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EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TESTING
E.J. McCluskey

CENTER FOR RELIABLE COMPUTING

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, CA 94305-4055

INTRODUCTION

This chapter discusses an approach to test pattemn generation for functional testing of combinational
digital integrated circuits. The techniques to be presented apply all possible input patterns either to
the entire circuit under test or to portions of the circuit under test.

For some circuits, exhaustive testing is economically practical: all possible input combinations are
applied to the entire circuit. An exhaustive test is a complete functional test and no assumptions
about the internal structure of the circuit under test are required. When the number of inputs is so
large that an exhaustive test is impractical, it is still possible to retain many of the advantages of
exhaustive testing by using a pseudo-exhaustive test technique. Pseudo-exhaustive testing requires
that some details of the internal circuit structure either be known or assumed.

The minimum structural information required is the knowledge of which inputs affect each of the
outputs. This information permits each of the circuit outputs to be tested exhaustively, a
pseudo-exhaustive test called output function verification. If output function verification requires
too long a test, additional structural information is required in order to permit segmenting the circuit
so that C;%‘l segment can be tested exhaustively, a technique called segment verification or segment

testing. The amount of structure that must be known depends on the circuit and the acceptable test
length.

E)dftgtive and pseudo-exhaustive testing guarantee 100% single-stuck fault coverage. The
coverage of other classes of faults is discussed in connection with each specific technique.

- A disadvantage of exhaustive and pseudo-exhaustive testing is the size of the test sets: they can be

substantially larger than minimum-length test sets. Test set size affects the amount of memory to
store the set and the time to apply the test. For exhaustive or pseudo-exhaustive testing, the test
application time can be long but the memory required to store the test is very small due to ti.e
regularity of the test sets.

The major advantages of exhaustive and pseudo-exhaustive tests are the extremely high fault
coverage, the generality of the fault model, and the absence of a requirement to do fault simulation.
Another advantage of output function verification is the ease of generating the test set.
Segmentation and determination of the corresponding test sets requires more computation.
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BOOLEAN TESTING 7.
The words test and testing as used here refer only to "Boolean Testing" of digital integrated >
circuits. A Boolean Test is defined as a test in which only logical signal values are considered. N\
Parametric tests of digital circuits and testing analog circuits are specifically excluded from the o
discussion. Verifying the correctness of a design also differs from Boolean testing. They are )
closely related since the same vectors are sometimes used for both purposes. o
Definition: Design verification establishes that a design correctly implements a behavioral :
specification. The customary technique for design verification is a fault-free simulation of the P
circuit operation. This simulation uses a set of "design verification" or "simulation”" vectors as .
inputs. The design verification vectors are typically generated manually by the designer. If the ‘y
correct output values are present for each of the design verification inputs, it is assumed that the ’
design is correct.
Table 1 shows design verification vectors for the dual 4-line to 1-line multiplexer of Fig. 1. Part a :.'v
of the table lists a set of 8 vectors obtained from [Franz 85). These vectors are derived by
assuming that it is sufficient to verify that both a 0- or a 1-signal on the addressed input are passed )
correctly to the output. Part b lists 20 vectors contributed by Prof. Jan Hlavicka. He assumed that N
it was necessary to make sure that a 1-signal on a nonaddressed line wasn't propagated to the
circuit output. N
It's not surprising that different approaches lead to different design verification vectors since there -
isn't any standard approach to generating such vectors. In fact, the only way to truly guarantee the -
correctness of a design would be: .
(1) to have a complete specification of the desired output for every possible input, 4
including an identification of those inputs for which the output was not specified, and .
c.
(2) to do a detailed simulation of the circuit response to all possible inputs. o
L
It is usually not considered feasible to do such a thorough verification of a design. Instead, the ‘-
designer makes some assumptions about the implementation and selects design verification vectors f
based on those assumptions. -
o
Design verification vectors are discussed here only because they are often used for Boolean testing g
as well as design verification. Before discussing this technique, a more precise definition of .
Boolean testing will be given. The Fig. 1 multiplexer will be used as a running example. -
<
\I
N
Y
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Table 1. Design Verification Vectors for Fig. 1 Multiplexer. (a) 8 vectors, (b) 20 vectors.
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v, Figure 1. Dual 4-line to 1-line multiplexer (54153 or 4539B without enable circuits).
N
v

Definition: By Boolean testing is meant the application of a sequence of input patterns to a physical
A digital device (typically a die on a silicon wafer or a packaged integrated circuit) and the observation
B of the output response patterns with the objective of determining whether or not the device is
¢ broken.
. This definition refers to input and output patterns in order to rule out the use of specific voltages,

currents or waveforms to determine device parameters. Such measurements correspond to
+ parametric rather than Boolean testing. Parametric testing is discussed in [Camenzind 72] and
N [Chrones 81].
\
A -;:.
A "
. N
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FUNCTIONAL TESTING e

The term Boolean testing is used here to describe the test procedure that is called "functional ,
testing”" by the manufacturers of automatic chip test equipment. This usage is illustrated by the .
following quote from pp. III-A-3,4 of [Doyle ]: - )

For example, a TTL bipolar NOR gate may switch properly and show the proper output
voltage levels when the inputs are toggled, but it may require significantly higher input
current than normal to produce the change. In this example, the TTL gate is 'functional’ in
the sense that the truth table could be satisfied. On the other hand, the sample failed one set

AR STt Caewserse g dde oA e
1 .
o, L

LY
of 'parametric’ tests. That is, at one specific temperature, power supply voltage, current, %
etc., the unit failed because of high input current. By the same token, this sample may well e
pass all tests at, for instance, a lower supply voltage or a different temperature. i
ak
Generally speaking, it is impossible to completely separate functional from parametric testing. A
)
The reason for introducing a new term is the existence of alternate definitions of the functional j:: ]

testing terminology. Only integrated circuit chip testing is discussed here — board test is closely
related and is also very important. The expression "functional testing" is used in connection with
board test to specify that the test signals are applied through the board I/O edge connectors. The >
other major type of board test is called "in-circuit testing" or "bed-of-nails testing." This refers to

n
»

the use of a special fixture that allows access to each node of the board and thus allows each :'.:
component to be tested individually. Automatic test equipment for board test is discussed in o
[Stover 84]. N
There is another use (or misuse) of the expression "functional testing.” It is sometimes used to ]
describe a test that detects failures by "verifying correct operation” rather than by verifying the -
absence of specific faults. This usage is based on the desire to generate test patterns without o
reference to a specific implementation or to 2 model of which faults are detected by the tests. It is o3
not uncommon to use the design verification vectors for such a "functional test." N
I\ !
The effectiveness of using the design verification vectors as test vectors can be illustrated with the o
Fig. 2 implementation of the Fig. 1 multiplexer. The 20-vector set of design verification vectors
(Table 1b) detects all single-stuck faults, but is a rather uneconomical test since it is possible to -
detect all single-stuck faults with only the 8 vectors of Table 2. -
o
The set of 8 design verification vectors (Table 1a) detects only 68% of the single-stuck node faults. N
Whether or not a specific fault coverage is acceptable can be approximated in terms of the process bk
D yield and the desired maximum defect level of the parts after testing. This determination is .
/ discussed in [Williams 85). The defect level is shown to equal 1 - YU-T) where Y is the process ;
’ yield and T is the single-stuck fault coverage (fraction of single-stuck faults detected by the test -~
. set). For a 68% fault coverage and a process yield of 90%, the defect level is predicted to be Y
- approximately 33,000 DPM (defects per million). This is an unacceptably high defect level; current )
: industrial practice aims at defects levels below 100 DPM.
» ~
¢ Ky
: 3
g 2
I. L::
. )
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Table 2. Single-stuck Fault Test Set for Fig. 2 circuit.

