

PEB 2 9 000 unlinited PERFORMING ORGANIZATION CONTORING ORGANIZATION REFORT NUMBER(S) AFOSR-TR- 8 8 - 0 2 6 () NAME OF PERFORMING ORGANIZATION lassachusetts Institute of echnology S. MONITORING ORGANIZATION MECHNIC (Second) AFOSR-TR- 8 8 - 0 2 6 () AFOSR-SCH, Site and 2P Cose: Bilds, 410 Bassachusetts 0 2130 AME OF PUNDING BOOMSONING ORGANIZATION, D.C. 20321 AFOSR CF, Site and 2P Cose: Bilds, 410 Bolling Air Force Base Washington, D.C. 20331 TTTLE Inclust Sec: Bolling Air Force Base PROGRAM PROJECT TASK Washington, D.C. 20331 TTTLE Inclust Sec: Bolling Air Force Base L Kinsey TTTLE Inclust Sec: TTTLE Inclust Sec: Bolling Air Force ALD Bolling Air Force Base L Kinsey TTTLE Inclust Sec: State Contract Sec: Bolling Air Force Base L Kinsey Tree Forepereforming Mare Sec:	CLASSIFIED				-
ADD-A 1900 041 1000000000000000000000000000000000000		REPORT DOCUM	ENTATION PAGE		
DECLASSIFICATION DOWNER OF TENE 2 9 1988 Approved for public release; distribution unimited DECLASSIFICATION DOWNER (S) APPOVE for public release; distribution unimited PERFORMING ORGANIZATION TO NUMBER(S) APOSR - TR - 8 8 - 0 1 6 5 NAME OF PERFORMING ORGANIZATION TO NUMBER(S) AFOSR - TR - 8 8 - 0 1 6 5 APOSR S(D), Site and 2P Code: B. OFFICE \$VMBOL APOSRS/CD, Site and 2P Code: B. OFFICE \$VMBOL ADDRESS (C), Site and 2P Code: Bilg, 410 Basschusetts Institute of Technology Bilg, 410 Bolling AIF Force Base Basschusetts 0 2130 ADORESS (C), Site and 2P Code: Bilg, 410 Bolling AIF Force Base Bilg, 410 ADORESS (C), Site and 2P Code: Bilg, 410 Bolling AIF Force Base PROCUMENT INSTRUMENT IDENTIFICATION NUMBER ADORESS (C), Site and 2P Code: Bilg, 410 Bolling AIF Force Base PROCUMENT NUMBER(BODE) ADORESS (C), Site and 2P Code: Bilg, 410 Bolling AIF Force Base Proceand Properties (Dicelsa) ADORESS (C), Site and 2P Code: Bilg, 410 Bolling AIF Force Base Proceand Properties (Dicelsa) ADORESS (C), Site and 2P Code: Bilg, 410 Bolling A	AD-A190 041	TIC	16. RESTRICTIVE MARKINGS		
DECLASSIFICATION DOWNOR OF SETERS 29 988 Approved for public release; distribution unlimited DECLASSIFICATION DOWNOR ORGANIZATION REPORT NUMBERIS S. MONITORING ORGANIZATION REPORT NUMBERIS AFOSR -TR. 8 8 - 0 2 6 G S. MONITORING ORGANIZATION REPORT NUMBERIS NAME OF PERFORMING ORGANIZATION Bo OFFICE SYMBOL If opticober If opticober AFOSR -TR. 8 8 - 0 2 6 G NAME OF PERFORMING ORGANIZATION ABORESS (Ch), Size and ZP Code: Department of Chemistry Bassachusetts Institute of Technology Ame of PUNDICASPONSONICAPENSONICA ORGENIZATION AME OF PUNDICASPONSONICAPENSON	- 4150 041		3. DISTRIBUTION/AVAILABILITY	OF REPORT	
PERFORMING ORGANIZATION EN NUMBERIS SUBDITIONING ORGANIZATION EN OFFICE SYMBOL Make OF PERFORMING ORGANIZATION EN OFFICE SYMBOL Massachusetts Institute of EN OFFICE SYMBOL Marke of PERFORMING ORGANIZATION EN OFFICE SYMBOL Marke of PENDING SPONSORING EN OFFICE SYMBOL Marke of PENDING SPONSORING EN OFFICE SYMBOL NOAGANIZATION EN OSTICATION MARCE OF PENDING EN OFFICE SYMBOL NOAGANIZATION EN OSTICATION Bolling Air Force Base Washington	DECLASSIFICATION DOWNGRATING SC			release; dist	ribution
COL AFOSR-TR. 88-0165 NAME OF PERFORMING ORGANIZATION (assachusetts Institute of echnology) Bit OFFICE SYMBOL ("##FFCAMPY") AFOSR.MC ADDRESS (Chr., Site and ZP Code: bepartment of Chemistry assachusetts Institute of Technology Bidg. 410 Tocces ADDRESS (Chr., Site and ZP Code: bepartment of Chemistry assachusetts Oc139 Bidg. 410 Bolling Air Force Base Washington, D.C. 20332 ADDRESS (Chr., Site and ZP Code: Bidg. 410 Bidg. 410 Bolling Air Force Base Washington, D.C. 20332 ADDRESS (Chr., Site and ZP Code: Bidg. 410 Bidg. 410 Bolling Air Force Base Washington, D.C. 20331 ADDRESS (Chr., Site and ZP Code: Bidg. 410 Bidg. 410 Bolling Air Force Base Washington, D.C. 20331 TYTE Findue Server: Champtermone Sequencing and the Structure of Molecular Difference Champter of Molecular Differenc				ASPONT NUMBER	<u></u>
NAME OF PERFORMING ORGANIZATION Bs. OFFICE SYMBOL 7* NAME OF MONITORING ORGANIZATION Massachusetts Institute of ""ADDRESS (cir, Sime and ZIP Code) Bilds, 410 ADDRESS (cir, Sime and ZIP Code) Bilds, 410 Bassachusetts Institute of Technology Bolling Air Force Base Mambridge, Massachusetts 02139 Bolling Air Force Base Mambridge, Massachusetts 02139 S. OFFICE SYMBOL NAME OF FUNDINGSPONSORING B. OFFICE SYMBOL MADDRESS (cir, Sime and ZIP Code) S. OFFICE SYMBOL MASSACHUSET (Car) B. OFFICE SYMBOL MANE OF FUNDINGSPONSORING B. OFFICE SYMBOL MASSACHUSET (Car) B. OFFICE SYMBOL MASSACHUSET (Car) B. OFFICE SYMBOL MASSACHUSET (Car) B. OFFICE SYMBOL Massachusetts (Cir), Sime and ZIP Code) S. OFFICE SYMBOL MASSACHUSET (Car) B. OFFICE SYMBOL Massachusetts (Cir), Sime and ZIP Code) Seconsecong (Car) Bassachusetts (Cir), Sime and ZIP Code) Seconsecong (Car) Massachusetts (Car) B. OFFICE SYMBOL Massachusetts (Car) B. OFFICE SYMBOL Procent (Car) Car) Seconsecong (Car) Seconsecong (Car)	PERFORMING ORGANIZATION I PERFORMING ORGANIZATION				
Iassachusetts Institute of echnology If springber Performent of Chemistry AFOSR/NC ADDRESS (cit, Sate and ZIP Code) The ADDRESS (cit, Sate and ZIP Code) Bilg. 410 Bassachusetts Institute of Technology Bolling Air Force Base Washington, D.C. 20332 Washington, D.C. 20332 AMODRESS (cit, Sate and ZIP Code) Be OFFICE SYMBOL (If applicable) S. PROCURENT VISTAMENT IDENTIFICATION NUMBER AFOSR ADDRESS (cit, Sate and ZIP Code) Be OFFICE SYMBOL (If applicable) S. PROCURENT VISTAMENT IDENTIFICATION NUMBER AFOSR ADDRESS (cit, Sate and ZIP Code) Bolling Air Force Base Washington, D.C. 20331 S. PROCURENT VISTAMENT IDENTIFICATION NUMBER AFOSR ADDRESS (cit, Sate and ZIP Code) Bildg. 410 FOOLECT Element Code Code Source of FUNDING NOS. Pote REFORT Dis Source of FUNDING NOS. FOOLECT Element Code Code NO NO Protocial documental Troperties (Inclassified) ASO S S/ NO Subject N. Field and James L. Kinsey Spectroscopy, Vibrational Structure, Optical-Optical Double Resonance, Molecular Dynamics, Anharmonic Vibrational Con- fants, Electric Diole Moment, Coriolis Perturbations, (*) Subject Continue on research accomplishments may be divided into the following ten areas: 1. Culmination of Stimulated Emission Pumping (SEP) Spectroscopic, Studies of HgCO, Adstract Continue on research accomplishments may be divided into the following ten					6
ADDRESS (City, State and ZIP Coder) Pepartment of Chemistry Bldg. 410 Source of Functional Structure Bolling Air Force Base Washington, D. C. 20332 ADDRESS (City, State and ZIP Coder) Bolling Air Force Base Marke of Functional Spronson (Content in Structure) ADDRESS (City, State and ZIP Coder) Bolling Air Force Base Mash of Functional Spronson (Content in Structure) ADDRESS (City, State and ZIP Coder) Bolling Air Force Base Washington, D.C. 20331 "Intel And Chemical Properties (Inclassified) Procent (Content in Structure) Procent (Content in Structure) <td< td=""><td>lassachusetts Institute of</td><td></td><td></td><td>RNIZATION</td><td></td></td<>	lassachusetts Institute of			RNIZATION	
Department of Chemistry Bidg. 410 Babridge, Massachussetts 02139 Bildg. 410 Name of FUNDING/SPONSORING BD. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) ADDRESS (CN, State and ZIP Code) BD. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) ADDRESS (CN, State and ZIP Code) BD. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) B. OFFICE SYMBOL (Happinger) Bolling Air Force Base Washington, D.C. 2031 DORGARM FLEMENTNO. PROJECT FAND Task NO WORK UNIT NO Bolling Air Force Base Washington, D.C. 2031 To Supreceed State (Collary Freedow) Task NO WORK UNIT NO Bidg. 410 The Code State Antonis Task No PROJECT Task No Task No WORK UNIT NO Bidg. 410 The Code State Antonis Task No State State State State State State State State State B/ Task No WORK UNIT No Supreceder The Code State The Code State State State State State State State State State State State State State State State State State State State State State	Technology				<u></u>
Issachusetts Institute of Technology Bolling Air Force Base Sumbridge, Massachusetts 02139 Be. OFFICE SYMBOL (I applicable: NC Strandington, D.C. 20332 AMORE OF FUNDING/PROMSORING ORGANIZATION Be. OFFICE SYMBOL (I applicable: NC Strandington, D.C. 20331 ADDRESS (Cr), State and ZIP Code: Bidg. 410 ID. SOURCE OF FUNDING NOS PROGRAM Bolling Air Force Base Washington, D.C. 20331 ID. SOURCE OF FUNDING NOS MORK UNIT Peparation of Molecular Energy Levels with Special (//O2F 2303 B/ Program Program Sequencial (//O2F 2303 B/ Program No. No. No. No. Peparation of Molecular Properties (Unclassified) Authoms) B/ Sector Program Ib. SUBJECT TERMS (Commus on neuron (I neuron and draff) by block number) Procent (I neuron and draff) No. No. Supplementary Notation Subscort TERMS (Commus on neuron (I neuron and draff) by block number) Ib. Subject TERMS (Commus on neuron (I neuron and draff) by block number) Supplementary Notation Strats, Electric Dipole Moment, Coriolis Perturbational Con- strants, Electric Dipole Moment, Coriolis Perturbational (Con- istants, Electric Dipole Moment, Coriolis Perturbational (Con- istants, Electric Dipole Moment, Coriolis Perturbational (Con- stransient absorption or gain (ADDRESS (City, State and ZIP Code)	_		Codei	
Sambridge, Massachusetts 02139 Washington, D. C. 20322 Nade of Publinds/Ponsoning Bb. OFFICE SYMBOL (Happlicable) NC S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR ADORESS (Cur, State and ZIP Code) Bidg, 410 Bb. OFFICE SYMBOL (Happlicable) NC IS SOURCE OF FUNDING NOS Bolling Air Force Base Washington, D. C. 20331 In Source of Public No. No. No. No. Mashington, D. C. 20331 File And Difference Processon PROGENA ELEMENT NO. No. No. Introduct Sec:	Assachusetts Institite of S	Fechnology	Bolling Air Force Ba		
ORGANIZATION If applicable, NC AFOSR If applicable, NC AFOSR NC AFOSR AFOSR AFOSR ADDRESS (CIV, State and ZIP Code) Bidg, 410 PROJECT TASK WORK UNIT Bolling Air Force Base PROJECT TASK WORK UNIT Washington, D.C. 20331 TTTE Include Sec Claumparum Sequential Excitation PROJECT TASK WORK UNIT Washington, D.C. 20331 TTTE Include Sec Claumparum Sequential Excitation PROJECT TASK WORK UNIT Washington, D.C. 20331 TTTE Include Sec Claumparum Sequential Excitation PROJECT TASK WORK UNIT Washington, D.C. 20331 TTTE Include Sec Claumparum Sequential Excitation PROJECT A Sold B / Vert of REPORT The Id and James L. Kinsey If a DATE OF REPORT 'V'. Mo. Day/ 15 PAGE COUNT 26 SupPletMentARY NOTATION The COVERED The COVERED 11 DATE OF REPORT 'V'. Mo. Day/ 26 COSATI CODES THE SUBJECT TERMS (Continue on recreat/ recreation and idmitfy by block number/ 26 SupPletMentARY NOTATION The Coversed 10 December 1987 26 Our research accomplishiments may be d	Cambridge, Massachusetts 02	2139			
ADDRESS (City, State and ZIP Code) In SOURCE OF FUNDING NOS. Bidg. 410 ID SOURCE OF FUNDING NOS. Bolling Air Force Base ID SOURCE OF FUNDING NOS. Washington, D.C. 20331 ITTLE (minude Security Care) South Special (()/D2F) 2.303 B/ ITTLE (minude Security Care) South Special (()/D2F) 2.303 B/ NO PRESONAL AUTHOR(S) Determinal In Date of REPORT (Yr. Mo., Day) IS FAGE COUNT Inal Image: Count of the Count of Count of Sume Count of Count	ORGANIZATION	(If applicable)		IDENTIFICATION N	UMBER
Bldg. 410 PROGRAM PROGRAM PROJECT Task NO. Bolling Air Force Base Builing Air Force Base Builing Air Force Base Builing Air Force Base NO. NO. NO. NO. The Ended Sec. 20331 The Ended Sec. 20331 Subject Terms Sequential Excitation Excitation PROGRAM PROJECT NO. NO. NO. NO. Presonal Authonis Description of Molecular Energy Levels with Special (//OLF 2303 B/ B/ Presonal Authonis Description of Molecular Energy Levels with Special (//OLF 2303 B/ Presonal Authonis Description of Molecular Energy Levels with Special (//OLF 2303 B/ Presonal Authonis Description 10. Energy Levels with Special (//OLF 2303 B/ Supplementant Description Spectroscopy, Vibrational Structure, Optical-Optical Double Resonance, Molecular Dynamics, Anharmonic Vibrational Constance, Molecular Dynamics, Scales of Hoco. Our research accomplishments may be divided into the following ten areas: 1. Culmination of Stimulated Emission Pumping (SEP) Spectroscopic Studies of Hoco. Otation-Vibr					
