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A.DIFFUSZON MODEL fOR LARGE PARTICLES

IN A TURBVULENT GAS FLOW

A H Govan

Abstract

The diftusior. .del of Hutchinson et al (1971) for smll particles has been

extended to large particles in a vertical pipe. Allowance has been made

for the slippage In the vertical direction and for the f-ct that sucvesaive

particle dlsplacement$ are no longer entirely independent. It It shown

that the equations can be simplified to give a simple expression for the

diffusion ooeffLieent, and that this exp.-•saion gives values wnich are In

good agreement with the values obtained using a full 2D simulation of the

particle trajectories. A criterion ts given for determining when a

particle my be con'Idered to be "largo".
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. INrTRODUCTION

The Notion of olid particles or liquid droplets In a turbulent gas flow is

a problem which has many practical applications. e1 in pneumatta conveying

and spray drying. It is often necessary to account for particle dispersion

due to turbulence, as A simple Newtonian calculation will usually under-

estimate the degree o dispersion. Hutchinson et al (1971) reviewed the

available Information and presented a model whll. trets the particle

motion as a diffusive process. This model was shown to give good predle-

tiona for small particles (up to 110 microns) but It was suggested that the

model my not be applicable to large particles.

The present wori Investigates the behaviour of laige particles (greater

than 1 as) In a vertical pipe and shows how the Hutc .inson model may be

adapted to allow for slippage between the particlen and the mean gas tlow.

This report also shews that for large particles there Is a considerable

degree of correlation between successive particle displacements. A method

is presented for calculating the magnitude of the correlation terms, and

this results in a sitple expression for the diffusion coefficient. The

predicted values are cofbred with those obtained from A 2D simulat:on of

the particle trajectories.

2. DOIF ION MODEL

2.1 Diffusion coefficient for soa; ,artIoles

The model or Hutchinson et al conslders the particle motion in two parts

(1) constant veloolty parallel to the axis of the pipe and

(1i) a radial motion consisting or a large number or displacement., due to

particle-eddy interactions. This radial motion is treated as a dit! .;sve

process and, assuming cylindrical symetry, the density distribution 0(r,t,

is given by the solution of the diftusion equation

KVIW(r,t) - W(r.t) - S(rt)

where S(r.t) is the source term and 9 Is the diffusion coefficelnt :vpn rv

<t ')

K

where <i '> Is the mean square displacement per Interaction ar.i ln n-p

interaction rrequency. This expression for K assumes that tne 1i..

or individual displacements are uncorrelate, te at any "vo -...

tile has an equal probability or moving :n any '1iree' or.
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Assming the turbulence o homogeneous to hi no preferred direction, then

where i pr the component of tp in the radial direction. Thus we need
only caloulate the dlaplsementa for a one-dimensionhl problem. We obtain

values for v and (I pr) by simulating the interactions between a particle

and a large nmber of randomly-oriented one-dilenSional eddies.

For a straight circular pipe the eddies were found by Hutchinson to be

approximately uniform in elze and velocity, and given by

1 - 0.22

and Us - U - UO;/F)' (3)

wroe U T  t he characteristic friction velocity and f is a single-phase

friction factor. The eddy lifetime was als assumed constant and given by

To - 1.6 1 e/Ue

Ance the particles are small their mean velocity will be close to the mean

gas velocity and so there will De negligible Slip in the axial direction.

The interaction tie for each eddy is Ctherefore given oy

T - min (T., T )  1,4

where T x Is the time taken for the particle to cross the eddy in the radial

direction.

2.2 Cauations of motion for smell partiales

To calculate the mean square displacement we must integrate tne equation or

motion of the particle, over the time T given ",y equation (4). For smal,

particles gravity may be neglected and the equation or motion Is

a du id a

2 ' C , " -7} p - I

ror amll particles, the slip in the axial dire7tion is usu.a::, -r-

smaller than the eddy velocity. For example. ror UG - 6 -r n irl

R - 0.165 l, a typical eddy velocity is about 0.2s m/s. The torminal

velocity of a particle with der.sity 1600 kg/nm' ond dianetor 1r r i.i ir,)ui

0.02 m/*. Thus, for small particles, we can write

..... N i I li d Mmlllmil l2



a C vd P ( U C W U U . - (6 )

for the velocity component in the radial direction. The 100n s flow hag

no horizontal omponent and so UG0  - (-n)Iuo where q Is a random number.

