INCLASSIED'
22a NAME OF RESPONSBIE ND ID i)A['26 '1EPI.C 'Incude Area Code) 122(~ CE SIM5U
Northrup Fowler ITT (315) 330-/794 '.DF (E-.%

O0 Form 1473, JUN 86 Previous editon are obsolete SECURITY CLASSIFCA ON 01r "jS PA(E

UNCLASSIFIED

, .- w 4 %" M.- - @ . - .-" -" @ . -..- • .'4 -
% .1 %'% '%.~ % %% %

UNCLASSIFIED

Block 19. Abstract (Cont'd)

which it can best be understood. In developing these ideas over the period of the project
we devised and implemented two related single-processor reduction systems, ',NF and LNF-
Plus, as experimental tools to help us learn more about SUPER language design issues.
These systems have tujrned out to be of considerable interest and utility in their own
right, and they have taken on separate and independent identities. _

Volume 2 contains a detailed presentation of the single-processor software programming
s3ystem LNF which was develo~ped to serve as a test h.-d and simulation tool for the
"classical" part of the SUPER system.

Volume 3 presents the final, enhanced version of LNF, which we call [,N-Plus and which
provides the user with as close an approximation a-, we can achieve on a single processor
of the SUPER system. V'olume *3 is also designed as a uiseful guide to someone who wishes
to use the system for '-:perimental computations.

7 0F

NTIS rr 4 S

IL

% % \

'eS

-------------------- Z

1fof
%

% N % ~ % -

Abstract g~o,

In the first third of this thesis, three well known reduction calculi: A. Church's X-
calculus, M. Sch6nfinkel's SKI-calculus, and C.P. Wadsworth's graph oriented X-calculus
(X-G-calculus) are defined. Sch6nfinkel's classic transformation of X-calculus well-formed
formulas (wffs) into variable-free SKI-calculus wffs is also presented. A new notion, 4'
lazy-normal form, a generalization of the SKI-calculus' concept of normal form, is then
defined and compared with Wadsworth's concept of head-normal form. Head-normal 0
form is a generalized notion of normal form in the X-calculus. It is demonstrated that an
SKI-calculus wff in lazy-normal form is an outline of the wff's normal form (if one exists)
- i.e. its normal form will have the same initial atom and the same number of argu-
ments. Other results relating X-calculus wffs in head-normal form to SKI-calculus wffs in
lazy-normal form are stated and proved. *

The ideas behind M. Sch6nfinkel's SKI-calculus, C.P. Wadsworth's X-G-calculus, and % %
D.A. Turner's SASL implementation are combined with the concept of lazy-normal form ,e
to produce a new deterministic combinator based graph and machine oriented reduction P -% -N 0
calculus: the LNF-calculus. The LNF-calculus is equivalent in power to the X-calculus et I,
al., but is much more directly and efficiently implementable. This is due primarily to 0
the structure sharing properties of the LNF-calculus wffs. Both garbage nodes and for- %
warding arcs (indirection pointers), concepts that are usually relegated to a calculus' im-
plementation, are given formal definitions in this calculus.

The design and experimental Lisp Machine implementation of LNF, a fully lazy higher
order purely functional programming language with reduction semantics, are discussed.
The LNF compiler transforms high level expressions into representations of LNF-calculus
wffs. LNF's runtime system, a direct realization of the LNF-calculus' "is reducible to"
relation, takes as input LNF-calculus wffs and produces irreducible wffs (wffs in lazy- ,.\, ._
normal form) as result. The thesis ends with brief discussions of alternate approaches to
functional programming language compilation and runtime system organization.

.. . -..-"

%•
o% %, ., . %%% %N

,-%%... ,.- .

.;,,'''.'' .,''',''.2.:,'':''','',.,',. "-'% ,, -,%:':, . ,k,- '¢,", -,:',:,, .' :%.,-..,,,. ., , ,; .:L,.". .-.

iv

% -i

Acknowledgements_

%

I am greatly indebted to my advisor, Professor J. Alan Robinson, for his guidance and
assistance throughout all stages of this research. S

I am also very grateful to Professor F. Lockwood Morris, Heinz Schljtter, and Eric
Boutteloup, who gave me valuable commenits and suggestions on various drafts.

Furthermore I am thankful to my wife, Sue, for her unfailing support, endless patience,

10 , I1

%%'

N %
J" -: 'r

*,*u -A- -Z

Table of Contents

Abstract .. 1

Acknowledgements .. iii
1. Foundations.................................. _.. 1

1.1 Reduction Calculi ... 1 I~
1.2 The X-calculus... 3

1.2.1 Well-formed Formulas 3
1.2.2 Reduction .. 4
1.2.3 Head-normal Form.. 7

1.3 The SKI-calculus.. 8
1.3.1 Well-formed Formulas 8
1.3.2 Reduction .. 9 *

1.3.3 Lazy-normal Form 1
1.4 Relating the X-calculus and the SI(I-calculus.. 15

1.4.1 Some Results... 16
1.5 The X-G-calculus... 22

1.5.1 Well-formed Formulas... 23
S1.5.2 Reduction.. 23

1.6 Summary.. 27
d~~~. % J

2. Two Deterministic Graph Oriented Reduction Calculi 29
2.1 The SKI-G-calculus .. 30

2.1.1 Well-formed Formulas 30
2.1.2 R ed u ctio n 39
2.1.3 On Realizing the SKI-G-calculus 48

2.2 T he LN F-calculus 49
2.2.1 Constructions, Functions, andl l'nknowvns 49-
2.2.2 Curry's and Turner's Functors 50
2.2.3 N um eric Functors ... 60
2.2.4 Boolean Functors 64
2.2.5 Pair and List Oriented Functors 66

3.1 3A3. Sxeimena ExrsIonsmnato of teL FLanguage 7

3 1 System O rganization 7

3. Ztais Rpesnttin fLNF-wffs ... 78

;I % % i . . .-

3.3.2 L am bda E xpressions .. 82

3.3.3 Expressions with Auxiliary Declarations .. 87

3 .3 .3 .1 W H E R E -ex p s ... 8 9

3 .3 .3 .2 W H E R E *-exps ... 89

3.3 .3.3 W H E R E R E C -exps .. 90

3 .3 .3 .4 F u n ction D eclaratio ns ... 94 %

3 .3 .4 L is t E x p ressio n s 9 6

3 .3 .4 .1 E x p licit L ists 9 8. .-

3.3.4.2 A rithm etic Sequence E xpressions .. 98

3 .3 .4 .3 Im p licit L ists .. 10 0 . .. :.

3.3.5 C ond ition al E xpressions ... 103

3 .3 .5 .1 IF E xp ressio n s ... 104

3.3.5.2 C A S E E xp ressions ... 104 %

3.3.6 C om piler Sum m ary 108

3.4 L N F 's R untim e E nvironm ent ... 108
3.4.1 C ontrolling the R eduction ... 109 '

3.4.2 The Functor Specific Reduction Routines .. 114 I S

3.5 Displaying the Results .. 123

3.6 S um m ary 125 %

4. Summary, Related Work, and Future Plans 127
4.1 Formal Aspects... 127
4.2 LNF's Implementation 128

4.2.1 o m la tsC.l............. 128 * Ve .-Wk , -k

4.2 .2 T he R un tim e S ystem .. 130

A. LNP-calculus' Linearized Reduction Rules .. 133

A .1 S u bstan tive R ed uction R ules 133

A .2 C on textual R ed uction R u les 137
B. BNF-like Description of LNF Expressions141

C. Examples of LNF Function Definitions 147
C .1 S o m e U tility F u n ctio ns 14 7

C .2 C losing U p "Sets" U nder L aw s - 148
C .3 G eom etric Sequences and Series 150

C .4 F u n ctio n al G eo m etry 15 1 %

D. Sample LNF Session .. 161 %, e%

B ib lio g r a p h y 1 8 3-
.. -..

% %p p. %* N.
* 0

%

% % %'..~vj %.* p. p.p .p% %A

* l

Page 1,

* S

Chapter 1 ,% N Q,

Foundations %
* 0

At its core, the implementation of LNF is a realization of a formal reduction calculus
called the LNF-calculus. This chapter contains some preliminary conventions,
definitions, and results concerning reduction calculi.

First, a formal definition of reduction calculi is given. Next, two reduction calculi: the X- . %
calculus ([Church 1936], [Church 1941]) and the SKI-calculus ([Schdnfinkel 1924]) are
presented. Sch6nfinkel's classic transformation of X-calculus well-formed formulas (X- S

wffs) into SKI-calculus well-formed forrrulas (SKI-wffs) is then defined. Wadsworth's
concepts: head-redex and head-normal form are presented next. These concepts original-
ly appeared in Wadsworth's Ph.D. thesis ([Wadsworth 1971]). Wadsworth's concept

head-normal form is a generalization of Church's normal form in the X-calculus (X-
normal form). The notions initial-redex and lazy-normal form are introduced. The no- - - ,
tion lazy-normal form is a generalization of the SKI-calculus' normal form (SKI-normal 0

form). One would not. be far off by saying that lazy-normal form is to the SKI-calculus
as head-normal form is to the X-calculus. Some results relating the two calculi are then
stated and proved. A few new results relating SKI-wffs in lazy-normal form to X-wffs in
head-normal form and to SKI-wffs in SKI-normal form are also proved. The chapter ':., :.-
ends with a very brief discussion of X-G-calculus [Wadsworth 1971] (a modification of
the X-calculus in which the wffs are rooted acyclic graphs).

1.1. Reduction Calculi

In the definitions to follow, the definienda appear in italics.

Definition 1.1: A reduction calculus R can be characterized by its set of well-formed .

formulas (R-wfl) and a binary relation "immediately reducible to" (R-imr) on R-wff.

Reduction calculi, so defined, are exactly the "General Replacement Systems" of 0

B.K. Rosen in [Rosen 1973]. V

BOLDFACE UPPERCASE identifiers will be used for meta-variables denoting arbi-' _
trary R-wffs. Different identifiers denote, in general, different R-wffs. The identity "'- "-

~ -' - d. ..

-p-p - -. V ~*~ ,e~.

Page 2

relation on R-wffs is denoted by "-".

Definition 1.2: Let R be a reduction calculus, defined by the set of well-formed formu- .-WR,
las R-wff and binary relation R-imr.
" Let A, B E R-wff. A immediately reduces to B iff the ordered pair <A,B> in

R-imr. <AB> in R-imr is often written A R-imr B.
" Let A E R-wff. A is (ir)reducible iff there is (no) B in R-wff such that A R-imr B.
" The sequence A1 ,A 2, . . A, is a reduction sequence of A 1 iff A i immediately

reduces toAj+i, for i=1,.. . , n-1.
* R-red is the transitive closure of R-imr.
" Let A, B E R-wff. A reduces to B (B is a reduction of A) iff A R-red B.
" R-red* is the reflexive transitive closure of R-imr.
* Let A, B, C E R-wff. If A R-red* B and A R-red* C implies the existence of a D

in R-wff such that B R-red* D and C R-red* D then R is said to have the
Church-Rosser property (R is Church-Rosser). The name comes from the work
done by A. Church and J.B. Rosser in [Church 1936].

" R is deterministic iff R-imr is a partial function.

Note that any deterministic reduction calculus R trivially has the Church-Rosser pro- 0

perty.

An Example of a Simple Reduction Calculus:

Definition 1.3: Let SUM be the reduction calculus defined by SUM-wff and SUM-imr.

Definition 1.4: SUM-wff is defined inductively as follows: . ,.. -N
Every integer is a SUM-wff.

• f A and B are SUM-wffs, then (A + B) is a SUM-wff.

Definition 1.5: SUM-imr is defined inductively as well: e
* (I + J) SUM-imr K, for all integers I, J, and K where K is the sum of I and J.
* (A + B) SUM-imr (C + B), for all SUM-wffs A, B, and C where A SUM-imr C.
" (A + B) SUM-imr (A + C), for all SUM-wffs A, B, and C where B SUM-imr C.

A..

From these definitions it can be seen that no integer is reducible anat that any SUM-wff
A which is not an integer is reducible.

A reduction sequence (there are, of course, many others) of the SUM-wff
k((3 + 2) + (0 + 10)) + (89 + 4)):

(((3 + 2) + (o + 10)) + (89 + 4)),
(((3 + 2) + 10) + (89 + 4)),
((5 + 10) + (89 + 4)),(5+ 10) + 93),:.:.:
(15 + 93),

It is easy to verify that even though SUM is not deterministic it is Church-Rosser. '

,,.,'.,"5". :,.% * "._," :i , : ' " "' J'.4J '%,:.. - -- " .".', ,"," -".N.."' - . -" '.o,-.".'".r. -0* .-jb """,'.,4 le.--" -- %,-* "%% %"/''. ?? ,.''"'" "."-',t i:',""','."': - ".° ".""" " ." " ' '
i ,,,,,5 .,,. M ,. , "-".,.,,.,., . ,,..,.'.",.., .. ,%' 40. ,,- ',.: .. _ :. .' ,,, :.. ,.". .".'..-2 .- ,." '..-.-.-.----I pn r o¢ 's,; d 4, p,,

M

Pt.': .#°*, tIr' ,"' , ' -' '0 % .-" %' %-= %_t. ,9 , . r .= .. , %, % ', ,., ,, . , ,

PageS %~V

1.2. The snkcalcuu

The use of metavariables follows (for the most part) that of A. Church in [Church 19411.
Boldface lowercase identifiers denote variables. BOLDFACE UPPERCASE .

identifiers denote arbitrary X-wffs.

Definition 1.6: Let X-calculus be the reduction calculus defined by the set of well-
formed formulas X-wff and binary relation X-imr.

1.2.1. Well-formed Formulas

It will often be convenient to use shorthand of the form FUNCTION- 0

NAME[ARG 1, . . , ARG,] to stand for X-wffs and PREDICATE-NAME-
P[ARG1, . . . , ARG,,] to stand for predications. For example, the piece of shorthand %

OPERATOR[A] (defined below) will stand in for a X-wff and the shorthand VAR-P[A] ,',.-I

(also defined below) will stand in for the predication "A is a variable". Before its use.
each function and predticate will be given a formal definition. In these definitions, the
author will make use of the following familiar forms:
* (and C, .. C,)
e (orD .. Di

* (not B)
then El -

K[elseif Bi
then Ei 1*

else E.)
" (let <NAME> be El in E2)
" (E. where <NAME> is E 2)

Definition 1.7: VAR is the set of all lowercase identifiers. Elements of VAR are called
variables. Some examples of variables: "a, flat", and "tire". For all variables v, %
VAR-P[v] is true. .,

Definition 1.8: X-uff is defined inductively as follows . ,
* Every variable is a X-wff.
* If v is a variable and B is a X-wff, then (X v B) is a X-wff.
* If A and B are X-wffs, then (A B) is a X-wff.

Definition 1.9: Let A = (X v B). A is an abstraction (ABSTRACTION-P[A]), v is the
bound variable of A (v B VIA]), and B is the body of A (B = BOD VIA]).

Definition 1.10: Let C (A B). C is a combination (COMBINATION-P[C]), A is the .

operator of C (A = OPERA TOR[C]), and B is the operand of C (B =

OPERAND[C]). .

The pair of parentheses surrounding combinations is often omitted. Further, the combi-
nations: ((A B) C), (((A B) C) D), etc. are written: A B C, A B C D, etc. Using this
shorthand (association of combination to the left) for the combination ((A B) (C D))
results in A B (C D).

.,.II.-
%*%''" '-; • '.' ' % N.%.% %" " " '-'' ."'% ..''%,' ",- . % ". .P,'(' "-'.".'. '--' 4' ' "'.€_ ".**" -"" p e ' -* .-' "- -..

1

w %

Page 4

Definition 1.11: Let A E X-wff The pair sfB>, where sf is a function (a composi-

tion of the selector functions BODY OPERATOR, and OPERAND) and B is a X-
wff, is a subformula of A if sf[A] B

Note that x is not a subformula of (X x v) The phrases "B is a subformula of A", "B
occurs in (the context of) A", and "A contains B' are often used in place of the some-
what unwieldy phrase " <sf.B > is a su bformula of A'"

Definition 1.12: Let v E VAR and B - \-wff The variable v occurs free in B (v has a
free occurrence in B) iff
(orB = v

(and B = (C D)
v occurs free in either C or D)

(and B = (X u C)
it is not the case that u = v
v occurs free in C)). I % %.' .%-

Definition 1.13: Let v C VAR and B E X-wff. The variable v occurs bound in B (v has, -.
a bound occurrence in B) iff S -

(or (and B = (X u C)
(or (and (u = v)

(u occurs in C))
v occurs bound in C))

(and B = (C D) *
v occurs bound in either C or D)).

It is possible that a variable has both free and hound occurrences in the same N-wfF For
exaimple, consider the variable v in the \-wff (v (X v v)). Its occurrence in the operator
:s ,r .- tnd its occurrence in the operand is bound.

Definition 1.14: The free (bound) variables of a N-wff A are those variables which have
free (bound) occurrences in A. . -".

* . -. ..", ,

Definition 1.15: Let A E X-wff. A is closed ilT A has no free variables. ":"

1.2.2. Reduction

The definition of the "immediately reducible to" relation in the X-calculus depends
directly on the notion of substitution. Informally, SUBST[A,vB] (defined formally
below) is B with all free occurrences of v in B replaced with A. Although it is easy to
informally communicate the essence of the notion, it is also easy to make a mistake
when writing out the formal definition. Besides having a complicated formalization, the
function SUBST is expensive to implement. This is one of the reasons for basing the
LNF-machine on the LNF-calculus a reduction calculus without variables and substi-
tution.

% %

%-
%* %"

- . . ? ~ ~ *~f~ ~ *~• ...- ".-*fJ
%% °, %% %

% % .% %

% % %

Page 5

Definition 1.16: Let v E VAR and A, B -% -wff.
SUBST[A,v,B]" -

(ifJB = v
then A 'I

elseif VARP [B]
then B

elseif B = (C D)
then (SUBST[A,v,C] SUBST[A,v,D])

elseif B = (X v C)
thenB 11.

elsetf (and B = (X u C)
;; it is not the case that u = v
u does not occur free in A)

then (X u SUBST[A,v,C])
else B = (X u C),

it is not the case that u v, ari d
u occurs free in A) ,

(X x SUBST[A,v,SUBST[x,u,C]])
where x is a variable which does not occur

in either A or C).

Definition 1.17: (X v B) a-imc (a-converts) (X u SUBST[u,v,B]), for all X-wffs B and
all variables u and v, where u does not occur free in B.

Definition 1.18: ((X v B) A) 3-imr SUBST[A,v,B], for all variables v and X-wffs A and
B. Any X-wff of the form ((X v B) A) is a /-redex (/3-REDEX-P[((X v B) A)]). The
X-wff SUBST[A,v,B] is the O-reductum (contraction) of ((X v B) A).

Definition 1.19: X-imr is defined inductively:
* A X-imr B if A a-imc B.
e A X-imr B if A/3-imr B. W.

9 (A B) X-imr (C B) if A X-imr C.
o (A B) X-imr (A C) if B X-imr C. .- -
0 (X v B) X-imr (X v C) if B X-imr C.

The five clauses in the definition of X-imr are called reduction rules of the X-calculus.
The first two reduction rules differ from the other three. Both the first two rules

specify a redex-reductum pair" whereas the other three "specify a reduction context -

i.e. a context in which a reduction may take place". For this reason the first two rules V,..

will be called substantive reduction rules and the others contextual reduction rules.

The contextual reduction rule:

(A B) X-imr (C B) if A X-imr C

says that the combination (A B) is a reduction context for A. Similarly, the contextual .,
reduction rule: 0

(AB) X-imr (A C) ifB X-imr C

states that the combination (A B) is a reduction context for B. Together these two
rules indicate that the X-calculus is nondeterministic. Anytime a single wff is a reduction

I

• ~ ~~ ~ 'Y .. ,, . : - , .. ,.,., ,,

Page 6

context for more than one subformula, the "immediately reducible to" relation (if
nonempty) will not be a partial function.

Definition 1.20: Let A, B be X-wffs. In case A X-imr B by virtue of the fact that ASF
-imr BSF where ASF (BSF) is a subformula of A (B), then ASF is the redex con-

tracted in the reduction from A to B

Definition 1.21: X-red is the transitive closure of the relation X-imr. 0]
I

Definition 1.22: X-red* (2-red*) is the tetlexive transitive closure of the relation X-imr
(--imr). " - e "o

. - ,.M ..-

Theorem 1.1: The X-caculus is Church-Rosser For the proof, see [Church 19411.

Definition 1.23: A X-wff E is in ,-normal form (X-.VF-P[E]) iff E does not contain any
0-redexes.

Definition 1.24: Let A, B be X-wffs. If A X-red* B and X-NF-P[B], then B is a X- - .- ,
normal form of A. b

% '..% % %

Definition 1.25: Let A E N-wff. Assume (not X-NF-P[A]). By definition, A contains at :
least one 63-redex. The leftmost occurrence of a 3-redex of A, (LEFTMOST-3- %:-'.. ,
REDEXIA]) is defined as follows.
LEFTMOST-3-REDEX[A] E ...

(if i-REDEX-P[A]
then A

elseif A = (X v B) .
then LEFTMOST-3-REDEX [B] ...

se ;; A = (B C)
%

(if B contains a ,3-redex .*

then LEFTMOST-;3-REDEX[B]
else LEFTMOST-3-REDEX[C]))

Definition 1.26: Let A, B be X-wffs. A X-normal-imr B iff A X-imr B and the redex
contracted was LEFTMOST-3-REDEX[A].

In (Church 19411, the reduction calculus \-calculus is called the "calculus of -K- %
conversion", the relation X-red* is called 'conv-I-Il". and the relation X-nornal-imr is % % %
called a "reduction of order one",

Church's "calculus of X-conversion" (also presented in [Church 1941]) differs from his * •
"calculus of X-K-conversion" in the definition of well-formed formulas, In Church's X-
conversion calculus, an expression of the form (X v B) is well-formed only if there is at
least one free occurrence of v in B. % V, ,%

Definition 1.27: X-normal-red is the reflexive tran,itive 'lusure of N-normal- inr.t

Definition 1.28: Let A, B be X-wffs B t, Hz x. zoruni r.'ductiou Qf A iff A \-normal- %
red* B.

--,-

Page 7

Definition 1.29: Let AI,A 2, A, be X-wffs. A1 ,A, . . , A, is a X-normal order " -]

reduction sequence iff A, X-normal-inr A, -1, i =1,.... n -1.

Theorem 1.2: The X-NF Standardization Theorem. Let A E X-wff. A has a X-normal
form iff there exists a X-wff B such that X-NF-P[Bj and A X-normal-red* B. For the _
proof, see [Church 19411. PP

Note that the reduction calculus characterized by the sets X-wff and X-normal-imr is a
deterministic one. This is true because each X-wff contains at most one leftmost -redex %
and, hence, is a reduction context for at most one of its subformulas.

1.2.3. Head-normal Form

Head-normal form is a generalization of the concept of X-normal form - i.e. a X-wff may
have a head-normal form without having a X-normal form.

Definition 1.30: Let A E X-wff. A contains a head-redex R iff
(or /-REDEX-P[A]

(and A = (X v B)
B contains a head-redex) %

(and A (B C)
(not O-REDEX-P[A]) %

B contains a head-redex)).

Definition 1.31: Let A E X-wff contain a head-redex. The head-redex of A is defined to %.%
be HEAD-REDEXA where:
HEAD-REDEX[A] D. "" "

(if O-REDEX-P[A]
then A

elseif A = (X v B)
then HEAD-REDEX[B] . .

else HEAD-REDEX[OPERATOR[A])

Definition 1.32: Let A E X-wff. A is in head-normal form (HEAD-NF-P[A]) iff
(or VAR-P [A] ,7_..ft ,

(and A = (X v B)
HEAD-NF-P[B]) -,

(and A = (B C) "'" -""

(not O-REDEX-P[A])
HEAD-NF-P[B])).,.,-.. ,

Some notes on head-normal form: "'' -:
* An alternate definition for a X-wff A being in head-normal form is that A is in head-

normal form iff A does not contain a head-redex.
* A X-wff in head-normal form always looks like:

(XxI.. (Xx,(vB, ' B,.)))nm >0

o A X-wff not in head-normal form always look like:
(Xx . (Xx. (((Xv B) A) B, B))), n,m >0.

-.
% P

Page 8

Definition 1.33: Let A, B be X-wffs. A head-imr B iff A X-imr B and the redex con-
tracted is the HEAD-REDEX[A]. -

- -

Definition 1.34: head-red* is the reflexive transitive closure of head-imr.

Definition 1.35: Let A, B be X-wffs- B is a head reduction of A iff A head-red* B.

As mentioned above, the concepts head-normal form, head-redex, and head reduction
(defined above) appeared originally in [Wadsworth 1971].

%

Theorem 1.3: Let A E X-wff If A has a X-normal form, then A has a head-normal ..

form. However, A having a head-normal form does not imply that A has a X-normal
form. The X-wff (v ((X x (x x)) (X x (x x)))) is an example of a X-wff which has a
head-normal form (it is in head-normal form) but has no X-normal form. 0

The theorem above says, simply, that the subset of X-wffs having a head-normal form
contains the subset of X-wffs having a normal form.

Thieorem 1.4: The HEAD-.VF Standardization Theorem. Let A E X-wff. A has a head-
normal form iff there exists a X-wff B such that HEAD-NF-P[B] and A head-red* B. w A
For the proof, see [Wadsworth 1971].

The reduction calculus characterized by the sets X-wff and head-imr, like the calculus
based on the sets X-wff and X-normal-imr, is deterministic.

1.3. The SKI-calculus

The IO-calculus, as presented herein, is essentially Schdnfinkel's Funktionenkalkiil
(with Schdnfinkel's functor C renamed to K) presented in [Schdnfinkel 1924]. The SKI-
calculus is equivalent in power to the X-calculus. K.

Definition 1.36: Let the reduction calculus SKI-calculus be defined by the set of well-
formed formulas SKI-wff and the binary relation SKI-imr.

1.3.1. Well-formed Formulas

Definition 1.37: SKI-wff is defined inductively as follows: ..

* Every variable is an SKI-wff. ,-: -:
" The functors S, K, and I are SKI-wffs. For all functors X, FUNCTOR-P[X].•-

These functors are also called combinators. _

" For all SKI-wffs A and B, the combination (A B) is an SKI-wff. " *'" " -

Definition 1.38: An atom is either a variable or one of the functors S, K, or I. For all
atoms X, A TOM-P[X]. 4.....

Boldface lowercase identifiers now stand for arbitrary atoms, not just variables.
BOLDFACE UPPERCASE identifiers now stand for arbitrary SKI-wffs. ""

%

Page 9

Definition 1.39: Note that every SKI-wff can be written in the form:

aEl • -E, n >0.

The atom a is the initial atom of the SKI-wff. The SKI-wffs El . . , E, are the ar-
guments of the SKI-wff and E, is the SKI-wff's ith argument.

Definition 1.40: Let A E SKI-wff. The pair <sf,B>, where sf is a function (a compo-
sition of the selector functions OPERATOR and OPERAND) and B is a SKI-wff, is a

subformula of A if sf[A] = B.

Definition 1.41: Let X E SKI-wff have the two subformulas: <yf,Y> and <zf,Z>.
These subformulas are disjoint iff there is no function f such that yf = fo zf (where
0 denotes functional composition) in which case Z contains Y, or zf = foyf in Jo
which case Y contains Z.

1.3.2. Reduction, S

Reduction in the SKI-calculus does not depend on the notion of substitution. Thus, the % WW "
relation SKI-imr is much easier to formalize than X-imr.

Definition 1.42: SKI-imr is defined inductively:
0 SFCXSKI-imr F X (G X).
* K X Y SKI-imr X.
* I X SKI-imr X.

* A B SKI-imr C B if A SKI-imr C.
* A B SKI-imr A C if B SKI-imr C %

The five clauses in the above definition of SKI-imr are called the reduction rules of the
SKI-calculus. The first three are the calculus' substantive reduction rules and the other
two its contextual reduction rules. It is easy to see that the SKI-calculus, like the X-
calculus, is nondeterministic.

Definition 1.43: An SKI-wff E is an SKI-redex iff (SKI-REDEX-P[E]) where

SKI-REDEX-P [E] Del %

(or E =-- S F G X
E KXY
E I X).

%N

C -,,,,,

Page 10

Definition 1.44: (from [Sanchis 1967]) Let X E SKI-wff. Let U and Z be SKI-redexes
contained in X. Let Y be the SKI-wff which results from contracting U - i.e. X
SKI-imr Y. The residuals of Z in Y are as follows (each of the residuals will be an
occurrence of an SKI-redex in Y):
e If Z is U, then there are no residuals.
o If Z is disjoint from U, then (since Z is unaffected by the contraction) the

corresponding occurrence of Z in Y is the residual of Z.
* If Z is contained in U, then (depending on which type of SKI-redex U is) there

are zero, one or two residuals. There are none in case U = K A B and Z is in B.
There is one in case U = IA, K A B, S ABC, or SB AC and Z is in A-it
is the occurrence of Z in A which is in Y. There are two in case U = S A B C
and Z is in C -each of the occurrences of Z in the two occurrences of C which
are in Y.

* If Z contains U, then the residual is Z1 , where Z1 is the SKI-wff in Y such that Z
SKI-imr Z1 by virtue of contracting U.

Observe that every residual of Z is an occurrence of an SKI-redex having the same
initial atom and same number of arguments - i.e. the same type of SKI-redex as Z.

Definition 1.45: SKI-red is the transitive closure of SKI-imr. 0

Definition 1.46: SKI-red* is the reflexive transitive closure of SKI-imr. .

Lemma 1.1: Let X E SKI-wff. If X SKI-imr Y 1 (by virtue of contracting SKI-redex Ul) ,
and X SKI-imr Y 2 (by virtue of contracting SKI-redex U2), then there is an SKI-wff
Z such that Y, SKI-red* Z (by virtue of contracting the residuals of SKI-redex U 2)
and Y 2 SKI-red* Z (by virtue of contracting the residuals of SKI-redex U1). For a
proof, see [Sanchis 1967].

Theorem 1.5: The SKI-calculus is Church-Rosser. For a proof, see [Sanchis 1967].

Definition 1.47: An SKI-wff E is in SKI-normal form, (SKI-NF-P[E]) iff it does not con- ',- .,
tain any SKI-redexes.

Definition 1.48: Let E, F E SKI-wff. F is the SKI-normal form of E iff SKI-NF-P[F]
and E SKI-red* F. •

Definition 1.49: Let E, F E SKI-wff. E is equivalent to F (EQUIVALENT-P[E,F]) if
the SKI-normal form of E = the SKI-normal form of F.

Informally, two equivalent SKI-wffs are said to be different representations of the same
object. The SKI-normal form is thought of as the preferred (or canonical) representation •
of the object. " "

.N'% N.

• -- % % -
if. .O

;--.

• -,.,. T , p . ,p-a, ' J"' ' " 4 4 ,,'"" 4 ,ed * 4 0

% %'
% %

Page 11

Definition 1.50: Let A E SKI-wff. Assume (not SKI-NF-P[A]). By definition, A con- Y--

tains at least one SKI-reclex. The leftmost occurrence of an SKI-redex in A is,
(LEFTMOST-SKI-REDEX[A]) where
LEFTMOST-SKI- RED EX [A]) _2

(if SKI-REDEX-P [A]
1

then A
elseif OPERATOR[A] contains an SKI-redex

then LEFTMOST-SKI- RED EX [OP ERATOR [A]])A
else LEFTMOST-SKI-REDEX[OPER AND [A]l)

Definition 1.51: Let A, B E SKI-wif A SKI-normnal-imr B iff A SKI-imr B and the

redex contracted was the LEFTNIOST-SKNII-REDEX LA]

Definition 1.52: Let A1 ,A2, A,~ E SIK-wif. A1,A2), , is an SKI-normal
order reduction sequence iff Ai SKI-normal-imr A,-,, i =1, n -1.

* Definition 1.53: 51KU-normal-red* is the reflexive transitive closure of SKI-niormal-imr.

* Definition 1.54: Let A, B E SK<I-wif. B is an SKI-normal reduction of A iff A SKI- a.

normal-red* B, 'j"'~

* Theorem 1.6: The SKI-NF Stan dar dization Theorem. Let A E SKI-wif. A has an SKI- I

normal form iff there exists an SKI-wifl B such that SKI-NF-P[B) and A SKI-%

normal-red* B. For the proof, see [Curry 1958).

The reduction calculus determined b% the sets I-KT<-wff and SKI-normal-imr is deter- %~. A\
ministic, since the leftmost SIK-redex (if it, exists) is uinique.

-e e
W 1.3.3. Lazy-normal Form

It was stated in the introduction to this chapter that the concept lazy-norm-al form ill

* the SK-calculus is not unlike the concept 4~ head-normial form in the \-calculus. Lazy- %'
the S I

>,,,%,fs inhead

normal form is defined inthis section and then later on it is shown that -fsihed*

Fnormal form, when transformed into SKI-Nffs via Sch6nfinkel's abstraction algorithm,%
rare in lazy-normal form.-

Definition 1.55: Let E E SKI-wif. E contains art initial redex iff

(or SKI-REDEX-P[E]l
S (and COMBINATION-P [E]

OPERATOR[E] contains an initial redex))%e%

Definition 1.56: Let E E SKI-wif contain an initial redex. The i*nitial redex of E is
defined to be (INITIAL- REDEATEI) where J

INITIAL-REDEX)[E] Dol

(if SKI-REDEX-P [E]
then E

Page 12

The SKI-redexes which are not initial redexes are called interral redexes since for an
SI0-wff X = a X, ...X,, , each of its internal redexes are contained in one its Xi s. -

Definition 1.57: An SKI-wff E is in lazy-normal form (LAZY-NF-P[E]) iff E does not
contain an initial redex. -

Observe, therefore, LAZY-NF-P[E] iff E .s an atom, or E is a combination but not an
SKI-redex, and the operator of E is in lazy-normal form. S

Definition 1.58: Let E, F E SKI-wff. F is a lazy-normal form of E iff LAZY-NF-P[F]
and E SKI-red* F. LAZ""F'{F-

Definition 1.59: Let A, B E SKI-wff. A lazy-imr B iff A SKI-imr B and the redex con-
tracted was the INITIAL-REDEX[A].

Definition 1.60: Let A, B E SKI-wff. A internal-imr B iff A SKI-imr B and the redex
contracted was an internal redex.

It may be noted that the reduction calculus characterized by the set of well formed for- ,
mulas SKI-wff and the relation lazy-imir is deterministic.

Definition 1.61: The relation lazy-red* (internal-red*) is the reflexive transitive closure
of lazy-imr (internal-imr).

Some observations concerning initial and internal redexes:
" An SKI-wff contains at most one initial redex. leftmos..'ixll
" If an SKI-wff contains an initial redex X then X is also the SKI-wff's leftmost SKI-

red ex.
0 An SKI-wif not in SKI-normal form always contains a leftmost SKI-redex but need

not contain an initial redex. For example, consider the SKI-wff X = (1K (I I)). X's
leftmost SKI-redex is (I I) but X does not contain an initial redex.

" If X internal-imr Y, then Y has the same initial atom and the same number of argu-
ments as does X. It then follows that Y contains an initial redex IR' iff X contains. *. .'
an initial redex IR and IR' is the residual of IR in Y.

Lemma 1.2: Let X E SKI-wff. If X internal-red* Y and Y !azv-imr Z. then there is a. .-.
W such that X lazy-red* W and W internal-red* Z

Proof:
It has been noted that if A internal-imr B and B lazv-imr C, *- 1

then the initial redex in B is the residual of an nitial redex in A..- -':% '?
Let IRY be the initial redex contained in Y •
It follows from the preceding remark that X contains an initial redex (call it IRX)

and that IRY is the residual of the residual of the residual of of IRX N-o

It may also be observed that IRX and IRY have the same initial atom. .
and the same number of arguments -- they are the same type of SKI-redex,

Let X = a X, Xm.
X internal-red* Y implies Y = a Y Y, and X, SKI-red* Y,
IRX must be a X• Xk and IRY must he a Y, Yk for s, ne k 1,2,or 3
By repeated application of Lemma 1 1, it follows that

there is an X' such that X lazy-imr X' and X' SKI-red* Z,

*

I, %
.'%",,",' I1' .%'. '€', ,' ,%' '- , 4 .,,'.; . %%.', ,TM .'',..'•...". ",?.. ,:,- "%. % ,. €." . ,€," ," , ". .- ' , ' . , N

~...

J. ... A,

Page 18

where the redexes contracted from X' to Z are residuals of -b

the redexes contracted from X to Y.
This X' is either: P

X, ...X. (in case a = I), or 0%

X 1 X 3 ... X,1 (in case a K), or
X 1 X 3 (X 2 X 3) X 4 ... Xm (in case a = S).

Therefore, the only initial redexes that could be contracted in 0
the reduction from X to Z must be residuals of initial N.
redexes contracted in the reduction from X, to Y 1.. e:

It suffices to show that there exists a W such that X, lazy-red* W, and
W, internal-red* Y1 .

If X, internal-red* Y1 , then done.
So, suppose there is Xj' and X1 " such that

X, internal-red* Xj' lazy-imr Xj" SKI-red* Y1.
This situation is similar to the original problem.
There is an important difference, however.
The initial redex contracted in the reduction from Xj' to Xj"

is the residual of a redex strictly contained in IRX. 0
Therefore, the argument up to this point may be repeated

with X, as X, Xj' as Y, and Xj" as Z. A.,
Since all SKI-wffs are finite, eventually there will be a first argument of the initial redex

which does not strictly contain an initial redex.
End Proof

Lemma 1.3: Let X E SKI-wff. If X SKI-red* Z, then there is an SKI-wff Y such that X
lazy-red* Y and Y internal-red* Z.

Proof: "
Proof is by induction on the length of the SKI-reduction sequence from X to Z.
Case 1: n=O and n=1. Trivial. 0
Case 2: Lemma holds for reduction sequences of length equal to n. W

To show: Lemma holds for reductions of length n--l. ,'."
Let the reduction sequence from X to Z be:

Y4, X ,Xn 1 where X = X0 and Z = X .
By the induction hypothesis, there is an SKI-wff W such that

X 0 lazy-red* W and W internal-red* X,
If X n internal-imr X, ,, then let Y be W. Done.
So, suppose X, lazy-imr X, _.--

It is also the case that NV internal-red* X,
By Lemma 1.2, there exists a Y such that W lazy-red* Y and Y internal-red* X, -
Therefore, since X0 lazy-red* V, X 0 lazy-red* Y and Y internal-red* X, ..--

End Proof

Theorem 1.7: Let A E SICI-wff. A has a lazy-normal form iff there exists an StKI-wff B .
such that LAZY-NF-P[B] and A lazy-red* B. : .

Proof: S
4=) Trivial. B is a lazy-normal form of A. %
==)Let C be a lazy-normal form of A.

This implies LAZY-NF-P[C] and A SKI-red* C.
By Lemma 1.3, there is a B such that A lazy-red* B and B internal-red* C.

* LAZY-NF-P[B] since if B contains an initial redex then
e...- .. ,---..

. do€%"1% %" - " %"%.P, %.. ,% % . .%. %. '

U - -~-~.* - -. ;..-....-..~~:02. . .

d -i

Page 14 ..e

C would contain an initial redex.
End Proof

1W

Theorem 1.8: Let X E SKI-wff. If Y and Z are lazy normal forms of X and Y =

aYj ... Y, for some n >0, then Z v a ZI Z, and there is an SKI-wff W =
a W ' "W, such that Y, SKI-red* W i and Z, SKI-red* Wi, 1<i<n . A
Church-Rosser like property.

Proof: I
By Lemma 1.3, there is a U such that X lazy-red* U, U internal-red* Y, .

and U in lazy-normal form.
Y = a Y , ... Y, implies, since internal reduction sequences do not change either

the initial atom or the number of arguments, U must be of the form:
a U, . .U, and U, SIU-red* Y, Z =1 n.

Similary, there is a V such that X lazv-red* V,
V internal-red* Z, and V in lazy-normal form.

Since both U and V are lazy-reductions from X, initial redexes are unique,
and both U and V are in lazy-normal form, it must be the case that U = V.

Thus, V -a U1 - U,, Z = a ZI Z, and U, SKI-red* Z , 1< i <n.
Since U, SKI-red* Yj and U, SKI-red* Z, . by the Church-Rosser property, .4there is a W, such that Y, SKI-red* W, and Zi SKI-red* W,, <i <n.
Let W a W . .

End Proof

Theorem 1.9: Let E E SKI-wff. If E has an SKI-normal form, then E has a lazy-NO

normal form. However. E having a lazy-normal form does not imply that E has an -.
SKI-normal form.

'I'he ,roof of the above theorem is trivia 'rtte SK-wt S ((S I 1) (S I I)) is an example of . '
an SMI-wff which has a lazy-normal form (it is in lazy-normal form) but has no SKI- ,

o,-rmal form . 0

Theorem 1.10: Let A E SKI-wff. If A has an SKI-normal form B, then there is an
SKI-wff C such that A lazy-red* C (C in lazy-normal form) and C SKI-normal-red* . ,-

B.
Proof:

By Theorem 1.6, there is an SKI-normal .-
order reduction sequence A, . . . A, where A, = A and A, = B. %.-. .-.

Either A, is in lazy-normal form or its not. If it is, then the proof is complete. . , .
Suppose, therefore, that A, not in lazy-normal form.
By the definition of lazy-normal form, A, contains an initial redex.
It has been observed that initial redexes are also leftmost SKI-redexes.
Thus, the redex contracted in the reduction from A to A2

is Al's initial redex implying that A1 lazy-imr A.
This same argument may be applied to the SKI-wffs AA, _.
There are two cases to consider.

Either it is found that one of these SKI-wffs is in lazy-normal form or •
that none of them are in lazy-normal form.

Suppose at least one of them is in lazy-normal form. ,

Let Aj be the one having the smallest index. es.'.
By the preceding argument, A lazy-red* A, and the proof is complete.. -

% . .%

%%*% %" % % % % % % i, m -r + i + w q a"l i " w Im- % " " " * "'1[% ," ")-<,, ,% 'V) % c.,' '-,..'," -r* ..'.'.'+ . '',1'' ' : ,s+;" + " " " :' " " ' ' '' '.7''

, J 7 '77 .

,., . .

Page 15 . .

Otherwise, A, lazy-red* A,,
Since A,, is in SKI-normal form it is also in lazy-normal form.

End Proof

1.4. Relating the X-calculus and the SKI-calculus

Definition 1.62: Let E E X-wff. The SKI-transform of E is the SKI-wff X-TO-SKI[E]
where - i
X-TO-SKI[E] +

(if VAR-PE]
then E

elseif E = (N v B) 0i,.~'
then ABSTRACT Iv,X-TO-SKI [B]

else (X-TO-SKI[OPERATOR[E]] X-TO-SKI[OPERAND[E]])) ,r

Definition 1.63: For any variable v and SKI-wff B, there is an SKI-wff

ABSTRACT[vB] where
ABSTRACT[v,B] t 16 r

f B = vS.
then I ,-.. .- .

elseifv does not occur in B
then K B 0

else
S ABSTRACT[v,OPERATOR[1]] ABSTRACT[v,OPERAND[B]])

The transformation of expressions containing bound variables into expressions without
bound variables (called ABSTRACTion) was first presented in [Sch6nfinkel 1924]. It was
Sch6nfinkel's aim "to make the number of undefined notions as small as we can". In the
case of the transformation from X-wffs to SKI-wffs, the arbitrary abstractions present in
the X-calculus have been replaced with the three special functors (abstractions): S. K,
and I.-

The SKI-wff X-TO-SIKI[EXP] is similar to Church's "the combination belonging to
EXP". In [Church 1941], the transformed expressions were well-formed formulas of .
"the calculus of X-conversion". That set of well-formed formulas, as mentioned above,
did not contain abstractions having no free occurrences of the bound variable in the
body. X-TO-SKI[EXP] is called "the 11-transform of EXP" in NHindley 1972].

Hindley et al. also define, for SKI-wffs EXP. "the \-transform of EXP" Herein the X-
transform of an SKI-wff EXP will be denoted by the X-wff SKI-TO-X[EXP] defined
below.

In the same paper, Schonfinkel showed that the functor I was unnecessary as it could be V- V
represented by S and K with the SKI-wff S K K He even went on to demonstrate that the func- e%
tors S and K could be defined in terms of a single functor he called J These representation tricks, -
however, are not as remarkable as his "bound variable eliminating' transformation just defined

0,

% \~a5%%j %~ ~ .'..~-. .
46-. -.. '... . . . ' .- -

r e ,. ,, -v," -,.":'. '¢- , .,"¢ e , :*,- , .":, _ , .:;_," ...' . , ' -.,r.'~r ". .':. ,. .,-.-..S... ,P, . ". a.,
"

Page 16

Definition 1.84: Let EXP E SKI-wif. The X-transform of EXP is SKl-TO-X['EXP]
where
SKI-TO-X[EXP] 0=

(if VAR- P [EXIP
then EXP

elsetf EXP = I
then (X x x)

elseif EXP = K
then (X x (X y x))

elseif EXIP = S
then (X f (X g (X x (f x (g xll

else -,; it is a combination
(SKI-TO-X [OPERATOR [EXP]] SM%_-TO-X\[OPERA-,D[EXP]]))

1.4.1. Some Results

Some simple results which relate X-wffs to SKI-wffs are stated and proved below ..