WX ABGCD| ABGR /R
00|011d]011d]|O0o0O
0o1|l1o0dd|10dd|o0o0
10[1do0o1|1do0o1]j0o0
11|dd1o|dd1t1ofloo
00|1ddd|1ddd]|11
01|di1dd|di1dd]| 11
10|dd1dldd1i1]11
11]dddi1|dddd]|11

x A1 B G D A2 B2 C2 D2

Figure 2. One implementation of the Fig. 1 multiplexer.
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The fault coverage (68%) of the 8 design verification vectors was determined by a complete fault ,’_.:-
. simulation. Since fault simulation can be very expensive (in computer time) for large circuits,
! simpler methods are often used to estimate the quality of a test set. One popular technique checks .
b that each node of the circuit is "toggled,” receives both a O-signal and a 1-signal. The advantage of w3
K this approach is that only a fault-free rather than a fault simulation is necessary. Such Toggle Test -
. Sets are discussed in [Hughes 85]. Even simpler are the Pin Test Sets that check only that the »
R primary inputs and primary outputs are toggled. -
| The 8 design verification vectors toggle all nodes and thus satisfy the requirements of both the ?\
Toggle Test Set and the Pin Test Set. For the multiplexer example considered here, this shows that iy
use of design verification vectors and either a Toggle Test Set or Pin Test Set validation could lead -
N to the use of a test set with only 68% fault coverage. A more careful technique would be to do a -
) fault simulation of the design verification vectors and than choose additional vectors until an -
e acceptable fault coverage is obtained. By adding 4 additional vectors to the § verification vectors, it .
4 is possible to get 100% single-stuck fault coverage. Thus, the augmented verification vector set v
! ' has 12 vectors instead of the 8 required for full single-stuck fault coverage. ,
LY
[N (]
' This discussion of using design verification vectors for Boolean testing demonstrates some of the -
& problems that can arise when test sets are generated without attention to the structure of the circuit Yy
A being tested. In fact it was the lack of success with the generation of tests based on the functional -
9 operation of circuits that led to the development of the stuck-fault model and the use of structural v
information to generate test sets. The switch from "functional” tests to "structural” tests was 3
et signalled in a paper presented by R. Eldred at the August 1958 meeting of the ACM, [Eldred 59]. >
& The opening sentence of this paper is: t:
,
In order for the successful operation of a test routine to guarantee that a computing system ”
has no faulty components, the test conditions imposed by the routine should be devised at the o
", level of the components themselves, rather than at the level of programmed orders. N
4
Because of the complexity and density of modern digital circuits, Boolean testing is now N
4 recognized as an important, perhaps limiting, factor in the continued progress in integrated circuit wy
1 manufacture. Two aspects of Boolean testing are currently being reexamined: -
‘
N (1) The adequacy of the single-stuck fault model for VSLI and ULSI is being studied : ,
n because other types of faults may become more important with the new circuits, and ~
“J
» (2) techniques to generate tests without using the detailed structure of the circuit are being o'
sought, either because detailed test pattern generation is becoming too expensive or because -
) detailed structural information is not available for many catalog parts.
:f The following section discusses the necessity of a fault model for test pattern generation. Choices o
~ among various fault models are considered. A very restrictive fault model like single-stuck faults )
" permits small test sets but can fail to detect many actual failures. Weaker fault models that represent 0
.. more realistic failure modes are considered. )
- >
: ::1
» A :::::
; b
' s
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FAULT MODELS N
\ It is, in general, impossible to determine the quality of a test set for a circuit without making some o’
o assumption about the faults that are to be detected by the test. he
.'
K As an example to illustrate this statement, consider the 2-line to 1-line multiplexer of Fig. 3a. Since -
. this is a 3-input combinational circuit, the exhaustive test set of Table 3 that contains all 8 valid -y
' input vectors should test the circuit completely. However, if the test set is applied in the order given <
in the table, it fails to detect the bridging fault shown in Fig. 3b. The bridging fault causes the
topmost input to the multiplexer to be equal to Ay, the AND function of the A-input and the ot
y-output. (Such a fault could not occur for all circuit realizations, but there are circuit -
configurations for which it is an accurate representation.) -
Table 3. Exhaustive Test Set for Fig. 3 Circuit.
=
X A B y b
3
0 0 1 1 )
o1 1 | 1 ~
3
o 1 O 0 o
1 1 0 | 1 o4
o
11 1 |1 ‘
1.0 1] 0 N
1.0 0| 0 “
& -
A & + A—.— & +
X X -
I y I : y
B B -
L
Figure 3. Two-line to one-line multiplexer. (a) Fault free, (b) With bridging fault.
3
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The largest fault class for which it is practical to generate a test set is the class of combinational
faults, faults that change the circuit function but do not increase the number of states in the circuit.
If no limit is imposed on the number of extra states in the faulty circuit, then it is impossible to
construct a complete test set, a test set that detects all faults that change the circuit function, [Moore
§5]. Test set generation for "bounded sequential faults,” faults that can increase the number of
circuit states by no more than a fixed number of additional states, is possible in principle but not in
practice. The qualifier — "ii.at do change the circuit function” — is used above in order to allow
for the presence of untestable faults in the circuit under test.

UNTESTABLE FAULTS

An untestable fault is a fault that does not affect the circuit function. Untestable faults are sometimes
called undetectable faults. There are four mechanisms that can cause a fault to be untestable:

(1) Redundant circuitry ~— the fault can occur in some portion of the circuit that is redundant in the
sense that it has no effect on the circuit function. The usual reason for the presence of redundancy
is a design mistake. This situation is demonstrated in Fig. 4a. Stuck-at-1 faults on leads 1,2,3, or
4 are untestable as are stuck-at-0 faults on leads 5 or 6. Since either M or N is always 0, the output
of the bottom OR gate (lead 2) is always 1. Neither the bottom OR gate, the two Inverters, nor the

output AND gate are required and, in fact, the output function could be taken from lead G rather
than F.

(2) Internal signal dependencies — there may be one or more internal gates at whose input leads
some pattern or patterns cannot occur. For example, in Fig. 4b it is not possible to have a 1-signal
on both inputs to the OR gate. In such a situation, any fault that changes the gate function for only
the input combinations that never occur will, of course, have no effect on the entire circuit
operation. In Fig. 4b an example of such a fault is one which changes the OR gate to an XOR gate.
The presence of such faults cannot be detected by a Boolean test.

(3) Hazard control circuitry — if part of the circuit is present to eliminate a hazard, faults that
disable the hazard control will not be detectable since they have no effect on the static circuit
operation. In Fig. 4c the output H of the bottom AND gate is only 1 when both A and B are 1, in
which case one of the other AND gate outputs must be 1 since X or X' must be 1. The bottom
AND gate is present only to prevent a static logic hazard and cannot be detected by a Boolean test.
For a discussion of hazards, see Chapter 3 in [McCluskey 86].

(4) Error control circuitry — Circuitry is sometimes added to a design in order to detect failures
while the system is in use. The circuit in Fig. 5 is a 2-line to 4-line decoder with added error
detection circuitry. Since exactly one of the decoder outputs is equal to 1, one of the OR gate
outputs is always 1 and the XOR gate output (E) is always 1. Any decoder failure that causes all
outputs to be 0 will change E to O since both inputs to the XOR gate will be 0. Similarly any failure
that makes both inputs to the XOR gate equal to 1 will change E to 0. When the decoder circuitry is
fault-free, the E output is always 1, so that the fault E stuck-at-1 is undetectable.
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. Figure 4. Three implementations of a 2-line to 1-line multiplexer illustrating untestable faults.
y (a) Redundant circuitry, (b) Signal dependency, (c) Hazard control circuitry.
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Figure 5. 2-line to 4-line decoder with error detection circuits.

EXHAUSTIVE TEST SETS
In order to test a circuit for the presence of combinational faults, an exhaustive test set is required.

Definition: An Exhaustive Test Set for an n-input combinational circuit is the set of all 2" possible
input vectors. For a sequential circuit, an exhaustive test set is a checking experiment, [Friedman
71].

The exhaustive test set for the Fig. 1 multiplexer consists of all 10-bit patterns, 1024 of them, since
there are 10 inputs to this circuit. Only combinational circuits are considered here. Sequential
circuit testing is important, but it appears uneconomic to test large sequential circuits without using
a scan path technique to permit the use of combinational circuit tests, [McCluskey 86).