Nutehinon used the following equation for the drag coeffioient
10 

C

CD - U;-where C - 0.116 (log.* Rae) * O.05 log,, Rep * .3.
P

Pquation (6) wee Integrated by Hutchinaon et al to give the particle velo-

city and displa eent after each interactlon, and Itenco the mean square

displacement per Interaction.

2.3 tZLatlon of metion for lare article*

For large particles the slip in the axial direction will usually be Much

greater than In the radial direction. For erample, the terminal velocity

or a 1 m particle with a density of 1600 kg/u' is 6 a/s. Equation (51

thus become

where AU Is the velocity dilterence in the axial direction, assumed

constant.

For the radial component, this gives

dU ud '

dt D 1 4 pw Z

Integratinj over time T gives

-mlog((-i)q u U px - Og -e 0 U

Rearranging and using dimensionlehs va ilab0a V -2-xU

T/ 11 /U 5 - . 1, h - t /I, gives

e a pr o)

- AAU /UV-*S - (S - V ) e I z 0

0
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where A - t. C0 3 *
p p

Integrating ain gives

(SV 0 ) -IAAUz /UI
h - -. ,I (S)

lecause the slip Is large in the axial direction, the Interaction time will

always be the time taken to cross the eddy In that direction
U

Is T 1 0o/AU Z . Thus 11 - . Thus equation (7) beccees

V - (S - V o-A (9)

and equation (8) becomes

h t S - (S - VO ) (I -A (10)h s - _!V, e (10)

AUz  A

if A << !. then I -
A 

- A, so

AU U

2.4 DWttuslon ooetlicient for lape particles

Iquation (2) say be written

K, 2 <hs >

S N

where the hits are the dimensionless displacements calculated from te'

simulation. It has already been pointed out that t.is equation applpo-

only when Individual displacements aro uncorrelated. For large partic.si

this Is unlikely to be the case sinc, a particle movlng ir a )artc,jlar

direction will have too great a momentum to be immediately 11v-rtP.1 to ar ;

other direction. In general



V hI
K N

010

I!1 J!1I

K N I

0 1

L,,t J-t

where the summation over J Is understood to -wrap around" the value of 1.

Thus -" 4<Eo>R IN I <h I hI~j>
1=1 Jol

K N No I-AlJ-1 using oqua)Lon (AS)

J-1
N o A(J-t) ) sn qain(5

- KO  " -(JtN - A1 1K0

Converting the summation to an Integral.

K - K 0 IA(J. 1 )dj

K 2 - )A) (12)

If N to sufficiently large, this gives K - K /A. Otherwise, equation (12)

Z .AU
z

must be evaluated, with N given by N - . The value or K may be
0 pz

obtained from the 1D simulation discussed In Section 2.1. However,

equation (AN) shows that It can be approximated by

U

K0  1 2 A 0
z

AU I U 'A
Putting v - - i gives Ko  (30 AU

0 z

imm ( mTr-- ( l~m im i lld- 5-l i



thus, for a suffioiently long pipe,

1 U 0
IAU -x

3. TWO DNISONUAL SIMLATIO1 Of PARTICLE TRAJECTORIES

To Investigate the validity of the above mathematical treatment of the

droplet motion, a technique has been devised J:, which the ;article distri-

butiOn i3 Calculated by plotting the trajectorise of a large numbor or

partioles as they interact with a succession of eddies of specified size

and velocity.

The technique is described In more detail by James t al (1980) who applied

It to the motion of small droplets flowing oo-ourrently with a gas st~eam.

They used the sam description of the eddies as In section 2.1 of this

report out they treated the eddies as two-dimensional and used a random

number to describe the orientation of each eddy. They used the following

approximation for the drag ooefficient:

C 24/ 0.44D Rep

because using this equation it is possible to resolve the drag law Into

components and integrate over the Interaction time.

