710-1	190 109	THE (U) DEC	ORETI NAVAL 87	CAL NO L POST	del of Gradua	THE C	ATHODI	E SPOT DNTERE	ON A Y CA	UNIPO	AR AR	C 1/	2
UNICL	RSSIFIE	D Faran								F70 /	2073		
		5.0		s.,								:	
				_									

مر عالم 19 - 19 مالم مالم (Ala Caller) مالم (Ala Caller) ماله الم

1.2.2.2.2.2.2.2.2

026

88 3 16

IN APPORT COCUS							
INCI ACCTET			ID RESTRICTIVE	MARKINGS			
28. SECURITY CLAS	SIFICATION AUTHORITY		3 DISTRIBUTION / AVAILABILITY OF REPORT				
26. DECLASSIFICAT	ION / DOWNGRADING SCHEDU		Approved for public release; distribution is unlimited.				
4 PERFORMING OF	RGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATIO	N REPORT NUM	BER(S)	
6a. NAME OF PERF	ORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING OR	GANIZATION		
Naval Post	graduate School	33	Naval Pos	tgraduate	School		
6c. ADDRESS (City,	State, and ZIP Code)		76. ADDRESS (C	ity, State, and 2	ZIP Code)		
Montoror	California 93943-1	5000	Monterey	Californi	a 93943-5	5000	
monterey,			noncercy,				
8a. NAME OF FUN	DING - SPONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	IT INSTRUMENT	IDENTIFICATION	N NUMBER	
8c. ADDRESS (City,	State, and ZIP Code)		10. SOURCE OF	FUNDING NUM	BERS		
			ELEMENT NO.	NO.	NO	WORK UNIT	
17		18 SUBJECT TERMS	Continue on rever	te if nerettary	and identify by	block number)	
		18 SUBJECT TERMS	Continue on rever	se it necessary	sna identity by	block number)	
		Un	ipolar Arci	ng, Catho	de Spot		
A theoreth was conduct and Electric presented. cathode sp a system Steenbeck determine for arc c for copper	cal study and co sted. The underly ron Emission nee Two models of pot is begun. A s of equations th Minimum Principle the cathode spo urrents of 100, 1 stable arcs occu	mputer analys ying theories ded for an unipolar arci stationary mod hat is not c e, is utilized t parameters. 50, 175, 200, ar only for ar	of Plasma understanding are reviel of the losed. A million and a c Results of 300, and a c currents	Physics, ing of c viewed ar cathode s method o omputer of the a 400 Ampe greater	Space Ch sthode pl ad an ana spot is fo f solutio program analysis a res. It i than 200	arge Effect henomena an alysis of the rmulated with n, using the developed are present is found the Amperes.	
			21. ABSTRACT S	ECURITY CLASS	IFICATION		
20 DISTRIBUTION							
20 DISTRIBUTION	SPONSIBLE INDIVIDUAL		226 TELEPHONE	(Include Area© 5-2635	Code) 42c. OFFIC	CE SYMBOL	
20 DISTRIBUTION 20 UNCLASSIFIE 22a NAME OF REP Prof. F. Sc DD FORM 1473,	SPONSIBLE INDIVIDUAL Chwinzke , 84 MAR 83 Al	PR edition may be used u	22b TELEPHONE 408-646 ntil exhausted	(Include Area C 5-2635 SECURI	Tode) 22c. OFFIC Code	CE SYMBOL CE 615W ION OF THIS PAGE	
20 DISTRIBUTION 20 UNCLASSIFIE 223 NAME OF RE Prof. F. Sc DD FORM 1473,	SPONSIBLE INDIVIDUAL Chwirzke , 84 MAR 83 AI	PR edition may be used u All other editions are o	22b TELEPHONE 408-646 ntil exhausted boolete	(Include Area C 5-2635 SECURI	Code) 22C. OFFIC Code ITY CLASSIFICATI	CE SYMBOL e 61SW ION OF THIS PAGE IN PUNTING OFFICE: 1986-6	
20 DISTRIBUTION	SPONSIBLE INDIVIDUAL <u>chwirzke</u> , 84 MAR 83 Ai	PR edition may be used u All other editions are c 1	22b TELEPHONE 40.8-646 ntil exhausted obsolete	(Include Area C 5-2635 SECURI	Code) 22c. OFFIC Code	CE SYMBOL e 61SW ION OF THIS PAGE at Printing Office: 1986–6	

Approved for public release; distribution is unlimited.

· 上午,这个人,这一人,这一人,这一人,这个人,这个人,你是你的人,你们不是你的人,你们不是你的人,你们不是你。""你们,你们,你们,我们,我们,我们,我们,我们,我们,我们

Theoretical Model of the Cathode Spot in a Unipolar Arc

by

Dwayne H. Curtiss Lieutenant, United States Navy B.S., University of the State of New York, 1981

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL December 1987

Author: Approved by: F. Sch visor K. E eader K Ε. Woehler, Chairman, Department of Physics G. E. Schacher,

G. E. Schacher, Dean of Science and Engineering

2

ABSTRACT

A theoretical study and computer analysis of the cathode spot of a unipolar arc was conducted. The underlying theories of Plasma Physics, Space Charge Effects, and Electron Emission needed for an understanding of cathode phenomena are presented. Two models of unipolar arcing are reviewed and an analysis of the cathode spot is begun. A stationary model of the cathode spot is formulated with a system of equations that is not closed. A method of solution, using the Steenbeck Minimum Principle, is utilized and a computer program developed to determine the cathode spot parameters. Results of the analysis are presented for arc currents of 100, 150, 175, 200, 300, and 400 Amperes. It is found that for copper stable arcs occur only for arc currents greater than 200 Amperes.

3

	Acces	sion For	
Г	NTIS	GRA&I	
1	DTIC	TAB	õ
	Unann	iounced	ā
	Justi	fication_	
-	By		······
	Distr	ibution/	
	Aval	lability	Codes
Г		Avail an	i/or
C)ist	Special	L
[1	1 1	
11	A ·		

TABLE OF CONTENTS

I.	INTRODUCTION	9
II.	BACKGROUND THEORY	11
	A. PLASMA PHYSICS	11
	1. Plasma Characteristics	11
	2. Debye Shielding	12
	3. Sheaths	14
	B. SPACE CHARGE LIMITED CURRENT FLOW	17
	1. Child-Langmuir Law	17
	2. Space Charge Limited Current in a Sheath	19
	3. MacKeown Equation	22
	C. ELECTRON EMISSION FROM METALS	24
	1. Thermionic-Field Emission	27
	2. Field-Thermionic Emission	29
	3. Intermediate Field-Thermionic Emission	31
	4. Explosive Electron Emission	32
III.	UNIPOLAR ARCING	34
	A. ROBSON-THONEMAN MODEL	34
	B. SCHWIRZKE-TAYLOR MODEL	37
IV.	CATHODE SPOTS	41
	A. TYPES OF CATHODE SPOTS	41
	B. THEORY OF STATIONARY CATHODE SPOTS	42
	1. Fundamental Equations	44

2. Method of Solution 4	1 8
V. COMPARISON OF THEORY AND EXPERIMENTAL DATA	51
VI. CONCLUSIONS AND RECOMENDATIONS	73
LIST OF REFERENCES	74
APPENDIX A GENERAL EMISSION PROGRAM	77
APPENDIX B GENERAL EMISSION SUBROUTINE	79
APPENDIX C EMISSION APPLICABILITY SUBROUTINE	30
APPENDIX D T-F EMISSION SUBROUTINE	33
APPENDIX E FIELD-THERMIONIC EMISSION SUBROUTINE	35
APPENDIX F COMPLETE ELLIPTIC INTEGRAL OF THE 1ST KIND	37
APPENDIX G COMPLETE ELLIPTIC INTEGRAL OF THE 2ND KIND	39
APPENDIX H FOWLER-NORDHIEM ELLIPTIC FUNCTIONS	91
APPENDIX I INTERMEDIATE F-T EMISSION SUBROUTINE	3 2
APPENDIX J ARC PROGRAM	94
INITIAL DISTRIBUTION LIST	3 8

Þ

ن بر ان بر ان

LIST OF TABLES

10000

Ś

5-250-000 AV2-

1	CATHODE SPOT MODEL CONSTANTS	51
2	CATHODE SPOT PARAMETERS FOR A 100 AMPERE ARC ON A COPPER CATHODE.	54
3	CATHODE SPOT PARAMETERS FOR A 150 AMPERE ARC ON A COPPER CATHODE	57
4	CATHODE SPOT PARAMETERS FOR A 175 AMPERE ARC ON A COPPER CATHODE	60
5	CATHODE SPOT PARAMETERS FOR A 200 AMPERE ARC ON A COPPER CATHODE.	63
6	CATHODE SPOT PARAMETERS FOR A 300 AMPERE ARC ON A COPPER CATHODE	66
7	CATHODE SPOT PARAMETERS FOR A 400 AMPERE ARC ON A COPPER CATHODE	69
8	CATHODE SPOT PARAMETERS FOR STABLE ARCS	72

6

LIST OF FIGURES

J

5

2.1	Plasma-Wall Interaction
2.2	Child-Langmuir Space Charge Limited Current Flow20
2. 3	MacKeown's Equation for Electric Field at the Cathode Surface
2.4	Potential Energy Diagram for a Metal-Vacuum Interface26
2.5	Regions of Applicability for Thermionic, Field, and Intermediate Electron Emission Expressions
2.6	Electric Field Enhancement at a Whisker
3.1	Sheath Region Prior to Unipolar Arc Initiation
3.2	Sheath Region After Unipolar Arc Initiation35
3.3	Schwirzke-Taylor Unipolar Arc Model
4.1	Model of the Cathode-Plasma Region43
5.1	Cathode Spot Stability
5.2	Potentials for a 100 Ampere Arc
5.3	Potentials for a 150 Ampere Arc
5.4	Potentials for a 175 Ampere Arc62
5.5	Potentials for a 200 Ampere Arc65
5.6	Potentials for a 300 Ampere Arc68
5.7	Potentials for a 400 Ampere Arc71

7

ACKNOWLEDGMENTS

I would like to thank Professor Schwirzke for his guidance and constructive comments and Professor Woehler for showing me the world of Physics.

This would not have been possible with out the loving support of my wife, Mary Alice and daughters, Katie and Erin. To them I am forever grateful for the joy they bring to my life.

I. INTRODUCTION

The study of cathode phenomena in gaseous discharges and electrical arcs has progressed over the last hundred years. In the last twenty years, this research has been revived as the interest in high power devices for pulsed power applications, switching devices, and nuclear fusion power generation has increased. The discovery in 1958 of a new form of electrical arc. one that burns between a metal plate and a dense plasma, called a unipolar arc has further increased interest in the cathode phenomena. For both the bipolar and unipolar arcs, the current transfer occurs in localized regions between a cathode and plasma which is referred to as the cathode spot. It has become increasingly apparent that the phenomena occurring in the cathode spot of a unipolar arc and that occurring in a bipolar arc are similar. Therefore, much of the theoretical work done on the cathode spot of a bipolar arc can be applied towards the understanding and formulation of a consistent theory of the unipolar arc.

This study will begin with a short review of some basic theories of plasma physics, space charge effects, and electron emission mechanisms. Two useful unipolar arcing models are then reviewed. The stationary cathode spot will then be studied and a set of equations presented that can be used to determine it's

parameters. It will be found that the system of equations is not closed, however, a method for the solution of the system can be formulated by using the Steenbeck Minimum Principle. Finally, results of calculations based on these equations is presented.

D.Y

II. BACKGROUND THEORY

A. PLASMA PHYSICS

1. Plasma Characteristics

A plasma is formed when atoms are ionized into positive ions and negative electrons such that they form a gas. However, not all such gases are considered to be plasmas. A more complete definition of a plasma has been given by Chen [Ref. 1]:

"A plasma is a quasineutral gas of charged and neutral particles which exhibits collective behavior."

"Collective behavior" means that the behavior of a small region of the plasma is determined not only by conditions in the plasma that immediately surrounds it, but also by conditions in the plasma far away from it.

A plasma can be characterized by two quantities, n, the plasma density and T, the plasma temperature. Since the plasma must be quasineutral the density of ions, ni, and the density of electrons, ne, must be approximately equal. Therefore, the plasma density is defined as

 $n \approx n_e \approx n_i$. (eqn. 2.1) The plasma temperature is generally given in units of energy which corresponds to kT, where k is Boltzmann's constant and T is the plasma temperature in Kelvin. For a gas in thermal

equilibrium, which follows a Maxwellian distribution, the average energy of the gas particles is related to the plasma temperature by

$$E_{av} = \frac{3}{2}kT \qquad (eqn. 2.2)$$

where the plasma is assumed to be three dimensional

2. Debye Shielding

When a plasma is subjected to an external electric field the electrons and ions will drift in opposite directions. As they drift apart, they produce a charge separation and an internal electric field, which opposes the external field. The width of the region, over which the charge separation must occur to balance the external electric field, is proportional to the thermal energy of the plasma particles. If the dimension of the bulk plasma is greater than the dimension of the region over which this charge separation occurs, the interior of the plasma will be shielded from the external field.

The width of the charge separation can be determined, approximately, by considering a plasma where the ions are fixed in space, over the time frame of interest, and the electrons obey a Maxwellian distribution such that the Boltzman relation applies. Using Poisson's Equation in one dimension gives

$$\frac{d^2V}{dx^2} = -\frac{e}{\epsilon_0} (n_i - n_e) \qquad (eqn. 2.3)$$

where V is the electric potential and e is the electric charge. Since the ions are considered fixed, the density of ions will be constant and equal to the plasma density no. The Boltzman relation then gives the electron distribution in the region of interest as

$$n_{e} = n_{0} \exp\left(\frac{eV}{kT_{e}}\right). \qquad (eqn. 2.4)$$

Substituting equation 2.4 into equation 2.3 gives

$$\frac{d^2 V}{dx^2} = \frac{en}{\epsilon_0} \left\{ \exp\left(\frac{eV}{kT_0}\right) - 1 \right\}.$$
 (eqn. 2.5)

To solve equation 2.5 the exponential can be expanded in a Taylor series, and neglecting terms of second order and higher gives

$$\frac{d^2 V}{dx^2} = \frac{ne^2}{\epsilon_0 k T_e} V. \qquad (eqn. 2.6)$$

The solution of equation 2.6, which is a homogenous second order linear ordinary differential equation is given by

$$V = V_{0} \exp\left(-\frac{|x|}{\lambda_{D}}\right) \qquad (eqn. 2.7)$$

where

$$\lambda_{D} = \sqrt{\frac{\epsilon_{0} k T_{\bullet}}{n e^{2}}}.$$
 (eqn. 2.8)

This quantity is known as the Debye Length and is a measure of the thickness of the shield that screens the bulk plasma from

ᡚᡄᡗᠣᡌᠣᡗᠣᡘᡡᢙᡬᠺᡄᢄ᠆ᡱᠣ᠘ᠣ᠘ᡬᡘᡳᡬᠥᡗᠥᡗᠥᡗᡬᡗᡬ

the affect of external fields. This screening applies as long as the dimensions of the bulk plasma is much greater than the Debye Length

3. Sheaths

When a plasma comes in contact with a wall, the electrons and ions that hit the wall will recombine. But since the electrons are moving at a higher velocity than the ions, the electrons will be lost faster than the ions resulting in a net positive charge at the plasma-wall boundary. The wall will then be at a lower potential than the bulk plasma and an electric field will exist. Figure 2.1 illustrates the potential variation in a plasma which is in contact with a wall. Due to Debye Shielding a layer of charge separation will exist, called the sheath, which will isolate the bulk plasma from this potential difference. The effect of the sheath is to accelerate the ions and to decelerate the electrons that enter the region until the flux of ions is balanced by the flux of electrons. Therefore, only those electrons in the high energy tail of the velocity distribution will be energetic enough to cross the sheath and all others will be repelled back into the plasma.

The variation of the potential in the plasma sheath will now be considered. In order to simplify the problem the following assumptions will be made:

- * The ions enter the sheath region with a drift velocity uo,
- * The ions have Ti=0 so that all ions have a velocity uo at the plasma-sheath boundary,

* The sheath region is collisionless and in steady state,

statistical databatistic databatistic

EXCENSES

ACCORDED ACCORDED

Terrare and

Sections

1211111

* The potential decreases monotonically with x,

* The electrons follow the Boltzman relation (equation 2.4).