DDITING ALL PICE Date Washington, D.C. 20331 THE Washington Secturate Energy Levels with Special (//OLF) 2303 B/ PERSONAL AUTHORS Determination of Molecular Energy Levels with Special (//OLF) 2303 B/ THE Washington of Molecular Energy Levels with Special (//OLF) 2303 B/ PERSONAL AUTHORS Determination of Molecular Energy Levels with Special (//OLF) 2303 B/ THE SUBJECT TERMS (Continue on number) Subplementary Notation COSATI CODES Is SUBJECT TERMS (Continue on number) Subplementary Notation Cosati codes PRELD COSATI CODES Is SUBJECT TERMS (Continue on number) Subplementary Notation Subplementary Notation Cosati codes Presonal automotic Vibrational Constructure, Optical-Optical Double Resonal automotic Vibrational Constructure, Optical-Optical Double Resonalce, Molecular Dynamics, Anharmonic Vibrational Constructure, Optical-Optical Double Resonal automotic Vibrational Constructure, Optical-Optical Double Resonal automotic Vibrational Constructure, Optical-Optical Double Resonal automotic Vibrational Constructure, Optical Properties of Hight Sector Dipole Moment, Coriolis Perturbations, (+) Automotic Vibration assign			PROGRAM PROJECT		
THIE Unclude Sec.:: Classified Contract State Properties (Inclassified) 2303 B/ PERSONAL AUTHORS Debet W. Field and James L. Kinsey 14. DATE OF REPORT (F. Mo., Day) 15. PAGE COUNT 13b. TIME COVERED 13b. TIME COVERED 14. DATE OF REPORT (F. Mo., Day) 15. PAGE COUNT 13b. TIME COVERED 13b. TIME COVERED 14. DATE OF REPORT (F. Mo., Day) 15. PAGE COUNT 13b. TIME COVERED 13b. TIME COVERED 14. DATE OF REPORT (F. Mo., Day) 15. PAGE COUNT 13c. SUPPLEMENTARY NOTATION 13b. TIME COVERED 14. DATE OF REPORT (F. Mo., Day) 15. PAGE COUNT 13c. SUBJECT TERMS (Continue on reverse (Increasery and identify by block number) 26 26 Spectroscopy, Vibrational Structure, Optical Optical Double Resonance, Molecular Dynamics, Anharmonic Vibrational Constructure, Coriolis Perturbations, (+) ABSTRACT (Continue on reverse (Increasery and identify by block number) Spectroscopic, Studies of HigCO. Our research accomplishments may be divided into the following ten areas: 1. Culmination of Stimulated Emission Pumping (SEP) Spectroscopic, Studies of HigCO. Our research accomplishments may be divided into the following ten areas: 1. Culmination of Stimulated Emission Pumping (SEP) Spectroscopic, Studies of Hig			ELEMENT NO. NO.	NO.	NO.
IELD GROUP SUB.GR. Spectroscopy, Vibrational Structure, Optical-Optical Double Resonance, Molecular Dynamics, Anharmonic Vibrational Con- stants. Electric Dipole Moment, Coriolis Perturbations, (+) ABSTRACT (Continue on reverse if necessary and identify by block number) Our research accomplishments may be divided into the following ten areas: Culmination of Stimulated Emission Pumping (SEP) Spectroscopic Studies of H₂CO. Outation-vibration assignments have been extended to levels of the H₂CON¹A₁ state at inergies as high as 14,500 cm⁻¹. Development and Testing of New Techniques. Two pulsed-cw schemes for monitoring otational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). Collisional Properties of Highly Excited Vibrational Levels of H₂COX¹A₁. PUMP- UMP-PROBE studies of state-to-state RET at 11,400 cm⁻¹ reveal persistence of vibrational dentity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. Collisional Properties of Rovibrational Levels of H₂CO A¹A₂. RET studies in the 4¹ level with H₂CO, He, Ar, and N₂ collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT ABSTRACT SECURITY CLASSIFICATION Unclassified NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code; (Include Area Code; (Include	PERSONAL AUTHOR(S) bert W. Field and James L.	Kinsey			
FIELD GROUP SUB_GR Spectroscopy, Vibrational Structure, Optical-Optical Double Resonance, Molecular Dynamics, Anharmonic Vibrational Con- stants. Electric Dipole Moment, Coriolis Perturbations, (+) ABSTRACT (Continue on reverse of necessary and identify by block number) Our research accomplishments may be divided into the following ten areas: Culmination of Stimulated Emission Pumping (SEP) Spectroscopic Studies of H₂CO. Rotation-vibration assignments have been extended to levels of the H₂COX¹A₁ state at Development and Testing of New Techniques. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). Collisional Properties of Highly Excited Vibrational Levels of H₂COX¹A₁. PUMP-DUMP-PROBE studies of state-to-state RET at 11,400 cm⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to Collisional Properties of Rovibrational Levels of H₂CO Å¹A₂. RET studies in the zero point level. Collisional Properties of Rovibrational Levels of H₂CO Å¹A₂. RET studies in the distribution/AvaiLABILITY OF ABSTRACT DISTRIBUTION/AVAILABILITY OF ABSTRACT ABSTRACT SECURITY CLASSIFIED/UNLIMITED SAME AS APT DICUSERS 	DERSONAL AUTHORIS) Obert W. Field and James L.	Kinsey E covered	14. DATE OF REPORT (Yr., Mo., D	() () () () () () () () () () () () () (COUNT
ABSTRACT (Continue on reverse if necessary and identify by block number) Our research accomplishments may be divided into the following ten areas: 1. Culmination of Stimulated Emission Pumping (SEP) Spectroscopic Studies of H ₂ CO. Rotation-vibration assignments have been extended to levels of the H ₂ COX ¹ A ₁ state at energies as high as 14,500 cm ⁻¹ . 2. Development and Testing of New Techniques. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). 3. Collisional Properties of Highly Excited Vibrational Levels of H ₂ COX ¹ A ₁ . PUMP- DUMP-PROBE studies of state-to-state RET at 11,400 cm ⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H ₂ COX ¹ A ₂ . RET studies in the A 4 ¹ level with H ₂ CO, He, Ar, and N ₂ collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED SAME AS RPT Cotic USERS 21 ABSTRACT SECURITY CLASSIFICATION Unclassified	E. PERSONAL AUTHOR(S) Obert W. Field and James L. IL TYPE OF REPORT Inal S. SUPPLEMENTARY NOTATION	Kinsey NE COVERED 01-10-84 TO ³ 1-10-87	14. DATE OF REPORT (Yr. Mo., D 31 December 1987	26	
ABSTRACT (Continue on reverse if necessary and identify by block number) Our research accomplishments may be divided into the following ten areas: 1. Culmination of Stimulated Emission Pumping (SEP) Spectroscopic Studies of H2CO. Rotation-vibration assignments have been extended to levels of the H2COXTA1 state at energies as high as 14,500 cm ⁻¹ . 2. Development and Testing of New Techniques. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). 3. Collisional Properties of Highly Excited Vibrational Levels of H2COXTA1. PUMP- DUMP-PROBE studies of state-to-state RET at 11,400 cm ⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H2CO ATA2. RET studies in the A 41 level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED SAME AS RPT _ DICLOSERS [] 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22b TELEPHONE NUMBER 22c OFFICE SYMBOL	COSATI CODES	Kinsey E COVERED 01-10-84 TO ³ 1-10-87 18. SUBJECT TERMS (C Spectroscopy.	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure,	entify by block number Optical-Opt	r, ical Double
 <u>Culmination of Stimulated Emission Pumping (SEP) Spectroscopic Studies of H2CO.</u> Rotation-vibration assignments have been extended to levels of the H2COX¹A₁ state at energies as high as H,500 cm⁻¹. 2. <u>Development and Testing of New Techniques</u>. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). 3. Collisional Properties of Highly Excited Vibrational Levels of H2COX¹A₁. PUMP- DUMP-PROBE studies of state-to-state RET at 11,400 cm⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H2CO Å¹A₂. RET studies in the A 4¹ level with H2CO, He, Ar, and N₂ collision partners reveal a-dipole propensity rules (please see reverse side) 1. DISTRIBUTION/AVAILABULITY OF ABSTRACT NCLASSIFIED/UNLIMITED _ SAME AS RPT _ DITICUSERS _ NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code) (Include Area Code	PERSONAL AUTHOR(S) obert W. Field and James L. obert W. Field and James L. inal inal S. SUPPLEMENTARY NOTATION cosati codes	Kinsey E COVERED 01-10-84 TO ³ 1-10-87 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar	entify by block number Optical-Opt: monic Vibrat	r, ical Double ional Con-
Rotation-vibration assignments have been extended to levels of the H2COX ^A A1 state at energies as high as 11,500 cm ⁻¹ . 2. Development and Testing of New Techniques. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). 3. Collisional Properties of Highly Excited Vibrational Levels of H2COX ¹ A1. PUMP- DUMP-PROBE studies of state-to-state RET at 11,400 cm ⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H2CO Å ¹ A2. RET studies in the A 4 ¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Are Code)	PERSONAL AUTHOR(S) obert W. Field and James L. inal inal SUPPLEMENTARY NOTATION cosati codes FIELD GROUP SUB. GR.	Kinsey E COVERED 01-10-84 TO ³ 1-10-87 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants, Electi	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori	entify by block number Optical-Opt: monic Vibrat	r, ical Double ional Con-
<pre>energies as high as 11,500 cm-1. 2. Development and Testing of New Techniques. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). 3. Collisional Properties of Highly Excited Vibrational Levels of H₂COX¹A₁. PUMP- DUMP-PROBE studies of state-to-state RET at 11,400 cm⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H₂CO Å¹A₂. RET studies in the A 4¹ level with H₂CO, He, Ar, and N₂ collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED C SAME AS RPT C DTIC USERS NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Are Code) A 1</pre>	A PERSONAL AUTHOR(S) A Dert W. Field and James L. A TYPE OF REPORT I 13b. TIN Inal S. SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. ABSTRACT (Continue on reverse of necessary Our research accomplia	Kinsey ECOVERED 01-10-84 TO31-10-87 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants, Electry and identify by block number pments may be divi	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori	nay) 15. PAGE (26 26 26 26 26 26 26 26 26 26	ical Double ional Con- ations (→)
 <u>Development and Testing of New Techniques</u>. Two pulsed-cw schemes for monitoring rotational energy transfer (RET) processes were devised and tested. One scheme relies on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). Collisional Properties of Highly Excited Vibrational Levels of H2COXIA1. PUMP-DUMP-PROBE studies of state-to-state RET at 11,400 cm⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. Collisional Properties of Rovibrational Levels of H2COXIA2. RET studies in the A 4¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED SAME AS RPT Concurses Concurses Concurses (please see reverse side) AMME OF RESPONSIBLE INDIVIDUAL TELEPHONE NUMBER (Include Area Code) 	A PERSONAL AUTHOR(S) A Dert W. Field and James L. A TYPE OF REPORT I 13b. TIN FROM S. SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. ABSTRACT (Continue on reverse of necessar Our research accomplisi Culmination of Still	Kinsey ECOVERED 01-10-84 TO31-10-87 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants, Electry and identify by block number mments may be division E	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc	nay) 15. PAGE (26) 26 26 26 26 26 26 26 26 26 26	of H ₂ CO.
transient absorption or gain (TA or TG) and the other on transient optical indication (IOR). 3. Collisional Properties of Highly Excited Vibrational Levels of H ₂ COXIA ₁ . PUMP- DUMP-PROBE studies of state-to-state RET at 11,400 cm ⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H ₂ CO Å ¹ A ₂ . RET studies in the A 4 ¹ level with H ₂ CO, He, Ar, and N ₂ collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED _ SAME AS RPT _ DTICUSERS [] Unclassified 22b TELEPHONE NUMBER (Include Area Code) 4. 22c OFFICE SYMBOL	COSATI CODES FIELD GROUP COUT research accomplisi Culmination of Stin Rotation-vibration assignmen	Kinsey E COVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mol stants, Electric v and identify by block number numents may be divin mulated Emission F nts have been exter cm-1	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori and ided into the following Pumping (SEP) Spectrosc ended to levels of the	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	of H_2CO .