Theorem. The smallest test set that detects any combinational fault in an n-input combinational
circuit is the 2" pattern exhaustive test set.

Proof. Suppose a shorter test set is used. Then at least one input pattern is not applied. The
combinational fault that changes the circuit function for only this input pattern will not be detected.
Suppose all input patterns are applied, then any combinational fault must change the circuit output
for at least one pattern causing the fault to be detected.
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There are two difficulties with exhaustive test sets:

(1) There are two classes of physical failures that can cause non-combinational faults. The
bridging fault of Fig. 3b is an example of one such fault class that can fail to be detected by an
exhaustive test. Failures in which two points in a circuit are incorrectly connected together are not
uncommon. Such failures can be modelled as bridging faults, [Mei 74]. Some bridging faults can
introduce additional states into a circuit.

The other important non-combinational faults, stuck-open faults, occur in MOS circuits. They are
caused by charge storage on nodes that have some of their connections removed due to open-circuit
failures, [Wadsack 78]. A lot of attention is now directed towards detecting MOS stuck-open
faults. One approach derives tests for specific MOS stuck-open faults and adds these to a
stuck-fault test set, [Reddy 83], [Jha 85]. This process is expensive in the amount of required
computation. Another method adds circuitry to the MOS circuit to facilitate testing for MOS
stuck-open faults, [McCluskey 81], [Liu 87]. The cost penalty for this technique is the area
overhead of the additional circuits. The most promising method when the layout can be controlled
is to design the gate geometry so as to reduce the possibility of a MOS stuck-open fault to an
acceptably low value, [Zasio 85], [Koeppe 87). A recent study to determine whether stuck-open
faults occurred in significant numbers in production CMOS chips did not detect any stuck-open

faults, [Turner 85]. This suggests that stuck-open faults may not be a concern for well-designed
CMOS chips.

Bridging faults have received much less attention than MOS stuck-open faults, but there seems to
be no justification for this. The bridging faults appear to be, if anything, more common than the
MOS stuck-open faults. It is possible to generate tests for specific bridging faults and add these to
a stuck-fault test set. Another approach would be to control the layout to reduce the probability of
non-combinational bridging faults.

(2) Tre other difficulty with exhaustive test sets is that they can be very long. For an n-input
combinational circuit, all 2" input patterns are required for an exhaustive test.

If the number of inputs to a circuit is so large that exhaustive testing is not feasible, it is necessary
to adopt a more restrictive fault model than the combinational fault model.

PSEUDO-EXHAUSTIVE TEST SETS

For circuits in which each circuit output depends on a subset of all the inputs, it may be feasible to
test each output exhaustively even though the entire circuit is not tested exhaustively. This
technique is based on a fault model, the constrained dependence fault model, which assumes that
the set of inputs on which a circuit output depends is not increased by the presence of the fault.
The corresponding test set that applies all input combinations of each set of inputs on which a
circuit output is dependent is called a pseudo-exhaustive output function verification test set,
[McCluskey 82A,B, 83, 84A,B]. Since each of the outputs in the Fig. 2 multiplexer depends on 6
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inputs, each output can be tested exhaustively with 64 patterns. It is possible to test both outputs at
the same time, using only 64 patterns, by using the pseudo-exhaustive test method.

For some circuits, this output function verification test may be too lengthy. A further restriction on
the fault class test is then necessary. The circuit must be then segmented into subcircuits, each of
which is tested exhaustively. This process is called pseudo-exhaustive segment function
verification and is described in [McCluskey 81]. For the Fig. 2 multiplexer circuit this type of test
can be done with 16 (rather than 64) patterns. Each of the six AND-OR circuits labelled in the
figure is tested exhaustively.

VERIFICATION TESTING

Most combinational networks have more than one output. In many cases each of the outputs
depends on only a subset of the inputs. For example, the parity generator network of the TI
SN54/74LS630 (shown in Fig. 6) has 23 inputs and 6 output functions, but each output depends
on only 10 of the inputs. It may not be gractical to exhaustively test the outputs by applying all
combinations of the network inputs (223 for the example). However, it may be possible to
exhaustively test each output by applying all combinations of only those inputs on which the output
depends. For the SN74L.S630, each output can be exhaustively tested with 210 =1024 input
patterns and all six outputs tested one after another with (6)(1024)=6144 patterns. In fact, for this
circuit it is possible, by an appropriate choice of input patterns, to apply all possible input
combinations to each output concurrently rather than serially. Thus, with only 1024 rather than
(6)(1024) test patterns, each output can be tested exhaustively by using the verification testing
techniques described in [McCluskey 84B] and [Barzilai 81].

The SN74L5630 is an example of a circuit for which it is possible to test all outputs concurrently
by applying (to the entire circuit) only as many patterns as are necessary to exhaustively test one of
the outputs. Two inputs that never appear in the same output function can have the same test signal
applied to both. (Applying the complement test signal to one of the two inputs is preferable since
this does not increase the cost of the test and increases the bridging fault coverage.) This fact can
be used to reduce the number of required test signals. If the number of required test signals is

equal to the maximum number of inputs upon which any output depends, the circuit is called a
maximal test concurrency circuit, MTC circuit.

An example of a very simple non-MTC circuit with three inputs and two outputs is shown in
Fig. 7. The f output depends only on inputs w and x, while the g output depends on x and y. Itis
possible to apply the same test signal to both w and y since no output depends on both of these
inputs. The four input patterns shown in the figure are such that all possible combinations of
values are applied to w and x, and also all combinations of x and y are present. Thus, both outputs

f and g are tested exhaustively by only four input patterns rather than the eight patterns required for
full exhaustive test.
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'&' Figure 8 shows a very simple example on a non-MTC circuit. There are three inputs and each ]
:.z:, possible pair occurs in some output function. Thus, no two inputs can have the same test signal '
:: ' applied to both. Three test signals are required; however, it is possible to test each of the output "
Py functions exhaustively with only four test patterns. All outputs are tested concurrently with the )
- same number of test patterns that are necessary to test one of the outputs. This is an example of the
o general situation of an n-input circuit in which each output depends on at most n-1 inputs. Such ;
o circuits can always have all outputs tested concurrently with at most 2! test patterns. The :

. : Y . . it ¢ patt

e appropriate patterns are all n-bit vectors having the same parity (either all even parity as in Fig. 8 or
R all odd parity).
e \
.q' il
% ¢ 1100 w Py &

o - f(w,X) .
W
N 1 01 0 «x
o
o

Ro

—g(x.y)

"-;'&"ﬁ';r"*"-{ .
o
—t
—
o
<

Al
.

AN
Qo

— h(w.y)

T

O -.

)

o f

3 Figure 8. Simple example of a 3-input, 3-output non-MTC circuit with verification test inputs.
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A simple example of a non-MTC circuit for which it is not possible to verify (test concurrently) all
' outputs with the same number of patterns required for testing a single output is shown in Fig. 9. In
this circuit, each of the 6 outputs depends on 2 of the 4 inputs. All 6 outputs are verified with the 3 a
input patterns shown on the figure. To test the circuit exhaustively would require 16 patterns. ’
! Testing exhaustively each of the output functions in succession takes (4)(6)=24 patterns. It is
possible to test pairs of outputs such as f1 and f6 at the same time since they depend on disjoint sets
of inputs. This strategy requires 3 tests of 4 patterns each or 12 total patterns. The numbers of
- inputs and outputs used in this example are too small to be significant. However, it does serve to
illustrate the percentage reduction in test length obtainable with verification test techniques.

’ i (wx)
! 11100 w f2 (w.y)
i 11010 x N — fq (W,2)
: 10110 y L f, (xy)

01110 2z — g (x,2)
—— fg (v.2)

's Figure 9. Simple example of a 4-input, 6-output non-MTC circuit with verification test inputs.