Applying conservation of energy to the ions in the sheath region gives

$$\frac{1}{2}Mu^2 = \frac{1}{2}Mu_0^2 - eV(x). \qquad (eqn. 2.9)$$

Solving equation 2.9 for the ion velocity gives

$$u = \sqrt{u_0^2 - \frac{2eV}{M}}.$$
 (eqn. 2.10)

The ion density within the sheath is determined from the ion equation of continuity which is given by

 $n_i(x)u(x) = n_0u_0.$ (eqn. 2.11)

Using equation 2.10 for the ion velocity, equation 2.11 can be solved for the ion density which gives

$$n_{i}(x) = n_{0} \left(1 - \frac{2eV}{u_{0}^{2}M}\right)^{-\frac{1}{2}}.$$
 (eqn. 2.12)

Substituting equation 2.4 and 2.12 into equation 2.3 gives

$$\frac{d^2 V}{dx^2} = \frac{en_0}{\epsilon_0} \left[exp\left(\frac{eV}{kT_0}\right) - \left(1 - \frac{2eV}{u_0^2 M}\right)^{-\frac{1}{2}} \right]. \quad (eqn. 2.13)$$

Equation 2.13 is the non-linear planar sheath equation. By multiplying each side by the first derivative of the potential the equation can be integrated once to give

$$V^{\prime 2} - V^{\prime 2}_{0} = \frac{2n_{0}kT_{\bullet}}{\epsilon_{0}} \left\{ \left[\exp\left(\frac{eV}{kT_{\bullet}}\right) - 1 \right] + \frac{Mu_{0}^{2}}{kT_{\bullet}} \left[\left(1 - \frac{2eV}{Mu_{0}^{2}}\right)^{\frac{1}{2}} - 1 \right] \right\}.$$

$$(eqn. 2.14)$$

Further solution of equation 2.14 would require numerical methods. If the electric field inside the plasma is zero, then the first derivative of the potential inside the plasma must also be zero. The left hand side of equation 2.14 is therefore greater than zero, and the following inequality results

$$\exp\left(\frac{eV}{kT_{\bullet}}\right) - 1 + \frac{Mu_{0}^{2}}{kT_{\bullet}}\left[\left(1 - \frac{2eV}{Mu_{0}^{2}}\right)^{\frac{1}{2}} - 1\right] > 0. \qquad (eqn. 2.15)$$

<u>ር ት በት በት በት በት በት በት በት ከት ከት ከት ከ</u>ት

This inequality can be greatly simplified by expanding the left hand terms in Taylor series expansions and neglecting terms of third order and higher. The resulting inequality is known as the Bohm sheath criterion and is given by

$$u_0 > \sqrt{\frac{kT_0}{M}}$$
. (eqn. 2.16)

This requires that the ions must enter the sheath region with a velocity greater than the ion acoustic velocity of the plasma. In order for this to occur, there must be a finite electric field within the plasma. Therefore, the assumption that the potential and the electric field are zero at the plasma-sheath boundary is only an approximation.

B. SPACE CHARGE LIMITED CURRENT FLOW

1. Child-Langmuir Law

The current that can flow between the cathode and anode of a vacuum diode is limited by the space charge of the electrons that exist between them. The electrons distort the external field and thereby reduce and can even reverse the field at the cathode surface.

As an example, consider a diode consisting of infinite flat plates separated by a distance *d*. Assume that there is an unlimited supply of electrons available from the cathode, and that the initial velocity of the electrons after emission is negligible compared with the velocity that they will gain while

17

crossing the electrode gap. The kinetic energy of the electrons crossing the gap and the current density carried by the electrons is given by

$$\frac{1}{2}mv^2 = eV$$
 (eqn. 2.17)

and

$$j = env.$$
 (eqn. 2.18)

Using Poisson's equation, in one dimension, the current-voltage relationship can be derived as follows:

$$\frac{d^2 V(x)}{dx^2} = \frac{en(x)}{\epsilon_0}.$$
 (eqn. 2.19)

The electron velocity is determined from equation 2.17 to be

$$v(x) = \sqrt{\frac{2e}{m}} V^{\frac{1}{2}}.$$
 (eqn. 2.20)

The electron density is determined using equation 2.18 and 2.20, and after substituting into equation 2.19 gives

$$\frac{d^2 V}{dx^2} = \frac{j}{\epsilon_0} \sqrt{\frac{m}{2e}} V^{-\frac{1}{2}}.$$
 (eqn. 2.21)

In order to solve equation 2.21 both sides are multiplied by the first derivative of the potential and reduced to the following form

$$\frac{d}{dx}\left(\frac{dV}{dx}\right)^2 = \frac{j}{\epsilon_0}\sqrt{\frac{2m}{e}}V^{-\frac{1}{2}}\frac{dV}{dx}.$$
 (eqn. 2.22)

Equation 2.22 is then integrated over the gap using the boundary conditions that the electric field and the potential are zero at the cathode. The result of this integration gives

$$\frac{dV}{dx} = \sqrt{\frac{2j}{\epsilon_0}} \sqrt{\frac{2m}{e}} V. \qquad (eqn. 2.23)$$

Integrating once again over the gap, applying the boundary conditions, and rearranging gives the desired current-voltage relationship of

$$j = \frac{4\sqrt{2}\epsilon_0}{9} \sqrt{\frac{e}{m} x^2}.$$
 (eqn. 2.24)

Equation 2.24 is known as the Child-Langmuir Law for space charge limited current flow [Ref. 2]. Although it has been derived here using simple assumptions, the proportionality of the current density to the 3/2 power of the potential difference remains for more difficult geometries under non-relativistic conditions. It should also be pointed out that the Child-Langmuir Law applies to both positive and negative charge carn Figure 2.2 is a plot of electron current density ver. potential for several gap widths.

2. Space Charge Limited Current in a Sheath

In deriving the planar sheath equation it was assumed that the electron density followed the Boltzman relation equation 2.4. Therefore, in a region close to the wall the electron density will be much less than the ion density

Figure 2.2 Child-Langmuir Space Charge Limited Current Flow

and can be neglected. The first derivative of the potential at the point in the sheath where the electron density can be neglected, is also assumed to be negligible compared with the slope of the potential near the wall. Equation 2.13 then reduces to

$$\frac{d^2 V}{dx^2} = -\frac{en_0}{\epsilon_0} \left(1 - \frac{2eV}{u_0^2 M}\right)^{-\frac{1}{2}}.$$
 (eqn. 2.25)

Making the change of variable that V = -V and noting that

$$\frac{2eV}{u_0^2 M} \gg 1 \tag{eqn. 2.26}$$

equation 2.25 reduces to

$$\frac{d^2 V}{dx^2} \approx \frac{e n_0 u_0}{\epsilon_0} \sqrt{\frac{M}{2e}} V^{-\frac{1}{2}}.$$
 (eqn. 2.27)

The ion current density is constant across the sheath and is given by

 $j_i = en_0 u_0$. (eqn. 2.28) After substituting equation 2.28 into equation 2.27, the resulting expression is the same as equation 2.21. Therefore, the solution of equation 2.27 for the ion current density results in the Child-Langmuir Law for space charge limited current flow, equation 2.24.

3. MacKeown Equation

In an arc, the current is carried primarily by the electrons emitted by the cathode and by a smaller amount of positive ions flowing from the plasma to the cathode. If the space charge, which causes the cathode drop in the plasma sheath, is high enough it may exert a strong electric field at the surface of the cathode. This can then result in a large field emission current in addition to any thermionic current.

The electric field at the cathode surface can be determined using Poisson's Equation. The following derivation measures distance and potential difference from inside the plasma where the cathode drop begins. The electron and ion current densities are given by

$$j_{\bullet} = en_{\bullet}v \qquad (eqn. 2.29)$$

and

$$j_i = en_i u. \qquad (eqn. 2.30)$$

Substituting equation 2.29 and 2.30 into equation 2.3 gives

$$\frac{d^2 V}{dx^2} = -\frac{1}{\epsilon_0} \left(\frac{j_i}{u} - \frac{j_a}{v} \right)$$
 (eqn. 2.31)

where V is the potential difference, ji, the ion current density, je, the electron current density, u, the ion velocity, and v, the electron velocity.

The velocity of the ions and electrons are determined using the conservation of energy. The initial energies are neglected, based on the assumption that the energy gained by the ions and electrons in crossing the sheath are much greater than the initial energies. For the ions the energy balance is

$$\frac{1}{2}Mu^2 = eV$$
 (eqn. 2.32)

and for the electrons the energy balance gives

$$\frac{1}{2}mv^2 = e(V_c - V)$$
 (eqn. 2.33)

where M is the mass of the positive ion, m, the mass of the electron and V_c is the potential of the cathode. Substituting equation 2.32 and 2.33 into equation 2.31 gives

$$\frac{d^2 V}{dx^2} = -\frac{1}{\epsilon_0} \left[j_{\ell} \left(\frac{M}{2eV} \right)^{\frac{1}{2}} - j_{\ell} \left(\frac{m}{2e(V_c - V)} \right)^{\frac{1}{2}} \right]. \quad (eqn. 2.34)$$

Multiplying both sides by the first derivative of the potential difference, equation 2.30 can be integrated once and gives

$$F^{2} = \frac{4}{\epsilon_{0}} \left\{ j_{\iota} \left(\frac{MV}{2e} \right)^{\frac{1}{2}} + j_{\bullet} \left(\frac{m(V_{c} - V)}{2e} \right)^{\frac{1}{2}} - j_{\bullet} \left(\frac{mV_{c}}{2e} \right)^{\frac{1}{2}} \right\}$$

(eqn. 2.35)

where F is the electric field. Evaluating for $V = V_{C}$ gives the electric field at the cathode surface as

$$F^{2} = \frac{4}{\epsilon_{0}} \left(\frac{MV_{c}}{2e} \right)^{\frac{1}{2}} j_{i} \left\{ 1 - \frac{j_{0}}{j_{i}} \left(\frac{m}{M} \right)^{\frac{1}{2}} \right\}.$$
 (eqn. 2.36)

Equation 2.36 is known as Mackeown's Equation [Ref. 3] and can be used to determine the electric field existing at the cathode provided the values of the cathode drop, the ion current density, and the electron current density are known. Figure 2.3 is a plot of electric field at the cathode surface versus ion current density for several ratios of electron to ion current densities.

C. ELECTRON EMISSION FROM METALS

The theory of electron emission from metals is very well understood. The basic processes have been explained on the basis of a free electron gas in the metal, that is described by Fermi-Dirac statistics, and a potential barrier at the metal surface. Figure 2.4 shows a typical potential energy diagram for an electron as a function of distance from the metal-vacuum interface. For thermionic emission, that is emission at high temperature and low electric field, the electrons are emitted predominately by passing over the potential barrier at the metal surface. For field emission, that is emission at low temperature and high electric field, the electrons are emitted predominately by passing over the potential barrier at the metal surface. For field emission, that is emission at low temperature and high electric field, the electrons are emitted predominately by tunneling through the potential barrier.

24

a" a"\$" a"\$" a"\$" a"\$" : " ! a "\$". a "\$".

Figure 2.3 MacKeown's Equation for Electric Field at the Cathode Surface

Figure 2.4 Potential Energy Diagram for a Metal-Vacuum Interface

In the past, thermionic and field emission have been treated separately, which has resulted in the well known Richardson equation for thermionic emission, and the Fowler-Nordheim equation for field emission. The expressions that will be used here, however, are based on an approach that treats both thermionic and field emission from a unified point of view [Ref. 4].

Hartree units are used in the following sections because they greatly simplify the expressions. Thus the following quantities are redefined as:

$$j^* = j \frac{m^3 e^*}{(4\pi\epsilon_0)^4 \hbar^7},$$
 (eqn. 2.37)

26

$$F^* = F \frac{m^2 e^3}{(4\pi\epsilon_0)^3 \hbar^4}$$
 (eqn. 2.38)

$$(kT)^{*} = (kT) \frac{me^{4}}{(4\pi\epsilon_{0})^{2}\overline{h}^{2}},$$
 (eqn. 2.39)

$$\phi^{*} = \phi \frac{me^{4}}{(4\pi\epsilon_{0})^{2}\bar{h}^{2}}, \qquad (eqn. 2.40)$$

where the starred quantities on the left are in SI units and their respective counterparts on the right are in Hartree units.

The following sections will give expressions that can be used to determine the current density that can be expected to be emitted from a metal given the surface temperature, the electric field at the surface, and the work function for the metal under consideration. In addition, a set of applicability conditions are given that can be used to determine the validity of the particular expression for a given situation. Figure 2.5 illustrates the regions of applicability of the emission equations on a plot of temperature versus electric field. Appendix A is a Fortran program that calculates the current density that can be expected to be emitted. Appendix B and C are Fortran subroutines that calculate the current density and applicability of the expressions to be used respectively.

1. Thermionic-Field Emission

The current density that can be expected from thermionic emission, corrected for the Schottky effect, is given by

27

$$j = \frac{1}{2\pi^2} (kT)^2 \left(\frac{\pi d}{\sin \pi d}\right) \exp\left[-\frac{\left(\phi - F^{\frac{1}{2}}\right)}{kT}\right]$$

where

(eqn. 2.41)

For equation 2.41 to be applicable the following conditions must be satisfied:

$$\ln\left\langle \frac{(1-d)}{d} \right\rangle - \frac{1}{d(1-d)} > -\pi F^{-\frac{3}{4}} \left(\phi - F^{\frac{1}{2}} \right), \qquad (eqn. 2.43)$$

$$\ln\left\{\frac{(1-d)}{d}\right\} - \frac{1}{(1-d)} > -\pi F^{-\frac{1}{6}}.$$
 (eqn. 2.44)

Equation 2.41 reduces to the Richardson equation in the limit as the electric field is reduced toward zero. Appendix D is a listing of a Fortran subroutine that calculates the Thermionic-Field emission current density based on equation 2.41.

2. Field-Thermionic Emission

The current density that can be expected from field emission, corrected for temperature, is given by

$$j = \frac{F^2}{16\pi^2 \phi t^2} \left(\frac{\pi c kT}{\sin \pi c kT} \right) \exp \left(-\frac{4\sqrt{2} \phi^2 v}{3F} \right) \qquad (eqn. 2.45)$$

where

$$t(\mathbf{y}) = \frac{1}{1+\mathbf{y}} \left\{ (1+\mathbf{y}) E\left[\sqrt{\frac{1-\mathbf{y}}{1+\mathbf{y}}}\right] - \mathbf{y} K\left[\sqrt{\frac{1-\mathbf{y}}{1+\mathbf{y}}}\right] \right\}, \quad (\text{ eqn. 2.46 })$$

$$c = 2\sqrt{2} \frac{\phi^{\frac{1}{2}}}{F} t(y),$$
 (eqn. 2.47)

$$v(y) = -\sqrt{\frac{y}{2}} \left\{ -2E\left[\sqrt{\frac{y-1}{2y}}\right] + (y+1)K\left[\sqrt{\frac{y-1}{2y}}\right] \right\}$$

for $y > 1$, (eqn. 2.48)
$$v(y) = \sqrt{1+y} \left\{ E\left[\sqrt{\frac{1-y}{1+y}}\right] - yK\left[\sqrt{\frac{1-y}{1+y}}\right] \right\}$$

for $y < 1$, (eqn. 2.49)

$$y = \frac{F^{\frac{1}{2}}}{\phi}$$
. (eqn. 2.50)

Equations 2.46, 2.48, and 2.49 are the Fowler-Nordheim Elliptic functions. The functions K[k] and E[k] are complete elliptic integrals of the first and second kind respectively and are defined as

$$K[k] = \int_0^{\frac{\pi}{2}} (1 - k^2 \sin^2 \theta)^{-\frac{1}{2}} d\theta, \qquad (eqn. 2.51)$$

$$E[k] = \int_{0}^{\frac{\pi}{2}} (1 - k^{2} \sin^{2}\theta)^{\frac{1}{2}} d\theta. \qquad (eqn. 2.52)$$

For equation 2.45 to be applicable the following conditions must be satisfied:

$$\phi - F^{\frac{1}{2}} > \frac{F^{3/4}}{\pi} + \frac{kT}{1 - ckT},$$
 (eqn. 2.53)

$$1 - ckT > \sqrt{2f}kT$$
, (eqn. 2.54)

$$f = \frac{\sqrt{2}\phi^{\frac{1}{2}}}{2F(\phi^2 - F)}v(y). \qquad (eqn. 2.55)$$

Equation 2.45 reduces to the Fowler-Nordheim equation in the limit as the temperature approaches zero. Appendix E is a listing of a Fortran subroutine that calculates the Field-Thermionic current density based on equation 2.45. This subroutine makes calls to the subroutines listed in Appendix F, G, and H, which are used to calculate the Complete Elliptic Integral of the First Kind, Complete Elliptic Integral of the Second Kind, and the Fowler-Nordheim Elliptic functions respectively.

ᡊᢄᡧ᠋᠔᠆᠐᠗ᡧᠼᢙᢄᡧᡭ᠖ᢞᡏᢛ᠊ᢉᢛᢉᢛᡬᡱᡬᡱ᠄ᠴ᠆ᠮᢛᢉᢂᢉᠴ᠋ᡗᠴᡬᢌᡬᡵᡬᢘᡬᢘᡬᢘᡬᠴ᠋ᠴᡬ᠕ᡬᢘᡬᠧᡬᠧᡬᠴᡬᠴᡬ᠕ᡬᢘᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬᡵᡬ

3. Intermediate Field-Thermionic Emission

When equations 2.41 and 2.45 are not applicable, the current density from field-thermionic emission may be determined in the intermediate region as

$$j = \frac{F}{2\pi} \left(\frac{kTt}{2\pi} \right)^{\frac{1}{3}} \exp \left(-\frac{\phi}{kT} + \frac{F^2 \Theta}{24(kT)^3} \right)$$
 (eqn. 2.56)

where

$$\theta = \frac{3}{t^2} - \frac{2v}{t^3}.$$
 (eqn. 2.57)

The argument of the functions t, equation 2.46, and v, equations 2.48 and 2.49, as used in equations 2.56 and 2.57, is given by

$$y_{\eta} = \frac{F^{\frac{1}{2}}}{(-\eta)},$$
 (eqn. 2.58)

Eta can be determined by solving the following equation by iteration:

$$\eta = -\frac{F^2}{8(kT)^2 t^2(y_{\eta})}.$$
 (eqn. 2.59)

For equation 2.56 to be applicable the following conditions must be satisfied:

 $\frac{1}{y_{*}} > 1 + \frac{F^{1/4}d}{\pi(d-1)}, \qquad (eqn. 2.60)$

$$d = \frac{2\sqrt{2}t(y_{*})}{\pi\sqrt{y_{*}}},$$
 (eqn. 2.61)

$$-\frac{F^2}{8(kT)^2 t_{\eta}^2} > -\phi + \frac{kT}{1 - F\left(2\sqrt{2}\phi^{\frac{1}{2}}kTt_{\phi}\right)^{-1}}.$$
 (eqn. 2.62)

Appendix I is a listing of a Fortran subroutine that calculates the intermediate Field-Thermionic emission current density based on equation 2.56.