3. Collisional Properties of Highly Excited Vibrational Levels of H2COXAAL. Terme DUMP-PROBE studies of state-to-state RET at 11,400 cm ⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H2CO A ¹ A ₂ . RET studies in the A 4 ¹ level with H2CO, He, Ar, and N ₂ collision partners reveal a-dipole propensity rules (please see reverse side) 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. OFFICE SYMBOL	Image: PERSONAL AUTHOR(S) Obert W. Field and James L. Image: Description of the second secon	Kinsey E COVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mol stants. Electric v and identify by block number numents may be divin mulated Emission F nts have been exter cm-1.	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori and into the following Pumping (SEP) Spectrosc ended to levels of the	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	of H ₂ CO. te at
DUMP-PROBE studies of state-to-state RET at 11,400 cm ⁻¹ reveal persistence of vibrational identity, a-dipole propensity rules, and no dramatic increase in RET rates relative to those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H ₂ CO Å ¹ A ₂ . RET studies in the A 4 ¹ level with H ₂ CO, He, Ar, and N ₂ collision partners reveal a-dipole propensity rules (please see reverse side) Image: Distribution/Availability of ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION Unclassified Unclassified Image: NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code)	COSATI CODES FIELD GROUP COSATI CODES FIELD GROUP SUPPLEMENTARY NOTATION ABSTRACT (Continue on reverse if necessary Our research accomplisis) 1. Culmination of Stin Rotation-vibration assignment energies as high as 11,500 2. Development and Te rotational energy transfer	Kinsey E COVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants, Electro v and identify by block number numents may be division nulated Emission F nts have been exter cm-1. sting of New Techr (RET) processes we p (TA or TG) and t	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested.	entify by block number Optical-Optical-Optical conic Vibrat conic Studies H2COXIA1 stat schemes for r One scheme optical rotal	of H ₂ CO. te at nonitoring relies on tion (TOR).
those in the zero point level. 4. Collisional Properties of Rovibrational Levels of H2CO Å ¹ A2. RET studies in the A 4 ¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) A 4 ¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED = SAME AS RPT = DTIC USERS Unclassified NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code)	Image: PERSONAL AUTHOR(S) Obert W. Field and James L. Image: Description of the property of REPORT 13b. TIM inal Image: PERSONAL AUTHOR(S)	Kinsey ECOVERED 01-10-84 TO Spectroscopy, Resonance, Mo stants, Electro v and identify by block number himents may be division F nulated Emission F nulated Emission F nulated Emission F ints have been exter cm-1. sting of New Techr (RET) processes we n (TA or TG) and to tion of Wighly Fyger (RET) Processes we	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw are devised and tested. the other on transient	entify by block number 26 26 26 26 26 26 26 26 26 26 26 26 26	of H ₂ CO. te at nonitoring relies on tion (TOR).
4. Collisional Properties of Rovibrational Levels of H2CO A ^{-A} 2. RET studies in the A 4 ¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) A 4 ¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED = SAME AS RPT = DTIC USERS Unclassified Unclassified 22b TELEPHONE NUMBER (Include Area Code) A 1	Image: PERSONAL AUTHOR(S) Obert W. Field and James L. Image: Description of the second secon	Kinsey ECOVERED 01-10-84 TO31-10-87 Spectroscopy, Resonance, Mol stants, Electric y and identify by block number nulated Emission F nulated Emission F nts have been exter cm-1. sting of New Techr (RET) processes we n (TA or TG) and t ties of Highly Exc -to-state RFT at	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level	ney) 15. PAGE 0 26 26 26 26 26 26 26 26 26 26	of H ₂ CO. te at monitoring relies on tion (TOR). 1. PUMP- ibrational
A 4 ¹ level with H2CO, He, Ar, and N2 collision partners reveal a-dipole propensity rules (please see reverse side) DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION NCLASSIFIED/UNLIMITED = SAME AS RPT. = DTIC USERS Unclassified Unclassified 22b. TELEPHONE NUMBER (Include Area Code) A 4	Image: Personal Author(s) Obert W. Field and James L. Image: Personal Author(s)	Kinsey E COVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mol stants, Electric vand identify by block number inments may be divi- mulated Emission F nts have been exter cm-1. sting of New Techri (RET) processes we n (TA or TG) and to ties of Highly Exc -to-state RET at ty rules, and no co	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level	ney) 15. PAGE 0 26 26 26 26 26 26 26 26 26 26	of H ₂ CO. te at monitoring relies on tion (TOR). 1. PUMP- ibrational
DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION NCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS Unclassified NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code)	PERSONAL AUTHOR(S) obert W. Field and James L. TYPE OF REPORT 13b. TIN inal SUPPLEMENTARY NOTATION COSATI CODES ELD GROUP SUB. GR. Our research accomplish 1. Culmination of Stin Rotation-vibration assignment energies as high as 14,500 f 2. Development and Te cotational energy transfer transient absorption or gai 3. Collisional Proper DUMP-PROBE studies of state identity, a-dipole propensi those in the zero point lev 4 Collisional Proper	Kinsey E COVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants. Electric vand identify by block number inments may be divi- mulated Emission F ints have been exter cm-1. sting of New Techri (RET) processes we n (TA or TG) and th ties of Highly Exc -to-state RET at the ty rules, and no co el. ties of Rovibration	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ded into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level 11,400 cm ⁻¹ reveal pers dramatic increase in RE	ney) 15. PAGE (26) 26 26 26 26 26 26 26 26 26 26	of H ₂ CO. ical Double ional Con- ations (→) of H ₂ CO. ce at nonitoring relies on tion (TOR). 1. PUMP- ibrational tive to ies in the
NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL	PERSONAL AUTHOR(S) bert W. Field and James L. TYPE OF REPORT 13b. TIN ral SUPPLEMENTARY NOTATION COSATI CODES IELD GROUP SUBL GR. Our research accomplish 1. Culmination of Stin totation-vibration assignment nergies as high as 14,500 f 2. Development and Te cotational energy transfer ransient absorption or gai 3. Collisional Proper UMP-PROBE studies of state Identity, a-dipole propensi chose in the zero point lev 4 Collisional Proper	Kinsey E COVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants. Electric vand identify by block number inments may be divi- mulated Emission F ints have been exter cm-1. sting of New Techri (RET) processes we n (TA or TG) and th ties of Highly Exc -to-state RET at the ty rules, and no co el. ties of Rovibration	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ded into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level 11,400 cm ⁻¹ reveal pers dramatic increase in RE	ney) 15. PAGE (26 26 26 26 26 26 26 26 26 26	of H ₂ CO. ical Double ional Con- ations (→) of H ₂ CO. ce at nonitoring relies on tion (TOR). 1. PUMP- ibrational tive to ies in the itv rules
(Include Area Code)	PERSONAL AUTHOR(S) bbert W. Field and James L. TYPE OF REPORT 13b. TIN ral SUPPLEMENTARY NOTATION COSATI CODES SUPPLEMENTARY NOTATION ABSTRACT (Continue on reverse (f necessary Our research accomplish 1. Culmination of Stin Cotation-vibration assignment Cotational energy transfer Continue on reverse (f necessary Collisional Proper UMP-PROBE studies of state identity, a-dipole propensi those in the zero point lev 4. Collisional Proper 4. 1 Evel with H2CO, He, A <td>Kinsey ECOVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants. Electric vand identify by block number nulated Emission F nulated Emission F nts have been exter cm-1. sting of New Techr (RET) processes we n (TA or TG) and th ties of Highly Exc -to-state RET at f ty rules, and no co el. ties of Rovibratio r, and N₂ collision</td> <td>14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori dided into the following Pumping (SEP) Spectrosc ended to levels of the hiques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level 11,400 cm⁻¹ reveal pers dramatic increase in RE conal Levels of H₂CO A¹A on partners reveal a-di (please see</td> <td>nentify by block number 26 26 26 26 26 26 26 26 26 26</td> <td>of H₂CO. ical Double ional Con- ations (→) of H₂CO. ce at nonitoring relies on tion (TOR). 1. PUMP- ibrational tive to ies in the itv rules</td>	Kinsey ECOVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants. Electric vand identify by block number nulated Emission F nulated Emission F nts have been exter cm-1. sting of New Techr (RET) processes we n (TA or TG) and th ties of Highly Exc -to-state RET at f ty rules, and no co el. ties of Rovibratio r, and N ₂ collision	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori dided into the following Pumping (SEP) Spectrosc ended to levels of the hiques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level 11,400 cm ⁻¹ reveal pers dramatic increase in RE conal Levels of H ₂ CO A ¹ A on partners reveal a-di (please see	nentify by block number 26 26 26 26 26 26 26 26 26 26	of H ₂ CO. ical Double ional Con- ations (→) of H ₂ CO. ce at nonitoring relies on tion (TOR). 1. PUMP- ibrational tive to ies in the itv rules
	PERSONAL AUTHOR(S) Obert W. Field and James L. TYPE OF REPORT 13b. TIN Inal SUPPLEMENTARY NOTATION COSATI CODES SUPPLEMENTARY NOTATION COSATI CODES SUPPLEMENTARY NOTATION ABSTRACT (Continue on reverse of necessary Our research accomplish 1. Culmination of Stin Cotation-vibration assignment energies as high as 14,500 - 2. Development and Te Cotational energy transfer Consistional Proper OUMP-PROBE studies of state identity, a-dipole propensi those in the zero point lev 4. Collisional Proper 4.1 level with H2CO, He, A DISTRIBUTION/AVAILABILITY OF ABST	Kinsey ECOVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants, Electric y and identify by block number himents may be divin mulated Emission F ints have been exter cm-1. Sting of New Techr (RET) processes we n (TA or TG) and the ties of Highly Exco -to-state RET at the ty rules, and no co el. ties of Rovibratio r, and N ₂ collision	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level 11,400 cm ⁻¹ reveal pers dramatic increase in RE conal Levels of H ₂ CO Å ¹ A on partners reveal a-di (please see 21 ABSTRACT SECURITY CLASS	nentify by block number 26 26 26 26 26 26 26 26 26 26	of H ₂ CO. ical Double ional Con- ations (→) of H ₂ CO. ce at monitoring relies on tion (TOR). 1. PUMP- ibrational tive to ies in the itv rules
	PERSONAL AUTHOR(S) Obert W. Field and James L. Interview Interview SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUBCR. Our research accomplish 1. Culmination of Stin Rotation-vibration assignment energies as high as 14,500 2. Development and Te rotational energy transfer transient absorption or gai 3. Collisional Proper DUMP-PROBE studies of state identity, a-dipole propensi those in the zero point lev 4. Collisional Proper A 4 level with H2CO, He, A	Kinsey ECOVERED 01-10-84 TO 18. SUBJECT TERMS (C Spectroscopy, Resonance, Mo stants, Electric y and identify by block number himents may be divin mulated Emission F ints have been exter cm-1. Sting of New Techr (RET) processes we n (TA or TG) and the ties of Highly Exco -to-state RET at the ty rules, and no co el. ties of Rovibratio r, and N ₂ collision	14. DATE OF REPORT (Yr. Mo., D 31 December 1987 Continue on reverse if necessary and ide Vibrational Structure, lecular Dynamics, Anhar ric Dipole Moment, Cori ided into the following Pumping (SEP) Spectrosc ended to levels of the niques. Two pulsed-cw ere devised and tested. the other on transient cited Vibrational Level 11,400 cm ⁻¹ reveal pers dramatic increase in RE onal Levels of H ₂ CO Å ¹ A on partners reveal a-di (please see 21. ABSTRACT SECURITY CLASS Unclassified 22b TELEPHONE NUMBER	nervi 15. PAGE (26 26 26 26 26 26 26 26 26 26 26 26 26 2	of H ₂ CO. ical Double ional Con- ations (→) of H ₂ CO. ice at monitoring relies on tion (TOR). 1. PUMP- ibrational tive to ies in the itv rules e)