It has been shown in [McCluskey 84B] that any network for which no output depends on all inputs

can be tested pseudo-exhaustively with fewer than 2" test patterns. This paper also derives a

specification for test sets that consist of constant-weight vectors. Theoretical results on the use of

constant-weight vectors are derived in [Tang 83] and on the minimum number of vectors for an

output verification test set in [Chandra 83]. Since constant-weight counters are not, in general,

easy to realize economically, several schemes to use linear feedback shift registers have been
' developed. These are discussed in the section on implementations.

If any output depends on too many inputs (a typical bound is 20 since this corresponds to a test
length of approximately one million vectors), output verification is not sufficient as a pseudo-
exhaustive test. For such a network, the network (or that portion that cannot be tested using output
verification) must be tested using the techniques described in the section on segmentation testing.

For output verification testing, the objective is to calculate a verification test set, which is defined as
follows.
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Definition: A Verification Test Set (VTS) for a network N is a set of network input patterns. These V.
patterns have the property that the subset Ij of the network inputs, upon which output fJ depends, i
has all possible combinations of values applied. This must be true for all j. :
DEPENDENCE MATRIX 3
2
The only information about the network N required to determine the VTS is the input sets I;. The '
specific functional dependence of ouputs on inputs is not required. The required information is 4
conveniently represented by means of the dependence matrix D(N). -~
Definition: The dependence matrix (D(N)) for a network N has m rows and n columns. Each row ,::
represents one of the network outputs and each column one of the network inputs. An entry is 1 if )
and only if the corresponding < utput depends on the corresponding input. All other entries are 0. 9
The dependence matrices for Figs. 6 and 7 are shown in Table 4. iy
"
Table 4. Dependence Matrices for Figs. 6 and 7. (a) D(N) for 74L.S630 Network of :_
Fig. 6, (b) D(N) for Fig. 7. A
(a) “.::
| DATABITS | CHECK BITS | | bt
0123456789101112131415|0 1 2 3 4 5 |S0.S1 | j
Jroeerereresmese e - e |
SBO (1101100011 1 00Ot OO0 |100000]| 1 | 8-
SB1 |1011011010 0 1 00 1 0}|010000| 1 | %
SB2 0110110101 0 01 00 1|001000| 1 | o
SB3 1110001100 1 1 1 000 |000100]| 1t | ]
SB4 0001111100000 111000010 1 | h
SBS 0060000011 t 1 111 1]000001 | 1 | »
N
:
b !
(b) ¥
I w x y |
f ] 1 1 0 |
gl O 1 1 |
3
.\-
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P

The dependence matrix is simply calculated by tracing paths from outputs to inputs. There is the
possibility that this method can result in a situation in which the matrix indicates that an output
depends on some inputs for which there is no functional dependence due to the logic realized by the
network. For example, in the network of Fig. 10, path tracing would indicate that f depends on
u,v,w,x,y, while there is, in fact, no functional dependence of f on w.

P AR

Better fault coverage is obtained by using structural rather than functional dependence. An output
p is more likely to be affected by a fault in a variable on which the output is structurally dependent
y than a fault on which the output has no dependence at all. If the structural information is available
there can be two advantages in using the structural rather than the actual functional dependency:
better fault coverage and less computation. In some situations, only the functional dependence
information is available. The dependence matrix can be constructed directly from this information
without any consideration of the structure.
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Lemma 1. Letx; and X be two inputs of N such that there is at least one output that depends on
both x; and X;. Then in any verification test set for N, x, and X; must be assigned all 4 possible
pairs of values.

Lemma 2. Let A= [x,, X; ,-.-X; ] be a subset of the inputs with the property that no two of these
inputs are both present in any Ij . Thus no output depends on more than one member of A.. A

VTS exists in which the members of A  always have the same value assigned to all of them for each
input pattern.

The first step in finding a VTS is to determine the subsets As which can have common inputs. This
is done by partitioning the columns of the dependence matrix D(N) to form a partitioned
dependence matrix.

Definition: The partitioned dependence matrix (DP(N)) corresponding to D(N) is formed by
partitioning the columns of D(N) into sets such that:

(1) Each row of a set has at most one 1-entry, and
(ii) the number of sets, p, is a minimum.

There is a corresponding partition, P, of the network inputs in which all inputs belonging to the
same set of columns of DP(N) are included in the same class A,. To determine the VTS for a
network, N, it is first necessary to obtain a partition, P. For each pattern in the VTS, all inputs of

the same class of P are assigned the same value. Table 5a illustrates this. The DP matrices
corresponding to Table 4 are shown in Table 5.

BUILT-IN TESTING: EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TESTING 19

AT T W A
ST AT R A AT R,

L 4
e

AT

WATA

TN O X Y A% e Y 44 W N YN B, A O T T ey O W N Y, . . LARA Sl Ad Al AR R i Ay b Jopon b nul

PA NN

AR NP

S -r

x .

- LT

£ O

P R PR o S L)

- Yy ¥ A



e o o o 2 J

SBO
SB1
SB2
SB3
SB4
SB5

P =

(b) DP(N) for Fig. 7, (c) VTS for Fig. 7, (d) RVTS for Fig. 7.

(a)

Table 5. Partitioned Dependence Matrices for Figs. 6 and 7. (a) DP(N) for Fig. 6,

DATA BITS CHECK BITS
0151143124118796105132012345SOS1
1 01 0j1t0f1 010|101 O0O|1T0f{1T O0OCOO0O 1
1 0j0o 1|1 0j0 111 0|j01|j]01]0O1]0 1 00 0O 1
0 1|1 0j01]10fO1j1O|0O1jO1[0O O 1 O OO 1
1t 0jt0]j01j01}j01{0 1|1 0|0O1]0 0 0 1 0O 1
0o tfo 1yt of1o0l01|01}|]01|]1 00 000 1O 1
0 1j0 1|0 1j0 1j1 0}J1 0|1 0|1T0]O0 O OO O 1 1
(DBO,DB15) (DBO,DB15) (DBO,DB15) (DBO,DB15) (DBO,DB15) (DBO,DB15)

(DBO,DB15) (DBO,DB1S) (CBO,CB1,CB2,CB3,CB4,CB5) (S0.S1)

p =10, W= 10

(b) (c) (d)

A%

w Yy X WYy X y

f 11 0 |1| 00O 0
g 10 1 |1] 001 0
110 1

P = (w,y)(x), p=2, W=2 111 1

RO OX

There may be more than one DP(N) corresponding to a D(N) matrix, as is illustrated in Table 6.
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Table 6. Example of D(N) for which PD(N) is not Unique. (a) D(N), (b) DP(N).

(a) (b)
123456 123 45 6 12 34 56
1100101 | ] 1001} 101 1| | 10101 1] 0 1]
1 010100 | | 01011010 lor | 01011 0O0]
|l 001010 | 1l 0011011 0 | 1 001101 10|
P = (1,2,3)(4,5) (6) P = (1,2)(3,4)(5,6),
n=6, p=3, W=3 6>3=3

Definition: Let W be the maximum row weight (maximum number of 1s in any row of N).
Lemma 3. For any N itis true thatn > p2>W.

Table 6 shows an example for which n > p = W, and a matrix for which n > p > W is shown in
Table 7.

Table 7. A DP(N) Matrix for which n>p> W,

COoOrR P
RPROO
O ORO
HOR OO

| | I |
| | i ]
! | | | n=4, p=3, W=2
| | | {
| I | |

VERIFICATION TEST SET GENERATION

It follows from Lemmas 1 and 2 that a Verification Test Set can be derived in which all inputs
corresponding to the same partition of DP(N) have the same test signal applied and any two inputs
from different partitions have distinct test signals applied. In the following discussion, only
verification test sets in which all inputs of a partition receive the same test signal will be considered.
It is thus convenient to use a reduced partitioned dependency matrix. In actual practice, it is often
advantageous to apply the complement of a test signal rather than the test signal itself to some of the
inputs from the same partition. The advantages of this arrangement are increased coverage of
bridging faults between two different partitions and more equal loading on the stages of the test
pattern generation circuitry.
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Definition: The reduced partitioned dependency matrix (RDP(N)) is obtained from DP(N) by
replacing each column of DP(N) by a single column in which a row has a 1 iff any column of the
corresponding row of DP(N) has a 1. DP(N) has m rows and p columns.