4. Explosive Electron Emission

The emission mechanisms discussed so far have wide applicability to many physical devices. However, with the advent of high current cathodes the thermionic and field emission theories were unable to explain the high current densities observed. One explanation for this high current density is that the surface of the cathode is not smooth, but actually has a surface covered with micropoints, or whiskers. The significance of the whisker is that the electric field, at the surface of the whisker is enhanced by a factor of 10 - 1000. Figure 2.6 illustrates the electric field enhancement that can occur at the tip of a whisker. This results in a higher field emission current density from the whisker, and ultimately leads to explosive destruction of the emission site. This destruction produces a local burst of plasma that expands rapidly away from the cathode surface and has therefore come to be known as a cathode flare or plasma jet. The electrons, that reach the anode, are then emitted from the surface of the plasma jet. This whole process is commonly referred to as explosive electron emission [Refs. 5 and 6].

Figure 2.6 Electric Field Enhancement at a Whisker

Fursei and Zhukov [Refs. 7, 8, and 9] have experimentally characterized the explosive emission process and have confirmed the existence of micropoints and that the current density follows the Fowler-Nordheim field emission theory with the inclusion of a field enhancement factor.
III. UNIPOLAR ARCING

A. Robson-Thonemann Model

In 1958, Robson and Thoneman observed an electrical arc burning between a dense hot plasma and a metal wall [Ref. 10]. What made this unusual was that there was no anode present to collect the electrons emitted from the conducting wall Apparently, the wall was acting as both a cathode and anode, and therefore, they named what they observed a "unipolar arc."

Robson and Thoneman proposed the following model to explain the occurrence of unipolar arcing. When a hot dense plasma comes in contact with a conducting wall a sheath will form. If the plasma temperature is high, the sheath or floating potential can exceed that necessary to initiate an electric arc. A cathode spot, which is a local center of emission, could then form on the metal surface. The large electron current flow into the plasma from the arc would result in lowering the plasma potential to the cathode fall potential of the arc. This allows more electrons from the high energy tail of the velocity distribution to cross the sheath and recombine at the wall and thus closing the current loop. Figure 3.1 illustrates the situation in the sheath prior to initiation of an arc, and Figure 3.2 shows the return current flow after arc initiation.

Figure 3.2 Sheath Region After Unipolar Arc Initiation

The resulting change in current flow outside of the arc is then given by

$$I = Aen\left(\frac{kT_{\bullet}}{2\pi m}\right)^{\frac{1}{2}} \left\langle \exp\left(-\frac{eV_{c}}{kT_{\bullet}}\right) - \exp\left(-\frac{eV_{f}}{kT_{\bullet}}\right) \right\rangle \qquad (eqn. 3.1)$$

where I is the current, A is the area of the metal plate, and Vc is the cathode drop of the arc. But since the net current flow between the plasma and the wall must be zero, equation 3.1 also gives the current flow inside the arc.

The ion current density in the sheath can be approximated as

(eqn. 3.2)

$$j_i \approx e n_0 \sqrt{\frac{kT_e}{M}}$$

where the Bohm sheath criterion is used to approximate the ion velocity. The electron current density in the sheath can be determined by noting that the net flux of electrons, \bullet , from the plasma into the sheath is given by

$$\boldsymbol{\phi} = \frac{1}{4} n_{e} \bar{\boldsymbol{v}}. \tag{eqn. 3.3}$$

Using the Boltzman relation for the electron density and the expression for the average speed of particles following a Maxwellian distribution gives

$$j_{\bullet} = \frac{1}{4} e n_0 \exp\left(\frac{eV_f}{kT_{\bullet}}\right) \sqrt{\frac{8kT_{\bullet}}{\pi m}}.$$
 (eqn. 3.4)

The net current density across the sheath must be zero. Therefore, setting equation 3.2 equal to equation 3.4, and solving for the sheath potential gives

$$V_{f} = \frac{kT_{e}}{2e} \ln\left(\frac{M}{2\pi m}\right). \qquad (eqn. 3.5)$$

Robson and Thoneman point out that there is a minimum current necessary to maintain an arc burning. Therefore, according to equation 3.1, if the plate area is small enough a unipolar arc can not occur. For example, using copper with a plasma temperature of 4 eV, a cathode fall potential of 15 V, a plasma density of 10^{13} cm⁻³, and an arc current of 100 amperes would require a plate area of 115 cm². For a circular area, the radius required is 6.05 cm.

B. Schwirzke-Taylor Model

Schwirzke and Taylor have expanded on the basic concepts of the Robson-Thoneman model [Ref. 11]. They propose that for an arc to occur, the ion density above the cathode spot must increase to allow for the arc current to flow. This is contrary to the Robson-Thoneman model which assumes a constant plasma density. Once a cathode spot forms the desorption of neutral atoms and evaporation of the metal atoms from the spot is greatly increased. If only a small fraction of these neutral atoms become ionized in the sheath the plasma density will increase above the cathode spot. Thus, according to equation 2.8 the Debye length will decrease resulting in a decrease of the sheath width above the cathode spot. The electric field above the spot increases, where the field can be approximated as

$$|F_n| \approx \frac{V_f}{\lambda_D} = \sqrt{\pi n_e k T_e} \ln\left(\frac{M}{2\pi m}\right). \qquad (eqn. 3.6)$$

Schwirzke [Refs. 12 and 13] elaborates further on the electric fields set up inside the high density plasma which forms above the spot. The fluid equation of motion of the electrons in the plasma is given by

$$n_{\bullet}m\frac{\partial \vec{v}_{\bullet}}{\partial t} = -en_{\bullet}\left(\vec{F} + \vec{v}_{\bullet} \times \vec{B}\right) - \nabla P_{\bullet} + \frac{en_{\bullet}}{\sigma}\vec{j}. \qquad (eqn. 3.7)$$

The time derivative can be neglected over the time span of an arc, and further assuming no magnetic field, equation 3.7 can be solved for the electric field, which gives

$$\vec{F} = \frac{\vec{j}}{\sigma} - \frac{1}{en_e} \nabla P_e. \qquad (eqn. 3.8)$$

The first term on the right hand side of equation 3.8 can be neglected in a weakly ionized plasma. This implies that the mean free path length for collision between the electrons and the neutral atoms is much greater than the dimensions of the region of increased density above the cathode spot. Thus, the increased plasma pressure above the spot creates a radial electric field given by

$$\vec{F}_r = -\frac{1}{en_e} \nabla P_e = -\frac{kT_e}{en_e} \nabla n_e, \qquad (eqn. 3.9)$$

The affect of this radial electric field is to lower the plasma potential in a ring around the cathode spot. The change in the potential can be determined by integrating equation 3.9 from the center of the arc, where the plasma density is highest, radially outward until the plasma density equals the background density.

The change in potential is then given by

$$\Delta V(r) = -\frac{kT_{\bullet}}{e} \ln\left(\frac{n_{\bullet}}{n_{\bullet 0}}\right). \qquad (eqn. 3.10)$$

In this ring of reduced potential, electrons in the tail of the Maxwellian distribution can cross the sheath more easily and thus a higher return current flow from the plasma to the wall results. This current flow closes the current loop of the unipolar arc. The concepts of the Schwirzke-Taylor model are illustrated in Figure 3.3.

Figure 3.3 Schwirzke-Taylor Unipolar Arc Model

If equation 3.10 is set equal to the floating sheath potential, equation 3.5, the ratio of the electron density in the plasma above the spot to the background plasma density which reduces the sheath potential to zero can be determined as

$$\frac{n_{e}}{n_{e0}} = \sqrt{\frac{M}{2\pi m}}.$$
 (eqn. 3.11)

Equation 3.3 and equation 3.11 can be used to calculate the maximum area necessary to support a given unipolar arc return current. By setting the current equal to the current derived for the Robson-Thoneman model, equation 3.1, the ratio of the return current areas required by each model can be compared. The result of the comparison gives

$$\frac{A_{R-T}}{A_{S-T}} = \sqrt{\frac{M}{2\pi m}} \left\{ \exp\left(-\frac{eV_c}{kT_a}\right) - \sqrt{\frac{2\pi m}{M}} \right\}^{-1} > \sqrt{\frac{M}{2\pi m}} \qquad (eqn. 3.12)$$

where AR-T and AS-T are the areas required by the Robson-Thoneman model and Schwirzke-Taylor model respectively. As an example, for copper with a cathode fall potential of 15 volts and a plasma temperature of 4 eV the area ratio is 8.43 x 10³. Therefore, for a 100 ampere arc the area required by the Schwirzke-Taylor model is only 1.37 x 10⁻² cm², or for a circular area the radius required is only 6.59 x 10⁻² cm.

IV. CATHODE SPOTS

A. TYPES OF CATHODE SPOTS

A cathode spot is a small, luminous region on the cathode, where a localized transfer of current occurs between the cathode and a plasma in an arc discharge. The type of arc discharge can be either bipolar or unipolar, however in all cases a cathode spot is present. In addition, the spots are associated with the erosion of the cathode and therefore, are also localized centers for the transfer of material from the cathode into the plasma. This has been evidenced by the formation of craters on the surface of the cathode.

It has been possible over many observations to distinguish between two different types of cathode spots [Ref. 14]. The first type, or type I spots, are characterized as rapidly moving spots with speeds of approximately 10⁴ cm/s across the surface of the cathode and with relatively low erosion from the surface. The type II spots, on the other hand, have speeds of approximately 10² cm/s and have much greater erosion from the surface. The type II spot also has a tendency to group together and form clusters. The mechanism of erosion for the type I spot is believed to be due to non-thermal means, such as explosions of whiskers or microinhomogenieties on the cathode surface. The erosion mechanism for the type II spot is believed

41

to be due to thermal evaporation.

B. THEORY OF STATIONARY CATHODE SPOTS

The theoretical modeling of cathode spots has progressed over the last 100 years, but up until the present time there has been no satisfactory understanding of the processes occurring within the spot. The difficulty occurs due to the diverse phenomena, which in themselves are extremely complicated to describe mathematically, that take place within the small cathode-plasma region known as a cathode spot. A detailed analysis would require an extensive use of the kinetic theories of Plasma Physics, Solid State Physics, Physics of High Temperature Phenomena, and Gas Dynamics. In order to avoid some of the complications the majority of models developed for the cathode spot are stationary, and therefore are unable to explain the initiation, motion, and disappearance of the cathode spot [Refs. 12 and 15].

The energy balance method developed by Lee and Greenwood [Ref. 16] has been the basis of the majority of stationary models including those proposed by Kulyapin [Ref. 17], Kubono [Ref. 18], Beilis [Ref. 19], and Moizhes and Nemchinskii [Refs. 20, 21, 22, and 23]. The latter work by Moizhes and Nemchinskii are the basis for the model developed in this paper. The cathode spot is divided into three regions as illustrated in Figure 4.1.

Figure 4.1 Model of the Cathode-Plasma Region

Region I, referred to as the Langmuir region. is a thin space charge sheath over which the cathode potential drop, V_{k} , occurs. It is in this region that the electrons emitted by the cathode are accelerated into the plasma and where the ions produced in the generation region are accelerated towards the cathode. Region II, referred to as the generation region or Knudsen Region, is where the neutral atoms evaporated from the cathode are ionized. Region III is an expanding channel or transition region over which the highly dense current channel in regions I and II expands out into the bulk plasma.

43

1. Fundamental Rouations

In developing a theoretical model of a cathode spot, one of the first decisions that must be made is the electron emission mechanism. In general, most models use a combination of thermal and field equations that are expressed as

 $j_e = f(T_k, F)$ (eqn. 4.1) where je is the electron current density, Tk is the cathode temperature, and F is the electric field at the cathode surface. In actual use, expressions such as equation 2.41, 2.45, or 2.56 are used. The particular equation used depends on the applicability under the given conditions. The electric field at the cathode surface is determined using MacKeown's Equation, equation 2.36.

An energy balance must exist in the plasma region above the cathode spot and can be described by equation 4.2.

$$\frac{j_{\bullet}}{\varrho} \left(eV_k + 2kT_k \right) = \frac{j_{\iota}}{\varrho} \left(E_{\iota} + 2kT_{\rho} \right) + \beta \frac{kT_{\rho}}{\varrho} \left(j_{\bullet} + j_{\iota} \right). \qquad (eqn. 4.2)$$

Energy is brought into the region by the electrons emitted from the cathode and consists of the thermal energy and the energy gained as the electrons were accelerated through the cathode potential drop. Energy is removed from the region by ions flowing back to the cathode. This energy loss consists of the ionization energy and the thermal energy of the ions. A further loss occurs from both ions and electrons that leave the region and pass into the bulk plasma and is described by the Peltier

heat flux $/BKT_{p}$. In a plasma, in which Coulomb collisions are the predominant scattering process, the energy transfer coefficient, B_{p} , is approximately equal to 3.21. It should be noted that electrons in the plasma, also, can leave the region towards the cathode, but only if energetic enough to over come the cathode potential drop, Vk. This reverse electron current can be approximated by

to the state of a task that a task a task a task a

$$j_{rev} = \frac{e\eta \alpha P}{\sqrt{2\pi kT_p}} \exp\left(-\frac{eV_k}{kT_p}\right). \qquad (eqn. 4.3)$$

For low plasma temperatures and high cathode potential drops the reverse electron current density is much less than the ion current density and can therefore be neglected in this model

An energy balance at the cathode surface must also exist and can be described by equation 4.4.

$$4KRT_{k} = \pi R^{2} \left[\frac{j_{\iota}}{e} (E_{\iota} + 2kT_{p} + eV_{k} - \phi) - \frac{j_{\bullet}}{e} (\phi + 2kT_{k}) - gE_{vap} \right]$$

(eqn. 4.4)

The predominant loss mechanisms considered are heat conduction, emissive cooling, and evaporation. The primary energy source considered is ion bombardment of the cathode surface. The ions bring to the surface thermal energy, ionization energy, and energy gained while being accelerated by the cathode potential drop. Energy is released, approximately equal to the work function, when ions and electrons recombine at the surface. The electrons emitted by the surface remove thermal energy and an energy approximately equal to the work function. In addition, neutral atoms, evaporating from the surface, remove energy equivalent to the heat of vaporization. Heat conduction from the cathode spot is based on a circular spot of radius R at a constant temperature T_k and where K is the thermal conductivity of the cathode. The work function to be used in equation 4.4 is corrected for the Schottky effect and is given by

$$\phi = \phi_0 - \sqrt{\frac{e^3 F}{4\pi\epsilon_0}}.$$
 (eqn. 4.5)

The total current flow in the arc is given by

$$I = \pi R^{2} (j_{0} + j_{i}). \qquad (eqn. 4.6)$$

A fraction of the neutral atoms evaporated from the cathode will return to the cathode. The return coefficient can be determined from equation 4.7 which is based on a Monte Carlo calculation performed by Nemchinskii [Ref. 24].

$$\eta = \left(\frac{8}{3} + \alpha - \sqrt{\frac{5\pi T_k}{6T_p}}\right) \left(\frac{8}{3} + \alpha + \sqrt{\frac{5\pi}{6}}\right)^{-1}.$$
 (eqn. 4.6)

The ion current density is determined from

$$j_i = \frac{1}{4} e n_i \overline{u} \qquad (eqn. 4.8)$$

where

$$n_i = \frac{P \alpha \eta}{k T_k} \qquad (eqn. 4.9)$$

and

$$\bar{u} = \sqrt{\frac{8kT_k}{\pi M}}.$$
 (eqn. 4.10)

Substituting equations 4.9 and 4.10 into equation 4.8 gives the ion current density as

$$j_{i} = \frac{eP}{\sqrt{2\pi M k T_{k}}} \eta \alpha(T_{p}) \qquad (eqn. 4.11)$$

where P is the vapor pressure of the cathode material and a is the degree of ionization. The degree of ionization is determined from Saha's Equation which is expressed as

$$\alpha = \left\{ \sqrt{1 + \frac{P}{kT_{p}} \left(\frac{2\pi h^{2}}{M kT_{p}}\right)^{\frac{3}{2}}} \exp\left(\frac{E_{i}}{kT_{p}}\right) \right\}^{-1}.$$
 (eqn. 4.12)

The erosion rate of neutral atoms is given by

$$g = \frac{P}{\sqrt{2\pi M k T_{k}}} (1 - \eta).$$
 (eqn. 4.13)

The potential drop inside the quasineutral plasma of the transition region is given by

$$U = \left[\left(\frac{l}{2\pi\sigma R} \right) \left(\frac{eg}{j} \right) (1+z) - \beta KT_{p} \right] \left[1 + \left(\frac{eg}{j} \right) (1+z) \right]^{-1}$$
(eqn. 4.14)

where z is the average charge of the ions in the region, j is the total current density given by

$$j = j_i + j_e$$
 (eqn. 4.15)

and σ is the electric conductivity given by

$$\sigma = \frac{1.53 \times 10^{-2}}{\ln \Lambda} T_{\rho}^{\frac{3}{2}}$$
 (eqn. 4.16)

where the Coulomb Logarithm is approximated as

$$\ln \Lambda = 23 - \ln \left(\frac{1}{T_{\rho}^{2}} \sqrt{\frac{P}{k}} \right). \qquad (eqn. 4.17)$$

The total potential drop across the arc is given by

$$V_{erc} = V_k + U.$$
 (eqn. 4.18)

2. Method of Solution

The system of equations presented in the previous section is not closed. Therefore, more information is required in order to solve the system. This will be accomplished here using the Steenbeck Minimum Principle [Refs. 25 and 26]. Simply stated this requires that the total potential drop across the arc must be a minimum for a stationary arc to exist. Given an arc current and cathode temperature the system of equations is solved for the cathode potential drop, plasma temperature, ion current density, electron current density, erosion rate, potential drop in the transition region, and total arc potential drop. The cathode temperature that defines the stationary cathode spot, for the given arc current, is that cathode temperature that minimizes the total potential drop. If a minimum total arc potential can not be found for a given arc current, then a stable arc can not exist for this current.