۳**۰**۰

12

and and

 ~ 10

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

18. (continued) Quantum Chaos, Anticrossing and Quantum Beat Spectroscopy, Barrier to Dissociation, Rotational Energy Transfer, Formaldehyde.

19. (continued)

and persistence of alignment. In addition, we have shown that strongly J-dependent predissociation rates are the cause of the mysterious, highly nonlinear Stern-Volmer behavior of undispersed fluorescence subsequent to single rovibronic level excitation of H_2CO A^1A_2 .

5. Dipole Moments in $A_{1}A_{2}$ H₂CO and D₂CO. Stark Quantum Beat Spectroscopic (SQBS) measurements on several vibrational levels (4⁰, 4¹, 4³) provide tests of a vibronic coupling explanation for the nonplanarity of the Å state, a lower bound on the out of plane component of the electric dipole moment, and a sample of S₀-S₁ vibronic interactions. 6. Studies of Chaos in Molecular Systems. A variety of statistical measurements of the quantum manifestations of classical chaos were applied to experimental and computed spectra of $H_{2}CO$.

7. <u>Dipole Moments in $X^{1}A_{1}$ H₂CO. Stark effect measurements have been extended to higher vibrational levels than reported in J. Chem. Phys. 78, 3659 (1983) in order to test further the normal mode expansion of the molecular electronic dipole moment.</u>

8. <u>Rotational Reorientation in AlA₂H₂CO</u>. By selecting the polarization state of both PUMP and PROBE lasers, perfect $(J, K_a, K_c, M_J)_{initial}$ and $(J, K_a, K_c, M_J)_{final}$ selectivity is achieved. These experiments test predictions by Millard Alexander and the persistence of polarization deduced from our previous RET studies in the A and X states.

9. J-Dependent Quenching Rates in $A^{1}A_{2}$ D₂CO. Initial spectroscopic studies have identified the level schemes best suited to our planned Transient Gain measurements of J-specific collisional depopulation rates in $A^{1}A_{2}$ D₂CO. This study complements that in #4 above in that we expect the explanation for nonlinear Stern-Volmer behavior in D₂CO will be J-dependent quenching rates rather than J-dependent predissociation rates as in H₂CO. 10. <u>Tunneling in Intramolecularly Hydrogen-Bonded Molecules</u>. High resolution fluorescence excitation spectra of tropolone have been recorded and assigned. The

observed tunneling doublings are apportioned between electronic excited and ground states, and the highly mode-specific effects on tunneling rates illustrate the profound effect of remote heavy atoms on large amplitude H-atom motions.

AFOSR.TR. 88-0166

())

60

B. Research Objectives

1. Apply the Stimulated Emission Pumping (SEP) technique to highly excited vibrational levels of H_2CO and D_2CO .

2. Discover whether the rotation-vibration levels of H_2CO/D_2CO remain well organized at chemically significant levels of vibrational excitation.

3. Develop new multiple resonance spectroscopic techniques capable of measuring rotational energy transfer rates (RET) in highly excited vibrational levels of H₂CO.

4. Develop statistical diagnostics for quantum ergodicity which are applicable to real SEP spectra of H_2CO/D_2CO_{fK} and the spectra of H_2CO/D_2CO_{fK} are spectra of H_2CO/D_2CO_{fK} and the spectra of $H_2CO/D_$

C. Status of Research Effort

Significant progress toward all of the cited objectives has been made. It is expected that our research emphasis will shift from studies of H_2CO/D_2CO to new experiments on HCN/DCN, NH2[†]+O₂, and tropolone during the first year of the new grant, AFOSR-88-0062.

Technical Progress Report 1 October 1984 - 31 October 1987

By the start of the current contract/grant, Stimulated Emission Pumping (SEP) had become a fully-developed technique, which had seen many applications. A few remaining details of the developmental stage and some spectroscopic applications of SEP were cleaned up near the start of the current grant. The stage was then set to address new techniques needed to progress into studies of the collisional properties of highly energized molecules. These techniques and the beginnings of their applications constituted the main effort of the past three years. The following ten sections summarize the major accomplishments.