To avoid having to write identical columns many times, a reduced verification test set will be
specified.

Definition: A reduced verification test set (RVTS) is obtained from a verification test set by
removing all repetitions of identical columns. Each column of an RVTS will typically correspond
to one class of network inputs.

"v"‘
A

An example of an RVTS is shown in Table 5d.

. \"- A

Theorem 2. If p = W, the minimum-row RVTS has 2% rows and each possible row appears
exactly once. The corresponding circuit is a maximum test concurrency circuit, MTC.

This is illustrated in Table Sc. Also, Table 5a shows that p=W=10 for the 74LS630 network of
Fig. 7. The 74LS630 parity generator can thus be tested with a minimum-length verification test set
having 210 patterns. This is a considerable reduction from the 223 patterns required for classical
exhaustive testing. Each of the six outputs could also be tested exhaustively in sequence with a
total of (6)(1024) patterns. This strategy requires a longer, more complex test application
procedure and response analysis technique than the minimum-length verification test set.

LA

£ 7,

70

Each row of the RPD(N) matrix corresponds to one circuit output. The columns in which the row
has 1s correspond to the input test signals upon which that output depends. The following
conditions on the RVTS follow directly from these observations.

L X

Theorem 3. Suppose that V is a t by p matrix representing a RVTS for RDP(N). Corresponding to
each row r; of RDP(N) define a submatrix V, of V which consists of only those columns of V N
which correspond to columns of RDP(N) in which ni has a 1. Then if V represents a RVTS for =
RDP(N) each submatrix Vi has each possible binary combination appearing at least once.

AN

This is illustrated in Table 8. The submatrix V, that consists of columns a,b, and d of Table 8b and S
corresponds to row 2 of Table 8a is shown in Table 8c. All eight possible combinations of three -
bits occur in Table 8c, thus satisfying the conditions of Theorem 3. Note that the row 11001 is I:

missing from Table 8a and that the corresponding columns — a,b, and ¢ — of Table 8b do not
contain all combinations (000, 101, 011, and 110 are missing).

Y

Table 9 shows a V matrix for which any 3 columns contain all binary combinations. This matrix is
a Universal RVTS, a RVTS for any RDP(N) having p=5 and W=3. It is thus possible to use the V
matrix of Table 9 as a RVTS for Table 8a in place of the V matrix of Table 8b. The disadvantage of
using Table 9 is that it contains two more rows than Table 8b. The advantage is that V matrices
such as Table 9 are much easier to construct and generate electronically than those such as Table
8b. Table 8 was included to illustrate the general possibilities for RVTS construction. Only
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o matrices such as that of Table 9 will be considered in the following discussion. The ease of !

constrmction and generation of such matrices is felt to outweigh the disadvantage of their lack of
minimality for specific networks. For self-iest designs, the general matrices such as Table 9 are of )

] greatest importance. : 5
: A Table 8. An example of a Verification Test Set. (a) RDP(N), (b) V,(c) V, :
| ‘

(™)
e (a) (b) (c)
la bcdel la bcdel la b di y
z. 111110 0] 1100 0 O] 110 0f N
- 2 111010| (0001 1] 10 0 1]

311010 14 j0 01 0 1] [0 0 O]
'~ 4 |1 0011] 11 01 10| 1 0 1]
L~ S 101110 11100 1} 11 0] ;
o 6 10110 1} 01010} 10 1 11 .
Yy 710101 14 {001 1 0 0] {0 1 0O} E
. 8 1001 11| 1111 1] 111 1}
o :
j',: Table 9. A Universal Verification Test Set for p=5 and W=3. .
2, ’
:: la b c d el 4
i 111 000 0}
_ 210100 0]
<5 310010 0] N
Ny 410001 0 -
N 5 10000 1]
.
o 6 10111 1] j
. 711 011 1]
. 8 |1 1011] .
» 9 11 110 1] '
< 1011 111 0] :
- .
-\ UNIVERSAL REDUCED VERIFICATION TEST SETS :
::'.‘ Definition: A p-column matrix is a universal reduced verification test set matrix, U(p,w), iff all :
o submatrices of w columns (and all rows) of U(p,w) contain all possible combinations of w binary
. digits.
-5 The matrix of Table 9 is a U(5,3) matrix. A
> \
N
2
o
N.
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Lemma 3. Any U(p,w) matrix is also a U(p,j) matrix for all j less than w.

Lemma 4. A U(p,w) matrix specifies a RVTS for any network with the same value of p and W=w.

Theorem 4. For p = W + 1, the minimum-row U(p,W) = UW+1,W) has 2%W rows. Two types
of U(W+1,W) exist: one has all possible even-parity rows and the other all possible odd-parity
rows. This is illustrated in Table 10. Figure 8 also shows a constant-parity RVTS.

Table 10. Example of RVTS whenp =W + 1. (a) DP(N), (b) Even-parity RVTS,
(c) Odd-parity RVTS.

(a) (b) (c)

3 3
1 2 34 12 4 1 2 4
1111100] 00090 001
1110110} 011 010
1110101 101 100
j011110] 110 111
(0111011

Proof. A constant-parity U(w+1,w) has w+1 columns and 2V different rows. If one column is
removed, there are 2W different w-bit rows. (These produce an exhaustive test on the
corresponding p inputs.) The bits of the removed column are determined by the requirement that
each w+1 bit row have fixed parity. Thus, if two w-bit rows were identical, the corresponding
w+1 bit rows would be identical. This isn't possible because of the definition of the U(w+1,w).
The constant-parity U(w+1,w) has a minimum number of rows since 2% rows are required to have
all patterns occur in w columns.

When p > W+1, more than 2P patterns are required for verification testing of the network. In fact,
finding the minimum set of verification test patterns when p > W+1 is a difficult combinatorial
problem, which appears to have been solved exactly only for the case of W = 2, [Chandra 83].
Fortunately, finding the absolute minimum test set is of more theoretical than practical interest.
Systematically derived test sets are most useful for actual testing applications. It is possible to
derive universal verification test sets as sets of constant-weight vectors. Table 11 lists universal
verification test sets for values of k from 2 to 10, [McCluskey 82b]. Each U(p,w) is made up of
submatrices containing all possible rows of p columns having a specific weight (number of 1s).
For example, the U(5,3) of Table 11 contains all possible rows of weight 1 or 4. The notation used
in Table 11 for specifying U(p,w) is pli,j,k], which represents a p column matrix containing all
possible rows of weight i, j, ork. The notation B(i,j) specifies the binomial coefficient of i things
taken j at a time. Only values of p>w+1 are listed in Table 11. When p=w, the U(p,w) is simply all
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b binary combinations of p bits. For p=w+1, the U(p,w) is all constant parity p-bit rows. Proofs of o~
: the entries in Table 11 can be found in [Tang 83). b

The rows of Table 11 for even values of w have two entries for U(p,w), both of which have the
same length. The second entry can be obtained by complemenung (interchanging Os and 1s) the
; first entry. Odd values of w produce minimum-row matrices that are self-complements. Since all

combinations must be present in the submatrices, 0 and 1 can be interchanged without disturbing
the properties of the matrix.

