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1. INTRODUCTION

Grain growth is the process by which the mean grain size of an

aggregate of crystals increases. The driving force "or this results

from the decrease in free energy which accompanies reduction in total

grain boundary area. Given a sufficiently high temperature and no

factors which impede grain boundary migration, a polycrystal will evolve

towards a single crystal. In realit-, this goal is rarely attained.

Al natural structures (and many artifical ones) represent some

compromise between order and chaos. Grain boundary networks in

metallurgical and ceramic polycrystals have features in common with soap

froths, arrays of biological cells, geographical and ecological

territories and other natural structures (Wesire and Rivier (1984)).

Hicrostructure of polycrystalline materials is also a key factor

technologically, determining a wide range of properties including

mechanical strength, toughness, electrical conductivity and magnetic

susceptibility. Understanding of grain growth is thus of fundamental

importance, not only for its intrinsic interest and wider ramifications

for insight into other natural phenomena, but also for its technological

significance. It is, however, proving an elusive and challenging

target, as will become apparent iii this review.

The reiew deals with "normal" grain growth, which is observed in a

wide variety of materials ranging from pure metals to complex alloys and

inorganic ceramics. It is generally defined as having two main

attributes:-

(1) Uniform Appearance - There is a relatively narrow range of

grain sizes and shapes.

(2) Scaling -- A simple change in scale is sufficient to make

the distributions of sizes at two widely separated points in

time coincide with each other, i.e. the form of the

distribution is time-invariant.

Normal growth contrasts with abnormal grain growth (sometimes called

secondary recrystallisetion) ii- which a few large grains develop uind



consume a matrix of smaller ones, eventually impinging and reverting to

nurmal growth.

In this overview, the development of theories for normal grain

growth will be examined. A major theme which will emerge is the

interplay between the topological requirements for space filling and the

kinetics of change in mean grain size with time. Computer imulation is

now playing a key role in exploring this interplay.

The review follows through the historical development of the

subject from the early 1950's onwards. In this way it is possible to

introduce the important concepts in a digestible form for those not

already fully conversant with the literature on grain growth theories.

The aim is to clarify issues in the breadth of th!.s complex subject for

the materials scientist.

The structure of the overview is as follows. Pt Section 2, Burke

and Turnbull's simple dimensional argument to obtain parabolic grain

growth kinetics from consideration of the driving forces on an isolated

section of grain boundary is presented and experimental results, which

in general deviate from the parabolic law, are discussed. Topological

requirements for space-filling by grains are examined in Section 3 and

the contribution of topological transformations to growth brought out.

Early mean field theories, in which the behaviour of a grain embedded in

an averaged environment is considered, are discussed in Section 4, and

in Section 5 a view of grain growth as dislocation climb is indicated,

tying in with the topological transformations first descrfbed in Section

3. Section 6 treats the important Rhines and Craig (1974) topological

analysis of grain growth, bringing in their concepts of the sweep

constant and the structural gradient, and showing how these authors

obtained a cubic rather than parabolic grain growth law. These

contrasting laws are discussed and some attention is given to the

problem of deducing 3-D parameters from 2-D sections. In Section 7, two

models to predict distributions of topological parameters in the

steady-state are described, and in Section 8, Kurtz and Carpay's (1980a,

1980b) statistical theory, which divides the grains into topological

classes and examines the time evolution in each class, is discussed.

Random cellular networks can be used to model grain boundary networks,

-2-



and the latest thoughts in the literature are outlined in Section 9,

including:- the applicability of Levis' Law connecting the mean grain

area of n-sided grains to n; the asymptotic behaviour (or otherwise) of

2-D soap froths (soap froths often being presented as a model for grain

growth phenomena); the Aboav-Weaire Law for correlation between the

number of sides of a grain and the average number of sides of its

neighbours; maximum entropy arguments to predict the most probable

distributions of cell (or grain) sizes and shapes; and the topological

properties of trivalent structures. In Section 10, the recent computer

simulations of grain growth by various groups are discussed.

2. PARABOLIC GRAIN GROWTH KINETICS

2.1 The Burke and Turnbull Analysis

In a classic paper of the early 1950's, Burke and Turnbull (1952)

deduced a parabolic relationship for grain growth kinetics. They

modelled migration of a boundary as occurring by atom transport across

the boundary under a pressure due to surface curvature. They considered

the forces on an isolated section of boundary due to surface curvature

alone. The boundary tends to migrate towards its centre of curvature as

this reduces the area of boundary and hence the energy associated with

it. The velocity v for a pure material is such that

v = pP (1)

where V is the mobility, the velocity under unit pressure P. Using

reaction rate theory, Burke and Turnbull deduced that

___ -AGb

P =kvQexp ( kTG (2)
kB T kBT

where b is the atomic diameter, v the atomic O'hration frequenc, kB

Boltzmann's constant, T absolute temperature and AGb the activation

energy for migration of an atom across the bondary. This expression is

not necessary for the deduction ot parabolic kinetics, except in that it

is important to postulate that the mobility, jj, io not dependent on the

grain size. It represents however, ono of the first steps in thiniking

-3-



about boundary migration fechanism*, a whole parallel area of research

with that into grain grovth theories.

The pressure P:

1 1
P =T(1-+ ) (3)

r 1  r 2

where I is the grain boundary free energy and rI .nd r2 the principal

radii of curvature of the surface. Assuming the boundary is part of a

sphere, r a r1 = r2. Burke and Turnbull then made four assumptions in

order to find the dependence of the mean grain size of any array of

grain, on time:-

(1) T is independent of grain size and time, and the same for all

boundaries.

(2) r, the radius of curvature, is proportional to R, the mean

grain radius: r = C1R where C1 is a constant.

(3) is proportional to P (i.e. V is independent of R, and -R is
is p( dR i

proportional to the velocity v): dt = C2P vhere C2 is a

constant.

and crucially,

(4) the only forces which act on any grain boundary in the array

are those due to surface curvature.

Hence,

dR 2 2C2

dt C

Then, if R

-4-



4C 2Tt-2 -2 2cT_

t 0 C1

and hence,

-2 -2 Kt
t 0

where Rt is the mean grain size at time t, R0 the initial mean grain

size and K a constant. This is the parabolic grain growth equation and

should be valid for both 3-D and 2-D. In the limit where Rt >> Ro,

K' - Kt (5)
t

and

1/n
.t Kt where n = 2 (6)

n is often termed the grain growth exponent. (It should be

distinguished from the n used to denote the number of edges surrounding

a grain, which will enter later.)

2.2 Experimental Results

Since the parabolic law for grain growth kinetics was deduced,

experimentalists have devuted much effort to extracting grain growth

exponents and then making de-Jarations about how far their samples

approach the ideal epitomised by n = 2. This tendency has been further

encouraged by schemes to identify a variety of different values of n

with different factors controlling grain growth. These are summarised

in Table I (from Brook 1976). The most commonly observed value, 3,

(e.g. Sjs Anderson st al (1984)) can for example be indicative of any of

five separate processes. Any attempt to isolate controlling mechanisms

must involve investigation not only of the grain growth kinetics and

activation energy (which can sometimes be identified with a controlling

mechanism such as grain boundary or surface diffusion) but also

microstructural and compositional parameters (pore size and

" o emlmmmllm imllllm -5-



distribution, extent of solid second phases, level of dopants And their

segregation). In addition, it will become clear that this approach is

to be questioned until further advances in grain growth theory, both in

pure single phase mate:ials, and in those containing impurities,

particles and pores, are made.

Experimental values for th.. growth exponent for zone-refined metals

in which impurity levels are very low (a few ppm or less), are given in

Table 2. 'rhe values vary from n = 2 to n = 4 with an aveage of 2.5 +

0.4. They are almost invariably obtained from analysis of 2-D sections

through the microstructure, the mean grain diameter being obtained by

finding the average linear intercept. To find the average mean

intercept, a line length L is drawn across the microstructure, the

number X of intercepts with grain boundaries counted, and L/k

calculated. This procedure is repeated with the line drawn at random

orientations and the mean L/X found. A typical 2-D section through a

3-D network is shown in Fig.l. The important issue of the relationship

between 2-D sections and 3-D structures will be returned to in Section

6.

Martin and Doherty (1976) have reviewed grain growth exponents for

zone-refined metals. In their view, n > 2 .an be attributed to

(i) solute drag (even for zone-refined metals) giving rise to a

non-linear dependence of velocity v on eriving force P (see Fig. 1)

or

(ii) velocity v = z [P - Po] )

where P is the minimum driving force below whic. no migration can c lur

(Grey and Higgins (1972, 1973)). Martin and Doherty (1976) favour the

latter explanation because in grain growth, where the driving force is

lower than for recrystallisation, the velocity is expected to remain

wtthin the low velocity regime of Fig. 2. However, this conclusion

relies on the assumption that n 2 for a pure, ideal single phase

system.
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The key questions to arise from the Burke and Turnbull analysis

are therefore:

(1) what causes departures from n - 2 in relatively pure single

phase materials?

or alternatively,

(2) is n = 2 to be expected i.e. is the Burke and Turnbull

approach adequate?

In summary, Burke and Turnbull analysed the expected miZration rate

of a single portion of boundary and assumed their expression represented

the mean behaviour of a whole array of grains.

3. TOPOLOGICAL REQUIREMENTS

C.S. Smith (1952) produced the second classic paper of the early

1950's (see also C.S. Smith, (1953), (1954,, (1964a,b)). He emphasised

that "Normal grain growth results from the interaction between the

topological requirements of space-filling and the geometrical needs of

surface tension equilibrium." Smith enumerated the topological

requirements in some detail. They are summarized here for those not

familiar with space-filling criteria.

In both 2-D and 3-D, the structure consists of vertices joined by

edges (also termed 'sides') which surround faces (see Fig. 1). In the

3-D case, the faces surround cells. The cells, faces, edges and

vertices of cny cellular structure obey the conservation law (Euler's

equation), provided the iace or cell at infinity is not counted:

F - E + V = 1 2-D plane (8)

-C + F - E + V = I 3-D Euclidean space (9)

Here C is the number of cells, E of edgis, T of faces and V of

vertices.
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The number of edges Joined to a givon vertex is its coordinat'on

nuuber z. For topologically stable structures, i.e. those in which the

topological properties are unchanged by small deformations, z w 3 (2-D)

and z - 4 (3-D) everywhere. For 2-D this can be illustrated by a

4-rayed vertex, which will tend to be unstable and to decompose into a

two 3-rayed vertices (see Fig.l. inset). This transformation has been

termed "neighbour-switching" by Ashby and Verrall (1973). For a 2-D

strtture, in which all the bound"ries have the same surface tension,

the equilibrium angles at a vertex are 120 ° . The tetrahedral angle,

109*28', is the equilibrium angle at a four-odged vertex in 3-D.

An immediate consequence of Eular's equation in 2-D, for an

equilibrium structure (z = 3), is that the average number of edges, <n>,

surrounding a cell (here referring to 2-D faces as cells in accordance

with general usage) is 6, in the limit of a large system, i e.