4~% %
Lemma 1.4: Redex Preservation Lemma. Let EXP E X-wff. If EXP' X-TO-

SKI[EXP], then 3-REDEX-P[EXP] iff SKI-REDEX-P[EXP'].
Proof:%

First suppose $-REDEX-P[EEP]. To show: SKI-REDEX-PEEP']. %
,3-REDEX-P[EP] implies EXP = ((X v B) A) for some variable v and X-wffs A and B
By the definition of X-TO-SKI,

EXIP' = (RATOR' RAND'),where RATOR' = ABSTRACT[v,B'],
where B' = X-TO-SKI[BI) and RAND' \ -TO-SKI[A]. e. .

There are two cases to consider. B' is either an atom or a combination.
Cj±.sc 1: ATOM-P [B']. 2

B' is either v or it is not.
Case 1a: v = B'.

By definition of ABSTRACT, RATOR' I.
RATOR' = I implies EXP' =I RAND' which implies SIKI-REDEX-P[EXP']I

Case 1b: It is not the case that v = W'.
By definition of ABSTRACT, RATOR' (1K B').
RATOR' = (K B') implies EXP' = K B' RAND',
which implies SKI- REDEX-P [EXP']

* Case 2: COMBINATION- P[B1]
Either v occurs in B' or it doesn't.
Case 2a: v occurs in B'

By definition of ABSTRACT, RATOR' S RT' RN'. S
R.ATOR' = S RT' RN' implies EXP' S RT' RN' RAND',
which implies SK-REDEX-P[EXP'j.

Case 2b: v does not occur in B'.
By definition of ABSTRACT, RATOR' (1K B').

Same as case lb.
Hence, if /3REDEX-P[EXP], then SKI-REDEX-P fExp']. N-c

Now suppose SKI-REDEX-P[EXP']. To sliow 3-REDEX-P[EXP]. "%s
SKI-R--1DEX-P[EXP'j~ impie CMu "4\IO-PEX

~- -. .%

* 0

Page 17

Let EXP'= (RATOR' RAND'). -1 -6
By the definition of X-TO-SKI, COMBINATION-P[EXP]. -

Let EXP = (RATOR RAND).
The definition of X-TO-SKI also implies

RATOR' = X-TO-SKIERATOR] and RAND' . X-TO-SKI[RAND]. , r.

SKI-REDEX-P[EXP'] implies EXP' has one of three forms:
Case 1: EXP' = I X, for some SKI-wff X.

- By definition of EXP', RATOR' = 1.
If RATOR' = I, then RATOR = (X v v), for some variable v
which implies 0-REDEX-P[EXP].

Case 2: EXP' = K X Y, for some SKI-wffs X and Y.,.
By definition of EXP', RATOR' = K X.
If RATOR' = K X, then RATOR = (X v A),

for some variable v and \-wff A. This implies O-REDEX-P[EXP].
Case 3: EXP' = S F G X, for some SKI-wffs F, G, and X.

By definition of EXP , RATOR' = S F G.
If RATOR' = S F G, then RATOR = (X v A), for some variable v and X-wff A. ,'. a.-

This implies 0-REDEX-P[EXP].
Hence, if SKI-REDEX-P[EXP'], then 6REDEX-P [EXP]. ,

Therefore, O-REDEX-P[EXPI iff SKJ-REDEX-P(EXP 1.
End Proof

Theorem 1.11: ABSTRACTion preserves SKI-normal form. Let v E VAR and BODY
E SKI-wff. If EXP = ABSTRACT[v,BODY] and SKI-NF-P[BODY], then SKI- -__

Proof:
Proof is by structural induction on BODY. There are two cases to consider:
BODY is either an atom or a combination. .
Case 1: ATOM-P[BODY]. There are two sub-cases to consider:

Case I&: v = BODY.
By definition of ABSTRACT, EXP = I. ATOM-P[EXP] implies SKI-NF-P[EXP].

Case Ib: It is not the case that v = BODY.

By definition of ABSTRACT, EXP = (K BODY).
By definition of SKI-REDEX-P, (not SKI-REDEX-P[EXP]).
This and the facts: SIKJ-NF-P[K] and (by hypothesis) SKI-NF-P[BODYI. S

imply SKI-NF-P[EXP]. %
Case 2: BODY = RATOR RAND. There are two sub-cases to consider:

Case 2a: v occurs in BODY.
By definition of ABSTRACT, EXP = (S RATOR' RAND'), where

RATOR' = ABSTRACT[v,RATOR] and RAND' = ABSTRACT[v,RAND]. -,.

By definition of SKI-REDEX-P, (not SKI-REDEX-P[EXP]) and
(not SKI-REDEX-P[(S RATOR')]. and--.-NF-PR"ND]

By definition of SKI-NF-P, SId-NF-P[RATOR] and SKI-NF-P [RAND).
By induction, SKI-NF-P[RATOR'] and SKI-NF-P[RAND']. .
These facts together imply SKI-NF-PPEXP.

Case 2b: v does not occur in BODY.
By definition of ABSTRACT, EXP = (K BODY).
Same as cue lb.

End Proof

,wI IN "'.

Page 18

'o

Let v E VAR and BODY E SKI-wif. If EXP =ABSTRACT~v,BODY], then it is not
the case that SKI-NF-P[EXP] implies SKI-NF-P [BODY]. This is easy to see. Consider
letting BODY be (I v), then EXP S (K 1) 1. Therefore, SKI-NF-P[EXPI, but (not

ae 1: ATOM-P..F-XI.

SIN[ByDetono]). -K TMP EP]

%%

ATOM-P [ndEXP' impliesSKIN-[EXP']. nSUNFPEP]

T e proo is by BOucualidY)io X. There are three b cases to consider: PJ

% %-%

Case 1: b BODY.o'i'o
By e definition of -TO-SKI- a nd P R ' . ER ' ,O %

ATOM-PN[EXP']] implies SKI-NF-P[BEXP'
Case 2b EXP occus i BODY' . The re fore OD'e s-TasSKI- No[BOD]

COMBINATIONP1[BODYD]])foror .erwie-./\ .i

BODY' 2a by = BODYwihi as

By the definitions of N-TO-SKI and ABSTRACT. EXP 1,
P[I RAEXP'T R RSKIND'[EXP] Z l r%

whe 2r e by o c ur B SDTcti EP Tere aTOr e[BODY .a nd

C(n IATO-PEXP T["]), and SK-er-i

BDY' nutin SKI-FBODY']h.scae2

Bv definition of X-TO-SKIaASC,

SheeOM-P[PTOR'D ASTRACT-[EP']. SKI-P. [OAD[BOD] '

AND' a ABTRC [bPRN BODY•fl %-.:

By Theo S tohn R-TSKI pnlATR'C a SP---- N .-. ,

ATes E ply SKi-F[OPlERATO E XP'] SKI-NF-P[and 1
Case 2b' by oesn in BODY' where BODY' -TO-SKI[BODY]"-

yCOM cIoNTIN-P [BODY'] o.tews r$,

p B~~' thei definition of IN-OSIadASRCEX'=KB D ' hr

BODY' -OP DTO i[BODY] d s [PE 2
By the definitions of X- NF -P and BODYA]. [RAND'].

Byidcin K-EPBD'.These facts imply SKI-NF-P [PRAOfEXP'].

se 3P: P RATOR' RAND' 0

p ~B the definitions of N-TO-SKI and ABSTRACT, EXP' K RAOR'DA', w er

weRATOR' X-T BSRAT andPRTO[OY] n " ¢

RND' N -TO-SKI[RABOD].

ByP inutin SKIANORP[RATO' n -FPRND']iple

not Sr I- RE D EX-P [(XP']),
By he definition of X-NF-P, X-NF-P[BODY].
By induction, SKI-NF-P[BODY']. Ty

Byth definition of h-NF-PI anAST AC , X ,..' AN ',whr
SKI-NF= -P[PRTOR[BODY']R] andSK-FPOERN[DY].

By Theorem 1.11. then K-FP1aTOd ' aKI nd- [RAND' IA D] 2':'::

Th-1ese fct ip lyX conri cts- the hypthei tha N[EXP.-..'' '"'
Hence (nF-P[OPERADX[EXP]. "":"

Therefore SKI-NF-P[EXP']. P. %

BOD- .--O-SI[BDY

. ~ %* .%. 5• \ , . % %o

%q

End Proof j

Let EXP E \-wff. If EXP' =X-TO-SKJ[EX]P], then it is not the case that SKI-NT-
P[EXP'] implies X-NF-P[EXIP]. As an example, consider the X-wfi' EXP=

(y ((.\ x x) y)). EXP' = S (K 1) 1. SK<I-NF-P[EP'] but (not X-NF-P[EP]).%

Theorem 1.13: Abstraction preserves lazy-normal form. Let v E VAR and BODY E

SKI-wif. If LAZY-NF-P[BODY] and EXP = ABSTRACT [v,BODY1, then LAZY-%%
NF-P[EXP]. Proo71
There are two cases to consider:
Case 1: ATOM-P[BODY]. There are two sub-cases to consider:

Case 1a: v = BODY.
By the definition of ABSTRACT, EXP = i.
EXP = I and ATOM-P[I] together imply LAZY-NF-P[EXP].

Case 1b: It is not the case that v = BODY.N
By the definition of ABSTRACT, EXP = (K BODY).
EXP = K BODY implies (not SKI-REDEX-PLEI).
This and the fact that LAZY-NE-P [K] imply LAZY-NF-P[EXP].

Case 2a: v occurs in BODY.e
By the definition of ABSTRACT, EXP = S RATOR' RAND', where%

RATOR' = ABSTRACT [v,R.ATOR] and RAND' = ABSTRACT [v,RA-ND]
Since the SKI-wffs S, S RATOR', and S RATOR' RAND' are not SKI- redexes. 0

LAZY-NF-P[S RATOR' RAND'] - i.e. LAZ'y-NF-PrEXP].
Case 2b: v does not occur in BODY.

By the definition of ABSTRACT, EXP =(K BODY).
Same as case lb.

End Proof

Le X P E ((Xyyy))If which imle X-OSIED' then it isI nohecseta LAZY-NT-%
P[EXP'] implies EXP has a head-normal form. An example follows. Let EXP

P[EX'] bt EP ha nohead-normal form.

Let EXP E X-wff. If EXP' = X-TO-SKI[EXP], then it is not the case that SKI-NF-
P[EXP'1 implies EXP has a X-normal form. In fact, EXP may not even have a head-
normal form. An example follows. Let EXIP (X x ((X z (z z x')(z (z z x)))). The
normal reduction sequence for EXP looks like: -

X ((X Z(Z Zx)) (X Z(Z Zx))),
X x((X Z(Z Zx)) (X Z(Z Zx)) x)),%%.F

X ((Z Z x)) (X Z(Z Zx)) xx)),

X X Z(Z Zx)) (X Z(Z Zx)) xx x)),2
EXP does not even have a head-normal form! But EXYP

S (S(K (S(SI1I))) (S (K'K)I1))(S (IK(S(S 1))) (S(IKK) 1))

.,V.k .
does not contain any SKI-REDEXes! Therefore EXP' is in SKI-normal form.

%V

.,. % % %

Page 20

Definition 1.65: Let A E X-wff. A is in abs-normal form iff ABS-XF-P[AI where 04

ABS-NF-P[A] D.

(or VAR-P [A]
ABSTRACTION- P [A]
(and A = B C

(not 3-REDEX-P[A)
ABS-NF-P [B]
ABS-NF-P [C])).

Informally, a X-wff is in abs-normal form if all of its occurrences of 3-redexes lie in the
bodies of abstractions.

Definition 1.66: Let A E X-wff. A is in abs-head-normal form iff (ABS-HEAD-NF- m
P[A]) where
ABS-HEAD-NF-P[A] %

(or VAR-P[A]
ABSTRACTION- P [A]
(andA = (B C) %

(not O-REDEX-P[A]) %
ABS-HEAD-NF-P[B])).

•5 .. %- % .

Informally, a X-wff is in abs-head-normal form if all of its occurrences of -redexes occur
either in the bodies of abstractions or in the operands of combinations which are not 3-
redexes themselves.

Theorem 1.14: Let E E X-wff. If E' = X-TO-SKI[E] and SKI-NF-P[E'], then ABS- %

NF-P[E]. %
Proof: ."

The proof is by structural induction on E'. %
Case 1: ATOM-P[E'l]. •

ATOM-P[E' l implies that either VAR-P[E'] or E' I.
If VAR-P[E'], then VAR-P[E] which implies ABS-NF-P[E]. %
In case E' = I, E = (Xv v) for some variable v. Again, ABS-NF-P[E],

Case 2: E' =RATOR' RAND/. ." %

E' a combination implies that either E an abstraction or a combination
If E is an abstraction, then ABS-NF-P[E].
So, suppose E = RATOR RAND.
By definition of SKI-NF-P, both RATOR' and RAND' are in SKI-normal form.
By definition of X-TO-SKI, RATOR' X-TO-SKI[RATOR] and

RAND' = X-TO-SKI[RAND]. -
By induction, both RATOR and RAND are in abs-normal form.
E is not a 0-redex, for if it was, E' would be an SKI-REDEX, by Lemma 1 4 .
Therefore, ABS-NF-P[E]. -

End Proof %

Let EXP E X-wff. If EXP' = X-TO-SKI[EXP], then it is not the case that ABS-NF-
P[EXP] implies SKI-NF-P[EXP']. Here's an example. Let EXP = (X x ((X y y) a)),
which implies EXP' K (I a), which is not in SKI-NF.

% N-' %'X

0 % J1.

Page 21

Theorem 1.15: Let EXIP E X-wff. If EXTP' =X-TO-SKI[EXIP], then ABS-HEAD-
NF-P[EX-5P] iff LAZY- NF-P [EXIP'].

* Proof:
First, suppose ABS-HEAD-NF-P[EXIP]. To show: LAZY- NF-P [EXP'].
Shown by structural induction on EXP.

N There are three cases to consider:
Case 1: ATOM-P[EXP].

By the definition of X-TO-SKI, ATOM-P[EXIP'].
ATOM-P[EXP'] implies LAZY- NF- P[EXP']. '

Case 2: EXP (X by BODY). There are three sub-cases to consider:
Case 2a: by = BODY.

By the definitions of X-TO-SKI and ABS~TRACT, EXP' = 1.
EXP' I and ATOM-PR] together imply LAZY- NF-P [EXP'].

Case 2b: bv occurs in BODY (and COMIBINATION-P[BODY]).
By the definitions of X-TO-SKI and ABSTRACT, EXP' = S RATOR' RAND',
where

BODY' = X-TO-SKI[BODY],
RATOR' ABSTRACT [bv,OPERATOR [BODY]], and
RAND' = ABSTRACT [bv,OPERAND [BODY']].

(not SKI-REDEX-P[EXP'j), '
(not SKI-REDEX-P [OPERATOR [EXI']]), and LAZY-NF-P [5].

Therefore, by the definition of LAZY-NF-P, LAZY- NF- P[EXP'].
Case 2c: by does not occur in BODY.

By the definitions of X-TO-SKI and ABSTRACT, EX'=K BODY', where
BODY' = X-TO- SKI [BODY].%

(not SKI-REDEX-P[EXP']) and LAZY-NF-P[K].
These facts imply (by the definition of LAZY-NF-P) LAZY-N,F-P [EXP'].

Case 3: EXP = RATOR RAND. -V% ~.
By the definition of X-TO-SKI, EXP' == RATOR' RAND', where

RATOR' = X-TO-SKI[RATOR] and RAND' = X-TO-ShI [RAND].
By the definition of ABS-HEAD-NF-P, ABS- HEAD- NF-P [RATOR]
By induction, LAZY-NF-P[RATOR' 3.
It remains to show (not SKI-REDEX-P[EXIP']).
Assume SKI-REDEX-P[EXP'], then, by Lemma 1.4, fl-REDEX-P[EXIP]. *.'

O-REDEX-P [EXIP] contradicts the hyvpothesis that ABS-HEAD- NF-P [EXP].
Hence (not SI-REDEX-P[EXP' 3).%
Therefore, LAZY- NF- P[EXP'].

It has been shown ABS-HEAD-NF-P[EXP] implies LAZY- NF- P[EXP'].

Now suppose LAZY- NF-P [EXP']. To show: ABS- HEAD- NF-P [EXP].

Shown by structural induction on EXP'. V
Case 1: ATOM-P[EXIP'].

ATOM-P[EXP'] implies that either VAR-P[EXP'] or EXP' = I. 'V-

If VAR-P[EXP'], then VAR-P[EXP] which implies ABS-HEAD-NF-P[EXIP] .

In case EXP' I , EXP = (X v v) for some variable v.
Again, it is the case that ABS- HEAD-.NF- P[EXP].0

Case 2: EXP' = RATOR' RAND'.
EXP' a combination implies that either EXP an abstraction or a combination.
If EXP Is an abstraction, then ABS-HEAD-INF-P[EXP].
So suppose EXIP = RATOR RAND.

N %,--,.. .

P age 22.., . .

By definition of LAZY-NF-P, RATOR' in lazy-normal form.
By definition of X-TO-SKI, R.ATOR' = X-TO-SKI[RATOR]. i -

By induction, RATOR is in abs-normal form.
EXP is not a /-redex, for if it was, EXP' would be an SKI-REDEX, by Lemma 1.4.
Therefore, ABS-HEAD-NF-P[EXP]. ' "

It has been shown that LAZY-NF-P[EXP'] implies ABS-HEAD-NF-P[EXP]. %

Therefore ABS-HEAD-NF-P [EXP] iff LAZY-NF-P- [EXP']. r.', .

End Proof

It is not the case for an arbitrary SKI-wff E' in SKI-NF that SKI-TO-X[E'] is in ABS-
NF. For example, let E' = (K z). E' is in SKI-NF. It is not the case, however, that
SKI-TO-X[E'] = ((X x (X y x)) z) in ABS-NF. This same example demonstrates that
SKI-TO-X does NOT "preserve redexes".

Conjecture 1.1: Let A E SKI-wff. If A' = SKI-TO-X[A] and SKI-NF-P[A], then A'
has an abs-normal form.

The following result is an immediate consequence of the previous theorem. It is included
here for completeness.

Theorem 1.16: X- TO-SKI preserves quasi-normal forms. Let EXP E -wff. If HEAD-
NF-P[EXP] and EXP' - X-TO-SKI[EXP], then LAZY- NF-P[EXP'].

Proof:
From the definitions of HEAD-NF-P and ABS-HEAD-NF-P,

it is clear that HEAD-NF-P[EXP] implies ABS-HEAD-NF-P[EXP]
By Theorem 1.15, then, LAZY-NF-P[EXP'].

End Proof

The idationship between SKI-wffs in lazy-normal form and X-wffs has been demon-
strated formally. The counterpart wffs in the X-calculus to SKI-wffs in lazy-normal form *
are the X-wffs in abs-head-normal form. In a later chapter it will be argued that, when
reducing, "stopping at" lazy-normal form, rather than continuing on to SKI-normal
form, has many computational advantages. .,. * ,-

1.5. The X-G-calculus 0 0

The X-G-calculus, presented in [Wadsworth 1971], is a deterministic graph oriented ver-
sion of Church's X-calculus. That is, well-formed formulas in the X-G-calculus are rooted.%"-.
acyclic graphs as opposed to strings in the X-calculus. "-.-'.

The Standardization Theorem for the X-calculus guarantees that if a X-wff has a X- '.%
normal form then it can be reached by a X-normal reduction sequence. Unfortunately,
performing X-normal reductions on strings often causes duplication of redexes, thus . .%
creating more work than necessary. Using graphs as well-formed formulas instead of
strings, Wadsworth was able to reduce (but not eliminate) the number of duplicated
redexes that arise when performing X-normal reductions. _

What follows is an informal account of Wadsworth's X-G-calculus and his suggested
implementation of it. For a formal description of the calculus, the reader is encouraged

-e .. N,' '

Page 28

to read Chapter 4 of Wadsworth's thesis, [Wadsworth 1971].

1.5.1. Well-formed Formulas .,'
, . _

Free variable occurrencz. are terminal nodes in the graph labeled with the name of the
variable.

A combination is a graph whose root node has two outgoing arcs. One arc points at the S
graph which is the combination's operator and the other points at the graph which is
the combination's operand.

An abstraction is a graph whose root node has a single outgoing arc. The arc points at
the graph which is the body of the abstraction. Free occurrences of the abstraction's
bound variable in the body are nodes which point back to the root node of the abstrac-
tion. These "back pointing" arcs, emanating from the bound variable nodes, are treated
specially (see next section). Think of them as dotted arcs (lines) and the other arcs as
solid. It was stated in the introduction to this calculus that these graphs were acyclic.
That statement was a simplification of the truth. The truth is that the only cycles in %

the graph are those containing exactly one dotted arc. S

.... .-.?.-,

A,. . * '= I% *

...

.L bA '..,.r %%, %

The X-G-wff equivalent of the X-wff: (X x (x (a x))) ((X z (z b)) c) -

Figure 1.1

Some liberties were taken in the preceding description of Wadsworth's wffs. In .'

Wadsworth's thesis the back pointers were not part of the formal calculus - they were .,. ;
introduced as an efficient representation for bound variable nodes in his implementation.--
of the calculus. In his formal description, bound variable nodes looked just like free , -

variable nodes. One determined that they were bound by seeing if there was a path
from an abstraction node (labeled with the name of the variable it was binding) to it and
making sure that the variable names were the same.

1.5.2. Reduction]

0-reduction is performed in the -G-calculus by pointer manipulation rather than by
string substitution. %

, o %% ,~~~~~~~~~~~~~~~~~~~~~. , %%... . -o...... -.... %..°.o .,,..... .•.... g. , = ... =.-- . ,

. .. %5 - '...-.-.....'.''""'''. ',.''.''''.......: ,:: .: '."

(,.tU iXi ' -hU -q ,I..' , '.', *. • .'. , 7. . 7 ,.. . * p.., , , ,- y .w .. W W % . ,

* oS

Page 24

%,¢ ." %" W % ._ """

• . -~..

The X-G-wff in Figure 1.1 after contracting leftmost redex •
Figure 1.2"

Note that the redex ((X z (x b)) c) is not duplicated (as would have happened if the ._-.,
equivalent reduction of the X-wff had been performed). Instead, the redex is now being . 0

shared by two portions of the reduced X-G-wff. • 0
,r.,€ " r .- .

To accomplish this reduction, the two following operations were performed:¢d - -
1. An indirect,on arc (different from both the solid arcs and the dotted arcs described :'. *2'

above) was drawn from the root of the wff to the body of the abstraction. Ths new '.

kind of arc is represented by a dashed line in the figure.
2. Another indirection are was drawn from the root of the abstraction to the operand •

.. •j.V'..'e

Observe that is not necessary to search the body of the J-redex's operator (abstraction)'""""

• % % .

for the free occurrences of the abstracteon's ound vriable to perform the contraction 2

When the algorithm "sees" a node (n) which has been 'forwarded" via an indirection

, %, -.. = -. 1 .41,/arc to another node (no f ignores node n and, instead "sees" nhe de x the node n

was forwarded to. Variable nodes which have (dotted) arcs emanating from them (the

bound variables) are similarly ignored if the abstraction node to which they point has

been forwarded Variable nodes which point back to abstraction nodes which have not

been forwarded are treated as terminal nodes in the graph.

This simple version of X-normal 3-reduction of X-G-wffs will not suffice in all situations - -- '.i
In the case where the operator (the abstraction) of the sredex is pointed at by m re .- .,.

than one node (not counting the bound variable bthck pointers a portron of the

abstraction's body must be copied before the contraction can take place If this copying
is not performed, erroneous results may o ur as n example of this situation, obsr,,

the following X-G-wff: b o h h (d c a ge t

2Arvnd, in a paper which revews several graph ,riented interpreters ([Arvid 118411 i- '.. " . ,
correctly states that all leaves of the operat,,r rnu t be ear(hid fl)- ,(-iirrences o:f the ibstra&'tion'sbound variable Arvind (mistakenly) thinks trhat acany , ine fi, ,aCh bound variable x podirecthon

arcs to the operand are place l the body) i e -poitr Instead, ust one in deiecticn ar hr v e no
the abstracton's root to the operand, is req atred at n o th d-ip n..by r

%.-... % ,

or "z%,
than> one node.(not counting the %b b %ck pontrs , a %port -o ofthe
abstraction--. -' s body must be-co before h contraction ca n ,ake.place Ifthis.copying

Page 25 0

,b. *%pI W a

a.-"t'u w. U-

% -

....
7

%.N e o

A O-reduction cannot be safely performed on this),-G-wff
Figure 1.3 0

If a $-reduction of the type described above were performed on the X-G-wff in Figure
1 3, then the result would not be a X-G-wff at all! The result would be the following
graph:

'a . % %

.% %

Note the cycles in this non X-C,-wfl "" "
Figure 1.4+'"- ,,.

,.,.. /'..

In order to insure a proper 3-contraction, some copying must take place before the con-
traction is attempted'..

4 a.".". .

.'

0

% % ,,

% wo %II ' ,.%

Fiegure 1.4 ,%%

%a.

,.".-

oS . 0 +I I. . ., +/ , .. o, ~ ~%.,.%r v.,. % ,-• % +. +.,.v% ,-%'+',,,

• ,'. P @ ,'-.. "Po %,, .? ". % ". '_ ._.P -. €, , ., ,,D '._ ,, ,,4,,.P+. . .q%,.+ ,, '[_, -," .-,a ',+.,- ".,. ,

-JLW V-WN. -7- - - W - - -- t S S S S , %

%

%rP

Page 26

Ave IF

4L 0 0

/3reucio my e The X-G-wff in Figure 1.3 after copying -_____

A 3-reuctionmay besafely performed on the graph displayed above The result is the : l

0 0

..%

After performing .3-red uct ion *-A

Figure 1.6

The parts of thle body which do not contain free, ,crurroences of the bound variable ar, 0 0
called the abstraction's free expressions F-ct\r'(son which are not contained inl .. *

any of the abstraction's other free exprf, ss-ion>, iur ccalled the abstraction's 7naximal fr,,-
expressions, this name was given to them later ill [lliigh (- 1982a]. These maximal free.
expressions of the operator need not be copied bef'ore performing the contractin
Wadsworth's interpreter is called fully lazy since it performs normal order graph reduc- 0
tion (making it lazy) and avoids repeated reduction o-f constant expressions (since they
are not copied).

Observe that since somne copying must he (lope, when a redex exists in the expressin
copied, it will be copied. W\adsworth's calcuilu.s, therefore, is not, optimal -- i.e. there
may be shorter reduction sequences enidinig inl iirnial form For example, consider the 0 0
expression: ' %

(Xx (X xl)(\ Y ((X z Z) Y)). N~

%, %

% ri % I
d

% ,

Page 27

which, when reduced to normal form in \Vadsw,rth's calculus, takes four steps (because -.

the boldface redex must be copied) 11' w'ver the boldface redex is reduced first, then
it can be reduced to normal form in only three steps -

1.6. Summary

Three reduction calculi have been described the ,-calculus, the SKI-calculus, and the X-
G-calculus. The X-calculus looks the most like a programming language. The SKI-
calculus is the simplest. The N-G-calculus appears to be the most implementation I
oriented. -.

In the next chapter, two more calculi are presented: the SKI-G-calculus and the LNF-
calculus. Both are deterministic and "machine oriented". The SKI-G-calculus is a graph
oriented version of the SKI-calculus. The LNF-calculus is also graph oriented but con-
tains many more functors and a new class of atomic wffs called constructors. This richer

% calculus, when realized, yields an efficient runtime system for the LNF language. The
runtime system's implementation is detailed in Chapter 3, Section 4.

%

0 %

%

S .'

% 0%

K.

" ri
I-P ;";'-' ;-P"-P.

%J % %

_ Ile .'-t. . -rh ,1

L.

', ~~3 Wadsworth. in hs thess, also points out that his calulus s nonoptmal Unfortunatelv the ,"%_'-'
ex m le h reet ([Wadsworth 1971], page 187) which purports to demonstrate ths fact does

7r, ' not do so g

{' .- , , , .. % % ,,, *.' ,. % • " • % ,% . , • • ' % ,/'% % . % ', % ,' ,

W1 % %11. N,. 4 A O N

Page 2 9

Chapter 2

Two Deterministic Graph Oriented Reduction Calculi

The LNF Language's run-time system (its Lisp Machine implementation is detailed in
Chapter 3) is a realization of a deterministic reduction calculus cailed the LNIF-calculus.
The LNF-calculus is based on another deterministic reduction calculus called SL T4G.

calculus. Both calculi are given formal definitions in this chapter.

The SKI-G-calculus is presented first. The SNI-G-calculus, like Wadsworth's N-C-
calculus ([Wadsworth 1971]), is graph oriented. Instead of being based on the N-calculus, A~

however, the SI-G-calculus is a modification of the SKI-calculus.

In essence, the SKI-G-calculus is a formalization of the "normal order 'rombinator graph
reduction" machine informally described in [Turner 1979c]. The calculus' description
although similar in style to Wadsworth's descr I tion of the N-C-calculus, is much mork:Il
"machine oriented" than WVadsworth's. For -\aniple, \adswNortli relegates forwarding

arsforwarding arcs are also ofteni TcFerrtc t, indirection pointers or Invisible
_,,.nters -- to his implementation 4i 01r be alciu LU n I does not. even mention garbage

FlOCjes in his disrussions. On the fl lh In ti- - I\l-G-ralculuis, garbage vertir(s and % .'.' S

i: 1rXardinig ares tre given t;m 'i''fiilI? 1(> 'I lii i Ik-~ and SK\I-C;-
:mr tak, ii togeti'e[comIle verv (-I W~ 'i iiitd~lfteSK--Aiu

ti: -iairied, hut ricrt proved, tliat "p,('"~i.~>lxC-ac~-i 'i~ taif~v. V'
eqiIV 4lent to t he nondertermin Ist I l-I-b t! iie- i in,. If course. to the \-cackuus et

As stated abhove, the LNF-calciilus I,, ud en ii tllt-cuu Its- set of wifsq (LN.F-
xif) contains 51(1-C- IT. I,,NF-x f *;te HS-(-wT b), Virtu _)f *Mhe fact thatL LNF- '

calculus' set of fu nctors (comlbin ators. primtni ye erators) c-.n titns SlKl-G-calculus'
functor set. The LNF-calculus ha~i, in :iddition to) :>chdnhinkel's functors S, 1, and I -
([Schonfinkel 192413)- Curry's B. C. and WN [Curry 195S]); Turner's S' and C' , Scheevel's
B' ([Turner 1979a] ad[Turner l9), numeric functors, boolean functors. and a few*
others of the author's design. Resides t li additio~n of these new functors, new atoms,N04
called constructors, are introduced Into lNF-\VfT 2%

%

' '~d '.P

-- .~,.9.% *ry%

%? %V % %

Page 30

The "immediately reducible to" relation of the LNF-calculus (LNF-imr) differs from 4.
SKI-G-imr in the following three ways. Firstly, LNF-imr does not contain SKI-G-imr -
i.e. there are wffs which are reducible in the SKI-G-calculus but irreducible in the LNF-
calculus. These are exactly those wffs in SKI-G-lazy-normal form (containing no initial | -

redex) but containing redexes elsewhere. In sum, many of the reduction contexts present V, .4, V
in the SKI-G-calculus do not exist in the LNF-calculus. Recall that a reduction context is
a context inside which a reduction is permitted to take place. These reduction contexts
are specified by the contextual reduction rules of . calculus. Secondly, the new functors
bring with them new ways of reducing the LNF-wffs having them as initial atoms - via
new substantive reduction rules. Lastly, the new functors ("making up for" the lack of S
general reduction contexts present) bring with them new "functor specific" reduction
contexts - via new contextual reduction rules. The end result is a lazy "immediately .
reducible to" relation which allows "just enough reduction to get the job done". The
addition of the constructors does not substantively affect the "immediately reducible to"
relation. However, their addition (by increasing the size of the set of well-formed formu-
las) indirectly extends LNF-imr.

The LNF-calculus, of course, does not have any more computational power than the oth- ,Q?.e
er calculi defined herein - it is, however, a few steps nearer the "directly and efficiently
implementable" end of the reduction calculus spectrum than the others. It is hoped that
a calculus which bridges the gap between traditionally defined formal calculi and their S
implementations will be easier to implement and its implementation easier to reason
abou t.

The notions of initial-redex and lazy-normal form, as defined in the SKI-calculus, have -.

corresponding definitions in the SlI-G-calculus and the LNF-calculus. Thesd concepts
figure prominently in the organization of the two calculi.

2.1. The SKI-G-calculus .- ,

The SKI-G-calculus is a graph oriented version of Sch6nfinkel's SKI-calculus.

-* .,. ,,.%

2.1.1. Well-formed Formulas• .' L~~ ., ,._i'

As SKI-G-calculus well-formed formulas (SII-G-wffs) are defined in terms of graphs, the
graph related conventions which will be used are described below. " -

A graph is defined by a set of vertices and a set of arcs. Identifiers denoting vertices are ,P %
written in lowercase while identifiers representing sets of vertices are written in upper-
case. Just as in the preceding chapter, wffs are also denoted by uppercase identifiers. An , .
arc having origin vi and destination v,, is written as the ordered pair <vl,v->. Paths I 0
are sequences of arcs (possibly empty) of the form: .-'

<V,V2>,<V2,v3:> , • <Vn -. ,v n -1> , < v n ,v n > . ,".- - -'
, , ...

A vertex v n is said to be accessible from vi if there is a path from v, to v,, . Hence,
each vertex is accessible from itself via the path of length 0. For rooted graphs G (those
which contain a vertex designated as the root), the set of vertices accessible from the ,

root is represented by the expression ACCESSIBLE-VS[G].
e.~ #,.I m_,_*

% V .% % %% % ---d, ,-.'.*.. N -r ."•.".:.- .-. 0.-, 0" --', -%Z. ; " .,., .L .. - ¢ ._.:e ... : . 9b . '€ :-, ,..,',,. ¢--.: .,Q

I e/ ?C .t

% ~0
w 0

Page 31

Definition 2.1: An SKI-G-wff X is a finite rooted graph represented by the sextuple

<VS,RATOR,RAND,FWD,ATOM,root> where:
(and

VS is the (finite) set of vertices of X
RATOR, RAND, and FWD are sets of arcs-

together these sets partition the set of arcs of X
ATOM is a nonempty partial function from VS to {S,K,}
root is the vertex in VS designated as X's root
For all vertices v E VS,

(and the out degree of v is either 0, 1, or 2
in case v's out degree is 0 %

then ATOM[v] defined
in case v's out degree is 1, then

(and the arc having origin v lies in FVD
ATOM[v] undefined)

in case v's out degree is 2, then
one of the arcs having origin v lies

in RATOR, the other in RAND, and
ATOM[v] undefined,

there is no non-empty path from v to v ,
all the arcs of which are in FWD)

there is a v E VS such that: -
(and v is accessible from root

v has out degree 0 or 2))

Note that variables are not a part of this calculus. They have been excluded as only
closed X-wffs are transformed into SKI-G-wffs. Well-formed LNF programs will not con ..

tain occurrences of free variables. Since the transformation replaces all occurrences of
bound variables with SKI-G-wffs not containing variables, and there are no free
occurrences of variables in the X-wff being transformed (it is closed), the resulting SKI- .

G-wff will not contain any variables at all.

Definition 2.2: Let X = <VS,RATOR,RAND.FVD,ATOM,root> be an SMI-G- %

wff. %
* The root of X (ROOT[X]) is root. .
* The set of vertices of X (VS.(]) is VS.
* The rator arc set of X (RATORX]) is RATOR.
0 The rand arc set of X (RAND[X]) is RAND
0 The forwarding arc set of X (FI'D[X]) is FWD . .
0 The atom function of X (A TOA4[X] is ATOM.

Note that the definition of SKI-G-wff does not require' that each vertex of an SIKI-G-wff
be accessible from the SKI-G-wff's root It does require, however, that all vertices in an
SKI-G-wff's vertex set, accessible or not, be eligible for "roothood' - ie let X be an -
SKI-G-wff and let v be any vertex in VS[X. It can be shown that the graph, which is
just like the SKI-G-wff X except that it has v for a root, also qualifies as an SKI-G-wff. %

%" % %=,

%% % %

- - .- -- -- - -s .

Page 83 2

J. r

Definition 2.3: Let X be an SKI-G-wff. The vertices in VS[XI which are inaccessible
from X's root (not in ACCESSIBLE-VSX]) are the garbage of X. This set of ver- %

tices is denoted by the expression GARBA GE[X[.

Definition 2.4: Let X be an SKI-G-wff. X is clean '(CLEAN-P[X) iff VSX =

ACCESSIBLE-VS[X. . ,

An SKI-G-wff <VS,RATOR, RAND,FWDATOM,root> is represented on paper as %
follows. A vertex v having out degree 0 is represented by the functor ATOM[v]. A
vertex v having out degree 1 (a forwarding vertex) is represented by a dot (.) having one

dotted arrow (representing the arc <v,fwdv> in FWD) pointing at the representation 0
of fwdv. A vertex having out degree 2 is represented by a dot having two arrows- .:

representing the two arcs which emanate from it <v,rtr> (left arrow) and <v,rnd> ,.-

(right arrow) - which point at the representations of rtr and rnd. The vertex root is . ,

often labeled with the string 'ROOT:". Often other vertices are given labels to ease
reference. See the figures below for some examples of this representation.

| \

I 0

The SKI-G-wff: <{v1 ,v 2 },{},{,{},{<vl,I>,<v2,K>},vl>
Figure 2.1

Note that the vertex v 2 in the above diagram is a garbage vertex. It is garbage since it ,-
is inaccessible from the root (v t).

RoOr: , ,r,:

"2

-r

The Clean SKI-G-wff:

<{v1,v2,V3,v4,VS}{<Vv'v2>,<v2,v3>1,{<vl~v >,'v v4>} {} {<v3,K>;<v4,S>'<V.5,>} t,1 >...-...."

Figure 2.2

P %A

% %%*%%%, A'A
J.W F, ',~g,, F,,,,, ,, - , ". f :.'.,',.,.,,'3.:_'. '.,.a:..,'. ;a , -,;.-# ,,-._. - y ..g ,P _..-z z. - E .R' O#.g'..'~tE'Si.",. r, -9?

r.-j.' '-
.

.. €, I .¢l,, r r. '.. ",h,' " ; - .- . .:'- -'-',' ' , ,c ,._. ,-.', . -. -. .-..-. _.%- .-... .%.. .* .'_ .'. . ;..- .,. .. *- 4.,-..' - '-a, . .

Page 35'

7:-

%

K-.

An ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -. ..-Gwf wihSm owrig etcsadSm Sae ufru

Fiue .

This repesentaton is a good oe m it llows oe to obereteSUGwfstuc rea
a~~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~~ glne ihi n a aiy dniyaf' abgrot hrdsboml n

cyces Ofehw vr easI:s ersnaini odficl otpst K -- f
ar ipa e iery -Jutlk le.sn hslierrpee tto .g r

Let An VSKI-G- witASomeForwarding Vrtces anSm Sharedff Viewfnrmhela r

sts rpL resnato isND anod one si allw fntone tor oberties th veicesws sructres at0

csecl. OftSe ehoeer, beause, this D re rntio isD sor dificlt tc typeset.i SI-G-wff

bage and Frwadingntoe arth igoredn DomIeSDisare sustrucDture are unetctboe

aefnd t cycle are unrpreenbe This-ff li e cislan Ky -w is usdonLwe tes wses.f

% where

LtVSRATORRNWTMro, beatK--f. iwn h r
setsN VS &AOR NadFT sfntosfo etcst etcsi oeie

useNu' L SbIthe RNTRRN, rFD.Fral rs VS>i', ~ 1
=v.LtFD bes aWS fucinwt&oanD fS sa usto ,te h etito

ATOM' iAsR ,RAND]I' W'AO',O~X>

wheee

Page 94
A

ROOT:

.I. "o " -

Figure 2.4 ,

The definition of the function CLEAN might be viewed as a very high level specification
of a garbage collector. By providing different realizations of the predicate ACCESSIBLE . 0
and the function restricting operator 1, one is able to create different implementations of
the specification.

Definition 2.6: Let X be an SKI-G-wff and let v be a vertex in VS[X]. The vertex v is
forwarded to v' in X (also FOR WARDED-P[v,X], FOR WARDED- TO[v,X = v') iff
<v,v > EFWDPi. -W

, % - . ,".
Definition 2.7: Let X be an SKI-G-wff. X is compact (COMPACT-P]) iff for all ver- %. -"

tices v E VS[X, FORWARDED-P[v,X] implies v E GARBAGE[X.

The following definition defines a function (COMPRESS) which removes one source of • •
indirection in an SKI-G-wff containing a forwarding arc. It does so by replacing all arcs
which point at the forwarded vertex with arcs which point at the vertex to which the %
forwarded vertex points.

Definition 2.8: Let X be an SKI-G-wff. Let v E VS[X such that FORWARDED-
P[v,XI. The SKI-G-wff contained in X compressed at v is COMPRESS[v,X, where
COMPRESS [V1X] De

< VS [X],RATOR,RAND,FWDATOM[[X], root > %
where

RATORisRATOR[X]
with all arcs of the form < u,v>
replaced with <u,FORWARDED-TO[v,X]> &, .

RAND isRAND[X ..

with all arcs of the form <u,v>
replaced with <u,FORWARDED.TO[v,X> &

FWD is FWD[X]
with all arcs of the form < u,v >
replaced with <u,FORWARDED-TO[v,Xi> &

root is (if (not ROOT[X] = v)
then ROOTX-

else FORWARDED-TO[v,XI) *

%

% *

%P,,L

Page 35

ROOT: ROOT"

S*2:

COMPRESSed/3%
An Example of COMPRESSion

Figure 2.5

Note that although all of the arcs whose destination had been the forwarding vertex
have been removed, the forwarding vertex and its forwarding arc have not. The for-
warding vertex is now inaccessible from the root of the new SKI-G-wff. It therefore is
part of the garbage of the compressed SlKI-G-wff

The next function (COMPACT), defined in terms of COMPRESS, makes all sources of'
indirection (all forwarding vertices) into garbage.

' ..

Definition 2.9: Let X be an ShI'-G-wff The compact SKI-G-wff contained in X is %

(COMPACT[X] where:
COMPACT[X] -.

(if COMPACT-P[X.

then X
else%

(let v be
(a vertex in VSLNX such that there is

an arc <v,vfwd> in FWD[X]) A
in COMPACT[COMPRESS [vX]]

%

% %

I%%

%* % =

// 7: . '.''

0% O N M P A C'T d V r s i,) nI o ft h , (l- G - in F ig u r e 2 3. - . ", -
Figure 2.8 6 "'

'K% • '.' d

Although not proved here, it can be shown that the functions CLEAN and COMPACT
really do produce SKI-G-wffs. As will be seen in subsequent chapters, the LNF compiler '

produces clean compact SKI-G-wffs (actually, it produces clean compact LNF-wffs) from

"% • '% % %• , ."% % V -' % ' . ' . . % ' '% %-% % % % " ' " ,% ,P % " %a d

Page 86
. -.4k

user input. . ,, ,I
N P1 ,. % e %

Definition 2.10: Let X be an SKI-G-wff. X is a combination (COMBINATION-PN)
iff there is an arc in RATOR[X (which implies there is an arc in RAND[X] also)
whose origin is in ACCESSIBLE-VS[X]. X is an atom (ATOM-PX]) iff it is not a
combination.

Note that an atomic SKI-G-wff (a wff A such that ATOM-P[A]) may contain more than 61

one accessible vertex. There may be a path, composed exclusively of forwarding arcs,
from the root to a vertex which is mapped by the wff's atom function to one of the func- , •
tors: S, K, or I. ':i

Definition 2.11: Let X be an SKI-G-wff and let v be in VS[. The SKI-G-wff
described in X rooted at v is (SKI-G- WFF[X,v]) where
SKI-G-WFF[X,v] D

<VS[X],RATORC] ,RAND X],FWD[X],ATOM[X],v>

If v in (ACCESSIBLE-VS[X]), then SKI-G-WFF[X,v] is called the subformula of X
rooted at v or SUBFORMULA[X,v].