Boysan et al (1982) used a similar technique for the motion of droplets In

a cyclone. However, Instead of assuming Constant eddy properties, they

calculated local values from the following equations

is- .03 k3/2/€

T - 0.3r k/C

Ue q,i _

&X 3k

Uey * q2 -k

i3

---- m m . .- e i f + m-6-



Were k and c are the turbulent kinetic energy and diselpation rate pre-

dicted by a k-€ model for the single phase flow, and q,, q. are pseudo-

random numboer with a normal distribution. The drag Coefficient was

assumed constant during any Interaction.

The techniques of James and Boysan my both be applied to countercurrent

flow provided the equations describing the particle-eddy Interactions are

modified as shown In section 2.3 to allow for the large vertical 1lip.

However. for Fartioleo flowing In a straight pipe (not lrse to the wall)

the two approaches gave very similar results.

4. COMPARISON OF PREDICTIONS Of DIFFUSION MODEL AND TRAJECTORY

SXIULATION

The diffusion model of Section 2 and trajectory simulation of Section 3

have been used to calculate the distribution of particles dropped verti-

cally on the oenxre line of a 0.33 m diameter vertica) column. The calcu-

lations were carried out for particles of diameter 2.4 mm and I MM, density

1600 kg/lm and gas velocities of 6 m/s and 3 m/s.

Provided the particles do not reach the walls then the solution to the

diffusion equation, equation (1), for these conditions, is a two-

dimensional Gaussian.

I 1 -(x' *yl)/2o'

where a$ - 2Kt

Integrating over all values of y gives

1 -x'/2o'W(x) - - e

which Is a Gaussian with rms displacement a.

Figure I shows the particle distribution at z - '1.6 m predicted ny tP

simulation model using 500 particles. Clearly this is also Gaussian, wit-

o given by the rma value of x . Thus an effective diJrrusion coertricient Kp

my be obtained from the calculated value or a for his distribution.
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Figure 2 Shows average values of the correlation ter ( h h,-,) calousted

by the simliation model. The magnitude of those term decays very ilowly.
with several hundred Interactions required before teo correlation decays to

a nglilgible value. The predictlons vi equation (16) are also show and

eWree quite well with the simulation model.

Consider now tW'. ditualon coefflcients calculated with and without the

correlation terms. In Table 1 K o is the ditfusion coefficient obtalned

when correlation term are neglected, and K Is the value Obtilned wi4ler they

are Included. For the conditions used here. K As two orders or Magnitude

greater than Ko . Table I also shove that the values of K end K° predicted

by the Simplified equations (IT and 18) agree with fls values obtained from

the ID and 2D simulations, especially for tho larger particles ('ihich mave

a higher value or A). Here N. the total number of !nteractionh. - 130 and

130 for the 2.4 Sm and 1.0 m particles respectively.

5. CONCLUSIONS

The diffusion model ot Hutchinson et al (1971) for small particles in a

turbulent gas flow has been extended to large particles In a v'rtical pipe,

where the slip between the particles and the mean gas tlow !a larae.

It was shown that under these circumstancee the displaementa res.lting

frta suoessivt particle-eddy interactions are correlated Ie there is a

high probability t!%;.L succesive displacements will be in the same direc-

tion. These correlation effects can result in diffusion coefficients -hlch

ore two o0dere of manitude h.Sher than would be expected.

It was as shown that provided the paramee',r A, defined by

dpop

to small (ie A<(l) then the equations describing the particle eddy

actions can be greatly simplifiod and tre rollowing equation was IrP- ed

tor the dirfusion coefficient, Including the :orrelation effect Ju~t

descrl.b'.
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Partiol* distributions calculated with this diffusion cc'icient agreed

well with the distributlona p.'dlcted by a trajectory simulation, tor a

particular set of conditlons. This shows that the mathematics or the pro-

ceas have been correctly described. However, 31no, the physics or Lne

particle-eddy Interactions is the sam In both models, this aspect has no.

yet been tested.

It is Intended to carry out experiments In a peripex test sectlon using

photographju methods tor determining partiale position. A parametric study

will also be carried out using the model to detcrmlne the limits of vali-

dity of the model.

ACKNOWLEDGEMENTS

The work described In this report was undertaken as part of the Underlying

Resarh Prograime of the UKAEA.

The author wishes to tharic Dr P Hitchlnson for the many useful dlscusslonr

they have had on the subject.