R YRES

w
Lemma 5. If p[i,j k] represents a U(p,w) matrix, then so does p{p-i,p-j,p-k]. :,'.E
TN
Table 11. Specifications for U(p,w). ]
]
| | Number of | ::':,
|w | U(p,w) | Range | Tests (rows) | .:::
e e m o mmme s e em = mmmm - ——— o mmm mmmm m e 1
¥
| 2 | plOp-1] pl1,p] | p>3 | p+l | .
I 3 | pllp-1] | p>4 | 2p | y
| 4 |  pllp-2] p(2,p-1] | p>5 | 172 p(p+1) | ..
; = 5 | pl2,p-2] | p>6 | p(p-1) 1 b
| 6 | pl2,p-3] p(3,p-2] | p>8 | B(p+1,3) | )
! 6 | pll47] | p=8 | 172 p(p+1) { ]
R Rt T .
[ 7 1  pl3,p-3] [ p>9 | 2 B(p,3) l '
} 7 1 pl03,6)9] | p=9 | 170 | NN
--------------------------------------------------------------------------------- | s:: .
D | 8 | p[3,p-4] (4,p-3] | p>11 | B(p+1,4) | o)
| 8 | pl0,3,69] p[1,4,7,10] | p=10 | 341 I v
| 8 | pl0,4,8] p(3,7.9] | p=11 | 496 | .
O | '
| 9 | pl4,p-4] | p>12 | 2 B(p,4) | ;:E;
I 9 | pl(1,4,7,10] | p=11 | 632 | iy
| 9 | pl043,12] | p=12 | 992 | o
| T | X
| 10 | pl4,p-5] [5,p-4] | p>14 | B(p+1,5) |
| 10 |  p(1,4,7,10] p[2,5,8,11] | p=12 | 1365 | !r..
| 10 |  p[0,4,8,12] p[1,59,13] | p=13 | 2016 | 2
| 10 | p[0,5,10] p[4,9,14] | p=14 | 3004 | 7
-------------------------------------------------------------------------------------------------- A
N
23
}",;'
b
..
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Consider a circuit with n inputs and B(n,w) outputs in which each output depends on a different
subset of w of the circuit inputs. Such a circuit represents a "worst case" circuit with limited
dependency of outputs on inputs. A comparison of the test lengths required for the S4L.S630 using
different techniques is given in Table 12.

Table 12. Comparison of Different Test Lengths for Worst-Case Circuit.

Technique | Test Length

---------------------- | n=pw | w=10 | n=23, w=10 |
Exhawsive Tost T T - 5388608, |
Universal Verification Test | U(pw) | B(n+1,5) Tansos
i\-/[inimum Verification Test | —_ _— | 1,024. -“I

For BIST applications, the test sets specified in Table 11 could be implemented with
constant-weight counters. It is also possible to use LFSRs (linear feedback shift registers) to
generate verification test sets. The LFSR test sets are longer than the constant-weight test sets, but
require fewer components. These issues are discussed further in the section on implementations.

SEGMENT VERIFICATION TESTING

It is possible that an output verification test set for a particular circuit is too long. This could be
because some outputs depend on all inputs and 2" is too large; or because the output verification
test set, even though smaller than 21, is too long. In other words, there are circuits for which the
output verification test approach does not result in a satisfactory test procedure. A
pseudo-exhaustive test is still possible for such circuits, but it is necessary to resort to a partitioning
or segmentation technique, [Bozorgui-Nesbat 80], [McCluskey 80,81]. The circuit is segmented
into two or more subcircuits, and each segment is tested exhaustively.

Figure 11 shows Circuit A, a simple 6-input, 2-output circuit which will be used to illustrate this
technique. An exhaustive test of this circuit takes 64 test vectors since n = 6. Output verification
can be done with 32 vectors since F, depends on 5 inputs. Two segments are shown on the figure:

Segment G with inputs W,X,Y and output g; and Segment H with inputs U,V,g,Z and ouputs F,
and F,.
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In order to test segment G exhaustively, all 8 combinations must be applied to inputs W,X,Y and N
. the response at g must be observed. Application of the input combinations can be done directly :
since all of the segment inputs are circuit primary inputs. Observation of the response requires that Y,
g be observable at a circuit primary output. This can be accomplished by using a multiplexer to -;{: )
connect g to a circuit output during test or by setting the other primary inputs to the circuit so as to :;u.
sensitize a path from g to an output. By setting Z = 1, a path is sensitized from g to F,. This b
arrangement is shown in Figure 12, along with the corresponding test patterns. W
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Figure 11. Circuit A, a simple example circuit with two segments shown.
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Figure 12. Exhaustive test of segment G of Circuit A.

\
» A

The exhaustive test of segment H requires that its inputs, U,V,g, Z be cycled through all 16
combinations. These are shown in Table 13a along with the patterns for segment G. The 24
patterns of Table 13a can be compressed since patterns 4 and 13 can be combined by filling in the
unspecified entries in pattern 4 to make it identical with the specified entries of pattern 13. Similar
combinations are possible for pattern pairs (5,21), (6,22), (7,23), (8,24). This compression
results in the 19 patterns shown in Table 13b. Since segment H is a multi-output circuit, it is

possible to test it with an output verification test rather than a full exhaustive test. This technique
requires the 12 patterns shown in Table 13c.
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The segment verification method illustrated by this example requires that the circuit be segmented
into subcircuits that each have fewer segment inputs that the number of circuit inputs. If the
numbers of segment inputs are a,b,...c, the test length will be less than or equal to 22 + 254 4
2. The segmentation is best provided by the circuit designer. The process of circuit segmentation
is similar to the system partitioning that must be done to fit a system on individual boards and chips.
If the designer does not provide a circuit segmentation, the segments must be found by running a
segmentation program, [Shperling 87], [Min 86], [Roberts 84].

In order to exhaustively test each subcircuit, all subcircuit inputs must be controllable at the input of
the circuit and all subcircuit outputs must be observable at the circuit outputs. This can be
achieved in two ways: (1) hardware partitioning and (2) sensitized partitioning. Access to the
embedded inputs and outputs of the subcircuit under test can be achieved by inserting multiplexers
and connecting the embedded inputs and outputs of each subcircuit to those primary inputs and

outputs that are not used by the subcircuit under test [Bozorgui 80]. By controlling the multiplexers,
all the inputs and outputs of each subcircuit can be accessed using primary input and output lines.
Muldplexers can reduce the operating speed of the circuit and are costly to implement. However, it is
possible to achieve the same testing discipline without actually inserting any multiplexers at all.

Circuit segmentation and subcircuit isolation can also be implemented by applying the appropriate
input pattern to some of the input lines. The effect achieved is similar to that of hardware
partitioning: paths from the primary inputs to the subcircuit inputs and paths from the subcircuit
output to the primary output can be sensitized. Using these paths each subcircuit can be tested
exhaustively. The methods to determine the appropriate inputs to sensitize the appropriate paths are
based on the sensitization techniques of the well-known D Algorithm. The details are discussed in
[Udell 86]. An example of the use of segment verification for the ''81ALU is described in
[(McCluskey 81].

FAULT COVERAGE

The various test techniques described differ in their fault coverage. Exhaustive testing has the best
coverage — all testable combinational faults. It is easy to show that output verification testing
detects all testable combinational faults that do not increase the dependency of outputs on inputs (add
entries to the dependence matrix). Segment verification testing is guaranteed to detect all testable
combinational faults that are confined to a single segment, [Archambeau 84]. Faults that are not
guaranteed to be detected may also be detected, but their detection cannot be guaranteed in general.
In fact, it is not easy to generate examples of faults that are not detected by any of these test
procedures. Such an example is given in [Archambeau 84}, but it involves a circuit designed
specifically to exhibit such a fault.
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Single-stuck faults are guaranteed to be detected by exhaustive and pseudo-exhaustive tests so that
fault simulation is not required to demonstrate 100% single-stuck fault coverage. Large segments

are preferred for segment verification because they guarantee greater fault coverage than smaller
segments.

BIST IMPLEMENTATIONS

There are two general classes of BIST architectures: (1) external BIST, in which test pattern
generation and response analysis is done by circuitry that is separate from the functional circuitry
N being tested, and (2) internal BIST, in which the functional bistables are converted into test pattern
» generators and response analyzers, [Bardell 83], [McCluskey 85]. Some external BIST schemes
N test sequential logic directly by applying test patterns at the inputs and analyzing the responses,
[Resnick 83], [Lake 86], [Vacca 87]. The techniques discussed here do not apply to such situations
since the test patterns are for combinational circuits only. The BIST schemes discussed here all

» assume that the functional bistables of the circuit being tested can be converted into a scan path for
testing, [McCluskey 86]. Such schemes are much more common than those that involve sequential
circuit testing.