1. Culmination of Early SEP Studies (P.H. Vaccaro, H.-L. Dai, and C. Korpa)

The earliest phase of work supported by the current contract/grant brought to a close the developmental stage of Stimulated Emission Pumping

(SEP) as a spectroscopic technique. The high resolution and J,K_a selectivity of SEP opened the possibility for study of individual rovibrational levels in the ground electronic state with unprecedentedly high amounts of vibrational energy. Several properties of levels at such "chemically interesting" energies have been discussed in the literature. Among these are intramolecular vibrational randomization (IVR), chaotic behavior of classical trajectories and spectroscopic evidence for ergodicity.

A large set of rovibrational levels of H₂CO \tilde{X} ¹A₁ was investigated by SEP in the energy range 7400 cm⁻¹ < E_{vib} < 8600 cm⁻¹. For low values of the rotational quantum numbers J and K_a (J<3, K_a<1), the spectra were simple and each observed level could be assigned a set of normal mode quantum numbers. As J was increased, features associated at low J with a single vibrational basis function were observed to divide their intensity among an increasing number of closely spaced transitions. At J≈10, K_a≈2 the number of observed levels exceeds that calculated from the known purely vibrational density of states, ρ_V . It did not, however, reach as high as (2J + 1) ρ_V /4, the total density of rovibrational levels of a given symmetry species [1,2]. This strongly rotation-induced IVR was substantiated by a plausible Coriolis-coupling model for H₂CO [2]. Use of a "fraction of phase space" parameter proposed by Stechel and Heller showed that the motion becomes less rather than more ergodic with increasing J if the "accessible" phase space is defined as including all K_a<J values [1].

Another effort carried over from the previous contract involved statespecific rates of the $H_2CO(S_0) + H_2 + CO$ unimolecular decomposition [3]. Specific \tilde{A} -state (S₁) rovibrational levels in the 28000 cm⁻¹ region of energy were differentially Stark tuned in energy relative to a dense

Laus

V

บ บ

manifold of background S_{Ω} levels by application of a static electric field, a technique that had been introduced earlier by Weisshaar and Moore [4]. Three sets of measurements were made as a function of field strength: (i) Integrated fluorescence within a 1 μ s gate, (ii) fluorescence decay curves, (iii) quantum beat frequencies (for measurements with the field perpendicular to the laser polarization). In the neighborhood of "anticrossings", all three quantities exhibit anomalies which can be analyzed in terms of a simple two level model with each zeroth order level having an imaginary energy component to account phenomenologically for its intrinsic decay rate. The upshot was that two S_1 levels, both having J = 2and of the same rovibrational symmetry and only 30 cm⁻¹ apart in energy interacted with S_{Ω} levels whose unimolecular decay rates (corresponding to $H_2CO + H_2 + CO$) differed by a factor of 2.5. Moreover, contrary to naive expectations, the higher energy level exhibited the slower dissociation rate. The number of levels investigated by this technique was insufficient to produce an estimate of the height of the barrier to dissociation.

At this point, the stage was set to move on to applications of SEP to the study of collisional properties of highly energized molecules and to other new endeavors.

2. Development and Testing of New Techniques (P.H. Vaccaro and F. Temps)

Once the spectroscopic capabilities of SEP had been thoroughly established, interest turned to collisional transfers either among neighboring levels of the \tilde{A} -state (denoted as $|a\rangle$) or among highly excited vibrational levels in the \tilde{X} state (denoted as $|x^{\dagger}\rangle$). Methods were needed to monitor the small populations likely to be present at a given time in any specific $|x^{\dagger}\rangle$ or $|a\rangle$ of interest. Noise introduced into the average signal by shot-to-shot

SUNNY ENGLISH RUCKER PARK

4

instabilitions in the intensity of both PUMP and DUMP pulsed lasers was also problematic. Accordingly, a method was sought that was both highly sensitive and relatively noise free.

Two basic schemes were investigated and characterized, one relying on transient absorption or gain (TA or TG) and the other on transient optical rotation (TOR). Both schemes employ a single-mode cw PROBE laser. For the purpose of discussion, assume an $|x^{\dagger}\rangle$ level is to be monitored. The PROBE laser would be tuned to the frequency of a specific $\tilde{A} + \tilde{X}$ transition originating in the $|x^{\dagger}\rangle$ of interest.

In the absence of an SEP sequence of PUMP/DUMP pulses, there will be no population in $|x^{\dagger}\rangle$ and the PROBE laser will be transmitted without attenuation. When $|x^{\dagger}\rangle$ become, populated as the result of SEP, either directly or through collisional transfer, some of the PROBE will be absorbed. The magnitude of this absorption at a given time gives rise to a TA signal that reflects the population of $|x^{\dagger}\rangle$ at that time. To monitor the population of an |a> level, this scheme is inverted. The PROBE laser transition has as its upper level the $|a\rangle$ of interest and as its lower level any convenient $|x^{\dagger}\rangle$ (generally not a highly excited $|x^{\dagger}\rangle$, but necessarily one with negligible thermal population). In this case the signal appears as gain rather than absorption. The initial iG measurements used a single-mode Argon ion laser as the PROBE laser because of the unique amplitude stability of such devices. This limited the choice of [a> levels that could be probed to those with A + X transitions coinciding in frequency with one of the Argon ion laser lines. Later, however, a differential detection scheme was devised that permitted using as the PROBE a tunable cw single mode laser, in spite of the relatively large amplitude noise of such a laser. A

"reference" intensity was obtained by splitting off a small fraction of the PROBE beam just before it entered the sample cell. The "signal" intensity was taken as the PROBE laser intensity after passage through the cell. A differential signal-minus-reference amplifier was adjusted to give a null reading in the absence of SEP pulses.

REFERENCE

The second method (TOR) employs a polarized PROBE beam with a crossed polarizer in front of the detector to block the PROBE beams. When there is a population in the $|x^{\dagger}\rangle$ or $|a\rangle$ being probed, this population will be nonuniformly distributed over the MJ sublevels. This gives slightly different absorption (or gain) between right-and left-circularly polarized PROBE radiation, which in turn produces a slight optical rotation of the PROBE beam, allowing some of it to reach the detector. TOR is a "zero-background" technique; i.e., when the level of interest is empty there is no signal.

Both TG/TA and TOR have now been developed to a useable stage for probing either $|x^{\dagger}\rangle$ or $|a\rangle$ type levels. In state-to-state measurements, the two techniques give independent measures of the temporal development of population in a level populated through collisional transfer from the initially prepared level. However, for measurement of the decay rate of the initial level, the two techniques provide different information. TG or TA is sensitive only to collisions that affect inelastic transfer to levels of a different energy. In TOR, however, collisions also "count" which only affect the distribution among M_J sublevels of the initially prepared level (elastic reorientation). Thus, combination of the two methods allows an assessment of the relative importance of $\Delta M_{J} = 0$ collisions and $\Delta M_{J} \neq 0$ collisions.

5

BEEREN KARLAN

3. Collisional Properties of Highly Excited Vibrational Levels of H₂CO $\tilde{\chi}$ ¹A₁ (F. Temps, P.H. Vaccaro, S. Halle)

The development of sensitive probe techniques opened the way to use SEP as a preparative method for studying the effects of gas phase collisions on molecules in any one of the wide variety of \tilde{X} -state rovibrational levels. Some fundamental questions that could then be addressed included: (1) How does the total depopulation rate of a level depend on the density of nearby vibrational levels?, (2) Are there significant differences in the collisional properties of different levels?, (3) After a collision, does a molecule "remember" its initial vibrational identity or does it behave statistically?

The temporal evolution of populations in initially prepared levels as well as collisionally populated levels has been investigated as a function of scattering gas pressure for highly vibrationally excited H₂CO with ~11500 cm⁻¹ of vibrational energy in the ground electronic state \tilde{X} ¹A₁. At this energy the mean spacing between adjacent vibrational levels is ~2.5 cm⁻¹. This is to be compared to the rotational constant $\frac{B+C}{2}$ ~1.2 cm⁻¹. Hence, for modest values of J there will be several same-J,K_a vibrational levels closer to a prepared level than the nearest rotational level for the same vibrational state. The state prepared by SEP has been assigned as 2₄4₄.

The rate constants for overall depopulation of several rotational levels of H₂CO (\tilde{X} ¹A₁, 2₄4₄) in collision with H₂CO at room temperature were found to be k ~ 1.8 x 10¹⁵ cm³ mol⁻¹s⁻¹, with no systematic dependence on initial J or K_a values for unperturbed $|x^{\dagger}\rangle$ levels. This exceeds the gas kinetic Lennard-Jones collision rate by about one order of magnitude. The

equivalent cross section is $\sigma \approx 500 \text{A}^2$. For levels known to be strongly coupled to other vibrational levels via Fermi or Coriolis interaction the overall decay rates were found to increase by as much as 40%. Rate constants for collisional energy transfer with He were found to be k = 2.2 x 10^{14} cm³ mol⁻¹s⁻¹, corresponding to $\sigma = 28 \text{A}^2$.

An analysis of state-to-state measurements (see Fig. 1) for H₂CO-H₂CO collisions, based on a simplified master equation approach, revealed the dominance of rotational energy transfer with $\Delta K_a = 0$ and $\Delta J = \pm 1$. These transitions, predicted to dominate for scattering governed mainly by dipole-dipole interactions, have $k_{\pm 1} = 4.6 \times 10^{14} \text{ cm}^3 \text{ mol}^{-1}\text{s}^{-1}$. The $\Delta J = \pm 2$ collisions have $k_{\pm 2} = 0.9 \times 10^{14} \text{ cm}^3 \text{ mol}^{-1}\text{s}^{-1}$, and $\Delta J = \pm 3$ collisions give $k_{\pm 3}$ $\approx 0.4 \times 10^{14} \text{ cm}^3 \text{ mol}^{-1} \text{s}^{-1}$. A more refined master equation analysis is in progress, but it is not expected that the general conclusions will be significantly modified. Apparently, in H₂CO at $E_{vib} \approx 11500 \text{ cm}^{-1}$ purely rotational energy transfer with conservation of vibrational motion dominates at least as long as the initial level is not strongly perturbed. Measured J-changing, vibration-preserving rates sum to 80% of the total depopulation rate of the initial level. This is not a wholly surprising result because the vibrational levels in this region still seem to be regular (as opposed to chaotic) by other criteria. These results, however, do provide the first evidence for persistence of vibrational identity in a system where the energy gap for vibrational energy transfer is comparable to or smaller than that for rotational energy transfer. An important next step will be to push these investigations to higher energies and/or higher initial J,Ka values where the level structure suggests chaotic vibrational motion.

TIME/NANOSEC

Figure 1. Transient populations of individual J-levels in the $H_2CO \times 2_44_4 K_a = 1$ vibrational level (near 11,500 cm⁻¹) monitored by SEP-TA. The PUMP/DUMP process populates the $J_{K_a}, K_c = 4_{1,3}$ level. The $4_{1,3}$ level population is shown attenuated by a factor of 5 relative to those of the $2_{1,1}$, $3_{1,2}$, $5_{1,4}$, $6_{1,5}$, and $7_{1,6}$ levels. Note that the SEP-TA measurements show that the signals from the collisionally populated levels rise after the signal from the collisionally populate to fall, and the population maxima in the collisionally populated levels are of decreasing magnitude and increasing delay as $|\Delta J|$ increases.