The first step in the solution is to determine the plasma temperature, T_p , and cathode drop, Vk. To accomplish this a guess is made for the plasma temperature. The partial pressure of the cathode material is determined using [Ref. 27]

$$\log P = \frac{A}{T_p} + B \log T_p + CT_p + D \qquad (eqn. 4.19)$$

where for copper A= -1.752×10^4 , B= -1.21, C= 0, and D= 13.21. The degree of ionization is determined using equation 4.12 and the return coefficient is determined using equation 4.6. The ion current density can now be determined using equation 4.11. Experimentally, it has been observed that the cathode drop is approximately 15 volts, so this will be used as a first approximation in order to determine the electric field at the cathode surface using equation 2.36. The Schottky corrected work function is determined using equation 4.5 and the electron current density is determined using equation 4.1. The spot radius can now be determined using equation 4.6. The erosion rate is determined from equation 4.13. Equation 4.2 and 4.4 are each solved separately for the cathode potential which gives

$$V_{k1} = \frac{1}{e} \left\{ \frac{j_i}{j_o} \left(E_i + 2kT_p \right) + \beta kT_p \left(1 + \frac{j_i}{j_o} \right) - 2kT_k \right\}$$

(eqn. 4.20)

and

$$V_{k2} = \frac{4\pi}{\pi R j_i} T_k + \frac{1}{e} \left\{ \frac{j_e}{j_i} (\phi + 2kT_k) - E_i - 2kT_p + \phi \right\} + \frac{g}{j_i} E_{vap}$$

(eqn. 4.21)

The potential is then determined using both equation 4.20 and 4.21. The results are compared and the plasma temperature is then adjusted. This procedure is then repeated until the potentials determined from both equations are in agreement. The conductivity is determined using equation 4.16 and 4.17. The potential drop in the transition region is then determined using equation 4.14. Finally, the total arc potential is determined from equation 4.18. Appendix J is a Fortran program, which uses the method described above, to calculate the cathode spot parameters.

V. COMPARISON OF THEORY AND EXPERIMENTAL DATA

The Fortran program listed in Appendix J was used to calculate the parameters of the cathode spot for arc currents of 100, 150, 175, 200, 300 and 400 Amperes. The program required knowledge of several material parameters which are specified in Table 1.

TABLE 1 CATHODE SPOT MODEL	CONSTANTS
Constant	Value
Material	Copper
Ion Mass (gr/mole)	63.54
Heat of Vaporization (kilojoules)	300.3
Ionization Energy (eV)	7.726
Work Function (eV)	4.4
Thermal Conductivity (W/m-K)	40

Figure 5.1 illustrates the variation of the total arc potential with cathode temperature for different arc currents. The cathode temperature for a stable cathode spot, and thus the parameters of the cathode spot, is determined from the minimum of the total arc potential. It can be seen from Figure 5.1 that a stable arc does not occur for arc currents below 200 Amperes.

51

. • CATHODE SPOT STABILITY 45 T 0 t a 1 400 Ampere 40 Å r С 300 Ampere P 0 t e 35 200 n Ampere t i a 175 1 Ampere 100 i 150 Ampere ł n 30 Ampere V 0 1 t S 25 3500 3700 3600 3800 3900 4000 4100 4200 Cathode Temperature (Kelvin)

No. of the other that is a second of the other that we have a second of the other that

N.COCOCOM

333111000

20555224 222222

NAMES AND ADDRESS AND ADDRESS A

Figure 5.1 Cathode Spot Stability

The results of the calculations are listed in Table 2 through 7 for arc currents of 100, 150, 175, 200, 300, and 400 Amperes respectively. In addition Figures 5.2 through 5.7 illustrate the variation of the cathode potential, transition region potential, and total arc potential for each arc current.

The cathode spot parameters for stable arc currents of 200, 300, and 400 Amperes are summarized in Table 8. The results are in general, order of magnitude, agreement with experimental data [Ref. 23], however stability has been indicated at arc currents between 100 and 200 Amperes. This discrepancy occurs since the material constants listed in Table 1 are not really constants at these temperatures. A more detailed comparison is not warranted, since the published experimental data for the cathode spot parameters vary widely. Confirmation of the models of the cathode phenomena is greatly limited by this lack of consistent experimental results.

TABLE 2 CATHODE SPOT PARAMETERS FOR A 100 AMPERE ARC ON A COPPER CATHODE							
Cathode Temperature (Kelvin)	Plasma Temperature (eV)	Cathode Potential (Volts)	Transition Potential (Volts)	Total Arc Potential (Volts)			
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	1.49 1.54 1.59 1.65 1.70 1.76 1.82 1.89 1.96 2.03 2.11 2.20 2.29 2.39 2.51	22.89 21.54 20.34 19.27 18.32 17.49 16.75 16.10 15.54 15.06 14.66 14.66 14.34 14.09 13.91 13.82	8.72 9.21 9.70 10.18 10.65 11.10 11.53 11.92 12.26 12.53 12.71 12.78 12.70 12.44 11.94	31.61 30.75 30.04 29.45 28.97 28.59 28.28 28.02 27.80 27.59 27.37 27.11 26.79 26.35 25.76			
Cathode Temperature (Kelvin)	Partial Pressure (atm.)	Degree of Ionization	Return Coefficient	Spot Radius (10-4 m)			
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	10.9 12.6 14.5 16.6 19.0 21.6 24.5 27.6 31.1 34.9 39.1 43.6 48.5 53.8 59.6	0.1625 0.1712 0.1803 0.1897 0.1996 0.2101 0.2213 0.2332 0.2461 0.2602 0.2758 0.2931 0.3125 0.3348 0.3606	0.4726 0.4751 0.4777 0.4804 0.4831 0.4859 0.4888 0.4918 0.4950 0.4983 0.5018 0.5057 0.5098 0.5144 0.5195	4.807 4.258 3.777 3.354 2.981 2.652 2.360 2.100 1.869 1.663 1.478 1.312 1.163 1.028 0.905			

Ň

22222

and a second second

TABLE 2 (CONTINUED)CATHODE SPOT PARAMETERS FOR A 100 AMPERE ARC ON A COPPER CATHODE					
Cathode Temperature (Kelvin)	Electric Field (10° V/m)	Electron Current Density (10• A/m ²)	Ion Current Density (10ª A/m²)	Total Current Density (10• A/m ²)	
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150	3.055 3.318 3.598 3.896 4.214 4.555 4.921 5.315 5.741 6.205 6.712 7.270 7.889 8.583	0.625 0.841 1.124 1.495 1.980 2.610 3.430 4.493 5.874 7.670 10.01 13.07 17.11 22.47	0.753 0.915 1.108 1.335 1.602 1.917 2.288 2.723 3.236 3.841 4.559 5.412 6.435 7.670	1.378 1.756 2.232 2.830 3.582 4.527 5.717 7.216 9.110 11.51 14.57 18.49 23.54 30.14	
Cathode Temperature (Kelvin)	Ion/Total Current Density Ratio	Coulomb Logarithm	Conduc- tivity (mho/m)	Erosion Rate (1027 atoms/m2-s)	
3500 3550 3600 3650 3700 3750 3850 3850 3950 4000 4050 4100 4150 4200	.5462 .5212 .4963 .4717 .4474 .4235 .4001 .3773 .3552 .3337 .3129 .2928 .2733 .2545 .2361	10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	3309 3489 3679 3879 4091 4315 4553 4808 5082 5378 5701 6057 6452 6898 7409	3.226 3.686 4.193 4.750 5.360 6.025 6.748 7.530 8.372 9.276 10.24 11.27 12.36 13.50 14.69	
		55			

Figure 5.2 Potentials for a 100 Ampere Arc

CATHODE S	POT PARAME CC	TABLE 3 TERS FOR A OPPER CATHO	150 AMPER	E ARC ON A
Cathode Temperature (Kelvin)	Plasma Temperature (eV)	Cathode Potential (Volts)	Transition Potential (Volts)	Total Arc Potential (Volts)
3500 3550 3600 3650 3700 3750 3850 3850 3950 4000 4050 4100 4150 4200	1.48 1.53 1.58 1.64 1.69 1.75 1.81 1.88 1.94 2.02 2.09 2.18 2.27 2.37 2.49	22.66 21.33 20.15 19.09 18.16 17.33 16.60 15.96 15.41 14.94 14.54 14.54 14.22 13.97 13.80 13.70	10.79 11.41 12.03 12.65 13.25 13.84 14.41 14.93 15.40 15.79 16.08 16.25 16.26 16.26 16.26 16.06 15.59	33.45 32.74 32.18 31.74 31.41 31.17 31.01 30.89 30.81 30.73 30.63 30.47 30.23 29.85 29.30
Cathode Temperature (Kelvin)	Partial Pressure (atm.)	Degree of Ionization	Return Coefficient	Spot Radius (10-4 m)
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	10.9 12.6 14.5 16.6 19.0 21.6 24.5 27.6 31.1 34.9 39.1 43.6 48.5 53.8 59.6	0.1587 0.1674 0.1763 0.1855 0.1952 0.2055 0.2164 0.2281 0.2407 0.2544 0.2696 0.2864 0.3054 0.3271 0.3522	0.4716 0.4742 0.4768 0.4794 0.4821 0.4849 0.4877 0.4907 0.4938 0.4971 0.5006 0.5044 0.5084 0.5129 0.5180	5.948 5.269 4.674 4.151 3.690 3.282 2.921 2.600 2.315 2.060 1.831 1.626 1.442 1.275 1.123

\$ 2.21

N.N.

l.

5

ĺ.

4

68.1

57

Temperature (Kelvin)	Field (10 ^e V/m)	Current Density (10 A/m ²)	Current Density (10® A/m²)	Current Density (10ª A/m²)	
3500 3550 3600 3650 3700 3750 3800 3850 3900	3.011 3.270 3.546 3.840 4.153 4.489 4.850 5.238 5.658	0.615 0.827 1.105 1.469 1.944 2.562 3.364 4.405 5.755	0.735 0.893 1.081 1.303 1.564 1.871 2.232 2.657 3.157	1.349 1.720 2.185 2.771 3.508 4.433 5.596 7.061 8.912	
3950 4000 4050 4100 4150 4200	6.115 6.614 7.163 7.772 8.454 9.225	7.509 9.792 12.78 16.71 21.92 28.92	3.747 4.445 5.277 6.272 7.473 8.937	11.26 14.24 18.06 22.98 29.39 37.86	
Cathode Temperature (Kelvin)	Ion/Total Current Density Ratio	Coulomb Logarithm	Conduc- tivity (mho/m)	Erosion Rate (10 ²⁷ atoms/m ² -s)	
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	0.5443 0.5194 0.4946 0.4700 0.4458 0.4221 0.3989 0.3762 0.3542 0.3542 0.3329 0.3122 0.2923 0.2729 0.2542 0.2361	10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	3279 3458 3645 3842 4051 4272 4506 4757 5027 5318 5636 5985 6372 6808 7307	3.232 3.692 4.200 4.759 5.371 6.038 6.762 7.547 8.392 9.299 10.27 11.30 12.39 13.54 14.74	
		58			

NAMES OF THE PARTY OF THE PARTY

REFERENCES

SECOND SECOND SECOND DURING

F F B C C C

Figure 5.3 Potentials for a 150 Ampere Arc

Temperature (Kelvin)	Temperature (eV)	Potential (Volts)	(Volts)	Potential (Volts)
3500	1.48	22.61	11.69	34.29
3550	1.53	21.26	12.37	33.63
3600	1.58	20.08	13.04	33.13
3650	1.63	19.04	13.72	32.76
3700	1.69	18.10	14.39	32.49
3/50	1./5	17.28	15.04	32.32
3850	1.81	16.33	15.66	32.21
3830	1.07	15.72	10.24	32.16
3950	2.01	14.90	17.21	32.13
4000	2.09	14.50	17.55	32.11
4050	2.17	14.18	17.76	32.00
4100	2.26	13.93	17.80	31.74
4150	2.37	13.76	17.63	31.39
4200	2.48	13.66	17.18	30.84
Cathode Temperature	Partial Pressure	Degree of Ionization	Return Coefficient	Spot Radius
(Kelvīu)	(atm.)			(10 ⁻⁴ m)
3500	10.9	0,1578	0.4714	6.452
3550	12.6	0.1662	0.4739	5.711
3600	14.5	0.1750	0.4765	5.066
3650	16.6	0.1842	0.4791	4.499
3700	19.0	0.1938	0.4818	3.999
3750	21.6	0.2040	0.4845	3.556
3800	24.5	0.2148	0.4874	3.166
3830	2/.0	0.2264	0.4903	2.819
3950	34.9	0.2507	0.4734	2.309
4000	39.1	0.2525	0.5007	2.235
4050	43.6	0.2843	0.5039	1.763
4100	48.5	0.3031	0.5080	1.563
4150	53.8	0.3246	0.5125	1.382
4200	59.6	0.3495	0.5175	1.218
		60		

ECCORT • ECCORT

CATHODE S	TABL Pot Parame Co	E 4 (CONTI TERS FOR A Opper Catho	NUED) 175 Amper)De	E ARC ON A
Cathode Temperature (Kelvin)	Electric Field (10 [®] V/m)	Electron Current Density (10° A/m ²)	Ion Current Density (10● A/m²)	Total Current Density (10● A/m ²)
3500 3550 3600 3650 3700 3750 3850 3850 3950 4000 4050 4100 4150 4200	2.986 3.254 3.528 3.821 4.133 4.468 4.827 5.213 5.631 6.085 6.581 7.128 7.734 8.412 9.178	0.609 0.822 1.098 1.460 1.932 2.546 3.342 4.376 5.716 7.456 9.722 12.68 16.58 21.74 28.67	0.729 0.886 1.072 1.292 1.551 1.856 2.214 2.635 3.131 3.716 4.408 5.232 6.218 7.408 8.859	1.338 1.708 2.171 2.752 3.483 4.402 5.557 7.011 8.847 11.17 14.13 17.91 22.79 29.15 37.53
Cathode Temperature (Kelvin)	Ion/Total Current Density Ratio	Coulomb Logarithm	Conduc- tivity (mho/m)	Erosion Rate (1027 atoms/m2-s)
3500 3550 3600 3650 3700 3750 3800 3850 3950 4000 4050 4100 4150 4200	0.5448 0.5188 0.4940 0.4695 0.4453 0.4216 0.3984 0.3758 0.3539 0.3326 0.3120 0.2921 0.2728 0.2542 0.2361	10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	3270 3447 3634 3830 4038 4258 4491 4741 5009 5299 5614 5961 6346 6779 7274	3.233 3.694 4.203 4.762 5.374 6.042 6.767 7.552 8.398 9.306 10.28 11.31 12.40 13.55 14.75

a* 0. a* 9. a*9.

7.55

Presson laws

1288 Sec. 1

Figure 5.4 Potentials for a 175 Ampere Arc

CATHODE S	POT PARAME	TABLE 5 TERS FOR A OPPER CATHO	200 AMPER	E ARC ON A
Cathode Temperature (Kelvin)	Plasma Temperature (eV)	Cathode Potential (Volts)	Transition Potential (Volts)	Total Arc Potential (Volts)
3500 3550 3600 3650 3750 3750 3800 3850 3900 3950 4000	1.48 1.53 1.58 1.63 1.69 1.74 1.80 1.87 1.94 2.01 2.08	22.48 21.21 20.03 18.99 18.06 17.24 16.51 15.88 15.33 14.86 14.47	12.53 13.26 13.99 14.72 15.44 16.15 16.82 17.46 18.03 18.53 18.92	35.01 34.47 34.02 33.71 33.50 33.38 33.34 33.34 33.34 33.37 33.37 33.39 33.39
4050 4100 4150 4200	2.17 2.26 2.36 2.47	14.15 13.90 13.73 13.63	19.17 19.24 19.09 18.65	33.32 33.15 32.82 32.28
Cathode Temperature (Kelvin)	Partial Pressure (atm.)	Degree of Ionization	Return Coefficient	Spot Radius (10 ⁻⁴ m)
3500 3550 3600 3650 3700 3750 3850 3850 3900 3950 4000 4050 4100 4150 4200	10.9 12.6 14.5 16.6 19.0 21.6 24.5 27.6 31.1 34.9 39.1 43.6 48.5 53.8 59.6	0.1575 0.1652 0.1739 0.1830 0.1926 0.2027 0.2135 0.2250 0.2374 0.2510 0.2659 0.2825 0.3012 0.3226 0.3473	0.4713 0.4736 0.4762 0.4788 0.4815 0.4842 0.4871 0.4900 0.4931 0.4964 0.4998 0.5036 0.5076 0.5121 0.5171	6.899 6.122 5.431 4.823 4.287 3.814 3.395 3.022 2.690 2.394 2.129 1.891 1.677 1.483 1.307
		63		

KARANA ANA

25.22

CATHODE S	TABL Pot Parame Co	E 5 (CONTI TERS FOR A OPPER CATHO	NUED) 200 Amper)De	E ARC ON A
Cathode Temperature (Kelvin)	Electric Field (10 [®] V/m)	Electron Current Density (10• A/m²)	Ion Current Density (10® A/m²)	Total Current Density (10■ A/m ²)
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150	2.990 3.241 3.515 3.806 4.117 4.450 4.808 5.193 5.609 6.061 6.556 7.100 7.703 8.378	0.610 0.818 1.093 1.453 1.923 2.533 3.326 4.353 5.685 7.414 9.665 12.61 16.47 21.60	0.727 0.880 1.065 1.284 1.541 1.844 2.199 2.617 3.110 3.691 4.379 5.197 6.176 7.357	1.338 1.698 2.159 2.737 3.464 4.377 5.525 6.970 8.795 11.11 14.04 17.80 22.65 28.95
Cathode Temperature (Kelvin)	Ion/Total Current Density Ratio	Coulomb Logarithm	Conduc- tivity (mho/m)	Erosion Rate (1027 atoms/m ² -s
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	0.5438 0.5183 0.4935 0.4690 0.4449 0.4212 0.3981 0.3755 0.3536 0.3536 0.3323 0.3118 0.2919 0.2727 0.2541 0.2360	10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	3267 3439 3625 3820 4027 4246 4479 4727 4994 5283 5597 5942 6325 6755 7247	3.234 3.696 4.205 4.765 5.377 6.045 6.771 7.556 8.403 9.312 10.28 11.32 12.41 13.56 14.77
		64		

