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A_DIFFUSION MODEL FOR LARGE PARTICLES

IN_A TURBULENT GAS FLOW

A H Covan

Abstract

The daiffusior. »del of Hutohinson et al (1971) for small particles has bdeen
extended to large particles in a vertical pipe. Allowvance has been made
for the slippage in the vertical direction and for the f-Ct that sucuessive
particle displacements are no longer entirely independent. It {c¢ showm
that the equations can be simplified to give a eimple expression for the
diffuation coefficient, and that this expression gives values wnich are In
§ood agreement with the values obtained using a full 20 simulation of the
particle trajectories. A oriterfon s glven for determining when a
particie may de coniidered to be “large".
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1. INTRODUCTION

The motion of solid particles or liquid dropleta in a turdulent gas flow (s
s probles which has meny practical applications, eg (n pneumatic conveying
and spray drying. It is often necessary to account for particle dispersion
due to turbulence, 38 & simple Newtonian calculation will usually under-
estimate the degree of dispersion. Hutchinson et al (1971) reviewed the
avalladle (nformstion and presented a model which treants the particle
sotion as a diffusive prodess. This model was shown to give good predic-
tiona for small particles (up to 110 microns) but it was suggested that the
sodel may not be applicable to large particles.

The present work investigates the bdehaviour of large particles (grester
than 1 mm) {n a vertical plpe and shows how the Hutchinson model may be
adapted to sllow for slippage between the particles and the mean gas flow,
This report also shows that for large particles there is a considerable
degree of correlation between successive particle displacements. A method
is presented for caloulating the msgnitude of the correlation teras, and
this results in a simple e¢xpression for the diffusion coefficient. The
predicted values are cormared with those obtained from « 2D simulation of
the particle trajectories.

2. DRIFFUSION MODEL
2.1 Diffusion coefficient for sma.. particles

The sodel ¢f Hutchinson et al considers the particle motlion {n two parts
(1) constant velocity parsllel to the axis of the pipe and

(11) a radial motion consisting of a large number of displacements due to
particle~eddy (nteractions. This radial motion {s treated as a diffusive
process and, sssusing oylindrical symmstry, the density distridbutlicn Wir t;
is given by the solution of the diffusion equation

K9 ’W(r,t) - %? W(r,t) *+ S(r,t)

where S(r,t) is the source term snd N (s the diffusion coefficlent ziven ty

12 S
K-v“ [

.

vhere <lp‘> is the mean aquare displacement per interaction anc . 11 tne
interaction frequency. This expression for K assumes that tne “jre-t| ~n
of individual displacements are uncorrelateq {e at any given *'=e *re 4=

ticle has sn equal prodabllity of mo/ing in any directinn,
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Assuaing the turdulence is homogeneous {e has no preferred direction, then
o <
p > =2 Uy
whars i" is the component of t_ in the radlal direction. Thus we need
only cslculate the displavements for s one-dimensional prodlem. We odbtain
values for v and <l”'> by sisulating the interactions bdetween a particle

snd a large nusder of randosly-oriented one-dimensional eddies.

Por a straight circular pipe the eddies were found by Hutchinson to be
approximately unifors in size and velocity, end glven dy

1. = 0,22 &
and U. - U' . UOJW. 3)
where U‘ i8 the charaateristic friction velocity and f 13 a single~phase
friction factor. The eddy lifetime was also assumed constant and given by

T. e 1,6 1.IU.

Jince the particles sre smsll their mean velocity will be close to the mean
gas velocity and 8o there will be negligibdle slip {n the axial direction.
The interactinn tise for esach eddy is therefore given oy

T « ain (T.. Tx) 4
where T' is the time taken for the particle to cross the eddy in the radlal
direction.

