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of an optical connection scheme to transform objects to parameter spaces. A
more complex system was built that demonstrated discrete space-invariant
connection patterns. This worked satisfactorily. The current work involves
designs for holographic space-variant connection patterns.
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1 Summary

In this work, the investigators explored the area of neural-net associative memo-
ries and their optical implementations. We addressed the problem of organizing
an associative memory to reflect known structure in the pattern. Because the
structure is encoded as a model in the memory, the memory differs consider-
ably from simple pattern matchers (such as the Hopfield content-addresssable
memory) where an iconic version of the pattern itself is stored. Early work con-
centrated on the idea of encoding a compositional hierarchy within the memory.
A simulator was built to explore the use of this memory in a domain of simple
shapes. Though this worked well, the theory was inadequate to explain and
predict the behavior of the memory. An optimization approah was adopted in
which the goal of the computation could be succinctly stated in a mathematical
objective function. In this work, the ideas of compositional as well as inheritance
hierarchies were encoded directly into the objective function. A simulator was
completed that demonstrated these ideas. Optical implementation of this type
of memory was concerned with the problem of implementing ever more general
interconnect patterns. The investigators began with the construction of a sys-
tem that computed Radon Transforms of the input object. This award-winning
work demonstrated the necessary first step of an optical connection scheme to
transform objects to parameter spaces, but it was limited in scope. A more
complex system was built that demonstrated discrete space-invariant connec-
tion patterns. This worked satisfactorily. The current work involves designs for
holographic space-variant connection patterns.
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2 Introduction

The following is a summary of progress accomplished over the two-year grant
period. A number of papers, Tech reports, etc. are referenced at the end of this
Final report.

The overall theme of the project was the investigation of issues in the orga-
nization of visual memory. The project was pursued at the theoretical level as
well as at the level of hardware organization, where issues in the optoelectronic
implementation of these memorie were pursued.

This project grew out of earlier work in optical pattern recognition. In this
earlier work [23], it was attempted to compute (at very high speeds) features of
objects for the purposes of recognition. An important feature that we considered
was the Hough Transform, basically the mapping of the input image into a
parameter space. It was noted that the design of a certain class of associative
memories was based on a generalization of the Hough Transform [18]. This
generalization led to the present work in neuromorphic associative memories.

Below we list a summary of accomplishments completed during the grant
period. This is foliwed by a more detailed discussion.

A
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3 Summary of Completed Research

Below is a succint summary of accomplishments of the grant period. Each item
is followed by a reference to an appropriate paper or technical report that gives
a more detailed account.

* The development and implementation of a system for shape recognition [6],
[7] was completed. This program matches structural (graph) descriptions of
shape to a database of structural models that are arranged hierarchically
to permit indexing. In addition, work on a shape-parsing program -
a program that forms structural representations from input images-was
completed [91.

* We developed an optimization-based neural net to implement the structural
pattern recognition tasks mentioned above [49]. [50]. We show results of
this in the body of the Final Report.

* In our effort to explore distributed representations, we analyzed Winner-
Take-All (WTA) networks and devised a new WTA architecture based on
linear threshold units [14].

o We analyzed the "unfolded" version of the Hopfield associative memory and
showed that it evolved in a manner somewhat different than that of the
original model [16]. We performed a statistical analysis of this version for
randomly coded memories and showed that this version exhibited improved
performance [16].

* We completed work on a neural net that implements a three-level composi-
tional hierarchy in the domain of simple pattern recognition [19] [21]. This
work was a necessary precursor to our current efforts.

* We wrote a fairly elaborate neural-net simulator for use as a development
tool [22]. The simulator allows the user to conveniently design and monitor
the network through a graphics interface. It is avilable to other members

of the research community.

* We evaluated the technological alternatives available to the implementation
of optical neural networks.

e We built a simple optical neurocomputer for the solution of the correspon-
dence problem in stereo vision. Our intrerest was not in the sereopsis
problem, but in the particular space-inavariant connection pattern associ-
ated with this problem. Several alternative architectures where constructed
and evaluated including a system that used time multiplexed connection
patterns and a system that implemented a two-channel bias subtraction
technique. The later architecture is amenable to all-optical neural net-
works. The results of this work were presented at the upcoming IEEE
conference on neural networks[48] and are discussed in the body of this
Final Report.