Figure 5.5 Potentials for a 200 Ampere Arc

CATHODE S	TABLE 6 CATHODE SPOT PARAMETERS FOR A 300 AMPERE ARC ON A COPPER CATHODE							
Cathod e Temperature (Kelvin)	Plasma Temperature (eV)	Cathode Potential (Volts)	Transition Potential (Volts)	Total Arc Potential (Volts)				
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	1.47 1.52 1.57 1.62 1.68 1.74 1.80 1.86 1.93 2.00 2.07 2.15 2.25 2.34 2.46	22.32 21.06 19.90 18.86 17.94 17.13 16.41 15.78 15.24 14.77 14.38 14.07 13.82 13.65 13.55	15.45 16.36 17.28 18.20 19.11 20.00 20.87 21.69 22.45 23.11 23.66 24.04 24.23 24.15 23.75	37.77 37.42 37.17 37.06 37.05 37.13 37.28 37.47 37.69 37.89 38.04 38.11 38.05 37.80 37.80 37.30				
Cathode Temperature (Kelvin)	Partial Pressure (atm.)	Degree of Ionization	Return Coefficient	Spot Radius (10 ⁻⁴ m)				
3500 3550 3600 3650 3700 3750 3850 3850 3900 3950 4000 4050 4100 4150 4200	10.9 12.6 14.5 16.6 19.0 21.6 24.5 27.6 31.1 34.9 39.1 43.6 48.5 53.8 59.6	0.1550 0.1626 0.1712 0.1801 0.1896 0.1995 0.2101 0.2214 0.2336 0.2470 0.2616 0.2779 0.2963 0.3172 0.3415	0.4706 0.4730 0.4755 0.4781 0.4808 0.4835 0.4863 0.4892 0.4923 0.4955 0.4990 0.5027 0.5067 0.5111 0.5160	8.513 7.554 6.701 5.951 5.290 4.707 4.189 3.730 3.321 2.956 2.629 2.336 2.071 1.832 1.616				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cathode Temperature (Kelvin)	Electric Field (10 V/m)	Electron Current Density (10ª A/m ⁼)	Ion Current Density (10ª A/m ²)	Total Curren Densit (10ª A/r
Cathode Temperature (Kelvin)Ion/Total Current Density RatioCoulomb LogarithmConduc- tivity (mho/m)Erosio Rate (1027 atoms/m235000.542310.532463.23835500.516910.534163.70136000.492210.536004.21136500.467810.437944.77137000.443810.439995.38537500.420210.442166.05438000.397110.444466.78138500.374710.346927.56839000.352810.349568.41739500.311310.3555110.3040000.272410.3626912.4441000.272410.3669313.5942000.236010.3717614.80	3500	2.959	0.603	0.715	1.318
	3550	3.207	0.808	0.865	1.673
	3600	3.478	1.080	1.047	2.127
	3650	3.767	1.435	1.261	2.696
	3700	4.075	1.898	1.514	3.412
	3750	4.404	2.500	1.811	4.311
	3800	4.758	3.280	2.161	5.441
	3850	5.139	4.292	2.572	6.863
	3900	5.551	5.603	3.055	8.658
	3950	5.998	7.304	3.625	10.93
	4000	6.487	9.516	4.300	13.82
	4050	7.025	12.40	5.103	17.51
	4100	7.621	16.20	6.063	22.26
	4150	8.287	21.22	7.221	28.44
	4200	9.040	27.95	8.632	36.58
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cathode Temperature (Kelvin)	Ion/Total Current Density Ratio	Coulomb Logarithm	Conduc- tivity (mho/m)	Erosio Rate (1027 atoms/m ²
	3500	0.5423	10.5	3246	3.238
	3550	0.5169	10.5	3416	3.701
	3600	0.4922	10.5	3600	4.211
	3650	0.4678	10.4	3794	4.771
	3700	0.4438	10.4	3999	5.385
	3750	0.4202	10.4	4216	6.054
	3800	0.3971	10.4	4446	6.781
	3850	0.3747	10.3	4692	7.568
	3900	0.3528	10.3	4956	8.417
	3950	0.3317	10.3	5241	9.328
	4000	0.3113	10.3	5551	10.30
	4050	0.2915	10.3	5891	11.34
	4100	0.2724	10.3	6269	12.44
	4150	0.2539	10.3	6693	13.59
	4200	0.2360	10.3	7176	14.80

5

. • POTENTIALS FOR A 300 AMPERE ARC 40 TOTAL 35 P 0 T Ε 30 N Т I A 25 I N (CATHODE! ٧ 20 0 Т тнычеттерн s 15 10 4100 3500 3600 3700 3800 3900 4000 4200 CATHODE TEMPERATURE (KELVIN)

Figure 5.6 Potentials for a 300 Ampere Arc

CATHODE S	TABLE 7CATHODE SPOT PARAMETERS FOR A 400 AMPERE ARC ON A COPPER CATHODE							
Cathode Temperature (Kelvin)	Plasma Temperature (eV)	Cathode Potential (Volts)	Transition Potential (Volts)	Total Arc Potential (Volts)				
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200	1.47 1.52 1.57 1.62 1.67 1.73 1.79 1.85 1.92 1.99 2.07 2.15 2.24 2.34 2.45	22.22 20.97 19.81 18.78 17.87 17.06 16.35 15.72 15.18 14.72 14.33 14.02 13.77 13.60 13.50	17.91 18.97 20.05 21.12 22.20 23.25 24.28 25.25 26.16 26.97 27.64 28.15 28.42 28.41 28.03	40.13 39.94 39.86 39.91 40.07 40.31 40.63 40.98 41.34 41.69 41.98 42.16 42.20 42.01 41.53				
Cathode Temperature (Kelvin)	Partial Pressure (atm.)	Degree of Ionization	Return Coefficient	Spot Radius (10 ⁻⁴ m)				
3500 3550 3600 3650 3700 3750 3800 3850 3950 4000 4050 4100 4150 4200	10.9 12.6 14.5 16.6 19.0 21.6 24.5 27.6 31.1 34.9 39.1 43.6 48.5 53.8 59.6	0.1535 0.1610 0.1695 0.1784 0.1877 0.1976 0.2081 0.2193 0.2314 0.2446 0.2591 0.2752 0.2934 0.3141 0.3380	0.4702 0.4726 0.4751 0.4777 0.4803 0.4830 0.4858 0.4858 0.4888 0.4918 0.4950 0.4950 0.4984 0.5021 0.5061 0.5105 0.5154	9.874 8.762 7.772 6.903 6.136 5.459 4.860 4.327 3.853 3.430 3.051 2.710 2.404 2.127 1.876				

1. 1.

a aaaaaaaa

a1_147_147_147_147_147_147_

69
TABLE 7 (CONTINUED)CATHODE SPOT PARAMETERS FOR A 400 AMPERE ARC ON A COPPER CATHODE				
Cathode Temperature (Kelvin)	Electric Field (10® V/m)	Electron Current Density (10° A/m²)	Ion Current Density (10¶ A/m²)	Total Current Density (10® A/m ²)
3500 3550 3600 3650 3700 3750 3800 3850 3850 3900 3950 4000 4050 4100 4150 4200	2.940 3.187 3.456 3.743 4.049 4.377 4.728 5.107 5.516 5.961 6.446 6.980 7.572 8.234 8.981	0.599 0.803 1.072 1.424 1.883 2.480 3.253 4.256 5.554 7.238 9.427 12.28 16.03 21.00 27.64	0.707 0.856 1.036 1.248 1.498 1.792 2.138 2.544 3.022 3.586 4.254 5.047 5.996 7.141 8.534	1.306 1.659 2.108 2.672 3.3822 4.272 5.391 6.800 8.577 10.83 13.68 17.33 22.03 28.14 36.17
Cathode Temperature (Kelvin)	Ion/Total Current Density Ratio	Coulomb Logarithm	Conduc- tivity (mho/m)	Erosion Rate (1027 atoms/m ² -s)
3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4150 4200	0.5415 0.5161 0.4915 0.4671 0.4431 0.4196 0.3966 0.3742 0.3524 0.3524 0.3313 0.3109 0.2912 0.2722 0.2722 0.2538 0.2359	10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	3234 3403 3586 3779 3983 4198 4427 4671 4933 5216 5524 5861 6236 6656 7135	3.240 3.704 4.214 4.775 5.389 6.059 6.787 7.575 8.425 9.337 10.31 11.35 12.45 13.61 14.82

44.5

ĵ,

<u>᠂ᢧ᠆ᠵᢣᢤ᠋ᢣᡆ᠋ᡷ᠘ᠼ᠅ᡷᡆ᠆ᡷ᠖᠆ᡷᢤ᠖ᡷᡆ᠆ᡷᡛᡓ᠆ᢣᡀ᠅ᢣᡛᢓ᠅ᢣ᠋ᠵ᠅ᡧᢓ᠅ᡧᢓ᠅ᡘᢓ᠅ᡘᢓ᠅ᡘᢓ᠅ᡘᢓ᠅ᡘᢓ᠅ᡘᡀ᠅ᡘᡆ᠅ᡭᡆ᠅ᡬᡆ᠅ᡬᡆ᠅ᡬᡆ᠅ᡘᡆ᠅ᡘᠼᢤᡕᢤᡜᢤᡕᢤᢓ᠅</u>

Figure 5.7 Potentials for a 400 Ampere Arc

	•
	-
1	
	•
	•

1213-1214 A

CATHODE SPOT PAR	RAMETERS F	OR STABLE	ARCS
		Arc Current	,
Parameter	200	300	400
Cathode Temperature (Kelvin)	3850	3700	3600
Plasma Temperature (eV)	187	1.68	1.57
Cathode Potential (Volts)	15.88	17.94	19.81
Spot Radius (10–4 m)	3.022	5.290	7.772
Ion Current Density (10 ⁸ A/m ²)	2.617	1.514	1.036
Electron Current Density (10 ⁸ A/m ²)	4.353	1.898	1.072
Total Current Density (10 ⁸ A/m ²)	6.970	3.412	2.108
Erosion Rate (10^{27})	7.556	5.385	4.214

VI. CONCLUSIONS AND RECOMMENDATIONS

This study has attempted to answer some of the questions associated with the cathode phenomena in a unipolar arc. However, a more detailed analysis of the cathode spot must be accomplished before a consistent understanding of the diverse phenomena occurring within the arc can be achieved. The stationary model presented her is only a beginning and a tool for the development of future models. It can not answer the questions regarding arc initiation, extinction, and spot motion that will have to be addressed in future models if they are to be accepted. Additional research with stationary models should consider including the reverse electron current from the plasma back to the metal, changing from a constant cathode temperature in the arc radius to a constant heat flux with a varying temperature, considering the ohmic heating of the cathode spot by the electron current, and varying the cathode material parameters to determine their influence on the arc stability. It is hoped that this study will help to stimulate further interest and research into the cathode spot of a unipolar arc.

LIST OF REFERENCES

- 1. Chen, F. F., Introduction to Plasma Physics and Controlled Fusion, 2nd ed., v. 1, p. 3, Plenum Press, 1984.
- Langmuir, I., "The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum," *Physical Review*, v. 2, pp. 450-486, 1913.
- 3. MacKeown, S. S., "The Cathode Drop in an Electric Arc," *Physical Review*, v. 34, pp. 611-614, 1929.
- 4. Murphy, E. L. and Good, R. H., "Thermionic Emission, Field Emission, and the Transition Region," *Physical Review*, v. 102, pp. 1464-1473, 1956.
- 5. Bugaev, S. P., Litvinov, E. A., Mesyats, G. A., and Proskurovskii, D. I., "Explosive Emission of Electrons," *Soviet Physics-Uspekhi*, v. 18, pp. 51-61, 1975.
- Litvinov, E. A., Mesyats, G. A., and Proskurovskii, D. I., "Field Emission and Explosive Electron Emission Processes in Vacuum Discharges," *Soviet Physics-Uspekhi*, v. 26, pp. 138-159, 1983.
- 7. Fursei, G. N. and Zhukov, V. M., "Mechanism for Explosive Emission. I. Emission Characteristics of Explosive Emission from Microscopic Metal Points," *Soviet Physics Technical Physics*, v. 21, pp. 176-181, 1976.
- Zhukov, V. M. and Fursei, G. N., "Mechanism for Explosive Emission. II. State of the Cathode Surface During Explosive Emission," *Soviet Physics Technical Physics*, v. 21, pp. 182-187, 1976.
- 9. Zhukov, V. M. and Fursei, G. N., "Explosive Electron Emission from Copper Points," *Soviet Physics Technical Physics*, v. 21, pp. 1112-1117, 1976.
- Robson, A. E. and Thoneman, P. C., "An Arc Maintained on an Isolated Metal Plate Exposed to a Plasma," *Procedural Physics Society*, v. 73, pp. 508-512, 1959.
- Schwirzke, F. and Taylor, R. J., "Surface Damage by Sheath Effects and Unipolar Arcs," *Journal of Nuclear Materials*, v. 93 and 94, pp. 780-784, 1980.
- 12. Schwirzke, F., "Unipolar Arc Model," *Journal of Nuclear Materials*, v. 128 and 129, pp. 609-612, 1984.

- Schwirzke, F., "Unipolar Arcing, a Basic Laser Damage Mechanism;" Naval Postgraduate School Report NPS-61-83-008, pp. 1- 21, 1983.
- 14. Lyubimov, G. A. and Rakhovskii, V. I., "The Cathode Spot of a Vacuum Arc," Soviet Physics-Uspekhi, v. 21, pp. 693-718, 1978.
- 15. Hantzshe, E., "Theory of Cathode Spot Phenomena," *Physica*, v. 104C, pp. 3-16, 1981.
- Lee, T. H. and Greenwood, A., "Theory for the Cathode Mechanism in Metal Vapor Arcs," Journal of Applied Physics, v. 32, pp. 916-923, 1961.
- Kulyapin, V. M., "Quantitative Theory of Cathode Processes in an Arc," *Soviet Physics Technical Physics*, v. 16, pp. 287-291, 1971.
- Kubono, T., "A Theory for the Cathode Mechanism in Low-Current Vacuum Arcs, with Application to the Calculation of Erosion Rate," *Journal of Applied Physics*, v. 49, pp. 3863-3869, 1978.
- 19. Beilis, I., "Analysis of the Cathode Spot in a Vacuum Arc," Soviet Physics Technical Physics, v. 19, pp. 251-256, 1974.
- Moizhes, B. Ya. and Nemchinskii, V. A., "Theory of a High-Pressure Arc with a Refractory Cathode," *Soviet Physics Technical Physics*, v. 17, pp. 793-799, 1972.
- Moizhes, B. Ya. and Nemchinskii, V. A., "High-Pressure Arc with a Refractory Cathode. II," Soviet Physics Technical Physics, v. 18, pp. 1460-1464, 1974.
- 22. Nemchinskii, V. A., "Theory of the Vacuum Arc," Soviet Physics Technical Physics, v. 24, pp. 764-767, 1979.
- 23. Nemchinskii, V. A., "Comparison of Calculated and Experimental Results for a Stationary Cathode Spot in a Vacuum Arc," *Soviet Physics Technical Physics*, v. 28, pp. 1449-1451, 1979.
- 24. Nemchinskii, V. A., "Monte Carlo Calculation of the Erosion Rate and Ion Current at a Vacuum Arc Cathode," *Soviet Physics Technical Physics*, v. 27, pp. 1073-1077, 1982.
- Ecker, G., "Theoretical Aspects of the Vacuum Arc," Vacuum Arcs Theory and Application, Laferty, J. M., Editor; John Wiley & Sons, pp. 228-320, 1980.
- 26. Hoyaux, M. F., Arc Physics, Springer-Verlag New York Inc., pp. 299-301, 1968.