The subformula of an SKI-G-wff X rooted at v (call it X') is often referred to as, simply,
a subformula of X. It is also said that X contains X' or X' occurs in X. It is impor-
tant to observe that for any SKI-wff X and any Y which is a subformula of X the sets
VS[X] and VS[Y are identical. Besides the subformulas of X, there are other SKI-G-wffs I
described by X. These are the SKI-G-wffs which are rooted at the vertices in
GARBAGE[X. *

Definition 2.12: Let X be an SKI-G-wfl. If X is a combination, then there are two (not
necessarily distinct) immediate subformulas of X:
OPERA TORX ft

(if FORWARDED-P [ROOT N,X]
then OPERATOR [SUBFORMULA[X,FORWARDED-TO [ROOT [X],Xfl]

else SUBFORMULA [X,RATOR [X] [ROOT X]]])

OPERANDN[X] %

(if FORWARDED-P[ROOTpX,X]
then OPERAND [SUBFORMULA[X,FORWARDED-TO [ROOTX1,X]]] A 0

else SUBFORMULA EX,RAND [XE [ROOT I]]])
%" %'3""-.

Observe that RATOR[X][ROOT[X]] (RAND[X][ROOTNX]]) is the result of applying the
function RATOR[X] (RAND[X]) to the vertex specified by ROOTNX]. " " "-

It is hoped that no confusion will arise due to the author's overloading of the predicates:,'
COMBINATION-P and ATOM-P, and the functions: OPERATOR and OPERAND. It ,
should always be clear from the context which calculus, and therefore which predicate *,-

(or function), is being referenced.

,. ,.,%,:'

%,
%4-~*....*.~j 4 * ~ * . . ~- .4

6 ~ ~ . 4 d.4

0 0

. 16

Page 87 ,

Definition 2.13: Let X be a combination. Let X' be the subformula of X rooted at v. Z-.1%
If there is more than one path from ROOT[X] to v in X, then X' is a shared subfor-
mula of X (SHARED-PPC ,X]).

Definition 2.14: An SKI-G-wff X contains a cycle if there is a path (having length
greater than 0) from an accessible vertex v to itself.

Definition 2.15: If an SKI-G-wff X does not contain any cycles, then applying the func-
tion GRAPH-TO-STRING to X yields an SKI-wff (called the linear transform of X). - 0

GRAPH-TO-STRING [X + -

(let root be ROOT[X] in Z. W

(if FORWARDED-P [root,X] 0 .- ".'.
then GRAPH-TO-STRING [S UBFORMULA[X,FORWARDED-TO [root,Xl]]

elseif ATOM-PN [0
then ATOM[X] [root]

else ;; X is a combination
(GRAPH-TO-STRING [OPERATORX]] GRAPH-TO-STRING [OPERANDX]])))U

0

RooT...

.......... %2.

T_
5 S-.-•,

. ..

S I K (S K) is the Linear Transform of the Above SKI-G-wffFigure 2.7
il• op

Note that an SKI-G-wff's garbage is not a factor in this transformation. Also, forward- ,",.-
ing vertices and their arcs are used only as "indirection pointers" by GRAPH-TO-
STRING. Any shared subformula in the SKI-G-wff is transformed into multiple %
occurrences of the subformula in the SKI-wff. I 0

Definition 2.16: Let X and Y be acyclic SKI-G-wffs. X is synonymous with Y iff
(SYNONYMOUS-P[X,Y]) where
SYNONYMOUS- P [X,Y] . .

GRAPH-TO-STRINGIX] = GRAPH-TO-STRINGM

,,, * " ¢., "

On the confusing syntax - the two preceding right parentheses are part of the syntax of the 0 •

definition, while the left and right parentheses enclosing the expressions GRAPH-TO-
STRING [OPERATOR[X] and GRAPH-TO-STRING [OPERAND[X]] are part of the result

,,.9 %

Page 8

Theorem 2.1: Any acyclic SKI-G-wff may be COMPACTed and then CLEANed to pro-
duce a clean compact synonymous SIKI-G-wff. The proof follows directly from the
definitions of the functions CLEAN, COMPACT, and GRAP H-TO- STRING.

Definition 2.17: Let a be a functor (which is an SKIl-wif). The atomic graphical
transform of a is A TOMIC-GRAPfftaI where:
ATOMIC-GRAPH[a] Del

(let nv be a new vertex in
<{nv},{j},{,{ <nv,a> },nv>)

Definition 2.18: Let X and Y be SKI-G-wfrs. X and Y are compatible if
COMPA TIBLE-P[X,Y] where:
COMPATIBLE-PPX,Y] !

(or vspc]l nVS[Y =0o
X is a subformula of Y 0
Y is a subformula of X)

Definition 2.19: Let X and Y be compatible SI I-G-wffs. The combination of X and Y
is COMBINE[X,Y] where:
COMBINE[X,y] De l

(let root be a new vertex in
<vspq U vsm U {root},

RATOR[X u RATOR[Y] u {<root,ROOT[X>},
RANDPN u RAND[Y u {<root,ROOT[Y]>},%
FWD[IU FWDM,4W
ATOMNX U ATOMMY,
root >)

* Definition 2.20: Let X be an SKI-wif. The graphical transform of X is the SKI-G-wff
STRING- TO-GRAPH[X] wherePA-ff
STRING-TO-GRAPHNX £

(if ATOM-P[X
then ATOMIC-GRAPHNX

else ;; X is a combination
(let opr be STRING-TO- GRAPH [OPERATOR J & -

opd be STRING-TO- GRAPH [OPERAND [X]] in
;opr and opd share no vertices, so they are compatible

COMBINE~opr,opd])) 1 .\
%'. .J

Incompatible SKI-G-wffs are not COMBINEd as the resulting graph may not be an SKI-
G-wff. This is so because the definition of SKI-G-wff does not prevent two SI(I-G-wffs
from having the same vertex set and inconsistent arc sets at the same time.

For any two composable functions F and G, F D G represents their composition. For arany function F capable of being composed with itself, F' is the function created by com- %
posing F with itself n times. That is:

0 Fn =FoFo ... oF,

where there are n Fs to the right of the equal sign. F0 is the identity function.

I

= C, _ -. =c'h 3

"0,,- r'-",2JPage 9N

It can be shown that the graphical transform of an SIKI-wff is a clean compact SKI-G-wff
without shared subformulas. It can also be shown that, given an SKI-wff X and its
graphical transform Y, the linear transform of Y is X. That is to say, GRAPH-TO-
STRINGoSTRING-TO-GRAPH is the identitv function on SKI-wffs. It is not the case,
however, that STRING-TO-GRAPH -,GRAPII-TO-STRING is the identity function on
SKI-G-wffs. Applied to a clean compact SKI-G-wff Y having no cycles and no
confluences (no shared subformulas), however, an SII-G-wff Y' isomorphic to Y is pro- ,
duced. The only difference between Y and Y' (their graphs will appear identical when
displayed) is their vertex sets. As the functions ATOMIC-GRAPH and COMBINE (the
functions STRING-TO-GRA-PH is defined in t-rms of) always use new vertices, the ver-
tex sets will be necessarily disjoint.

Definition 2.21: Let X be an SKI-G-wff The initial atom of X is (INITIAL-A TOMX)
where:
INITIAL-ATOMX] D,1

(let root be ROOT[X] in
(if FORWARDED-P[root,X

then INITIAL-ATOM[SUBFORMULA [X,FOR\VARDED-TO[root,X]]
elseif ATOM-P [X]

then ATOM[root]
else -- X is a combination

INITIAL-ATOM [OPERATOR X]])) %

Definition 2.22: Let X be an SKI-G-wff. The number of arguments of X is (NUMvBER-
OF-ARGSX) where: •
NUMBER-O-ARGSLX

(let root be ROOT[X] in
(if FORWARDED- P [root ,XI

then NUMBER-OF-ARGS [SU BF ORM.It LA [X.FOR WARDED-TO[root,X]]]
elseif ATOM-P [X]

then 0
else ;; X is a combination

(+ 1 NUMBER-OF-ARGS [OPERATORLXII)))

Definition 2.23: Let X be an SKI-G-wff If l<n<NUMBER-OF-ARGS[XI, then the
nth argument of X is ARG[n,X] where:
ARG[n,X] _

(let numargs be NUMBER-OF-ARGS[XI in
OPERAND o OPERATORnumargs-"nXI)

2.1.2. Reduction " .1
The "immediately reducible to" relation -of the SIKI-G-calculus (SIKI-G-imr) mirrors the
SKI-normal-imr relation on SIKI-wfls presented in the preceding chapter That is to say -P

reduction in the SKI-G-calculus proceeds by contracting the graphical redex correspond-
ing to the SKI-calculus' leftmost SlKI-redex. Thus, like the calculus characterized by the r
set of wffs SKI-wff and "immediately reducible to" relation SK\I- norm al-im r, the SKI-G-

calculus is deterministic.

\p' . % %., *.~ . . % .% % W''; V C.,.. * * .~ . .. , ' ' - ~ *
%,, ,"¢C ..% * " .r ," ., ,, . - -S " ,* * 5' -~ ,% ." ," ." ." " . .4 . " - " ." . . " . " . r ," . ,, " ,', , " - 4 "-

Page 4

Some preliminary concepts are presented prior to the definition of SKI-G-imr.A
A. .?:. .

Definition 2.24: Let X be a combination whose root isnot forwarded. Let Y be an 11
SKI-G-wff compatible with (but different from) X. The SKJ-G-wff which results from 6
forwarding the root of X to the root of Y is FOR W4RD- COMB[XCY] where:
FORWARD-CONM[X,Yi j

(let rootx be ROOTEX in
(let rtrx be RATOR[X[rootxl &

mndx be RAND pqrootxj in
<VStX U VSMY, J. ,..P.

RATORNX U RATOR[Y] < I rootx,rtrx :~< -

RAND[X U RAND M] - f,< rootx, rn dx>}
FWD(X u FWDMY u {<rootx.ROO0T[Y]>}
ATOM~X) U ATOMMY,
rootx>))

A note on the restriction, in the previous definition, that Y must be different from X: Y
cannot be X nor can Y's root be forwarded (via one or more arcs) to X's root. Forward-
ing X to such a wif would create a graph which is not an SKiI-G-wff.

The reason for merging only compatible wffs is the same as that for COMINing only fVA."
compatible wffs - i.e. the graph that results from merging incompatible wffs may not be
a wif at all1.2 %

Note that combination forwarding makes garbage out of vertices which were previously
accessible only from rtrx or rndx. ... A

AA**.

K K< K

BEF-61REAFTEV.

An Example of Combination Forwarding-
Figure 2.8

AP.

2In the implementation, all wffs are compatible Therefcre there is no need to check for compa-
tibility before performing a forwarding operation or befo're CONMINing two wfls

U
% %S

A.* * *. * - 5

%. -% % P % %-t . .2..%.................. %

p 0

Page .41

Definition 2.25: Let X be an SKI-G-wff. X is an SKI-G-S redex if SKI-G-S-REDEX- %-
P[X where:
SKI-G-S-REDEX-PX] --

(and (not FORWARDED-P[ROOT X],X])
INITIALATOMNX = S
NUMBER- OF- ARGSfX PC= 3) i

Definition 2.26: Let X be an SKI-G-S redex. The SKI-G-wff Y is the SKI-G-S reduc- S
turn of X if SKI-G-S-RED UCTUMNXI Y (X SKI-G-S-zr Y) where:
SKI-G-S-REDUCTUMNX - -,

(let root be ROOTX &,
rf be ROOT[ARG[,X] k
rg be ROOT[ARG[2X]] &
rx be ROOT[ARG[3X]] &
nv 1 be a new vertex &
fnV2 be a new vertex in

<VS[X U {nvl,nV2), '.

RATOR[X]I(VS[X]- {root}) U { <root,nvj>,<nv1 ,rf>,<nv2,rg>}, -,--5

RANDpqI(VSX-{root}) U { <rootnv-,><nvl,rx>,<nv2 ,rx>},
FWDq,
ATOMN[XJ,

root>)

Roar..X-r.

1% -, % /.- ---
/ /

%5

REDC-X ?E DUCKTU -"%

An Example of SKI-G-S Reduction P 'r
Figure 2.9

The figure above demands some explanation. The vertices labeled n1 and n2 denote the

new vertices present in the reductum. The labeled triangles in the above figure (and the
figures to follow) represent whole SNI-G-wffs. This representation is a little bit deceiv-
ing. These wffs may contain arcs pointing at the other vertices - e.g. the triangle %
labeled x may contain arcs pointing at vertices in the wff represented by the triangle
labeled g (even though no such arcs appear in the repre sentation). Thus, some of the
vertices which appear from the figure to be inaccessible from the root may, in fact, be - . ,

accessible.

%'

I
..V V e .. , . ,,- .',, * ',i' .f% ",/' .Y . 9, 2'/ :..S ,q .€ ,., ,

%-

Page 42 W, a 0

Definition 2.27: Let X be an SKI-G-wff. X is an SKI-G-K redex if SKI-G-K-REDEX-
P(X] where:
SKI-G-K-REDEX-PX Del

(and (not FORWARDED-P[ROOT[XI,XI) - -b

INITIAL-ATOM[X] =I K
NUMBER-OF-ARGS[X] =2)

Definition 2.28: Let X be an SKI-G-K redex. The SKI-G-wff Y is the SKI-G-K reduc-
turn of X if SKI-G-K-REDUCTUMXI = Y (X SKI-G-K-imr Y) where:
SKI-G-K-REDUCTUMpc] •

FORWARD-COMB[X,ARG [1 ,X]]

The last two definitions are good examples of the close relationship between the.%
definitions of concepts in this formal calculus and the functions which implement them.
These definitions can be (almost trivially) realized in most programming languages.

Note that in the definition of SIKI-G--REDUCTUM, the SKI-G-t redex is forwarded to ,
its first argument. There is a subtle reason for this. One might think that the use of
the forwarding pointer could be obviated by simply replacing the RATOR and RAND
pointers of the redex with the RATOR and RAND pointers of the first argument. How-
ever, if this is done and if the first argument is itself a redex, this replacement would . .
create a duplicate redex. Forming duplicate redexes violates the property of full laziness
- that states that every expression is reduced at most once. %

ROOT. Ror
/ .a .. :. <.., .:.:

K 0

An Example of Proper SI-C-IC Reduction
Figure 2.10

WM %-o. r , %

* %

J.~~ %.
,, %- W% % %% %

.I J

%, %. % N

,. ,:%.-..