4



4 Discussion

The work is best described within three categories. The first concentrates on
issues in the design of a model-based associative memory described above. The
second focusses on some of the detailed issues in the design of such memories;
the third area involves issues in optical hardware implementation of associative
memory.

4.1 Visual Memory

In this section we consider the problem of deriving an associative memory for
the storage and matching of structural representations of visual patterns. Ap-
propriate questions here were:

* What is a suitable structural description of a visual pattern?

9 How are the descriptions themselves organized for efficient indexing?

e How is all this represented in a neural network?

* What is a suitable objective function for optimization?

We consider each item and point out progress made.

4.1.1 Representation and organization of visual memory

In order to implement a neuromorphic associative memory that works on struc-
tural representations of visual patterns, it was necessary to first invent a suitable
representation. Substantial progess has was made in this area, and the results
are summarized in two papers [6] [7].

The representation is described in a domain of simple stick figure shapes and
follows the general requirements of a shape representation as given by Marr and
Nishihara [8]. As seen in Fig.1, these stick figures may be assumed to have been
derived from a preprocessor that is able to parse the shape into elongated regions
described by generalized cylinders[2]. For the present case, we assume that the
shape is simple enough that a linear axis is sufficient to describe the elongated
region, thus reducing the shape to a stick figure . While it is clear that a linear
stick-figure is far too simple a representation for a sophisticated vision system,
we emphasize again that the problem lies not in the area of design of advanced
vision systems, but in its neural implementation. In this case, the challenge is
considerable.

In fact, we made progress in much more elaborate shape parsing systems as
reported in [9], but the description produced by this system was too complex to
use in the neural net implementation. The work in [9] was able to take a shape
in the form of a 2-D closed contour and segment it into elongated regions based
upon heuristics. Each region had a set of symbolic descriptors assoociated with
its coontour and its interior. Included also were symbolic descriptors of the joins
between regions.

59'9 'NL~,
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The important aspects of this shape representation were that it was able to
represent objects independent of scale, translation, rotation; and was able to
organize shapes into inheritance and compositional hierarchies to allow efficient
indexing. Thus a model could be accessed by verification of its parts, and by
focusing attention on those models which were shape descendants of models
higher up in the discrimination tree. Parent-child relationships could be defined
geometrically with the aid of shape parameters [61.

4.1.2 Neural Implementation

The basic idea here was to have the nodes of the neural network represent match-
ing hypotheses between memory and input, and have the connection weights
encode the models and input object. This work is described in [50] and [49] and
is briefly reviewed here.

A node in the network Mx,. , is labelled by X, which indexes "objects" and
"parts" in the memory (the distinction between these blurs) and by s, which
indexes parts (sticks) of the input scene. The value of the node reflects the
confidence that object X is matched with stick s and is essentially the definition
of a node in a graph-matching network proposed by Mjolsness[11]. The value of
M may be taken as a real number between 0 and 1.

The IS-A inheritance hierarchy that organizes objects in the database is
captured in a sparse binary matrix ISAx,y defined as unity if object Y is a
child of object X in the IS-A tree hierarchy and zero otherwise. For example,
ISApane ,je = 1 while ISA=amaije - 0 in the IS-A tree. The IN-A hierar-
chy in the model database is captured by a sparse binary matrix INAxy that
is unity if part Y is a child of part X in the L-level decomposition tree of the
model. Similarly, the sparse binary matrix ina,,, captures IN-A relationships
of the input data. The ina,,, matrix is unity if stick t is a child of stick s in
the L-level decomposition of the input scene, and is otherwise zero. These three
matrices thus constitute the necessary data items that capture the organization
of memory and input object. We defer consideration of representing adjunct
relations and instances to material below.