<n> = 6 (2-r) (10)

Since three edges meet at every vertex and each edge joins two

vertices,

2E = 3V (2-D) (11)

As every edge joins two faces,

Enfn = 2E (2-D) (12)

where f is the number of n-sided cells.
n

Grain growth in 2-D is inevitable unless a structure corsists of an

absolutely regular array of hexagons. If even one 5-sided polygon is

introduced into an array (and it has to be balanced by a 7-sided one to

maintain <n> - 6) then the sides of the grains mii-t become curved in

ordcr to maintain 1200 angles at the vertices (see Fig. 3). Grain

boundary migration then tends to oczur because of the curvature, in

order to reduce boundary surface area. Any grain wit, n 3 6 will tend

to grow because its boundaries are concave (and boundaries migrato

towards their centre of curvature). Grains with n < 6 will tend to
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shrink as they have convex sides. In Fig.3, the shrinkage of the

5-sided grain leads to a 4-rayed vertex in b). This decomposes into two

3-rayed vertices in c) and the 5-sided grain becomes 4-sided. The grain

continues to shrink and undergoes a similar transformation "i become

3-sided (see d), a)). Tt then shrinks away completely leaving a S-sided

grain neighbouring a 7-sided grain in f), as in a).

For a 3-D array where all vertices have z = 4, the equivalent

relations to those given above for 2-D are

< 12
6 - <n(13)

E = 2V (14)

EnF = 3E (15)

where <f> is the average number of faces for 3-D cells and <n> is the

average nv-,ber of sides per face in the cell. Host random structures

have <f> = 14 but this is nct an exact resu't. There is no regular

polyhedron with plane sides which has exactly the tetrahedral angle

109028' between its edges. The nearest approach to space filling by a

regular plane-sided polyhedron in 3-D is obtained with Kelvin

tatrakaidecahedra spaced on a body centred cubic lattice (see Fig. 4).

Even with tetrakaidecahedra, the angles are not exactly those required

(see Fig. 5) and boundaries must become curved to obtain equilibrium at

the vertices. Grain growth then follows. In general, grains tend to be

arranged randomly rather than with their centres on a regular lattice

and also grain sizes vary. In such a random array, Smith (1952)

asserted that, for a- array containing N cells:- the average number of

vertices/cell (V/N) - 6; the average number of faces/cell - 7; and the

average number of edges/face - 36/7. He suggested (6 - V/N) as a

criterion of addilonal surface area in the system and therefore of

"tendancy" to grain growth.

C.S. Smith elegantly illustrated the topological principles given

above using soap froths. Wesire and Rivier (198.) have discussed the

extent to which soap froths can be used to model grain growths in

-9-



polycrystals. In both systems, a driving force for reduction in surface

energy causes boundaries to migrate to reduce boundary area. In soap

froths, each call contains a fixed volum of gas and molecules permeate

through the cell membranes to equalise pressures in adjacent bubbles.

In polycrystalline grain growth, atoms must also be transferred across

the boundary but, in contrast with soap froths:-

(1) boundary energy may vary with orientation.

(2) transport of vacaacies along the boundary may contribute to

the migration process by supplying vacancies to enable

diffusion ot atoms across the boundary by a vacancy

mechanism.

(3) polycrystalline aggregates tend to be much further from

equilibrium it a given time because diffusion processes to

attain equilibrium in solids are slow in comparison with those

in a gas/liquid soap froth system, i.e. the gas has a zero

shear modulus.

This discussion will be returned to in Section 9.2.

Von Neumann (1952), in a note at the end of the C.S. Smith paper,

argued, on the basis of surface tension requirements, that in 2-D, the

rate of growth of a cell is proportional to its number of sides minus 6.

Rivier (1983) showed that this is in fact a geometrical result and not

due to surface tension. Von Neumann's law is to be discussed again in

Section 9.1.

It is worthy of note that C.S. Smith also stated, "In a large

array, with a random distribution of sizes, there is probably a tendency

toward a fixed distribution of shapes and relative cell sizes determined

by topological riquirements and by the equation for rate of volume

change as a function of curvature." The quertion of wl:ether there are

characteristic distributions for cell sizes and shapes has been the

basis for much debate and will be discussed in subsequent sections. In

analyses of grain growth kinetics, distributions have been:-

- 10 -



(1) Assumed by Felthau (1957), Novikov (1978) and Kurtz and Carpay

(198na).

(2) Predicted by analysis by Hillert (1965) and Louat (1974)).

(3) Predicted by computer simulation by Weaire and Kermode

(1983a,b, 1984), Anderson et al. (1984) and Srolovitz, et al.

(1984a).

In summary, at the end of this Section, Smith was one of the first

to recognize the importance of topological space-filling requirements

and their influence on grain growth, but told us nothing about how

quickly topological transformations and overall grain growth can occur.

In contrast, Burke and Turnbull examined the kinetics of migration of an

isolated spherical grain but did not attempt to find how the fact that

it is connected into a space-filling network governs its migration. We

shall now start to examine the evolution of theories aimed at binding

these two approaches together. In the next section we shall look at the

early "mean field theories" in which the growth of a grain embedded in

an average environment is examined. These followed on frum the Burke

and Turnbull analysis.

4. MEAN FIELD THEORIES

The mean field approach deals with the change in size of an

isolated grain embedded in an env-1"ment which represents the average

effect of the whole array of graii,. It was initially developed by

Feltham (1957), Hillert (1965) and Louat (1974). Hunderi and Ryum

(1980) gave the basis for describing how these theories can be

classified. This can be explained as follows. Duzing normal grain

growth, there is an increase in the mean grain size and a decrease in

the number of grains in the system. This process may be viewed as the

change of the grain size distribution f(R) with time (see Fig. 6).

Consider grains of a given size R. These can be een to be Lhanging

size as the result of:

(1) A diffusion-like process in which grains larger than R get

- 11 -



larger due to the "concentration gradient" df (see Fig. 6(b)

shoving grain entering and leaving the size class R1 along the

R axis).

(2) A velocity v = dR/dt due to a driving force (assumed to be

reduction In boundary curvature); grains are entering and

leaving the size class R2 along the time axis.

The physical basis for the diffusion-like process is not clear. The

overall flux j of grains is given by

j -DLf v (16)

where D can be identified with a diffusion coefficient which only

depends on the specific grain boundary mobility and f is the

distribution function which is a function of both R and t and can

therefore be written f(R,t). The continuity of the flux is then:

Saf a S f a
(.. . (07) - (fv) (17)

4.1 Theories Concentratint on the Drift-Velocity Term

Feltham (1957) and F lert (1965) assumed, more or less implicitly,

that the drift due to a driving force dominates normal grain growth and

that the driving force is related to elimination of grain boundary area.

The first term in the right hand side of (17) is therefore neglected:

a" + a (fv) a 0 (18)

There are then two possible approaches to obtaining a mean growth rate,

(1) Using a particular expression for the drift velocity v, solve

for f(R,t), the grain size distribution.

- 12 -



(2) Using an experimentally determined f, find v.

Hillert (1965) adopted the first approach and Feltham (1957) the

second.

4.1.1 Rillert's Analysis

Hillert suggested an expression for the drift velocity v (seen as

equivalent to the boundary velocity and proportio.Lal to dR/dt) such

that

v =w 1 1 19
(crit

where c is a geometric factor, V the mobility of the boundary, T the

surface energy of the boundary, and Rcrit a critical grain size which

varies with time. V and T are assumed independent of R. Rcrit is such

that if R ± Rcrit the grain will grow, and if R T Refit it will shrink.

Using (19), the kinetics become identical with those for Ostwald

ripening of a distribution of second phase particles with interphase

reactions controlling the rate at which large particles grow at the

expense of smaller ones. Hillert used previous analyses of Ostwald

ripening to obtain parabolic kinetics for grain growth, i.e. equation

(4). He also solved for a distribution function of f(R,t), which proved

to be quite sharply peaked in comparison with a log-normal distribution

(see Fig. 7(a)). The log-normal distribution is often fitted to

experimental data (Fig. 7(b)) but is not an entirely satisfactory

distribution, as will be discussed below.

4.1.2 Feltham's Analysis

Feltham (1957), on the other hand, asserted that the experimental

distribution f(R,t) is log-normal (i.e. frequency versus log (grair-

size) gives a Gausslar distribution), and time-invariant if plotted

against !t/R where R is the mean grain size.

Feltham solved for the velocity v:

- 13 -



v a-- ln (-) (20)
R

where C3 is a constant. Hunderi and Ryum (1980) have recently commented

that this solution of the Feltham analysis is only the first term in a

series expansion. The corresponding distribution function for the full

solution is not log-normal. The full solution shows a cut-off for high

R rather than falling off to infinity as a log-normal distribution

does. It therefore corresponds more closely with experimental findiigs

than a log-normal distribution.

Feltham obtained,

dR2 R
i-= C4 ln (-) (21)

R

where C4 is a constant. Setting R a 2Max  2.5R (using the time-

invariant property of the log-normal distribution), and relying on the

slowly varying nature of An(R/R) he obtained parabolic grain growth

kinetics identical to (4).

Although Feltham did give consideration to grain size (and shape)

distributions, the parabolic kinetics essentially arise from Identical

arguments to those which Burke and Turnbull used (see earlier). Using

the Burke and Turnbull assumptions, it appears that any slowly varying

distribution function can be used and will give parabolic kinetics.

4.2 Louat's Theory Concentrating on the Diffusion Term

Louat (1974) arrued that boundary motion is .random process (i.e.

can be seen as sections of the boundary indergoing random walks) and

that it is the diffusion term, and not the d-L t velocity term, which is

important. It must be emphasised again than the physical basis fr

considering the diffusion term alone in (17) is not clear. fie therefore

sat,
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O~f . D ! 2 f  
(22)

at (22)

from (17), assuming D is independent of R, and solved (22) with the

boundary conditions f(O,t) a 0 and f(-,t) = 0. The solution he obtained

was

C6x exp (-x2 /4At) (23)

At
3/

2

where C6 is a constant and A a time-dependent parameter. If A is

constant, on integrating (23) with respect to x, the total population

N(t) is obtained:

N(t) = C7t-i

where C7 is a constant. Louat asserted that this corresponds with a

parabolic grain growth law as his analysis deals with linear dimensions

and therefore, (he argues), N(t) represents, for instance, the inverse

of the mean grain intercept (equivalent to a diameter). Louat ascribed

grain growth kinetics with the exponent n > 2 as due to time dependence

of the parameter 'A' (equivalent to a diffusion coefficient).

The analyses of Burke and Turnbull (1952), Feltham (1957) and

Hillert (1965) all specify grain radius R as representing grain size. A

measure of R can be obtained from a 2-D section by either tAe line

intercept method (specified in !ection 2.2), or by the aroa method in

which the total area containing a number of grains is diviied by that

number (e.g. see Underwood (1970)). Burke and Turnbul, Feltham, and

Hillert, assume that a 3-D parameter can be directly deduced from the

measurement on a 2-D section through an isotropic material. This

assumption will be discussed later in Section 6 on the Rhines and Craig

(1974) theory.
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The man field theories of Feltham, Hullert and Louat are

essentially statistical. The array of grains is represented by.a

distribution function f(R,t), ard the alteration in i witl time pursued

by analytical means placing a spherical grain in an averaged

environment. The shape distribution (f(n,t) in 2-D where n is the

number of sides) is assumed time invariant (if mentioned at all).

Topological considerations are not taken intn account.

An important question which arises from these theories is

"What fundamental property of (16) and (17), i.e.

j = -D f+ fv

and

_f a __ a-= T_ ( ) - CR (fv)

causes the Feltham, Hillert and Louat analyses, with varying

assumptions, all to give a grain growth exponent of 2?"