27. Honig, R. E., "Vapor Pressure Data for the More Common Elements," RCA Review, pp. 195-204, 1957.

NY.	8
88	
	_·
NY .	
617 1	APPENDIX A <u>GENERAL</u> EMISSION PROGRAM
1.44	
	C ************************************
	C * EMMLEXE
88	
85	C * EMITTED FOR A RANGE OF ELECTRIC FIELDS AT
	C * THE SURFACE OF A CATHODE WITH A GIVEN WORK
	C * FUNCTION AND CATHODE TEMPERATURE.
	C *
	C * DESCRIPTION OF VARIABLES
	C * T CATHODE TEMPERATURE
	C * F ELECTRIC FIELD
	C * FO INITIAL ELECTRIC FIELD
	C + ECODE ERROR CODE
	C + 0 = GOOD
	C * 1 = ERROR
	C * TYP TYPE OF EMISSION
	C * 1= THERMIONIC
	C * 2= INTERMEDIATE
	C * 3 = FIELD
	C * 4= NONE
888 	
	C + TFFMM1(T F PHT J FCODF)
	C * IFTEMM1(T, F, PHI, J, ECODE)
	C * FTEMM1(T, F, PHI, J, ECODE)
88	C *
	C ************************************
ec.	REAL*8 T,F,FO,PHI,DF,J
	INTEGER I.N.ECUDE, TYP Oppn(A. FTI F-'CON')
<u> </u>	OPEN(4,FIDE- CON) OPEN(6 FILE='EMM1 DAT' STATUS='NEW')
	WRITE(*,*) ENTER THE NUMBER OF DATA POINTS: '
	READ(*,*) N
13.	WRITE(*,*) ENTER THE ABSOLUTE TEMPERATURE (K): '
	READ(*,*) T
	WRITE(*,*) ENTER INITIAL ELECTRIC FIELD (V/M): 1
54-	READ(*,*) FO
	WRITE(*,*) ENTER ELECTRIC FIELD INCREMENT (V/M):
5	
113	77
	11
<u>Ex</u>	
50	
N.	
NECROBALICA DA BA DA DA CA	እንደረጉዚያ አስታይ አንድ እንዲሆን የሆነ የሆነ የሚሆን የድግድ የሚሆን የሚሆን የሚሆን የሚሆን የሚሆን የሚሆን የሚሆን የሚሆን
	<u>ᡣ</u> ᡣᢧᢧᢧᢧᢧᢧᠧᡀᠧᡀᠧᡀᠧ᠕ᡔ᠕ᡔᡘ᠕ᡔ᠕ᡔᡘ᠕ᡔ᠕ᡔᡘᡊ᠕᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆

WRITE(*,*) ENTER WORK FUNCTION (eV): ' READ(*,*) PHI F = FOJ=0. DO 20 I=1,N CALL EMMAPP(T, F, PHI, TYP) IF(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.4) GOTO 10 WRITE(6,900) F, J, ECODE, TYP F=F + DF10 20 CONTINUE STOP 900 FORMAT(1X, D12.6, 5X, D12.6, 5X, I5, 5X, I5)

END

<pre>SUBROUTINE EMM SUBROUTINE EMM SUBROUTINE EMM SUBROUTINE EMM SUBROUTINE THE ELECTRIC FIELD AT THE SURFACH CATHODE TEMPERATURE CATHODE TEMPERATURE. DESCRIPTION OF VARIABLES T CATHODE TEMPERATURE SUBSCRIPTION OF VARIABLES CATHODE TEMPERATURE SUBROUTINE ERCOR CODE SUBROUTINES REQUIRED SUBROUTINE EMM(T,F,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI,J,ECODE) SUBROUTINE EMM(T,F,PHI,T,PHI</pre>	***	***************************************
<pre>* PURPOSE * CALCULATE THE ELECTRON CURRENT DENSITY * FOR A GIVEN ELECTRIC FIELD AT THE SURFACT * OF A CATHODE WITH A GIVEN WORK FUNCTION * CATHODE TEMPERATURE. * DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * SUBROUTINE EMM(T,F,PHI,J,ECODE) * TYP TYPE OF EMISSION * CODE CODE * CODE CODE CODE * CODE CODE * CODE CODE CODE * CODE CODE CODE * CODE * CODE CODE * CODE *</pre>	*	SUBROUTINE EMM
<pre>* PURPOSE * CALCULATE THE ELECTRON CURRENT DENSITY * FOR A GIVEN ELECTRIC FIELD AT THE SURFACT * OF A CATHODE WITH A GIVEN WORK FUNCTION * CATHODE TEMPERATURE. * DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * TFEMM1(T,F,PHI,J,ECODE) * * ********************************</pre>	*	
<pre>* CALCULATE THE ELECTRON CURRENT DENSITY * FOR A GIVEN ELECTRIC FIELD AT THE SURFACT * OF A CATHODE WITH A GIVEN WORK FUNCTION A CATHODE TEMPERATURE. * DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * 12 FERMENT * 12 THERMIONIC * 2 INTERMEDIATE * 3 = FIELD * 4 = NONE * SUBROUTINES REQUIRED * IFTEMMI(T,F,PHI,J,ECODE) * IFTEMMI(T,F,PHI,J,ECODE) * SUBROUTINE EMM(T,F,PHI,J,ECODE, * * * *******************************</pre>	*	PURPOSE
<pre>* FOR A GIVEN ELECTRIC FIELD AT THE SURFACT * OF A CATHODE WITH A GIVEN WORK FUNCTION / * CATHODE TEMPERATURE. * DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * SUBROUTINES REQUIRED * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE, * SUBROUTINE EMM(T,F,PHI,J,ECODE) * FTYP CALL EMMAPP(T,F,PHI,TYP) F(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)</pre>	*	CALCULATE THE ELECTRON CURRENT DENSITY
 OF A CATHODE WITH A GIVEN WORK FUNCTION A CATHODE TEMPERATURE. DESCRIPTION OF VARIABLES T CATHODE TEMPERATURE F ELECTRIC FIELD F ELECTRIC FIELD PHI WORK FUNCTION J CURRENT DENSITY ECODE ERROR CODE 0 = GOOD 1 = ERROR 1 = THERMIONIC 2 = INTERMEDIATE 3 = FIELD 4 = NONE SUBROUTINES REQUIRED FTEMM1(T,F,PHI,J,ECODE) FTEMM1(T,F,PHI,J,ECODE) FTEMM1(T,F,PHI,TPP) CALL EMMAPP(T,F,PHI,TPP) F(TYP, EQ.1) CALL IFTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE) 	*	FOR A GIVEN ELECTRIC FIELD AT THE SURFAC
 CATHODE TEMPERATURE. DESCRIPTION OF VARIABLES T CATHODE TEMPERATURE F ELECTRIC FIELD F ELECTRIC FIELD PHI WORK FUNCTION J CURRENT DENSITY ECODE ERROR CODE 0 = GOOD 1 = ERROR 0 = GOOD 1 = ERROR TYP TYPE OF EMISSION 1 = THERMIONIC 2 = INTERMEDIATE 3 = FIELD 4 = NONE SUBROUTINES REQUIRED EMMAPP(T, F, PHI, J, ECODE) FTEMM1(T, F, PHI, J, ECODE) FTYP CALL EMMAPP(T, F, PHI, TYP) CALL EMMAPP(T, F, PHI, T, PHI, J, ECODE) F(TYP.EQ.1) CALL IFTEMM1(T, F, PHI, J, ECODE) F(TYP.EQ.3) CALL FTEMM1(T, F, PHI, J, ECODE) 	*	OF A CATHODE WITH A GIVEN WORK FUNCTION
<pre>* DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * SUBROUTINE EMM(T,F,PHI,J,ECODE, * FTEMM1(T,F,PHI,J,ECODE,TYP) CALL EMMAPP(T,F,PHI,TYP) CALL EMMAPP(T,F,PHI,TYP) F(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)</pre>	*	CATHODE TEMPERATURE.
<pre>* DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * 1 = THERMIONIC * 2 INTERMEDIATE * 3 = FIELD * 4 = NONE * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * SUBROUTINE EMM(T,F,PHI,J,ECODE, * FTEMM1(T,F,PHI,J,ECODE,TYP) CALL EMMAPP(T,F,PHI,TYP) SALL EMMAPP(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE,TYP) CALL EMMAPP(T,F,PHI,TYP) F(TYP,EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) F(TYP,EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)</pre>	*	DECONTRACTOR OF MARKER PO
<pre>* T CATHODE TEMPERATURE * F ELECTRIC FIELD * PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * 4 = NONE * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * *********************************</pre>	*	DESCRIPTION OF VARIABLES
<pre>* PHI WORK FUNCTION * J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE,TYP) CALL EMMAPP(T,F,PHI,TYP) F(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)</pre>	*	
<pre>* J CURRENT DENSITY * ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1 = THERMIONIC * 2 = INTERMEDIATE * 3 = FIELD * 4 = NONE * * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMMI(T,F,PHI,J,ECODE) * FTEMMI(T,F,PHI,J,ECODE) * **********************************</pre>	*	
<pre>* ECODE ERROR CODE * 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1= THERMIONIC * 2= INTERMEDIATE * 3= FIELD * 4= NONE * * 4= NONE * * * * * * * * * * * * * * * * * * *</pre>	*	I CURRENT DENSITY
<pre>* 0 = GOOD * 1 = ERROR * TYP TYPE OF EMISSION * 1= THERMIONIC * 2= INTERMEDIATE * 3= FIELD * 4= NONE * 4= NONE * * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * *********************************</pre>	*	ECODE ERROR CODE
<pre>* 1 = ERROR * TYP TYPE OF EMISSION * 1= THERMIONIC * 2= INTERMEDIATE * 3= FIELD * 4= NONE * 4= NONE * * TFEMM1(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * *********************************</pre>	*	0 = GOOD
<pre>* TYP TYPE OF EMISSION * 1= THERMIONIC * 2= INTERMEDIATE * 3= FIELD * 4= NONE * * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * **********************************</pre>	*	1 = ERROR
<pre>* 1= THERMIONIC * 2= INTERMEDIATE * 3= FIELD * 4= NONE * 5UBROUTINES REQUIRED * EMMAPP(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * SUBROUTINE EMM(T,F,PHI,J,ECODE,TYP) REAL*8 T,F,PHI,J NTEGER ECODE,TYP CALL EMMAPP(T,F,PHI,TYP) F(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)</pre>	*	TYP TYPE OF EMISSION
<pre>* 2= INTERMEDIATE * 3= FIELD * 4= NONE * * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * *********************************</pre>	*	1= THERMIONIC
* 3= FIELD * 4= NONE * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * ********************************	*	2= INTERMEDIATE
<pre>* 4= NONE * * SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * ********************************</pre>	*	3= FIELD
* SUBROUTINES REQUIRED * EMMAPP(T,F,PHI,TYP) * TFEMM1(T,F,PHI,J,ECODE) * IFTEMM1(T,F,PHI,J,ECODE) * FTEMM1(T,F,PHI,J,ECODE) * * SUBROUTINE EMM(T,F,PHI,J,ECODE,TYP) REAL*8 T,F,PHI,J INTEGER ECODE,TYP CALL EMMAPP(T,F,PHI,TYP) F(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)	*	4 = NONE
 * SUBROUTINES REQUIRED * EMMAPP(T, F, PHI, TYP) * TFEMM1(T, F, PHI, J, ECODE) * IFTEMM1(T, F, PHI, J, ECODE) * FTEMM1(T, F, PHI, J, ECODE) * ***********************************	*	
 * EMMAPP(T, F, PHI, TYP) * TFEMM1(T, F, PHI, J, ECODE) * IFTEMM1(T, F, PHI, J, ECODE) * FTEMM1(T, F, PHI, J, ECODE) * ************************************	*	SUBROUTINES REQUIRED
 TFEMMI(T, F, PHI, J, ECODE) IFTEMM1(T, F, PHI, J, ECODE) FTEMM1(T, F, PHI, J, ECODE) FTEMM1(T, F, PHI, J, ECODE) * ************************************	*	EMMAPP(T, F, PHI, TYP)
 IFTEMMI(T,F,PHI,J,ECODE) FTEMMI(T,F,PHI,J,ECODE) FTEMMI(T,F,PHI,J,ECODE) * ************************************	*	TFEMM1(T,F,PHI,J,ECODE)
* FTEMMI(T,F,PHI,J,ECODE) * **********************************	*	IFTEMM1(T, F, PHI, J, ECODE)
* ************************************	*	FTEMMI(T, F, PHI, J, ECODE)
SUBROUTINE EMM(T,F,PHI,J,ECODE,TYP) EAL*8 T,F,PHI,J INTEGER ECODE,TYP CALL EMMAPP(T,F,PHI,TYP) IF(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)	*	******
SUBROUTINE EMM(T,F,PHI,J,ECODE,TYP) REAL*8 T,F,PHI,J INTEGER ECODE,TYP CALL EMMAPP(T,F,PHI,TYP) IF(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) IF(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)		
INTEGER ECODE, TYP CALL EMMAPP(T, F, PHI, TYP) IF(TYP.EQ.1) CALL TFEMM1(T, F, PHI, J, ECODE) IF(TYP.EQ.2) CALL IFTEMM1(T, F, PHI, J, ECODE) IF(TYP.EQ.3) CALL FTEMM1(T, F, PHI, J, ECODE)	SUBI Real	ROUTINE EMM(T,F,PHI,J,ECODE,TYP)
CALL EMMAPP(T,F,PHI,TYP) (F(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) (F(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) (F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)	NTE	GER ECODE.TYP
F(TYP.EQ.1) CALL TFEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)		L EMMAPP(T.F.PHI.TYP)
F(TYP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE) F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)	F(T	YP.EQ.1) CALL TFEMM1(T.F.PHI, J.ECODE)
F(TYP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)	Ē(T	YP.EQ.2) CALL IFTEMM1(T,F,PHI,J,ECODE)
	F(T	YP.EQ.3) CALL FTEMM1(T,F,PHI,J,ECODE)
	FND	

APPENDIX C EMISSION APPLICABILITY SUBROUTINE

* + +.+ *.+ 4.# *.* *.*

6.4

Nab. 5. 6. 6. 6. 8. 8. 8. 19. 19.

247-257-267-267

**	******
*	
	SUBROUTINE EMMAPP
	DUBBOCE
	TREMMI TETEMMI, AND FTEMMI
	DESCRIPTION OF VARIABLES
	T CATHODE TEMPERATURE
	FO ELECTRIC FIELD AT CATHODE SURFACE
	PHIO WORK FUNCTION
	TYP TYPE OF EMISSION
	2= INTERMEDIATE 2- FIFTD
	3 - FLEDD 4 - NONE
	4- HORE
	SUBROUTINES REQUIRED
	NONE
RE IN E = = = = = = = = = = = = = = = = = = =	AL*8 TEST1,TEST2,TEST3,TEST4 'EGER ECODE1,ECODE2,ECODE3,TYP,N 9.1095E-31 1.6022E-19 1.3807E-23 1.0546E-34 5=8.8542E-12 3.141592654 (4*PI*EPS*H)**2/(M*E**4) E1**2*E**3/(4*PI*EPS) 70*F1 D=K*T
KT PH N= D=	=KT0*E1 [=PHI0*E1*E] F**(3./4.)/(PI*KT)
12(TPC	
	T = D = 20, 20, 10 T = D = D = 0 = 1 / (D = 1 / (D = 1))
re: re:	T = D / 20, 20, 10 T = DLOG((1 - D)/D) - 1/(D*(1 - D)) T = PI/(F**(3./4.))*(PHI - DSQRT(F))

```
TEST4 = -PI/(F * * (1./8.))
   IF((TEST1.GT.TEST2).AND.(TEST3.GT.TEST4)) THEN
       ECODE1=0
   ELSE
       ECODE1=1
   ENDIF
   GOTO 30
20 ECODE1=1
30 ETA0 = -F * 2 / (8 * KT * 2)
   Y=DSQRT(F)/PHI
   CALL VTY(Y, V, TY, IER1)
40 YE=DSQRT(F)/(-ETA0)
   CALL VTY(YE, VE, TE, IER2)
   ETA=-F**2/(8*KT**2*TE**2)
   IF(DABS(ETA-ETA0).GT. 1.0D-6) THEN
       ETAO = ETA - (ETA - ETAO)/2.1
       N=N+1
       IF(N.GT.200) THEN
           ECODE2=1
           GOTO 50
       ENDIF
       GOTO 40
   ENDIF
   D=2*DSQRT(2/YE)*TE/PI
   TEST1=1/YE
   TEST2=1 + F**(1./4.)*D/(PI*(D-1))
   TEST3=-F**2/(8*KT**2*TE**2)
   TEST4 = -PHI + KT / (1 - F / (2 * DSQRT(2 * PHI) * KT * TY))
   IF((TEST1.GT.TEST2).AND.(TEST3.GT.TEST4)) THEN
       ECODE2=0
   ELSE
       ECODE2=1
   ENDIF
50 D=(2*DSQRT(2.0*PHI)*PI*KT)/F
   D1=4*DSQRT(2*PHI)*PHI/(3*F)
   TEST1=PHI-DSQRT(F)
   TEST2 = F * * (3./4.)/PI + KT/(1 - D * TY/PI)
   TEST3=1-D*TY/PI
   TEST4=KT*DSQRT((V*PHI/F)*DSQRT(2*PHI)/(PHI**2-F))
   IF((TEST1.GT.TEST2).AND.(TEST3.GT.TEST4)) THEN
       ECODE3=0
   ELSE
       ECODE3=1
   ENDIF
   IF(ECODE1.EQ.0) THEN
       TYP=1
   ELSE
       IF(ECODE2.EQ.0) THEN
           TYP=2
       ELSE
          IF(ECODE3.EQ.0) THEN
```

1. 2.4179.41 Mart. Mart. Mart. Mart. Mart. Mart. Mart. Mart. Mart. 1. 1.167.1767.1767.1767

TYP=3 ELSE TYP=4 ENDIF ENDIF ENDIF RETURN END

19 ATR A12 119 A 8 A 8

APPENDIX D T-F EMISSION SUBROUTINE

С	*******	******
С	*	
С	* SUBROUTIN	E TFEMM1
С	*	
С	* PURPOSE	
Ĉ	* CALCUL	ATES THE ELECTRON CURRENT DENSITY
č	* FOR TH	FRMIONIC FIELD EMISSION
č	*	
ĉ		ON OF VARIABLES
č		
C		ELECTRIC FIELD AT CATHODE SURFACE
C	* PHIU	WURK FUNCTION
C	* 50	CORRENT DENSITY
С	* ECODE	ERROR CODE
С	*	0 = GOOD
С	*	1= ERROR
С	*	
С	* SUBROUTIN	ES REQUIRED
С	* NONE	
С	*	
Ĉ	**********	· * * * * * * * * * * * * * * * * * * *
č		
	REAL*8 1,F,FH1,J, REAL*8 F0,J0,E1,J REAL*8 TEST1,TES INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)*: F1=E1**2*E**3/(4 J1=E1**2*H**3/(M F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E D=F**(3./4.)/(PI*K J=(KT**2/(2*PI**	<pre>/// E, K, H, EFS, PI, PHIO, D F1, J1, KT0, KT ST2, TEST3, TEST4 *2/(M*E**4) *PI*EPS) *E) (T) 2))*((PI*D)/DSIN(PI*D))* BT(F))/KT)</pre>
	J0=J/J1	
	IF(1-D) 20,20,10	
	10 TEST1=DLOG $((1-D)/$	D) - 1/(D * (1 - D))

```
TEST2=-PI/(F**(3./4.))*(PHI-DSQRT(F))
TEST3=DLOG((1-D)/D)-1/(1-D)
TEST4=-PI/(F**(1./8.))
IF((TEST1.GT.TEST2).AND.(TEST3.GT.TEST4)) THEN
ECODE=0
ELSE
ECODE=1
ENDIF
RETURN
20 ECODE=1
RETURN
END
```