2.2 Bgqystions of motion for small psrticles

To caloulate the mean square displacement we must integrate the equation of
sotion of the particle, over the time T glven "y equation (u), For smai]
particles gravity say be neglected and the egquation of motion 18

"’_92 L 1
at " Co ey Wo m U Y - !pl ‘

For saall oparticles, the slip (n the axia! direction (3 usual., =uec~
smaller than the eddy veloclity, For example, for UC = F m 3 ara
R« 0.165 a, a typical eddy velocity is about 0.25 m/s. The ‘terminal
velocity of a particle with dersity 1600 kg/m' and dilameter 20 .r {3 3oyt

0.02 a/s. Thus, for small particles, we can write
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for the velocity component In the radlal direction. The mean gas flov has
no horizontal cosponent and so U, < (-1)SU where q 1s & randos nusver.
Mutohinson used the followving equation for the drag coefficlent

(o
co - ig-p where C « 0,116 (log,, Rop)' * 0.0544 log,, Rop . 1,443,

Squation (6) was integrated by Hutchinson et al to gilve the particle velo-
city and displacesent after each i(nteraction, and renco the mean square
displaceasnt per interaction.

2.3 Equations of sotion for large particles
For large perticles the slip in the axial direction will usually be much

greater than in the radial direction. Ffor erampie, the terainal velocity
of & ' mm particle with a density of 1690 kg/e’ 1s 6 m/s. Equation (5)
thus becomes

% o'
R R N RN RE A

where auz is the velocity difference in the axial direction, assumed
constant.
For the radis! component, this glves

v wd ? q
R e R P R AL AR AR IV U

Integreting over time T gives

w
- w19 - - .
R I R N N A A

'J

Rearranging and using dimensionless va: lables V - ULI
L]

- { . .
1, 'r/_x./u.),s s1,0n tp'_/xe. gives

-ll AAUl/U.
¥ e8 - (S~ Vo) e
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Integrating again gives

(s-v_) | ~x,A8U_sU
. - (-] - 17772 ey
he Sy nu:;u: (v - ) (8)

Because the slip is large in the axial direction, the interaction time will

always be the time taken to oross the eddy in that direction
u
e

e T~ 1.,“':' Thus Xy mz. Thus equation (7) beccmes

~A
Ves- (s Vo) . (9)

and equation (A) becomes

-A
. 2! (s i; V) (1 - e ) (109
au,
ILACE:, thent - ¢ o, 80
vV U
ne :u' (v1)
2z

2.8 Liffusion coefficient for large particles
Equation (2) aay de written
v
K.-t.Z(h'>1.

where the h"a are the dimensionless displacements calculated from tne *°
simulation, It hss already been pointed out that this equation applies
only when Individual displacementsa are uncorrelated., For large carticles
this is unlikely to be the case since a particle moving in a particular
direction will have too great a momentum to be immedfately Jivertes to any
other direction. In genserail
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where the sumsation over J 1s understood to "wrap around” the value of |,

SN
Thus K» = = <h, h
an i bt MMy
K N N
- i° 1 I ¢ 2I71) ging equatton (AS)
fa1 Jei
- x '{.-A(J-l)
°
3=

Converting the summation to sn integral,

N
K=k s ohU gy
°

K - -
.Ig(‘_.(ﬂ1)l] (12)

If N s sufficiently large, this gives X = KO/A. Otherwise, equation (12)

Z.AV
sust be evaluated, with N given by N = g uz . The valua of K may bve
e pz
obtained from the 1D sismulation discussed In Section 2.1, However,

equation (AR) shows that [t can be approximsted by

vZAUo

o Tle ZTT, 2

Auz 1. U.'A
Putting v = T._ gives Ko - —“mz— (BN




thus, for a sufficiently long pipe,

K_‘.u..
‘l

3. 1IWO DIMEMSIOMAL SIMULATION OF PARTICLE TRAJECTORIES

To investigate the validity of the above mathematical troatment of the
droplet motion, a technique has been devised Jn which the carticle distri-
vutlon 13 oalculated by plotting the trajectories of a large number of
particles as they interact with a succession of eddies of specified size
and velocity.

The technique i3 described in more detail by James et al (1980) who applied
1t to the motion of small drcplets flowing oco-currently with a gas stream.
They used the same description of the eddies as in section 2,1 of this
report out they treated the eddies as two~dimensional and used a random
nusber to describe the orientation of each eddy. They used the following
approximation for the drag coefficient:

c

- 24/ . 0,88

D Re

because using this equation it fs poasible to resolve the drag law {nto
components and integrate over the interaction time.