RPYE RE NCES

Boysar, F.. Ayers, W.H. and Swithenbank, J. (192). Cyclone DOesin

Fundamentals. Trans.I.Chem.E. Vol 60, No 4, July 1982.

.utchinson, P., Hewitt, G.F. and Dukler, A.E. l'' Derns'tin (,r *:u:!

or solid dispersions from turbulent ga3 t- ams. ; ntnnna9?-

Chem.Eng.Scl. Vol 26. pp 419 - 139.

Jams, P.W., Hewitt, G.F. and Whalley. P.B. 190C). p -

two-phase flow. UKAEA Report AERE-R 9711.

AIM."



AelOIX - Calculation ot orrelation tarm.

Iquation (9) way be written as a reourenoe relation
V1 . S1 - (8! - v1.L) *

-A (Al)

Applying this relation n times gives

Vn  1 (A)lot

If nt is atfloeentl7 large the term e"A 1,0 may be neglooted.

.,plyiesg equation (Al) to i-n, and 1-n-r,

V n  ( n  ( )1- Vn 1  
A

and V -Sn-r 016,
A ) + V n.V rie'A

M4ultiplying and summlng over n,

N N 02A ,-A -A N
n I n- V n-r-l (1-s ) Vn-1 Sn-rn-i n.1 n.1

( 1 ,A) N **A -A N

n55 • (1-e ) I SnV.,
n- n-r - n r-1

The last two summations may be neglected since the Sn's are uncorrelated

and there is no :'wrelatlon between Sn and V n-r- * provided r > 0. Thus

N -2A -A -A N
[ VnVn - A; . -A(1-. ) I Vn- Sn-r

n-1 nl-

N n-1

--A ( 1 0A N n5 -(te "A se(n-l-i)A

using equation (A2)
- e-A (1 *eA)' e

n-1

sinoe the S 'a are uncorrelated

- 10-



q

Nenoe (nVn.p - !i 0 -A C-(r-i)A

Putting *'A . I-A gives

< VnVnj - Aa -(r-I)A (A3)

In particular(tV~ > A 0A since A to Small

Thus. equation (11) gIves

MiUe 2
< ,,> . (A4i)

Ut
and < hn nnr > - < VnVn-r >

= < h' > -(r- i )A (AS)

- Ii -



A oonstant defined In equation (7)
C0  drag ooefficient

dp partiale diamter
h dlawoalos e partIcole displaoeflort
k turbulent kinetic er-qrgy
K difusion ooe.ficlient
K, diffusion Ooeffilent. neglecilng correlation terms

I eddy lenguigale

I particle displacement
Ipr particle displacement in plane perpendicular to gas flow

particle e
N total number of partiole-eddy Interactions
4 random number

q,, q, normally distributed pseudo-random numbers
R pipe radius

SRep particle Reynolds number

S dimensonlesa eddy velocity
T interaction time
T eddy lifetime
U eddy velocity

U G  mean gas velocity
U partiale velocity, Vp
V dimensionless particle velocity
V0  dimensionless particle velocity at start of interaotinn
V particle density distribution

x, y co-ordinates in plane perpendicular to tube axis.
z length of tube
AU z particle slip velocity in axial direction

C turbulent dissipation rate

interaction frequency

* gas density
standard deviation of particle distribution

dimensionless interaction time

Subsor lpts
x, y directions perpendicular to tube axis

I,J,n,r Ith. jth, nth, rth lateraction

- 12 -



TABLEI

cOAn Su Or DirrUSION CoUFICIEIXTS

dp (Mi) 2.4 1.0

Ur (Wea) 6 3

Ad (u/S) 9.5 5.9

Rep 1500 390

CD 0.41 0.59

A 0.005 0.017

N (for Z - 3.6 N) 18O 130

K, (01a0 ) predicted 0.37 0.57

by 10 smulation

K, predicted by equation (13) 0.4? 0.73

K (iM'/O) predicted by

equations (12) and (13) s0 38

K evaluated from predictions of 43 iI

20 simulation u4eL at Z - 3.6 m.

- 13-
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FIG, 1. PARTICLE DISTRIBUTION PREDICTED BY S1MULAT ION MOOEL
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