Given this organization of the data structures in terms of sparse matrices,
the problem is to formulate an objective function that assumes local minima
when an input object matches a model. The objective function is composed of
three terms, conveniently referred to as the "triangle" rule, the "choose" rule and
the "rectangle" rulef 11. Consider the situation shown in Fig 7. The triangle

represents a situation where ISAx,y = 1 , that is, object Y is a specialization of
object X. If stick s is matched as the mainpart of object X, then the objective
function should be lowered in the matching situation where stick s is also the
mainpart of the more specialized object Y. The proper term in the objective
function that captures this rule is the quadratic

El= -A E E 1 ISAxyMx.My,. (1)
X Y 8
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where A is a constant.
The "choose" rule implements the notion that, given several competing chil-

dren nodes of a parent node in the IS-A hierarchy that are all match candidates
for a common stick s, only one child should be activated. For example, a plane is
a jet or a propeller plane, but not both. It is possible to ensure this exclusive-or
condition by suitably defining parameter ranges. The choose condition is illus-
trated in Fig. 8, where object a is the parent in the IS-A hierarchy of objects X,
and X2. One would like the objective function to be a minimum when one of the
terms Mx3 1 , Mx 2,8,... is unity and the rest zero. This is achieved by mimizing
the term

E2 = +B y ISAa, Mxa - (2)
a * X

Here, the index X runs over objects X 1, X 2,... that are children of parent object
indexed by a, and the index s runs over candidate sticks in the input scene. The
term B is a constant.

The "rectangle rule" implements the parameter range matching. It says
essentially that if items X and Y are related by an INA relationship defined by
suitable parameter ranges , and if sticks s and t are related by an ina relationship
associated with instances of parameters p, 0, x, y that fall within the ranges, then
the matches Mx,. and My,, should be increased. For example,two sticks in
the object that are consistent with geometrical relationships stored in a wing-
engine model should activate an increase in the two match nodes that hypothesize
matches between wing and its allied stick and engine and its allied stick. This
situation is illustrated in Fig. 9 where X,Y,s,and t are arranged as a rectangle
with the matching nodes on the horizontal links and the INA and ina entries

on the vertical links. The appropriate term in the objective function for this
situation is:

E3 = -C Mx,.My,1INAx,yina,trx,y (Vj,) (3)
X Y I

where C is a constant. The sum of the three terms E, + E2 + E3 is the objective
function for our system.

The term 3rx,y is a function of the the four adjunct parameters and is indexed
by the IS-A link between and X and Y. Its argument is V., a vector consisting
of the values of the adjunct variables existing between s and t. If the values fall
well within the ranges allowed by 7, a low value is returned; else it is high. Fig.
10 shows a plausible depiction of 7 as a function of 0 where the best values of 0
are centered about zero. From this it is easy to see that arbitrary relations, not
just simple inequalities may be implemnted in the adjunct relations. Though 7
has been treated as a hardwired data item, we point out that it is possible to
modify it with a learning procedure. A relevant discussion for the non-neural
case is found in 15).

Figure 11 shows how the triangle and rectangle structures are arranged in or-
der to capture the organization of the memory. In this example, the object "root"

7
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I.

is linked via the IS-A hierarchy to an object "plane" via a triangle stucture. Of
course, other triangles associating "root" with "mammal" or other high-level ob-
jects are not shown. Shown is the triangle associated with stick 33 in the input
scene. The node Mptg,33 receives bottom-up support from the rectangle struc-
ture associated with "plane", stick33,"left-wing", and stick 17. Only one rect-
angle is shown; but one for each part would, in fact, be present. Object "plane"
is specialized to "jet" via the lower traingle shown. The polygon formed by the
four links ISApianlej, and ISAteft -wing,lef t-swept -wing, and INAplaneef- -wing

and INAjet,lcft- wept-wing implement the specialization action of the shape in-
dexing system. For plane to specialize to jet, the wing must become a swept
wing. Two mechanisms make the wing a swept wing: The parameters become
more specialized in that the parameters stored in V33 ,1 7 associated with stick 17
relative to 33 satisfy the more stringent 'et,left-swept-,ing requirement instead
of the lax Yplano, lf-wing function. This specialization is thus implemented by
the polygon and two rectangles. The specialization may be further enhanced
by finding additional parts that define a left-wing as a left-swept-wing. This
latter situation is shown by the rectangle that posits a jet-engine as part of a
swept-wing. In this manner of cascading, the network is organized.