.~ .
% *% *% . *.,

- .-..-.. ",..- --. ".. .. ,.,An Example of------------- - --- edcton----4.'4-

Figure 2.10 • •~


~~~Page 48 ',:.J L

pw .ROOT: .. .7.

o €,...

/...

, P., % .•.. .'- A; "

SRoO D Ro.'oT." "

An Example of Improper SKI-G-K Reduction "-'''"

" ~~~Figure 2.11 '-', [

Definition 2.29: Let X be an SKI-G-wff. X is an SKI-G-I redez if SKI-G-l-REDEX-

P[X where:

X~ De

SKI-G-I-REDEX-P X

(and (not FORWARDED- P[ROOTX],)
INITAEL-ATOMpX o ISd

NU1MER-OF-ARGS[X = 1) 2."./

Definition 2.30: Let X be an SKI-G-wff. X SKI-G-wff Y is the SKI-G-I reductum

of X if SKI-G--REDUCTUM = Y (X SKI-G-I-imr Y) where:
SKI-C-I-REDUCTNX]

FORW RD-WOAD[X,-PROX], %]

•. % %

NUM ,RoFARS Kan1)'"."" '

/\% %
Deintin .3: etX eAn ExamGplrex Th--ffYi h SKI-G-I -eductionm

Nof if -RED , we R ( SKI-G-I-ir.Y whree n

I*. X -
.. . le

Anr~P T Exm l fS I - euto,.- .u9 % ,

% %-%% -,

VS[Y] contAnaEampl ofSSI-C- Reductions ontdsadvrie."-...

It is often convenient, just as with SKI-G-wffs, to express the relations SKI-G-S-imr, .""-'
SKI-G-K-imr, and SKI-G-I-imnr linearly. Written in this manner, they are, respectively""""

s XY z - X z(Y Z) S

KXY-X " ...- ,-

-F_ . , %64,_ %*%%%

% * ~ ~ . ~ N'



r % % %

Page 44

Of course, the relations, expressed linearly, are subject to the same problems as are %tr.
linear representations of SKI-G-wffs:

" Shared subformulas appear as duplicate subformulas (e.g. in the S reduction rule, the

wffs denoted by Zare actually the same wf) 0
* Forwarding arcs are invisible (e.g. in the K and I reduction rules, the root of the wff" P

denoted by X is a forwarding vertex)

These relations, like their linear counterparts in the SKI-calculus, are also often referred
to as substantive reduction rules, as each specifies a redex-reductum pair.

Definition 2.31: Each functor has an arity determined by its reduction rule. The arity
of a functor f (ARITf]) having reduction rule: f X1  X, - Z is n. S, therefore,

has arity 3, K has arity 2, and I has arity 1.

In the LNF-calculus, some functors are characterized by more than one reduction rule.
These functors' rules, however, always require the same number of arguments. Thus
such a functor's arity may be determined by examining any one of its rules.

Hereafter, for conciseness (in contexts in which no confusion will arise) the
prefix may be dropped from such identifiers as: SKI-G-wff, SKI-G-S-REDEX-P, SKI-G- ]

K-imr, etc.

Definition 2.32: Let X be an SKI-G-wff X is an SKI-G redex iff SKI-G-REDEX-P"4
where
SKI-G-REDEX-P[X] "

(or S-REDEX-P~X1 K-REDEX-P[X] I-REDEX-P[X])

Definition 2.33: Let X be an SKI-G-wff. X contains an initial redez iff

(or SII-G-REDEX-P[X]
OPERATORX1 contains an initial redex) -

Definition 2.34: Let X be an SKI-G-wff. X is in SKI-G-lazy-normal form iff SKI-G-

LAZY-NF-PW[X where
SKI-G-LAZY-NF-P C],

X does not contain an initial redex

The definition of SKI-G-imr (next) is a bit long and complicated. It is complicated by the

presence of forwarding pointers and the fact that, because of shared subformulas and . .1
cycles in the wff, redex contractions can be a bit more difficult to formalize than in a .

string oriented calculus. However, the informal description of the relation is quite simple
to comprehend. Informally, an SI(-G-wff X reduces immediately to Y iff either '

<X,Y> is a redex-reductum pair or X contains a leftmost redex and Y is the wff which
results from contracting this redex.

-. ',
B S

"V \ .

-..



F Fe

Page 45

Definition 2.35: Given SK<I-G-wffs X and Y. X immediately reduces to Y iff X SKI-G-
imr Y where
X SKI-G-imrY

(let xroot be ROOTEX in J
(if FORWARDED- P[xrootX]

then (let yroot be ROOTMY in .

(and FORWARDED-P~yrootY]
xroot = yroot -

(SlUBFORMvULA [X,FOR WARDED-TO ~xroot,-XI]

elei (otSUBFORMULA[YFORWARDED-TO~yroot,Y]])))
elei (otLAZY-NF-Ppq)
then (or XS-imr Y

X K-imr Y
XJ1-imr Y
(and COMB3INATION-P [X

(there is a YOPR E SKI-G-wff such that
(and OPERATORNX SKiI-G-imr YOPR

S ~Y = SICI-G-WFF[YoPR,xroot])))
else; X does not contain an initial redex

(and COMINATION-P [X
(there is an i E i,...,NUM-ARGSNX .

and an SKI-G-wff ARG, such that

(and ARG[iXj SKI-G-imr ARG,

Y = SKI-G-WFFYARG1JxrootI
there isn't a j E 1 ......-1 such that

ARGU,X1 is reducible))))

SS

bYNNI KI SK- G-nw 4W

p An Example of SMI-G Reduction
Figure 2.13-

Definition 2.36: SKI-C-red is the transitive closure of SKI-G-imr. *
Definition 2.37: SKI-G-red* is the reflexive transitive closure of SI-G-imr.

7,0
% %,

z6L,8&5, ~ ~ 9 ,-R- ,



Page 46

Definition 2.38: Let X be an SKI-G-wff X is in SKI-G-normal form iff SKI-G-iVF-,.
P[X] where
SKI-G-NF-PEXI %"

no subformula of X is an SKI-G-REDEX

Definition 2.39: Let X be an SKI-G-wff which is not in SKI-G-normal form. The left-
most redez of X is LEFTMOST-REDEX[xI where: "
LEFTMOST-REDEXX -

(if REDEX-PpX]
then X

e/aeif OPERATOR [X] contrains a redex
then LEFTMOST-REDEX[OPERATORX]

else ;; OPERANDX] contains a redex
LEFTMOST-REDEX[OPERAND X])

Note that the SKI-G-calculus is deterministic. For any SKI-G-wff X, there is only one
reduction sequence starting at X. This is true because each reduction step involves con-
tracting the wff's leftmost redex, which (if it exists) is unique. Moreover, if X has an :,_

SKI-G-normal form, then it is arrived at by first being reduced to SKI-G-laz -normal ,_ .
form. Each argument, in turn, is then reduced to SKI-G-normal form. 0 0

The following results show that any SKI-calculus reduction sequence 3 (and therefore any -
X-calculus reduction sequence 4 ) can be simulated by a reduction sequence (often involv- "
ing fewer reductions) in the SKI-G-calculus. These results also demonstrate that any ' .
SKI-G-calculus reduction can be simulated in the SKI-calculus. Thus, the SKI-G-
calculus is shown to be equivalent in power to the SKI-calculus, the X-calculus, et al.

a.,- - j '4

Leni ma 2.1: Let SKI-X be a variable-fiee SKI-wff. If SKI-X SKI-normal-imr SKI-Y,
then there is an SKI-G-Y E SKI-G-wff such that STRING-TO-GRAPH[SKI-X"-
SKI-G-inr SKI-G-Y and SKI-Y = GRAPH-TO-STRING (SKI-G-Y]. .

Proof Sketch: S S
STRING-TO-GRAPH preserves redexes. Thus, the leftmost redex in SKI-X, which
when contracted yields SKI-Y, will have a counterpart in STRING-TO- %
GRA&PH[SKI-X] (SKI-G-X) which will also be a leftmost redex. Contracting this , , ,
redex, yielding SKI-G-Y, will have no effect on the rest of the graph SKI-G-X as it
does not contain any confluences or cycles Thus. since the redex-reductum pairs of ' .>"%.%.

the SKI-G-calculus mirror the redex-reductum pairs in the SKI-calculus, the string . "
transform of SKI-G-Y will be SKI-Y.

End Sketch

The previous lemma demonstrates that a single reduction step in the SKI-calculus can be ..j.j-1
simulated by a single reduction step in the SKI-G-calculus. The next lemma states that
a single reduction step in the SKI-G-calculus can be simulated by one or more reduction -

steps in the SKI-calculus. .

3 with the restriction that the initial SKI-wff in the sequence does not contain any variables S
4 with the restriction that the initial -wff is closed

. .. .• • '. , ' .• ",

-P. .0 e F J le 0 % %a %~%~ ~ % A

-0 % %%

'PAN '~ %

[ ',.V q'.-! '=/.'% % _'%'.'% "' _'% _q". L "' .'-,-5.6W .% % . " ' "%"""" -IV-,!"-' - "% -. %-.- k'j.n-'.-." .- %--



Page 47 r W

Lemma 2.2: Let SKI-G-X be an SKI-G-wff. If SKI-G-X SKI-G-imr SKI-G-Y, then % ..
GRAPH-TO-STRING[SKI-G-X] SKI-red GRAPH-TO-STRING[SKI-G-Y].

Proof Sketch: •
The SKI-wff GIRAPH-TO-STRING[SKI-G-X] (SKI-X) contains N copies of each
subformula of SKI-G-X having N distinct paths from SKI-G-X's root to the root of
the subformula. In particular, if there are M distinct paths from SKI-G-X's root to %
the root of the redex contracted, then the SKI-wff SKI-X contains M copies of this
redex. Each of these M redexes must be contracted as the SKI-wff GRAPH-TO-
STRING[SKI-G-Y] (SKI-Y) will contain M copies of the redex's reductum. The
SKI-wffs SKI-X and SKI-Y will therefore stand in the relation SKI-red if these M
redexes are all contracted.

End Sketch

The following two conjectures claim equivalence between the SKI-calculus and the SKI-
G-calculus.

Conjecture 2.1: Let SKI-X be a variable-free SKI-wff. If SKI-X SKI-norrmal-red
SKI-Y, where SKI-Y in SKI-normal form, then there is an SKI-G-Y E SKI-G-wff
in SKI-G-normal form such that STRING-TO-GRAPH[SKI-X SKI-G-red SKI-G-Y '"',

and SKI-Y = GRAPH-TO-STRING[SKI-G-Y .
Proof Sketch: ...--.-.

The reduction sequence in the SKI-G-calculus would mirror the reduction sequence in -
the SKI-calculus with the following exception. In an SKI-calculus reduction step
redexes are often copied (e.g. any redex in Z after the step: S X Y Z -* X Z (Y Z)).
On the other hand, redexes are never duplicated in an SKI-G-calculus reduction. 0

Thus, the SKI-G-calculus reduction sequence may be shorter than the one in the
SKI-calculus - how much shorter depends, of course, on how many redexes are
copied in the SKI-calculus reduction sequence. Note the requirement in the theorem
statement that the SKI-reduction sequence terminates in an SKI-wff in SKI-normal
form. Some reduction sequences which do not eliminate all redexes cannot be simu- %
lated - those which fail to contract the redexes they copy.

End Sketch %.%

It has been informally argued that any SKI-normal reduction sequence resulting in an
SKI-wff in SKI-normal form can be simulated in the SKI-G-calc':lus. It remains to show
that all SKI-G-calculus reductions can be simulated in the SKI-calculus. ruiV
Conjecture 2.2: Let SKI-G-X be an acyclic SKI-G-wff. If SKI-G-X SKI-G-red SKI-

G-Y, then GRAPH-TO-STRING[SKI-G-X] SKI-red GRAPH-TO-STRING[SKI-G- I
Proof Sketch:

The SKI-calculus reduction sequence which simulates the SKI-G-calculus reduction .- '/sequence will mirror the graph sequence except that it may take more steps (to

reduce the copies of the redexes it has created). There need not be a requirement I
that the simulated sequence end in a redex-free graph as no copies of redexes are
created by it.

End Sketch 0

.. %

. . . .. . .. ... . . . . . .. . .. . . . . . .

%" ."N -•.%



Page 48
%

2.1.3. On Realizinst the SKI-G-calculus

Since any closed X-wff can be translated into an SKI-G-wff, reduced, and then -%

transformed back, an SKI-G machine (one which produces SKI-G-wffs in SKI-G-normal i -6

form from arbitrary SK-G-wffs it has been provided) could be used as the reduction
engine at the core of a functional programming language implementation. This machine .,, I
(SKI-G-M) could be built from a simpler machine (LNF-M) which accepts SKI-G-wffs as %..e.
input and produces SKI-G-wffs in SKI-G-lazy-normal form. An informal definition of
SKI-G-M in terms of LNF-M follows:

0SKI-G-M[X] .

(let a E, • E, be LNF-M[]q in
a SKI-G-M[E • SKI- G-ME 1,) ,

Besides being an elegant machine architecture, it has two properties which make it an
efficient one as well. Firstly, the only redexes contracted are initial redexes. These 0 0

redexes are easy to locate within a wif as only the "left spine" of the graph need be
searched. Secondly, having reduced the input wff to lazy-normal form, the structure of
the output wif is known - that is, both its initial atom and number of arguments are %.
known. Further reductions of the wff only affect the structure of the wffs arguments.'
Thus, having reached lazy-normal form, the initial atom may be output and reduction 0
started on the arguments. .....

However, basing the implementation of a usable5 functional programming (FP) language .. . .
on SKI-G-M (the architecture notwithstanding) is problematic. The two most significant .'..:,,---*,

problems with this approach are:

1. All of the constructs (both in data: like numbers and lists, and in code: like condi-
tional expressions and expressions with auxiliary declarations) programmers have
become accustomed to, and now expect to find in an FP language, must be . ..

represented by SKI-G-wffs.6

2. Translating complex (closed) X-wffs into SKI-G-wffs creates SKI-G-wffs of unaccept- 0 0
able size. The translated SKI-G-wff grows exponentially with the number of nested Y.' ,
abstractions present in the X-wff ([Turner 1979c]). % % %

Assuming that the FP language to be implemented is a "sugared" version of the X- % . .
calculus, the desugaring process must represent all of the constructs of the language as

* 0X-wffs. For example, natural numbers are data items most programmers would expect to . . .
find in an FP language. These numbers must be represented as X-wffs. Although this
can be done, the resulting wffs are large in size and difficult to manipulate. The arith-
metic operators must be coded as X-wffs as well. Besides being complex, the desugared "
expressions (now X-wffs) have lost something in the process. One cannot distinguish a
desugared numeral from a function - the programmer's intention has been lost. Any 0 0
NUMBER-P predicate, for example, would return TRUE 7 when provided with any X-wff
taking the form of a natural number representation, even though that was not its

.". --:'-

5 capable of running more than the customary set of trivial test programs, not necessarily a pro- -" -
duction quality system

6 This is not just a problem witb the SKI-G-calculus, of course - all of the other calculi previ- 0 C
ously presented also suffer from this malady

a X-wff representation of TRUE

3,p," a -, t - . r " W ' '' ' % % ' % 
' - ' ' . ' %

'" % "6 ' "''"" -',P W W 'A "ww " -



lp N

r' ) "-"'-"° . % o

Page 49

intended use. %

The representation problem discussed above, by increasing the size and complexity of 1 -1
the X-wffs (which then must be translated into SKI-G-wffs), makes the second problem %.%..
even more significant.

%%.
The LNF-calculus is a directly realizable version of the SKI-G-calculus. The LNF- %.e
calculus, as the reader will see, does not possess either of the problems which prevent the
SKI-G-calculus from being the basis of an efficient programming system.

2.2. The LNF-calculus

As mentioned several times, the LNF-calculus is the reduction calculus which has been 0
realized in ZetaLisp on a Lisp machine. This realization is the reduction engine of the
FP language LNF.

Detailed in this section are the modifications made to the SKI-G-calculus which
transform it into the LNF-calculus. The resulting formal system is one that ha-s been
directly implemented resulting in a usable FP system. The implementation, des:r:hed .n
detail in Chapter 3, mirrors the definition of the LNF-calculus to follow.

2.2.1. Constructions, Functions, and Unknowns % Re,.

LNF-wffs, like SK-wffs and SKI-G-wffs, are either atoms or combinations. Combina-
tions are composite wffs, having an operator and an operand, both of which are LNF-
w ffs. F,

The definition of LNF-wff is identical to that of SKI-G-wff except for the clause:

ATOM is a nonempty partial function from VS to {S,K,I}. ..

In the definition of LNF-wff, this clause is replaced with:

ATOM is a nonempty partial function from VS to LNF-FUNCT u LNT-CONS. %
,

Definition 2.40: LNF-FUNCT is the LNF-calculus' set of functors and LNF-CONS is
the LNF-calculus' set of constructors. LNF-FUNCT and LNF-CONS partition the %
set of identifiers. An identifier is in LNF-FUNCT iff it is associated with a reduction "
rule. All other identifiers are in LNF-CONS-

V- Definition 2.41: Let X be an LNF-wff. If X has initial atom a and a is a constructor,

* then X is a construction (CONSTRUCTION-PX). If X has initial atom a and a is
a functor and NUMBER-OF-ARGSX] < ARITY[a], then X is a function

*,: (FUNCTION-PN). If X is neither a construction nor a function, then it is an unk-
nown (UNKNO WN-P[X]). "

Hence, all LNF-wffs are either constructions. functions, or unknowns. ,__

*'..p . #- ~ *-...,.. ... .... ,..... .... ,...... .......... ,.... ...........-.... :; .
• , ~~~~~~~~~~~~~~~~~~~~~..•.... ,.-.-...W'•.._S;,'.."........e.-.,. •.-. .. ••........ .. .. .-....... ,...

"%, %. j.-7;,:;, ' .' ,, %,. ;, ,-,..~'. ". .,.. ,, .-.-. - . d-. .. ,.-'.., .,.,,-.,,.,,.-',.,,.-'-'.. .'-'.%, ... :,.%.



NN . ... ..

Page 50 • •

Henceforth, metavariables denoting LNF-wffs will come in different flavors. The follow- V ..VV
ing table summarizes these new conventions:8

Metavariable LNF-wff Class

A,B,W,X,Y,Z LNF-wff of any type' ' ' .

f Functor
FN Function

c Constructor
CN Construction S S

cf Constructor or functor
CFN Construction or function %

RDU Reducible unknown
IMR In expressions containing RDU, the wff s.t. RDU LNF-imr IMR
IRU Irreducible unknown

b TRUE or FALSE * 0

i,j Integer
s,t Floating point number -,.

n,m,o Floating point number or integer
P Pair (a wff having the linear representation: PAIR X Y) -4

LNF-wff Metavariables

Some examples of linear representations of LNF-wffs using this new notation follow:

c n IRU a construction whose first argument is a number and
whose second argument is an irreducible unknown

c X, ... Xk a construction having k arguments
+ RDU CFN an LNF-wff having initial atom +, a reducible unknown as .-

first argument, and a construction or function as second'
argument

f (c Z) an LNF-wff having a functor as initial atom and a first
argument which is a construction having one argument ..*,.

In the following sections, the new functors (and their associated reduction rules) will be
presented. The first functors to be presented will be those defined by H.B. Curry and
D.A. Turner.

* 0
" .-'.'-'

2.2.2. Curry's and Turner's Functors

When translating (closed) X-wffs to SKI-G-wffs, the most significant problem is that the
size of the SKI-G-wff grows exponentially with the number of nested abstractions in the 0 0
X-wff. This problem is diminished by introducing several new functors and modifying N %_ %

Sch6nfinkel's ABSTRACTion algorithm to make use of them. -

H.B. Curry, in [Curry 1958], introduced three new functors (B, C, and W) and a
modified ABSTRACTion algorithm. With this new algorithm, the translated X-wffs did " '

' These new metavariables may appear decorated with subscripts as well. 7 K -

%.* . : .s,% -,

*5,7. 7 --. *.*. .. % . .*'*'.' .S. % ** . .S*%*,*'.*%



* 0

Page 51

not grow as rapidly. D.A. Turner claims, in [Turner 1979c], that the growth rate is still
at least quadratic in the number of variables abstracted. D.A. Turner, in [Turner 1979c] *._r.r

and [Turner 1984], modified the algorithm further by adding three more functors, similar "
to S, B, and C, which he called S', B', and C'. Although in the worst case the -
translated X-wffs still may grow quadratically, in practice most X-wffs only grow linearly
when translated. Formal results concerning the growth of translated X-wffs can be
found in [Kennaway 1982] and [Burton 1982]. Kennaway proves that the wff which
results from this transformation grows, in the worst case, at a rate proportional to the
square of the size of the original X-wff. Burton gives an algorithm which balances wffs -
unbalanced wffs are the ones which give rise to the quadratric growth. The resulting
balanced wffs grow, when their variables are removed, at only a linear rate. Burton's
algorithm, however, is restricted to X-wffs in which no abstractions contain global vari-
ables. He claims that any X-wff may be transformed into a X-wff having this property -
but at the cost of (in the worst case) quadratic growth! 5 0

In order to construct LNF-wffs from closed X-wffs, one could use a modified Sch6nfinkel
algorithm which produces strings and then use the STRING-TO-GR4kPH function to
produce LNF-wffs. Presented below are two functions which together transform (closed)

-wffs directly into LNF-wffs by employing the new functors defined by Curry and
Turner.

Definition 2.42: Let X be a X-wff. The LNF transform of X is X-TO-LNF] wnere: % -%
X-TO-LNFrX] -2'

(if ATOM-P[X"
then ATOMIC-GRAPH[X] . .

(elaiefX = (X v B)
then C-T-ABS[v,X-TO-LNF[B]]

else ;; X is a combination
(let OPR be X-TO-LNF(OPERATORX]] &

OPD be X-TO-LNF [OPERANDX]] in • •
"" OPR and OPD share no vertices so they are compatible -, -
CO1MINE (OPR,OPD])) %.

In the following definition of the Schonfinkel-Curry-Turner-Scheevel abstraction algo- %... ..
rithm (C-T-ABS), the shorthand notation:

E of the form: B X Y

replaces the rather cumbersome phrase "E is a combination having initial atom B and
two arguments - let the first of which be called X and the second Y."""""-'

% %~ %,) V

e:~ *,- - e, 4,%.. ,%.,-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ "- -.., .,N .e ., -., , -e , I--.: .,, ,,.,- ... ,I..,,.,... ...- . ,



• * .o %. *' ',

7 . . .,,, .

Page 52

Definition 2.43: For any variable v and LNF-wff B, there is an LNF-wff C-T-ABStv,B] %
whereC-T-ABS [v,B] ' l.- vt

(if (and ATOM-P[B] INITIAL-ATOM B] = v)
then ATOMIC-GRAPH[I]

elseif v does not occur in B
then K-COMB[B]

else ;; B is a combination
(let OPR be OPERATOR[B] &

OPD be OPERAND[B] in
(if(and ATOM-P[OPD] INITIAL-ATOM[OPD] v)

then (if v does not occur in OPR :.-
then OPR .

else W-COMB[C-T-ABS[v,OPR]])
elseifv occurs in both OPR and OPD 0 0

then (let ABS-OPR be C-T-ABS[v,OPR] in
(ifABS-OPR of the form: B X Y

then S' -COMB [X,Y,C-T-ABS [v,OPD]]
else S-COMB [ABS-OPR,C-T-ABS [v,OPD]]))

elseifv occurs in OPD ;; but not in OPR
then (let ABS-OPD be C-T-ABS[v,OPD] in ,* .- .

(if ABS-OPD of the form: B X Y B..,

then B'-COMB[OPR,X,Y] " "

else B-COMB[OPRABS-OPD])) 1

else;; v occurs in OPR but not in OPD
(let ABS-OPR be C-T-ABS[v,OPRI in

(if ABS-OPR of the form: B X Y
then C'-COMB[C,Y,OPD]

else C-COMB[ABS,-OPROPD]))) "

Some auxiliary definitions of functions used above: *

% %

-%% .,5..
W 9

'r~~~~ % *BB.B . d .-.

5 '% .. % . ",..% . % . ' % IV p ' " - . 0 "I¢4 -D#-; :' .. . - . R. t
.  

t¢* 
. p. ".0,. ." e. "- e %.. - .• ." . . ". . .. .. .1 %

% .% - % , p



WCOMN Dal 
%

.5. ,.5 .. ,.

* 0

Page 53.

Definition 2.44: Let X, Y, and Z be LNF-wffs. :,e- .-'""
K.COMB[X

COMBINE[ATOMIC-GRAPH[K],X]

W-COMB~ W "%1

COMBINE [ATOMIC- GRAPH [W],XA -'],3q "'

S,.COMB[X,y,Z] Dot
COMBINE [COMBINE (COMBINE [ATOMIC-GRAP H[S' X ,Y],Z] "'" "p ,-

-.* .. *5..

S-COMB[X,Y] D %--.5.,

COMBINE [COMBINE [ATOMIC- GRAPH [S,X] ,Y] . . .- . .

0-COMB[X,Y,Z]
COMBINE [COMBINE (COMBINE [ATOMIC-GRAPH (B'] ,X],Y],Z]

B-COMB[X,Y] D % %

COMBINE [COMBINE (ATOMIC- GRAPH [B] ,X],Y]
CtiCOMB ,Y,Z] c tha t.".i-t,

COMBINE [COMBINE [COMBINE [ATOMIC-GRAPH [C' I,x],YZ] ':"-. -. Z)

C-COMB C,Y]

COMBINE [COMBINE (ATOMIC- GRAPH [C],X]],Y] : , ,

It is claimed that the wf C-T-ABS[v,B] is equivalent to the wf ABSTRACTlY,B]"'. '"

They are equivalent in the sense that both (GRAPH-TO-STRING[C-T-ABS[v,B]] Z) . ...5/

and (ABSTRACT[v,B] Z), for all SKI-wffs Z, reduce to the same SKI-wff W given the
extended definition of reduction below. An informal justification of the claim follows-',.
this definition. -. ,.- '

C,. d. ', . "

First, recall the reduction rules for S, K, and I:

SXY Z - x z (Y Z)
KXY-X
I X - X "-,: "•"

Add to these the reduction rules for W, B, C, S', B', and C':
p .% . -,

BXY Z -. X(Y Z)
CXYZ-XZY
S, w X Y Z -W (X Z) (Y Z)
B' WXY Z- W (X(Y Z)) %
C' WXYZ- W (X Z) Y

Turner, in [Turner 1984], gives credit to Mark Scheevel (Burroughs Corporation) for
coming up with the B' functor described herein. Turner's B', defined in (Turner 1979c],
was defined by this reduction rule: B' W X Y Z -- W X (Y Z). ". ';

:, *%

. * *~. *~'N-%
-r%2 -Z,,,z,--:," - , ,4'  ,, ,,:, ,' ,".''-t ' ' ? ''. ''.' ,''' ".-". ."'.'.-,-.: ",:'" .'.'.'...¢ v.v...,',

• L . N&". -,' /";i .- ,.,, -'•,." , ,, _= .% .%%" ." " ."" "," ." "j"_ _



%% _

Page 54 0 0

This set of rules, together with the SKI-calculus' contextual reduction rules, defines an
extended "immediately reducible to" relation - call it SKI'-imr. The reflexive transitive
closure of SKI'-imr is the new reduction relation. ,,

To demonstrate the claimed equivalence, the definition of C-T-ABS is viewed as a collec-
* tion of rules of the form: <condition> ='<wff> The conditions are enumerated
* below. Following each condition is the wff (GRAPH-TO-STRING[C-T-ABS[v,B]] Z), a

reduction of it, the wff (ABSTRACT[v,B Z), and a reduction of it. Both reduction
sequences end in equivalent wifa.

1. B=v-
C-T-ABS : I Z '' :r

ABSTRACT: I Z v"

2. v doesn't occur in B=*
C-T-ABS: K B Z
ABSTRACT: K B Z /

3. B is a combination, v = B's operand, and v doesn't occur in B's operator -
C-T-ABS: OPERATOR[B] Z
ABSTRACT: S (K OPERATOR[B]) I Z

-K K OPERATOR[B] Z (I Z)
-- OPERATOR[B] (I Z)
-" OPERATOR[B] Z '/ ,.

4. B is a combination, v = B's operand, and v occurs in B's operator =
C-T-ABS: W C-T-ABS[v,OPERATOR[BI] Z

C-T-ABS[v,OPERATOR[B]] Z Z
ABSTRACT: S ABSTRACT[v,OPERATOR[B]] I Z

ABSTRACT[v,OPERATOR[B]] Z (I Z) " "
-. ABSTRACT[v,OPERATOR[B]] Z Z v'

5. B is a combination, v occurs in B's operator and operand, v Z B's operand, and C- ... .. e.
T-ABS[v,OPERATOR[B]] = (B X Y) .

C-T-ABS : S' X Y C-T-ABS[v,OPERAND[B]] Z where
Y = C-T-ABS[v,OPERAND(OPERATOR[B111 ?

X (Y Z) (C-T-ABS[v,OPERANDB]] Z)
ABSTRACT: S (S (K X) Y') ABSTRACT[v,OPERANDrB] Z where

Y = ABSTRACT[vOPERAND[OPERATOR[B]]]
- S (K X) 'V Z (ABSTRACT[v,OPERAND[B]] Z)

K X Z (V Z) (ABSTRACT[v,OPERAND [B]] Z)
-* X (Y Z) (ABSTRACT[vOPERAND[B]] Z) V

6. B is a combination, v occurs in B's operator and operand, v # B's operand, and C- '.'- -
T-ABS[v,OPERATOR[B]] 3 (B X Y)

C-T-ABS: S C-T-ABS[v,OPERATOR[Bf] C-T-ABS[v,OPERAND[BI] Z -V-
ABSTRACT: S ABSTRACT[v.OPERATOR[B]] ABSTRACT[v,OPERAND[B]] Z

".'--<. .'N



"., .' - '~ ~ . ~._ _ (Y WL -~ Z W VW. Ir

Page 55

7. B is a combination, v occurs in B's operand but not in B's operator, and C-T-
ABS [v,OPERAND [B]] = (B X Y)

C-T-ABS : B' OPERATOR[B] X Y Z where
Y = C-T-ABS[v,OPERAND[OPERAND[B]]] %

OPERATOR[B] (X (Y Z))
ABSTRACT: S (K OPERATORB]) (S (K X) Y') Z where .

Y' -- ABSTRACT[V, OPERAND [OPERAND (B]]l
- K OPERATOR[B] Z (S (K X) Y' Z)

-OPERATOR[(B] (S (K X) V' Z)
- OPERATOR[B] (K X Z (Y' Z))
-- 4 OPERATOR[B] (X (Y Z)) V

8. B is a combination, v occurs in B's operand but not in B's operator, and C-T- . --
ABS[v,OPERAND[BI] 7 (B X Y)

C-T-ABS: B OPERATOR[B] C-T-ABS v,OPERAND[B]] Z
-- OPERATOR[B] (C-T-ABS~v,OPERAND[B]] Z)

ABSTRACT: S (K OPERATOR[Bj) ABSTRACT [v,OPERAND[BI] Z N
-, K OPERATORB] Z (ABSTRACT(v,OPERAND[B]] Z)
- OPERATOR[B] (ABSTRACT[v,OPERAND[B]] Z) •

9. B is a combination, v occurs in B's operator but not in B's operand, an C-T..
ABS(v,OPERATOR[BI] = (B X Y)

C-T-ABS : C' X Y OPERAND[B] Z where
Y = C-T-ABS[v,OPERAND[OPERATOR[BIl]

-. X (Y Z) OPERAND[BI
ABSTRACT: S (S (K X) Y') (K OPERAND[B]) Z where

I1 = ABSTRACT[v,OPERAND [OPERATOR[B]]
S-.S(K X) Y Z (K OPERAND(B] Z)
-K X Z (Y' Z) (K OPERAND[B] Z)

X(Y, Z) (KOPERAND(B]Z)
-. X (Y Z) OPERAND[B] VI

10. B is a combination, v occurs in B's operator but not in B's operand, and C-T-
ABS[v,OPERATOR[B]] -. (B X Y) * ... k'-

C-T-ABS: C C-T-ABS[v,OPERATOR[BJ] OPERAND[B] Z "'-. -
-* C-T-ABS[v,OPERATOR[B]] Z OPERAND[B]

ABSTRACT: S ABSTRACT[v,OPERATOR[Bjj (K OPERAND[B]) .
- ABSTRACT(v,OPERATOR[B]] Z (K OPERAND[B] Z)

- ABSTRACT Iv,OPERATOR[B]] Z OPERAND[B] ,-

Note that the third clause in C-T-ABS's definition is very important. This clause actu-
ally shrinks the size of the output wff. This transformation step is valid since, in the X-
calculus, the X-wff ((X v (X v)) Y) X-imr (X Y) for all -w ifs X and Y given that v does
not occur free in X. (i n

Some examples of X-wffs and their LNF-wff equivalents (via ,-TO-LNF and C-T-ABS)
are displayed below. For comparison, the X-wffs are also transformed to LNF-wffs via

N-TO-SKI, ABSTRACT, and STRING-TO-GRAPH.

S. 1 1.Ie-X7



,, 
.... . ...7. . . . .- , M - N.. -_- v - -

,t"~ .- %

Page 56 • •

v A4SrRACT ,C-- 6es -

K +

The ABSTRACTed and C-T-ABSed Versions of the \-wff: X x (+ x x)
Figure 2.14 " - -

VILI ASSTRACT v4o C-T-ASS

w Ra

S S-

4,7,

h .K ., . ,

/\ S \/ K 6  ,,,,. ,..
a --, .. w . a"-

T.'.v'- .,:,,'

S K. K....
The ABSTRACTed and C-T-ABSed Versions of the X-wff: X, f (X x (f (f (f x)))), "a.? I:-'X '

%'. ,.
',

,"." - '. * '%

." 0 , .* "

*- , '. *."-%,



-O

Page 57%

* vio ABS6TRACT * V& 1AS

Kh "\ ... <\<
A .A

N "' A .

seoo,,

, ... 2 .', ,
KZ,

The ABSTRACTed and C-T-ABSed Versions of the X-wff: X x (X f (f (f (f x)))) .,... ,
Figure 2.16 " "

Vit. AB$IZACT via. C-T-AS •K0

-%

a.. -A

Vi.ABTA ".ja -TAS,.. ,...

a'-'a. 
h-. '" • .u/d''d. o'.

-"-"-. a ',

.-.... -.. .

/ o'N..o.o.,

i-, .
.',-

- * €-
=

S. ar N € r " € ~ -w- w% % % .' ..



m Page 580
7 f % p

N110.~~~ -'p.rRC- via &

vio COV A cr rj:. % s

Fiur 2.18

K//
7% 04

Co,~b~oa+io o 7

//,
The BSTAC~e an C--AB~d Vrsins o th X-wf: f X g X x(+ f X)(g -..

d-'p

% W'r



Page 59
'.,..,.

provide the reader with a better understanding of the workings of the rules than do the
formal definitions. From the picture of the reduction rule for the functor f, one can infer . 1
the definitions of the predicate LNF-f-RFDEX-P and the function LNF-f-REDUCTUM.

As the author makes no use of the functors' formil definitions, these definitions will not "*-N"
be given.

ROOT: W:

The Rule: W X Y X Y Y *: ':-
Figure 2.20 ' .'':

./ /.

x eex -REDOCT

The Rule: XY Z-. X YZ)

Figure 2.201

% .% % _%

ROOT: R T *", 5" -" -

.,M % .%

* 5 5*'** .. .

.1' 9%

The Rule: CXYZ --XZY M.)'folFigure 2.22

'V

% %- % % % . . .. .. ..



Page 60 Y e

p. N*

/%2

The Rule: S' WXY Z - W(X Z) (Y Z)
Figure 2.23 ~N

ROOT.- R- S

N.%~

TeRule: B'WXYZ W(XYZ)

% V%

/ */

The Rule: CWXYZ -W(X Z)Y
Figure 2.25

2.2.3. Numeric Functors

Floating point numbers and integers are LINF constructors. Presented in this section are
the LNF functors which manipulate the atomic LNF-wffs having constructors of this
type as initial atoms.

%,. % 0 I

IV* .4 IF ..



Page 6i1

The numeric functors are: NUMBERP, + ,x, DIV, IDIV, REM, EXP, <, >, ADD1,
SUBi, and ZEROP. The formal reduction rules will be given only for X, as the other
functors' rules are almost identical. For these other functors, only the linearized reduc-
tion rules will be presented.

Definition 2.45: Let X be an LNF-wff. X is an LNF- X redex if LNF- X -REDEX-PXC ^P?.VeN
where:
LNF-x-REDEX-PEI 21
(and (not FORWARDED-P [ROOTX,1 %

NITIATOMX1 = x
NUMBER-OF-ARGSpq = 2

ARG[~XJ s anato havng anumbr a iniis.eato
ARG(,1 is an atom having a number as initial atom)

Definition 2.46: Let X be an LNF- X redex. Y is the LNF- X reductum of X -if LNF-
x x-REDUCTUMpq = Y ZLNF- X 4mrY) where:N
LNF- x-REDUCTUMPX1

* (let n1 be INITIAL-ATOM[ARG[1X] &
n2 be INITIAL.-ATOMMAG[2,XI] in0

FORWARD-COMB[XATOMIC-GRAPH[n 1 x ndfl)

The linear representation of X's substantive reduction rule is: X n m -n Xrn ~ This *

rule implies that the functor X has an arity of 2.

In addition to having a substantive reduction rule, X is also associated with the follow-
ing two contextual reduction rules:

X n RDU - x n vM

The first contextual rule expresses the relation: "in an LNF-wff having initial atom X 0 0
* and two arguments, the first of which is a reducible unknown, the unknown may be

replaced with the wif to which it immediately reduces". The second rule states: "in an
LNF-wff having initial atom X and two arguments, the first of which is a number and
the second of which is a reducible unknown, the unknown may be replaced with the wif
to which it immediately reduces".

*Thus, both of these rules specify a context in which other reductions may take place.
These contexts are called functor spe cific reduction contexts or, simply, r-contexts. Most
of the new functors are associated with one or more contextual reduction rules specifying

* one or more r-contexta. The predicate, R-CONTEXT-P, takes three arguments: an
LNF-wff X, a functor f, ad a positive integer i. R-CONTEXT-P[Xfi] is true iff X is 0

an. f reduction context for argument i".

Some examples of X reduction contexts follow.

9 When inearty displaying nalin, exprmtons which are amsmed to be evaluated by an agent
outside the calculus appear underlined.

. . . . ... . . . r I- % % N %.

% % % % 0.
% %



Page 62

F% % .e 2

7* U. V

IN--

, , ~~~~ T w o x R e d u c t i o n C o n t e x t s f o r A r g u m e n t 1" 
'; .[ . " -Figure 2.26 

.- ....- :

Note that a reduction context need not be reducible. A reduction context for argument i '

is reducible iff argum ent i is reducible. % -.

RooT..%O1

x
% % '

i Two X Reduction Contexts for Argument 2 "%
Figure 2.27

Note also that an LNF-wff may be a redex as well as a reduction context. However, no - ..
LNF-wff which is a redex can be a reducible reduction context. If this were not the case .

then the LNF-calculus would be nondeterministic. ..

a-, 
. I,

/'. /N., ,.,.S

These are notKReduction Contexts -

Figure 2.28

". %- %t,
%~ %

'. %%%.],, _ ,- ., ' , .

,, -.. , .-._ -,__ 
',.--..,a,.-..:.2..,-..- .-- ..

a- .. .....-.-. :...: .... : ...... :....: .:.. ... [ .1 ,..: -:.......-



A

Page 68

A functor f, whose arguments must be reduced to lazy-normal form before its reduction
rule may be applied, is a strict (sometimes called totally strict) functor. Some functors.
require that only some of their arguments be reduced before being applied. These func-
tors are often referred to as partially strict or strict in a specific argument(s). The func-
tors X and NUMBERP are examples of strict functors. The functor IF, defined later, is
strict in its first argument only.

A

The linearized reduction rules (both substantive and contextual) for all of the numeric
functors are displayed below: 10  V.

NUMBERP NUMBERP n - TRUE

NUMBERP CFN - FALSE. if CFN not a number
NUMBERP RDU - NUMIBERP IMR N0

+ + n m.- n+m
+ RDU Y-. IMR Y
+ n RDU- n IMR

A" X X nm-nXm

x RDUY- x MRY
X n RDU -- X n MR

DMV II J, % 'efm~

-n m .-. - .

-RDU Y- IMRY
n RDU - n IMR%

DIV DIV n m if ...- .
DIV RDU Y - DIV IMR Y
DIV n RDU - DIV n MR %

I]D)V IDIV i j - integral guotient after U~ if j!4•
IDrV RDU Y - IDrV WMR Y",:,,¢
IDIV i RDU --- IDrV i 1MR '--.-"e

REM REM n m -* remainder after n/r, if 410
REM RDU Y- REM IMR Y
REM n RDU -*REM n IMR

EXP EXP i j - the integer l if
EXP i j - the float iJ ,j i .Q
EXP a i - the float a-
EXP n s - the float n'
EXP RDU Y EXP IMR Y
EXP n RDU - EXP n IMR

10 Some rules take the form LHS -- RHS, if CODIION where the CONDITION is an ex-
presion to be evaluated by an outside agent Rules of this form should be read as saying if CON-
DITION, then LHS may be replaced by RHS"

% K
* a ,-.. .... a



Page 646 0
"

< < n m- TRUE, if n<m
< n m - FALSE, if nm-
< RDUY- < IMRY
< n RDU-- < RDU IMR

> >n m -TRUE, if n m
> n m -. FALSE, if n<m.
> RDUY- > MR Y
> n RDU-- > n AR

.1 % % D

ADD1 ADD1 n--n.-,"
ADD1 RDU -- ADD1 IMR

SUB1 SUB1 n n-,
SUB RDU -- SUB1 IMR S

ZEROP ZEROP n --
ZEROP RDU -- ZEROP IMR

Note that, in all cases, only one rule, be it substantive or contextual, would be applicable 0 .
to any LNF-wff. Note also that, for each functor f, all of f's reductioni rules require the
same number of arguments. There are no LNF functors having multiple arities.

2.2.4. Boolean Functors

The boolean constructors are TRUE and FALSE. The boolean functors are: %
BOOLEANP, NOT, OR, and AND. Their linearized reduction rules are displayed
below: %

BOOLEANP BOOLEANP b --+ TRUE .
BOOLEANP CFN -* FALSE, if OFN not a boolean
BOOLEANP RDU - BOOLEANP IMR

5%

NOT NOT TRUE -- FALSE
NOT FALSE - TRUE - -

NOT RDU --+ NOT IMR 0

OR OR TRUE Y - TRUE
OR FALSE bb :
OR FALSE RDU - OR FALSE IMR
OR RDU Y -OR IMR Y

AND AND FALSE Y -- FALSE
AND TRUE b -. b
AND TRUE RDU - AND TRUE IMR
AND RDU Y -- AND IMR Y

The formal definition of OR's substantive reduction rules will now be presented.

qv. r %% .. P Pa e $J
- % % % .. , ,. ---- . ,,

" " , L ' 
% 4. 5 %, ," . - ,--



XF76F .v-W -Y "7 V-. . a

0 00

Page 65 -

Definition 2.47: Let X be an LINF-wff. X is an LNF-OR redex if LNVF-OR-REDEX-

P[X where: ~
LNF-OR-REDEX-PEXN

(and (not FORWARDED-P [ROOT XI
IMITIAL-ATOM[X = OR
NUMBER-OF-ARGSN = 2
ATOM-P (AR [1]

(or TRUE =INITIAL-ATOM[ARG[1,X]. S

(and FALSE = INITIAL- ATOM [ARG[(1 %
ARG[2,X] is an atom having a truthvalue a' ;:

as initial atom)))%

Definition 2.48: Let X be an LNF-OR redex. Y is the LA'T-OP reductatr of X it'N
LNF-OR-REDUCTUM[X] = Y (X LNF-QR-Imr Y) wuiere:
LNF-OR-REDUCTUMN' 24

(if INITIAL-ATOM[ARG1Xj= TRUE
then FORWARD-COMBrX,ARG1 (IX]].4

else ;- INITIAL-ATOM[ARG(INI = FALSE and -1I .
;INITIA.L-ATOM[ARG[2NXf a truthvalue -

FORWARD-COMIB X,ARG[2,X1])

The functor OR is also associated with two contextual reduction rules. Some examples
of OR reduction contexts follow.

-%

6 ~

OR fN

-- .~

-,~~. W, . ..Two R Rducion ontxtsfor rguent1 %



Page 66 I 0

Two OR Reduction Contexts for Argument 2 ..," ,,.-

The realizations of the functors OR and AND (presented in the next chapter) perform •]
like ML's OrElse and AndThen boolean operators. LISP implementations also provide
boolean connectives whose arguments are evaluated as required.

2.2.5. Pair and List Oriented Functors,

-melk

Lists are data structures familia to all functional programmers. Since lists are so corn- ,, ,..'
monly used, some functors have been defined which manipulate them. There ae two
constructors which ae used to make lists: I I and PAIR. The constructor [ ] is used to
make empty (or null) lists and PAIR is used to build pairs. A (linearized) list is either:

the null list Nor

the pair (PAIR X L), where L is also a list.-.. ,.

'he ".'!F-wff X is called the head of the list (PAIR X L). L Ls called its tail. The PAIR . ... ,.-
constructor may, of course, also be used to pair other types of LNF-wffs. ,...,.:

The pair and list oriented functors are: HD, TL, NULLP, PAIRP, NTH, APPEND,

MAP, MEMBER, COLLECT, FILTER, REM-DUPS, REM-DUPS', FB, FB,' FBT, ;.'.e
FBT', INTERLEAVE, FLATMAP, ENUMERATE, UP, DOWN, and TURN. The util- , ,ity of some of the functors presented in this section is apparent. For many others, how- I,;
ever, the reasons for including them into the calculus are not so obviousd The uses to
which these functors are put, which justify their inclusion in the calculus, are presented
in the next chapter. Their linearized reduction rules are displayed below: [.-isu
makeempy (rnH) HD (PAIR X is - X bda. (nr )lie r

wr ~~~H RDU - HD IMR "'-"-'"

TL TL (PAIR X Y) - Y lis.•

NULLP NULLP ad-of TRUE (AR% XV L- aldisti.TePI

NULLP CFN - FALSE, if CFN56[ IY :.

S. R . .. N-.



%7 ILI su-

0

Page 67

PAIRP PAIRP (PAIR X Y) TRUE
PAIRP CFN -- FALSE, if CFN not a Pair
PAIRP RDU -. PAIRP IMR

NTH NTH 1 (PAIR X Y)- X
NTH i (PAIR X Y) - NTH Y, if i
NTH RDU Y -* NTH IMR Y
NTH i RDU-. NTH i IMR, if j 0

APPEND APPEND[][]-[] .

APPEND []P - P
APPEND (PAIR X Y) Z - PAIR X (APPEND Y Z)
APPEND RDU Y - APPEND IMR Y

INTERLEAVE INTERLEAVE []P -- P S

INTERLEAVE P [ - P
INTERLEAVE (PAIR X Y) P -,

PAIR X (INTERLEAVE P Y)
INTERLEAVE RDU Y -- INTERLEAVE IMR Y
INTERLEAVE P RDU -- INTERLEAVE P IMR .

FLATMAP FLATMAP X [] -- []
FLATMAP X (PAIR Y Z) --

INTERLEAVE (X Y) (FLATMAP X Z)
FLATMAP X RDU - FLATMAP X IMR

ENUMERATE ENUMERATE X - TURN [] X

TURN TURNX[] -. UPX [][]
TURN X (PAIR Y Z) -UP (PAIR Y X) [] Z
TURN X RDU - TURN X IMR

UP UP []XY- DOWNX []Y
UP (PAIR []X) Y Z - UP XY Z
UP (PAIR (PAIR X1 X2,) Y)WZ -

PAIR X, (UP Y (PAIR X2 W) Z)
UP (PAIR RDU X) Y Z -- UP (PAIR IMR X) Y Z
UP RDU Y Z- UP MRY Z ,., .

" . 0.' -",

000

%I-. .% op

,* 'd ' N . , 4 / UA. t w i i• , • - ' i - . • * . • , " •' '% " " % "5 " W i

;. % 2 ." .; ": % ~ v% % .% ...' " [",%"-'e " '-'e,' '.I



.. e . - d

Page 68 0 0

DOWN DOWNEE])i
DOWN [P [I-UP P [
DOWN[]RDU[] DOWN ]IMR[
DOWN [X (PAIR [Y) ---TURN X Y
DOWN [X (PAIR (PAIR Yl Y2) Z) " 11

PAIR Y, (TURN (PAIR Y2 X) Z)%
DOWN [Y RDU - DOWN fYIDAR
DOWN [Y (PAIR RDU W)-

DOWN [Y (PAIR IMR W) A

DOWN (PAIR[]X) Y Z ,DOWN XY Z e

DO WN (PAIR (PAIR XX 2) Y) ZW-
PAIR X1 (DOWN Y (PAIR X2 Z) W)

DOWN (PAIR RDU X) Y Z - l

DOWN (PAIR IMR X) Y Z
DOWN RDU Y Z -DOWN MR Y Z

MAP MAP XI-I
MAP X(PAIR YZ) -PAIR (XY) (MAP XZ)
MAP X RDU -. MAP X IAR,

MEMBER MEMBER [IX - FALSE
MEMBER (PAIR X Y) Z -

IF (= XZ)TRUE (MEMBER YZ)
MEMER RDU Y -~ MEMBER IMlR Y *0-~~

COLLECT COLLECT [IX Y - Y -

COLLECT (PAIR X Y) W Z -

W X (COLLECT Y W Z)
COLLECT RDU Y Z -~ COLLECT IMR Y Z

FILTER FILTER X[].[
FILTER X (PAIR Y Z) -

IF (X Y) (PAIR Y (FILTER X Z)) (FILTER X Z)
FILTER X RDU -~ FILTER X IMIR

REM-DUPS REM-DUPS X - REM-DUPS' X [

REM-DUPS' REM-DUPS' ]X - X
REM-DUPS' (PAIR X Y) Z -IF (MEMNBER Z X)

(REM-DUPS' Y Z) (PAIR X (REM-DUPS' Y Z))
REM-DUPS' RDU Y -REM-DUPS' PAR Y

FB FB nm - PAIR n(F13' n-m m) f M-7Q
FB nm - PAIR n(PAIR n ...if M=
FB RDU Y 'FB IMR Y
FB nRDU.FB n EMR

FB' FB' nrnmPAIR n(F1' jjmm) -

sr r

%% %

%~~~~ % ':Z Zo

q.. h.



W.

%

Page 69

FBT FBT nm o 4PAIR n(FBT' ~m m o),
if (m>O and n<o) or-(m<Q and ni>o)

FBT n ma o
i(m>O and n>o) or (m<O and n<o)

FBT n m o - PAIR n (PAIR n ... ), if m=Q
FBT RDU Y Z-FBTMR Y Z
FBT nRDU Z-FBT nIMR Z%
FBT n mRDU -FBT n m MR

FBT' FBT' nm o -+PAIR n(FBT' n~m m a), 0.
if (m>O and n<ol or (m<O and n>o)

FBT' n m o -

if (m>O and n>o) or (m<O and [no)

Although no formal definitions will be given for these functors, pictures of MAP's two
substantive reduction rules will be displayed.

Ror Tr:P

% %

S~A Poo- Aoo

PIED Y. TVA %0
... -'

The Rule MAP X

Figure 2.31

A..

TA~he Rule: A.PX(ARYZ PAR( ) MAP Z)
Figre .3

Note that the combination (MAP X) in the redex is "reused" in the reductumn. The fol-
lowing figure contains two examples of MAIP reduction contexts for argument 2 as
specified by MAP's contextual reduction rule Note that there is no MAP reduction con-
text for argument 1.

OV"

% % % %~
p IV% %.



Page 70 0 0

0.

+ 00

Two Examples of MAP Reduction Contexts for Argument 2
Figure 2.33. %

2.2.6. Miscellaneous Functors

The remaining LNF functors are presented in this section. They are: Y, =, L, IF, UNK-
NOWNP, CONSTRUCTIONP, FUNCTIONP, FUNCTOR, ARITY, CONSTRUCTOR,
NUM-ARGS, ARG, ATOMP, COMBINATIONP, OPERATOR, OPERAND, A-S-E, A-
S-E', A-S, A-S', and APP-TO-ARGS. Presented below are their associated reduction * .
rules.

It is not expected that the reader immediately appreciates the usefulness of the functors:
A-S-E, A-S-E', A-S, A-S', and APP-TO-ARCS. Their existence in the calculus is
justified in Chapter 3. •

Y Y X- X (X (X .)) . ;"

= cf1 cf 2 - cf=cf.

- CFNI CFN2 - " -
AND (= (OPERATOR CFN) (OPERATOR CFN2 )) S

(- (OPERAND CFNI) (OPERAND CFN 2))
-RDU Y - IMR Y
-CFN RDU -CFN IMR ft-

"

Note that ='s reduction rules permit comparison of functions as well as constructions.
Two functions (constructions) are equal, the rules specify, if and only if they have the
same normal form. Thus, the functor = (when applied to functions) is testing for %...,.%e%
definitional equality and not extensional equality - i.e. it's testing to see if two functions
are the same algorithm. 

% .

N...

t.,. . ,r

Ii* - -.

%~ '%o %Fr

% • '



Page 71

L L cf CFN -~ TRUE, if NUM-ARGS[CFN]>O
L CFN cf -~ FALSE, if NUM-ARGS[fCFN >O0
L Cf 1 cf2

cf1 Iexicoizraohically less than cf 2
L CFNj CFN2 -

OR (L (OPERATOR CFNI) (OPERATOR CFN,,))
(AND (= (OPERATOR CFN,) (OPERATOR

CFN 2))
(L (OPERAND CFN,) (OPERAND CFN ))),

if CFN, and CFN,, are both combinations
L RDU Y - L E[M Y
LOCFN RDU----L CFN IM

The functor L imposes a total ordering on the set: Functions U Constructions
IF IF TRUE XY-X

IF FALSE X Y-Y
P, -%I

IF RDU XY - IF IMR XY

UNKNOWNP UNKNOWNP CFN -~FALSE

UNKNOWN? IRU -~TRUE

UNKNOWN? RDU -~ UNKNOWN? [MR

FUNCTION? FUNCTION? FN -~ TRUE
FUNCTIONP ON -~ FALSE

* ~FUNCTION? RDU - FUNCTION? [MRM

FUNCTOR FUNCTOR FN -~ INITIAL-ATQM[EN]
FUNCTOR RDU -FUNCTOR RVM"

CONSTRUCTION? CONSTRUCTIONP ON -~ TRUE
CONSTRUCTION? FN -~ FALSE
CONSTRUCTION? RDU - CONSTRUCTIONP [MR C

CONSTRUCTOR CONSTRUCTOR (c X, . X,) - c
CONSTRUCTOR RDU --* CONSTRUCTOR [MR

ARITY ARITY FN -
ARITYUINITIAL-ATOMEEN11 - NUM-ARGS[FNI

AMITY RDU -~ ARITY IMR

NUM-ARGS NUM-ARGS CFN -~ NUM-ARGS[CFN] -

NUM-ARGS RDU -~ NU M-ARGS [MR

ARG ARG i CFN -~ ARGri.CFNI
if 1<i<NTUM-ARGS[CFNIl

ARG RDU Y -ARGIBMY
ARG iRDU-.ARG iIMR

%f
% .11 % % %V .6% % %



Page 72

ATOM? ATOM? CFN -Num-ARG3s[OF~o
ATOM? RDU - ATOM? IMR

COMBINATIONP COMBINATION? CFN --- NUM-ARGS[CFN1>O
COMBINATION? RDU -~ COMBINATION? IMfR

OPERATOR OPERATOR CFN - OPERATOR[CFN]
OPERATOR RDU - OPERATOR IMR

* 0
OPERAND OPERAND CFN OPEAN [QN

OPERAND RDU -~OPERAND vM

A-S-E A-S-EciXY(c Zl1  -i-

if c.Vc2Lri _A

A-S-E c i XY FN - Y
A-S-E c i X YRDU --+ A-S-E c i X Y MR

A-S-E' A-S-E' c iX Y(c Z..Zi)-X
A-S-E' C1 iX Y(C Z ..Z,) _+Y,

if c,1i&8. or Ji

A-S-E' c iX YFN -Y

A-S A-S eiX(c Z Zj)--#XZ ..Z1
A-Sce i XRDU -. A-S c i XIMR %

iPP-TO-ARGS APP-TO-ARGS i X Y -. X (ARG I Y).. (ARG i Y)

Most of the miscellaneous functors have formal definitions similar to those whose 0
definitions have already been presented. The functor Y, the "'fixed-point finding func-
tor", however, has a definition that is a little different and therefore will be displayed.
Y is called the fixed-point finding functor since its characteristic property is that: J

for all functions F, Y F is a fixed-point of F, i.e.
Y F =F(Y F).1 *

By repeatedly substituting the wif F (Y F) for occurrences of the wif Y F on the right
hand side of the equal sign, one gets the equation:

Y F =F(F (F...))

which looks like the linearized rule for Y. This linearized rule is one which is deceptive. . 0

A cycle exists in the reductumn which cannot be displayed in this linear format. The for-%
mal definition and a graphical picture of Y's reduction rule follow.

11 The functor Y plays an important part in the implementation This role will be discussed in
Chapter 3.

% V. V %



Definition 2.49: Let X be an LNF-wff. X is an LNF- Y redex if LNF- Y-REDEX-PNX :"%