Most of the X-state measurements relied on transient absorption. A few depopulation measurements were made using transient optical rotation, and they gave essentially identical rate coefficients. This shows that there is very little reorientation of rotational angular momentum when $\Delta J = \Delta K_a = \Delta K_C = 0$ (elastic reorientation accounts for <5% of the total depolarization rate). Future studies employing both methods for state-to-state and pure depopulation processes should shed further light on propensity rules for ΔM_d for various possible $\Delta J, \Delta K_a$.

4. <u>Collisional Properties of Rovibrational Levels of H₂CO A ¹A₂</u>

(P.H. Vaccaro, F. Temps)

Measurements very similar to those described above were also carried out for H₂CO \tilde{A} 4¹ rotational levels [5]. Both the TG and the TOR techniques were used. State-to-state rates were measured for H₂CO self-relaxation and for He, Ar and N₂ as collision partners. The $\Delta K_a = 0$, $\Delta J = \pm 1$ a-dipole processes were found to be the most important. However, direct $\Delta J = \pm 2$ collisional transitions as well as fluorescence quenching (probably via H₂CO + H₂ + CO) were found to account for a significant fraction of the total depopulation rate. N₂ as a collision partner gave a larger ratio for $\sigma(\Delta J = \pm 2)$ to $\sigma(\Delta J = \pm 1)$ than did atomic collision partners. This suggests that the permanent quadrupole moment of N₂ (Q = 0 for atoms) is comparable in importance to the induced dipole in causing rotational relaxation in H₂CO. As in the case of high vibrational levels of the \tilde{X} -state, collisions seem to be dominated by small values of ΔM_J , at least as far as $\Delta J = \Delta K_a = \Delta K_c = 0$ processes are concerned.

5. Dipole Moments in A ¹A₂ Formaldehyde (P.H. Vaccaro)

The dependence of electronic structure on vibrational and rotational degrees of freedom has long been a subject of interest and controversy in molecular physics. Substantial effort has been directed towards the measurement of electric dipole moments as a function of rotational and vibrational quantum numbers. Among the techniques that have been used are microwave Stark spectroscopy, molecular beam electric resonance, microwaveinfrared double resonance and laser Stark spectroscopy. In contrast to the wide scope of measurements on ground electronic states, very little information exists for dipole moments of electronically excited states of polyatomic molecules. This is principally because of the stringent requirements for resolution and sensitivity, which are very difficult to achieve using traditional optical methods. For a moderate-size molecule such as formaldehyde, whose lowest energy electronic transition occurs at $\sim 28,000$ cm^{-1} , the spectral shifts produced by reasonable electric field strengths are at most on the order of a few tenths of a cm^{-1} . In gas samples, the accuracy with which these small splittings can be directly observed is limited by Doppler broadening, which is typically >0.1 cm⁻¹ at room temperature. Consequently, Stark effect measurements on excited electronic states are problematic and seldom yield molecular dipole moments of high accuracy.

Stark Quantum Beat Spectroscopy (SQBS) is a technique we have developed to get around these limitations. In the optical excitation of a molecule in a static electric field, the selection rule $\Delta M_J = \pm 1$ holds when the exciting radiation is polarized with its polarization vector perpendicular to the static field. This leads to the preparation of a coherent superposition of levels with M_J differing by ± 2 , provided that the coherence linewidth of the exciting laser is broad enough to span the difference in energy between the

two sublevels differing in M_1 by ± 2 . For example, excitation to a J' = 2 state would prepare a coherent superposition of $M_{ij}' = 2$ and $M_{ij}' = 0$ since both M_{J} -components can be reached from M_{J} " = 1. Following the initial preparation, this non-stationary state will evolve in time, with a recurrence of the initial coherence at $t \cdot \Delta v = 1$ where Δv is the splitting (in frequency units) between, say, $M_1 = 2$ and $M_1 = 0$. Different M_1 states radiate with different polarization characteristics. Hence, there are polarization-dependent detection arrangements that exhibit the periodic evolution of the prepared non-stationary state in the form of sinusoidal modulation of the fluorescence. The frequency of this modulation is Δv . Figure 2 shows the modulated fluorescent decay from the $2_{1.1}$ rotational level of H_2CO Å 1A_2 4¹. Fourier analysis of the oscillatory part of the intensity yields a high precision value of the Stark splitting. The quantum beat frequencies are essentially free of Doppler broadening since the two coherently excited transitions are in the same molecule, which has some characteristic velocity v. Stark splittings with frequencies up to ~ 100 MHz can be resolved and measured to high precision (-1 part in 10⁴) using this technique. For a 100 MHz Stark splitting, the residual Doppler broadening is of the order 200 Hz and completely negligible relative to homogeneous broadening.

SQBS permits determinations of molecular dipole moments of electronically excited molecules to a precision better than 0.001 D. This is higher precision than had been thought possible or previously achieved. The high precision Stark coefficients that were determined for various rovibrational levels of the H₂CO \tilde{A} -state provide a convenient secondary standard for electric field strengths. H₂CO is a gas at room temperature. It can easily be introduced into any Stark cell for calibration by

observation of the quantum beat frequencies for a given rovibrational transition.

From a scientific point of view, the Stark effect of A-state H₂CO is interesting as a check on <u>ab initio</u> electronic structure calculations, as a probe of local S₀-S₁ perturbations, and as a check on a "vibronic coupling" model put forward by Innes [105]. The equilibrium geometry in the \tilde{A} -state has a significant bending angle between the CO bond and the HCH plane. For such configurations, the molecule can have components of the dipole moment both along the molecular a-axis (roughly parallel to the CO bond) and along the c-axis (roughly the "out-of-plane" direction). Stark coefficients are sensitive to both components, although the much less so for $\mu_{\rm C}$ than $\mu_{\rm a}$; $\mu_{\rm C}$ survives vibrational averaging only as a transition moment between inversion-doublet vibrational states (<u>e.g.</u> 4⁰ and 4¹ states). At the present state of data analysis, which is incomplete, it is possible to set a limit on the possible size of $\mu_{\rm C}$ which is close to the <u>ab initio</u> prediction of that quantity.

For a given vibrational state, the Born-Oppenheimer approximation preducts a simple and smooth variation of dipole moment with rotational state. The observed differences among the five J = 2 rotational levels of 4^{I} Å-state H₂CO do not follow such a simple pattern and probably owe to weak non-adiabatic S₁~S₀ interactions.

Finally, the Innes vibronic coupling model [6] makes definite predictions about the variation of the dipole moment with v₄ (the out-of-plane bending vibration) in terms of the dipole moments of the two unperturbed electronic states (\tilde{A} and \tilde{B}) that are coupled through the v₄ vibration. This model

succeeded remarkably well in fitting the observed v4 vibrational spacings of H₂CO, D₂CO and HDCO. It failed, however, to predict the observed trends with v4 of the dipole moments of H₂CO and D₂CO, at least when <u>ab initio</u> values of $\mu(\tilde{A})$ and $\mu(\tilde{B})$ are used. Further analysis of the v4 dependence is in progress. 6. Studies of Chaos in Molecular Systems (S. Halle, R. Jost, J.P. Pique)

One of the successes of SEP has been to provide experimental data on real molecules in an energy regime where it is likely that the corresponding classical systems would exhibit chaotic motion. Several criteria have been developed for extracting information from spectra about the extent and rate of unimolecular intramolecular vibrational randomization (IVR). These methods all rely on analyses of the statistical properties of dense spectra. Most of this work has relied on acetylene SEP spectra, and was not AFOSR supported. However, some specific applications were made to H_2CO spectra, and a number of computational efforts related to the AFOSR project are under way. Much of the theoretical work is being undertaken in collaboration with theorists at other institutions. Principal among these so far is a collaboration with the group of Maurice Lombardi, Remy Jost and Jean-Paul Pique at Grenoble. Two graduate students (Peter Green and Scott Halle) from the M.I.T. group have spent several months in Grenoble, and Dr. Pique just completed a year's stay at M.I.T. Besides the Grenoble connection, collaborations are starting with R. Wyatt and R. Friesner at Texas, with M. Kellman at Northeastern and R.D. Levine at Hebrew University. Each of these collaborations brings a different point of view to the analysis of SEP spectra.

R. Jost (Grenoble) has done an extensive numerical study aimed at discovering what kinds of interactions are required to convert a spectrum from one indicating regular dynamics into one indicating chaotic dynamics. He starts with a diagonal matrix whose matrix elements are randomly placed with

respect to each other in some range. Off-diagonal matrix elements are then added in a variety of ways, the complete matrix is diagonalized and statistical properties of the resulting spectrum are analyzed. Specifically, Jost examines the "Brody parameter" [7], an indicator of the distribution in spacing between nearest neighbor eigenvalues. Jost was able to show that almost any distribution of the off-diagonal matrix elements would lead to the same Brody parameter for the same <u>average</u> size of the off-diagonal element, provided that the matrix was not too sparse.

S. Halle of the M.I.T. group, in collaboration with Jost, has extended this work using a reasonable model for H₂CO. Halle generated diagonal matrix elements from a Dunham-type expansion, using experimentaly determined parameters fitted to a large set of lower-lying eigenvalues. To this he added plausible off-diagonal matrix elements for coupling between the various zeroth order states. This H₂CO-based calculation produced the same conclusions as Jost's earlier work, namely, that the Brody parameter provides a measure of the average coupling matrix element in the best possible anharmonic oscillator product basis set.

In another collaboration, with R. Wyatt and R. Friesner, extensive calculations using their RRGM technique [8] are being undertaken for the HCN molecule, a target for future experimental SEP study. These calculations use the best complete \tilde{A} and \tilde{X} state potential energy surfaces available for HCN. The RRGM methods allows accurate calculation of SEP transition intensities from a given \tilde{A} -state rotation-vibration level, without any computational restrictions on J', K_a ', or \mathfrak{L} ". These predicted transition strengths and level spacing patterns will provide insights into the dynamical interpretation and spectroscopic assignment of SEP spectra, even if the model for the \tilde{X} -state

15

Contraction of the local distribution of the

potential is inaccurate at the high energies expected to be sampled by SEP spectra. The computed SEP spectra will tell us what to look for, what resolution and dynamic range will be required, what the spectrum of H orbiting CN will look like, and how the spectral chaos measures will change when the classical dynamics changes from quasiperiodic to chaotic. As this work progresses, it is expected that a strong theory/experiment interplay will focus and redirect the course of action for both experiment and theory.