APPENDIX E FIELD-THERMIONIC EMISSION SUBROUTINE

_	
т ж	SOBROOTINE FIEMM
*	PURPOSE
*	CALCULATES THE ELECTRON CURRENT DENSITY
*	FOR FIELD-THERMIONIC EMISSION
*	
*	DESCRIPTION OF VARIABLES
*	T CATHODE TEMPERATURE
*	FO ELECTRIC FIELD AT CATHODE SURFAC
*	PHIO WORK FUNCTION
*	JU CURRENT DENSITY
*	
*	
*	I= ERKOR
*	SUBROUTINES REQUIRED
*	VTY(Y, V, TY, IER)
*	
SUB REA REA REA	ROUTINE FTEMM1(T,F0,PH10,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PH10,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT
SUB REA REA REA INTI M=9 E=1. K=1. H=1. EPS PI=	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT EGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654
SUB REA REA REA INTI M=9 E=1. K=1. H=1. EPS EI=(ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT EGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4)
SUB REA REA REA INTI M=9 E=1. K=1. H=1. EPS PI=: E1=(F1=)	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT EGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) E1**2*E**3/(4*PI*EPS)
SUB REA REA REA INTI M=9 E=1. K=1. H=1. EPS PI=3 E1=1 J1=1	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT GGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) G1**2*E**3/(4*PI*EPS) S1**2*H**3/(M*E)
SUB REA REA REA INTI M=9 E=1. K=1. H=1. EPS F1=1 J1=1 F=F	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT EGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) E1**2*E**3/(4*PI*EPS) E1**2*H**3/(M*E) 0*F1
SUB REA REA REA INTI M=9 E=1. K=1. H=1. EPS E1=(J1=I F=F KTO	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT EGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) E1**2*E**3/(4*PI*EPS) E1**2*H**3/(M*E) 0*F1 =K*T
SUB REA REA REA INTI M=9 E=1. K=1. H=PS E1=(F1=] J1=I F=F KTT	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT EGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) E1**2*E**3/(4*PI*EPS) E1**2*H**3/(M*E) 0*F1 =K*T KT0*E1 -DHU0*E1*E
SUB REA REA REA INTH M=9 E=1. H=9 E=1. H=9 E=1. H=9 E=1. F=1=1 J=F F1=1 F=F0 KT=PHI	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT GGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) S1**2*E**3/(4*PI*EPS) S1**2*H**3/(M*E) 0*F1 =K*T KT0*E1 =PHI0*E1*E 2*DSOPT(2.0*PHI)*PI*KT)/F
SUB REA REA REA INTH M=9 E=1. K=1. H=12 F=1 F=1 J1=1 F=F KT0= PHI: (2 D1=1	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT GGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) S1**2*E**3/(4*PI*EPS) S1**2*H**3/(M*E) 0*F1 =K*T KT0*E1 =PHI0*E1*E 2*DSQRT(2.0*PHI)*PI*KT)/F 4*DSQRT(2.0*PHI)*PI*KT)/F
SUB REA REA REA INTI M=9 E=1. K=1. H=12 F=1 F=F F1=1 J1=1 F=F KT0 D1=0 Y=D	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT GGER ECODE 1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) G1**2*E**3/(4*PI*EPS) G1**2*H**3/(M*E) 0*F1 =K*T KT0*E1 =PHI0*E1*E 2*DSQRT(2.0*PHI)*PHI/(3*F) SQRT(2*PHI)*PHI/(3*F)
SUB REA REA REA INTI M=9 E=1. K=1. H=12 E=1 E=1 F=F KTC= D1=1 D1=1 D1=0 Y=DL CAL	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT GGER ECODE 1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) G1**2*E**3/(4*PI*EPS) G1**2*H**3/(M*E) 0*F1 =K*T KT0*E1 =PHI0*E1*E 2*DSQRT(2.0*PHI)*PI*KT)/F 4*DSQRT(2*PHI)*PHI/(3*F) SQRT(F)/PHI L VTY(Y,V,TY,IER)
SUBA REAA REAA REAA INT: 9 = 1. H= 1.	ROUTINE FTEMM1(T,F0,PHI0,J0,ECODE) L*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,D1,TY L*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3 L*8 F0,J0,E1,F1,J1,KT0,KT GGER ECODE .1095E-31 6022E-19 3807E-23 0546E-34 =8.8542E-12 3.141592654 4*PI*EPS*H)**2/(M*E**4) G1**2*E**3/(4*PI*EPS) G1**2*H**3/(M*E) 0*F1 =K*T KT0*E1 =PHI0*E1*E 2*DSQRT(2.0*PHI)*PI*KT)/F 4*DSQRT(2*PHI)*PII/(3*F) SQRT(F)/PHI L VTY(Y,V,TY,IER) **2*(D*TY/DSIN(D*TY))*DEXP(-D1*V)/(16*PI**2*PHI*TY**

```
TEST1=PHI-DSQRT(F)
TEST2=F**(3./4.)/PI + KT/(1-D*TY/PI)
TEST3=1-D*TY/PI
TEST4=KT*DSQRT((V*PHI/F)*DSQRT(2*PHI)/(PHI**2-F))
IF((TEST1.GT.TEST2).AND.(TEST3.GT.TEST4)) THEN
ECODE=0
ELSE
ECODE=1
ENDIF
RETURN
END
```

and the second second

€

KNC NAME OF A

APPENDIX F COMPLETE ELLIPTIC INTEGRAL OF THE 1ST KIND

С C С С SUBROUTINE CEL1 CCCCC PURPOSE CALCULATE COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND C C USAGE CALL CEL1(RES, AK, IER) С С DESCRIPTION OF PARAMETERS 000000000 RES - RESULT VALUE AK - MODULUS (INPUT) RESULTANT ERROR CODE WHERE IER _ IER=0 NO ERROR IER=1 AK NOT IN RANGE -1 TO +1 REMARKS THE RESULT IS SET TO 1.E75 IF ABS(AK) GE 1 C C FOR MODULUS AK AND COMPLEMENTARY MODULUS CK. EQUATION AK*AK+CK*CK=1.0 IS USED. С AK MUST BE IN THE RANGE -1 TO +1 0000000000 SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE METHOD DEFINITION CEL1(AK)=INTEGRAL(1/SQRT((1+T*T)*(1+(CK*T)**2)). SUMMED OVER T FROM 0 TO INFINITY). EQUIVALENT ARE THE DEFINITIONS CCCCCCCCC CEL1(AK) = INTEGRAL(1/(COS(T)SORT(1+(CK*TAN(T))**2)))SUMMED OVER T FROM 0 TO PI/2), CEL1(AK) = INTEGRAL(1/SQRT(1-(AK*SIN(T))**2)),SUMMED OVER T FROM 0 TO PI/2), WHERE K=SQRT(1.-CK*CK).EVALUATION LANDENS TRANSFORMATION IS USED FOR CALCULATION. REFERENCE C C C R.BULIRSCH, 'NUMERICAL CALCULATION OF ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS', HANDBOOK SERIES SPECIAL FUNCTIONS, NUMERISCHE MATHEMATIK VOL. 7, C 1965, PP. 78-90.

87

C C C

	SUBROUTINE CEL1(RES, AK, IER)
	REAL*8 ARI.GEO.AK.RES.AARI
	IER=0
	ART=2
	GFO=(0,5-AK)+0,5
4	IF(GEU)1, 2, 4 IED-1
1	
2	RES=1.E38
	RETURN
3	GEO=GEO*AARI
4	GEO=DSQRT(GEO)
	GEO=GEO+GEO
	AARI=ARI
	ARI=ARI+GEO
	RES=RES+RES
	IF(GE0/AARI-0.9999)3.5.5
5	RES=RES/ART = 283185E0
	RETURN

END

APPENDIX G COMPLETE ELLIPTIC INTEGRAL OF 2ND KIND С С С С SUBROUTINE CEL2 С С PURPOSE С COMPUTES THE GENERALIZED COMPLETE ELLIPTIC C C INTEGRAL OF SECOND KIND. С USAGE С CALL CEL2(RES, AK, A, B, IER) С С DESCRIPTION OF PARAMETERS С RES - RESULT VALUE Ċ AK - MODULUS (INPUT) С CONSTANT TERM IN NUMERATOR Α C FACTOR OF QUADRATIC TERM IN NUMERATOR В Ĉ **RESULTANT ERROR CODE WHERE** IER С IER=0 NO ERROR Ċ AK NOT IN RANGE -1 TO +1 IER=1 Ĉ С REMARKS С FOR ABS(AK) GE 1 THE RESULT IS SET TO 1.E75 IF B С IS POSITIVE, TO -1.E75 IF B IS NEGATIVE. С SPECIAL CASES ARE С K(K) OBTAINED WITH A = 1, B = 1 С E(K) OBTAINED WITH A = 1, B = CK*CK WHERE CK IS С COMPLEMENTARY MODULUS. C B(K) OBTAINED WITH A = 1, B = 0 č D(K) OBTAINED WITH A = 0, B = 1 С WHERE K, E, B, D DEFINE SPECIAL CASES OF THE Č C GENERALIZED COMPLETE ELLIPTIC INTEGRAL OF SECOND KIND IN THE USUAL NOTATION, AND THE ARGUMENT K OF С THESE FUNCTIONS MEANS THE MODULUS. С С SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED C NONE С С METHOD С DEFINITION C C RES=INTEGRAL((A+B*T*T)/(SQRT((1+T*T) *(1+(CK*T)**2))*(1+T*T)) С SUMMED OVER T FROM 0 TO INFINITY). Ĉ EVALUATION С LANDENS TRANSFORMATION IS USED FOR CALCULATION. C REFERENCE

100-00-000 100-000

EXAMPLE

12202002

89

C C		R.BULIRSCH, 'NUMERICAL CALCULATION OF ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS', HANDBOOK SERIES
C C		SPECIAL FUNCTIONS, NUMERISCHE MATHEMATIK VOL. 7, 1965, PP. 78-90.
č		
C		*******************
C		SUBROUTINE CEL2(RES. AK. A. B. IER)
		REAL*8 RES. AK. A. B. ART. GEO. A1. B0. AARI
		IER=0
		ARI=2.
		GEO = (0.5 - AK) + 0.5
		GEO=GEO+GEO*AK
		RES=A
		A1=A+B
		B0=B+B
		IF(GEO)1,2,6
	1	IER=1
	2	IF(B)3,8,4
	3	RES=-1.E38
		RETURN
	4	RES=1.E38
		RETURN
	5	GEO=GEO*AARI
	6	GEO=DSQRT(GEO)
		GEO=GEO+GEO
		AARI=ARI
		ARI=ARI+GEO
		B0=B0+RES*GEO
		RES=A1
		B0=B0+B0
		A1=B0/ARI+A1
		IF(GEO/AARI-0.9999)5,7,7
	7	RES=A1/ARI
	_	RES=RES+0.5707963E0*RES
	8	RETURN
		END

Ň

⋜⋬⋗⋓⋕⋓⋎⋓⋧⋎⋓⋎⋺⋓*⋽⋎⋐⋕⋸⋐⋎⋳⋬⋎⋳⋬⋺⋳⋬⋺⋳⋬⋺⋳⋬⋺⋶⋬⋺⋶⋬⋺⋧⋳⋺⋧⋳⋺⋧⋳*⋎⋳⋎⋎⋳⋎⋺⋎⋻⋧⋳⋩⋳⋏⋳⋎⋏⋜⋏⋧⋎⋏⋜⋏⋧⋎⋏⋜⋏⋧⋎⋏⋜⋏⋧⋎⋺⋜⋏⋧⋎⋎⋎⋏⋌⋏⋎⋏⋖⋏⋽⋨⋐⋺⋧⋖⋏⋺⋧⋨⋌⋁

90

APPENDIX H FOWLER-NORDHIEM BLLIPTIC FUNCTIONS

*

٠

****	******	*********
((SUBBOUTINE	F. VTY
ĸ	DODROOTINI	
:	PURPOSE	
	CALCUL	ATES THE FOWLER-NORDHIEM ELLIPTIC
	FUNCTIO	ONS
	DESCRIPTIO	ON OF VARIABLES
	Y	FUNCTION ARGUMENT
	V	FOWLER-NORDHIEM ELLIPTIC V
	TY	FOWLER-NORDHIEM ELLIPTIC T
	IER	ERROR CODE
		1= ERROR
	CHERAUTINE	
	SUDRUUIINE CEI 1/DE	EO KEROIKED
		S, AR, IER) FC AV A D TFD)
	CED2(RE	LO, AR, A, D, IER)
****	****	******
REAL INTE IF(Y.) C C C V T ELSE C C V T T T	**8 Y,V,TY,C1,0 GER IER,IER1,I GT. 1.0) THEN C1=DSQRT((Y-1),) CEL1(C2,0 CALL CEL2(C3,0) Y=-DSQRT(Y/2) Y=1/DSQRT(1+Y) C1=DSQRT((1-Y),) CALL C1=DSQRT((1-Y),) CALL C1=DSQRT((1-Y),) CALL C1=DSQRT((1-Y),) CALL C2=DSQRT((1-Y),) CALL C3=DSQRT((1-Y),) CALL C4=DSQRT(1+Y)*(C4=DSQRT(1+Y))	C2,C3 IER2 f/(2*Y)) C1, IER1) ,C1,1.0D00,1.0D00-C1*C1,IER2) f(-2*C3 + (Y+1)*C2) Y)*((1+Y)*C3 - Y*C2) f/(1+Y)) C1, IER1) ,C1,1.0D00,1.0D00-C1*C1,IER2) (C3-Y*C2) Y)*((1+Y)*C3 - Y*C2)
ENDI	F	-, ((2-1),
IF((I	ER1. EQ. 1). OR. (IE	ER2.EQ.1)) THEN
Ĩ	ER=1	
ELSE	2	
I	ER=0	
ENDI	F	
RETU	JRN	
END		