where: '

( and (not FORWARDED- P (ROOT [' ")%

INITIAL-ATOM[X = YNUMBER-OF-ARGS = 1) -

Definition 2.50: Let X be an LNF-Y redex. Y is the LNF-Y reductum of X if LNF-Y-
REDUCTUMXj = Y (X LNF-Y-imr Y) where:
LNF-Y-REDUCTUMPX]

(let root be ROOT X [ inWRE-[OT-,]
<VSX-TM J-

RATOR[X'](VS[X- root}) U {< root,RAND [root]> }
RAND[ ]I(VS[X-{root)) U, {<root,root>),FWDAGA)

-V,'ATOM DC,
root >) A

Rad-: ?.."

4 ~Y A

An Example of LNF Y Reduction =

Figure 2.34
• 2 ,_% '%.

The LNF-calculas' functors have been presented. In Appendix A, all of the LNF-
calculus' linearized reduction rules are redisplayed. They are displayed in two groups -
first the substantive reduction rules, then the contextual reduction rules.

2.2.7. Reduction

Informally, an LNF-wff X is reducible (there is another LNF-wff to which it immediately ,

reduces) if either X is a redex or X is a reducible reduction context (i.e. X is a context % . %~which permits reduction of one of its subformulas (Y), and Y is reducible).

All redex-reductum pairs are specified by the calculus' substantive reduction rules. The

functor specific reduction contexts are specified by the calculus' contextual reduction "
rules. In addition to these r-contexts, two other reduction contexts (which are not func- 0
tor specific) exist. An LNF-wff X which is forwarded to the LNF-wff Y is a reduction ..'..
context for Y. A combination X having operator Y is also a reduction context for Y. e"."e'
These two reduction contexts are graphically displayed below.

% %

N* N

N % % % %o %.%,

wP - '. . . . - ' . . .. P ". . ,

*,* .** *~* .* ** % * t * NON 0 71k- . .... -. .. -.- * *



Page 74 6 0

ROOT Rw r

A 0.

• ~. a.'. . .. % % ..

Two Reduction Contexts for the LNF-wff Labeled Y
Figure 2.35 ...

Definition 2.51: Let X be an LNF-wff and let v be in VS[X]. The LNF-wff described 0 ,
in X rooted at v is (LNF- WFF[X,v]) where
LNF-WFF[X,v] .

<VS [X] ,RATORtXI],RAND [X],FWD [X],ATOM [C] ,v>

The formal definition of the LNF-calculus' "immediately reducible to" relation follows. 0

Definition 2.52: Let X and Y be LNF-wffs. X immediately reduces to Y iff X LNF-imr '

Y where "
X LNF-imr Y 2-6"1'-'-'':_

(let xroot be ROOT[C] in
(if FORWARDED-P[xrootX]'

then (let yroot be ROOT[Y] in
(and FORWARDED-P[yrootY]

xroot = yroot
(SUBFORMULA[X,FORWARDED-TO[xrootX]]

LNF-imr • •

ele SUBFORMULA [Y, FORWARDED- TO[y root,Y]])))else 1 
" € "

(or (there is an LNF functor f s.t.
(and LNF-f-REDEX-P [X]

Y = LNF-f-REDUCTUM[X))
(there is an LNT functor f and an i st-

(and 1<i<NUM-ARGS[XI
R-CONTEXT-P [X,f,i] I
A'tG[i,X] is reducible
Y = REDUCED-R-CONTEXT[X.i])-

(there is an LNF-wff Z s t
(and OPERATOR[X] LNF-imr Z -'.

Y - LNF-WFF[Z,xroot1)fl-

* 0

.0 S N', %. %% % %9L.

,' .. . " ''
,.-.,., ,, .,

r- ' '- . -- -- - -- : . '%. 1 *L ?* 1 & : . ' . ,- ':-----',:,;:-','.'';%%%;i-"-;-' .- -



Page 75

NDefinition 2.53: Let X be a reducible reduction context for argument i - i.e. teeis
some functor f such that R- CONTEXT- P[X,f J] and ARG[iNX is reducible. Perform-
ing one LNF reduction on X yields the LNF-wfl: RED UCED-R-CONTEXT[X,iI,
where:
R.EDUCED-R-CONTEXT [X,i] E

(let RARG be the LNF-wff such that%
ARG[iX LNF-imr RARG in LNF-WFF[1?kRG,ROOT[Xfl)

Defiitin 2.4: NF-rd i th trasitve cosue ofLNFimr

Definition 2.55: LNF-red* is therxie transitive closure of LN-inir.

M I'

RooT!
e

~I
LN&: n2w

flo

MAPi

An Example of an LNF Reduction Sequence . V

Ncte that an irreducible L.NT-wff may contain redexes Irreducible LNF-wT!, areS:1.1
be in lazy-normal form It may be noted that all ronstructions and all functions ar
azy-normal form. Constructions are in lazy-normal form since all reduction ulEes

:3uostantive and contextual) require a functor as initial atom. Functions are in .az%-
pnormal form because, although they have a functor as initial atom, they dcnci -
enough arguments to form either a r'-dex or a reduction context Thus. all reduc~toie
L.NF-wffs must be unknowns Not all unknowns are reducible, however Some rp-'-[ ble unknowns are displayed below .

%



AN.

9roo Roo ~ PoT, e. V e.

* 0 P

MlO TRUE

Some Irredticible Tjnkriowns
Figure 2.37 J

Two deterministic (and tberefore triv ialli fhr--tAe graph riefltCo (1c.A i~

culi, the SKI-G-calcuius ane .he LNF-ca,:c.us, iave! 'een presented The SKI-G - ~A0 ,'1

is a formalized version of D A Tujrner -s n' rrrn. rl,!r grapri reducition 'rnaochtz .t 0
definition is similar in for to C P W.'tdsworti i jefinition )f 'he -(.ap.is
Although equivalent in power to, the %-,-aicuus it ri been~ &rgievi that :hp K-.
calculus would not do as a model for iii rnpiementaivn )f -r FlP .&n~uagr Th-~ '."F
calculus was presented as a calcuius which wotld enjoy adl of the wlvantages -f %

SKI-G-calculus (no variables. stru'-ture 9rlarvig In ',h, f.Wiowing -hapt--r 'ii raz-
of the LNZF-calculus in Zeta.LL,3p on -t 1,isp m- i 15 IL~P,! ;n tai

%d

sr

N, 0

%~ AIN

% %

% %

ZZ A eC



.q ,o ... .* .*, *:, . .6. ,-. , .7., .. ., -, ., ... .,

% -J

. •--, %. .41* 0

J*
-% . . ' .

( hapter 3

A.n Experimen~ntal IripIernint at Min )f' t fie I .NF Langi:I.R

. % %

" .-

,..-. -. .

% .

: t ;u4 ri * 1 , -1~ it 7 i &Z. . v In 1, a ,
L. ,.:*.I.,..... ,

v 
",,,, '. -1-- u ... r" 'H n r n Tr- + ', ;k ;

+....

• . -?... -' "'
it 

-i" "A.

.;n ~2 r an(r' ariren, 1! t, ~'."i i~e nr iLt' v a~~ \

-ing ,agr luth ro!ducliof -rnatsc r'. Ls 'fie !I:, . P; ..S .e; ssn1) 1 LS . ..pllt a d pr .- __

,luces i irred ucible ) xpres s as5fr .5 jI p 'io in -)f irred vC: h j v varies fom *" O

language to language In the LNF :'kngu~tgp in *-\pross4.r is irre~iticihie if i, *.nly if it 0

is in lazy-aormai form -k'h&

4 ." %- .°- ".A".

The LNF programming environment was devel,pedi t,) give the author 'hands Dn- -x- -4. ~ 44.'.-..--...

,erin ceg, ,with the. isu es~o i-rnvo ,lved in P "mpi tio ti t ch.t ,a ; ,n' lan uag W h at folo w is a or

-F+ -.- ,-,t~#

% ,% 4.

PZ ', ,11" % % '

"~j J .~%4.,~444.%. 4Pi/ 
4. .-p. ** , './- 1 *, * -"1, " " ', * * % , .***** .% . - .%--.-- -- .



) --

Page 78%

3.1. Svtem Organization

Thl user interface to the system is a Iisten-respond loop not unlike the user interfaces
present in most Lisp implementations The user provides the system with two kinds of
.nput ,xpremons and directives %

Pr-sented with a well-formed LNF expre sion E i which is different from an LNF-wff), the
4vitem perform5 the following

Displav .LNF'-,)f-wff 'Compile E i)

.mri, ".aks well-formed LNF expressions as inp.t and produces LNF-wffs as output .

N !f w'! c. epts ..NF-wffs s input tnn( produ-es LNF-wffs in lazy-normal form .
. .. .i. v iomntim ' A, r nK ,it [,NF-4-,.if )utputs to the terminal the " ".

"F *fvtf , npariz-, Cirrat L, i A th.se operations Compile. L.NF-of-wff, 0
1 : ~ -. ..s ip.5 -t,. 1 1 let~il .i 'hs .hiwt-r ;

*, '... ",;. ; " , m V, "V ,r' t F r example there are directives
S .'0trjj 1. Lv "\1-1in enable reduction monitoring

, .. i- ' ,'' . - . ,-'pressions. start end the recording
... , ri i . ,e t , D;. . tre ii;, ' . ii, use vce while expressions are

% . % ;

.3 2 Zc.taLi, Revresentation of LNF-wffs

'!g.F ir, represented in i itraightf,,rwar, way using ZetaLisp symbols, conses. and
. - '. %*-._" :

\1 \',,rni LNF-rff _ a -onstru. t,,r .)r a 'inrtor - is represented in the machine
- l.raL.sp symbol havin% t.he iame name O)n the property list of the symbol

* -, ..... i, acg pach fun':tor K,,'nthe funct(,r s ,rit-, mli a routine which is an encoding of
', " n- to r 9 r -'kuction rulei i are kep t %- S N

\;i ' 4 ff - ,,mhinati_,n X. ha-ving ,p,'r Lt,,r OPR ind )peran,' OPD is represented in - _VV
'":Ir r bv a 'CON.S cell the 'AR 4 which points it the representation of OPR %- %

,ri- 'h, ('DR IC 'vhich pints Lt the repr,.I.Itat -r, f OPD *

\ 'ONS ,eil will he ,1ispiaVel r 1is L ret,-ringi livided In half --- the left half being the
CAR and the right the CDR Arrows tre used to represent pointers As in diagrams
'tisplaying LNF-wffs (see Chapter 2) labeied triangles will be used to abbreviate whole ,
LNF-wff representations .

I LNF-o(-wff simulates the LNF-M machine described n Chapter 2
2 The user specifies (via directives) how much rduction i s ,o be performed ,

3 A session with LNF has been recorded and plcad in Appendix D

wo~% Of % %ee

,% % .vs0 -- '.,r % r % , 4 r.- .. .'v... v.' , --- ,..... ,... -.-. . -'... . .vs r*- -d'vs'.J' '-;P .-- .y- ¢ d'?-I -/\-- ¢ p.,_,_.".'t j.''''',-...,.'..." ..-. "'''''."''"......'r", , '-,#, ,'1 ,;',.',.,l ',;, ._%o A ""2 "€ '2, ";","€ € .€2: "¢g '.-"'-. "".'".".,.'"_"._ .. ". """- .-. -



Page 79

x E

An LNF-wff and Its ZetaLisp Representation " "
Figure 3.1

The system function which builds the machine representation of a combination from the
representations of its operator and operand is called Combine. From time to time
ZetaLisp function definitions will be displayed. They always take the form:

(DEFUN Function-name (formal, formal, ) body).

The simple definition of Combine follows:

(DEFUN Combine (wff, wffo) (CONS wff, wffo)).

When displaying ZetaLisp code, ZetaLisp primitives (such as DEFUN and CONS) appear %I

in uppercase, defined functions appear capitalized, and formal parameters appear in *

lowercase.

Recall from Chapter 2 the function COMBINE. Its domain was restricted to COMPA- %
TIBLE LNF-wffs. Since LNF-wffs are being represented by ZetaLisp objects, incompati-
ble representations cannot exist - and therefore the implemention's ZetaLisp function ,, .p,:

(Combine) need not perform a compatibility check.

It remains to describe how forwarded vertices are represented. Forwarding vertices (like
combinations) are also represented by CONS cells the CAR of which is a flag (the
ZetaLisp symbol LNF:IP 4 ) telling the system that this is not a combination but a for-
warding vertex. The CDR of the CONS cell points to the representation of the LNF-wff
to which the vertex has been forwarded. An example follows:

4In Zeta Lsp there s more than one namespace Zeta~sp symbols lve in "packages" nd .'L
are written PS where P s the name of the package nd S the nae of the symbol Thus, the sym-,.

bol LNF IP (IP for Invisible Pointer) lves in the LN'F package - a private package inaccessble to
the user of the LNF system There s no danger that the symbol LNF IP could be confused wth a ._._-,W.
user constructor havng the name P as ll user symbols are placed in the USER package The .. ''.'.

Ol.prefix "USER s assumed by ZetaL Sp if no prefix s provided 1 .;%00 %
M 

O'.1 I.)kI)



. .. . ! . , _ = = ..

Page 80 " o

%- %

.11

U4F, I

An LNF-wff and Its Representation *./

Figure 3.2 "-

Recall from Chapter 2 that, in the LNF-calculus, only combinations are ever forwarded.s
Given the representation above, combination forwarding may be accomplished by simply
overwriting the representation's CAR (with the symbol LNF:IP) and CDR (with the
pointer to the wff to which the combination is being forwarded). A representation of a .,'i,.

K redex-reductum pair, illustrating combination forwarding, is displayed below.

LPF: I P

z . i+ ,

An Illustration of Combination Forwarding .
Figure 3.3

This method of combination forwarding is a modified version of the one presented in
[Turner 1979c]. Turner, instead of marking the combination as having been forwarded, % %
overwrote the combination', operator with the identity functor I and the operand with -_

the wff to which the combination was being forwarded. LNF's implementation differs
from Turner's here because it was felt that I redexes and forwarding vertices should be
distinguishable. -

7
3.3. Corriling LNF Expressions to LNF-wffs

LNF-wffs (even in a linearized format) are not "user friendly". The LNF language,
defined below, attempts to satisfy the human need for a higher level of expression. An
LNF program is an expression (LNF-exp). The system function Compile translates well-
formed LNF-exps into LNF-wffs.

6 Combinations are forwarded in the LNF-calculus by the function FORWARD-COMB

%% %.9J
• %-w"- %.

.
A



Page 81
%

Please note that only well-formed LNF-exps are translated No attempt has been made
to implement input error handling - when presented with unrecognizable input the sys-

tern simply stops. In the discussion to follow, therefore, it will be assumed that user
input is always well-formed. Although LN"F-exps are strings of characters, for purposes
of discussion, an LNTF-exp will be assumed to he an entity which wears its syntactic
category on its sleeve and whose immediate constituents can be easiy selected That is
to say, an LNF-exp's abstract syntax is .%hat s important here. not its concrete svntax

The set of well-formed LNF e-xpressionis il.'F'-exp) fmay be partit~oned into five ,u bsets -
They are: .tl

0 Simnple expressions ISIMEPLE-exp.
* Lambda expressions (LAMBDA-..p
* Expressions having auxiliary Jeclarationsw II-\X lfL.x
* List expressions (LIST-expj
* Conditional expressions (IF-'exp -,CASE-xpj

The transformation process which produces LNF-wti's From LNF-exps Wii! v- .- h
detailed. The discussion ;f the process will be bro-kc-n jT, by expressiun type F- tcf, -11

%the following subsections takes one LNF expression -lass and shows how exnr--l"n- in
that class are transformed.

3.3.1. Simple Ex~reshions

Simple Expressions (SIMPLE-exps) are just linearized LNF-wffs9 with two exceptions

The first exception is that atomic SIMPLE-exps may he variables as well as functv-rs anZ %
a.constructors. All variable occurrences in LNF-exps a;rt' f)ounid occurrences V.iriab,-_ arv reO

distinguished from constructors and functors t'v their first character All variabie'; ',egin
with the character ""' A variable is represented in the machine by the ZetaLisp srb.

a',:having the same name - just like contructors :ind fiinctors

The other exception is that parenthesized LNF-expi -11su fail into the f-lass of '-INPLE-%
% exp. Parentheses serve the same purpose in L.NF-exps at, they did ;n the SlKIoalculus

and in the linear representations of SlKI-G-wffs aind LNF-wffs. i e the%, are used fo)r
grouping only

j LNF's Compiler (from LNF-exps to LNF-wtfs, as mentioned above, is implemented by a
asit of functions: the topmost of which is called Compile. The (partial) ZetaLisp .

definition of Compile is: .*

16%~~~~~ ~ ~ ~ ~ -l *'pW d IP-. -r ON N

% % % N % % %

"' % % %

Op lpS0
~ orthseredes ntrstda NFIie esrptoncfLN'scocrt sntx ayberondi



A jr P*.7-YdIr P J

Page8 0V

DEFIA Compile (expi
(COND ((Atom-p expi expi

((Combination-p exp, J'orrbine C'ompile O)perator exp i)9
('orrptle Operand expi M

(Parened-exp-p exp) i Compile L xp- inside- parrens Pxp
REST O)F THE BRANCiL> OF THE (PONDi TO BE ~ PLL
IN LATER ;E(-TI()NS OF Tlfl>- CHAP'TER

The majoritv )f hi nc IIons m ak IIIg ; )tIiIIP' t a 111 iii~lieu~n wI r. J* -1 Pla(I %\an
'lie (w' Ie fiuncti-qis su~h u.s ho- r. it-'; A t, 'rl-ep; IT I,-ii4 %- ~
i)7irnedt-"xp-p And -lie 'e '' in, t, n-~ )pe: -t, r )terand A II F,. k~ 11 '- r.

1(,ri - pm r,;% id - h 11 ;isigti ni -i. ;i n.:i ! ri ill ' *.

ii- t is no0w kflwl ti. 'A i NPI'.L.xps ir' er''ie 'he 'j~rn HI ~ ' 11W t

*i,, 'h, more wi-mpiex L'"F1 xps ir,. iiipi'-1it ;I f - Show Thesbn e *t "er .'5

3.3.2. Lambda Ex %esonV.
S..b

55The LANIBDA-exps in LNF differ fr, m iinstra,'tioris :; 'he -- alciiius In t he \-acu Ins
.1bistractions take the form

iX v Xi. where v is a variable anid X L9 :i \-wtf

*In I.NI howev--r. a LANTBDA-exp takes the frmn %.

N BE1  BE,) BODY , where
.Ach BE, L9 a bound expr-%sion tnd BODY -in LNF-exp%

r-, rn LANIBDA-exps A 1

N '(vec "X '~V) (Ver ')w Z)) (vec (- x "w I. 'V "zI))

0) 0

"x 10 OR 0"I*

The tw, d iff Pr,-ices betwoeen N--alc u i.- thst ra( t vmurin 4 d L.NF LAMBDAX-exps are 1 a
LAMBDA-exp can have more than jne !'-)rmvt parameter while a X-calculus abstraction
has o)nlv one and (2) each formal pararn.!ter if a LkNIBDA-exp can be a. bound expres-
sion instead of being limited to a bound variable as im the raise of the abstraction The % %

first difference may be easily discharged as the LAMBDA--~xp
(X (BE, BE, )BODY)

(X (BE,) (..(N (BE, BODY). ,

which has only one. Thus, a LAMIBDA-exp possessing two formal parameters LS not %
representing a binary function. It represents a unary function whose body is also a

"*~ ~a~%~ S5E
5

XW'

%~d~iS~SPS.% % ~ ~ ~ ~ * y d, I



* - -h - * *_ - --.

Page 83 ,

unary function - e a second order function

A bound expression (BE is either a named variable ,written 'name), an anonymous var- ,
able written as ' alne), a constructed b,und expression (CONSTRUCTED-BE), which %

Li simplv a ,-onstruction whose arguments are BEs )r i hst bound expression (LIST-BE)
-which is sugar for a CONSTRUCTED-BE D A Turner, in his excellent paper- "A New . .
Inpleme'itation Technique for Apphcative Languages- ([Turner 1979c]), also extended '

the notion of formal parameters from simple variables He limited his bound expres-
sions, however, to being what this auth(,r is calling LIST-BEs - LIST-BEs being sugar
for expressions of the form PAIR X Y LNF's BEs are simply Turner's pairs general- .. .. '

ized to be arbitrary constructions. ..-e"%--d %

Why have CONSTRUCTED-BEm been introduced into the language' A
('ONSTRUCTED-BE. acting as a formal parameter in a LA.MBDA-exp, plays the part of 0

;n argument template7 A compiled LAMBDA-exp combined with (applied to) an argu-
ment will be reducible iff the argument matches the LAMBDA-exp's BE. An argument- .a
A matche, a BE B iff

for B is a variable anonvmous or named)
(and B is a CONSTRUCTED-BE having the form: c BE, BE, l

A has the lazy-normal form c A, A,-
A matches BE,. and A, matches BE, )) - ,

Formal parameters have been generalized from being only bound variables to include
c,nstructed bound expressions (CONSTRUCTED-BEs) for two pragmatic reasons:

*5. % " * -'

CONSTRUCTED-BEs obviate the need for many user defined selector functions. As
an example, consider the function which performs vector addition. Using ..

CONSTRUCTED-BEs, the LAMBDA-exp is written: %. %
X ((vec 'x 'y) (vec 'w 'z)) (vec (+ ?x 'w) (-t- 'y ?z))

Without the use of the CONSTRUCTED-BEs, the LAMBDA-exp becomes: N
X('u ?v) (vec (+ (xc ?u) (xc ?v)) (+ (yc "u) (yc ?v))) o.f a vector

where xc (yc) is the selector function which extracts the x (y) component of a vector. % %

2 A CONSTRUCTED-BE ensures that its LAMBDA-exp is used for arguments of the
kind the user intended - i.e. arguments which match the template. In the above .0
example, the CONSTRUCTED-BEs in the formal parameter list of the first

LA-DA-exp guarantee the function is used only with vectors. No such guarantee
is provided by the formal parameters of the second LAMBDA-exp.

An important question remains. How is (BE to argument) matching performed after all
of the variables have been abstracted away by the compiler 7 The compiler (the function..V
Compile) must produce, from a LAMBDA-exp having the formal parameter BE, an
LNF-wff (in which there are no variables) which is capable of checking if the argument %. .r ..

to which it is being applied would have matched BE. This is accomplished by the gen- % .

eralized abstraction algorithm Abstract-be, which makes use of the functor: A-S (stand- "

ing for Abstract Structure), in addition to the functors used in the definition of C-T- 0

7 Both anonymous and named variables also act as templates - templates that will match any
argument

' V / ' , "d ,4 ', ,d # e # - . '- ', ". . '. "- , "- =, e - €. ' Na '  
,6,, %,.%. %

. ' ' ' . .' 2'..,t ,C ..e ,: ," ," .&.,. ' .,'..." . . V',-. -.,.- %00.. . '.,



Page 84 • ... ' " . . :

ABS f 0 irrys and Turner's abstraction algorithm used in the LNF-calculus).

T.-I OND-branch in the ZetaLisp definition of the Compile function which deals with 0 -
LA' DA-exps is as follows:

((Lambda-exp-p exp)
(Abstract-each-be (Formals exp) (Compile (Body exp))))

Recall the definition of X-TO-LNF (from Chapter 2) which translated -wffs into LNF-- .
wffs. The program section above mirrors the first part of the definition of X-TO-LNF V

repeated below-
(if X = (X v B) 0

t hen C-T-A.BS [v,X-TO-LNF [BI] 'p

The defi n ition of Abstract-each-be:

(DEFUN Abstract-each-be (non-empty-be-list compiled-body) " "
(LET ((compiled-be -; BE

(Compile (Last-be-in-list non-empty-be-list)))) NO

(iF (Only-one-be-in non-empty-be-list)
THEN ._' --
)bstract-be compiled-be compiled-body)

;; ELSE
(Abstract-each- be * --

(Al-but-last-in non-empty-be-list) .
(Abstract-be compiled-be compiled-body)))))

In addition to being able to abstract simple variables, Abstract-be must be able to
abstract away anonymous variables and constructed bound expressions. Note that in
the definition of Abstract-each-be (above) the BEs are compiled before being passed as :.,.
arguments to Abstract-be. LIST-BEs are transformed into CONSTRUCTED-BEs (hay-
ing the form: (PAIR X Y)) by this process. The ZetaLisp definitions of Abstract-be and
its helper function A-S-or-A-S'-comb 8 come next:

%'b % % % " % ,

8 The functor A-S' is used when abstracting away variables introduced in CASE-exps

% 

6 IM



Page 85

(DEFUN Abstract-be
(be compiled-body &optional (arg- reduced- p NIL)) -

IF THIRD kRG NOT PROVIDED THEN IT TAKES ON VALUE NIL

(COND ((Anonymous-variable-p be) (Combine 'K compiled-body))
((Named-variable-p be) (C-T-abs 9 be compiled-body))j
(T be is a desugared CONSTRUCTED-BE - i.e.

a construction whose arguments are BEs
(A-S-or-A-S' -comb

arg- reduced-p
(Constructor be)

(Number-of-args be) .....

(Abstract-each- be Args he) com piled- body)))))

(DEFUN A-S-or-A-S' -comb (use-prime-p c i~ lnf-wff)

(Combine
(Combine (Combine (IF use-prime-p *AS *A-S) c) n')

* lnf-wff))

* ~Some examples of LAMBDA-exps and their SIMPLE-exp equivalents0

('Cx) (-x X)

X ((pair ?x ?y)) (± ?x ?Y)
* A-S PAIR2 +

A-S PAIR 2

X\ ((vec 'X "v) (vec ?w z)) Ivec { X " W) (- Z() *

ASVEC 2 (C' (B3' (A-S VEC 2)1 R' C (B' B V'EC; )

>('u 'v) (vec (-- (xc ')u) (xc 'v)) ( Ic u) vyc v )))
S' S (C (B'1 (B' VEC) - XC) XC) (C !B' B - YC) YC )

0

X((tree 'I ') 'r)) (append (flatten "h (flatten ')r))
A-S TREE 3 (B K (C (B3' B APPEND FLATTEN) FLA7rENM)

A- SO 0 0 1

A~O -e .. 0j
X (?x ? x
K

A step by step look at or of the more complex sample transformations follows. Start-%
ing with:

SZetaLisp version of the function C-T-ABS presented at the end of Chapter 2

J. % % 1.%-

0 J



-% r % -f

06

Page 86 b % JOB

X ((vec ?x ?y) (vec ?w ?z)) (vec (+ ?x ?w) (-+ ?y ?z))

First, the BE: -0

(vec ?w ?z)

is abstracted from the body:

(vec (+ ?x ?w) (+ ?y ?z)) %. -

yielding: ..

A-S VEC 2 (C (B' B vec (+ ?x)) (+ ?y)). -.

Now the BE: -"
:.:. ,. -%

(vec ?x ?y)

is abstracted from:

A-S VEC 2 (C (B' B vec (+ ?x))( "y))

The result is the LNF-wff:

A-S VEC 2 (C' (B' (A-S VEC 2)) (B' C (B' B VEC) +) +).

The adventurous reader may wish to verify that the other sample compilations have % %

been performed properly.

This compiled expression will now be applied to arguments and reduced to lazy-normal
form. To make sense of the reduction, one must know the rules for the functors
involved. The rules for the functor A-S (originally presented in Chapter 2) are repeated :' .
bcio' - it is assumed that rules for the now familiar functors: B, B' C, C', and need " -.

-c " 'edisplayed. ..

A-S c i X (cZ 1  ' Z " Zj) -- XZ ...7
A-S c i X RDU - A-S c i X IMR

- 5& U,''
100 1

+A-..

E2-2. VEC

, - •.

ZetaLisp representation of an A-S reduction "

Figure 3.4 - , 5-

The function: A-S VEC 2 (C' (B' (A-S VEC 2)) (B' C (B' B VEC) +) +) applied to
arguments (VEC 10 20) and (VEC 30 40) reduces first to:N

C' (B' (A-S VEC 2)) (B' C (B' B VEC) +) + 10 20 (VEC 30 40),

then to:

.,
l~eWN %r %



.r wS . -or or

Page 87 .-

B' (A-S VEC 2) (B' C (B' B VEC) + 10) + 20 (VEC 30 40),

th e n to : -"

A-S VEC 2 (B' C (B' B VEC) + 10 (+ 20)) (VEC 30 40), " ii-rhjYI

then to: k

B' C (B' B VEC) + 10 (± 20) 30 40,

then to:
C (B' B VEC (+ 10)) (+ 20) 30 40,

t h e n t o : - . > . -

B' B VEC (+ 10) 30 (+ 20) 40

then to:

B (VEC (+ 10 30)) (+ 20) 40 
%

and finally to:

VEC (+ 10 30) (+ 20 40)

which, because it is a construction, is in lazy-normal form.

T he com bination labeled "N :" is a new ly created com bination. """" " ' ';

It was mentioned above that Turner, in [Turner 1979c], had allowed formal parameters
to be pairs (and pairs of pairs etc.) as well as simple variables. His abstraction algo-
rithm, when it had the task of abstracting a formal parameter of the form ,", ,",
PAIR ED TL from an expression EXP, produced a combination of the form:

U abstract [HD,abstract [TL,EXP]]

where the functor U (standing for Unpair) was characterized by the two rules: 0

U Z (PAIR X Y) - Z X Y and
U Z RDU- U Z IMR.

Note that the function yielded by Turner's algorithm (U FN) behaves identically to the -" "
function (A-S PAIR 2 FN) - the function that Abstract-be would have produced in this

situation. It can be seen that Turner's functor U is the instance of the function (A-
S c n) where c has been inotantiated with the constructor PAIR and n with 2.

3.3.3. Exressions with Auxiliary Declarations

Expressions having auxiliary declarations come in three flavors: WHERE-exps,
WHERE*-exps, and WHEREREC-exps. Each of these three types of expression is a
variable binding form which, unlike LASBDA-exps, associates expressions with the vari-

a b le s in tro d u c e d .1 0  
.* -

10 Other FP languages poms equivalent forms which introduce the variable before its use.I , g.u.'_-_e.

. " + LP + N + + + ' ::% ,!: • - v . .P 5 , ."V + , + - +



V7 ". 7-7 -A-- --VW

pPage 88%

EXAMPLES: (of WHERE. WHERE" and WHEREREC expressions

(-w 7x 'y) where 'x = 3 & 'v = 4 S

(thrice double 5) where
thrice 'f x = 'f ("f ='f x S,-
double ?x = X 2 "x

?'y) where (tree "x ' 'yI = some-tree

(x 'x ?y) where* ?x = 3 .v = (factorai x . %,

pl whererec 'pl = [1'p2] & 'p2 -2 , <I.

(factorial 10) whererec
factorial 'n = (if (zerop "n) then 

4 " " ,r

else (X "n factorial Subi n a

(app [1,2,3] list) whererec
(app [1 ?z = z
app [?x*?r] 'z = [?x.(app Ir "z)] % "

The three expression types differ from one another by the different scopes given to the , .. ,*. %
introduced variables. For example consider the scope of the variables in the bound
expression be, in each of the followinz three expressions where expil. el e,, and e3 are ,

LNF-exps aiwi be,, be,, and be 3 are bound .,xpressons:

exp WHERE be, = el & be, - - e,, & be3  e3  -• . , -.. % .% .'% =,

exp \VHERE* be, = el be., = e2 be 3  e 3

ecxp WVHEREREC be1 = el & be. - e., & be, e 3

In the first expression, the icope of the variables -,:curring in be.. is exp ,., .n :- -e

second their scope is exp and e3, and in the third their scope is exp e;. e,, and e3  ,%

Note the use of semicolons as separators in the WHERE*-exp. Semicolons have been

used to suggest a sequence. In WHERE*-exps, the scope of bee's variables inclides '., ,_

besides the main expr-ssion, the definiens of any succeeding declarations - thus tihe %:

ordering of the declarations is important in WHERE*-exps. The ordering of the declara-
tions in WHERE-exps and WHEREREC-exps is not important; hence the use of amper- "''" '"

sand as a separator between their declarations. Function declarations like:

thrice ?f ?x = ?f (?f (?f ?x))

and

{app [ ?z = ?z-- .
app [?x.?r] ?z [?x.(app ?r ?z)]}

are transformed into declarations of the form: ?function-name = LNF-exp. 12 Hence func- -

tion declarations, even though they differ in outward appearance, may be compiled, after
this transformation, like any other declaration. It will now be shown how each of the - ,.'._v.'y

I The expresion exp is called the main expression in these constructs.
i2 This transformation will be detailed below, ' .,

%

-,"---a--a.-a".. _

I 7 -. *-." -. ,--,*

,I%" ,, w,/ d '. '' #" . . l, " " .' =' ," '. " I' .€ " .' 4.V " " - w" r.. . - ,, , ,'%.- .r w -... - ,-a .. .a.%,,



! ~% .% '. ,

* %

Page 89

hree tvpes of expressions having auxihar' ieclarations is transformed into an equivaient
simple expresion ,

3.3.3.1. W H R -c R ",- 4, 
"

N %VHFRE-exp having onh -ne je,-aration, is sugar for a combination having at opera-
":,r flicb L5 a L.AMNBDA-exp - e a 3-reiex The WHERE-exp.

exp WHERE be e

, .sguised form 'f the "omtnat,-n

be exp el

*, AHERE-exp tiaving more than Dne eciaration aiso has a SELfPLE-exp equivalent_ -
,.,-ch s a combination Recall that its declarations are mutually independent and have

n., th, main expresion as their scope Therefore, the \VHERFexp. . .

eXp WHERE be, = el & be., = e & be3  e3  .. '

may be seen as sugar for the combination .

b\ be,) k X(be) (X (be 3 ) exp))) eI e. e3

is easy to see that the scope of each of the bes L9 just the main expression of the
WHERE-exp ep

AK a concrete exampie. consider the WIHERE-exp *
-- x 'v) where 'x = 3 & 'y = 4. ,

Its S1,MPLE-exp equivalent is the combination e W

(X ('x) , ('y i - 'x 'y}))) 3 4 -

which compiles to the LNT-wff

-34L

Although it appears that the compiler has performed two 3 contractions, this is not the
case. In fact, what the compiler (specifically. the ZetaLisp function C-T-abs) has done .

has been to make use of the equivalence between the LAMBDA-exp: (X (?x) (M ?x)) and "
S*!he expression M, wtich holds when x does not occur in M.

.: .-?.. ..

-' 3.3.3.2. NVHERE*-exR3,, ::-

A WHERE*-exp might be called sugarcoated sugar, for it is sugar for a telescoped .. j .'.

WHERE-exp. For example, the abstract WVHERE*-exp:

,xp WHbRE- = el; be2 = be3 = e

is syntactic sugar for this WHERE-exp:

5. ((exp WHERE be 3 = e3 ) WHERE be 2 = e 2) WHERE be, = el 5 -

which, in turn, is sugar for the combination: -:.

'~~~ % %• '

',, e" ,ll.,i "i  , ,f.,,, - ', o'% '_- _.' €' ," • ." ." " . ,, ,, ." ." " . J" ," " . .' .-" •.° ." " . ." • . ." ." "% . ." .° ',,.." " . . ." " J .• .° " .

I @ j: . ''" , " e - ,. .. ,. e ,,*. '." ¢,*.5- . - .. . ,- , , . - .- . , . . ,,..... .... .-.- . .,_. . .



SVmInUS smxV W J A USINMO ET ILOCT I?
inC-T-1-16-OL-2 F3*M-04-K-NWI

UICLMIFZO F/012/ I.

mhhhhhhhmhhmhhhmmhmhhl

smhmhmmhhhl
mhhhmmmhhhhl

~~mhmhhmm



Ila

- m~~)L3.

14. I20MO

'4'e

A(( (( (I(

AN



Page 90 
W

((X (be1 ) ((X (be,,) ((A (be 3) eXP) C A) e.,)) el).

The scope of be 2 has been italicized to illustrate that its scope really is exp and e 3 as
was claimed. Note that a WHERE*-exlp having ii declarations, when desugared, con-
tains (at least) n 3-redexes. Note also that a WHERE*-exp, having main expression e
and a single declaration d, is compiled identically to the WHERE-exp having main

* expression e and the single declaration d.

As a concrete example, the WHERE*-exp:

(+± ?x ?y) wvhere* ?x = 3 ?v (factorial ?x)

is sugar for the WVHERE-exp:

(±?x '?v) where ?vN (factorial 'x)) where x =3 ~ 5~
which is sugar for the cornbfliat in:1

Thie \VHER E*-exp, the :III(]-xp ird (-e onirin ation thus cornpile to the sarne

S -- fact orijal :3

W 3.3.3.3. WIJTE RERZEQ-exps

'Fir ci aticr~II a \VHLR EPLEC-oxp) cre wIiit her s'equen tial (like those in WHIERE*-
x>nor nI III-.11a1Y independent llke thr une~; c \%7 1IERIE-exps), hut are mnutually depen-

'V. i to sayN Ia th sope of ecwh definiendirn includles all of the definientia, in
1 the Main 'xj'ression. Just like \VlEPE*-Pxps and WH-ERE-exps, however,

V\1ll!'EIRLC-exps cain be desuIngred vito sirnp!e expressions. Before shlowing how to
..Iog a \VI-ERI.TZEC-exp haviinz mran , dcciar-t ions twf esol ilwt eua

I L~EEC'cxphra\in~ganl c'ie dClarraticn. Consider the \\iLERI.R1EC-_eXp:

exp \VIIRERLC be -- ebe,
whIeIre ebe I., an LNF-exp) containinrg sonic Free occurrences of the variables in be. Tlhc%

-,mxvi i ibin ation is equiv alent tc, ebe: %/

(X (be) ebe) be. 0

% T~~IIise .. nflhimlanon also hits the, proper?v thit its oper-ator does riot containi any' freeF
,cuirrenccs of tire variables III he. Rep~ wiri ebe wvit hi (X (be) ebe) be) in be's d ecaa
tion gives a declaration hiav inrg thle Formn.

be vF be,

Wvi PrO no: vaLriable in be occurs free mrI the funi r on F. kny fi xed- pornit of thre function F
(having a form which matches be) will sat isfy this. eqi loll. 1: 1 e('a II froml (Cha pter 2
that the combination (Y G) is equal to (G (Y G)) for all functions G. Thius (Y G) is.1 :r

W ~ fixed-point of any function G. Hence (Y F) is ahfixed-point of tile furnction

13 All fixed-points of F will be of this form since, by Its definiticon, it. is only applicable to argu-
ments of the desired form.

.p~ ~~~ ~~~~ N. % .* *** *% .*V %



I. •

Page 91

F== X (be) ebe.

Therefore, the noncircular declaration:

be = Y (X (be) ebe)

is equivalent to the circular one in the WHEREREC-exp. Since the declaration isn't cir-
cular, the WHEREREC-exp may be desugared (just like a WHERE-exp) into the combi-
nation:

(X (be) exp) (Y (X (be) ebe)).
A concrete example follows. The WHEREREC-exp:

(first 5 ?x) whererec ?x = [1,2-?x]

is tranformed first to:

(first 5 ?x) whererec ?x = ((X (?x) [1.2.x]) 'x)

and then to:

(first 5 ?x) where ?x (Y (X ('x) [1.2-x]))

and finally to: p

(X (?x) (first 5 ?x)) (Y (X (?x) [1,2.?x]))-

This combination is then compiled to the LNF-wff:

FIRST 5 (Y (B (PAIR 1) (PAIR 2))). , '

Another example, whose definiendum is a CONSTRUCTED-BE, follows:

?x whererec [?xo?yJ = [[1?y]o[2°?x]j

is transformed first to:

?x whererec [?x.?y] (X ([?x°?y]) [[1 o?y]. [2o?x]]) [?x.?y] 0

then to:

?x where [?x*?y] = (Y (X ([?x.?y]) [[i.?y].[2.?x]]))

and finally to:

(X ([?xe?y]) ?x) (Y (X ([?x°?y]) [[1°?y],[2°?x]])) .

The function Compile would now dictate that this combination be compiled to:

A-S
PAIR
2
K
(Y (A-S PAIR 2 (B (C' PAIR (PAIR 1)) (PAIR 2)))).

This LNF-wff, however, has no lazy-normal form! To see this, recall the rules character-
izing the functor A-S:

A-S c i X(c Z, .. Zj) --X Z, ... Zi

A-S c i X RDU -A-S c i X IMR

The functor A-S's second rule says that A-S's fourth argument must be reduced before



_ •- Ia, ,, . i _,.i - L i , , 2 , ' ,., ,- .... - . . - -

Page 92

the first rule can be applied - i.e. any function having the form (A-S c i X) is strict.
Hence to reduce the LNF-wff produced by the compiler, one must first reduce its fourth
argument. Its fourth argument has the form: (Y G), where G is also a strict function. S
Since this combination reduces to (G (G ... )), it should be clear that G being strict
implies that this combination will not have a lazy-normal form. Therefore, the original
LNF-wff will not have a lazy-normal form.

To solve this problem - that is, to compile the WHEREREC-exp to an LNF-wff which
has a lazy-normal form - the strict function:

A-S PAIR 2 (B (C' PAIR (PAIR 1)) (PAIR 2))

is replaced by an equivalent (in this context) nonstrict function. The function which is
used in its place is:

APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)). 0

Recall from Chapter 2 the reduction rule which characterizes the functor APP-TO-
ARGS:

APP-TO-ARCS i X Y -- X (ARG 1 Y) ... (ARC i Y).
I This rule implies that any function of the form (APP-TO-ARGS i X) is nonstrict (it S

doesn't care what form its argument Y takes) and, when applied to an LNF-wff having
the form (c Z1 .-. Zi), reduces to the same LNF-wff to which the combination (A-
S c i X (c Z, . . Zi )) reduces. To see this, return to the sample LNF-wff (having made

the function replacement) and view a linearized display of its reduction to lazy-normal
form. -

A-S PAIR 2 K (Y (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)))) %

r, d'! cc,; to: ..-
A-S PAIR 2 K (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) H)

via the Y rule, where H is the cyclic LNF-wff:

(APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) H). ,

The inext :eduction, using APP-TO-ARGS' rule, yields:

A-S PAIR 2 K (B (C' PAIR (PAIR 1)) (PAIR 2) (ARC I H) (ARC 2 H)),

which via the B rule becomes:

A-S PAIR 2 K (C' PAIR (PAIR 1) (PAIR 2 (ARG I H)) (ARG 2 H1)),
which reduces via the C' rule to:

A-S PAIR 2 K (PAIR (PAIR 1 (ARC 2 H)) (PAIR 2 (ARC 1 H))).

Finally, A-S's first rule may be applied. The result is:

K (PAIR 1 (ARC 2 H)) (PAIR 2 (ARG 1 H))

which reduces via the rule for K to the construction (a pair):

PAIR 1 (ARG 2 H),

which is in lazy-normal form.

% a. %.

d, "r e '
% %7% -

4~~NI % , .%~



Page 9

Before continuing on with WHEREREC-exps, it might be mentioned that Turner in
[Turner 1979c], when presenting his compilation scheme for expressions with mutually
dependent declarations, made the error of using his strict functor U instead of a non-
strict equivalent. The functor he meant to use ([Turner 1983]), instead of U, was the
nonstrict functor U' characterized by the rule: .16

U'X Y - X (HD Y) (TL Y)

where HD and TL are the selector functions which retrieve the head and tail of a pair, . .
respectively. This functor U' may be viewed as APP-TO-ARGS restricted to working
on pairs - with HD and TL playing the parts of the functions (ARG 1) and (ARG 2).

Up to this point, the WHEREREC-exps that have been dealt with have contained
only one declaration. WHEREREC-exps having more than one declaration are compiled
by first transforming them into an equivalent WHEREREC-exp having only one declara- , .6
tion, and then compiling this new WHEREREC-exp as detailed above. Consider the -
WHEREREC-exp below:

exp WHEREREC be, = el & be2 = e2 & be e3

having three declarations. The following WHEREREC-exp, having only one declaration,
is equivalent to it: - .%

exp WHEREREC (OPDS be, be. be 3) = (OPDS el e-, e 3),

where OPDS is simply a constructor. Since it has just been shown how to compile
WHEREREC-exps of this form, nothing clse need be said. '

As a concrete example, consider the WHEREREC-exp:

?pl whererec ?pl = [1?p2] & ?p2 = [2°?pl].

This expression is transformed to the equivalent WNHEREREC-exp:
?pl whererec (OPDS ?pl ?p2) = (OPDS [l?p2] [2epl])

which is equivalent to:

?pl whererec (OPDS ?pl ?p2)=
(X ((OPDS ?pl ?p2)) (OPDS [1e?p2] [2o?pl])) (OPDS ?pl ?p2)

which is equivalent to the WHERE-exp:

?pl where (OPDS ?pl ?p2) = Y (X ((OPDS ?pl ?p2)) (OPDS [1?p2] [2*?pl])).

This WHERE-exp is just sugar for the ,-redex: '.
... ',a,.

(X ((OPDS ?pl ?p2)) ?pl) (Y (X ((OPDS ?pl ?p2)) (OPDS [l.?p2] [2*?pl])))
which compiles to the LNF-wff: )".?

A-S " "
OPDS " ..

K

(Y (APP-TO-ARGS 2 (B (C' OPDS (PAIR 1)) (PAIR 2)))).

In each of the four FP languages: %

I%
% % e *, 0G,

N ,.,'s, Nr.4
l ' .,-r, ;j ... .. .... . .. ,,_. .;, ..,.,; > . ..,. . ,i. .. ,.7 ..,% . . " ,...% .% % , .



Page 94

" SASL - St. Andrews Static Language ([Turner 1979b] and [Turner 1979c]),

" KRC - Kent Recursive Calculator ([Turner 1981a], [Turner 1981b], and
[Turner 19821),

* Miranda - D.A. Turner's most recent effort ([Turner 1984b]), and

" ARC SASL - developed by Burroughs Corporation in close collaboration with
D.A. Turner ([Richards 19841)

there is only one expression form having auxiliary declarations. Each of these languages
has collapsed the WHERE, WHERE*, and WHEREREC expressions into one expression:
the WHERE expression. The compiler detects which definientia are dependent on which .-
other declarations and then compiles the WHERE expression either like LNF's
WHERE-exp, if the declarations are mutually independent, or like LNF's WHEREREC-
exp, if any two declarations are found to be dependent. Some examples of this type of
WHERE expression and their LNF equivalents follow.

KRC: x+y where x = 4*y; y = 2
LNF: + ?x ?y where* ?y = 2; ?x = X 4 ?y

KRC: pi where pi = l:p2 ; p2 = 2:pl .,.

LNF: ?pl whererec ?pl = [1.?p2 & ?p2 = [2?pl] b*'

Although many of LNF's constructs have been borrowed from Turner's languages, it was 6 b

felt that Turner's WHERE construct was carrying too heavy a load. A reader of a KRC. P .I?

program must look inside each of the declarations in order to determine how the declara- .-

tions interact. In LNF, however, the construct's keyword (either where, where*, or
whererec) tells the reader whether the declarations are to be interpreted independently,
sequentially, or mutually dependently. For this reason, it was decided to spread the
work of Turner's WHERE expression appropriately to the WHERE, WHERE*, and S S
WHEREREC expressions.

3.3.3.4. Function Declarations

Functions defined by an equation or a set of equations are both natural to write and 0.d* .l '
easy to read and understand. It is assumed that, when a function is defined by a set of
equations, the equations are pairwise independent - i.e. only one equation is applicable %
in any one situation. This property may be verified at compile time by attempting to
unify ([Robinson 19651) each pair of formal parameter lists. If a pair does unify, then .. .
the set of equations is not pairwise independent and therefore not suitable as a definiens
for a deterministic function. The LNF compiler performs this check and issues a warn-
Ing that the set of equations is "order dependent" if it finds a unifiable pair of formal " -..

parameter lists.

An example of an unacceptable equation set: *
{factorial 0 = I I factorial ?n = x ?n (factorial (subl ?n))} "

since ?n and 0 unify. The following definition of the list appending function:

* ~ (.J ~ ~ v ~ .i ' & .%.~.% X "%%~ ~* %~***,.*. % ,%



V

Page 95 NO

{app [] ?z = ?z I app [?x.?r] ?z = [?x.(app ?r ?z)]} 0

is acceptable because there is no substitution (unifier) which will unify [1 and [?x.?r].

It was claimed above that functions declared via a single equation like:

thrice ?f ?x = ?f (?f (?f ?x))

or by a set of equations like:

{app [] ?z = ?z japp [?x.?r] ?z = [?xo(app 9r ?z)}"
could be transformed into declarations of the form:

?function-name = exp.

This transformation will now be detailed.%

First, consider a function declared via a single equation. These declarations take the t "

fo rm : 
"e.%

ZETALISP-ATOM be, be,, = exp.

An equation of this form is tranformed into the equivalent simple declaration:

?ZETALISP-ATOM = X (be, ben) exp. 14  .' .-

For example, the equation:

thrice ?f ?x = ?f (?f (?f ?x))

is transformed into the declaration: %

?thrice = X (?f ?x) (?f (?f (?f ?x))).

As a concrete example, the WVHERE-exp containing two function declarations:

(thrice double 5) where
thrice ?f ?x - ?f (f (?f x)) &%
double ?x = x 2

compiles to the LNF-wff %

, C 5 (\V (\V B' iX 2). .

If the function is declared by a set of equations, lhcn the equation set is transforrned '.
into a declaration of the form- function-name = exp, where exp is a LANBDA-exp %rid

having a CASE-exp for a body Consider as an example the following set of equations

defining the function F:

{F bel1 be 2 = body, I
F be2 l be22 = body2 I .- ".-.-
F be 31 be32 = body3}.

Note that for this set to yield a deterministic definition for the function F, no pair of

14 Note that 'ZETALISP-ATOM must be substituted for (free occurrences of) ZETALISP-
ATOM throughout the scope of the declaration This scope varies depending on the type of expres-
sion (WHERE, WHERE*, or WHEREREC) of which the declaration is a part

.......-



1 0

Page 96

formal argument lists: (bej I bei2) , (be,3 be1 2) , 1< i j <3 i j may be unifiable.

This equation set is sugar for the single equation:
F v 1 v = --

case (opds v, v2 ) in
(opds bell be12 ) -. body, I
(opds be 21 be 22 ) - body 2 1
(opds be 31 be 32 ) - body 3

endcase %

where v1 and v, are two new system generated variables. This single equation is then
transformed into a simple declaration using the method described above. The CASE-
exp's transformation to a SIMPLE-exp is detailed in an upcoming section.

In certain situations, equation sets are transformed by the compiler into more efficiently
reducible forms. In the case where the first parameters of the equations (bell, be21 , and
be 31 ) are found to be pairwise independent (not unifiable), then the equation set is
transformed to this equation: ,

* 0
Fv 1

case vi in ...
be 1 l (X (be12) body) I
be 21 - (X (be22) body 2) I "-'
be 31 -- (X (be 32) body3 ) '

endcase .

which avoids the introduction of the variable v 2 and the constructor opds; both of which .
add to the size of the code and in turn increase the number of reductions required any-
time the function is used. The user of the system is therefore encouraged to place the
"deciding" parameter (if one does exist) in the first parameter position. To illustrate the
difference that the ordering of the formal parameters can make in the compiled code, % V
observe the code produced for the following two equation sets. Both sets define a predi- %. %
cate accepting a number n and a list I as arguments and yielding TRUE iff n = length 1. ,. :.
Their only difference is that the first predicate expects the number as first argument and
the list as second and the secon predicate expects them in reverse order. The first set: , , ,

{Pl ?n [?*?rl = PI (subl ?n) ?r j * 0
P1 ?n = zerop ?n}

compiles to code containing 35 system generated functors, and to reduce the expression:
P1 4 [1,2,3] to FALSE takes 79 reduction steps. The second set. ,;. .,,

{P2 [?o?r] ?n = P2 ?r (subi ?n) I .- '"
P2 [] 9 n = zerop ?n}

compiles to code having only 17 new functors, and to reduce the expression P2 [1,2,3] 4
to FALSE takes only 38 reduction steps.

3.3.4. List Expressions

PAR X Y) come in several flavors: (1) explicit lists like:

*" ., .,- ** w ' , . * "1p

p.',.r#'..rw, ,.... w-, -.Pt p._ * d-- .. *, "%' o-..-. . .'..% -.. ... % . . . ~ . .s-.,. %' ' %L'_,% tM' -% ',' ., =
N.V.J



% 

% 61

Page 97 N
N " - ,% ,,,

[1,2,3,4], | -

[fiat,2,tire,1 .23],

[a.b], and

[a,b,c •[ 11;

(2) arithmetic sequences like:
~~~~[1,..],' . .. -- :