Boysan et al (1982) used a similar technique for the motion of droplets in
a cyclone. However, instead of assuming constant eddy properties, they
calculated local values from the following equations

1. = 0.3 k3/2/¢

-0, /
T. 0.37 k/c

- & -




where k and ¢ are the turdulent kinetic energy anc dissipation rate pre-
dioted by & k=g mndel for the single phsse flow, and q,, q, &re pseudo-
random numberc with a norsal dietridution, The drag coefficient was
assumed conastant during any interactfon.

The techniques of James and Boysan may both de applied to countercurrent
flow provided the equations descriding the particle-eidy Interactions are
m0dified as shown In section 2.2 to allow for the large vertical slip.
However. for gfarticles ['owing i a straight pipe (not clcse 0 the wail)
the two approaches gave very siwilar results.

8., COMPARISON OPF PREDICTIONS OF DIFPUSION MODEL AND TRAJECTORY
SIMULATION

The aiffusion model of Section 2 and trajectory simulation of Section 3
have been used to calculate the distrinbution of particles dropped verti-
cally on the cencre line of a 0.33 m diameter vertica) column. The calcu-
lations were carried out for particles of diameter 2.4 mm and | mm, density
1600 kg/m' and gas velocities of 6 m/s and 3 m/s.

Provided the particles do not reach the walls then the solution to the
diffusion chltlon. equation (1), for these conditions, 18 a two-
dimensional Gaussian,

- | | ]
Wix,y) = 5%;. o (x* +y*)/20

where o = 2Kt

Integrating over all values of y gives

Wix) = 1 .~x'/20‘
T

which s a Gaussian with rms displacement o.

Pigure . shows the particle distridbution at z - 3.6 m predicted by the
sisulation wodel using 500 particles. Clearly this 1s also Gausstan, witn
o given by the rms value of xp. Thus an cffective di/fuslion coefficient ¥

msy be obtained from the calculated value of ¢ for (his distribution.




Figure 2 shows sversge values of the correlation teras ¢ n‘n‘-f calou.ated
by the simulation model. The magnitude of these teras decays very jlowly,
with seversl hundred interactions required defore the correlation decays to
a negligidle value. The predictions ui equation (16) are alsc shown and

agree quite well with the simulation model.

Consider now th’. aiffusion ocoefficients oslculated with and without the
correlation terms. In Tadle 1 Ko is the diffusion coefflcient obtalned
when correlation terms are neglected, and K ia the value obtained uhen %hey
are included. For the conditions used here, X .s two orders of magnitude
greater than Ko. Tadle 1 also shows that the values of K and Ko predicted
by the simplified equations (17 and 18) agree with ihe values obtainea from
the 1D and 2D simulations, especially for thea larger particles (which have
& higher value of A). Here N, the total number of !‘nteractlons, = 137 and
130 for the 2.% mm and 1.0 mm particles respectively.

5. CONCLUSIONS

The diffusisn model of Hutchinson et al (1971) for small particles in a
turbulent gas flow has been extended to large particles (n a vertical plpe,
where the slip vetween the particles and the mean gas flow 's large.

It was shown that under these circusstances the displacementa res.lting
frem suocessive particle-eddy interactions are correlated ie there is a
high probability that successive displacements will be in the same dlirec-
tion. These correlation effects can result In diffusion coeffliclents which
are two o~ders of magnitude h.gher than would be expected,

It was also shown that provided the parame.er A, defined by

‘.éso—pl-l.-
dppp

is small (ile A<K]l) then the equations describing the partinle eddy . ‘er-
actions cen be greatly simplifiod and the following equatlon was de-.ved

for the diffusion coefficient, including the correlation effect just
describr~,

— ——a.

——— e e
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K'm—

aU

where B oo T-U!

e pz

Particle distridbutions csloulated with thils dJiffusion coelficient agreed
well with the distridutions p.'edicted by & trajectory simulation, for a
particular set of oonditions. This shows that the mathematics cf the pro-
cess have been correctly described. However, sinc. the physics of the
particle-eddy intersctions is the same in DOth models, thls aspect has no.
7ot been tosted.