5. GRAIN GROWTH AS DISLOCATION CLIMB

Hillert (1965) presented an alternative method of attack on the

grain growth problem to his statistical anelysis described above. In

this alternative method, he took an ideal 2-D array of hexagonal grains,

with no tendency to grain growth, and introduced an imperfection i.e. a

grain with 5 sides. This had to be balanced by a 7-sided cell (to

preserve <n> a 6) and created a 5-7 pair (see Fig. 3 as discussed

earlier). When the 5-sided grain eventually disappears, one of its

neighbours in turn becomes 5-sided and the procesE is repeated. The

"5-7 defect" is thus permanent ;-ad moves stepwise through the array of

grains. For each step it takes, the number of grains ;5 decreased by

one. Killert argued that the rate of grain growth is due to the

combination of the number of defects per grain and the time a defect

will need to make a grain shrink from the average size to zero. He then

deduced parabolic grain growth kinetics. Cahn And Padawer (1965)

- 16 -



identified the movement of Hillert's 5-7 defects in the cell structure

as equivalent to dislocation climb.
I

Morral and Ashby (1974) described a 3-D version of Hillert's 2-D

model. They considered an assembly of fourteen-sided polyhedra in near

equilibrium and then introduced thirteen or fifteen-sided grains, and

other more serious "grain defects". A network of lines, which

represented the grain structure, was constructed by joining the centres

of all neighbouring grains through their common boundaries. These lines

form a lattice ("lattice graph") with dislocations wherever there is a

grain defect. Dislocation climb then corresponds to grain growth and

involves three topological transformations:- cell annihilation, face

annihilation and neighbour-switching. Morral and Ashby simply extended

Hillert's 2-D analysis to 3-D to obtain the parabolic growth law,

provided the defect density is constant. If the density decreases

during grain growth, the exponent n is expected to become greater than

2.

Although this view of grain growth as the climb of "cellular

dislocations" makes contact with topological considerations of grain

growth, the analysis by Hillert (1965) to obtain parabolic kinetics is

still essentially a mean field one.

6. THE RHINES AND CRAIG TOPOLOGICAL ANALYSIS OF GRAIN GROWTH

In Hillert's (1965) 5-7 defect pair approach, the area of a

shrinking 5-sided grain is shared with its neighbouring grains and its

topological parameters change as topological transformations, such as

neighbour-switching, occur. The parameters of the grains around it then

also change. Thus, not only is its area shared out, but also its

topological attributes. Hillert did not look beyond the shell of first

neighbours around the shrinking grain. However, the changes in their

shape and size must inevitably affect the second shell and beyond.

Rhinos and Craig (1974) argued, in a paper which has becomn another

of the classics in grain growth literature, that the volume (in 3-D) of

the shrinking grain must be shared with grains throughout the whole

system. Similarly, changes in topological parameters, the numbers of
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edges, faces and vertices of grains, must also be propagated to every

grain. The larger grains gain proportionately more of the volume to be

shared out than the smaller grains. This is necessary if the grain-size

distribution function is to remain time-invariant. Rhines and Craig

introduced two new concepts, the sweep constant and the structural

gradient.

6.1 The Sweep Constant

Grain boundaries throughout the system must migrate for these

propagation processes to occur. Rhines and Craig described this as
"grain boundary sweeping" and defined a "sweep constant, 8" as the

number of grains lost when grain boundaries throughout the whole

structure sweep through the equivalent of unit volume of material. This

definition was modified by Doherty (1975) to 8*, the number of grains

which vanish when boundaries sweep through a volume equal to that of the

mean grain volume V. Rhines and Craig (1975) replied to Doherty's

criticisms of their definition but no convincing arguments were offered

either way. Hunderi (1979), however offered evidence that 8* was

constant, but no: 8. Hunderi calculated 8* -. 1.76 on Hillert's (1965)

mean field model if grain growth. Hunderi also found 6* constant and

1.67 using a 2-D computer simulation, which will be described In more

detail In Section 10.2. The simulation, in contrast with mean field

theories, accounts for local variations in particle environment.

Hunderi's analysis of the Hillert model showed that 8 depends on R and

therefore varies during normal grain growth. This work by Hunderi does

not conclusively prove that 8* is a constant for real granular materials

and 9 not, as this could only be achieved by exneriment. However, the

balance of evidence is in favour of constant 9*. It would be difficult

to find 8 or 9* directly by experiment.

6.2 Structural Gradient

The second concept introduced by Rhines and Craig was that of
"structural gradient". Experimentally they found the priduct of the

surface area per unit volume, Sv, and the surface curvature per grain,

(H /N V), to be a.proximately a constant (see Fig. 8) i.e.

- 18 -



MS

N- (24)
V

where Hv is the curvature per unit volume:

v = 1 (1 r2 dSv (25)

S 1 2

and Nv the number of grains per unit volume. rI and r2 are the

principal radii of curvature.

Rhines and Craig asserted that constant a is a necessary

consequence of the condition that tho distribution of grain shapes

(f(f,t) in 3-D where f is the number of grain faces) remains constant
durinS grain growth although no proof of this is given. a is a measure

of the "structural gradient" in the .system i.e. the tendency to grain

growth. If the grains were all tetrakaidecahedra, with nearly flat

faces, MV, the surface curvature, would be very small and a close to

zero. As the distribution of grain shapes broadens, a increases.

Doherty (1975) made the valid criticism that it is difficult to see

the physical significance of CMVSV/NV), the product of the mean

curvature per grain with the mean boundary area per unit volume. He

sggested,

H
vZ ." V (26)
v

where a is the mean curvature per grain, as a u,eiul alternative

"structural gradient" representing the tendency .o grain growth in the

system. ExperimentaLly, a does not appear to be a constant (checked by

Doherty using values taken from graphs in Rhines and Craig (1974)).

6.3 Analysis for Grain Growth Kinetics

The khines and Craig (1974) onalysis of grain growth kinetics

proceeds as follows, with rodiflcation by Doherty (1975) to use the

sweep constant 8* rather than 8. Th.r mean pressure P on th, hn tv.,r ,,;

is
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H

P - (27)
S

v

and the mean boundary velocity

V S (28)
v

The swept volume per second (per unit volume of specimen) is then

vs ; so if 6* grains are lost, per unit volume, for each V, then the

rate of loss of grains will be

dN 6* vSV= V

dt

= 8 v1M N (29)

since

N =- (30)V

For each grain lost, per unit volume, there is a net increase in

volume of V which is distributed, on average, over all the remain :g NV

grains. Then, using (29) and k30),

dv dNv -.VV
IY-)-

t cr N t 7 v

and

d- ' -N (31)
dt N

v

If, and only if, 6*, V, T and (Mv/N v = ev) are constant and indepehPdeTt

of time, (31) can be integrated to givo a linnar ,',,j .iencn of V

time:
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St + (32)

where V is the mean grain volume at time t a 0.

Rhinos and Craig (1974) obtained such a linear time dependence for

(measured as I/Nv) experimentally for grain growth in high purity

aluminium at 635*C (see Fig. 9). 1! was found by serial sectioning.

Rhines and Craig drew attention to the important fact that with

dependent linearly or -, the mean grain radius was growing as t1/3 (i.e.

n, the growth exponent, equal to 3). Homt othrr investigations have

used (see e.g. Table 2), as mentioned earlier in Section 4.2, mean

boundary intercept measurements on 2-D sections rather than finding 3-D

parameters directly by serial sectioning, and values ranging from 2 to 4

for the exponent n have been found. Serial sectioning is very time

consuming in comparison with mean grain intercept on a 2-D section.

6.4 Comparison of Mean Grain Intercept and_(V) erhoos

Therefore, an important question is whether a 3-D grain size can be

deduced from mean grain intercept measurements on 2-D sections.

Rhines and Craig pointed out that the mean grain intercept is

sensitive to the shape of the grains and will alter significantly if t

grains are distorted e.g. by rolling. However, the mean grain volume

will not change if the grains are rolled. Rhines and Craig stated

"Neither mean grain intercept nor any other measurement that can be m3de

upon a 2-D section through a material can be used to determine wean

grain volume. N must be measured in 3-D space (i.e. by serialv

sectioning)". Measuring conventionn1 mean grain intciepts on 2-D

sections of the same specimens which they had examined by serial

sectioning, they found that the mean grain intercept was proportional ro

t0 .43 i.e. n = 2.3. This is in contrast with their t
1'3 dependence for

mean radius found from serial sec.ioning measurements of Nv (= /V).

Cahn (1974,, in a succinct review ot grain growth theories, and

lDoherty (1984), have emphasised the importance, and to some extent
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paradoxical nature, of these results. However, in the author's view

Rhines and Craligs' statement above must be questioned. The validity of

the statement depends on the anlsotropy In the structure. For an

isotropic structure, the mean intercept on a 2-D section will

approximate to the 3-D mean grain radius. For an anisotropic one there

will be a discrepancy. This suggests Rhines and Craig's recrystallised

aluminium may have contained some residual anisotropy from the

deformation process. It is this point i.e. that deductions about 3-D

parameters cannot be made unless the degree of anisotrn-- in grain shape

has bien determined, that has implications for all experimental

determinations of the grain growth exponent. Rhines and Craig were

moving towards anisotropy as an explanation for their results (see

Section 6.6) but did not express this explicitly.

6.5 Analysis of Grain Growth Kinetics Continued

Returning to t&he question of how Rhines and Craig could have found

a linear dependence of V on time (equation (32)) if the structural

gradient (defined as Mv/Nv) in equation (31) is varying, Dohprty (1975)

suggested that the analysis could be repeated using equation (7) for v,

rather than v = UP. The dependence of V on t would then be linear if

M PS
- -2 --) were constant. Substituting values from Rhines and

v v
Craig (1974) for MvSv and Nv, this can only be achieved if Po/T % 0.1-1o
cm . Grey and Higgins (1972, 1973) reported values in this region for

grain boundary migration in lead and therefore Doherty (1975) concluded

that this is a possible explanation.

6.6 Steady State Conditions

It should be noted that Rhines and Patterson 10A2" , *

linear increase in mean grain volume, V, with time doe:

initial period inmediately after recrystallization begins. During this

period, the sweep constant 8* and the structural gradient a (or a) are

not constant and steady state grain growth conditions are not

established. Rhines and Patterson (1982) showed that the rate of grain

gro-ith is strongly affected by prior strain. Small prior strains give
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wider size distributions and faster grain growth. The wider size
distribution is equivalent to a higher structural gradient.

Rhinos and Craig (1974) found that a steady state appears to be

established for topological parameters (i.e. they tend towards constant

values) much sooner than for grain shapes. They suggest that the man
0.43

intercept dependence en t in contrast with mean radius dependence

on t1/3 (from serial sectioning), might be due to a relative area

decrease resulting from a continued approach to equiaxedness (and shape

steady state) after topological parameters have reached steady state.

Rhines and Craig did not examine whether mean grain intercept tended to

become equal to mean grain radius with continued annealing time. This

ties in with the discussion ot the relationship between mean grain

intercept and mean radius in Section 6.4 and the role of residual

anisotropy. The structural gradient is a shape dependent parameter (at

least on Doherty's (1975) definition of a = MviNv) and as such will vary

during the approach to shape steady-state, after topological

steady-state has been established. The variation in , the structural

gradient defined by Rhines and Craig (1974) as (MvSv/Nv ) cannot be large

during this regime, or else V would not be linearly dependent on t

experimentally.