Given the quadratic (in M) objective function, we may calculate the connec-
tion weights between nodes and bias terms on each node in a manner following
Hopfield and Tank [20]. One merely equates the generic quadratic energy term
of any network[12]

E - E Tx.,y1Afx.Myt- E IXaMX, (4)
X,s,Y,t Xs

(here written in the appropriate double indices) with the energy terms of the
present network and solves for the connection weights Tx,,y, and bias terms

IX,. The answer is

Txay, = -A6,,tISAX,y - B6,,, ISA,,xISA,y - Cina,,tINAx,y Fx,y (V ,)

VP.. (5)
and

IX, = -2B E ISAOx (6)

These two terms determine the structure of the network. The dynamics follow
[20] the prescription:

dux,/dt = -(ux,)/r + E TxaYtyg + Ix. (7)
X,a,~t"

where r is a constant and A' = g(u) is a monotonic sigmoidal mapping. The
objective function is minimzed as the network updates by the above differential
equation.

8



ACCOMPLISHMENTS

VISUAL MEMORY: DESIGNED AND IMPLEMENTED WORKING VISUAL MEMORY FOR j
DOMAIN OF STICK-LIKE OBJECTS.

INPUT: SPARSE BINARY MATRIX ina.t STORES STRUCTURAL REPRESENTATION

OF INPUT IMAGE. MATRIX IS UNITY IF PARTS s AND t SATISFY PART-OF DEF-

INITION. PARAMETER VECTOR Pst STORES GEOMETRICAL RELATIONSHIPS

BETWEEN PARTS.

MODEL: SPARSE BINARY MATRIX INAXY STRUCTURAL REPRESENTATION OF

MODEL. MATRIX IS UNITY IF MODEL PARTS X,Y ARE PARTS OF SAME OBJECT.

NOTION OF SIMILARITY CONTAINED IN FUNCTIONAL FORM FXY. THEN

F xy(P st) IS A NUMERICAL MEASURE OF HOW WELL GEOMETRICAL RELATION-

SHIPS OF PARTS s AND t FIT MODEL REQUIREMENTS BETWEEN PARTS X and Y.
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The system described was simulated on a VaxStation II workstation using
extensive visualization provided by graphical representations of the match net-
work. Fig. Ila shows the system displayed as a match matrix. Each circle is
a match neuron whose value is coded as the diameter of the blackened interior
region. Its column indicates to which model it belongs while its row indicates
to which stick it is being matched. As shown the system is in an intermediate
state: it has matched the parts of an airplane and is successfully on its way to
matching a jet. The jet is a specialization of plane related to it through an ISA
hierarchy.

4.2 Distributed Representation

One of the hallmarks of neural network memories is that the items are distributed
over many nodes [1]. Such distributed representation is necessary for efficiency
in that many memories may share the same nodes; and is necessary for error
tolerance in that if a single node fails, only small fractions of each memory are
lost. For example, in the visual memory discussed in the previous section, each
node posits a single hypothesis (item X matches stick s); if this node is in error,
so is the hypothesis since the information is not distributed over many nodes. In
this section we discuss problems in distributed representation that were explored
in our previous research. We intend to continue this line of work in hopes of
deriving better architectures for networks for model-based recognition.

4.2.1 Background

A generic structure within which to discuss the coding (distributed representa-
tion) problem is offered in [131 and is illustrated in Fig. 12a. One may think
of an associative memory as a three-layer system consisting of an input layer, a
processing layer, and an output layer. If the memories presented to the input
layer have known structure, for example, they are sparse, then they may be ef-
ficiently encoded in an internal represenation in the middle layer. The weights
on the links between the input and processing layers encode the memories. In
this layer, competition between memories occurs until a stable state is reached.
The weights on the links between the processing and output layers perform the
decoding operation. The emphasis here is not necessarily on learning algorithms
that use error propagation techniques to learn codes, but on codes, derived by
any means, that lead to efficient and robust representations for the problem at
hand.