25555522

7. Dipole Moments in X1A1 H2CO (S. Halle, S. Taddy)

1.1.1. A. 2.2.2.2.4

Vaccaro et al [9] showed that the electric dipole moment in the \tilde{X} state of H₂CO could be expressed as a Dunham type polynomial

$\mu_{V} = \mu^{\circ} + \Sigma \mu_{i} v_{i} + \Sigma \mu_{ij} v_{i} v_{j}$ $i \qquad i > j$

for levels involving overtones and combinations of modes 2 and 4 up to a total energy of 6400 cm⁻¹. Using the same technique, SEP-Stark spectroscopy, Halle and Taddy measured dipole moments for several vibrational levels at $E > 6400 \text{ cm}^{-1}$ and for combination levels involving modes in addition to 2 and 4. The purpose of his work was to discover whether μ exhibits the increasingly pervasive mode mixing at high E in the same way as the vibrational energy levels and A + X transition intensities. The results of the new SEP-Stark experiments are being analyzed by Mr. Halle.

8. Rotational Reorientation in X¹A₂ H₂CO (S. Halle, S. Coy)

Using a linearly or circularly polarized PUMP, a single M_J -component of a O_{00} , 1_{01} , 1_{10} , or 1_{11} rotational level of the H_2CO Å-state can be populated. With a linearly or circularly polarized PROBE, populations may be measured for each M_J -component of all J>1 and some J=2 rotational levels. This OODR scheme

is similar to that used by Silvers <u>et al</u>. [10] to study single collision depolarization in BaO $A^{1}\Sigma^{+}$. There is the added complexity here that the depolarization accompanying collision induced transitions across the $1_{10} + 1_{11}$ asymmetry doublet cau be monitored. Propensity rules proposed by Alexander <u>et</u> <u>al</u>. [11] will be tested experimentally. The agreement between rate coefficients for rotation changing collisions inferred from Transient Gain/Absorption and Transient Polarization spectroscopies [5,12,13] implies remarkable persistence of orientation and alignment in rotionally inelastic collisions. The $1_{10} + 1_{11}$ asymmetry doublet transition is of particular significance because the M_J-selection rules for electric dipole $\Delta J=0$ transitions are qualitatively different from those for $\Delta J = \pm 1$ transitions. Furthermore, this is the only $\Delta J=0$ transition expected to have sufficient dipole intensity to be observable in our experiments. S. Halle and S. Coy have performed initial M_J-selective SEP-RET studies.

9. J-Dependent Quenching Rates in A¹A₂ D₂CO (S. Halle).

, ,

Vaccaro <u>et al</u>. [13] have shown that the explanation for the nonlinear Stern-Volmer behavior of $H_2CO \ A v_4=1$ is rapid RET combined with enormous J-dependent variations in predissociation rate [14]. This unimolecular mechanism cannot explain similar Stern-Volmer nonlinearities in D_2CO because the predissociation contributions to the single rovibronic level lifetimes in $v_4=1$ have been shown to be negligible [14].

S. Halle is ready to begin measuring total collisional depopulation rates for individual J_{KaKc} levels of $D_2CO \ \Lambda v_4=1$ by Transient Gain and Polarization spectroscopies. Using a collision partner (eg He) which is minimally effective in causing rotationally inelastic collisions, we expect to see

17

J. C. C. C. C. C. C.

22221222

significant variations in the depopulation rates which are associated with quenching (A D₂CO + D₂ + CO) rather than RET.

10. Tunneling in Intramolecularly Hydrogen-Bonded Molecules (R. Redington, Y. Chen, G. Scherer, and M. Hunter

The fluorescence excitation spectrum of the $\tilde{A}^{1}B_{2}-\tilde{X}^{1}A_{1}$ system of tropolone, cooled by supersonic jet expansion, has been recorded and assigned [15]. Tunneling doublets, associated with an internally hydrogen bonded H-atom transferring between two 0 atoms, have been resolved and interpreted. This work provides decisive examples of mode-specific tunneling. Small motions of heavy atoms remote from the light atom tunneling site, are shown to have enormous effects on the tunneling rates.

This work is being done by Professor R. Redington who is a frequent visitor to MIT from Texas Tech University. He has installed a supersonic jet apparatus in our SEP laboratory at MIT and, with Martin Hunter, has extended his study of tropolone to other isotopomers. We hope to use this apparatus to perform SEP spectroscopy on tropolone as well as other internally H-bonded molecules.

REFERENCES

No. S.

1.	HL. Dai, R.W. Field, and J.L. Kinsey, J. Chem. Phys. <u>82</u> , 2161 (1985).
2.	HL. Dai, C.L. Korpa, J.L. Kinsey and R.W. Field, J. Chem. Phys. <u>82</u> , 1688 (1985).
3.	HL. Dai, R.W. Field, and J.L. Kinsey, J. Chem. Phys. <u>82</u> , 1606 (1985).
4.	J.C. Weisshaar and C.B. Moore, J. Chem. Phys. <u>72</u> , 5415 (1980).
5.	P.H. Vaccaro, R. Redington, J. Schmidt, J.L. Kinsey, and R.W. Field, J. Chem. Phys. <u>82</u> , 5755 (1985).
6.	K.K. Innes, J. Mol. Spectrosc. <u>99</u> , 294 (1983).
7.	T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. <u>53</u> , 385 (1981).
8.	RRGM (Recursive Residue Generation Method): A.L. Nauts and R.W. Wyatt, Phys. Rev. Lett. <u>51</u> , 2238 (1983); N. Moiseyev, R.A. Friesner, and R.E. Wyatt, J. Chem. Phys. <u>85</u> , 331 (1986).
9.	P.H. Vaccaro, J.L. Kinsey, R.W. Field, and HL. Dai, J. Chem. Phys. <u>78</u> 3659 (1983).
10.	S.J. Silvers, R.W. Field, and R.A. Gottscho, J. Chem. Phys. <u>74</u> , 6000 (1981).
11.	M. Alexander, J. Chem. Phys. <u>76</u> , 429 and 5974 (1982).
12.	F. Temps, S. Halle, P.H. Vaccaro, R.W. Field, and J.L. Kinsey, J. Chem. Phys. <u>87</u> , 1895 (1987).
13.	P.H. Vaccaro, F. Temps, S. Halle, J.L. Kinsey, and R.W. Field, J. Chem. Phys. <u>88</u> , 000 (1988).
14.	C.B. Moore and J.C. Weisshaar, Ann. Rev. Phys. Chem. <u>34</u> . 525 (1983).
15.	R.L. Redington, Y. Chen, G.J. Scherer, and R.W. Field, J. Chem. Phys. <u>88</u> 000 (1988).

ENDING EXCERT REPORT

2.2.2.2.2

D. Cumulative List of Publications Resulting from AFOSR Supported Research

"The CaO D,d^{1,3} Δ -a³I System: Sub-Doppler Spectrum, Rotational Analysis, and Deperturbation", R.F. Marks, R.A. Gottscho, and R.W. Field, Physica Scripta <u>25</u>, 312-328 (1982).

"The Orange Arc Bands of CaO: Analysis of a $D,d^{1,3}\Delta-a^{3}\Pi$ System", R.F. Marks, H.S. Schweda, R.A. Gottscho, and R.W. Field, J. Chem. Phys. <u>76</u>, 4689-4691 (1982).

"Selective Vibrational Excitation of Formaldehyde \tilde{X}^1A_1 by Stimulated Emission Pumping", D.E. Reisner, P.H. Vaccaro, C. Kittrell, R.W. Field, J.L. Kinsey and H.-L. Dai, J. Chem. Phys. 77, 573-575 (1982).

"Single Eigenstate Polyatomic Molecule Vibrational Spectroscopy at 1-4eV", H.-L. Dai, E. Abramson, R.W. Field, D. Imre, J.L. Kinsey, C.L. Korpa, D.E. Reisner, and P.H. Vaccaro, Springer Series Opt. Sci. <u>40</u>, 74-77 (1983).

"Electric Dipole Moments of Excited Vibrational Levels in the \bar{X}^1A_1 State of Formaldehyde by Stimulated Emission Spectroscopy", P.H. Vaccaro, J.L. Kinsey, R.W. Field, and H.-L. Dai, J. Chem. Phys. 78, 3659-3664 (1983).

"Long Range Behavior of the Gerade States Close to the ${}^{2}P_{3/2} + {}^{2}P_{3/2}$ Iodine Dissociation Limit by Laser-Induced Fluorescence Fourier-Transform Spectroscopy", F. Martin, S. Churassy, R. Bacis, R.W. Field, and J. Verges, J. Chem. Phys. 79, 3725-3737 (1983).

"Direct Observation of High-Lying ${}^3\pi_g$ States of the Na2 Molecule by Optical-Optical Double Resonance," Lf Li and R.W. Field, J. Phys. Chem. 87, 3020-3022 (1983).

"Stimulated Emission Spectroscopy: A Complete Set of Vibrational Constants for \tilde{X} ¹A₁ Formaldehyde", D.E. Reisner, R.W. Field, J.L. Kinsey, and H.-L. Dai, J. Chem. Phys. <u>80</u>, 5968-5978 (1984).

"Laser Population of Highly Excited Vibrational Levels of Molecules", E. Abramson, H.-L. Dai, R.W. Field, D.G. Imre, J.L. Kinsey, C. Kittrell, D.E. Reisner, and P.H. Vaccaro, pp. 393-404 in Lasers as Reactants and Probes in Chemistry, W. Jackson and A.B. Harvey, (eds.), Howard University Press, 1985.

"Rotation Induced Vibrational Mixing in \tilde{X} ¹A₁ Formaldehyde: Nonnegligible Dynamical Consequences of Rotation", H.-L. Dai, C.L. Korpa, J.L. Kinsey, and R.W. Field, J. Chem. Phys. 82, 1688-1701 (1984).

State-Specific Rates of $H_2CO(S_0) + H_2 + CO$ at Energies Near the Top of the Barrier: A Violation of RRKM Theory?", H.-L. Dai, R.W. Field, and J.L. Kinsey, J. Chem. Phys. 82, 1606-1607 (1985).

Publications (continued):

"Intramolecular Vibrational Dynamics Including Rotational Degrees of Freedom: Chaos and Quantum Spectra", H.-L. Dai, R.W. Field, and J.L. Kinsey, J. Chem. Phys. <u>82</u>, 2161-2163 (1985).

21

"Rotational Relaxation in the H_2CO A ${}^{1}A_2$ State by Transient Gain Spectroscopy", P.H. Vaccaro, R. Redington, J. Schmidt, J.L. Kinsey, and R.W. Field, J. Chem. Phys. 82, 5755-5756 (1985).

"Electronic Assignments of the Violet Bands of Sodium", G. Pichler, J.T. Bahns, K.M. Sando, W.C. Stwalley, D.D. Konowalow, Li Li, R.W. Field, and W. Müller, Chem. Phys. Lett. 129, 425-428 (1986).

"Stimulated Emission Pumping: New Methods in Spectroscopy and Molecular Dynamics", C.E. Hamilton, J.L. Kinsey, and R.W. Field, Ann. Rev. Phys. Chem. <u>37</u>, 493-524 (1986).