6.7 Summary and Discussion of the Rhines and Craig Analysi-

In summary, Rhines and Craig (1974) arrived at a linear dependence

of V on time, employing two supposed constants, 8e* he sweep constant

(defined in modified form by Doherty (1975) as the number of grains lost

when grain boundaries sweep through a volume equal to the mean grain

volume V) and the structural gradient Mv S V/Nv (alternative proposed

by Doherty (1975) Hv /N v). Rhines and Craig confirmed the linear

tim dependence of V experimentally and commented on the con:rast

between the dependence of mean grain radius on t
1/ 7 and of 2-D mean

grain intercept on t
0.43 for their specimens. This discrepancy is

probably due to grain shape anisotropy. With further annealing, mean

grain intercept should tend to become equal to mean grain radius, but

with, according to Rhines and Graig, a t 1/ 3 dependence.
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In a system in vhIch train boundary migration is relatively lov

(i.e. one well below its melting point, in contrast witE the aluminium

at 635*C use' by Rhinos and Craig) could 6* be constant? Migration
could be so slow that the system is not in quasi-equilibrium constantly

propagating volume and topological changes through the structure. The

volume and topological changes would only be able to propagate locally.

This scenario deserves further investigation. It echoes Hillert's

dislocation climb model of grain growth (Section 5) in which only

nearest neighbour cells change their topological parameters when a cell

is annihilated. Aspects of the question of equilibrium are further

discussed in Section 10.3.

The mean field theories predict that mean grain radius will be

proportional to tJ. This brings us to the real core of the problem.

Rhinos and Craig find experimentally with serial sectioning mean grain

radius is dependent on t1 13 and justify this algebraically. Why the

discrepancy? The central question here is:-

"How has the Rhines and Craig analysis departed from the basic

mean field approach?"

1he arswer appears to lie, for all the debate about their

definitiuns, in the introduction of the sweep constant and the

structural gLAdient. However, it is not clear whether the Rhines and

Craig analysis is still mean field in type, in that the sweep constant

and the structural gradient are still averaged through the whole

ensemble then allowed to act on an individual grain. The departure from

the Burke and Turnbull analysis occurs with equation (29) and the

introduction of 8*. The sweep constant represents grain boundary

movement throughout the structure in response not only to volume sharing

as grains shrink, but also to topological requirements. Propagation of

topological changes through structures is thus t.ken into account, in

contrast with the basic mean field theories.

11/ 1/3

However, the Rhines and Craig t dependence for (V) has not
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been confirmed or otherwise Ly other experimenters and it is difficult

to gauge how far the 2-D sectioning results give values of n not equal

to 3 because of grain shape ansotropy.

7. TOPOLOGICAL CHARACTERISTICS OF THE STEADY STATE

Rhines and Craig (1974) examined the topological paths of

transformation which could be taken by grains in polycrystalline

aggregates but did not focus on the distribution of the topological

parameters and the fundamental causes for these distributions. This

Blanc and Mocellin (1979) and Carnal and Mocellin (1981j set out to do.

7.1 Monte-Carlo Simulations to Obtain Distributions of Topological

Parameters

Aboav (1970) found in highly dense, sintered MgO that a correlation

existed between the number of sides of a grain, n, and the average

number of sides, mn, of its neighbours:

8
m = 5 + - (33)

n n

Wea4re (1974) explained Aboav's correlation s-anply on the basis of

Euler's theorem and suggested a more genAral equation:

6 + "2 (34)

n n

with

2 I C - 6)2 fn (35)

fn is the fraction of grains with n sides and P2 the variance in the

number of sides. This relationship (34) will be discussed again in

Section 9.3.

Morral and Ashby (1974), as mentioned in Section 5, suggested

elementary topolgical transformations for micrustructural evolution:
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(1) Disappearance (termed event A) and appearance (termed event B)

(in 2-D) of 3-sided grains.

(2) Neighbour-switching (termed event C).

Blanc and Mocellin (1979) dealt with 2-D sections through

statistically isotropic microstructures. They used a Monte-Carlo

simulation of the coordination changes in a population of grains when

the elementary topological transformations A, B and C repeatedly occur

and predicted the distributions fn and mn tending to be established in

the steady-state. These agreed reasonably well with their experimental

data. Their predicted fn distribution could be fitted to a log-normal

distribution, but they state,

"Curve fitting may always be practised but an apparently very

good numerical agreement with experiment should not be

mistaken for proof that no other functional relationships

could provide siW v good fits."

They also comment tt -. h strong evidence for grain to grain

correlations,

"It would be remarkable if the rigorous solution were

log-normal."

This remark is relevant to a subsequent discussion (Section 8) of the

role of the log-normal distribution by Kurtz and Carpay (1980a).

7.2 Analytical Method to Obtain fn

Carnal and Mocellin (1981) obtained the distribution of grain

coordination numbers in plane sections of polycrystals by an analytical

technique rather than by the Monte-Carlo simulation used by Blanc and

Mocellin (1979). In the analytical approach, the elementary topological

transformations A, B and C occur repeatedly at random, thus transferring

grains from one "shape class-n" to another. This "collective behaviour"

of the whole grain population is then treated by statistical arguments

and Carnal and Mocellin (1981) show, for n 3

- 26 -



[ 1 - 3 f - fn-1 - 3P(r = n)]IP(A) - P(B))

= 2P(C) (P(i n n) - P(k a n - 1)] (36)

where f is the fraction of grains with n sides, r is the initial number

of sides of any one of the neighbours of an n-sided grain, P(r a n) is

the probability that r a n, P(A) is the probability of a 3-sided grain

disappearing, P(B) the probability of a 3-sided grain appearing, P(C)

the probability of a neighbour-switching event, i is the number of sides

of any grain neighbouri. the n-sided grain prior to a neighbour-

switching event and k the number of sides after.

The above equation must be satisfied if topological stability is to

be maintained in a random plane sectior of a polycrystal. It is not

possible to obtain the f distribution unless more information isn

available about the three probability distributions P(i = n), P(k = n),

and P(r = n). These describe the interactions between grains and their

nearest neighbours and as such invoke some physics (in contrast with the

purely statistical arguments used to determine the collective behaviour

of the grains up to this point). These probability distributions may

assume different behaviours in different materials and environments.

Equation (36) also describes the existence of a balance between the

elementary topological transformations A, B, and C. Carnal and Mocellin

(1981) have commented on various possibilities for P(A), P(B) and P(C).

If "normal" grain growth is defined as that process which takes place in

a topologically stable polycrystal, then a fixed ratio must be

maintained between the net number of grains disappearing from the

polycrystal and the number of other grains which take part in neighbour-

switching. Control of grain growth kinetics may therefcre be effected

through either or both of the elementary transformations cell

appearance/disappearance or neighbour-switching (A + d, or C) not

necessarily through just the disappearance of 3-sided grains (in 2-D).

Carnal and Mocellin (1981) predicted that there wc ild b an average of 4

neighbour-switching events for every 3-sided grain disappearance.

It Is not clear, in these two models (Blanc and Mocellin (1979) and

Carnal and Mocellin (1981)), whether a polycrystalline grain boundary
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network is initially fed into either the compu~ter simulation or the

analytical method. If it is, both models have strong links vith the

2-D computer simulations of soap froths (to be discussed later in

Section 11.2) in vhich the elementary topological transformations are

allowed to occur, given certain constraints, in a 2-D network, and the

time evolution of the network then examined. Blanc and Mocellin and

Carnal and Mocellin have, however, waited for a steady-state to be

achieved in the topological properties and then examined the

distributions of topological parameters, regardless of the time

evolution.

8. KURTZ AND CARPAY STATISTICAL THEORY OF NORMAL GRAIN GROWTH

8.1 Analysis

Kurtz and Carpay (1980a) constructed a detailed statistical theory

of grain growth, placing emphasis on the supposed log-normal

distribution of grain sizes and shapes asserted, for instance, by

Feltham (1957). The prime new feature of the Kurtz and Carpay (1980a)

theory is their division of the grains into topological classes, each

with a log-normal distribution of grain sizes. This is in contrast with

those statistical theories which are based on a single geometrical shape

which fills space and is then allowed to have statistically distributed

si7es (implicit in e.g. the early mean field theories). In this theory,

both sizes and shapes are allowed to vary whilst the requirement for

space filling is retained. However, this does make it much more

difficult to rigorously specify the transformation from 2-D to 3-D (i.e.

n - f and, in Kurtz and Carpay's terms, D - D where D is the

equivalent planar diameter (Ds 5 s/ir where s is the perimeter of the
1/3grain) and Dv is the equivalent spherical diameter (Dv S (6V/ir) where

V is the volume)).

Growth is controlled by the rate of loss of Lraias from the ,owest

topological class, as discussed by Rhines and Craig (1974). Kurtz and

Carpay solved for the grain growth kinetics in each class as well as

transfer rates between classes. When a grain transfers between classes

it loses (or gains) one face, two corners and three edges, i.e. a
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3-sided face. Kurtz and Carpay made a number of simplifying assumptions

in order to solve the equations.

(1) log-normal distribution of sizes and shapes and of sizes

within each topological class.

(2) time-invariance of distributions.

(3) growth controlled by rate of loss of grains from lowest

topological class accompanied by discontinuous transfer of

growing grain to next topological class.

D
(4) -Y in (-) (3-D) (37)

2v Fmed

where M is the mean curvature per unit volume (p in 2-D). F

the number of faces and Fmod the median number of faces.

D
-s= In n-) (2-D) (38)
2p nme

(7) 2-D microstructural evolution reflects the essential features

of that in 3-D.

The origin of equations (37) and (38) is not clear and neither is

Kurtz and Carpay's reason for considering median values rather than

means.

Kurtz and Carpay note that "The key problem is to find the correct

functional relationship in 3-D between the three basic parameters, F, D

and v . However, a theory based solely on Dv, F arid Mv would be of

limited value because of the labour and effort required for serial

sectioning". Therefore, they aim to produce a theory based on the 2-D

planar section parameters which can then be transiormed to 3-D. This is

a constructive attitude towards the problem connected with using 2-D

parameters raised by Rhinos and Craig (1974).
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Using their calculated rates of transfer between classes, Kurtz and

Carpay were able to explain how the median diameter of those classes in

which grains are shrinking still manages to increase in such a way as to

keep their number a constant fraction of the total population (see Fig.

10). In the successive "hand-me down" transfer between classes, grains

enter a class with slightly larger diameters than the median of the

class they are entering. Hence the median diameter can increase even

though individually all the grains in that class are shrinking.

Transfer rates increase the lower the topological cla .s, thus keeping

pace with the re.uired changes in median.

In their analysis, Kurtz and Carpay (1980a) found a parabolic

growth law for the median grain size of the whole population as well as

for the median grain size in each topological class. They also shoved

that the Rhines and Craig (1974) structural gradient (MvSv/Nv) was a

constant under their theory, related to the variance in the distribution

of faces 2(F) and the variance in the distribution of sizes 2 (D).

(ote o denotes standard deviation not structural gradient here.) Once

normal grain growth is established, the growth rate is a strong function

of MvSv/Nv where

M 2 2 2
S)2 (D) + (F) (40)
v

The dependence on 2(D) has been confirmed by Rhines and Patterson

(1981) and was briefly discussed earlier in Section 6.6.

Kurtz and Carpay also conclude that stability in normal grain

growth arises from a maximum, at any instant in time, In the average

grain boundary velocity as a function of increasing grain size. They

predict,

Dmax = Dmed (41)

where e is the exponential e = 2.71.8.

The log-normal distribution, Kurtz and Carr&N i,.;e, is a

fundamental characteristic of grain growth and of .orher phenomena such
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as the size distribution in crushed powders and in ultrafine evaporated

metal powders. They suggest that for grain growth it arises because

when a four-faced (in 3-D) grain vanishes, the four adjacent grains

increase In diameter by an amount proportional to their diameter. Kurtz

and Carpay then show how the diameters can approach a log-normal

distribution. However, it is not clear their argument is valid. In

Fig. 11 it would appear that when a 3-sided grain disappears in 2-D the

adjacent grains increase in diameter in inverse proportion to their

diameter. The general applicability of the log normal distribution to

grain growth is not universally accepted (see for instance Blanc and

Mocellin's coment at the end of Section 7.1).