[10,0,..], 0

[1,3,..1,

a'[0,-1,..],

[2,4,. ., 100],'
6.,.,,% %

[1,..,1000], and % %

[10,7.5,..,0]

and (3) implicit lists. Turner introduced implicit lists - he calls them "ZF expressions"
in his language KRC. He gave them this name since they are based on Zermelo-"e 'r

Frankel set abstraction - that is for every set A and predicate P, there is another set -
(B) whose members are exactly those members of A for which P holds. The equation %%
defining the new set B is written in [Halmos 1974] as:

B = {xEA : x).,

Implicit lists may be expressed in LNF in two ways. The first form is very similar to 'r
that used by Turner. The only difference is that, in LNF, square brackets have replaced .411

curly braces as the construct's enclosing delimiters. Since these expressions really are "N",
lists and not sets - i.e. their lazy-normal form is either the empty list ([1) or a pair -

it was felt that braces were inappropriate bits of sugar. A few examples of implicit lists, 0
using the modified Turner syntax, follow:

[(subl (X 10 ?x)) I ?xE[1,..,100]]

[[?x.?y] I ?xE[1,..,5]; (odd ?x); ?vE[100,1011]

[(+ ?x ?y) I [?x*?y]E(zip [1,.,10] [100... 110]); zerop (rem ?v ?x)] . .'-

exists in LNF. The essential differences between the two notations are: (1) where the

local variables are introduced, and (2) the physical location of the scopes of the intro-
duced variables. In the modified Turner syntax, variables are bound after their use S
(similar to WHERE constructs) and their scopes are not contiguous. In the new syntax.
variables are bound before their use (similar to LET constructs) and scopes are always % NH6 Turner would have written this expression as {xlxEA;P x}

eA. e-..- o .

A ~ iA ,i~ " :-* % a', _ .%

. , ,'%..' -

' X

Page 98 %. %
J % . ,

contiguous. The implicit lists above are redisplayed below using this new syntax:

for-each ?xE[1,.. 100]
instantiate (subi (X 10 ?x)) r

for-each ?xE[1,..,5]
such-that (odd ?x)
and-for-each ?yE[100,101]

e

instantiate [?x.?yj O

for-each [?x.?y]E(zip [1,..,101 [100,..,110])
such-that (zerop (rem ?y ?x)) -

instantiate (+ ?x ?y)

The SIMPLE-exp equivalent of each type of list expression will now be displayed.

3.3.4.1. Explicit Lists ,
S I

Explicit lists are easily desugared to simple expressions using the constructors: and
PAIR. To understand how arbitrary explicit lists are transformed, it is enough to see
how the following sample expressions are tranformed:

[1,2,3,4] becomes PAIR 1 (PAIR 2 (PAIR 3 (PAIR 4 [1))),

[flat,2,TIRE, 1.23] becomes PAIR FLAT (PAIR 2 (PAIR TIRE 23)), 16

[aeb] becomes PAIR A B, and p., " ,$

[A,bo(pair c [])] becomes PAIR A (PAIR B (PAIR C [])).

3.3.4.2. Arithmetic Seauence Expressions

Arithmetic sequence expressions are a convenient shorthand for monotonic sequences of .01,-J%
numbers, where the k h element (ek) in the sequence may be expressed by: e 1+(k -1)c, , S

for some constant c - i.e. arithmetic sequences. These sequences may be finite or
infinite.

Finite arithmetic sequence exps take either the form IX,..,Z] or [XY,..,Z]; both of which
are sugar for unknowns of the form: ***..*. ,%

FBT X W Z,

representing the sequence: i. .._. .

From X By W To Z,

where W is either 1 or (- Y X), respectively Some finite arithmetic sequence exps and S 0
their SIMPLE-exp equivalents follow

IS The LNT system is case insensitive

%V

"" . "

.

Page 99

[2,4,..,100] becomes FBT 2 (-4 2) 100, 0

[1,..,1000] becomes FBT 1 11000, and

[10,7.5,.0] becomes FBT 10 (- 7.5 10) 0.

Note that in a list of the form [X,..,Y] (without a second element), the second element is
assumed to be X+1.

A sample (linearized) reduction of the finite arithmetic sequence exp: [2,4,..,100] to lazy-%
normal form: 17

FBT 2 (- 42) 100 -~ FBT 2 2 100 -PAIR 2 (FBT' 4 2 100).18

Infinite arithmetic sequence exps look like [X,] or [X,Y,..] - both of which are 1r '

transformed by the compiler to wffs taking the form:

FB XW,

representing the sequence:
%...

From X By W,

where WV is either 1 or (- Y X), respectively. Some sample transformations of infinite % L

arithmetic sequence exps are displayed below:

[1,..] becomes FB 1 1,

[10,10 ... becomes FB 10 (- 10 10),

[1,3,..] becomes FB 1 (-3 1), and

[0,-i1,..] becomes FB 0 (-10).

A graphical representation of the reduction of the sequence: [10.10,..] to lazy-normal . r J

form follows:%

% .- J F.

%

% %

17 The reader may, at this time, want to refer hack to Chapter 2 for FBT's reduction rules '-

iFBT' acts just like FBT except that t aslime- its irguments have already been reduced to
numbers.

% r. % % % %

% -W % %% %f %..J--~-
-. nL nz

V %

Page 100

N.9.

% e

10 %

FB~~~. 10W (. 10. 10 eueZt B1

Figure 3.5

Recall that a CONS cell having the ZetaLisp atom LNF:IP as its CAR is the system's
representation of a forwarding vertex.

R~T a A..4I

0 -. '*

Z% %

FB 10 0 reduces to PAIR 10 (PAIR 10 (.)

Figure 3.6

Here is the second use made of cyclic graphs by LNF. The first use, as You may recall,
was made by the fixed point finding functor Y. '

______ *
3.3.4.3. Implicit Lists ~-.'

The simple implicit list:19

for-each ?xE[1,..,100] ~
instantiate (subi (X 10 ?x))

reduces to the same list of numbers as does the arithmetic sequence expression: -
[~,9,.,99].It is not, however, sugar for the same SIMPLE-exp as the arithmetic-

sequence. The implicit list above is sugar for the expression:

MAP (B SUBI (x 10)) (FBT I1100),

where the expression:

1The 'for-each'' implicit list syntax will he used exclusively in this section *.

% 9

* ~~ %/~S' Z, %*, %

br% 'J

Page 101
%Ip .p

BSUB1 (X 10)

is the result of compiling the LAMBDA-exp Ile ,0,

X (?x) (subi (X 10 ?x)).

To see that this compiled wff has the expected lazy-normal form -that is:
PAIR X REST, where X is a wff which reduces to 9 and REST is a wff which reduces
to the rest of the list - follow its two step reduction to lazy-normal form: .-

MAP (B SUBI (X 10)) (FBT 1 1 100) -. ".-:-'-5

MAP (B SUB1 (x 10)) (PAIR 1 (FBT' 2 1 100)) -
PAIR (B SUBI (X 10) 1) (MAP (B SUBI (X 10)) (FBT' 2 1 100)).

It should be (fairly) clear that the first argument to PAIR (the head of the list) reduces
to 9. It should also be easy to see that the second argument, since it is just like the ori-
ginal LNF-wff except that (FBT 1 1 100) has been replaced with (FBT' 2 1 100), will
reduce to [19,... 999].

In general, an implicit list having the form: '

for-each beEX
instantiate BODY

compiles to a SIMPLE-exp having the form: -

MAP FN LIST,

where FN is the result of compiling the LAMBDA-exp: ,

(X (be) BODY))

and LIST is the compiled version of X.

As illustrated by Gic- two other examples of implicit lists above (see page 98), implicit
lists may, in general, have a more complex structure than that just described. Besides %
always beginning with a phrase of the form: for-each beEX (called a generator by
Turner), and always ending with a phrase of the form: instantiate BODY, an implicit "%: J
list may have one or more intervening phrases either having the form: •

and-each beEX (more generators) .).:.

or: .'-', '''
such-that X (called guards or filters>, 0."O .):i,

The FP language ALFL ([Hudak 1984c)) contains a similar, although restricted, con-

struct called an "ordered bag". The first restriction is that all generators must precede %
all filters. More serious, although infinite lists are supported in the language, the ordered % %

bag: [* [x,y] I x<-Nats: y<-Nats *] produces the list: [[i,1,1],2],[1,3j[14,..J - a list in WIe% %
which most of the elements in the cross-product do not even appear! .

To illustrate the scoping of an implicit list, consider the following for-each expression:

2 Appendix B contains a BNT-like description of the syntax of implicit list expressions

6 . 1 .. wt.- , . .

% . - . . ,% %" % " ". - .%" , %% .- '.%% % % % % % " % %. .° %' % % %

* 0

Page 102

for-each betELIST, . _
such-that GUARD, -
and-for-each be 2 ELIST 2

such-that GUARD 2

instantiate EXP

The expressions in the scope of bel's variables are: GUARD1 , LIST 2, GUARD2 , and S •
EXP - i.e. the expressions following the introduction of the bound expression be,.
Similarly, the expressions in the scope of the variables in be2 are GUARD 2 and EXP.
The expression EXP is called the template of the implicit list.

An expression having the above form is transformed into an equivalent combination (see
below), and then compiled.

ENUMERATE
(MAP (X (be,)

(IF GUARD,
(MAP (X (be 2) EXP)

(FILTER (X (be2) GUARD 2) IN- .,

LIST2)) % J %

LIST 1)

Careful inspection of this rather complicated expression reveals that it reduces to the -'. -.

expected construction - a (possibly empty) list of instantiated EXPs. To understand
the expression, one must be familiar with the workings of the functors: MAP, FJLTER, .
and ENUMERATE. The rules defining the functors MAP and FILTER are straightfor-
ward (see Chapter 2), but the rules which define ENUMERATE are not. ENUMERATE

may best be understood not by peering at its rule and the rules of the other functors
upon which its rule depends (TURN, UP, and DOWN), but by seeing what kind of con-
struction it expects as an argument and what kind of construction it produces from that ,-
argument. -

ENUMERATE expects as argument a list (empty, finite, or infinite) of lists, each of • '

which may also be empty, finite, or infinite. That is to say, an appropriate argument for .- :.'.-

ENUMERATE takes the form:

X-X.1- -.. .-""
[[X21,X22rX 23, ..., ".°l".y "°"

[1X3tX32YX 33, ...] • •

ENUMERATE, applied to such a list, reduces to the list:

[X 1 t,X 1 2,X 21,X 31 ,X22,X13,X14,X23, .. I

Thus ENUMERATE borrows the scheme Cantor used for demonstrating the countabil- *
ity of the rationals and produces a flattened list containing all of the elements in each of
its argument's sublists. The rules defining ENUMERATE and its "helping" functors
were gleaned from a functional definition of ENUMERATE by F. L. Morris, ." " -
[Morris 1984].