91

APPENDIX I INTERMEDIATE F-T EMISSION SUBROUTINE

C * SUBROUTINE IFTEMM1 * PURPOSE C * CALCULATES THE ELECTRON CURRENT DENSITY FOR INTERMEDIATE FIELD-THERMIONIC EMISSION * DESCRIPTION OF VARIABLES C * DESCRIPTION OF VARIABLES C * T CATHODE TEMPERATURE C * FO ELECTRIC FIELD AT CATHODE SURFACE * FO CURRENT DENSITY C * DC CURRENT DENSITY C * COE ERROR CODE C * 0= GOOD C * 1= ERROR * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * SUBROUTINE IFTEMMI(T,FO,PHIO,JO,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHIO,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 TO,JO,E1,F1,J1,KTO,KT,ETA,ETAO,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KTO=K*T KT=KTO*E1 PHI=PHIO*E1*E ETAO=-F**2/(8*KT**2)	С		********
C * SUBROUTINE IFTEMM1 * C * PURPOSE C CALCULATES THE ELECTRON CURRENT DENSITY FOR INTERMEDIATE FIELD-THERMIONIC EMISSION * DESCRIPTION OF VARIABLES C * T CATHODE TEMPERATURE C * FO ELECTRIC FIELD AT CATHODE SURFACE * JO CURRENT DENSITY C * ECODE ERROR CODE * JO CURRENT DENSITY C * ECODE ERROR CODE * 0 = GOOD C * 1= ERROR C * SUBROUTINES REQUIRED * VTY(Y, V, TY, IER) * C * SUBROUTINE IFTEMM1(T, FO, PHIO, JO, ECODE) REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHIO, D, TE, TY REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHIO, D, TE, TY REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHIO, D, TE, TY REAL*8 T, F, PHI, J, KTO, KT, ETA, ETAO, YE, THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KTO=K*T KT=KTO*E1 PHI=PHIO*E1*E ETAO=-F**2/(8*KT**2)	С		*
C * PURPOSE C ALCULATES THE ELECTRON CURRENT DENSITY FOR INTERMEDIATE FIELD-THERMIONIC EMISSION C * DESCRIPTION OF VARIABLES C T CATHODE TEMPERATURE C T CATHODE TEMPERATURE C * FO ELECTRIC FIELD AT CATHODE SURFACE C * PHIO WORK FUNCTION C * JO CURRENT DENSITY C * ECODE ERROR CODE C * 0= GOOD C * 1= ERROR C * SUBROUTINES REQUIRED C * VTY(Y,V,TY,IER) C * SUBROUTINE REQUIRED C * VTY(Y,V,TY,IER) C * SUBROUTINE IFTEMM1(T,FO,PHIO,JO,ECODE) REAL*8 TSF1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 TSF1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 FO,JO,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHIO*E1*E ETAO=-F**2/(8*KT**2)	С		* SUBROUTINE IFTEMM1
C * PURPOSE C C C CURRENT DENSITY C C C CURRENT DENSITY C C C CONTRIBUTION OF VARIABLES C C C DESCRIPTION OF VARIABLES C C C DESCRIPTION OF VARIABLES C C C C CATHODE TEMPERATURE C C C C CATHODE SURFACE C C C C CATHODE SURFACE C C C CONTRIBUTION C C C CONTRIBUTION C C C CONTRIBUTION C C C CONTRIBUTION C C C C CONTRIBUTION C C C C C CONTRIBUTION C C C C C CONTRIBUTION C C C C C C CONTRIBUTION C C C C C C C C C C C C C C C C C C C	С		*
C * CALCULATES THE ELECTRON CURRENT DENSITY * FOR INTERMEDIATE FIELD-THERMIONIC EMISSION * DESCRIPTION OF VARIABLES * T CATHODE TEMPERATURE * FO ELECTRIC FIELD AT CATHODE SURFACE * PHIO WORK FUNCTION * JO CURRENT DENSITY * ECODE ERROR CODE * 0= GOOD * 0=	С		* PURPOSE
<pre>C * FOR INTERMEDIATE FIELD-THERMIONIC EMISSION C * C * DESCRIPTION OF VARIABLES C * T CATHODE TEMPERATURE C * FO ELECTRIC FIELD AT CATHODE SURFACE C * PHIO WORK FUNCTION C * JO CURRENT DENSITY C * ECODE ERROR CODE C * 0 = GOOD C * 1 = ERROR C * 0 = GOOD C * 1 = ERROR C * C * SUBROUTINES REQUIRED C * VTY(Y, V, TY, IER) C * C * SUBROUTINE IFTEMM1(T, F0, PHI0, J0, ECODE) REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHI0, D, TE, TY REAL*8 TEST1, TEST2, TEST3, TEST4, Y, V, C1, C2, C3, VE REAL*8 F0, J0, E1, F1, J1, KT0, KT, ETA, ETA0, YE, THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2) </pre>	С		* CALCULATES THE ELECTRON CURRENT DENSITY
<pre>C * DESCRIPTION OF VARIABLES C * T CATHODE TEMPERATURE C * F0 ELECTRIC FIELD AT CATHODE SURFACE F0 ELECTRIC FIELD AT CATHODE SURFACE PHIO WORK FUNCTION A JO CURRENT DENSITY C * ECODE ERROR CODE C * 0 = GOOD C * 1 = ERROR C * SUBROUTINES REQUIRED C * VTY(Y, V, TY, IER) C * SUBROUTINE IFTEMM1(T, F0, PHIO, J0, ECODE) REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHIO, D, TE, TY REAL*8 TEST1, TEST2, TEST3, TEST4, Y, V, C1, C2, C3, VE REAL*8 F0, J0, E1, F1, J1, KT0, KT, ETA, ETA0, YE, THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)*2/(M*E**4) F1=E1*2*E**3/(4*PI*EPS) J1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)</pre>	ĉ		* FOR INTERMEDIATE FIELD-THERMIONIC EMISSION
C DESCRIPTION OF VARIABLES T CATHODE TEMPERATURE T CATHODE TEMPERATURE T CATHODE TEMPERATURE T CATHODE SURFACE T C T CATHODE SURFACE T C C CATHODE SU	č		*
C * T CATHODE TEMPERATURE * T CATHODE TEMPERATURE * F0 ELECTRIC FIELD AT CATHODE SURFACE * DHIO WORK FUNCTION * JO CURRENT DENSITY C * ECODE ERROR CODE * 0 = GOOD * 1= ERROR * SUBROUTINES REQUIRED * VTY(Y, V, TY, IER) * * C * SUBROUTINE IFTEMMI(T, F0, PHIO, J0, ECODE) REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHIO, D, TE, TY REAL*8 TEST1, TEST2, TEST3, TEST4, Y, V, C1, C2, C3, VE REAL*8 T6, J0, E1, F1, J1, KT0, KT, ETA, ETA0, YE, THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=10546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHIO*E1*E ETA0=-F**2/(8*KT**2)	č		* DESCRIPTION OF VARIABLES
C * F0 ELECTRIC FIELD AT CATHODE SURFACE * F0 ELECTRIC FIELD AT CATHODE SURFACE * J0 CURRENT DENSITY C * GOOD * 0 = GOOD * 1 = ERROR * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,JM,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 T,F,PHI,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=10546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	č		
C * PHIO WORK FUNCTION C * JO CURRENT DENSITY C * ECODE ERROR CODE C * 0= GOOD C * 1= ERROR C * SUBROUTINES REQUIRED C * VTY(Y, V, TY, IER) C * C * VTY(Y, V, TY, IER) C * C * SUBROUTINE IFTEMM1(T, F0, PHI0, J0, ECODE) REAL*8 T, F, PHI, J, M, E, K, H, EPS, PI, PHI0, D, TE, TY REAL*8 TEST1, TEST2, TEST3, TEST4, Y, V, C1, C2, C3, VE REAL*8 F0, J0, E1, F1, J1, KT0, KT, ETA, ETA0, YE, THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	č		
C * PHIO WORK FUNCTION C * JO CURENT DENSITY * ECODE ERROR CODE * 0= GOOD * 1= ERROR * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * * *********************************	č		T FU EDECIRIO FIELD AI CAINUDE SURFACE
C * 00 CURRENT DENSITY C * ECODE ERROR CODE * 0= GOOD * 1= ERROR * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1*2*E**3/(4*PI*EPS) J1=E1*2*E**3/(4*PI*EPS) J1=E1*2*E**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)			* PHIO WORK FUNCTION
C * ECODE ERROR CODE C * 0= GOOD C * 1= ERROR C * SUBROUTINES REQUIRED C * VTY(Y,V,TY,IER) C * C * VTY(Y,V,TY,IER) C * C * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	C		* JU CURRENT DENSITY
C * 0= GOOD * 1= ERROR * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * C * VTY(Y,V,TY,IER) * C * VTY(Y,V,TY,IER) * C * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=10546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	C		* ECODE ERROR CODE
C * 1= ERROR * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	С		* 0= GOOD
C * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	С		* 1= ERROR
C * SUBROUTINES REQUIRED * VTY(Y,V,TY,IER) * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	С		*
C * VTY(Y,V,TY,IER) * SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	С		* SUBROUTINES REQUIRED
C * ***********************************	С		<pre>* VTY(Y,V,TY,IER)</pre>
C ************************************	С		*
C SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2)	Ċ		******
Y=DSQRT(F)/PHI CALL VTY(Y,V,TY,IER1) 20 YE=DSQRT(F)/(-ETA0)		20	SUBROUTINE IFTEMM1(T,F0,PHI0,J0,ECODE) REAL*8 T,F,PHI,J,M,E,K,H,EPS,PI,PHI0,D,TE,TY REAL*8 TEST1,TEST2,TEST3,TEST4,Y,V,C1,C2,C3,VE REAL*8 F0,J0,E1,F1,J1,KT0,KT,ETA,ETA0,YE,THETA INTEGER ECODE M=9.1095E-31 E=1.6022E-19 K=1.3807E-23 H=1.0546E-34 EPS=8.8542E-12 PI=3.141592654 E1=(4*PI*EPS*H)**2/(M*E**4) F1=E1**2*E**3/(4*PI*EPS) J1=E1**2*H**3/(M*E) F=F0*F1 KT0=K*T KT=KT0*E1 PHI=PHI0*E1*E ETA0=-F**2/(8*KT**2) Y=DSQRT(F)/PHI CALL VTY(Y,V,TY,IER1) YE=DSQRT(F)/(-ETA0)
			CALL VTY(YE,VE,TE,IER2) ETA=-F**2/(8*KT**2*TE**2)

```
IF(DABS(ETA-ETA0).GT. 1.0D-6) THEN
    ETAO = ETA - (ETA - ETAO)/2.1
    GOTO 20
 ENDIF
 THETA=3/(TE**2) - 2*VE/(TE**3)
 J=F*DSQRT(KT*TE/(2*PI))/(2*PI)*DEXP(-PHI/KT + F**2*
1
  THETA/(24*KT**3))
 J0=J/J1
 D=2*DSQRT(2/YE)*TE/PI
 TEST1=1/YE
 TEST2=1 + F**(1./4.)*D/(PI*(D-1))
 TEST3=-F**2/(8*KT**2*TE**2)
 TEST4 = -PHI+KT/(1-F/(2*DSQRT(2*PHI)*KT*TY))
 IF((TEST1.GT.TEST2).AND.(TEST3.GT.TEST4)) THEN
    ECODE=0
 ELSE
    ECODE=1
 ENDIF
 RETURN
 END
```

ł

APPENDIX J ARC PROGRAM

C ×	ARC.EXE	
	ר די	
	· FURFUSE · DETERM	INES THE CHARACTERISTIC VALUES FOR
Č ×	THE CA	THODE SPOT OF AN ARC BURNING ON A
Č ×	COPPER	PLATE
C ×	:	
k D	DESCRIPTIC	N OF VARIABLES
C ×	LO LO	HEAT OF VAPORIZATION
C ×	PO	PARTIAL PRESSURE CONSTANT
	MI DT	MASS OF COPPER ATOM
		HONIZATION POTENTIAL ENERGY
		FRACTION ENERGY REMOVED WITH
	DEIR	COULOMB INTERACTION
Č ×	XT	THERMAL CONDUCTIVITY
k Ĵ	EER	ERROSION ENERGY
Č ×	z Z	AVERAGE ION CHARGE
С *	NO NO	AVOGADRO'S NUMBER
k D	: M	ELECTRON MASS
C ×	E	ELECTRON CHARGE
C 1	K	BOLTZMAN'S CONSTANT
C ×	H	PLANCK'S CONSTANT
	EPS AND	PERMITIVITY OF FREE SPACE
		UEGREE OF IONIZATION VADODIZATION DETUDN CORRECTION
		FLECTRIC FIFLD AT CATHODE SUPEACE
	r G	EDECITIC FIELD AT CATHODE SORFACE
Č ×	PHT	SCHOTTKY CORRECTED WORK FUNCTION
Č ×	PI	PI
C ×	PTK	VAPOR PARTIAL PRESSURE
C ×	R	RADIUS OF CATHODE SPOT
C ×	SIG	PLASMA CONDUCTIVITY
K D	TK	CATHODE TEMPERATURE (K)
C ×	Ŭ	POTENTIAL DROP IN QUASINEUTRAL
		PLASMA
	ት VK ነፖጥ	GATHODE POTENTIAL DROP ACROSS ARC
	У Ц . Т	TOTAL CUERTIAL DRUP ACRUSS ARC
	ט ידר.	ELECTRON CURRENT DENSITY
C ×	JT	ION CURRENT DENSITY
Č x	KTK	CATHODE TEMPERATURE (JOULES)
C ×	KTP	PLASMA TEMPERATURE (JOULES)
С *	I	ARC CURRENT
		94

ND NUMBER OF DATA SETS * DTK CATHODE TEMPERATURE INCREMENT COULOG * COULOMB LOGARITHM * ECODE ERROR CODE 0 = GOOD1= ERROR * TYP TYPE OF EMISSION * * 1= THERMIONIC 2= INTERMEDIATE * * 3 = FIELD4 = NONE* * SUBROUTINES REQUIRED * EMM(T, F, PHI0, J, ECODE, TYPE) * REAL*8 LO, PO, MI, EI, PHIO, BETA, XI, EER, Z, NO, M, E, K, H, EPS REAL*8 ATP, ETA, F, G, PHI, PI, PTK, R, SIG, TK, U, VK, VK1, VK2, VT REAL*8 S1,S2,S3,S4,S5,J,JE,JI,KTK,KTP,I,DTK,COULOG INTEGER ECODE, TYP. N. ND OPEN(6.FILE='ARC.DAT'.STATUS='NEW') OPEN(7, FILE='PRN') WRITE(*,*) 'ENTER NUMBER OF DATA SETS: ' READ(*,*) ND WRITE(*,*) 'ENTER INITIAL PLASMA TEMPERATURE (EV): ' READ(*,*) KTP WRITE(*,*) 'ENTER INITIAL CATHODE TEMPERATURE (K): ' READ(*,*) TK WRITE(*,*) 'ENTER CATHODE TEMPERATURE INCREMENT (K): ' READ(*,*) DTK WRITE(*,*) 'ENTER ARC CURRENT (A): ' READ(*,*) I WRITE(6,900) ND.I WRITE(7,900) ND,I MI=63.54 L0 = 300300. EI=1.2377D-18 PHI0=4.4XI = 40.BETA=3.21 Z=1.8 N0=6.0220D23 M=9.1095D-31 E=1.6022D-19 K=13807D-23 H=6.6262D-34 PI=3.141592654 EPS=8.8542D-12 EER=L0/NO S1=-1.7520D4

10000000000

RUCCUL, RECEICE, RUCLUX, MARCH

С

С

С

C

č

С

Ċ

č

С

С

Ċ

С

С

Ĉ

С

С

С

Y PROVIDED INVESSION RECEIPTIN 5000000 2 VICTOCO SAMADON MONANS


```
S2=-1.21
   S3=0
   S4=13.21
   S5=133.322368421
   VK=15.
   MI=MI*1.6726D-27
   KTP=E*KTP
   DO 20 N=1.ND
   KTK=K*TK
   JE=0.
   PTK=(10**(S1/TK +S2*DLOG10(TK)+S3*TK+S4))*S5
10 ATP=1/DSQRT(1, + PTK/KTP*(2*PI*H**2/(M*KTP))**(3,/2,)*
        DEXP(EI/KTP))
  1
   ETA=(8./3. +ATP-DSQRT(5.*PI*KTK/(6.*KTP)))/
        (8./3. +ATP+DSQRT(5.*PI/6.))
  1
   JI=E*PTK*ETA*ATP/DSQRT(2*PI*MI*KTK)
   F=DSQRT(JI*DSQRT(8*VK*MI/E)/EPS*(1-JE/JI*DSQRT(M/MI)))
   PHI=PHI0*E-DSQRT(E**3*F/(4*PI*EPS))
   CALL EMM(TK, F, PHIO, JE, ECODE, TYP)
   R=DSQRT(I/(PI*(JE+JI)))
   VK1=((JI/JE)*(EI+2*KTP)+BETA*KTP*(1+JI/JE)-2*KTK)/E
   G=PTK*(1-ETA)/DSQRT(2*PI*MI*KTK)
   VK2=4*XI*TK/(PI*R*JI)+((JE/JI)*(PHI+2*KTK)+(G/JI)*EER*E
         -EI-2*KTP+PHD/E
  1
   IF(DABS(VK2-VK1).GT. 1.0D-1) THEN
       IF(VK2.GT.VK1) THEN
           VK=VK1
           IF(DABS(VK2-VK1).GT. 100) THEN
               KTP=KTP+100.*K
           ELSE
              KTP = KTP + DABS(VK2 - VK1) * K
           ENDIF
       ELSE
           VK=VK2
           IF(DABS(VK2-VK1).GT. 100) THEN
               KTP=KTP-101.*K
           ELSE
               KTP = KTP - DABS(VK2 - VK1) * K
           ENDIF
       ENDIF
       IF(VK.LT.0) VK=DABS(VK)
       GOTO 10
   ENDIF
   VK=(VK1+VK2)/2
   J=JE+JI
   COULOG=23.0-DLOG(DSQRT(PTK*ATP*ETA/K)/(KTP/K)**2)
   SIG=153D-2*(KTP/K)**(3./2.)/COULOG
   U = (I \times E \times G / (2 \times PI \times SIG \times R \times J)) \times (1 + Z) / (1 + (E \times G / J) \times (1 + Z)) -
    BETA*(KTP/E)/(1.+(E*G/J)*(1.+Z))
  1
   VT = VK + U
   WRITE(6,910) TK, KTP/E, VK, U, VT
```

5.555555555

WRITE(6,920) PTK/1.01D5,ATP,ETA,JI/J,R WRITE(6,930) F,JE,JI,J WRITE(6,940) COULOG, SIG, G WRITE(7,910) TK,KTP/E,VK,U,VT WRITE(7,920) PTK/1.01D5,ATP,ETA.JI/J,R WRITE(7,930) F,JE,JI,J WRITE(7,940) COULOG.SIG,G TK=TK+DTK 20 CONTINUE

STOP

- 900 FORMAT(1X, I3, 5X, F4.0)
- 910 FORMAT(1X,F5.0,5X,F6.2,5X,F6.2,5X,F6.2,5X,F6.2)
- 920 FORMAT(1X, F4.1, 5X, F6.4, 5X, F6.4, 5X, F6.4, 5X, 1P, D10.4)
- 930 FORMAT(1X, 1P, D10.4, 5X, D10.4, 5X, D10.4, 5X, D10.4)
- 940 FORMAT(1X, F4.1, 5X, F7.1, 5X, 1P, D10.4) END

INITIAL DISTRIBUTION LIST

e. 17

i.

3

. h 1.4 + M. 1. 7_+ + + *

114 414 514 314 51 B.S. S. S. S.

ŧ

7

90000

2.05

	No.	Copies
Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5002		2
Professor F. R. Schwirzke, Code 61Sw Department of Physics Naval Postgraduate School Monterey, California 93943-5002		2
Professor K. E. Woehler, Code 61Wh Department of Physics Naval Postgraduate School Monterey, California 93943-5002		1
Lieutenant Dwayne H. Curtiss Naval Submarine School Code 20 SOAC 88030 Box 700 Groton Connecticut 06349		2
	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145 Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5002 Professor F. R. Schwirzke, Code 61Sw Department of Physics Naval Postgraduate School Monterey, California 93943-5002 Professor K. E. Woehler, Code 61Wh Department of Physics Naval Postgraduate School Monterey, California 93943-5002 Lieutenant Dwayne H. Curtiss Naval Submarine School Code 20 SOAC 88030 Box 700 Groton Connecticut 06349	No. Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145 Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5002 Professor F. R. Schwirzke, Code 61Sw Department of Physics Naval Postgraduate School Monterey, California 93943-5002 Professor K. E. Woehler, Code 61Wh Department of Physics Naval Postgraduate School Monterey, California 93943-5002 Lieutenant Dwayne H. Curtiss Naval Submarine School Code 20 SOAC 88030 Box 700 Groton, Connecticut, 06349

END DATE FIMED 4-88 DTIC