Kurtz and Carpay go on to test their theory against experiment

(1980b) and to compare Hillert's predicted grain size distribution with

their own, which, they conclude, fits the data better.

8.2 Experimental Results

The Kurtz and Carpay (1980b) experimental results in grain growth

in Ni-Zn ferrites confirmed the following conclusions from their

statistical theory.

(1) The grains can be divided into topological classes with

markedly different growth rates.

(2) The median diameter of the overall distribution and of the

distributions in the individual topological classes grow

parabolically, both on 2-D sections and in 3-D (as meassired by

serial sectioning).

(3) Growth constants agree to within 10% of those predicted,

except for the lowest topological class.

(4) Planar measurements can be used to make deductions about 3-D

parameters (confirmed by serial sectioning).

(5) Dmax 
=  

med
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(6) Tim-invariance of standard deviations of log (size) and log

(shape) distributions.

(7) Constant structural gradient (M vSv/Nv).

The Kurtz and Carpay (1980a, 1980b) statistical theory is wide-

ranging and detailed. It is surprising that nowhere do they

specifically tackle the difference between the Rhines and Craig

dependence of mean grain radius on t1 /3 and their own tf law. Kurtz and

Carpay's only comment in this direction is that t1 /3 laws have often

been found when the initial grain size (R in equation (5)) is

neglected, or if the growth law exponent is extracted from a log D-log t

plot, which can give misleading results. Neither of these criticisms

can be levelled at Rhines and Craig. It is worth noting that very low

levels of impurities can affect boundary migration and Rhines and Craig

(who used 99.99+% Al in their experiments) did not present any

microanlaysis of grain boundaries to prove ' at they were clean enotgh

for their migration not to be impeded by foreign atoms. However,

without any evidence either way, it is not possible to pursue further

this line of discussion about the discrepancy.

9. STRUCTURE OF RANDOM CELLULAR NETWORKS

Before moving on to look at the recent computer simulations of

grain growth, it is pertinent to examine the latest thoughts on the

structure of random cellular networks which can give insight into grain

growth.

9.1 Lewis' Law

Lewis' Law (Lewis (1928)) for a 2-D cellular network states that

the average area of an n-sided cell, Xn' is linearly lependent on n:

An (n -n (42)

with
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D - (j2 )X (43)

and

no  6 (44)

Here A is the total area available to F cells and X is a Lagrange0

multiplier which, prior to Rivier (1983), was apparently undetermined.

Rivier (1983) identified X as a parameter representing the ageing of the

structure.

Lewis' Law is a mathematical law which should hold for any space-

filling structure as long as it is in statistical equilibrium. It is a

consequence of the balar-s between entropy and organized form (space-

filling). This will be discussed in further detail in Section 9.4.

Suffice to say that, if a mosaic does not obey Lewis' law, then the

average area of its constituent cells is not regulated purely by the

space-filling requirement but by a specific physical (for metallurgic.l

aggregates) or biological law (Rivier and Lissowski (1982)). Lewis' Law

is obeyed by mathematical mosaics formed by the Voronoi construction

applied to a random array of centres (Crain (1979)). In the Voronoi

construction, each of the centres is assigned a cell containing all

points nearest to it (see Fig. 12) e.g. by drawing the perpendicular

bisecting planes (in 3-D) or lines (in 2-D) to the lines joining any two

centres.

Rivier (1983) showed that by time-differsntiating Lewis' law (42)

von Neumann's law (1952), first mentioned in Section 3 could be directly

obtained:

dA = T(n - 6) (45)

Here it is simply a mathematical consequence of space-filling rather

than the result of surface tennion requirements in a 2-11 soap froth as

originally argued by von Neumann. T is (according to Rivier (1983)) a

constant and proportional to the surface tension of the liquid forming
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the froth. X, the Lasrange multiplier in (43) and (4) is therefore

related to surface tension. This indicates though, in the author's

understanding, that a physical force is acting and therefore that von

Neumann's Law is not purely a space-fillinS requirement. This leaves an

unresolved difficulty. Do soap froths (and other structures) obey (45)?

If so how can this be reconciled with the fact that the do not obey

(42)? Lewis' (42) and von Neumann's (45) laws can be generalized to 3-D

(Rivier (1983)) and hold irrespective of the probability distribution

[pn} for the number of cells with n-sides, provided the system is in

statistical equilibrium i.e. maximum entropy subject to constraints (see

Section 9.4).

Rivier (1983) has not checked his 3-D versions of von Neumann's and

Lewis' laws with experiment. He assumes that the derived relationships

do apply to soap froths, along with "ideal" structures based on, for

instance, the Voronoi construction. This point will be returned to in

Section 9.4.

9.2 Asymptotic Evolution of 2-D Soap Froth

Weaire and Kermode (1983a) asked

"What form does the evolution of the structure of a 2-D soap

froth take in the limit t - -7"

Smith (1952) suggested, as referred to earlier.

(1) A fixed distribution of sizes and shapes.

(2) A proportional to t.

Weaire and Kermode commented that there is no rigorous theoretical

basis for such propositions although if (1) is assumed, () follows by a

simple dimensional argument (as in Burke and Turnbull (1952)). For 2-D,

from Smith (1952) and Kikuchi (1956), u 2' the variance in fn, (equation

(35)), is approximately 1.5 for the limiting distribution.
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Weaire and Kermode drew attention to the work of Aboav (1980) who

had reanalysed Smith's photographs of 2-D soap froths but with many more

cells, to find how the Average linear intercept D changed with time. He

found, in contrast with (1) and (2):

(3) P2 proporti.,oil to t up to P2 % 3 and possibly beyond.

(4) D proportional to t.

The discrepancy between (2) and (4) may be due to surface effects

affecting the small samples of bubbles examined by Smith. (All

experimental 2-D froths were made by forming a thin layer of bubbles

between two glacs plates.) However, Weaire and Kermode briefy indicate

that the whole question of the long-term evolution of 2-D soap froths is

laid open to question. They suggest that the ultimate .tructure may be

"fractal". Fractals were first named by Mandelbrot (1977). Weaire and

Rivier (1984) show a possible fractal structure for a soap froth system

(see Fig. 13). In the author's view, the stability of such a structure

even in an ideal system is unlikely. Would not the lazge central grain

tend to subsume the tinv ones around it? It would be useful to see some

analysis of the possibility of such structures. In any case, Weaire and

Kermode (1983b, 1984) are pursuing the 2-D evolution of soap froths by

computer simulation to find, if possible, some insight into the long

term behaviour. These computer simulations will be described in Section

10.3. If soap froths do tend to fract'l structures, or even if merely

P2 continues to be proportional to t even for high p12' the point must be

made that this Is not "normal" grain growth and the q.iestion raised as

to whether soap froth behaviour can be legitimately used for 2-D

networks to model growth in polycrystals. If not, what I" the reason

for the divergence? The. questions will be discussed in Section 10.3.

9.3 The Aboav-Weaire Law

The Aboav-Weaire law for 2-D networks has been mentioned previously

in Section 7.1 on "Topological. Characteristics of the Steady-State".

Aboav (1970) found equation (33) empirically for ceramics, giving the

correlation between the number n of sides of grain and the average

number m of sides in its neighbours. Weaire (1974) gave the more
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general equation (34). To be precise, Aboav found

6a + (6

m a 6- a +- (46)

with a -. 1.2.

Lambert and Weaire (1983) suggested that this empirical result

shows that there exists a certain class of 2-D random networks *se

nearest-cell correlation functin, m , is linearly related to I/n and

is characterized by a single parameter 'a' with 'a' related to V 2' They

showed that under certain conditions, 'a' could be obtained from a

knowledge of the distribution function f n They deduce that 'a' ,s

related to the kurtosis of f . The 3-D version of the Aboav--Weaire lawn
will be referred to in the next section (9.4).

9.4 Maximum Entropy Considerations

Rivier (1985) set out to find, using the methods of statistical

mechanics, the most probable distributions of cell sizes and shapes in

random space-filling cellular structures such as foams, metallurgical

grain aggregates and biological ti3sue. Kikuchi (1956) was the first to

propose that statistical mechanics could be useful.

Rivier's approach is tarmed statistical crystallography. The basic

proposition is that an assembly of an enormous number of atoms, cells,

or metallurgical grains will take up one of the most probable

configurations, subject to a fcw, unescapable mathematical constraints

11.ke space-filling (although it must be noted that this applies only to

IO% dense materials). Specifically, the constraints are, for an

"ideal" system (for 2-D), with p(n,A) the probability of finding an

n-sided cell with area A.

Ep(n,A)n - 6 Euler-topology (47)

Ep(n,A)A = Ao/F space-filling (48)
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Ep(n,A)[A-1 - 0 correlation (49)

Here A is the total area containign F cells and An is the average area

of an n-aided cell. In 3-D, the relation corresponding to (49) is such

weaker, i.e. equation (13):

<f> v 12/(6 -<>

The structure will be in statistical equilibrium if any topological

rearrangement of the cells leaves the entropy invariant. The entropy

S:

S = -Zp(n,A)ln(p(n,A)j (50)

and the Maximum Entropy Formalism of Probability Theory states that the

structure will take up the most probable distribution p(n,A) which

maximises the entropy with the given constraints. An equation of state,

analogous to an ideal gas law, giving a relationship between averaged

measurable properties of the structure, can be obtained. Any deviation

from the equation of state obtained using the minimal constraints given

above, indicates that further constraints are operating.

Rivier (1984) first proved "structural microreversibility" I.e. the

expected values of the statistical variables are unaffected by the

elementary topological transformations of neighbour-switching, face

appearance/disappearance, and cell appearance/disappearancq. Hence, he

deduced the Aboav-Weaire law (33) and its 3-D analogue:

nr = 5f - 11 - C(f - I - n) (51)

where C is a constant. Equation (51) is a new result which has not been

checked experimentally.

Rivier (1985) then established that the equation of state for an

"ideal" system, to which only the minimal constraints given above apply,

was Lewis' law, equation (42):

- 37 -



An - (n -n

Lewis' law, as commented earlier, therefore arises as a consequence

of balance between entropy and organised form (space-filling).

Rivier then proceeded to obtain the most probable distribution of

the statistical variables (the structural equivalent of the Boltzmann

distribution). Polycrystals, however, do not obey Lewis' law (Aboav and

Langdon (1969) (MgO), Beck (1954) (Al), Simpson et al (1967)(Pb)). They

are "non-ideal" random structures. An additional constraint is.

necessary. This is an energy requirement:

Ep(n,A,s)s = E/F (2-D) (52)

where p(n,A,s) is the probability of an n-sided grain with area A and

perimeter s, and (E/F) is th average energy/grain. The other

constraints (47), (48) and (49) are recast to give:

Ep(n,A,s)n - 6 (topology) (53)

Ep(n,A,s)A = Aa/F (space-filling) (54)

p(nA,S)[(1-n)A + ns - Bn] = 0 (correlation) (55)

S0 if Lewis' Law applies (i.e. B = A ), but n = 1 if a perimeter lawi£Lei' awaples(~e n n

applies and Bn = Rn . The analysis revolves around showing that, of

these two alternatives, I = 1 gives the higher entropy and hence the

most probable distribution. (It is not clear why the energy constraint

does not appear to be necessary for soap froths where Lewis' law seems

to be taken to apply by Rivier (1983); see comments in Section 9.1.)