: Only the test pattern generation circuitry is discussed here since signature analysis, [McCluskey 86],
. can be used to analyze the output response for any of the test schemes considered. Signature
analysis is the only BIST output response analysis scheme currently in use.

For exhaustive testing, a full cycle counter is adequate for either external or internal BIST. A binary
counter can be used, but a linear feedback shift counter modified to product the all-O state is usually
more economical, [McCluskey 86}, [Wang 86C,D,E]. The modified LFSR is adequate since the
sequence in which the patterns are applied is not critical. The implementation of exhaustive testing in
the Intel 80386 is described in [Gelsinger 86] and [Gelsinger 87].

Many different schemes have been proposed for output verification testing. The simplest uses a full
period counter to provide one test signal for each D(N) partition, [Barzilai 81], [McCluskey 83].
Multiplexers must be used to connect the same test signal to all inputs of a partition during testing.
For non-MTC circuits in which more test signals are required than p, the number of partitions, the
N test length can often be reduced by using a verification test set to avoid the generation of all 2P input
A patterns. Universal verification test sets can be generated with constant-weight counters, [Ichikawa
X 82]. The drawbacks to this technique are the difficulty of designing constant-weight counters and
g their high component count. These drawbacks are avoided at the expense of longer test times by
using LFSRs to generate the VTS, verification test sets.
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A simple scheme that uses maximum-length LFSRs to generate the VTS has an LFSR and a network .'.‘;
of XOR gates to generate the test signals, [Akers 85], [Vasanthavada 85]. This approach is .
particularly efficient for circuits with low values of w (the number of inputs upon which each output
depends). They are good for internal rather than external BIST architectures since they have fewer o~
bistables than test signals, making it difficult to do the parallel-to-serial conversion required for r
shifting signals into the scan path. o
“x
It is also possible to use a non-maximum-length LFSR to generate the test patterns. Designs based ;
on this structure require fewer components than those using full-length LFSRs, have the same e
length test sets for large w, and can be used for either internal or external BIST, but they are more .-
complex to design than those using maximum-length LFSRs and an XOR network. The designs are =
based on using a non-primitive polynomial for the LFSR. The appropriate polynomial can be found >
by using methods based on coding theory. Techniques based on linear codes are described in o
[Wang 84], [Tang 84], [Wang 86A,B]. Other techniques are based on cyclic codes, [Wang 84B], w
[Wang 87A], shortened cyclic codes, [Wang 87B], and punctured cyclic codes, [Chen 87].
k2
Less attention has been devoted to BIST implementations for segment verification tests. A design of :;
such a structure for the 181 ALU is presented in [McCluskey 81]. In [Udell 87] general BIST -
methods for implementing segment verification are described. vy
Y
o
CONCLUSIONS ;',:
rod
Techniques for exhaustive and pseudo-exhaustive testing of combinational circuits have been s
presented. They are suitable for BIST. Compared to pseudo-random, testing they require more 3
analysis in order to design the test pattern generation circuitry. The exhaustive techniques have the %
advantage of guaranteeing 100% detection of all testable single-stuck faults without the fault i
simulation needed to determine coverage of random tests. Exhaustive and pseudo-exhaustive tests N
provide very high coverage of failure modes that are not adequately represented as single-stuck N
faults such as multiple-stuck faults, bridging faults, intermittent failures. Of all the presently known o
test pattern generation methods, exhaustive and pseudo-exhaustive tests provide the highest quality o~
test. Further research is needed to develop better structures for implementing pseudo-exhaustive ¥
testing. _
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TEST INPUT PATTERN SELECTION
Fault Model Based
Function Based
Random and Pseudo-random

Exhaustive Test and Pseudo-exhaustive

(All assume faults do not increase number of internal states)
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EFFICIENT 16 STATE LFSR
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COMBINATIONAL CIRCUIT CLASSIFICATION
)
l. .
| PARTIAL DEPENDENCE CIRCUIT - PDC
- No output depends on all inputs

Verification test techniques useful

FULL DEPENDENCE CIRCUIT - FDC

Some output depends on all inputs
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Segmenting (partitioning) required
Y for pseudo-exhaustive testing
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Circuit of example 2

ot

D(N)
inputs
outputs |w x y

DP(N)
inputs
outputs X

U
C

f (W, X) 11 0 f (w, x) 1
9,y 01 1 g (w,y) |01
h (W, Z) 100 h (X, Z) 0

> wowm
P

A
i

s
x

Each row of a partition can have at most 1 entry

DP(N) is not Unique
wy or xz partition possible

LRSS

July 8, 1987
EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TEST




y - e e g W W W Vi T M Lo bt Y RSO AT R U Sl Pacdias i phu pia pto phe gia i m VA

s

Bl T e

f..

4%

[ AY RN
it

=
s

v f=z=u+v+xy

L

.L.
[ o™

!

P4
2

Y &,

e

i

A}

Y
1

P ¢

+ =Z+Y+WV
v | g y

1t ={u, v,w, x, y} Ig ={v,w, x,y, 2}

Tt A A -,
Wl P4 J'ff ."Q

P4
F

&

P

Y
b ) 'xl

2y

Network to illustrate calculation of I;
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f (w, x)

g (w, y)
h (x, 2)

RDP(N)

O = - |8

[ dd
OmOo=N|= o

test

RVTS(N
patterns (N)

(<X = bt

NMTC Circuit
Sharp VTS - 4 test patterns
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VERIFICATION TEST SETS - VTS

Each output has its inputs cycled through all possible ]
combinations

RS

SHARP VERIFICATION TEST SET

5 Test Set Length = Maximum length of exhaustive test set 3
for single output

o
]
oy T,

Minimum length VTS
e Meets lower bounds on VTS
Always exists for MTC circuit
Sometimes exists for NMTC circuit
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o D(N) for 745630 Network

i DATA BITS CHECK BITS
S 01234567 89101112131415/0 12 3 4 5|S0.S
. SBO (11011000111 00100 |100000]| 1
;" SB1{1011011010010010|010000] 1
g SB2 (0110110101001 001|001000| 1
SB3 (11100011001 11000(000100]| 1
o SB4 (0001111100000 111|000010]| 1
i SB5 (00000000111 11111[/0000071]| 1
e
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B | DB1 opi (o0 ) SBO
B'| DB14 DB2
c | pB3 DB3
C'| pB12 CB1 SB1
D | DB4 DB4
D'| DB11 DBS
E DB8 DB6 sBo
‘| oB7 CcB2
F | Bee T— e 74L.S630
F' | DB6 DB8
G | DB10O DB9 SB3
G'| DB5 CB3
n DB13 DB10
‘| pB2 DB11
I CB1,3,5 DB12 SsSB4
] BB13
J DB14 SBS
DB15
10-Stage cBS R
Counter S0.51 i
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o
S
-
W
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- 11010 x — f3 (w,z
7 N 3 (W,2) )
3 10110 vy L 1, (x,)
. 01110 z S f5 (x,2) R
> — fg (V,2) N
e NMTC Circuit with Test Inputs N
! 4-Inputs, 6-Outputs, 5 Test Patterns
No Sharp VTS Possible
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f,(vwx) |11100 |

f,(vwy) |11010 | Dependence

f4(vxz) |10101 | Matrix

fi(vy2) [10011 |

fs(wxy) |01110 |

fo(wxz) 101101 |

f-(wyz) 101011 | ]

f5(xyz) 100111 | NG
vwXYz

i
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Verification
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Test Set 9
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Patterns NMTC Circuit v,
Sharp VTS :
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Universal
Verification
Test Set

for
5 Test Signals

(p =5)
Maximum output
Dependence on
3 Inputs

(w=3)
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T
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Fag -

- - = 00000=<
240240004 0%g
- 202 -H00-400
SO0 u40-2000¢
O= = adadadO0OO000N

= OONOOHLWN -

o

Sharp VTS not possible
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Sharp Verification Test Set for
p = number of test signals = 3
w = Maximum Output Dependence = 2