.*, -,'?A' S-

Page 103

Turner, for his ZF expressions in KRC, uses a different implementation strategy involv-
ing the functors FLATMAP and INTERLEAVE - instead of ENUMERATE and
MAP. 2 1 The main difference between t.his contruct's implementation in LNF and KKbC is
the order in which the elements of the implicit list are produced. Turner's implementa-
tion is biased more towards the first generator - i.e. the first list in a ZF expression is ,, ,
run through" much more quickly than the rest of the lists.

An implicit list, viewed as an initial phrase P (which may be either a generating or filter-
ing phrase) and remaining phrases R, is transformed as follows. In case:

P is beEX and R consists of just a template:
MAP (X (be) R) X %

A
P is beEX and R contains only guards GS and a template T:

MAP (X (be) T)
(FILTER (X (be) (conjunction of the GS)) X)

P is beEX and R contains generators: V"

ENUMERATE (MAP (X (be) (transform R)) X) 0 S

P is a guard:
IF P (transform R)[]

The implicit list:-_ -.

for-each ?xE[1,..,5]
such-that (odd ?x)
and-for-each ?yE[100,101]
instantiate [?x•?y] %. , K

is transformed to the combination: . .,.% %

ENUMERATE
(MAP *

" "

(C (S' IF ODD (C' MAP PAIR (PAIR 100 (PAIR 101 [1)))
(FBT 1 1 5)). '.'-

This compiled implicit list reduces to its lazy-normal form:

[[1o.100]o
UP [] .- ..:*-

[MAP (PAIR 1)[101]]
(MAP (C (S' IF ODD (C' MAP PAIR [100,101]))])(FBT' 2 1 5))] 1

in 14 reduction steps. .. o of

3.3.5. Conditional Expressions

There are two conditional expressions in the LNF language IF expressions and CASE '- -
expressions.

21 Turner's implementation scheme is explained ,ut , elv it [Abelson 1985] "

-. Z . , ', '. '.
. , 'P 'd so' ",-2 .' -,P '? r '. .

~~~~~ *I.* or. ~ c.



0 0

Page 104

3.3.5.1. IF Exvressions

The IF-exp:

if CONDITION then THEN-EXP else ELSE-EXP

is simply sugar for a combination having operator: (IF CONDITION THEN-EXP)
and operand: ELSE-EXP. Its representation, therefore, takes the same form as any
combination having three arguments.

3...--2 CASE ""

ZetaLisp representation of the conditional: if x then + else X

case E in
cbe- -. BODY,
cbe2 - BODY 2 1I

cbe, -, BODY,,
endcase

attempts to match the object of the case (E) against the pairwise non-unifiable ([Robin-
son 1965) case templates (cbes) - which are just constructed bound expressions. If E

-v ."

matches template cbej , then the case expression reduces to (the compiled equivalent of *~~.

the /3-redex):

Xcbe -- ) BODY1 )• E

If E does not match any of the templates, then the CASE-exp reduces to an unknown. .0
A CASE-exp is transformed to a combination, employing the functors A-S-E, A-S-E',
and A-S'. The A-S' functor is a nonstrict version of the A-S functor - inasmuch as it
does not reduce its fourth argument. The functors A-S-E and A-S-E' are best explained
by studying A-S-E's four reduction rules, which are:

22 Other FP languages which contain similar constructs include ML ([Milner 19831), Lazy ML .
% %

'[Augustsson 1984a], [Augustsson 1984b], [Johnsson 1981b], [Johnsson 1983], and [Johns- ,
son 1984]), and HASL ([Abramson 1982b] and [Abramson 19831)

.. ." .€ * * -' . . '.' . ,,

Z~~. %



, 1J . V VL.. ',, ,. X. ;:',; / : *v'.' ) -
! -. , .u , , 'Ikf9.h --. ?3 ,-. ~F FV: . ., V , )-I* ,i P. ; :,/ _ a. Pd. , . RF . N. NJ P;. ,IW . .. ,

%

Page 105

A-S-E A-S-EciX Y(c Z, ... Z i ) X I
A-S-EcliXY(c2 Z . ) -Y,

if c41 pc, or i5 "- .
A-S-E c i X Y FN -- Y W-

A-S-E c i X Y RDU --. A-S-E c i X Y MR

Together, these rules mean that the LNF-wff:

A-S-E c iXY Z

is reduced just like the wff:
:'.". ",% 'r, -

IF (AND (= c (CONSTRUCTOR Z))(= i (NUM-ARGS Z)))
X
y I 0

A-S-E is a condensed form of "Abstract Structure Else". The functor A-S-E' is to A-S-
E as A-S' is to A-S. CASE-exps are compiled b, the function Compile-case and its three
helping functions: Abstract-cases, Abstract-template-else, and Abstract-templates-else
which appear below:

(DEFUN Compile-case (case-exp) ,
(LET ((cases (Cases case-exp))

(case-object (Case-object case-exp))
(var (New-variable)))

(IF (Order-dependent cases) (Issue-warning-message))

(Combine (C-T-abs var (Abstract-cases cases var)) case-object)))

(DEFUN Abstract-cases
(cases var &optional (already-seen-a-case NIL)) "'''

(LET* ((first-case (CAR cases))
(rest-cases (CDR cases))
(template (Template first-case))
(result (Result first-case)))

(IF (NULL rest-cases) " FIRST CASE IS ALSO THE LAST CASE
(Combine (Abstract-be template result already-seen-a-case) var)
(Abstract-template-else

template -

result . %

var
(Abstract-cases rest-cases var T)
already-seen-a-case))))

V.%-~ **:%.

-' .-. ' ,.

.S.".., .

tt- i f



"." --- : '.,

Page 106

(DEFUN Abstract-template-else
(template result var else &optional (already-seen-a-case NIL))
(Combine

(IF (Constructed-be-p template)
(LET ((constructor (Constructor template))

(num-args (Num-args template)))
(A-S-E-or-A-S-E -comb

already-seen- a,.case 0
constructor %

n urm- args
(Abstract- templates-else

(Args template)
result
var

else)
else)

TEMPLATE IS A VARIABLE, SO NO NEED FOR ELSE
(C-T-abs template result))

(DEFUN Abstract-tem plates-else %
(templates result var arg-number else)
(IF (NULL templates)

result
(Abstract-template-else

(CAR templates)
(Abstract-templates-else

(CDR templates)
result p O

* var
(ADD1 arg-number)
else)

(Combine (Combine 'ARG arg-number) var)
else)))

Note that if the piece of code:

(Combine (C-T-abs var (Abstract-cases cases var)) case-object))

in Compile-case was replaced with:

(Abstract-cases cases case-object)

then CASE-exps would not be fully lazy. In situations where case-object is an unknown % %
containing variables - e.g. (+ 1 ?x) - more than one redex may be created and
reduced, violating the property of full-laziness LNF enjoys.

Two concrete CASE-exps and their compiled equivalents follow. The CASE-exp: *

I0 l fee
f) %I 4 , %

%_..

'. e ,- S..



Page 107

case a-list in

[? ]- addi (len ?r)

[-0o
endcase

compiles to (the LNF-wff):

oT -.

A .A--usr

SI 0

4 I C

A'-S- E PAIR £

• •.%. .
e.%

: ,, . o0 .
2 - t o*. .- -.

Compiled code of the CASE-exp above
Figure 3.8

The CASE-exp:

a4 .. . -e

case a-number in
0O- zerol
I1-one
2- two

*p endcase

compiles to (the LNF-wff):... v

" -. -. ,

%

Z. N.

%.% ..

% -. ~ % %% 1



Page 108

'Ro6T - k

A-~~~ %uB .~-
% 'I

W %, ~%bA

%~'

6% %1~..

A~~ 15; I- 
% l

Figure -. 9 * %

3.3.6. Compiler Summary

It has been shown how each type of LNF expression may be transformed into a simple

LNF expression and how simple LNF expressions may he transformed into representa- .p

tions of LNF-wffs. In essence, the transformation's task (except for some minor bits of
desugaring) is the elimination of bound variables in favor of LNF-wffs. The next section
will detail the mechanisms which transform these LNF-wff representations into lazy-
normal form.

%

3.4. LNF's Runtime Environment *-

Since a compiled LNF program is not a fixed seuneof instructions to a Von Neumann.,.
style machine but is a representation of an LNF-%fl i- Le a graph in which program r v**

and data are indistinguishable; running such :t program will involve manipulating LNF-
w ffs.

LNF's runtime system (implemented by the routine LN\F-of-wif and its subsidiaries) is a
realization of the machine called LNF-\l in Chapter 2 Recall that LNF-\t, given an
LNF-wff X as input, either terminates. ie diiig an LMA -wtri LNFX su ch that X L.NF-
red * LNFX and LNFX in lazy-norrn:il f-T1 'in r d14's1 nPt terminate, in which Case X ~ ~
has no lazy-normal form

L.NF-of-wff has a simple yet tiexible organ i/at '!l it is corn posed of two collections4
routines One collection is responsible 1',r -to:r-H)lii g the retiuct ion of an ,NF-, wIT t, %~t....
lazy-normal form and the other collecti ii i, r-esp'iile for performing the mndiv ilu al ~

reduction steps. The routines which con)itrol the re'duction are independent of the

09-.



% % 'P a g e 1 0 9 ' e - -.

system's set of functors they could also be used (as is) in a realization of the SKI-G- - I
calculus. The routines which perform tie individual reduction steps are mutually .. .

independent and functor specific -- there is one routine per functor The functor
specific routine for functor f (called f-reduce) is, in essence, an encoding of f's LNF- P..%
calculus reduction rules and is responsible for reducing (if reducible) a wff having f as its e ,
initial atom. This organization facilitates experimentation with different functor sets, as J.

functors mav be added to (removed from) the system by simply adding (removing) func- S
tor specific routines - no code need be modified.

Although far from being a specification for a piece of hardware, the implementation is
quite machine-like. That is to say the routines themselves are written in an imperative
and "referentially opaque" style. The machine-like structure of the runtime systems
implementation was determined in part by a plan to move the implementation (or some
successor of it) (..- of software and into firmware and maybe even to hardware.

All of the significant routines making up LNF's runtime system and the data structures
which they employ will now be discussed in detail. The routines which control the
reduction (which are the top level routines in the runtime system) are discussed first.

°JI" "° ap "a*

3.4.1. Controlling the Reduction '.,

'he routines controlling the reduction of an LNF-%tff employ a stack. the items in the
stack are stacks (called left ancestor stacks) themselves. A left ancestor stack (LAS) is •
the key data structure used in DA. Turner's implementation of SASL - outlined in
[Turner 1979c]. An LAS, used in conjunction with an expression graph (an LNF-wff), "-
eases access to the LNF-wff's initial atom and arguments. The bottom item of such a J-../.
stack points at the root of the LNF-wff. Each of the stack's other items points at the
operator of the LNF-wff pointed at by the item just below it. An LAS representation is
called canonical if its top item is the LNF-wff's initial atom. 7.

t o . , % , .
a" *

N -e

A n Exam ple of a (Non-canonical) Left A ncestor Stack,, ,,-,.; --
F ig u re 3 .10 -" " '% '

It is convenient to display the LASs gro,\%ing ,t,, nward, s4ince the trees (LNF-MvTs) they v
represent are customarily pictured with r, ,t,t at top and leaves it the bottom, ..

h.. 0
%

L a 's.

% N '.+.it.+ i

% %

LI %a %%%, 1 .2i+~ lY



Page 110

%.

An Example of a Canonical Left Ancestor Stack-...,...
Figure 3.11 I

One can see that a canonical LAS facilitates access to the LNF-wff )s initial atom and

LNF-wff's initial atom and arguments may be accessed in constant time.",. -•

,.. ,4 ,. J'

The next example illustrates the other property of LASs - no canonical LAS itemAS •

points to a forwarding vertex. The top item of a non-canonical LAS may point to a for-
warding vertex. It will be seen that the functor specific routines access the LNF-wff's %
arguments via a canonical LAS. The fact that the LAS's items are never forwarding ver- V. s .
tices ensures that these routines will have to handle only "real" LNF-wffs - i.e. combi- %
nations and atoms. t

N :IP...

LN: I P

, % e %

Stack Items Do Not Point at Forwarding Vertices

Figure 3.12 ,"--

.%. % .-%

It was stated above that the runtime system employed a stack of LASs. Briefly, the.

sta ck of LASs is used to locate the next redex to be reduced. The bottom item is the

LAS representing the whole LNF-wff. If this LNF-wff is a reduction context for argu-
ment i, then the next item will be the LAS representing the LNF-wff's ith argument
The top LAS represents the LNF-wff on which the system is currently focusing its atten-
tion. An example follows: %01,

%~~ %% %% % % .'"A~~~ fkP. .%
%, % % %%

%. a.- % %
,, . . .. . . . . . . .,

." ". • . . " -~ ~~..- p S.. - ..-.-,:'.. .- . . ..,..: .-,:..- _



%

Pege 111

NIP' If

%

Figure 3.13

In the discussions to follow, the stack of LASs will be referred to as simply the stack; its
items (which are also stacks) will be referred to as the LASs. The ZetaLisp code which
realizes this system, starting with the code for LNF-of-wff, will now be presented.

;Returns as value the lazy-normal form of wif (if one exists).-
Assumes nothing about current state of the stack. %

(DEFUN LNF-of-wff (wif) .r
Fisclear the stack.

;Then, reduce the wif to lazy-normal form and return it.
(LNF-of-subwff wif))

;Returns the lazy-normal form of wif, leaves the stack unchanged.

Si(DEFUN LNF-of-subwff (wif) % %

Find the wif's lazy normal form, .'

;leaving its LAS representation as the stack's top element.S
(Stack-of-LNF-of-subwff wff)
,Pop the top (canonical) LAS off of the stack, ~~
;then return that LAS's bottom element as result.
(op-stack))

Reduces wif to lazy-normal form and
places its canonical LAS representation on top of stack. ~
It is called for these side effects only. .y'

(DEFUN Stack-of-LNF-of-subwff (wif)
Push (non-canonical) LAS representation of wif on stack.

(Push-ta:c l LAwereettonoft ntp

Reduce wif represented in top LAS to lazy-normal form.

The following function is "the execution cycle" of the runtime system.

W. I- d

~~ s% % % % ~ s~. 'ss .~/ ,/ , . 'f f . ~s 5 s 5



".4, % * . -. -
. ."b~w'% "%

w

Page 112

;;Assumes a non-canonical LAS on top of stack.
Reduces the LNF-wff it's representing to lazy-normal form, 0 6
leaving the canonical LAS of this reduced LNF-wff on top.
Called for these side effects only.

(DEFUN Reduce-stack-to-LNF 0-
(LOOP is exited when (RETURN) is evaluated.

Canonicalize top LAS on stack.(Canon icalize- stack) '"

,; Attempt to reduce initial redex.
This may involve reducing some arguments first.

," If no initial reduction performed or reduction makes
;; LNF-wff irreducible, then return.
(LET ((reduction-code (Attempt-initial-reduction)))

(IF (OR (Reduction-not-performed reduction-code) ..

(LNF-wff-now-irreducible reduction-code)) %
(RETURN)))))

Assumes stack is not empty. Canonicalizes the top
LAS. Called for its side effect on the LAS only. .

(DEFUN Canon icalize-stack ()
(LET ((top-wff (Top-wff-on-top-LAS))) , %

(LOOP WHILE (NOT (Atom-p top-wff))
top-wff is either a combination or %

a forwarding vertex
(IF (Combination-p top-wff)

Assign top-wff to be its own operator
Push top-wff onto the top of the LAS .. %''

(Push-top-LAS (SETQ top-wff (Operator top-wff))) .'..

Otherwise, top-wff is a forwarding vertex, so
Assign top-wff to be the LNF-wff to which it was • 0

," forwarded. Overwrite LAS's top item with new top-wff.
(Replace-LAS-top (SETQ top-wff (Forwarded-to top-wff))))))) %

A step by step example of LAS canonicalization follows.

TOP-F: "

% k

% "% ." %

Just After Initialization
Figure 3.14

%

1." ,- .- .' .,,, N % V- %%
%_F" 6.'b"'-

,., %,IN,.,'



-~ -~ -. LN- -IF

. . . . .. ; --.. -

LW K

Figur 113..15~r, ,

-. o4 °-. .

I. ,%

Figure 3.111.

tlev th chc ou waftae becausepsT uc h tFwfh av o op lazNnor-l orma

wa ,a d t e s seFoe o li o ti naefrgu- fs h vn no 3.1-no ma ''.k -:

1 IN I "°' °'°

I'. A-

NATer One Trip Through thowed o

Fig ure 3.15 ?':;&

23b Terver th ot theveli o "o p cek n h routines lieRpaeL Stp Ps-t c an-s onicalis, ak will not-.-e

%- %--%

tolaete3ek u aebcas uhL Fwfshv olz-or a omay 5-"",

*." *." <x'."

fo m.p,,..V..'_r
* g** .'-.

i4=. K
4-455 • % % " % % • % .. I . ,- . , -. " % - .- k % % % " , ,



5.'

%- %
S ' t, .

Page 114 ,.

is to try to perform a single in'tial reduction on the LNF-wff (represented by the top
LAS). To do this it is sometimes necessary to perform some internal reductions first.
These internal reductions are performed if and only if the LNF-wff's initial atom is a
strict (or partially strict - strict for just some of its arguments) functor . NO -s..-0

. Assumes canonical LAS on top of stack
;;Returns a code informing caller whether or ,ot an initial '.

reduction was performed. If one was performed. the code - IN .,-

informs the caller whether or not the reduction has made the 0
LNF-wff irreducible. -.

(DEFUN Attempt-initial-reduction ()
(LET* ((initial-atom (Top-of-top-LAS))

Initial-atom is a constructor or a functor.
It is a functor iff there is a reduction routine
for it on its property list.

(functor-specific-reduction-routine
(GET initial-atom 'LNF:REDUCER)))
functor-specific-reduction-routine is either NIL,
in which case initial-atom is a constructor, or
it is the routine responsible for reducing 6
LNF-wffs having initial-atom as their initial atom. ,::d::It' "

(IF (AND functor-specific-reduction-routine J,

initial-atom is a functor .5-.'4 '
(< (GET initial-atom 'LNF:ARITY) 11%

(Number- args-in- top-LAS)) - "
there are enough arguments to form a redex " i." I V

then run the routine!
It will return a reduction code.

(FLUNCALL functor-specific-reduction-routine) : . "

Otherwise, LNF-wff is a construction or % %
function so its already in lazy-normal form.
Return "no reduction performed" code %

• NO-RED*)))

This completes the discussion of the runtime 6ystem's control routines. The next section 0
details several of the functor specific reduction routines. Also presented in the next sec- * 0

tion will be a detailed example illustrating the workings of the system. .

• * ' .. . ..1k ."

3.4.2. The Functor Specific Reduction Routines . . "
* S

As stated above, there is one reduction routine for each functor. The reduction routine
for functor f (f-reduce) expects the top item of the stack to be a canonical LAS repesen-

tation of an LNF-wff of the form:

fX 1 . .. , where n >ARITY[f]. .

For example, the routine S-reduce expects the stack to look like (recall the functor S has 5 5
arity 3):

,- ....
gel---

"

ON. , ' O.
NO5 ~ ~ * . ~ % '

No* , % %-N



Page 115
'i 6•

I ~ ~~~Possible State of System When S-reduce Begins :. ':"
~~~Figure 3.18 O..,

The code for the S-reduce routine follows.

S X Y Z --. X Z (Y Z)
(DEFUN S-reduce 0

(LET* ((redex (LAS-item-4)) "
(x (LAS-arg-1))
(y (LAS-arg-2))
(z (LAS-arg-3))
;; create the new combination X Z
(xz (Combine x z))

5' ,;create the new combination Y Z
(yz (Combine y z)))

Overwrite the operator and operand of redex with
" xz and yz respectively.

(Replace-operator-and-operand redex xz xy) -"a
;; Overwrite item which used to contain Sxy with xz. 0
(Replace-LAS-item-3 xz)

Overwrite item which used to contain Sx with x.
(Replace-LAS-item-2 x) %
;; Pop the functor S from LAS.

(Pop-LAS)
;; Return the S reduction code.
RTP-S))

Overwrites comb's operator and operand with newopr and
,,newopd, respectively. Called for its side effect only.
(DEFUN Replace-operator-and-operand (comb newopr newopd)

(RPLACD (RPLACA comb newopr) newopd)) '-.-

A minor point - in S-reduce, the two LAS stack overwrite operations and the popping
of the LAS may be replaced with the simpler: (Pop-n-items-from-LAS 3) since the next "

call on Canonicalize-stack will perform these overwritings. The overwriting is performed
in S-reduce just because the system knows it will have to be done soon and since it has "
the wirs in hand, why not do it? A graphical representation of S-reduce's operation fol- ,

Iowa.

lows -'e . 5 ': IF

0 % % % %

V ~ ~ ~ ~ ~ ~ ~ ' e~..J -~~

Page 116 5.i

$ - .5 %

The~~~~ WoknsofSrdc

crae.The Workings of S-reduce is5~5 thrfreeultoto hecd orte

r educe routine follows.

the redex
(LAS-item-3)

;;to X0
(LAS- arg- 1) *

then pop the LAS twice, then
replaces its top item with wif

2)
return the K reduction code

RTP..K)

Forwards comb to wfand pops top LAS n times. 5**

;Called for its side effects only.
(DEFUN Forward- com bin ation (comb wif &optional n) .*..-

(Replace-operator-and-operand comb 'LNF:IP wif)
(COND (n ;;n is NIL if not provided as argument '.

(Pop- n- items- from- LAS n)*/* '

(Replace-LAS-top wif))))

10~~~~~ P,0 rSPeo".
J.'. % 5ap

--- ---- - --

p*Page 117

I I

The Workings of K-reduce

Figure 3.20 0

Observe that, following the K reduction, LAS's top item is X and not the forwarding
vertex which points at X. This is another case of a reduction routine doing a job that 1%

Canonicalize-stack would have to do later K-reduce's space cost is zero The W-reduce
and Y-reduce routines are presented next I

•"WXY-*XYY
(DEFUN W-reduce ()

(LET* ((redex (LAS-item-3))
(x (LAS-arg-1))
(y (LAS-arg-2))

Create the new combination X Y
(xy (Combine x y)))

;; Overwrite redex's operator with xv -
(Replace-operator redex xy)

Overwrite item that used to contain Wx with xy

(Replace-LAS-item-2 xy)
Overwrite item that used to contain %V with x

(Replace-LAS-top x)
Return W reduction code.

--*RTPW*))

;;Y X -, X (X (X...))
(DEFUN Y-reduce ()

(LET* ((redex (LAS-item-2))
(x (LAS-arg-2))) 'r

Overwrite redex's operator with x and operand with

itself! ,
(Replace-operator-and-operand redex x redex)
SOverwrite item which used to contain Y with x',.'

(Replace-LAS-top x) i"-"

Return Y reduction code.
• RTP-Y*))

The W-reduce routine costs one combinat:on while the Y-reduce routine costs nothing at
all to run. ,e

V V,-.' " " . _] N %,-N ""% "' % '' " % " . " '" % ' % " " " " "' ' -" "" "" " " " " % " ' d J,-%""."% .,.%,'%

* or

.. % -%re,-
*
,

%

Page 118

, • %.

T h e W o rk in gs o f W -red u ce ., ,', '.' ,
Figure 3.21 •

T he W orkings of Y-reduce : :.-,.,
Figure 3.22 % -'-": ""

The rest of the routines specific to non-strict functors AB C, S', B', .)are implemented ""'-
in a similar fashion. Some reduction routines which deal with strict ftinctors will now be •
detailed . T he first to be presented is)<-red uce. ' -,€ -- ' -

V.," -'' -,,

..

JAI,

*- I W.

, . .,,€

S. €%.
%,

Or

2§9 UN S,,

I______________________________.,. .rv

' , '.,, " T h e W o k i g o f' Y" - re d u c e , , - ." " ' ,, ,'. . . " , ']

0 0
- . .

Page 119

;;X nm-*nXm - 0
X ' RDUY- X IMRY %

• ' n RDU - X n IMR -

(DEFUN X-reduce 0
(LET ((redex (LAS-item-3))

(x (LNF-of-subwff (LAS-arg-1))))
(IF (NUMBERP x);; THEN - 0

(LET ((y (LNF-of-subwff (LAS-arg-2))))
(COND ((NUMBERP y)

(Forward-combination
redex "-to
(x xy)

Pop the LAS twice, then
replaces its top item with (X x y).

2)
Return code which informs caller that
X reduction was performed and LNF-wff
now irreducible. 0 0

(Irreducible-code *RTP- X *))
(T" : v's lazy-normal form is not a number, so

return "no reduction performed" code. ,, .

•NO-RED*))) %
ELSE x's lazy-normal form not a number, so
return "no reduction performed" code. .NO-RED *))) :'g

'N - RE D%, I,% %, -k-.,

The above routine requires some explanation. It purports to be an encoding of the three ,
reduction rules for multiplication (the three comment lines just preceding the code).
Where are these rules in the code? Before answering this question, there is an obvious -k
but (pragmatically) important point to be made concerning reduction contexts in the % %
LNF-calculus. If X is a reducible f reduction context for argument i and X LNF-imr Y % %

(Y is just like X except that ARG[i,X has been reduced to ARG[i,Y]) and ARG[i,Y]
reducible, then Y is an f reduction context for argument i. For example, the LNF-wff on ,. 11,
the left in the following figure is a X reduction context for argument one. The LNF-wff S 0
on the right (the reductum of the LNF-wff on the left) is also a X reduction context for . -..

argument one. %.r

* 0
. i

0" ~ ~~~ Il V.. %%I

% % , ':

Page 120

x

Su L. " 13 •,

-,, vj- ,,
114 100: 11?.

Example of Reduction Context Preservation %
Figure 3.23 .". "-'-'

Because reduction contexts are preserved in this way X-reduce may reduce its LNF-wff's
first argument all the way to lazy-normal form (via LNF-of-subwff24), rather than just
performing a single reduction on it (as its first contextual reduction rule specifies). After P
the first argument has been reduced, it is time to check and see if it reduced to a
number. If it did, then the LNF-wff is now a reduction context for the second argument.
The routine proceeds to reduce the second argument to lazy-normal form (again via %!
LNF-of-subwff). If the second argument is a number, then X's substantive reduction % IV
rule may be applied.

Thus X's first contextual rule is endcoded in the routine's third line:

(x (LNF-of-subwff (LAS-arg-1))))

and X's second contextual rule is hidden in lines four and five: %

(IF (NUMBERP x) ;, THEN ae. ..
(LET ((y (LNF-of-subwff (LAS-arg-2)))).

Its only substantive reduction rule is realized by the two nested predications (iNUM-
BERP x) and (NUMBERP y) and the call on the function Forward-combination which
forwards the redex to the product of x and y. %

All of the routines which deal with strict functors follow a reduction sequence similar to
that followed by X-reduce. First the routine finds the appropriate argument to reduce 0]
(determined by the functor's contextual reduction rules). That argument is reduced to
lazy-normal form. If the reduction of that argument creates a reduction context for ,
another argument, then that argument is reduced. When all of the functor's contextual
reduction rules have been applied, then the routine tries to apply a substantive reduc- %
tion rule.

ji%.% \ , .p. .

Enough reduction rules have been presented now to enable a not totally trivial example %
of LNF-wff reduction to be given. The LNF-wff to be reduced in this example is: %

WX(+ 1 2) """

which is the LNF-wff to which the LNF-exp. 0 0

24 The routine LNF-of-wff may not be used since it resets the stack of LASs before beginning
Recall that LNF-of-subwff does not disturb the stack

NIP ',-

~ - - -. VS

'1%

. %.

Page 121

(X (?n) (x?n ?n)) (+ 1 2) %
compiles.I

+~ ~

BeoeCaln NFo-f

Figur 3.2

% %

W^ %

Bfr Caln LNFuctofnf
Figure 3.24

%

%%.
%%..

%I %

.% 10 %a% % %
%~~~a %, % %%%,

%~ %a %a % %
6%a %, a

After Cao icLzaio

k

Page 122

%4

In the Middle of X-reduce, Just Before + Reduction
Figure 3.27

0 0

The routine +-reduce is identical to X-reduce except for the expressions (X x y) and
RTPx which are replaced with (--x y) and *RTP--*, respectively.

- %

In the Middle of X-reduce, Just After +t Reduction. .'

LNF-of-subwff has not yet popped off the sum.
Figure 3.28 %.*j

%~ % %

% %

% U

41 * - 'U.. P
0. %-'%

*: %

Page 123 8

X 3

.I.*,st e C o.-Rt

Fgr 3.30

%

°% % % ,

Still Inside X-reduce. Just After second Call on LNF-of-subwff Returns

Figure 3.30

% % Wl

obitsthAedtopeet the erX-ue. Ithsbetn son manyi itrshtrn
nigaFigporausnohn or hnreduiga 3.31f to lay-ora for q .N

.p,. e '

L .- IP,.

The significant aspects of LNF's runtime system have been presented. There are, of
course, many more reduction routines; but s there outaina rity rdheed r-utnesjstdeaie
obviates the need to present them here. It has been shown, mainly in pictures, that run-
ning an LNF program is nothing more than reducing an LNF-wff to lazy-normal form
via the reduction rules of the LNF-calculus.

3.5. Dispra-ing the Results reani tersl

The function Display accepts LNF-wffs in lazy-normal form and displays their lineariza-
tion on the screen. The user may elect to see the results of a computation (the reduced
LNF-wff) in one of three formats: "" "

Formstemo re dexes rm i the t eLazy,-normaI Form - arguments of constructions and functions remain unreduced -......

.... : E. ,.1

Form of Members - instead of a list's members being displayed surrounded " .'. -bysquare brackets and separated by commas, just the (normal form of) each member -.,".,¢-J._.

sdisplayed"-.'%.€

Th srselects the display mode of choice by entering a directive (via the mouse). The
sytmresponds by changing its prompt (for the next LNf expression to be compiled, .

y.% %-

Page 124 $.01*

reduced, and displayed) to either:
9 LNF of - (for lazy-normal form),
0 NF of - (for normal form), or
• NF of Members of - (for normal form of members).

An example illustrates the effect the display mode has on the result. Suppose the LNT
program to be run is:

TL [1,(+ 1 2),.,1,(X 2 2)]. '

In lazy-normal form mode the result displayed is: e"
[(+ 1 2),.,1,(X 2 2)],

in normal form mode the result displayed is: - -

%[3,.,1,41,.

and if the display mode is normal form of members, the following result is displayed:
3.14. ".' " -

Display prints the normal form of an LNF-wff by, upon receiving an LNF-wff:
a X, in lazy-normal form, first printing a, then (recursively) calling (Display
(LNF-of-wff Xj)) for each i, I<i <n. Thus, even for LNF-wffs which have no normal %
form, some output may be generated.

Observe that the display routine ensugars lists before displaying them - i.e. 11,2,31 is 0 I

displayed rather than PAIR 1 (PAIR 2 (PAIR 3)). The display routine also knows e . * P
about one other type of construction the line. A line is construction of the form:

LINE (VEC x0 Yo) (VEC x, yl). " r

Lines are displayed by drawing the line from point <x 0 ,y 0 > to <x 1 ,yl> on the screen
If in normal form of members mode, a picture may be represented by a list of lines. A
functional geometry program has been implemented in LNF and is displayed in Appen- ..

dix C. The program is capable of creating an M.C Escher print (following [Hender-
son 19821) and producing "fractalized" pictures from existing pictures. The beauty of
these programs is that the drawings are not side effects but normal-forms of their (very
high level) description! 0

The routine Display is also capable of printing cyclic LNF-wffs of any kind. When % % %

displaying a non-list and Display encounters a cycle, it gives the LNF-wff (whose root it
has seen before) a name and prints the name instead of the LNF-wff. When displaying a %
list, however, a name is not ascribed to the LNF-wff until the LNF-wff is seen for the
third time, thus giving the user a better feeling for structure.

For example, the LNF-expression: ",-"

?x whererec [?x.?y] = [[1.?y]-[2.?x]] .

which has the lazy-normal form:
,. .%. ,l..

PAIR 1 (ARG 2 (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) ...) ._6

is displayed (when in lazy-normal form mode) as: .*,.. .* t

% . %

' ,.,....% . -. . ,- . .: --.--... . - --. ,-. ,-:,.- , * -. ..- .. .,%- ~ .- .. , . --. , -. -.. % %-.-- - -. , % .- ; ' U
" ." -.% '," " . -. - .-" "." -" ." : -/ Z ."." . -",'-'....'-. " -.- '...,''. '" . "''. " .. ,"%" "", ;€%% ', .% O , .. % €'..'% %.. %"

' . ,r- .N*

Page 125
,---'N. %

(I.(ARG 2 (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) E2023)]
but when in normal-form mode, is displayed as:

[1,2,1,2-P4825].P..5_-

The names E2023 (E for Expression) and P4825 (P for Pair) are the system given names
to the cyclic structures.

Functions and unknowns as well as constructions are displayed. A displayed function is

just its linearized compiled code. For example, the squaring function:

X (?n) (x ?n ?n)

is displayed as: _

W X.

Unknowns are displayed, simply, as linearized LNF-wffs.

3.6. Summary •

LNF's experimental implementation has been described in fairly fine detail in this
chapter. Special emphasis was placed on the compiler and the runtime system. The
user interface to the system was only hinted at. Appendix D contains a recorded LNF
session to give interested readers a feel for what it's like to interact with LNF. S

Chapter 4 contains brief reviews of other work in this area, some comments on the rela-
tionship between this work and the author's, and some of the author's plans for the
future of LNF.

%, ,

.,,7 .'.'.'.Y...

% %'a %-

L'

0* * NI

... ,<;
\-r NN

,,,'t, .,.,%, 'S ., .. ,,'',,...',,% , , .. ,-.'.,.. ... , , ,.-... ,.,...,..,...: :- . .. _,._

,I. , , *: , , ,,, ,.,,<,€,,,,. , , ,, .. ,..- ,,,.4,,:_:';,,.C. ',.-,..--

0 0

Page 72'

%

v.

Chapter 4 ~A~

Summary, Related Work, and Future Plans

The author's work -having been detailed in chapters 1, 2. and 3 is now summar-
ized. In the section which summarizes L.NF's implementation, brief discussions of other
researchers' alternate approaches to compilation and runtime system organization are in- P
terspersed. Some of the author's plans for the future of the LNF language and its imple-
men tation have also been integrated into this synopsis.

4.1. Formal Aspects

Chapters 1 and 2 discuss the formal underpinnings of the LNF language. The content of
these chapters is summarized in this section.

Following the presentation of two of the more famous reduction calculi: the \-calculus
[Church 1941]) and the SKI-calculus ([Schdnfinkel 1924]), the new concept of lazy-

normal form is defined. The concept of lazy-normal form in the SKI1-calculus is related
to (.P Wadsworth's concept of head-normal form ([Wadsworth 1971]) in the V-ealculus
It is demonstrated (see Theorem 1.8) that an SK11I-wT in lazy-normal form is anl outlinle"
of the xvff',s normal form (i 'CIt5 -ie ts normal form will have the samne initial i

M,)i and the same im ncibr of argunilrits. Th tcre nt L S al1so implies tha t an S NI-wff's0 0
n ial1 fc,rm may be arrive.d at by first, findli t he wf's, lazv-normal form- and then

apivn hsproccduio r i vek, Lo lt. ar,;iromtml. Le ni lememtation tiKC5e eu.

Fhe id(,,.;. 1hind \1 Sclin link-V C SIK). W ~s iP\adswort h's graphI rm e C
_Alcm: lus' !%Adsworth 1 971,J). al 1 D A 'Eu mc r's - SLSI iniplomen tatlon. In ur~mr 1)7-1]
arccc(mb ied with the -nnc.-pt of i ii\- rmnal ''in 'o) p r l iime' -i rwn lnm:m m 1 :-

ninto bsed gr:v,;'h and m'icliine ,rienttd rclim tion -liu h 'l' alcum This
calculus i elvilenit iii Ipo\\r t,) the etluli ('i l Iw is- muc h in mre direi-can ic -i%

efficie ntly in ple men tab'f 11his is due 1p:'inaiily. t, het :m: uicturr shatring Pm:-'Omtm''- ci)
the SKI- G-wfs. B3oth gur lr odes an 1(I to"W:tr ing ;ic mdirectinn i))iit e'rs), conice1)ts,,
that are usually relegated t.) a calcnuts' irnplenien tat ion, :m e giv-in formal defi nitions in \J

this calculus.

? ~ -%

. , , . . ,. ... : -. -. •, -v , .' : -. ,_ -v .v -v . . -. w (- . 2. *:.- _***:* .-. '. .. * -.- *. % .

71X~ V 1%

Page 128 •
*'. %. "w% '

The SKI-G-calculus still, however, is an inefficient model for a functional programming %-

language's runtime system for the following two reasons. Translating (closed) X-wffs into
SKI-G-wffs (via a modified Sch6nfinkel abstraction algorithm) creates graphs of unac-
ceptable size. Also, since the SKI-G-caculus is pure (i.e. free of numeric constants,
numeric operators, conditional expressions, etc.), these familiar programming constructs
must be represented in the calculus. The first problem is solved by using a different
abstraction algorithm - one which produces much smaller SKI-G-wffs. This algorithm
is based on the work presented in [Curry 1958], [Turner 1979a], and [Turner 1984a]. To
solve the representation problem, new functors are defined (via new reduction rules) and
a new type of atom is introduced: the constructor. The resulting calculus is called the
LNF-calculus. It is this calculus upon which LNF's runtime system is based.

4.2. LNF's Implementation

The LNF language and its experimental implementation are detailed in Chapter 3. This
section summarizes that implementation, discusses alternate methods for compiling and
running functional programs, and presents some future plans for the implementation. ",. -

.:-...-..:..-,

4.2.1. Compilation

The LNF language is a superset of the language of linearized LNF-wffs. In addition to .

the constructions, functions, and unknowns (linearized LNF-wffs, also called simple
expressions) which are built from the atomic expressions via combination, the LNF -

language includes: lambda expressions, expressions having auxiliary declarations, list
expressions, and conditional expressions. Lambda expressions may have bound expres- . "
sions as formal parameters. Functions may be defined via order independent equations
anywhere declarations are permitted. List expressions include both of the high level
expression types which were introduced in D.A. Turner's KRC language ([Turner 1982a]
and [Turner 1982b]): arithmetic sequences and ZF Expressions. Conditional expressions '"-'

include case expressions having order independent cases. All LNF expressions have sim- 0 0

ple LNF expression (linearized LNF-wff) equivalents. The LNF compiler automates the
transformation of LNF expressions into simple expressions for the user.

The compiler's main job is the elimination of bound expressions in favor of variable-free %
expressions. It accomplishes this via a generalized abstraction algorithm which, at its
core, contains the Sch6n fin kel-Curry-Tu rner-Scheevel abstraction algorithm 0 0
([Turner 1984a]). Other FP language implementation projects which base their compiler
on this abstraction algorithm include: D.A. Turner's SASL and Miranda languages
([Turner 1979c], [Turner 1984a], and [Turner 1984b]), Cambridge University's SKIM %
processor and its successor SKIM II ([Clarke 1980] and [Stoye 1984]), Burroughs
Corporation's ARC-SASL language ([Richards 19841), and Yale University's ALFL 0 0

language ([Hudak 1984a], [Hudak 1984b], and [Hudak 1984c]).
%* % ' .

Two similar FP language compilation algorithms, both different from the Sch6nfinkel et
al. algorithm, are presented next. The first was developed by the Programming Metho-
dology Group at Chalmers University for the language Lazy ML ([Augustsson 1984a], *
[Augustsson 1984b], [Johnsson 1984], [Kieburtz 1984], [Johnsson 1983], and
[Johnsson 1981b]) and is called "lambda lifting". The other compilation algorithm was

%

• % N. .

, ...- - . -N . . - - N -.

%. , ..

-,- :- ." * ,-"- - -

Page 129
.'_ . %.

devised at Oxford University by R J M. Hughes ([Hughes 1982a] and [Hughes 1182b])
and is called "compilation via super-combinators'' Both algorithms translate closed
expressions involving abstractions. LET, and LETREC expressions into a set of reduc- I - -.
tion rules (each of which is independentlv oipilable to a fixed program and defines a• , % k f "l

combinator to be used to reduce this , ne program) and an expression built up %

exclusively from atoms (constants and these tail'r,,-d combinators) via combination.

The basic idea behind the lambda lifting :and super-combinator approaches is t, lift out
to the outermost level all abstractions inside an expression. However, only closed
abstractions may be "moved outside" without modification. For example, it is clear that
the expression: e

addI ((X x (* x x)) 30),

containing an interior closed abstraction, is equivalent to the expression: 0 0

(X f (addi (f 30))) (X x (* x x))

containing no interior abstractions. The second expression may be viewed as the (single-
ton) set of reduction rules: {f x = * x x} and the abstraction-free combination:
(add1 (f 30)). Before abstractions containing free variables may be "moved outside"
they must be "closed up". This process of closing up such abstractions is where the two 0 0

methods (lambda lifting and super-combinators part ways. The lambda lifting approach
closes up an abstraction containing free occurrence(s) of a variable v by passing v to it
as argument and also adding v as a formal parameter. For example, the abstraction:

X y (+- x x),

containing free occurrences of the variable x becomes the combination (containing only a
closed abstraction):

(x (X y (+ x x))) x.

The super-combinator approach specifies that the abstraction:

X y (-+- x x)

be transformed to this combination:
(X s (X y s)) (+ x x)."" "

-, %

The difference, in general, is the following. Lambda lifting always abstracts away vari-

ables (the minimal free expressions) from the abstraction. The super-combinator I
approach abstracts away the maximal free expressions from the abstraction. Recall from "

Chapter I (in the discussion of Wadsworth's X-G-calculus) that, sometimes, before some
3-contractions could be performed, some parts of the operator (the abstraction) had to
be copied. The parts that did not have to be copied were the abstraction's maximal free
expressions. Arvind, in (Arvind 198,11, points out that, in essence. Hughes' super-
combinator abstraction algorithm is doing at compile time whit Wadsworth's interpreter
is doing at run time. The super-combinator compilation algorithm. by mov. g constant
-xpressions outside of the bodies of abstrctio,s. achieves full laziness. The lambda lift- -
ing approach is merely lazy. "'.""'-

After lambda lifting (or compilation to super-combinators), code must be generated from

the set of reduction rules and the abstraction-free combination. Each reduction rule is
compiled separately into a fixed program closely resembling the (hand-coded) functor ""> .
specific reduction routines in the LNF runtime system. The abstraction-free b. ..

V ~ ~ * ~** % % *%*.* V V**~*~*. ~'* *

,- .% r - r e -. 'e -. ,* .* J".. ~Kc %., ,% % %N-. %, .,,,,,-. %... %,.. . . .'

Page 180 -

combination is then reduced, in a runtime system organized along similar lines as LNT's,
with the compiled reduction rules playing the part of the LNF's functor specific reduc-

tion routines.

4.2.2. The Runtime System

LNF's runtime system makes use of left ancestor stacks and hand-coded functor specific

reduction routines. D.A. Turner's SASL and L. Augustsson's and T. Johnsson's Lazy %

ML projects both employ similar organizations. The SKIM, SKIM II, Miranda, and 0
ARC-SASL projects use a scheme called "pointer reversal" in place of left ancestor .*
stacks - in which the pointers along the left spine of the wff are reversed as they are
encountered. Using the "pointer reversal" technique, the space taken up by the left- {,.,~ ,,,,
ancestor stack is saved as this method requires only two registers - one to point to the
wff's initial atom and one to point at the chain of reversed pointers. See the example
below for a comparison of the two representations.

RZ: s

Left Ancestor Stack and Pointer Reversal Representations,"",. -
Figure 4.1

Figure 4.1"

D.A. Turner credits, in [Turner 1984a], himself, A. Norman (SKIM and SKIM II), and
M. Scheevel (ARC-SASL) with independently discovering this method. The author plans
an experimental LNF implementation which uses pointer reversal in order to compare its
performance with the left ancestor stack representation method. , ,

The SKIM II runtime system performs some time and space saving optimizations. one of
which has already been incorporated into the LNF system After comparing two struc-
tures for equality (reducing a wff of the form = X Y) and finding them equal, SKIM It's

runtime system forwards one expression to the other. The two benefits arising from this
operation are: (1) the cost of comparing th, iwo wffs in the future will be minimal, and a

(2) many portions of the forwarded wff may become inaccessible and therefore eligible for
reclamation. LNF's runtime system has borrowed this idea and put it to use. SKIM II's -

compiler, as mentioned above, is based -n the Schrnfinkel-Currv-Turner-Scheevel
abstraction algorithm. Thus, the code it prodices is similar to that produced by the
LNF compiler - i.e LNF-wffs. The S1i"IM 11 iriplenmentors have added an extra field to
the data structures which represent their graphs -- a one bit reference count. The bit is %
turned on if more than one pointer points at the node i.e. the node is shared. They

%%'

r 'ow P P Ot

V % % % % %

do. %l m,

* 0

Page 181 %

employ this bit when reducing, for example, an S redex. In LNF, recall, an S redex is
reduced as follows.