The additional energy constraint gives rise to a different equation of

state:

Rn = A'(n - )o  (56)

whe-e n is the mean radius of n-sided grains. This relationship was
n
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found by Aboav and Langdon (1969), Beck (1954) and Simpson at al (1967).

It was also found in computer simulations by Srolovitz et al (1984)

(described in Section 10.5).

The predicted size distribution of grain areas, with the new

constraint, is exponential. The Srolovitz at al (1984) simulation, and

experiments by Beck (1954) and by Aboav and Langdon (1969), all give

results which agree with this distribution although Aboav and Langdon

described their experimental results in terms of fit to a much more

complicated distribution. The predicted size distribution is time-

invariant when scaled by R. In contrast, the predicted shape

distribution, which depends on n and A, broadens with time. Rivier

cites a number of experimental references in support of his derived

shape distribution. However, of these none apply to metals. Two refer

to ceramic systems, Lantuijoul (1978) and Blanc and Mocellin (1979).

However, examination of these papers shows no evidence to support a

change in the shape distribution with time.

It would be interesting to find how far the experimental evidence

does support Rivier's "non-ideal" system conclusions of:

(1) time-invariant size distribution,

(2) time varying shape distribution.

If there is agreement with these conclusions, new light is thrown on the
"asymptotic" behaviour of soap froths, discussed in Section 9.2. For

the question then arises as to whether the "scaling" attribute of normal

grain growth applies only to the size distribution and not to the shape.

Time invariance of the shape distribution has often been assumed (e.g.

Feltham (1957)). Soap froths may then represent non-ideal systems to

some extent and therefore be useful in modelling polycrystalline grain

growth after all.

9.5 Topological Properties of Trivalent Cellular Structures

The cells in metallurgical grain aggregates consist of trivalent

polyhedra i.e. surface tension effects tend to eliminate vertices with
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more than three faces meting at the point. Fortes and Ferro (1985a)

have examined the prpporties and types of individual trivalent polyhedra

in detail, arguing that this is an important basis in studies of the 3-D

packing of grains. In particular, they have concentrated on the

enumeration of the distinct, non-isomorphic, (i.e. topologically

inequivalent), polyhedra with F faces. They make no attempt however to

indicate the significance of their results for 3-D packing.

In their second paper, Fortes and Ferro (1985b) make the point that

there is excess free energy associated not only with faces but also with

edges and vertices. Generally treatments of grain growth rely on the

equation for the pressure difference across a curved interface (3) and

ignore the contributions of edges and vertices. Fortes and Ferro give a

neat vectorial representation of the forces acting on these elements and

disctss the topological transformations which accompany grain growth in

some detail. They identify restrictive topological rules for the

neighbour-switching operation e.g. an edge in a triangular face cannot

switch as a two-sided face would result. The role of vertices in grain

growth will be ieturned to in Section 10.5.1.

Fortes and Ferro (1975b) state that the evolution of a 3-D structure can

be completely determined if the mobilities of its edges, faces and

vertices, and the dependence of the driving forces on face and triple

line energy, are known. They also point out that little attention has

been given to anisotropy in grain boundary (face) and triple line (edge)

energy. However, they make no contribution as to how to treat a whole

ensemble of such velocity/force equations, even assuming the mobilities,

energies, and orientation dependencies of energies were known.

Fortes (1986) shows that for an infinite space-filling structure of

trivalent polyhedra, the average number of faces F in individual cells

(grain boundaries in isolated grains) cannot be lese than 8. For a

finite structure, but with all topological elements saturated including

the peripheral ones (to form what is called a hyperpolyhedron) F : 4.

In addition, there is no upper limit to F in such structures (saturated

or unsaturated). In metallurgical aggregates, F is usually % 14.

Values close to 8 have never been reported and could only possibly ccu,"

in highly anisotropic structures.
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These papers are a useful adjunct to the mainstream development of

grain growth theories but do not appear to make any significant

contributions to the drive towards understanding the kinetics of grain

growth.

10. COMPUTER SIMULATION OF GRAIN GROWTH

Computer simulations of grain growth can be divided into those

which set up a system of equations for statistical quantities and those

which simulate the evolution of a network directly. Novikcv's Model

(10.1) and the Linear Bubble Growth Model (10.2) fall into the former

category. Soap froth simulations (10.3), Ceppi and Nasello's Model

(10.4) and the Monte Carlo simulations of the Exxon Group (10.5 and

10.6) fall into the latter category. Anderson (1986) has recently

reviewed computer simulation of grain growth.

10.1 Novikov's Model

Novikov (1978) was amongst the first to present a computer

simulation of grain growth, prompted by the experimental findings that

the grain growth exponent is always greater than 2, even for zone-

refined high purity metals (see Table 2) where supposedly no pinning

forces are effective (Simpson et al (1971)). Novikov proposed a new

statistical approach based on absolute reaction rates supplemented by

calculations of the contact probability of grains of different size and

orientation. To carry out the computer simulation, Novilkov assumed:-

(1) Grains have random orientations.

(2) Driving force for growth is decrease of total grain boundary

energy only.

and aimed to find the size distribution (shape was not taken into

account) after a period of grain growth, given:-

(1) The number of grains at t = 0.

(2) The initial size distribution.
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(3) The value of pT (nobility x grain boundary energy).

The size distribution was assumed to be log-normal. A grain can

grow at the expense of some of its neighbours, although at the same time

it may be consumed by other neighbours. This was taken into account by

examining the change in the number of grains in each size-class

successively. The simulation can therefore be used to find the

alteration in D, the mean grain diameter, with time. The grain growth

exponent was found to be n = 2.2. The importance of not neglecting the

initial grain size D was emphasised. Novikov deduced values for a:

0

if

Dn = kT

is to be valid rather than

5n - 5n = kT
0

Novikov stated that the rate of grain growth decreases with increase in

the width of the initial log-normal size distribution (although his Fig.

4 suggests the opposite). This statement is contrary to the

experimental results of Rhines and Patterson (1982) and thE argument

that the wider size distribution gives a higher structural gradient and

hence greater tendency to grain growth.

Novikov's approach is essentially mean field. Each grain is

surrounded by grains with a log normal distribution of sizes. The

probability that a grain of one size contacts a grain of another size

can be calculated. The statistiial probability or a certain contact

area between grains of different sizes can also be found. Novikov's

approach can be extended to include the effects of pinning forces, and

of texture (Novikov (1979)). Texture spread has a strong influence

on grain growth kinetics. The acceleration of growth is especially

appreciable when minor texture components strengthen.
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10.2 Linear Bubble Grow;h Model

Hunderi at al. (1979a) pointed out that the theories of Felth.m

(1957), Hillert (1965) and Louet (1974) which treat grain grodth as a

continuous process in which the material in a disappearing SLain is

distributed over the whole system, do not allow for the fact that a

grain of a particular size can grow in one environment (where it is

surrounded by smaller grains) and shrink in another, i.e. R crit the

critical radius, varies with position. They proposed a linear bubble

growta model. In this model (see Fig. 14), the bubble i makes contact

with a number of other bubbles from -j to +J, depending oa the relative

size of the grains. (The number of contacts is fewer the smaller i in

size). The area over which material is exchanged between one particular

grain and its neighbours depends on the surface area of the grain.

Material is exchanged as the result of the pressure difference between

bubbles of different sizes, Riand R1 :

___ N M +max 1 (57dt =  R2 1 A1 Ri  R (7

Ri i j

where A is the area of contact between i and j (in the general case

not known). The set of coupled equations is solved for a large number

of grains to obtain the grain size distribution. This is more peaked

than log-normal but has a cut-off at large grains which is more

reasonable experimentally than a log-normal distribution. It is also

more peaked than Hillert's distribution. Hunderi et al. point out that

Hillert's model corresponds with

d i (L _ , I A, (58)

i R2 J

with each particle j corresponding to averaging over the whole size

distribution. Hunderi et al.'s model gives the same growth kinetics as

Hillert a though, with (W)2 linearly related to time. They go on to use

their model:-
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(1) To examine the sweep constants e and 8* as discussed earlier
(Hunderi (1979)).

(2) To simulate stagnation in grain growth due to pinning by

second phase particles (underi and Ryum (1981)).

In Hunderi and Ryum (1981), normal grain growth is examined with a

larger number of grains than in Hunderi et al. (1979), and over longer

time scales. It is concluded then that

n n
R- R = kt (59)0

with n between 2.5 and 2.75 rather than the value of n = 2 contcluded in

the earlier piper. n a 2 corresponds to the period in which the size

distribution is relaxing to its steady state.

Hunderi et al.'s model (1979, 1981) is essentially deterministic as

a given grain can only contact a limited number of its neighbours. In

contrast, in a statistical model, such as that of Novikov (1978) and of

Hillert (1965) every grain has a given probability of being in contact

with all the grains in the distribution. Abbruzzese (1985) has examined

the interconnections between Hillert's statistical model and the

deterministic approach of Hunderi et al. in detail. In neither Hunderi

at al. (1979, 1981) nor Novikov (1978) are topological constraints taken

into account.

10.3 2-D Soap Froth Simulation

The Novikov and Hunderi et al. models refer to 3-D. Weaire and

Kermode (1983, 1984) have developed a 2-D simulation of a soap froth.

Their model simulates the structure and its evolution directly rather

than examining a system of equations for statistical quantities as in

all the models, both computer simulations and otl'ars, discussed so far.

An initial structure has to be set up. In Weaire and Kermode (1983)

this is an ordered hexagonal structure of equal cells, perturbed by

introducing progressive changes in cell area, randomly chosen for each

cell. This process is continued until one cell is about to vanish, and
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then further neighbour-switching events are applied to introduce more
topoloSical disorder. This is & somewhat arbitrary procedure and Weaire

and Kermode (1984) extend their Initiaapproach and use a Voronol

network to define the initial configuration.

In the simulation, each local environment is relaxed in turn, with

'ixed cell areas, towards the equilibrium configuration which

satisfies:-

(1) All angles at vertices equal at 1200.

(2) Radius of curvature of each side is

r = c(p1 - p2 )
-1  (60)

where p1 and P2 are the pressures of the two adjacent cells and c is a

constant related to the surface cension T by

c = 2T (61)

If these conditions are satisfied and the gas is treated as

incompressible, von Neumann's law (1952) equation (45) (as discussed in

Sections 3, 9.1 and 9.4), follows from assuming t:,ar the rate of

diffusion acvoss each side is proportiunal to the leiipth of that side

and the pressure difference across it. The local votiables Weairn and

Kermode chose to relax at each step are the position of a vertex (two

coordinates) and the pressures of the three surrounding cells. After

the relaxation, small increments of area are transferied between the

cells to simulate thL growth behaviour, according to -on Neumann's law.

The relaxation is then repeated, and so on. Froa time to time, the

program is required to make the elementary topological transforrations

of neighbour-switching and cell disappearance.

In Weaire and Kermode (1983), with the perturbed hexagonal

structure starting point, the results are as follows.

(1) 12' the variance in the distribution fn of cells with n sides.
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increases linearly with time (in agreement with Aboav (1980) -

as earlier discussion in Section 9.2) although the times

examined are relatively short.

(2) f corresponds closely with that found by Aboav (1980).

(3) mn, the average number of sides of neighbours of an n-sided

cell agrees closely with the function found by experiment

(Aboav (1980)) with a value for P2 of 1.3.

(4) p2 depends linearly on D.