It is f{ntended to carry out experiments In s perspex test section using
photographiu @ethods for determining partlole position. A parametric study
will also de carried out using the model to detsrmine the limits of valti-
dity of the model.
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APPENDIX - Caloulation of ocorrelation terms

Equation (9) say de written ss a recurrence relation
- ~A
v‘ - s‘ (s1 '1-1’ ) (A1)
Applying this relation n times gives
n - - -
by T osenimbA L, oy (A2)

V o (1 ~-g
n e (]

If n la sufliciently large the ternm o'"‘ Vo may be neglocted.
‘volylig equation (A1) 0 ie=n, and len-r,

-A ~A
Vp " Sy (1ce ) ¢V _ e

~A -A
and Vo S (1m0 ) ¢ Voer-1®

Multiplying and summing over n,

N N N
~2A ~A -A
Ivy = JTehv v ee (1-e ) I V .S _
nel n n-r nel n~1 " ne-r-t nel n=! “ner
N N
-At -A -A
s+~ ") J 88 __+0 (1~¢") ] sv _ _
ney oo ney ol

The last two summations may be neglected since the Sn's are uncorrelated

and there 18 no -orrelation between sn and vn-r-!’ provided r > 0. Thus

N N
“2A, + =A ~A
I vy _(-e ™« " (1~ ) [ VvV _ S _
ney noA°T neq D7) Tner
N n=1
c et a-e™ [ s T (e ) s e(nTIT1IA
nel fe1
using equation {(A2)
N
- o hi-e™)' § o tr TIA
nel

since the Sn'a are uncorrelated




A o T .'(P'i)l

Nence <ann_r>-o gl-a.E

1-e

Putting 0" = 1~A gives

A =(r=1)A
< ann.r) c3e (A3)

In particular <V ') = % R . % since A is small

Thus, equaticn (11) gives

u?
(] A

<h'>'—1’.- (AL)
av, 2

“(r=t)A (AS)




oonstant defined in equation (7)
drag cocefficient
particle diameter
disensionless partiole displacesen:
turdulent kinetio erergy
diffusion coe.ficient
diffusion coefficient, negleoiing correlation teras
eddy lengthscale
particle displacesent
particle displacesent in plane perpendicular to gas flow
particle mass
total number of particie~eddy interactions
randos nusber
Qs norasally distridbuted pseudo~randoa nusbers
pipe radius
particle Reynolds number
disensionless eddy velooity
interaction tise
eddy lifetime
eddy velooity
mean gas velocity
particle velooity
disensionless particle velooity
dimensionless particle velocity at start of (nteractieon
partisle density distridution
co-ordinates in plane perpendicular to tube axis.
length of tube
AU particle slip velocity in axial direction
[ turbulent dissipation rate
v interaction frequency
gas denslity
° standard deviation of particle 3distribution
X dimensionless interaction time

[~]

RE FJoO>
A -J

o v
3

BO O ED e e

T e<cccac—-Aw
. voOe s

~N »n
-
-

Subsoripte

X, Y directions perpendicular to tudbe axis
1,J.0,r fth, jth, nth, rth {ateraction




TABLE )

COMPARESON OF DIFFUSION COEFFICIENTS

o. '-
dp (um) 2 ]
Uc (a/s) 6 3
AU.(I/I) 9.5 5.9
ch 1500 390
CD 0.M 0.%9
A 0.005 0.017%
k N (for 2 = 3.6 m) 180 130
L K, (mm?/s) predicted 0.37 0.57
‘ by 1D simulation
K, predicted by equation (13) 0.42 0.73
K (sm®/s) predicted bdy
equstions (12) an¢ (13) 50 18
j
K evaluated fros predictions of 43 uh i
20 sisulation sudel at 2 « 3.6 =, ‘ \
|

- 13 -




dg 2 2:6mm

No. of particles
a3
T

A 53]

with g 2 8-2mm

-%0

0 50
x (mm)
FiG. 1. PARTICLE DISTRIBUTION PREDICTED BY SIMULATION MOOEL
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