An LNF S Reduction,"7%

Observe that it requires two new combination cells (labeled n and n 2) be allocated.

K' oro, r%'

The purpose of the one bit reference count is to avoid, whenever possible, allocating new 7 ,
cells. For example, if the node labeled 2 is not being shared before the reduction, then ..
after the reduction this cell would be inaccessible -- i.e. garbage. Instead of returning it ,_, ,-
to the heap at garbage collection time, the idea is to use it as one of the two required X'/<,- -,.
cells of the S reduction. If the node labeled 3 is also not being shared, then it could be P S%"
used as the other "new" cell. An example of SKIM II S reduction follows.

* ~,"

il "4 +-

* 0

Obev that it reuie twRe obnto ellsio (lbee " an"n)bealoatd

:,t,. 7,¢

the above example all of the reference count bits are off. W.R. Stoye claims, n
[Stove 1984], "The results of applying this technique are spectacular on average. Isaoru
about seventy percent of wasted cells are immediately reclaimed". It is planned that a could'be
future version of LNF will makexse of this space saving scheme.

% ~

~~~Other plans for the future of the LNF implementation include experimentation with"-"'u

I0

,4'..'..

% .. % .,1X,% ,

A.-2 SKM11SRduto
-' -'.,,X,,.,.,p ._._-.-.. .. .. . ..,. .. ,.,..,.. ... . ., . ... .'., ... . .. ..igu.r.e_,., .. ..4.3. .. .

L'd% V, Vk , w • 'i . .. • -p . -.. •oj . ", ." .. .. .. .. . ". • % % " " .% .% " "= ".°
%, %. , ,% +,', ...., ,_' .. .. %.j ._' .' ' -_ . . -. _% .. . .e ." .., ..-.. ' ._' . ._- . . , . . . , ..-.



Page 18 2 0

* type inference ([Milner 1978], [Hindley 1969], [Damas 1982], and [Coppo 1980]), so as
(1) to detect errors at compile time instead of waiting until runtime, and (2) to avoid
the need for runtime type checking now present in many functor specific reduction
routines.

relaxing the rather artificial restrictions on the reduction rules defining functors like r

+ and X which make them deterministic i.e. allow them to reduce their argu-
ments in parallel. %

0 0

%
-...-.- ,.- .,- -

V, "..*G,'..*

2, *p~ * ** ,. *1 " ,r,

% %

e 0

- -.

,.p

e- .e -.

* 0

%--%d 4% 0%* O

%.--.

A *



Page 133

%

L -u~niveRuculsLnaie eution Rules

0

A.1 Substantive Reduction Rules

% %

%0

I*. I X -

'-S..

C//

S. Vft.-.-

+ +- n r -n .

'SN.

-1 .. % % % %% P %

A~ S'-* S'. WXWX)(Z ~



Page 134

X X n m-n X m

-- n m - nrn~

DIV DIVnm-.nn, if m=F =

IDIV IDIV i j - integral qjuotient after i/i if j,: -

REM REM n m -+ remainder after n/rn if m=-0

EXP EXP i j - the integer 0 , if ij>
EXP ij - the foatoj , ifi .o
EXP s i -~ the float s~
EXP na s--. the float n'

< < nm - TRUE, if 1a
<anm -~ FALSE, if Qnm

> > nm -TRUE, if Dr
> n m -FALSE, if n<rn

ADDI ADDlan - ni

SUBi SUBI n -~ n-iI
ZEROP ZEROP a - irtO

BOOLEANP BOOLEANP b -~ TRUE
BOOLEANP CFN -~ FALSE, if CFN not a boolean

NOT NOT TRUE-.FALSE
NOT FALSE -. TRUE *%

-V 0

OR OR TRUE Y - TRUE
OR FALSE b -~ b

AND AND FALSE Y - FALSE
AND TRUE b -b

HD HD (PAIR XY)- X

TL TL (PAIR XY)-.Y

INULLP NULLP [-*TRUE
NULLP CFN -FALSE. 'if CFN 6f]I

PAIRP PAIRP (PAIR X Y) - TRU"E
PAIRP CFN FALSE, if GFN not a pair

* %

rz-2 Y w.1-p
%U



3. , 

Page 195,

NTH NTH 1 (PAIR X Y) -X .NTH i (PAIR X Y) NTH i-i1 Y, if i> I.L

APPEND APPEND [] [J ]

APPEND [IP -P
APPEND (PAIR X Y) Z - PAIR X (APPEND Y Z)

INTERLEAVE INTERLEAVE []P - P S
INTERLEAVE P [] -- PINTERLEAVE (PAIR X Y) P

PAIR X (INTERLEAVE P Y)

FLATMAP FLATMAP X [] - []

FLATMAP X (PAIR Y Z) -

INTERLEAVE (X Y) (FLATMAP X Z) N
ENUMERATE ENUMERATE X - TURN []X

TURN TURN X []-UP X[][
TURN X (PAIR Y Z) - UP (PAIR Y X) [Z

UP UP[ X Y - DOWN X [Y
UP (PAIR [] X) Y Z -* UP X Y Z
UP (PAIR (PAIR X, X2 ) Y) W Z -+

PAIR X) (UP Y (PAIR X0 W) Z)

DOWN DOWN[][I-[]
DOWN [] PH - UPP [] 
DOWN (PAIR (PAIR X, X,,) Y) Z W -

PAIR X, (DOWN Y (PAIR X,, Z) W)
DOWN []X(PAIR [ Y) -TURNXY 0
DOWN []X (PAIR (PAIR Y, Y0 ) Z) -

PAIR Y, (TURN (PAIR Y, X) Z)

MAP MAP X[--]r
MAP X (PAIR Y Z) -, PAIR (X Y) (NLkP X Z)

MEMBER MEMBER []X , FALSE % %
MEMBER (PAIR X Y) Z -

IF (= X Z) TRUE (MEMBER Y Z)

COLLECT COLLECT []X Y -- Y :
COLLECT (PAIR X Y) WZ -

W X (COLLECT Y W Z)

FILTER FILTER X[]-.[]
FILTER X (PAIR Y Z) -

IF (X Y) (PAIR Y (FILTER X Z)) (FILTER X Z)

REM-DUPS REM-DUPS X - RtM-IUPS' X

16



Page 136

REM-DUPS' REM-DUPS' [JX -~X

REM-DUPS' (PAIR X Y) Z -~IF (MEMBER Z X)
(REM-DUPS' Y Z) (PAIR X (REM-DUPS' Y Z)) : -*

FB FB nm - PAIR n(FB' n~m m), ifm#r5 Q
FB n m -~ PAIR n (PAIR n ... ), if m=O

FB' FB' n m -PAIR n(FB' n±~n )

FBT FBT nimno -, PAIR n (FBT' n~m mn o),0
if (m>O and n<o) or (m<O and n>o)

FBT n m ao*[] V
if (m>O and n>o) or (m<O and ni<a)

FBT n in ao' PAIR n (PAIR n ... ), if m=OZ

FBT' FBT' n ma o PAIR n (FBT' n~m mao),
if (in>O and n<o) or (in<O and n>o)

FBT' n m ao-
i(i>O and n>o) or (m<O and [n<o)4

- = 'Ci Cf2 -Cfl=Cf 2
= CFNI CFN2 -

AND (=(OPERATOR CFN,) (OPERATOR CFN2 ))
((OPERAND CFN1 ) (OPERAND CFN 2 ))

L L cf CFN - TRUE, if NUM-ARGS[CFN]>O
L OFN cf - FALSE, if NUM ARGS[CFN]>%
L cf I cf2 - % 1

cf, lexicographically less than cf 2  .%p.J
L CFN1 CFN2 -

OR (L (OPERATOR GFNI) (OPERATOR CFN4))
(AND%

((OPERATOR GFN1 ) (OPERATOR CFN2 ))
(L (OPERAND GFN1 ) (OPERAND CFN0 ))),

if GFN, and CFNO are both combinations

IF IF TRUE X Y-X
IF FALSE XY-4Y

UNKNOWNP UNKNOWNP GFN -~FALSE -

UNKNOWNP IRU -~TRUE

FUNGTIONP FUNCTIONP FN - TRUE
FUNCTIONP CN -, FALSE

FUNCTOR FIJNCTOR FN -. INITIAL-ATOMEN] *.

V$% % %



* 0
Page 18?7 %W i

CONSTRUCTION? CONSTRU.CTIONP CIN TRU'E
CONSTRUCTIONP FN F.AI§E __

CO NS T R t('TO01R CONSTRt1(TO1, cX X, , c

ARITY A RITY F N
A RITY . ,ITlAL-..\TOUI[FNH - NLAM-ARGS,'F ij

NUM-ARGS NUM-ARGS CEN - Nl-'.I-ARGS[CFNI

ARG ARG i CFN - ARG[i.CFNI

if 1<i<NUMN-.ARGS[CFN] -

ATOMIP ATOMIP CFN - XNUM\-ARGS[CFN1=0

COMIBINATIONP COM"vBINATIONP CFN - NUIV-ARGS[CFN] 0W

OPERATOR OPERATOR CFN - OPERATOR[CENI

OPERAND OPERAND CFN - OPERAND[CFN *

A-S-E A-S-Ec i XY (c Z, Z)-X
A-S-E cli X Y(c.,Z, Z) Y, *.~N*

if c1,!Kc 0, or i5!i i
A-S-FE c i X Y F N - Y

A-S-E' A-S-E' ci X Y(c Z, Zj-.X

if c,5dc., or iX=i
A-S-F'c iX Y FN - Y

A-S A-S c iX (c Z, , , Z

PPITUO-.\RGS APP-TO-.ARG(Si X Y X (ARG I Y) (ARG iY

A.2. Contextual Red uction Rules

Nl'%BERP NUMIBERP RDU - NIPELP IMR

-RDU Y- INIRY
n RDU -n IMIR

xRDUY- 'I' INM Y 0
x n RDU -. x n INIR

%V \J~

-. a. a a'-~ ' a'-- . a a' a' a 'aa'a ** .5 'a'~' ~ ..-.-.. a'' ~-.~ a"\ - 5%
'ada, ~ .'%

a' -* a a'a' a a~*, . a \~.s /a..'..'a'. 'aV -' .~ a, * 'a a' - . 'a a S 'a a .
a- * a a' a'% - %a' .%.a' ' % % %



m Page 18

* - -~RDU Y--INIR Y V-.
n RDU -.- n IMR

DIV DIV RDU Y - DIV IMR Y -. -6
DIV nRDU -DIV nLMR

IDIV IDIV RDU Y - IDIV IMR Y
IDIV i RDU -~ IDly i IMR

REM REM RDU Y -REM IMR Y
REM n RDU -REM n IMR

E XP EXP RDU Y -EXP IMR Y
EXP n1 RDTJ -~ EXP n IMRA

< < RDUY- <IMRY
< n RDU - RDU IMIR

RDU Y- IIR Y
n RDU - n IMR lg

ADDI ADD1 RDU - kDDI PIR

SUBI SUBI RDU -SUI~B IMR,%% .~

ZEROP ZEROP RDU - ZEROP IMR 1

BOOLEANP BOOLEANP RDU - BOOLEANP LMR

NOT NOT RDU -NOT IMR

O R OR FALSE RDU - OR FALSE IMR
OR RDU Y -OR IMR Y

AND AND TRUE RDU - AND TRUE IMR ',

AND RDU Y -AND IMR Y

HD HD RDU -HD IMR 0

TL TL RDU - TL IMR

NULLP NULLP RDU -NI LLP IMR

PAIRP PAIRP RDU - PAIRIP IMR

NTH NTH RDU Y - NTH IMR Y
NTH iRDtJ- NTH iIMR, if i>O

APPEND APPEND RDU Y -. APPEND IMR Y

e..rU



Page 189

INTERLEAVE INTERLEAVE RDU Y - INTERLEAVE ILMR Y
INTERLEAVE P RDU - INTERLEAVE P IMR

FLATl\IAP FLATMAP X RDU - FLATMAP X IMR j

TURN TURNX RDU - TURN X IMR.

UIP UP (PAIR RDU X) Y Z - UPl (PAIR IMR X! Y Z
UP RDU Y Z 13 IMR. Y Z

DOWN DOWN RDURD I - DOWN [1IMR [
DOWN [Y RDU - DOWN [Y IMR
DOWN [1Y (PAIR RDU W)-

DOWN [] Y (PAIR IMR W)
DOWN (PAIR RDU X) Y Z

DOWN (PAIR IMIR X) Y Z

DOWN RDU Y Z - DOWN IMR Y ZS

.MAP MAP X RDU -~ MAPk X IMR

MEMBER MEMBER RDU Y - MEMBER IMR Y

COLLECT COLLECT RDU Y Z - COLLECT IMR Y Z

FILTER FILTER X RDU - FILTER X IMR

REIM-DUPS' REMI-DUPS' RDU Y - RENI-DUPS' IMR Y'

FB FB RDU Y-.FBIMR Y
PB n RDU -PB n IMR

FBT FBT RDU Y ZFBIMRY Z
FBT nRDU Z-FBT nIMR Z
FBT 'n m RDU -. FBT n m IMR

= -RDU Y-.IMR Y
= CFN RDU -CFN IMR S

L L RDUY -LIMRY
L CFN RDU - 1, CFN IMR

IF IF RDU X Y -IF IMR X Y

"NIKNOWNP UNI{NOWNP RDU - UN,,I\NOWNP' IMR

FUN(TIOINP FUNCTIONP RDU - Ft NQ(TIONP IMR -

FUNCTOR FUNCTOR RDU - FLYNCTFOR IMR *

CONSTRUCTIONE CONSTRUCTIONP RDU CONSTRUCTIONP IMR,

% % %* %

*e 0

A b A , - - 0 :



Page 140 0

CONSTRUCTOR CONSTRUCTOR RDU -CONSTRUCTOR IMR

ARITY ARITY RDU -~ ARITY IMR

NUI-ARGS NUNI-ARGS RDU -NUNI-ARGS IMR I -

ARG ARC RDU Y -ARC IMR Y W

ARG i RDU -ARC i IMR t4

ATOMP ATOMP RDU -ATO\IP IMR

COMINATIONP COMBINATIONP RDU - C-O.\IBIN\ATIONF\ L\IR

OPERATOR OPERATOR RDU - OPERAXTOR LMR,

OPERA.ND OPERAND RDU -- OPERAND IMR

A-S-E A-S-E c iX YRDU - A-S-E c iX YIMR%

A-S A-S c iXRDU-.A-Sc iX MIR. a.

% %

% %

dl5 %.

.%~ ~ ~ 0%.""



3 I 0

Appendix B

BNF-like Description of LNF Expressions

Sprinkled throughout the formal description of the language are examples of w.ell-forimed
LNF-exps. The description makes use of the following conventions;:

" UPPERCASE names denote syntactic categories.

The symbol U denotes category union

* *~ Lowercase names are concrete syntax. t.
0 ~u

* .>denotes an optional item.

* <.>~ denotes 0 or more items.

* <..>+denotes 1 or more items.

LNF-EX!P: SIMPLE-EXP U LAMBDA-EXP U
\VITH-AUX-DECL-EXP U LIST-EXP u CONDITIONAL-EXP

SIMIPLE-EXP -ATOM u COMBINATION u (LNF-EXP)
ATOM:: CONSTRUCTOR u FUNCTOR u VARIABLE
CONSTRUCTOR:: ZETALISP-SYMNBOL
COMBINATION:: LNF-EXP LNF-EXP

All VARIABLE occurrences must be bound occurrences.

%e 4. % % -P.-

% %* %5
%' %~J



age 142

EXAMIPLES: (of SIMIPLE expressions)

39882736

flat-Tire

pair 2 4

S f0

.% .

(if TRUE then 4 3)

+ 4934732984

X (minus 2432) (-box bag) O,

LAMBDA-EXP ::= X (<BE>4+) LNF-EXP
BE ::= VARIABLE U CONSTRUCTED-BE S

VARIABLE:: NAMED-VARIABLE u ANONYMIvOUS-VARIABLE%
NAMED-VARIABLE ::= ?ZETALISP-SYMIBOL
ANONYMOUS-VARIABLE :=
CONSTRUCTED-BE ::= CONSTRUCTOR <BE>* u LIST-BE
LIST-BE fu [BE<,BE->*<.*BE>]

The list of formal parameters may contain only one occurrence of any one (non
anonymous) variable. -**

EXAMkPLES: (of LAMNBDA expressions)

X (?x) (-4- ?x ?x) ~-

X ([?x.?y] ?p) (or (?p ?x) (or-list (map ?p ?y)))

X ((ds ?fl ?f2 ?f3)) (?f3 (+ ?fl ?f2))

x (0) 1

%

% % % % V V %
% %U

%~~~~~~~.. % 
-

. _ . '. . ,4

,,I. /

Z~. .7. *



Page 14.5'

W ITH-AUX-DECL-EXP \VHERE-EXP j \%VIIEREREC-EXP u WVHERE*-EXP: $

WHERE-EXP :=LNF-EXP where DECLARATION <&, DECLARATION--* :
WIIEREREC-EXP ::= LNF-EX_ -P wvhererc DECLARATION <&, DECLARATION >,
\WHERE*-EXP :=LNF-EXP where* DECLARATION <,DECLARATION>*
DECLARATION ::= SIM_%PLE-DECLARATION\, FU'NCTION-DECLARATION
S-IPLE-DECLARATION:: VARIABLE LNP_\T-EXP COSRCTDR LNF-\p~
FUNCTION-DECLA RATION:: FUNCTION-EO1N .EQU"ATION-SET
FUNCTION-EQN:: ZETALISP-ATONI - HE = LNE,-EXP
EQUATION-SET:: {FUNCTION-EQN <EU ,,NCTION-EQN_--

Each FUNCTION-EQN in the set must be neadtod iby the s-ame ZETAILISP-ATOM

EXKAMPLES (of WVHERE, \VHERERE(. Ti\I1B expressions)

x ?') where ?x 3 &, "v -I4

?pl whererec ?pl = [1-"p2] & ?p2 
=[2.

9 p1] %

* (X ?x ?y) where* ?x = 3: 'y (factorial ?x)

* (thrice double 5) where
thrice 9f ?x = ?f (?f (?f ?x)) &
double ?x = X 2 ?x

(+- ?x ?y) where (tree 9x ? ?y) =some-tree

(factoria! 10) whererec
factorial ?n = (if (zerop "n) then I

else ( X ? n (factoriald (sub I "n V)

(app [1,2,3] list) whererec % d J

app [?xe?r] 'z =[
1x*(app ~r ?!z)]

LIST-EXP :=EXPLICIT-LIST-EXP Lj ARITH-SEQ-EXP INIPLICIT-LIST-EXP
EXPLICIT- LIST- EXP [U [LN.F-EXP<- ,LNF-EXP-,>*, .LNF-EXP->]
ARITH-SEQ-EXP ::=-~ [LNF-EXP<. LNF-EXP: ,., ,LNF-EXP->]
INIPLICIT-LIST-EXP := FOR-EACH-EXP u 'IURNER-I.IST-EXP
TURNER-LIST-EXP := [LNF-EXPFCENEFRATOR<. <:UR <:;EN~LATOIU:< -

FOR-EACH-EXP : for-each GENERATOR FOR-EACH-CLAUSE
*FOR-EACH-CLAUSE := and-for-each GENERATOR FOR-EACH-CLAUSE '
* such-that GUARD FOR-EACH-CLAUSE u,

instantiate LNF-EYP
GUARD:: LINF-EXP
GENERATOR ::= BEELNF-EXP

*0%

%~

% . . . . .



Page 144

EXAMPLES: (of LIST expressions)

* [1,2,3,4,5] t

*[flat,2,tire,1e231 %

[aeb] .

la,b,ced]

[1,3,]
0,, 1,

[104 .1001

[1. .,1000]0

for-each?xE[,..]]-

instantiate ( x 10 ?x)

such-that (odd ?x) -

and-for-each 'vE [100 101]
instantiate [90?]

for-each [?xe"v]E (zip [1...10] [100110] -

instantiate (9-'x ?v)

CONDITIONAL-EXP : IF-EXP U CASE-EXP
IF-EXP ::= if LNF-EXP < then> L.NF-EXF -<else> LNF-EXP
CASE-EXP :=case LNF-EXP in BE -. LNF-EXP <4 BE -fLNF-EXP > endcase

% .

N' Z % V % N %'.-\% % %%%



Page 14'5

EXAMvPLES: (of CONDITIONAL expressions) l i

if~~~~ (odnm

if (odd num) the 3 3

If (odd num) 2 else .3 __

if (odd numl the;. 2 else 3 j

case a-tree in -- *%

(tree ?left ?root ?right) -*(append (leaves "left) ['root*e(leaves ')right.']) %: -
nulitree -

end case 0

case (leaves big-tree) in
[?*?rest] -*(addi (len ?rest))

end case* 0

7 .. % ~

% Z.,

%~

A% % % %



Page 1747

Appendix C L

Examples of LNF Function Definitions

The format of the definitions is as follows To define the symrbol S to be the expressionOl
E, enter:

a I
* (define S E). %~

To define the function F with formal p~arameters A, , and body B, enter either

(define (F A, A,, B)%N
%. %

* or

(define F (X (A,1  A,, B)).

To define the function G (via Bm equations), where the B1 th equation hase t*-rirna!
parameters Ai 1 ,A, and body Bi

(define (G All A,, )B 1

(G AI AmB . ~

A semicolon signals the beginning of a comment . A comment ends at the end of a line .

A sample LNF session, making use of many of these functions, has been recorded andS
placed in Appendix D.

C.1. Some Utility Functions

;:Returns tile first n elements of a nconernpt v list
(define (first ?n [?xor])

(if (zerop *n)

Orthen [
else [?xo(first (subi ?n) ?r)]))

or, %. %, % 
.



Page 148 S
%

pReturns absolute value of x .P

(define (abs ?x) (if (< 0 ?x) x (minus ?x))) % -

;;; Returns n+m modulo mod 0
(define (plus-mod ?mod ?n ?m)

(rem (+ ?n ?m) ?mod)) ,

;;; Places first element of nonempty list at the rear. "

(define (rotate [?xo?r])
(append ?r [?x]))

Exchanges first and second elements of a list.
define (exchange [?xl,?x2.?r])
[?x2,?xl e?r])

* 0

;; Reverses a nonempty list.
(define (reverse [?x°?r]) 0%

(if (nullp ?r)
then [?x] 1

else (append (reverse ?r) [?x])))

C.2. Closing Up "Sets" Under Laws % %

These next three definitions are LNF versions of functions *
written by D.A. Turner. They appear in [Turner 1981a]. 0, _

Returns a set (represented as a list w/o duplicates), which -,-
is 'set closed up under the operations (LNF functions) in the
list "laws,

(define (closure-under-laws "laws ?set) *
(append ?set (closurel ?laws ?set ?set))) F. ,. ...

Returns the "set'' which is ?set2 closed under ?laws
minus the "set" ?setl.

(define (closurel ?laws ?setl 'set2)
(closure2 5

laws . ,;, , .

'set I %
mkset removes duplicate elements from a list .

(mkset [?aI ?law E ?laws
?a E (map ?law ?set2)
(not (member ?setl ?a))])))

%]

% %

- - . ,,O.,"

%~~ N %' V% %% % NN"%N%

, , r...

. %% % %N % N %% % % %% %

%p %



,0 ., % .F -

Page 149

Returns the "set" which is ?set2 closed under 'laws

m;;m inus the "set" ?setl.
(define (closure2 ?laws ?setl ?set2)

(if (nullp ?set2)
then []

else (append
?set2
(closurel ?laws (append ?setl ?set2) ? et2)))) 0

SOME INTERESTING SETS ... , ,,

:;'The Naturals modulo ?mod - defined as The s:t [0] closed .- %
under the ''successor nodulo r-od' function

(define (naturals-modulo-n 'mod) 0
(closure-under-laws [plus-mod "mod 11 [0]))

The Naturals - the set [0] closed under the successor
f:;; unction.

(define naturals
(closure-under-laws [addi] [01))

;;;The Integers - the set [0] closed under the successor and
predecessor functions.

(define integers-rep 1%
(closure-under-laws [addl,subl] [01))

The Integers (again) - the set [0) closed under the

;;, predecessor and the absolute value functions.
(define integers-rep2 %

(closure-under-laws [abs,subl] [0]))

The even Integers - the set [0] closed under the .'-

"decrement by 2" and the absolute value functions.
(define even-integers-- P "

(closure-under-laws [abs,(X ("x) (- ?x 2))] [01)) ..

';The powers of ?n - the set [1] closed under the
W;"multiply by ?n" function. v. ,.

(define (powers-of ?n)
(closure-under-laws [* ?n] [1]))

A STRANGE set - the set [[0]] (whose only element is a set) 0
closed under the function which closes sets under the %,

% successor modulo ?mod" function. %. .
(define (higher-order-example-mod ?mod) %.%

(closu re- u nder- laws -e %
[closure-under-laws [plus-mod ?mod 1]] *
[[0])) .

% %

_I- ,-". --. , --
%.. ., %-p _



Page 150 0 0-

The set of all permutations of ?list.
(define (perms ?list)%

(closure- under-laws [exch an ge, rotate, re verse] [?listj))
* 6.

C.3. Geometric Sequences and Series

Returns the geometric sequence [a,axaxI2 ax 3 .... 0

(define (g-seq ?a ?x) -. ~~
(g-seqo-from-n ? ? 0)) % Z.

Returns the geometric sequence tail [axn ,axn ..1
(define (g-seq-from-n ?a ?x ?n)

([(X ?a (exp ?x ?n)).(g-seq-from-n ?a ?x (addi ?n))])) 0 0

Returns the infinite series corresponding to the givenN

infinite sequence. \ ;4

(define (series [?x.?rest])
([?x-seriesl [?xe?rest]]))

Helper function for series.
(define (seriesi [?xl,?x2 *?rest])

([?zoseriesl [?z.?rest]] where ?z =(-, NxI ?x2))) Z 0

Returns TRUE when applied to a convergent geometric series.
(define (convergent-g-series [?xl ,?x2 *?rest])7P i i

((and (< -1 ?x) (< Nx 1))
where ?x = (div (- Nx2 ?xl) ?xl

Returns the limit of a convergent geometric series.
(define (limit-g-series [?xl ,?x2 *?rest]) 0

((div ?xl (- Nx 1))
where Nx = (div (-' ?x2 ?xl) ?xl))) ,'

Returns a pair [nex] where x is the nth element in
the series and is the first element to be within epsilon of 0 0
the series' limit.

(define (first-c lose- to- limit ?series ?epsilon)
(fi rst-close- to- limit 1

?series
?epsilon
(limit-g-series ?series) OW,

0))

* 0

0

%~~

_00.* A7 4
- - - - - - - -o2 -a



!09 7-I-. 71-77-7 --- I v- N '- N

Page 15! 
V %7

I.;%% . Je

Same as above except that the limit has already beer,
determined and the first n elements are not w~ithin epsilon A e.V1
of the limit. 

R(define

((if (within-epsilon ?xn-t-1 ?limit 'epsilon) % -

then [?n-plus-onee?xnt-1]%
else (first-close-to-limitl

?rest ~-*-
?epsilon

?mit
?n-plus-one))

where ?n-plus-one =(addi 'In)))

;Returns TRUE iff x1 is within epslion of x2. ~;
(define (within-epsilon ?xl ?x2 ?epsilon)

(<(?abs ?diff) ?epsilon)%
where ?diff (-?xl ?x2) &

?abs ?num =if (> ?num 0) ?num (minus ?num)))

C.4. Functional Geometry

An LNF implementation of Peter Henderson's "'Functional Geometry" ([Render- r .
son 1982]) follows. There is one big difference between Henderson's implementation andr
the author's. For Henderson, pictures are data structures, but in the LNF implementa-%

tion, pictures are functions. A picture is a function, which when applied to three argu- '

ments, each of which is a vector of the form: VEC x y, becomes a plottable picture. A~
% ~plottable picture is simply a list of plottable lines, each taking the form.

LINE (VEC xO yO) (VEC x1 yl). LINE" and VEC are contructors. The suite (-f func-0
tions wvhich implements these ideas follows.

* :;,Vector addition.
(define (vec-r-vec (vec ?xO ?)yO) (vec Ix1 I ))%

(vec (+'- ?xO ?xlI) (± ?v0 ?ylj))

Scalar-vector multiplication.
(define (scalar*vec ?n (vec ?x ?y))

(vec (X ?n ?x) (X ?n ?y)))%

The Basic Functions:

;I mplements PH's nil (the empty picture) i te a function%%

of arity 3 which, when applied, ignores its argumenits and
returns the empty list.

(define (empty-pic ? ?? 1

%~ %-,



Page 15e

Implements PH's: plot(gridi(mni,s),a-vecbl-vecc-vec)
(grid m n segs) - picture .*

(grid m n segs avec bvec cvec) - plottable- picture
NOTE: plot is unnecessary in this implementation. 6

(define (grid ?m ?n 'segments ?a-vec ?b-vec c-Nvec)W.

(for-each (segment ?xO ?IyO ?xl ?yi) in 'segments
instantiate .

(line (vec+vec ?a-vec
(vec+vec (scalar*vec (div :.O 'm) ?b-vec)

(scalar*vec (div ?yO ?n) ?c-vec)))
(vec-4--vec ?a-vec

(vec~vec (scalar*vec (div ?xl ?m) ?h-vec)
(scalar*vec (div ?yl ?n) ?c-vec))))))

Implements PH's: plot(flip(p),a-vec,b-vec,c-vec) 0 *
(flip picture) -~ picture
(flip picture avec bvec cvec) -- plottable-picture

(define (flip ?pic ?a-vec ?b-vec ?c-vec)
(?pic (vec~vec ?a-vec ?b-vec)

(scalar*vec -1 ?b-vec) -

9 c-vec)) 
*

IImplements PH's: plot(rot(p),a-vec~b-vec,c-vec)%
(rot picture) -. picture%
(rot picture avec bvec cvec) - plottable-picture % %

(define (rot ?pic ?a-vec ?b-vec ?c-vec)
(?pic (vec-±vec ?a-vec ?b-vec)

(scalar*vec -1 ?b-vec)))

Implements PH's: plot(overlay(p,q),a-vechb-vec,c-vec)
;(overlay picture picture) - picture

;(overlay picture picture avec bvec cvec) - plottable- picture %
(define (overlay ?picl ?pic2 ?a-vec ?b-vec ?c-vec)

(append (?picl ?a-vec ?b-vec ?c-vec) d

(?pic2 ?a-vec ?b-vec ?c-vec)))

Implements PH's: plot(beside(m,n ,p,q),a-vec,b-vec,c-vec)
,(beside n m picture picture) - picture

(beside n m picture picture avec bvec cvec)
plottable-picture

(define (beside ?m ?n ?left-pic ?right-pic ?a-vec 7 b-vec 9c-vec)

((append (?left-pic ?a-vec ?scaled-b-vec ?c-vec) S

(?right-pic (vec~vec ?a-vec ?scaled-b-vec)

(scalar*vec (div ?n (4.?m "n)) 'b-vec)%

?c-vec))
where ?scaled-b-vec (scalar*vec (div 'in (- "m "n)) b-vec)))

W V

'J~ 04 .. r .-1 
e . I. f - N



%,~ %

Page 1 58 ..--

%4S

Implements PH's: plot(above(m,n,p,q),a-vec,b-vec,c-vec)
(above n rn picture picture) -~ picture S -

;(above n im picture picture avec bvec cvec) -~ plottable-picture
(define (above ?m ?n ?top-pic ?bot-pic ?a-vec ?b-vec ?c-vec)

((append (?top-pic
(vec-+vec ?a-vec ?scaled-c-vec)
?b-vec

(scalar*vec (div 9m (± ?m ?n)) ?c-vec-))
(?bot-pic ?a-vec ?b-vec ?scaled-c-vec))

d where ?scaled-c-vec (scalar*vec (div 'In (- 9m ?n)) ?c-vec)))

(quartet picture picture picture picture) - picture

(define (quartet ?pl ?p2 ?p3 ?p4) 0
(above 1 1 (beside I11 ?pl ?1p2 ) (beside 11 Ip 3 ?p4)))

PH's cycle
(cycle picture) -. picture %

(define (cycle ?pic)
((quartet ?pic

(rot ?rot-rot-pic)

whr*?rot-pic % rt pc

?rot-rot-pic = (rot ?rot-pic)))

Some Example Pictures From PH's Paper:

PH's man
(define man

(grid 14 20
[segment 6 10 0 10, segment 0 10 0 12~
segmen t 0 12 6 12, segment 6 12 6 14.%
segment 6 14 4 16, segment 4 16 4 18,
segment 4 18 620, segment 6 20 820,
segment 8 20 10 18, segment 10 18 10 16 G,
segment 10 16 8 14, segmentS8 14 8 12,
segment 8 12 10 12. segment 10 12 10 14.
segment 10 14 12 14, segment 12 14 12 10,

*segment 12 10 8 10, segment 8 10 8 8,
segment 8 810 0, segment 10 08 0,
segment 8 0 7 4, segment 7 4 6 0,
segment 6 04 0, segment 4 06 8,
segment 6 8 6 10]))

PH's FatBoy
(define fatboy (above 1 1 empty-pic man))

% %'
P. Jq A N



- - .- - t ii.~ t P- .. - -. . . . . - T- - 7 ;w- -%

Page 1540 0

;;PH's Boy
(define boy (beside 1 1 fatboy empty-pic))

Components Making up Escher Print: h

The next 6 pictures are the basic buiding blocks of the print.

PH's p, figure 18 in paper
(define mce-p

(grid 36 36
;left eye

segment 0 7 6 9, segment 6 9 0 18, segment 0 18 0 7,
line between eyes

segment 13 0 9 9, .

;;right eye0
segment 9 12 923, segment 9 2316 14, segment 16 14 912,
;side of head

segment 24 0 22 9, ,.egment 22 9 18 18,
segment 18 18 9 30, segment 9 30 0 36,

;top of taill~.
segment 0 36 13 34, segment 13 34 18 36,
segment 18 36 2627, segment 26 27 36 27,

line in tail
segment 18 27 36 23,
:bottom of tail ~ .*

segment 18 18 27 21, segment 27 21 36 18, 0 0
tiny line in upper right ,

segment 32 36 36 34,
next one down h

segment 27 36 29 34, segment 29 34 :36 32,% %
;and the next

segment 22 36 26 32, segment 26 32 36 29, '

first line below taill
segment 20 14 27 16, segment 27 16 36 1-1.

;t he next
segment 22 9 29 11, segment 29 11 :36 9,

and, finally, the last

segment 24 0 31 5, segment 31 5 36 5]))

% 0

- - -- - - - - - - ~ b~



Page 155

;; PH's q, figure 19 in paper
(define mce-q -.

(grid 36 36 .. ,

[;; left side of fish 
% %

segment 0 27 7 29, segment 7 29 11 31.
segment 11 31 16 34, segment 16 34 18 36.

line in middle of fish
segment 0 23 16 25, 0

left edge
segment 0 27 0 36, segment 0 0 0 18, % %

right side of fish
segment 0 18 9 16, segment 9 16 13 16,
segment 13 16 27 22, segment 27 22 36 36, -" -

;; leftmost line above fish
segment 4 36 7 29,

next one
segment 9 36 11 31,
"" rightmost line above fish -. Ad.y_
segment 14 36 16 34, 0
;; left eye
segment 18 34 25 34, segment 25 34 20 30,
segment 20 30 18 34,

right eye r, -r
segment 20 27 27 27, segment 27 27 22 23,
segment 22 23 20 27, %

right side of tail
segment 36 36 34 22, segment 34 22 36 18,
segment 36 18 29 9, segment 29 9 27 0,
" three lines to the right of the tail ":':'-"':"::
segment 29 0 36 14, segment 32 0 36 9,
segment 34 0 36 4, r
;;line in tail . -

segment 32 25 230,
four lines left of tail (left to right)

segment 5 0 9 11, segment 9 11 9 16,
segment 9 0 13 11, segment 13 11 13 16, 0
segment 14 0 18 13, segment 18 13 18 18,
segment i8 0 22 14, segment 22 14 22 20]))

V . .. 7 V

"% . e % %

%- % % %"N

,"Q Xt. 1! .O



0 0Page 156

P; PH's r, figure 20 in paper
(define mce-r

(grid 36 36 1
;;top of fish 

*. %

segment 24 36 27 28, segment 27 28 36 18,
bottom of fish

segment 0 36 4 27, segment 4 27 10 22,
segment 10 22 17 18, segment 17 18 31 14,

segment 31 14 36 9,
;line thru fish

segment 13 36 25 23, segment 25 23 36 14,
lines above fish

segment 27 28 36 36, segment 29 30 36 23, *9
segment 31 32 36 28,segment 33 34 36 32, 0
;; bottom semi-horizontal lines
segment 2 2 8 0, segment 4 4 18 0, segment 77 18 4,
segment 18 427 0, segment 10 11 277, segment 27 736 0,

lower diagonal 1lines
segment 0 0 17 18, segment 0 8 10 22,

segment 0 18 427, segment 0 27 232))

4v* V

%., N 
% %* %,

%%~. % 40 %*

AS Z
% Z lo-".e " " % 03 %

le_~~ 9Ve,:2



'"J.
Page 157

;;; PH's s, figure 21 paper
(define mce-s

(grid 36 36
[;; left fish % % %

segment 18 36 16 30, segment 16 30 16 23,
segment 16 23 16 18, segment 16 18 18 14, %,% SO

segment 18 14 23 9, segment 23 9 36 0,
;; line in fish
segment 23 36 25 23,
'" right fish
segment 27 36 30 30, segment 30 30 32 25, .

segment 32 25 34 21, segment 34 21 36 18,
right eye

segment 29 16 34 18, segment 34 18 34 11, •

segment 34 11 29 16, '
left eye

segment 22 14 27 16, segment 27 16 27 9,
segment 27 9 22 14,

lines right of fish
segment 30 30 36 32, segment 32 25 36 27,
segment 34 2T 36 22, W,
;; bottom hump
segment 0 0 9 5, segment 9 5 17 5, segment 17 5 36 0,

next up
segment 0 9 4 2, segment 0 14 16 9,
segment 0 18 18 14, segment 0 23 16 18, 0.",
segment 0 28 16 23, segment 0 32 16 30, %
"" top border lines
segment 0 36 18 36, segment 27 36 36 36])) %.

PH's t, figure 22 in paper
(define mce-t

(quartet mce-p mce-q mce-r mce-s))

1-; PH's u, figure 23 in paper .. ,,.,..
(define mce-u.

(cycle (rot mce-q))) . ..

,,, The remaining functions are used to combine the basic building ,.-...-
blocks into the Escher print.

(define sidel
(quartet empty-pic empty-pic (rot mce-t) mce-t))

0, e,.'.
(define side2 ' '

(quartet sidel sidel (rot mce-t) mce-t))

(define cornerl
(quartet empty-pic empty-pic empty-pic mce-u))

%*% %
"":" :;" "' *" -- . "" " ." ." - . ..": *.'*.". *... -" .'... :-," .,--.""""" . . ".-" '-." .""",.



Page 158

(define corner2 ,> *
(quartet corneri sidel (rot sidel) mce-u))

7 0-
(define pseudocorner -

(quartet corner2 side2 (rot side2) (rot mce-t)))

(define pseudolimit -

(cycle pseudocorner))

(define (nonet ?pl ?p2 p3 ?p4 ?p5 ?p6 ?p7 ?p8 9p9)
(above 1 2

(beside 1 2 ?pl (beside 1 1 9p2 9p3))
(above 1 1 --.

(beside 1 2 9p4 (beside 1 I 'p 5 ?p6)) 0
(beside 1 2 ?p7 (beside 1 1 ?p8 "p9)))))

(define corner
((onet

corner2 side2 side2 F.p

?rot-side2 mce-u ?rot-mce-t0
?rot-side2 ?rot-mce-t (rot mce-q))%

where ?rot-side2 = (rot side2) & '-

?rot-mce-t = (rot mce-t)))

(define squarelimit
(cycle corner)) .-

.Entering "squarelimit (vec 50 50) (vec 500 0) (vec 0 500)"
at the LNF prompt "NF of Members "produces the Escher print.

The functions below ''fractalize" pictures. %

Given a natural number n, a f ractal-f unction, and a picture, .1.
the next function applies the fractal-function n times to%

-the picture (actually, it is applied to each of the picture's
lines) - producing a fractalized picture.

(denine (fractalize ?n ?fractal-fn ?pic ?a-vec 9b-vec 'c-vec)
((If (zerop ?n)*

then ?plottable-picture ~i
else (fractalizel

(subi ?n)
?fractal-fn
(flatmap ?fractal-fn ?plottable-picture)))

where ?plottable-picture =(?pic ?a-vec ?b-vec ?c-vec)))

%. %

V IV



(i 0zrp n

;Ahele fnctionl offataie

(eie(frataiel ?fractal-fn ?plottable-pic)

else s (rcterlefatlfucin

(define (fractal-fn-1 (line (vec NxO NyO) (vec NIl ?yl)))
((make-lines

[(e NO ?yO),
(vec

(+ NO0 (X 13 ?sum))
-(-?yl (X 13 ?length)) (X 23 ?height))),

(vec
(+ (+ NxO (X 13 ?height)) (X 23 ?length)) -

(?Yl (x 13 ?sum))),
(vec ?xl ?yl)])

where* ?length = -?xl NxO);
S. ?height = .?Y] ?YO)
%?sum = (± ?length ?height))) 5-

Connects the vectors, making a plottable picture.
* (define (make-lines [?vl,?v2o?vecs])

[(line ?v1 ?v2)e
(if (nulip ?vecs)

then [ ] .%k

else (make-lines [?v2e?vecs]))])

,An interesting picture of a man and
his wife (the fractalized man). -

(define man-and-wife
(beside

man ~
(fractalize 3 fractal-fn-I man)

.'k

(vec 100 100) '
(vec 500 0) 1

(vec 0 500))) -1

064
kk~

%S %
% -. 'S%

11'k 



| -p
Page 161

% J, Jp %,J ,' ,','.,

Appendix D "

Sample LNF Session

* 0

Included in this appendix is a recorded session with the LNF system. User input has .-'W,

been boldfaced. Recall that LNF prompts with either "LNF of ", "NF of ", and "NF
of Members of " when it is expecting an LNF expression. In addition, LNF prompts
with "Definition: " when the user signals the system (with the mouse) that he wishes to
input a symbol definition.

Sometimes, following the printing of the reduced expression, some statistics on the
reduction are displayed. These statistics inform the user: 0

* the number of reductions performed,

* the number of user defined symbols looked up (expanded),

e the time it took (in seconds) to reduce the expression, - -

e the reduction rate (expressed in reductions per second),

* the size of the result (remember that shared wffs cannot be detected by looking at ).

linearized LNF-wffs),

* some space and stack statistics, and

* a breakdown of the reduction, showing which functors were employed in the reduc-
tion. ,._.,' .

For brevity, these statistics are not displayed for all of the reductions. In some cases.
only some of the statistics are printed. Two reductions were selected for detailed moni-

toring. For these two reductions, each step of their reduction sequence is displayed.
The session follows. %

LNF of (X (?x) (+ x ?x)) 4 is

L 88

- - : ,-

i:.:,..... ,,,:. ,,,,,..-. -.: ,.,.- .-._.-.... .-- '., --, .--- :,., ,



Page 162

LNF of append [1,2,3] [4,5,6] is .V
[(. -APPEND [2,31 [4,5,6]] .

* %

NF of append [1,2,3] [4,5,6] is%
[1,2,3,4,5,6]

NF' of Members of append [1,2,3] [4,5,6] is
123456

%5 F

Definition: (define (thrice ?f ?x) (?f (?f (?f ?x))))%%
THRICE defined, combinators introduced: 4. "S 0

NF' of thrice is
S B (W B)

Definition: (define (double ?x) (+ 11x ?x)) v' % %
DOUBLE defined, combinators introduced: 1.

NF of double is

NF of double 3 is
6 %- * .

NE' of double kevin is '-

+ KEVIN KEVIN

NF~~~~5 oftrc oul i

NF' of thrice double 3ei is
24+( EINKVN +KEI EI)

+(+ (+ KEVIN KEVIN) (± KEVIN KEVIN))

% % ~X%

% N0

% **55

%I ~.

xk0



Page 168 %,

LNF of thrice thrice double 3 is
402653184 -i

Reductions 90

Symbols Expanded: 31
Elapsed Time : 0.059689 secs
Reduction Rate :1507.82 RPS 0 0
Size of result • 1

NT of + (?g 3) (?g 4) *" "';" -

where ?g = (?f (X 2 2)
where ?f x ?y = (+ (x 'x ?x) x ?y))) isInitial Expression

S' - (R 3) (R 4) (R (X 2 2) (S (B' B( x)) X))-
Steps: I Combs: 43 Last Comb. S'

(R 3 (R (x 2 2) (S (B' B (W x)) x m .-
(R 4 (R (X 22) (S (B' B (W xp x 0 0

Steps: 2 Combs: 43 Last Comb: R
- (R (x 2 2) (S (B' B - (W X)) X) 3) .. "-

(R 4 (R (x 2 2) (S (B' B - (' x)) x> ' %.

Steps: 3 Combs: 43 Last Comb. R -, ,

-(S (1B' B -(W x)) x (x 22) 3)
(R 4 (S (B' B + (W x)) X (X 224) )))&\

Steps: 4 Combs: 45 Last Comb: S
- (B' B + (W X) (X 2 2) (X (X 2 2)) 3)

(R 4 (B' B - (W X) (X 2 2) (X (X 2 2)))
Steps: 5 Combs: 47 Last Comb: B'

- (B (+ (W X (X 22))) (X (x 2 21 .3) 0.

(R 4 (B (+ (W X (X 2 2))) (X (X 2 2))))
Steps: 6 Combs: 48 Last Comb: B Z-%..,.

(-4- (W X (X 2 2))(x (X 2 ) 3))
(R 4 (B (± (W x (x 2 2))) (x X 2 2))))

% %

W % %

, 1, ?.,.'

.~~~" ." ." ." w" . . .."
%, %', %" %

% "-%";

a'.

I t
,,-',. -%'. 4".- .. " . ,. _" a

, ,, -. ... . -. -. % -. .. , - .. ... . -. ,, , .. . ., ,. . - -. . -. ,. , -, - ,. .. , ,, , . -. . % . , -. , -,-'a

' % ". ' -... - % . . %' " %"%'w
°" * ,% '" '" '" " ., o" ",. ", ." . "• " • -" " " . * "% . • . ", %Ma • % , M, ' a

. . • . , .• . .. . q • • ¢ . . a' • '



Page 164 0 -

Steps: 7 Combs: 49 Last Comb: W , ,Pr ._. NY
+ (+ (x (x 2 2) (x 2 2)) (x (x 2 2)3 )) OP .wl

(R 4 (B (+ (x (x 2 2) (x 2 2))) (x (x 2 2)))) - -
Steps: 8 Combs: 49 Last Comb: X

+ (-- (X (IP 4) (IP 4)) (X (IP 4) 3))
(R 4 (B (+ (X (IP 4) (IP 4))) (X (IP 4))))

Steps: 9 Combs: 49 Last Comb: X %
(+ (IP 16) (X (IP 4) 3)) '_,

(R 4 (B (+ (IP 16)) (X (IP 4)))) * 0
Steps: 10 Combs: 49 Last Comb: X '.d "f-'"

+ (+ (IP 16) (IP 12))
(R 4 (B (+ (IP 16)) (X (IP 4))))

Steps: 11 Combs: 49 Last Comb: +
+ (IP 28) (R 4 (B (+ (IP 16)) (x (IP 4)))) "- "*

Steps: 12 Combs: 49 Last Comb: R
+ (IP 28) (B (+ (IP 16)) (X (IP 4)) 4)

Steps: 13 Combs: 50 Last Comb: B
4 (IP 28) (+ (IP 16) (X (IP 4) 4))

Steps: 14 Combs: 50 Last Comb: X
+ (IP 28) (+ (IP 16) (IP 16)) 0

Steps: 15 Combs: 50 Last Comb: + w -w
- (IP 28) (IP 32) ,'

Steps: 16 Combs: 50 Last Comb: +
60r

60

Reductions :16 " " "

Symbols Expanded: 0
Elapsed Time • 0.024553 secs
Reduction Rate : 651.651 RPS S S
Size of result : 1 J,

Combinations Constructed: 50 "..,*..
Number of Stacks :15
Stack Pushes " 57
Stack References :168 * 0
Stack Checks 16
Stack Modifications • 23 ;:rPNP%

Maximum Active Stacks : 5
Maximum Stack Depth : 8 . .
Maximum Active Cells :18 0 S

Functors Introduced: 7

Steps %Steps Functor

4 25.0 x 0 0
3 18.8 +
3 18.8 R

06%

% % % %



- - %V

- ,, .J '

%

Page 165 P.

2 12.5 B
1 6.3 B3'
1 6.3 S' -F

1 6.3 W .. r

1 6.3 S

LNF of ?x whererec ?x - [1. 1?y] & ?y = [2.?x] is
Initial Expression •

A-S OPDS 2 K (Y (APP-TO-ARGS 2 (B (C' OPDS (PAIR 1)) (PAIR 2)))) % '

Steps: 1 Combs: 23 Last Comb: Y
A-S OPDS 2 K . "

(APP-TO-ARGS 2 (B (C' OPDS (PAIR 1)) (PAIR 2)) (...))
Steps: 2 Combs: 28 Last Comb: APP-TO-ARGS

A-S OPDS 2 K ,"

(B (C' OPDS (PAIR 1)) (PAIR 2) (ARG 1 (...)) (ARG 2 (...)))
Steps: 3 Combs: 29 Last Comb: B
A-S OPDS 2 K

(C' OPDS (PAIR 1) (PAIR 2 (ARG 1 (.)))(ARG 2 (.. )))
Steps: 4 Combs: 31 Last Comb: C' •

A-S OPDS 2K ,

(OPDS (PAIR 1 (ARG 2 (...)))(PAIR 2 (ARG 1 (...))))
Steps: 5 Combs: 32 Last Comb: A-S -

K (PAIR 1 (ARG 2 (OPDS (.) (PAIR 2 (ARC 1 (.))))))
(PAIR 2 (ARC 1 (OPDS (PAIR 1 (ARG 2 (.)))(.))))

Steps: 6 Combs: 32 Last Comb: K
PAIR 1 (ARG 2 (OPDS (...) (PAIR 2 (ARG 1 (...)))))

[1-ARG 2 (OPDS E0527 [2.ARG 1 E0528])]

NF of ?x whererec ?x = (1.?y] & ?y = [2-?x] is
[1,2,1,2.P05291

%*

NF of ?z whererec
?z = bin-tree ?x ?y &
rx = bin-tree 1 ?z & .

?y= bin-tree ?x 2 is .- k.
BIN-TREE (BIN-TREE I E0530) (BIN-TREE (BIN-TREE I E0530) 2)

NF of first 20 [1,..,100] is
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] 1' "

5' **5 5..' ,-•

Reductions :284
, %

Symbols Expanded: 1 '

Elapsed Time : 0.315075 sees
Reduction Rate 901.373 RPS
Size of result 103 ' ," e

N % "%% %z

" "- -.- N.%

5/, ~ ~ •'** v €"~ w - ,....- % -.--. %,%.%•%%%%,- -%_ %- .%%%% .,%. ..

:,.. . .,.,,,''; _ [ ., *,..: . , ;,.. ,_.,.,. . ,. ., ,. ,,, ,_',. ,, ..v .,,,,z .,,..f.'. -, . . . . Sf . .-.._.,-. .



* ~ ~ ~ ~ ~ ~ J -- - wjf f * x w . ~.J

Page 166* 0

NFof first 20 [13..101i %%(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39j
%" -

NF of first 20 [1,3,..]j is

[1,3,5,7 ,9, 11, 13, 15, 17, 19 ,21,23,25,27,29 ,31,33,35 ,37,39]

NF offirs 20 _10'.A i

NF of first 20 ~-0.Iis

[I,

* 0

NF of for-each ?xc[l,..,10] instantiate (x 20 N)is ~-
[20.40,60,80,100,120,140,160,180,200

Reductions 32

NF' of [(X 20 ?x)I?xE[1,..,10I] is

Reductions 32 0

NF' of first 20 [?,yjx[.];v[..]is

[4,2],[3,3],[2,4], [1,5],[1,6], [2,5],[3,4, [4,3], [5,2]

Reductions 377

NF' of first 20 (for-each ?xE[1,..]
and-each ?yE[1,..]
instantiate [?x,?y]) is

[4,2],[3,3],[2,4],[1,5],[1,6], [2,5],[3,4], [4,31,[s5,2]]%

Reductions 377 ~--

Definition: (define (odd ?n) (not (zerop (rem ?n 2))))
ODD defined, functors introduced: 2.

NF of filter odd [1,..,i0] is

W4 0 % %

-.d\4A-

7 - -



I - -_ i

.C-.--

*. f. ?. .',

0

Page 167

NF of map (filter odd) [[1,..,101,[2,4,..,20],[1,3,..,19]] is %

[[1,3,5,7,9],[ ],[1,3,5,7,9,11,13,15,17,1911 -b

Definition: (define (fact ?n)
pP- (if (zerop ?n) %

then 1

else (X ?n (fact (sub1 ?n)))))
FACT defined, functors introduced: 7.

LNF of fact is
S (C' IF ZEROP 1) (S X (C B SUB1 E1253))

LNF of fact 10 is
3628800

1%

Reductions :85 PL

Symbols Expanded: 1
Elapsed Time : 0.049748 secs
Reduction Rate :1708.61 RPS
Size of result : 1

Combinations Constructed: 76

Number of Stacks :53
Stack Pushes • 244
Stack References "527
Stack Checks :86
Stack Modifications :137
Maximum Active Stacks :14
Maximum Stack Depth 7 %
Maximum Active Cells 53

Functors Introduced: 0

Steps %76Steps Functor
-----.. .. ------ -------

21 24.7 S
11 12.9 ZEROP

11 12.9 IF -.

11 12.9 C'
10 11.8 X
10 11.8 SUBI
10 11.8 B
1 1.2 C

% %" % ' %* •

% %,% % % % % % %,%

% e" -. ".-' " ',. %, . , ., ., ,, .,-.

6 L P - A A-; FL



Page 168 *

LNF of fact 100 is
93326215443944152681699238856266700490715968264381621468592963895
21759999322991560894146397615651828625369792082722375825118521091
6864000000000000000000000000

Reductions 804 r

Symbols Expanded: 1 
-%-

Elapsed Time 0.62608 secs 0
Reduction Rate "1284.18 RPS , ..

Size of result : 1

LNF of fact 50 is "
30414093201713378043612608166064768844377641568960512000000000000

Reductions 404

Symbols Expanded: 1
Elapsed Time • 0.28939 secs ..

Reduction Rate 139604 RPS %

Size of result : 1-J

Definition: (define (apply-each-to ?x) (map (X (?f) (?f ?x)))) 'e
APPLY-EACH-TO defined, functors introduced 2. * _

NF of apply-each-to is - ",
B MAP R

LNF of apply-each-to

[square, '

double, - .

(X (?x) (- (square x) (double ?x))),
K 37774,
fact] is

[R 16 SQUARE*MAP (R 16) [DOUBLES' - SQUARE DOUBLEK 37774,FACT]] "'""

Reductions : 2 -"-'-

Symbols Expanded: 1 "
Elapsed Time • 0.079325 secs
Reduction Rate " 25.2127 RPS
Size of result :30

do~ %% % ,

%'" %.



- .. - - - - ---- • -I -

0Page 169 ,2' ",,

NF of apply-each-to

(square,
double,
(X (X) (- (square x) (double ?x))),
K 37774,
fact] is

[256,32,224,37774,20922789888000]

Reductions :158

Symbols Expanded: 6
Elapsed Time : 0.274288 secs
Reduction Rate • 576.037 RPS
Size of result : 25

NF of Members of apply-each-to
16
[square,
double,
(X (x) (- (square x) (double ?x))),
K 37774,
fact] is r'". v"

256322243777420922789888000

Reductions :155

Symbols Expanded: 6 .
Elapsed Time : 0.118786 secs
Reduction Rate :1304.87 RPS 

.

Size of result : 25 ..r '-%.- .

NF of naturals-modulo-n 5 is ."*P
[0,1,2,3,4] 0

Reductions • 282

Symbols Expanded: 13
Elapsed Time : 0.628656 secs
Reduction Rate • 448.576 RPS

Size of result • 36

*- %"-% ,.

% P. A-"..

, %

* ~ ~%%.pv .%

s\ *A%.%, %& N .- \ -' .-
%1%@%',%'-



Page 170

NF of first 10 naturals is *,%

[0,1,2,3,4,5,6,7,8,9]

Reductions 743

Symbols Expanded: 23 6

Elapsea .ime :0.585012 sees
Reductio.,, Rate :1270.06 RPS kkN. '

Size of result : 61

NF of first 10 naturals is
(0, 1,2,3,4,5,6,7,8,9]

Reductions :130

Symbols Expanded: 2 -
Elapsed Time :0.121806 sees
Reduction Rate :1067.27 RPS IM%-I

Size of result : 61 0

NF of first 10 integers-repi is
[0,1,-i, 2,-2 ,3,-3,4,-4,5] 1

Reductions :632

Symbols Expanded: 13
Elapsed TLime :0.50672 sees
Reduction Rate :1247.24 RPS
Size of result : 61 S

NF of first 10 integers-rep2 is
[0,- 1, 1,-2,2,-3,3,-4,4,-5]

Reductions :729 ..0 .,.*0

Symbols Expanded: 25
Elapsed Time :0.58 1089 secs
Reduction Rate :1254.54 RPS N?
Size of result :65 0 0

.N%\ %.

I* 0

% .,

%9~. %W % %



0 of
Page 171

NF of first 10 (powers-of 2) is %b,
[1,2,4,8,16,32,64,128,256,512]

Reductions :742

Symbols Expanded: 23
Elapsed Time 0.537465 secs :
Reduction Rate :1380.56 RPS
Size of result : 61 

9

NF 'of higher-order-ex ample- mod 4i is

Reductions :410

Symbols Expanded: 16
Elapsed Time :0.299072 secs V
Reduction Rate :1370.91 RPS
Size of result : 40

NF of perms [1,2,3]] is
[[1,2,3] ,[2,1,3],[2,3, 1], [3,2, 1], [1,3,2] ,[3,1,2]]

NF of first 10 (closure- un der- laws [append [1]] [[2]]) is

NF of first
4 10

(closure- under-laws .

[append [1],append [3],rotate]
[[2]]) Is

% .,

'I%
VJ



Page 172

INF of first 20 (g-seq 1 0.5) is .S.

[1 .0,0.5,0.25,0.125,0.0625,0.03125,0.015625,0.0078125,0.00390625, ~ ~
0.001953125,0.0009765625,0.00048828125,0.00024414063,
0.00012207031,0.000061035156,0.000030517578,0.000015258789, 1. i I
0.0000076293945,0.0000038146973,0.000001907-3486]

Reductions 522

Symbols Expanded: 3 S
Elapsed Time :1.23927 secs
Reduction Rate :421 .214 RPS
Size of result : 123

NF of first 20 (series (g-seq 1 0.5)) is 0

[1.0,1.5,1.75,1.875,1..9375,1.96875,1.984375,1.9921875,1.9960938,
1.9980469,1.9990234,1.9995117,1.9997559,1.9998779,1.999939,
1.9999695,1.9999847,1.9999924,1.9999962,1.9999981]

Reductions :7190 0

Symbols Expanded: 5
Elapsed Time :0.577644 secs ....-.-

Reduction Rate :1244.71 RPS
Size of result : 123Z7

NF of limit-g-series (series (g-seq 1 .5)) is
2.0

Reductions :58

Symbols Expanded: 6
Elapsed Time :0.04127 secs
Reduction Rate 1405.38 RPS
Size of result : 1 %

NT of first-close-to-hlmit (series (g-seq 1 .5)) .0001 is
[15.1.999939] S % %

.,% .% I?

Symbols Expanded: 23 1
Elapsed Time :0.523747 secs K~, r

Reduction Rate :1808.12 RPS%
Size of result :8

%

r~~~S Fe k, P:' .-

.d*% PJ I- P %* % %

Ir %. -5:~ * S~



Page 173 M%.I.fy

NF of first-close-to-limit (series (g-seq 1 .5)) .000001 is
[21.1.999999]

Reductions :1319

Symbols Expanded: 29
Elapsed Time 0.733449 secs

Reduction Rate : 1798.35 RPS
Size of result : 8 % .

NF of first 20 (g-seq 1 0.75) is
[1.0,0.75,0.5625,0.421875,0.31640625,0.23730469,0.17797852, .'.

0. 13348389,0.100112915,0.07508469,0.056313515,0.042235136,
0.031676352,0.023757264,0.017817948,0.013363461,0.0100225955,
0.0075169466,0.00563771,0.0042282827]

NF of first 20 (series (g-seq 1 0.75)) is "
[1.0,1.75,2.3125,2.734375,3.0507813,3.288086,3.4660645,
3.5995483,3.6996613,3.774746,3.8310595,3.8732946,3.904971,
3.928728,3.946546,3.9599094,3.969932,3.977449,3.9830866,3.987315] .

NT of convergent-g-series (series (g-seq 1 0.75)) is -

TRUE

NF of limit-g-series (series (g-seq 1 0.75)) is

4.0 L W k5 . I

' ' .. .' :
0

NF of first-close-to-limit (series (g-sen 1 0.75)) .000001 i.
[54-*3.999999] ' " -

,a' a, . ,..,.

NF of first 20 (g-seq 1 0.9) is -
[1.0,0.9,0.80999994,0.7289999,0.6560999,0,5904899,0.531.1,409,
0.4782968,0.4304671,0.3874204.0.34867832,0.;313810.17,
0.28242943,0.25418648,0.2287678.1.0.2(' 5£9103,0. 18530193, /.-:,

0.16677174,0 15009455,0.13508509]

NF of convergent-g-series (series (g-seq 1 .9)) is -.

TRUE

NF of limit-g-series (series (g-seq 1 0.9)) is S
9.999998

p. -

I e. P..' J.a a. a *..

%°. % % 5

°JU



17 N

Page 174

NF of first-close-to-limit (series (g-seq 1 0.9)) .01 is
[6609.990447] _______

Reductions 4109 
NO. Mir v

Symbols Expanded: 74
Elapsed Time • 2.24123 sees
Reduction Rate :1833.37 RPS
Size of result :8 -

NF of first-close-to-limit (series (g-seq 1 .9)) .001 is
[88.9.999056]

Reductions 5473 "

Symbols Expanded- 96
Elapsed Time • 2.9093 sees .,"

Reduction Rate • 1881.21 RPS
Size of result : 8 0 0

- .. %,.

NT of first-close-to-limit (series (g-seq 1 9)) .0001 is d .- % OR

[110.9.999903]

Reductions " 6837

Symbols Expanded: 118 . .
Elapsed Time • 3.64072 sees e. e.
Reduction Rate : 1877.93 RPS
Size of result :8 

NF of first 20 (g-seq 1 -0.5) is . -

[1.0,-0.5,0.25,-0.125,0.0625,-0.0;3125,0.01.5 25.-() fl781"' '
0.00390625,-0.001953125,0.0009765625.-o (000s 2l 2S.I() (W)2- 1..10f;3.
-0 00012207031.0.000061035156- 0( )l'3t I177> -
-0.0000076293945,0.0000038146973,-0 000001 9073 0,-1

NF of first 20 (series (g-seq 1 -0.5)) is
[1.0,0.5,0 75,0.625,0 6875,0 65625,0 671 S7.5.0 t3610625 0 66796S'75,.
0.6660156,0.6669922,0.6665039,0 66674S5( 6tit6626.0 6ti66,7

0.6666565,0.66667175,0 66666.11,0 66ti679 1J) 66it666031 '

Definition (define (u x) [x])
r(Iefine(t. funct,)rs intr' ,d'1(ei I

% % * % %

"- -" '-, , .--. '.*.,- ,. .- " ." ".",. . .' .Z.:,:,"-.-*''....:'" .-.- "? -  -. "..:,..".' .,._., .',.., '-., ?.;'*.. .-A,-"
..- ,.,. . -, , .:.:.. ,: -.-. ,.,. . .. . . .. .. . . . .. . .

.:r., :..':....,.'.:.:,. .. :,.. ,,, :. . 2,. ,.......:.?. ,.,;.:. *%,.....,,_ .% .- . ,,., S.J,' ,. ,*



Page 175

Definition: (define (smls ?x)%
(if (nulip ?x) 0 (+ (hd rx) (sumlist (ti ?x))))) -

SUMLIST defined, functors introduced: 7.
A~

NF of sumlist is
* S (C' IF NULLP 0) (S' + HD (B E7498 TL))

NF of sumlist [1,2,3,4] is
10

Definition: (define (reverse ?x)
(if (nulip ?x)

then [
else (append (reverse (ti ?x)) (u (hd ?x)))))

REVERSE defined, functors introduced: 9.

NF of reverse is
* S (C' IF NULLP [)(S (B3' APPEND E8332 TL) (B (C PAIR [11l1))) %P

NF of reverse [1,2,3,4] is
[4,3,2,1]

* ~Reductions :54 '*~ ~~

Symbols Expanded: 1
Elapsed Time :0.049213 secs
Reduction Rate :1097.27 RPS
Size of result : 20

NF 4~ map square [1,2,3,4] is

D-)f'.jiiion: (define (length [?*?r]) (addi (length ?r))
(length ])0)

- L\;TIIdefined, functors introduced: 15. 4
* length is

*A-EPAIR 2)
13' K fB ADDI E7732) (ARG 2)) (ARG 1))

-I k

% ~



Page 176

NF of length [1,2,3,4] is4

Reductions 40 %

Symbols Expanded I
Elapsed Time 0 060226 secs .
Red u,ton Rate 664 16.5 RPl__
Size -f result I

NV -,f map length [],u 1,[1,2',1.2,3,4]]., ':--•'
[0 1.2.4]

Reductions 85

Symbols Expanded .5
Elapsed Time 0 073885 sees
Reduction Rate 1150 44 RI'S •
Size of result 27 .- ..-. 2

Definition (define (concat 'x)
(if (nullp %x) o .. %

then [] 0
else (append (hd "x) (concat (ti 'x)))"

CON(AT defined, functr, mtr-.d,,, i 7 ' .

NF 4' concat 1[1,2j,[3,4jL5,8j1 ftI f~

[1,2.3 ,1. 6 %

.% . *.'= # ,

Definition (define (compose 'flist 'x) % %
(if (nullp Milst) "" ¢ ' "

then x 0 0
else (compose (tl ?fMist) (hd 'flist 'x))))

COMPOSE defined, functors introdured 11)-

NF of compose [+ 3,* 2] 5 is
16 0 • ]

Reductions 31

Symbols Expanded: 1
Elapsed Time :0.021201 secs _ 0
Reduction Rate :1462.2 RPS -'-.
Size of result :1

% % %

e few-# 
¢-,,% ",- _.--- ,. .. .

,~ ,% .. %.. ,. ... .



Page 177 .,e _.

NF of compose is
S (B' S IF NULLP) (S (B' B E9934 TL) ID)-

Definition: (define (sumtree ?x)
(if (atomp ?x)

then rx

else (sumlist (map sumtree ?x))))
%UITREE defined, functors introduced 6

NF ,f sumtree [1,[2,3],4] 1 -

Dmitiqiti (define (maptree ?f x)

(if (atomp 7x)
then (?f 'x)

else (map (maptree ?f) X)))
% \ A I' F E ' d e fi n e d . fu n c t rs - 1 .. . , ' , - -

%.1 %

'4 of maptree is %**.. *..

S' S (S' IF ATOMP) B NUAI E2654)

NF of maptree square [1,2,[3,4],5] is ,
[1 [49.I6],2511,,].],.

I,fi it' in (define (revtree 'x)
(if (atomp 'x)

then x .
else (reverse (map revtree x
I-T1t" 'E ft,-fin,-d , ii .r. *w,-'Ali

- revtree [1,[2,3,4>5] "

* % . .

IDhfinition (define (exists !p x) *

(if (nullp ?x) '.

then false - ,.

else (or (rp (hd 7x)) (exists 'p (tl 'x)))))
EXISTS defined, functors introduced 12

%

S% %Jg

. .0 .' , r % %% . %. %. .w w ,r = w , .,w w -," ' ,V=' - " " '," . . • ' "" . , % % . - - • " % o- -% % %' =*,



% %

Page 178

NF of exists (=5) [2,6,1,5,7] is
TRUE

W orW
Reductions 60

Symbols Expanded: 1
Elapsed Time :0.126887 secs "

Reduction Rate :472.862 RPS
Size of result : 1

Definition: (define (all ?p ?x)
(if (nulip ?x)

then true

AkLL defined, functors introduced: 12.

NF of filter ?odd [1,4,6,5,8,7,2]
where ?odd Nx = (not (zerop (rem ?x 2))) is

[1L7

Definition: (define (belongs Tlst ?x) (exists ?= x) ?list))
BELONGS defined, functors introduced: 1. ~*

NF of belongs [1,2,3] 2 is
TRUE

V V
Reductions 28 . t

Symbols Expanded: 2%
Elapsed Time :0.021255 secs
Reduction Rate :1317.34 RPS IN~
Size of result :1 0

Definition (define (nci Nx ?y) (all (belongs ?y) ?x))
INCL defined. functors introduced: 1.

%Aw. %\

% %



P age 1 79 - '

NF of inci [1,2,3] [3,5,4,2,6,1] is
TRUE

Reductions " 207 .

Symbols Expanded: 6
Elapsed Time • 0.116783 sees
Reduction Rate :1772.52 RPS
Size of result : 1

Combinations Constructed: 248
Number of Stacks • 103
Stack Pushes :644
Stack References :1408 0
Stack Checks :238,,e .
Stack Modifications :326
Maximum Active Stacks :11 fool
Maximum Stack Depth :7
Maximum Active Cells 41

Functors Introduced: 0

Steps %Steps Functor

30 14.5 C'
29 14.0 S
26 12.6 B
15 7.2 IF
15 7.2 NULLP
14 6.8 HD
14 6.8 B'
14 6.8 s'
14 6.8 C ,, ,
11 5.3 TL
11 5.3 OR
11 5.3 = "
3 1.4 AND

Dehnition: (define (equalset ?x ?y)
(and (inc !x ?y) (inc ?y ?x)))

EQUALSET defined, functors introduced: 3 %

N

. . . -"-."- ....

..I - .,.; 1. "%e

1'0 a1491
% % % N %Z'.:!&z



Page 180

NF of equalset [1,2,31 [3,1,21 is *f.ff~

TRUE

Reductions :268r

Symbols Expanded: 13
Elapsed Time :0.157473 secs
Reduction Rate :1701.88 RPS
Size of result -:1

NF of equalset [1,2,3] [3,1,2,2,3] is

TRUE

Reductions :367%

Symbols Expanded: 15
Elapsed Time :0.207786 secs . AA
Reduction Rate :1766.24 RPS
Size of result :1I

NF of equalset [1,2,3] [3,1,2,2,5] is
FALSE *"-*

Reductions :367

Symbols Expanded: 15 .4

Elapsed Time :0.198647 sees
Reduction Rate :1847.5 RPS
Size of result : 1 ~ p

Definition: (define intersection (B filter belongs)) '*

*INTERSECTION defined, functors introduced 0

NF of intersection [1,2,3,4,51 [3,4,5,6,7] i

Reductions 343 .f

Symbols Expanded- 7
Elapsed Time :0.193531 sees
Reduction Rate :1772.33 RPS $.fft

Size of result :13 % %*

% -. q% % ~ tft~ %%~\. % % % % ~.
If - f ?. .. % %



Page 181

Definition: (define difference

DIFFERENCE defined, functors introduced 0 _

NF of difference [1,3,5,7,9] [1,2,3,4] is % I e
[2.4]

Reductions 251

VTImbols Expanded. 3 P
Elapsed Time 0 1-4971 secs %
Redurtion Rate 1731 3S H 11-7-

>lz, of result 10

[),'tinition (define (union x 'y)
(append (difference ?y !x) ty))

UNION defined, functors mtroduced -1

.:.., -..':'

NF of union [1,2,3,4,4] [2,4,5,6,1] is

[3,2.4.5,6.1 ]%

Re du ctito ns 271

Symbols Expanded 3
Elapsed Time 0,186286 secs
Reduction Rate 1454 75 RI'S
"size ,)f result 24

S% %,, %
% P , .'

'V... . J

*%*" .*-" *,4

% 1P

v-u



%*

*. 0,

A

%. - %

le.

Bibliography

[Abelson 1985] N...A%
Abelsoni If ,Sussrnian J . Structuire X- Irit,,rprvtAntII' Jf (inuter Prograrns. 19S".5
MIT Press (arnbrigv \L\"N..

(Abramson 1982a] %.
.Xh)ra ryi,(,i II 4101(( [rripl.'mfn71i/iti.i ''f Dv-L ceriber 1 9S2 Log' Pi-~gm-
rnirig NewsIfiter. 3- -1

(Abramson 1982b]
\ hrams ui H1 , Untih of- bao'd(l Con hhwil ind1' itng Con)structs. Sep ternher I 82
First Initernational LogKic Programimig( iiif0

[Abramson 1983] % %.'* .

A brarnsion If ,A Prological Definition .,f 11:.4, a Purely Functional Languag with % .
Uifiraition Based ( onditu.ona! Ifinding zr in June 1~~i 1-Logic Prograrnrning g
Wo(rkshopj '83

[Arvind 19841 S

A rVi1nd. Kathiail V IPinga1i I .h >a r iF . 7t 1 ' upi ft zo n i n Fu n ct zonral L a ng9u age I m- '

pilynentations, %Nlav I 9-4. Procee~fiiig f twheintrii:it ioral \orkshupJ )1n lligh-lxvei
In 1)u t er A rch 1i tect u r v, Los .Akiige les. F lii ni a %

r:kiutso 1984ai 0

\liglisrss~~i I. I I Fripo -r/~/V c,!1I Ihi I? r I f h 1984 .

'Atigustsson 1984b]
\Iilli..r,.ssonl 1., LAH!I. ( s eI~~\ j~.j ( i nr iliielsi --I' T-hiolug ,

('SE .511

[Backus 1978]
Backus J , Can Programming be Liberated 1 roni the ron N\cnann Style' A Func-
tional Style anid Its Algebra of Programns, Auigust 1978, (Mrnunicat ions of thle ACM

% %

-~~~~ % %%%%% .%'''- .%%



AA

Page 184 .-. ~

[Burge 1975]
Burge W.H., Recursive Programming Techniques, Addison-Wesley, 1975.

[Burstall 1980]
W Burstall R., MacQueen D_. Sannella D HOPE. An Experimental Applicative

Language, 1980, Repor.*, CSR-62-80. Computer Science Department. Edinburgh
University.

[Burton 1982] 1*
W Burton F.W. A Linear Space Translation of Functional Programs to Turner Combt'-

nators. July 1982, Information Processing Letters. Vol. 14, No. 5. %

[Church 1938]
Church A., Rosser J.B ,Some Pt-operties of Cionv'erson, 19:36, Transactions of the
American Mathemnatical Society. Vol. 39.

[Church 1941]
Church A.., Toe Calculi of Lainhda-('oniversion. 1941 . Princeton !.niversitv Press

[Clarke 1980]
* Clarke T..1 W , Gladstone P .J S Mllaii U 1) .111( No)rmal A (. SKIM~ - The S. K.

I Ue ductiori Atarhine, August 19SO P edg>1!1( Lisp Conference. S tanford, Call-%

fornia d/

tCoppo 1980]
''w \1 .- n Ext ende'd I uPoi morphi Ic 1 ;' hI e .r qlic atit'c L anquuges. 1980.,..*

LIulre Notes in Computer '-vierice \,I

~Curry 1958]1J
( 'irrv H- F-3 ,Feys I? . Cunrimthrv lgi\-iurn- I NY- N. rth Holland ~t

[Damas 1982] N

IDamas L., Milner R., Principal Type-. Sremr for P"UnitIonal Prograrri 1982. Edin-
burgh University Technical Report %

[Darlington 1981]1
Darlington T, Reeve M., A4LICE I V1Aultiproressor Reduction Machine for the %

Parallel Evaluation of Applicative Lanquaqes , hune 19'81, Symposium on Functional

Languages and their Implications for Co ,mputfer Architecture, Department of Corn-

[Friedman 1978]
Friedman D P , Wise D S , COA'S .hould 1101 Fraluate it,,; .4 rguments, 1976. in Auto- >*

mata, Languages, and Programming Th iri International Colloquiuim. Nlicliaelscn S. *

and Milner R. Eds.

[Halmos 1974]
Halmos P.R., Naive Set Theory. Springer-Ve-rl:ag. 197.1

V % .



Seon Cnfrec on th Prnipe -f Prgam Lnugs - -

0

eaaPage 185
,

[Henderson 1976]
Henderson P., Morris J.H., A Lazy Evaluator, January 1976, Proceedings of the
Second Conference on the Principles of Programming Languages. -.

[Henderson 1980] % .- , %
Henderson P., Functional Programming: Application and Implementation, 1981,
Prentice-Hall. J

[Henderson 1982]
Henderson P., Functional Geometry, August 1982, Conference Record of the 1982
ACM Symposium on Lisp and Functional Programming, Pittsburgh, Pennsylvania.

[Hixidley 1969] K~

Hindley JR., The Principal Type-Scheme of an Object in Combinatory Logic, De- 0
cember 1969, Transactions of the American Mathematical Society, Vol. 146.

[Hindley 1972]
Hindley J.R., Lercher B., Seldin J.P., Introduction to Combinatory Logic, 1972, Lon- ow
don Mathematical Society Lecture Note Series 7. Cambridge at the University Press. 0

[Hoare 1975 We" .-

[Hoare C.A.R., Recursive Data Structures, June 1975, International Journal of Corn-

puter and Information Sciences, Vol. 4, No. 2.

Hoffman 19841 S
Hoffman C.M., O'Donnell M.J., Implementation of an Interpreter for Abstract Equa-
tions, January 1984, Proceedings of Eleventh Symposium on Principles of Program-
ming Languages. %

[Holmstrom 1983]
Holmstrom S., PFL: A Functional Language for Parallel Programming and its Imple- - %-4-

mentation, March 1983, Programming Methodology Group Report 83.03 R ISSN- ,
0347-0946, Chalmers University of Technology, G6teborg, Sweden. %

[Hudak 1984a]

Hudak P., Kranz D. A Combinator Based Compiler for a Functional Language. Janu-

ary 1984, Proceedings of Eleventh Symposium on Principles of Programming
Languages. Ivm 

[Hudak 1984b]
Hudak P., Goldberg B., Experiments in Diffused Combinator Reduction, August 1984, ."
Conference Record of the 1984 ACM Symposium on Lisp and Functional Program- - 11-
ming, Austin, Texas.

[Hudak 1984c]
Hudak P., ALFL Reference Manual and Programmer's Guide, October 1984, Techni-
cal Report YALEU/DCS/TR-322, Yale University.

0" -,.



Page 186 .,-.0
.'-..br.%.-' "

[Hughes 1982a]
Hughes R.J.M, Graph Reduction with Super-Combinators, June 1982, Technical
Monograph PRG-28, Oxford University Computing Laboratory.

[Hughes,1982b]
Hughes R.J.M., SUPER-COMBINATORS A New Implementation Method for Appli-
cative Languages, August 1982, Conference Record of the 1982 ACM Symposium on .'

Lisp and Functional Programming, Pittsburgh, Pennsylvania.

[Johnsson 1981a]
Johnsson T., Detecting When Call-by- Value Can be Used Instead of Call-by-Need, Oc-
tober 1981, Laboratory for Programming Methodology Memo 14, Chalmers Universi-
ty of Technology, G6teborg, Sweden.

[Johnsson 1981bi
Johnsson T., Code Generation for Lazy Evaluation, November 1981, Programming 1P

Methodology Group, Chalmers University of Technology, G6teborg, Sweden.

[Johnsson 1983]
Johnsson T , The G-Machine an Abstract .Mfachine for Graph Reduction, August
1983, Programming Methodology Group. Chalmers University of Technology, - ,
Gbteborg, Sweden.

[Johnsson 1984]
Johnsson T., Efficient Compilation of Lazy Ealuation, June 1984, Proceedings of the A •
ACM SIGPLAN '84 Symposium on Compiler Construction. .-..

[Jones 1982]
Jones N.D., Muchnick S.S., .4 Fixed-Program .\Machine for Coinbinato, Expression %
Evaluation, August 1q82, Conference Record of the 1982 ACM Symposium on Lisp
and Functional Programming, Pittsburgh, Pennsylvania.

rJones 1983]
Jones S.B., Abstract Machinc Sup ..-t for Prc'y Functional Operating Systcns. Au-
6ast 1983, Oxford l'niersity Cnrnpiimpv I ahor:ttrv. Programming Research Group p-,
Technical Report PRG-34. •

[Jones 1984] % .

Jones S.B., A Range of ()pera',nq .Itst,-,w. 11 rttf:i tr a IPurely "unctional Style Sep- %
tember 1984, University of Stirling, (m utUl-r 1o1,' Technical Report TR 16. "

[Karlsson 1981]
Karlsson K., An Outline of the SNK ld:,'tio, .\[,achine. June 1981. Symposium on %
Functional Languages and their hnpliam for Computer Architecture, Department , .
of Computer Sciences, Chalmers lniversi v 4 Technology and G6te org Vniversitv.
Sweden. ,

, 0

S%

% % % %



Page 187 Nv %. r..
.e.u- imu

[Karlsson 1983]
Karlsson K., A Tentative Classification of Abstract Computer Architectures, April
1983, Programming Methodology Group, Department of Computer Sciences, Chal- 0

mers University of Technology and G6teborg University, Sweden. %b%.o

S,t,. 9v.j

[Kennaway 1982]
Kennaway J.R., The Complexity of a Translation of X-calculus to Combinators, Re- NON
port, School of Computing Studies and Accountancy, University of East Anglia,
Norwich.

[Kennaway 1983]
Kennaway J.R., Sleep M.R., Novel Architectures for Declarative Languages, June
1983, Software & Microsystems, Vol. 2, No. 3.

[Kieburtz 1984]
Kieburtz R.B., The G-machine: a Fast Graph-Reduction Processor, 1984, Oregon
Graduate Center.

[Levy 19801
Levy J.J., Optimal Reductions in the Lambda-Calculus, 1980, in To H.B. Curry. Es-
says on Combinatory Logic, Lambda Calculus and Formalism, Seldin J.P and Hind-
ley J.R. Eds.

[McCarthy 1960]
McCarthy J., Recursive Functions of Symbolic Expressions and Their Computation by
Machine, Part 1, April 1960, Communications of the ACM, Vol. 3, No 4.

[Milner 1978]
Milner R., A Theory of Type Polymorphism In Programming, April 1978, Journal of
Computer and System Sciences, Vol. 17.-"

rMilner 1983]
Milner R., A Proposal for Standard ML, November 1983, University of Edinburgh .',-*
Technical Report.

%Morri3 1978"
Morris F.L., On List Structures and Their Use in the Programming of Unification, * I
August 1978, Syracuse Universitv School of Computer and Information Science % .
Technical Report 4-78.

(Morris 1983]
Morris F.L., Bowen KA., A Lisp Dialect - Preliminary Draft Proposal, March 1983
unpublished draft. .0

% 0

[Morris 1984] "'."'.

Morris F.L., Seminar on Frontiers of Functional Programming, unpublished notes. :

7.; A.W. ',
itN V, %* %" %- '- -,,% % - "," "." " . . . " , , ,, .. , -," " .- ","a-. ,-- -- "-'.-'.- ,-- . .



Page 188%

~Mycroft 1981]
Mycroft A., The Theory and Practice of Transforming Call-by-NVeed into(jd'-
Value, July 1981, Univ~ersity of Edinburgh Technical Report. CSR-XS-.i *

[Oberhauser 1984] %J

OIIberhauser H.G., Wilhelmn .1 Jlopr .A1 % u('r~trj~ "in f1~I'

tzo n al Pr ogra inin ng L a n q a aqes, r Iru:i r I 9- .r-o I ~ t .~i.i -

Report SFB 124I - C1

'.[O'Donnell 1977]
O'Donnell MI V1 Computing in 1v~t*iR ). ril ;i it I. :I-.
in Computer Science, Vol S, L!,sL~ i I i-

[Peyton Jones 1984]
Peyton Jones S L_. Directions in % %; '.~

DRLA Note 1l5, 4 DepartmentotCm.cr:r......'- (

[Reeve 1982] 
.

Reeve \1 An Introduction to the 1[1! '1' 1u %'~r U~~n",-

Department of Computing, lrni-rial U ~ 1I~-i<V~ &

Lun don.

[Richards 1982]
R ichards H1 , Thr' Pr:ip;nazc- %f %41~F .,,

r'ugh, Corpurariccnr. kLs~ ki-l.ir -2 0'I, 0 W "

IFRichards 19841

,Robinson 196.5)j

%' %-,%196)i Jouirnal n1' 'h- A\ N~ \ 1 12 \ 1

,,Robinson 1983i]
Robinison J A . A Proposail top [)"" ,'.: Z.''"~'
Bansed on Logic Proglramining. P~inct;oc U 1''7,, ' 1zii rliIL4L''I:i.
tion Afacliine1. February 19S:3, Researchi P, i -i:.'nvo>

[Robinson 1984a] %
Robinson TA. , Sibert E E., The Logi. i. p IPro(grimming tm.March 1 ~.
cat Report, Logic Programming ReseaTr-h Center. .Svracuse I nive(r.Sitv- 0

[Robinson 1984b]
Robinson .J.. . Synzc- e University PariileI Lrr Reso ?diictior, I )ebo c IT 1
First Annual Progress Report, RA\I) ( 'irowt 1 30602-84-K-OO1 *'

-%.

%%
A '~

% 1 a

e F d"..% % % %% % _%,
%. % % %



'Robinson195.. PP

N~~.*

1 S

9 7~

19 S

d.

%

.~~~~~. . ....

% % *



1" NU UEMTIOU KNULOSK PIESSINS VOLWIU2U
SW30553 UNlY MY J N ROSINSON ET AL. OCT 24(U
NSC-TN-fl-1S-YCL-2 F3fl44-K-flf

WECLSSIFIED F/O 2S W I ALEu..



* - - - swwrs 3MMW~MWX)i~ i~i~ vw~ 1C~'WUWUflNWW~N t~~~.' ~.WzswW

I I
I, I

'P
U,-

"a

a - - - -

111111.0 i~'~-~
51111 L Ia.

L 336 um~ii 11111 '*' ~ MAO

II~I8Iu1f~111111.25 Jjjjj__[4 jjJ~'I6
IIIII~ ii ii

S.
'1

.1

'A.

C

A

U,.

'p.

'p.

'p.

its

- - - - 0 0 e 0 0 0 Wrt%~. ( :ts'rt 
-fl~ <(P ;..#%twEt.P~tr 

*' 
-, *, _______________

U,a.,w, 
., .qy.yg %.tiSA.t:.%% 

N'
' ~ ~



Page 190

[Turner 1981b]
Turner D.A., The Future of Applicative Programming, October 1981, Proceedings 3rd -_

Conference of the European Cooperation in Informatics, Munich, Duijvestijn A.J.W., | -_
Lockemann P.C., Eds., Lecture Notes in Computer Science, Vol. 123, Springer Ver-
lag.

[Turner 1982a]
Turner D.A., An Overview of KRC, August 1982, Supplement to Invited Lecture at
the 1982 ACM Symposium on Lisp and Functional Programming, Pittsburgh,
Pennsylvania.

[Turner 1982b]
Turner D.A.. Recursion Equations as a Programming Language, 1982, Functional
Programming and its Applications, Darlington J., Henderson P., and Turner D.A.,
Eds.

[Turner 1983]
Turner D.A., Private Communication.

[Turner 1984a]
Turner D.A., Combinator Reduction Machines, May 1984, Proceedings of the Interna-
tional Workshop on High-Level Computer Architecture, Los Angeles, California.

[Turner 1984b]
Turner D.A., Syracuse University Colloquia, June 1984, Syracuse University, Syra-
cuse, New York.

[Vuillemin 1974]
Vuillemin J., Correct and Optimal Implementation of Recursion in a Simple Program- ptP i

ming Language, 1974, J. Comp. Sys. Sci., Vol. 9.
I S

[Wadsworth 1971]
Wadsworth C.P., Semantics and Pragmatics of the Lambda-Calculus, September .,- .... *

1971, Ph.D. Thesis, University of Oxford.

.. % % %

%p %



ll~j !I 1119 "

MISSION
ofV

Command1, Cont'i510", %omn~cto~ n ntZ~ec

ESVP om Airc. (O) n oevelpmen ECete e

ano sected e6atacqusiio p~ton om~ in! 6uppotm. o6%

The a'teas o6 techicaZ competence incfude
communicati1ons, command and cont'toZ, ba-ttf-e

*management, Ln6o~tmation ptocessing, 6utveiLUtance
,sen~sot*, intet&Lgence data cottection and handting,*

* -oZd state sciZences, e~ectiomagnetic6, and
rtopagaton, and etectLcnic, maintaicnab-Ctty,
and cc ipatbZ-cty. 

)

* 0

-0 0

. %~

1* 0

% %s .W'



-. ~.. -- ~. - .. , -'

p

I

p~.

6~ ~

S

I-

A/ p.

I
I

* V
%. ~.

I
S~ ~

a

U ~