For the Voronoi construction starting point, (Weaire and Kermode

(1984)) the same results apply, indicating that the initial

configuration is forgotten after an initial time period. It should be

noted that "linear" is not a precisely tested relationship; the

fluctuations in the relationships for p 2 for instance are large. In

addition, the dependence of fn on P2' and of fs (the distribution of the

length of sides) on time, show similar behaviour to Aboav (1980). fA)

(the distribution of cell areas), evolves towards a distribution which

is at least roughly exponential in form:

fA exp (- A) (62)
A A

This is similar to the forms predicted by Louat (1974), by Sahni et al.

(1983) (to be discussed in Section 10.5), and by Rivier (1983)

(discussed in Section 9.4).

Lewis' Law, equation (42), does not hold for the simulated troth.

This would appear to support the author's earlier remark (see

Section 9.4) questioning Rivier's (1983) assumption that Lewis' Law

applies to soap froths. According to Rivier (1985), as discussed in

that section, any non-ideal random structure where an energy constraint

must be invoked in addition to the minimum constraints given in

(47)-(49) when applying the Maximum Entropy Formalism, will not obey

Lewis' Law. This would seem to apply as much to soap froths as to

metallurgical aggregates. But the question still stands as to why von
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Neumann's Law, which can be derived from Lewis' Law, (Section 9.1)

holds.

This brings us back to the question of the relevance of soap froths

to grain growth, first discussed in Section 3. The main point to emerge

is that a soap froth tends to remain in quasi- equilibrium at all times

because the call walls and enclosed gas can adjust quickly to minimize

surface area, subject to the constraint of given cell areas (i.e.

incompressibility of the gas) e.g. if a neighbour-switching event

occurs, there will be immediate readjustment. In contrast, in

polycrystals, the required changes after a neighbour-switching event

will not be instantaneous. In a soap cell system, there is a sequence

of equilibrium states associated with slowly changing cell areas. In

grain growth in polycrystals, the problem is a kinetic one which cannot

be reduced in the same way (Weaire and Kermode (1984)).

Weaire and Kermode (1984) make a very important point about the

existence, or otherwise, of parabolic growth kinetics. Essentially,

their comments centre around whether f settles down to a stablen
limiting form. If it does, the structure then does not change with

time, in a statistical sense, and from the dimensional arguments which

underlie Burke and Turnbull (1952),

52 , kt

This must apply to both soap froths and polycrystals given a limiting

form of the structure, a constant k and a single length-scale D.

However, it appears that neither system obeys the above e -,tion.

Aboav (1980) showed for 2-D soap froths D -. t. Table 2 shows that even

for high purity metals n 0 2, For soap froths, Wetire and Kermode

argue that the dimensional arguments fail because the structure itself

changes with time i.e. v2 is dependent on t. Wesire and Kermode (1984)

point out that a similar process of re-evaluation is also necessary for

polycrystalline grain growth. Monte-Carlo simulations, to be discussed

in Section 10.5, have begun this process (Sahni et al. (1983), Srolovitz

et al. (1983), Anderson et al. (1964), Srolovitz et al. (1984b) and

others) and have suggested D n . t where n - 2.44, which appearJ to be
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consistent with some of the experimental results. Weaire and Kermode,

however, comment "That where the dimensional lrgument breaks down here

is not so clear". The question which must be asked then of the Monte

Carlo simulations is whether a time-varying shape distribution results.

As it does not, Weaire and Kermode's explanation for deviation from

parabolic kinetics fails.

Weaire and Kermode intend to go on to examine soap froth evolution

in 3-D.

10.4 Simulation of 2-D Grain Growth Using the Classical Boundary

Migration Equation

The treatment by Ceppi and Nasello (1984) appears to be similar in

spirit to that of Weaire and Kermode (1983, 1984) in that it models the

structural evolution directly. In this case the botudaries move

according to the classical boundary migration equation (see Section 2

for assumptions in deriving this):

K =(63)
r

where K is a constant and (l/r) the curvature of the boundary. They

find, studying the evolution of an initially rectangular array of

circular grains, that

62 - 2 P (64)
0

where p is an adimensional parameter dependent on time. The d-tails of

their model are not clear from their short paper. In particu-ar, they

do not appear to take topological transformations explicitly into

account.
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10.5 Monte-Carlo Simulations of Grain Growth

10.5.1 2-D

Srolovitz et al. (1983) report a new approach (given in detail in

Anderson et al (1984)) employing a Monte-Carlo simulation which allows

topological constraints to be taken into account.

In the Monte-Carlo method, the microstructure is mapped onto a

discrete lattice. The lattice can be triangular, square or whatever

symmetry is chosen. Each lattice site is assigned a number between 1

and Q corresponding to the orientation of the grain in which it is

embedded. If Q is large, gVains of like orientation impinge

infrequently. A grain bovndary is defined to lie between sites of

unlike orientation and the grain boundary energy is also speciffied.

Sahni et al. (1983) were the first to propose the usefulness of this

model for grain growth studies.

The kinetics of boundary motion are simulated by using a Monte

Carlo technique. A Yattice site is selected at random and a new trial

orientation is also chosen at random from one of the other (Q - 1)

possible orientations. The transition probability is then given by

W = jexp (-8G/kBT) AG ± 0 (65)
11 AG ! 0 (66)

where A G is the change in energy caused by the change in orientation,

k the Boltzmann constant and T the absolute temperature. Successful

transition at the grain boundaries to orientatlons of nearest neighbour

grains correspond to boundary migration. The velocity vi of a segment

of the boundary is then related to the local chemical potential

difference 4Gi by

vi = P[l - exp ( ) (67)

where u is the oboundary mobility. The simulation process can be

"anipulated ',j that it is, if anything, only weakly dependent on the

symmetry of the lattice.
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For the test configuration of a circular grain embedded in an

infinite matrix (i.e. Q 0 2), the grain is found to collapse

symmetrically with

A - A = -at (68)0

witn ( a constant. The kinetics for an isolated grain are therefore

parabolic, in agreement with the models discussed at the beginning of

this section.

However, if an interconnected network is used tne results are not

parabolic. Large Q (Q=64) and long times give grain boundary networks

increasingly resembling those found in experiments. The initial state

is specified by assigning a random orientation to each lattice site.

The grain growth exponent is 2.44 after an initial transient.

Anderson et al (1984) discuss the deviation of the growth exponent

value from the mean field, spherical grain, value of 2 in terms of the

role of veztices. In continuum models, the driving force for growth is

the reduction in curvature of the boundary. In lattice models, the

curvature is discretized as kinks on the boundary and there are two

distinct mechanisms by which these kinks can b, eliminated (i.e.

curvature reduced).

(1) Meeting and annihilation of two kinks of identical orientation

(as defined by the lattice) but of opposite sign.

(2) Absorption of a kink at a vertex where more than two grains

meet.

Kink elimination by the second mechanism reduces curvature without

causing grain growth. Effectively, growth is slowed relative to, for

example, a shrinking circular grain in an infinite matrix.

The translational and rotational degrees of freef om of a ver.."

become important. Vertex rotation, for instance, is capable of

redistributing curvature between adjoining boundaries. Such curvature

redistributions are particularly important when a grain disappears.
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Since both the spatial and temporal location of disappearing grains is

random and the effects of a grain disappearance are made non-local by

vertex rotation, vertices introduce a randomizing (i.e.

nondeterministic) aspect into grain growth. The importance of the

inherent randomness in grain growth was previously appreciated by Louat

(1974). This redistribution of curvature is equivalent to the Rhines

and Craig (1974) propagation of topological and size changes through a

structure when a grain disappears. The fact that these changes are not

instantaneous is a point male by Weaire and Kermode (1984)and therefore

makes the treatment of the local environme- ' by Hunderi et al (1979,

1981) significant.

Anderson et al (1984) find that their Monte Carlo simulation growth

exponent of 2.44 is in close agreement with the average exponent found

in experiments with zone refined metals (although there is a wide spread

between 2 and ", - see Table 2).

The simulation is carried further in Srolovitz et al (1984). The

grain size distribution function is found to be time invariant when R is

scaled by R, and f3ts the experimental data (Beck (1954), Aboav and

Langon (1969)) better than either a log-normal function or those due to

Hillert and Louat. It has a maximum at % 2.7 R. The mean normalized

size of n-sided grains increases linearly with n in agraement with

experiment (Feltham (1957)). The topological class distribution fn is

also time-invariant, in contrast with 2-D soap froth simulations (see

Sections 9.2 and 10.3) and the shape distribution predicted by Maximum

Entropy considerations (Section 9.4). The mean curvature k for each

individual grain is found using (for 2-D)

k = -(n - 6) (69)
3S

where S is the grain perimeter. The product of the curvature and the

radius, kR, increases with n but the relationship is not quite linear.

It is generally observed that large grains grcw and small grains

shrink, but instances where tht opposite is true are found. In a large

number of cases, the trajectories of individual grains in i'adius-time
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space cross, suggesting that the local environment of grains is

important. In addition, a plot of dR/dt vs C /R - I/) is non-linear

and the noise is extremely large. If the data are replotted as

d(R/R)/dt vs R/R, the plot is virtually constant for (R/R) > 1 (see Fig.

16). Large grains are neither moving to the large R/R nor the small R/i

sides of the distribution on average, but are randomly shrinking or

growing. The magnitude of the fluctuation of the individual grain

velocities, coupled with the lack of direction, suggests that these

grains are executing random walks in grain-size space. On the o~her

hand, small grains migrate rapidly towards zero grain size. This is

indicative of the presence of a real directed driving force which may be

equated with the curvature, which increases as R tends to zero. For

large R, where the curvature is very small, the structural noise tends

to randomize any directed motion.

Thus, "The true nature of grain growth lies somewhere between the

concepts of curvature directed motion and random walk" state Srolovitz

et al (1984). This takes us back to equation (17). The meaning of this

statement is that neither term in equation (17) can be nuglected.

Srolovitz et al (1984b) use the Monte Carlo simulation to examine

the influence of a particle dispersion on grain growth. Grest et al

(1985) study the effects of anisotropic grain boundary energies. As the

anisotropy is increased, the exponent increases from 2.4 to 4, the grain

size distribution functions become broader, and the microstructure

consists of large grains with extended regions of small grains.

Anisotropic grain boundary energies can result in preferred

crystallographic orientation. Srolovitz st al (1985) have also examined

abnormal grain growth using the simulation.

10.5.2 3-D

The Exxon Group who have been responsible for the above studies are

now embarking on the task of extending their model to 3-D. The latest

paper to appear describes the beginnings of this study (Anderson e al

(1965)). Addressing the correspondence between 2-D and 3-D grain

growth, the grain size distribution from the 2-D simulation (Siolovitz

at &1 (1984)) is compared with cross-sectional data from the 3-D
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simulation. There is good agreement but a small discrepancy for peak

height and position. Grain growth kinetics are also examined with the

result:

O.94 VO.94 = kt (70)
0

S .81 = kt (71)
0

Rhines and Craig (1974) found a linear dependence of V on time and

deduced that the grain growth exponent for R should be 3, in contrast to

the mean intercept dependence on time such that n = 2.3, as discussed

earlier. Anderson et al (1985) comment that this must indicate that

their grains are compact entities (i.e. isotropic). By implication,

those of Rhines and Craig may have exhibited shape anisotropy to some

extent, as concluded by the author in Section 6.

11. SUMMARY

The development of grain growth theories from the early 1950's

onwards has been reviewed. Burke and Turnbull (1952) suggested that the

velocity of a portion of boundary should be inversely proportional to

its radius of curvature and hence, using simple dimensional arguments,

that grain growth should exhibit parabolic kinetics as given in equation

(4). They assumed that their analysis could be extended to rerresent

the mean behaviour of a whole array of grains but subsequent

developments have proved this assumption to be inadequate.