"Collisional Energy Transfer in Highly Vibrationally Excited H₂CO (\tilde{X}^1A_1) " F. Temps, S. Halle, P.H. Vaccaro, R.W. Field, and J.L. Kinsey, J. Chem. Phys. 87, 1895-1897 (1987).

"Polarization-Detected Transient Gain Studies of Relaxation Processes in $v_4 = 1$ Å ${}^{1}A_2$ Formaldehyde- h_2 ", P.H. Vaccaro, F. Temps, S. Halle, J.L. Kinsey, and R.W. Field, J. Chem. Phys. <u>00</u>, 0000-0000 (1988).

"Laser Fluorescence Excitation Spectrum of Jet-Cooled Tropolone: The $A^1B_2 - X^1A_1$ System", R.L. Redington, Y. Chen, G.J. Scherer, and R.W. Field, J. Chem. Phys. <u>00</u>, 0000-0000 (1988).

"Vibrationally Excited Formaldehyde: The Relationship between Vibrational Structure and Collisional Properties", F. Temps, S. Halle, P.H. Vaccaro, R.W. Field, and J.L. Kinsey, Faraday Discussion on Molecular Vibrations, 1987, J. Chem. Soc. Faraday Trans. 2, <u>84</u>, 000-000 (1988).

High Resolution Spectroscopy of Small Molecules", R.W. Field, J. de Physique, Conference Laser M2P, 1987.

M.H. Alexander, P. Andreson, R. Bacis, R. Bersohn, F.J. Comes, P.J. Dagdigian, R.N. Dixon, R.W. Field, G.W. Flynn, K.-H. Gericke, B.J. Howard, J.P. Huber, D.S. King, J.L. Kinsey, K. Kleinermanns, A.C. Luntz, A.J. MacCaffery, B. Pouilly, H. Reisler, S. Rosenwaks, E. Rothe, M. Shapiro, J.P. Simons, R. Vasudev, J.R. Wiesenfeld, C. Wittig, and R.N. Zare, "A Nomenclature for A Doublet Levels in Rotating Linear Molecules," J. Chem. Phys. 00, 0000-0000 (1988).

E. Personnel

1. Visiting Scientists

Professor Richard Redington (H₂CO TGS and TPS, tropolone) Texas Tech University Lubbock, Texas

2. Postdoctoral Associates

Dr. S.L. Coy (H₂CO SEP and MODR) Dr. Hai-Lung Dai (H₂CO SEP) Dr. Charles Hamilton (HCN) Dr. Jean-Paul Pique (Quantum Ergodicity) Dr. Friedrich Temps (H₂CO, TPS, TAPS)

3. Graduate Students

Scott Halle $(H_2CO \text{ and } D_2CO \text{ SEP, Quantum Ergodicity, Stark}$
Effect, TGS and TPS)David Jonas(Quantum Ergodicity, HCN)James Lundberg $(NH_2^T + O_2)$
Patrick VaccaroPatrick Vaccaro $(H_2CO \text{ TGS, TPS, TAPS})$

4. Undergraduate Students

Martin Hunter	(Deconvolution of Transients, tropolone)
Stephanie Taddy	(H ₂ CO Stark Effect)
Ann Zabludoff	(H2CO, D2CO Stark Quantum Beats)

- F. Interactions: Spoken Papers (since 1984)
- R.W. Field, "A Time Independent View of Intramolecular Vibrational Redistribution: Coriolis Perturbations in Formaldehyde and Quantum Chaos in Acetylene," International Conference on Radiationless Transitions, Newport Beach, California (January 1984).
- 2. R.W. Field, "A High Resolution Spectroscopist's View of the Structure and Dynamics of Vibrationally Hot Polyatomic Molecules", Syracuse University, Department of Chemistry (February 1984).

- 3. R.W. Field, "Stimulated Emission Spectroscopy: Structure, Isomerization, and Chaos", University of Pennsylvania, Department of Chemistry (April 1984).
- R.W. Field, same as #3, MIT Modern Optics and spectorscopy Series (May 1984).
- 5. J.L. Kinsey, "Chemical Dynamics Studied by Emission Spectroscopy of Dissociating Molecules," Harvard University (January 1984).
- 6. J.L. Kinsey, same as #5, Northeastern University (January 1984).
- 7. J.L. Kinsey, same as #5, University of Rochester (February 1984).
- 8. J.L. Kinsey, "Stimulated Emission and Qunatum Beat Spectroscopy of Formaldehyde and Acetylene", 8th International Symposium on Gas Kinetics, University of Nottingham, England (July 1984).
- 9. P.H. Vaccaro, "Rotational Relaxation in the $v_4 = 1$ Vibrational Level of H₂CO A^1A_2 by Transient Gain Spectroscopy", Molecular Spectroscopy Symposium at Ohio State University (June, 1984).
- A. Zabludoff, "Dipole Moments in the Out-of-Plane Bending Levels of Å¹A₂ Formaldehyde-h₂ and -d₂", Molecular Spectroscopy Symposium at Ohio State University (June, 1984).
- 11. R.W. Field, "A Spectroscopic Quest for the Holy Grail", University of Texas, (January 1985).
- 12. R.W. Field, "Structure, Isomerization, and Quantum Ergodicity in S₀ Acetylene", Rice University (January, 1985).
- 13. R.W. Field, "What Does High Resolution Spectroscopy Have to Say About Structure, Chaos, and State-Specific Chemistry", Shell Research and Development, Houston (January 1985).
- R.W. Field, same as #12, Herzberg Institute for Astrophysics, Ottawa (April, 1985).
- R.W. Field, same as #13, AT&T Laboratories, Murray Hill, NJ (April 1985).

Interactions: Spoken Papers (continued):

- R.W. Field, same as #12, Université Claude Bernard, Lyon, France (June, 1985).
- R.W. Field, same as #13, Université Paris-Sud, Laboratoire Photophysique Moléculaire, (June 1985).
- R.W. Field, "Ergodic Spectra, Isomerization, and Quantum State Specificity by High Resolution Spectroscopy", Gordon Research Conference on Molecular Energy Transfer (July, 1985).
- R.W. Field, "Spectroscopic Studies of Tunnelling in Li₂, Na₂, and Acetylene", Tunneling Sumposium, American Chemical Society National Meeting, Chicago (September, 1985).
- 20. R.W. Field, "Quantum Ergodicity: Real Spectra of a Real Molecule", Workshop on Quantum Chaos, University of Rochester (October, 1985).
- 21. R.W. Field, same as #13, Columbia University (October 1985).
- 22. R.W. Field, same as #13, Wayne State University (October 1985).
- 23. R.W. Field, co-organizer (with E.J. Heller) of Symposium on <u>Structure and</u> <u>Dynamics of Rotationally and Vibrationally Highly Excited Polyatomic</u> Molecules (September 1985).
- 24. R.W. Field, "Spectroscopy of Vibrationally Highly Excited Acetylene: Toward a Time Dependent View of Quantum Ergodicity," University of California, Berkeley, Department of Chemistry, (February 1986).
- R.W. Field, "Vibrationally Hot Formaldehyde: Is There Any Connection Between Spectroscopic and Collisional Properties?" University of California, Berkeley, Department of Chemistry, (February 1986).
- 26. R.W. Field, "Vibrationally Hot Acetylene," The Aerospace Corporation, (February 1986).
- R.W. Field, "Vibrationally Hot Acetylene and Formaldehyde: Techniques, A Quiz, and the Case of the Missing δ-Levels," Brandeis University, Department of Chemistry, (March 1986).
- R.W. Field, "Spectroscopy of Vibrationally Highly Excited Molecules: Toward a Time Dependent View of Quantum Ergodicity," Cornell University, Department of Chemistry, (March 1986).
- R.W. Field, "Vibrationally Hot Acetylene: What is Quantum Ergodicity Anyway?" State University of New York, Buffalo, Department of Chemistry, (March 1986).

Interactions: Spoken Papers (continued):

ACCORD MANYARE SOUGHER MANYARE INCOMENT

- 30. R.W. Field, Distinguished Visiting Lecturer, University of Texas, Austin, Department of Chemistry, (March 1986):
 - 30a. "The Evolution from Trivally Assignable to Intrinsically Unassignable Spectra: From RKR to RRKM,".
 - 30b. "Quantum Ergodicity: Time Scales, What is Accessable?, and Collisions,".
 - 30c. "Stark and Zeeman Quantum Beat Spectroscopy of Formaldehyde and Acetylene,".

30d. "Tunneling in Li2, Na2, H2CO, and HCCH,".

- 31. R.W. Field, "Missing Levels in Vibrationally Hot Acetylene," Rutgers University, Department of Chemistry, (April 1986).
- R.W. Field, "Vibrationally Hot Acetylene: Quantum Chaos, Isomerization, and Spectroscopic Mysteries," Iowa State University, Department of Chemistry, (April 1986).
- 33. R.W. Field, "Dynamical Information from Intrinsically Unassignable High Resolution Spectra," Gordon Conference on Vibrational Spectroscopy, Wolfeboro, (August 1986).
- 34. R.W. Field, "From Quantum Beats to Triple Resonance but What on Earth For?", Massachusetts Institute of Technology, Department of Chemistry, (September 1986).
- 35. S. Halle, "Collisional Energy Transfer in Highly Vibrationally Excited $H_2CO(X^1A_1)$," Poster, American Chemical Society, Denver, (April 1987).
- 36. Y. Chen, "A Spectroscopic Study of Acetylene Vinylidene Isomerization", Poster, American Chemical Society, Denver, (April 1987).
- 37. C.E. Hamilton, "Local Bending Vibrations in the $A^{1}A$ " and $X^{1}\Sigma^{+}_{g}$ States of Monodeuterated Acetylene", Poster, American Chemical Society, Denver, (April 1987).
- R.W. Field, "Acetylene: Dissociation, Isomerization, and Quantum Chaos", Joint Institute for Laboratory Astrophysics, Boulder, Colorado (April 1987).
- 39. R.W. Field, "Acetylene: Dissociation, Isomerization, and Quantum Chaos", Ohio State University, Department of Chemistry, (May 1987).
- 40. R.W. Field, "Spectroscopic Studies of Acetylene", DoE Contractor's Meeting, Mills College (June 5, 1987).

- 41. R.W. Field, "Acetylene: Isomerization and Dissociation", Invited Talk International Discussion Meeting on Intramolecular Processes, Grainau, Germany (August 19, 1987).
- 42. R.W. Field, "Acetylene: Isomerization and Dissociation", Invited Talk, The Chemistry and Photophysics of Energetic Species, University of Soutern California, (September 11, 1987).
- 43. R.W. Field, "Acetylene: Isomerization, Dissociation, and Chaos", University of Washington, Department of Chemistry (October 14, 1987).
- 44. R.W. Field, "Acetylene: Dissociation, Isomerization, and Quantum Chaos", Chemistry Division, Oak Ridge National Laboratory (October 23, 1987).

None.

G. Patents

END DATE FIMED 4-88 DTIC