(P=w+1)

Even Parity Odd Parity
Xy 2z Xy 2
0 00O 0 01
011 010
1 01 100
110 11 1

Sharp VTS always possible forp =W + 1
using all constant parity vectors
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Specifications for U(p, w)

AR FIFIFIESI T ML O

2" 0.0 0o 8.0 1288k S 2

Number of
w U(p,w) Range | Tests (rows)
2 | p[0, p-1] | p[1, P] p>3 p+1
3 | pl1, p-1] p>4 2p
4 | p[1, p-2] | pl2, p-1] p>5 1/2 p(p + 1)
5 [ pl2, p-2] p>6 p(p - 1)
6 | p[2, p-3] | pI3, p-2] p>8 B(p + 1, 3)
6 | p[1, 4, 7] p=8 1/2 p(p + 1)
7 p[3! p_3] P> 9 2 B(p! 3)
7 | pl0, 3, 6, 9] p=9 170
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Specifications for U(p, w)
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Number of
w U(p,w) Range | Tests (rows)
8 | p[3, p-4] pl4, p-3] p>11| B(p + 1, 4)
8 | pl[0, 3,6,9] p[1,4,7,10]| p=10 | 341
8 | p[oO, 4, 8] p[3, 7, 9] p=11| 496
9 | p[4, p—4] p>12| 2 B(p, 4)
9 | p[1, 4, 7, 10] p=11| 682
9 | plo, 4, 8, 12] p=12 | 992
10 pl5, p-4] p>14 | B(p + 1, 5)
10 pl2, 5, 8, 11]| p=12 | 1365
10 p[1, 5,9, 13]| p=13 | 2016
10 pl 4, 9, 14] p=14 | 3004
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. Comparison of Different Test Lengths for Worst-Case Circuit

s

o Technique | Test Length g

> | n=pw | w =10 | n=23, w=10 | ;
Ld - '.'

b Exhaustive Test | 2n | 2n | 8,388,608. |

- |
i Universal Verification Test |  U(p,w) | B(n+1,5) | 42,504, | N
' aee | 3
Minimum Verification Test | —— | S | 1,024, | N
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Reconfigure to

Scan Path FF's constant-weight
counter
Functional Test Mode Test
Circuit Control <+—Tes

Scan Path FF's

Reconfigure
to Signature Analyzer

A chip architecture for autonomous test
using verification test techniques
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PSEUDO-EXHAUSTIVE TEST
INDIVIDUAL OUTPUT VERIFICATION

Fault Coverage

ALL Irredundant Faults that
leave UNCHANGED or DECREASE
dependency of Output Functions
on Input Variables

SOME Irredundant Faults that
INCREASE
dependency of Output Functions

All Irredundant Single Stuck Faults

Tuly 8, 1987 EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TEST 66

A I T N T N

'
D W WV WP "
N N N N MO  NN RNA




R TR Y VN oY IV LvYwL 9, 400", Uk RN E PR SNV J v v U *n" W ‘bt i oy - .
ip,
s :
o,
> -
'od
‘l

o A e
-~
&

D,

PET OUTPUT FUNCTION VERIFICATION

For.

X Input Pattern Generation
Constant-weight Counter

Linear Feedback Shift Register
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PET SEGMENT FUNCTION VERIFICATION

Select Network Segments

Test Time Order 2™M+...+2"

Y
?'."\-1\?'- 55

instead of

L

Test Time Order 2™*+"

>

Implement Segments using
Path Sensitization or
Multiplexers
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SIMPLE SEGMENT EXAMPLE
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EXHAUSTIVE TEST LENGTH: 64
PET OUTPUT VERIFICATION LENGTH: 32
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Exhaustive test of F; AND gate added to
Exhaustive Test of G
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PET SEGMENT FUNCTION VERIFICATION
Simple Example Network Test Lengths
Exhaustive Test
PET Output Function Verification
PET Segment Function Verification

Path Sensitization
Multiplexers

EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TEST
July 8, 1987

64

32

10
13

76

---------------

D A A A T e
NV YN,

oo

1]

rr-‘

R

P

’

. el e Sea e, T L e Y .

SRty RN RN T N A ey A >
fuf.’)f:‘f}f: AP A’L'A."._'f._ A_’L’A_._L IL'A_LL'A." " A.F’~ A—"L_ L "._ Con s_ua.':s.'fz_'-'- \":'\. -_".1\ \-J_C!‘..- AN ‘- 5. \.J. v, AR o




o A

OO R W ™ o

o82

o83

'
(3
]
<
.

)

-

-

e b d
—

)
R,
%i]g

Dee

D8s

y b W
|

os10

oB11

0812

cB4

$B82
)
. s82
»—-l_/"
j‘%
)|
I 83
)
)
= sa3
-
]
)|
! s
B
=, 584

0813

oste

CcBS

(so-s1)

sas

July 8, 1987

&N;.'-‘u'h

s

655
¢ Y
g;g

EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TEST

oty

TR IS IO IS Fo Rt

-
x>

L

SRt G Iy A S T W s
DR X K A

'p
¥

e
e

@,

AR
'y I.' " !.‘ I' l.{ 1

AR

.
e
: \

NN RN S AN
LY '1‘;"'1’\(: AR

e

.

D P
AR

3
I'é
O,

AL PSP
L

RIS

<

”
s

s
Ly

AAEMAS
i)

-
Pyt

Wy
5

L
-
<

:'l
o

M
207

-
"

<. 195

2747

cL e




S g -

-----

July 8, 1987

SEGMENTATION OF 181 ALU

AIO BO AI1 B1 A|2 B2 A3 B3

22 1 N1 N1 N1 N1

S$2 —
S3 —

HO LO Hi1 L1 H2| |L2 H3| (L3

M
cn —J N2

b o o P
FO F1 A=B F2 F3 P Cn+4 G

214 Exhaustive Test Patterns
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PET VERIFICATION OF HI FUNCTIONS
16 TEST INPUT PATTERNS
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E\I 2 N1 N1 N1 N1
0=S1 —
0=S0 —

HO LO H1 L1 H2

L2 H3 L3

1=M
Ch — N
I I | | | | f |

FO F1 A=B F2 F3 P Cn+4 G
HO H1 H2 H3
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PET VERIFICATION OF N2 FUNCTIONS
Hi = (Ai Bi)', Li = Ai’ (No HiLi = 01)

34 AB tests 22 MCn tests, = 324 tests

)

(A0BO A1B1 A2B2 A3B3
0=S0 ] — —t —t—1 T
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N PET SEGMENT FUNCTION VERIFICATION

| 181 ALU Network Test Lengths .
: Exhaustive Test 4096 E
E Output Function Verification 4096 d
;‘. Segment Function Verification 356
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EXHAUSTIVE and PSEUDO-EXHAUSTIVE TEST

N
»
Is 2N Test Length Short Enough? Ny
YES - Use Exhaustive Test A
NO -~ Compute Dependency Matrix 3
and Partitioned Dependency Matrix e
v Q::.
Is U(p, w) Test Length Short Enough? o
YES - Use PET Output Verification .
NO — Determine Network Segments 3_.;-
for Segment Function Verification oo
19
Place Multiplexers or Compute ~)
Inputs to Sensitize Outputs ;
’
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. EXHAUSTIVE and PSEUDO-EXHAUSTIVE TEST X
N EVALUATION N
A :
< Possibly Required N
ud | Fault-Free Simulation %
Dependence Matrix Calculation ]
b Partitioning of D(N) )
Segmentation Calculation N
Sentization Calculation o
]
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' EXHAUSTIVE and PSEUDO-EXHAUSTIVE TEST
3 EVALUATION
: Not Required y
'_ Fault Simulation '
¥ ATPB (LASAR) program
e Testability Measure Program
v
Circuit Modification to increase
N fault coverage
Very high fault coverage:
Single Stuck Faults All Detected
:.:.'
P
3 EXHAUSTIVE AND PSEUDO-EXHAUSTIVE TEST
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