C.S. Smith (1952) enumerated the topological requirements for

space-filling in terms of the edges, faces, vertices of the ensemble.

Grain growth results from the interaction between thtse topological

requirements and the forces driving boundaries to migrate to reduce

boundary curvature and hence area and energy. Thus, no grain can ever

be treated as an isolated entity, as assumed by Burke and Turnbuli, but

must always be seen in relation to its neighbouring grains.

Feltham (1957), Hillert (1965) and Louat (1974) developed mean

field theories for grain growth in which a grain is embedded in an
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environment which represents the averaged effect of the ensemble of

grains. Its mean growth rate can then be predicted. Feltham and

Hillert took deterministic approaches, neglecting any random changes in

grain size and assuming growth to occur solely as the result of the

driving force for removal of boundary curvature. Louat's treatment

stressed the statistical nature of growth, with boundaries Lxecuting

random walks, and neglected growth due to the driving force. All these

early mean field theories are thought to have given parabolic growth

kinetics because they neglected topological constraints.

A neat description of grain growth as dislocation climb was

presented for 2-D by Hillert (1965) and for 3-D by Morral and Ashby

(1974). The dislocations were associated with grains which deviated

from the average (6-sided for 2-D, '% 14-sided for 3-D). Parabolic

kinetics were again derived.

Rhines and Craig (1974) suggested two new concepts, the sweep

constant and the structural gradient, the latter quantifying the

tendency to grain growth. The precise definition of these was the

subject of debate with Doherty (1975). Doherty's definition of sweep

constant 6* as the number of grains which vanish when boundaries sweep

through a volume equal to that of the mean grain volume has been

supported by Hunderi (1979). The alternative definitions for the

structural gradient still stand (H IN due to Doherty (1975) and
v V

Hv S v/N vdue to Rhines and Craig (1974)) but the evidence (e.g. Kurtz and

Carpay (198)) appears to weigh in favour of Rhines and Craig.

Rhines and Craig brought the sweep constant and the structural

gradient into an algebraic analysis to obtain the grain growth kinetics

taking into account topological requirements. They obtained a linear

dependence of mean grain volume on time and hence a dependence of mean

raiu o 1 /3  rahrta fgrain radius on t / , rather than t as predicted by Burke and Turnbull

(1952) and the mean field theories of Feltham (1957), Hillert (1965) and

Louat (1974). They validated the t1 /3 dependence experimentally by

serial sectioning and cast doubt on the use of mean grain intercept

measurements on 2-D sections. This doubt is misplaced unleos the

structure is anisotropic.
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Blanc and Mocellin (1979) and Carnal and Mocellin (1981) have

predicted the distributions of topological paramters fn and on in the

steady-state on the basis of the elementary topological transformations

of neighbour-switching and cell disappearance.

The Rhinos and Craig topological analysis for grain growth was

extended by Kurtz and Carpay (1980) by dividing the grains into

topological classes, each with an (assumed) log-normal distri4bution of

grain sizes. The different classes have markedly different mean growth

rates but the median diameter in each class and of the overall

distribution grows parabolically. They validated their predictions

experimentally and found a constant structural gradient (M vSv/Nv).

They suggest no explanation for the discrepancy between their

t~dependence and the tI/ 3 dependence of Rhines and Craig.

Over the last five years there have been developments in the theory

of random cellular networks. Lewis' Law that the average area of an

n-sided grain is linearly dependent on n has been found only to apply to

ideal space-filling structures, i.e. those which satisfy Maximum Entropy

considerations with the minimum of constraints (Rivier (1984)).

Polycrystals are non-ideal structures and it is thought rather that the

mean radius of an n-sided grain will be linearly dependent on n.

Rivier (1984) finds on the basis of Maximum Entropy considerations a

time-Invariant size distribution but a time- variant shape distribution.

This raises fundamental questions about the nature of normal grain

growth i.e. does size scale but not shape? Soap froths bear some

resemblance to polycrystals, although the analogy must not be pushed too

far as soap froths are in quasi-equilibrium whereas polycrystals are not

as solid state diffusion is slow. For soap froths, the shape

distribution f (at least in 2-D) does broaden increasingly with timen

(Aboav (1980)). Experimental observations of f for solid polycrystalsn

are sparse. Monte Carlo computer simulations in 2-D give a

time-invariant f . The time dependence of f therefore deservesn n

considerable attention in connection with these questions about the

nature of normal grain growth.

Recently there have been a number of other computer simulat!on

models of normal grain growth, all prompted by the geyeral deviation of
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experimental results from parabclic grain growth kinetics. Novikov

(1979) assumed a log-normal size distribution of grains around each

grain and calculated probabilities of certain contact areas between

grains of different sizes; the approach is essentially mean field in

spirit but the simulation gives a growth exponent of 2.2.

Hunderi et &l. (1979a) proposed a linear bubble growth model which

allowed for the effects of local environment i.e. a grain may grow in

one environment where it is surrounded by smaller grains but in another

may shrink as the neighbours are larger. Hundari and Ryum (1981)

extended the approach and found a growth exponent bttween 2.5 and 2.75.

Hunderi et al's model is deterministic as a givet, grnin can only contact

a limited number of its neighbours. In contrast, in Novikov's model

every grain has a given probability of being in contact with all the

grains in the distribution.

Weaire and Kermode (1983, 1984) have simulated 2-D soap froth

evolution directly (i.e. showing the evolution of the network over time

rather than examining a system of equations for statistical quantities).

rheir results supported the experimental observations of Aboav (1980)

that the shape distribution broadens with time.

Ceppi and Nasello have simulated 2-D grain growth using v /r,

the classical boundary migration equation. Their results 6re not yet

sufficiently developed for comments to be made.

The most significant computer simulations to have been carried cut

are those already mentioned of the Exxon Group using Monte Carlo

simulations (Sahni et al. (1983) Srolovitz et al. (1983), Anderson et

al. (1984), Srolovitz et al. (1984)). Topological constraints are an

inherent part of the model. The network is simulated directly as in the

Weaire and Kermode soap froth model. Anderson et al. (1984) identifies

the absorption of curvature by vertices without the curvature causing

grain growth as a mechanism by which the growth exponent is increased

above 2 relative to the mean field theories. The'grain grcwth exponent

found for 2-D is 2.44, which agrees well with the average from

experiment. Srolovitz e al (1984) examine the trajectories of

individual grains in grain-size time space. Large grains tend to
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exhibit random walks. Small grains migrate rapidly towards zero grain

bize as under the driving force of the curvature. For large grains, the

curvature is smAll and directed motion tends to be randomized. They

conclude "the true nature of groin growth lies somewhere between the

concepts of curvature directed motion and random walk". Thij statement

achieves a vital link with equation (17) which is the basis of the mean

field theories of Feltham (1957), Hillert (1965) and Louat (1974), i.e.

diffusion and directed motion are both important, neither term can be

neglected. An analytical solution for (17) has never been attempted and

may not be possible. Computer simulation has therefore played a ke

role in providing insight into grain growth and its theoretical

framework.' The ramifications of the Srolovitz et al (1984) conclusion

have yet to be explored in depth.
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Table 1

Kinetics of grain growth for various mechanisms (from Brook (1976))

I
n in Gt a tn

Pore Control:

Surface Diffusion 4

Lattice Diffusion 3

Vapour Transport (P - const) 3

Vapour Transport (P = 2S/r) 2

Boundary Control:

Pure System 2

Impure System:

Coalescence of second phase by lattice
diffusion 3

Coalescence of second phase hy grain
boundary diffusion 4

Solution of second phase 1

Diffusion through continuous second
phase 3

Impurity drag (low solubility) 3

Impurity drag (high solubility) 2
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Table 2

Grain growth exponents for isothermal grain growth in metals
(from Anderson et &1 (1984))

metal Exponent, n Reference
(Zone--Refined)

Al 4 Gordon and Bassyouni (1965)

Fe 2.5* Hu (1974)

Pb 2.5 Bolling and Winbgard (1958)

Pb 2.4 Drolet and Galibois (1968)

Sn 2.3 Drolet and Galibois (1968)

Sn 2 Holmes and Winegard (1959)

* This exponent was observed to vary with test t.tperature
range.
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Fig. 1 Typical 2-D Section through a 3-D Grain Structure
(After Underwood (1970)). The 4-Rayed Vertex w,',
tend to Decompose into Two Three-Rayed Vertices

as Growth Occurs.
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Fig.2 Schematic Representation of Grain Boundary
Velocity vi as a Function of Driving Force for
(a) Pure Material (b) Impure Material not
Exhibiting Breakaway. (c) Impure Material
Exhibiting Breakawayat Fci (d) Highly Impure
Material Exhibiting Breakaway at FC2 (from
Bauer (1982)).

Breakaway occurs at constant critical velocity V,
and limiting slopes (mobilities) are given by

M= Mi

1+ Mi AC o

The slope reduces to M i and 1 /ACo fo- the
intrinsic and extrinsic cases respectivIy.
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Fig. 3 2-D Grain Structure Illustrating Instability when
the Array does not Consist only of Regular
Hexagons (after Hillert (1965)).



Fig. 4 A Group of Regular Tetrakaidecahedra

(after Smith (1952)).
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Fig 6(a) Number of Grains Versus Grain
Size at Increasing Time t.
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Fig. 6(b) Grain Size Distributions.
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Fig. 7(a) The Grain Size Distribution Function from Computer
Simulation (Histogram) (see Section 10.4) Compared
with Three Theoretical Distributions: the Log-

Normal (Solid) and those Propo;ed by Hillert (1965)

(Dotted) and Louat (1974) (Dashed) (After Srolovitz

et al (1984)).
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Fig. 7b) The Grain Size Distribution Function from Computer
Simulation (Histogram) (see Section 10.4) Compared
with a Log-Normal fit to Experimental Data of
Beck (1954) for Al (Solid Curve) and Aboav and

Langdon (1969) for Mg 0 (Dashed Curve)(After

Srolovitz et al (1984)).
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Fig. 8. Plot of MvSv Versus Nv for Steady State.
Grain Growth in Al. (After Rhines and Craig (1974))
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Fig. g Plot of Grain Volume ( 1/Ny) Against Time of
Annealing for Aluminium Showing a Linear
Relationship (After Rhines and Craig (1974)).
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Fig. 10 Schematic Representation of Grain Transfer
Between Topological Classes in a Fixed Time Interval.
The Transfer of Larger Grains to the Next Lower
Class Results in a Continuous Growth of the Mean
Diameter in the Classes with F< even Though all
the Individual Grains in These Classes are Coliapsing
due to Surface Tension Constraints. The Transfer
Rates are Greatest in the Lowest Classes. (After
Kurtz and Carpay (1980)).
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Fig. 11 Schematic Diagram Illustrating tha. as a 3-sided
Grain Shrinks Adjacent Grain Gain in Diameter
in Inverse Proportion to their Diameter



Fig. 12 Voronoi Construction for Random Points
(After Wecire and Rivier (1984)).
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Fig. 13 Illustration of a Fractal Structure for a Soap Cell

System (After Weaire and Rivier (',984)).



Fig. 14 The Generalised Grain Growth Model in Hunderi and
Ryum (1979). Only Contacts Activated from Grain i are
Shown. The Process is Repeated for all Grains
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Fig. 15 Sample Microstructure on a Triangular Lattice
where Integers Denote Orientation and Lines
Represent Grain Boundaries (after Anderson
et al (1984)).
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Fig. 16. The Growth Rate of Individual Grains in
Normalized Grain Size Sprqce, d(R/P)/dt Versus
R/iP. (After Srolovitz et al (1984))
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