4.2.2 Alternatives to Outer-Product Memories

Our early work led us to investigate properties of the Hopfield associative content-
addressable memory (ACAM) [3]. In the Hopfield ACAM, memories are encoded
via an outer-product scheme. It can be shown that the Hopfield ACAM can be

9
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cast in the form of Fig. 12b if the proper identifications are made. These identi-

fications associate one processing node with each of the stored memories in the
network, and assign the weight between node i of the input layer and node s of
the processing layer to be merely the value of bit i of memory s. The decoding
links each have weights identical to the encoding links and may be eliminated if
the encoding links are considered to be bidirectional.The processing nodes are
purely summation units with no thresholding, and there is no internal compu-
tation in the processing layer. Rather, the net evolves by iterating back and
forth between the two layers until stability is reached. This decomposition or
"unfolding" of the Hopfield net is described in quantitative detail in our report
[14].

This unfolded representation of the Hopfield net is interesting for several
reasons. The representation in the upper layer is unary; each node is a "grand-
mother" cell associated with one and only one memory, while each node in the
input layer is associated with all memories. The weighted links between layers
thus translate between two extremes of representation. One line of investigation
undertaken explored some of the tradeoffs in going from a totally distributed to

% a totally unary representation.
The results of this investigation, reported in [14] are briefly summarized.

The unfolded net of Fig. 12b is equivalent to the standard 2nd-order correlation
Hopfield net that has a storage capacity of roughly N, the number of input

nodes. At the other extreme, competition may be removed to the processing
layer where a mutual-inhibitory "winner-take-all'(WTA) network chooses the
maximum among the analog valued nodes as shown in Fig.12c. In this case,
the storage capacity approaches 2N, the theoretical maximum and is limited
practically by the ability of the WTA network to discriminate closely spaccd

analog values. In [14], we present an analysis of the relative storage capacities
of the two nets given that the WTA version is limited by system noise and the
Hopfield net is limited by "crosstalk" between memories. The Hopfield net trades
off storage capacity for error tolerance, and the WTA version does the opposite.
In [14], we propose a particular architecture for the WTA network. It consists
of two intercalated pyramids of linear threshold units.

The Hopfield net may be viewed as a 2nd-order correlation network, and the
WTA an Nth order one. In between these extremes, a pth-order outer-product
memory may be implemented merely by raising processing node values to the

power p- 1 before projection down to the input layer [15]. As p gets higher, the
exponentiation in the processing layer acts more like a max finder in that the
ratio of the largest exponentiated value to all others approaches infinity. As p
approaches N, the memory behaves identically to the WTA version of Fig.12c.

Viewed as a dynamical system that minimizes an energy function, we showed
that the unfolded version of the Hopfield net in Fig. 12b has a curious property:
nodes are updated such that the energy reduction at each step satisfies

AE < -C, (8)

10
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where C is a constant associated with each node. For outer-product memories,
C equals the number of stored memories; for general networks, it equals the ith
diagonal term Ti of the connection matrix. That is, the system looks for suffi-
ciently steep excursions down the energy surface before it changes. This point is
discussed in [16] [51]. For randomly coded memories [3], this "greedy" behavior
results in improved performance relative to the Hopfield model. An interest-
ing benefit is that optical architectures for outer-product memories naturally
follow this unfolded architecture [16] so the improved performance benefits the
implementation.

4.2.3 Compositional hierarchy

We described earlier the theme of presenting structured visual patterns as a
graph to be matched against similarly structured models stored in a memory.
Our earlier interests centered on a somewhat more direct approach of represen-
taing structured patterns as a compositional hierarchy of features. This idea of
a hierarchy of feature detectors is pervasive throughout the connectionist litera-
ture. The basic idea is simple; for example [17], an idealized form of a "chair" is
composed of a spatial arrangement of rectanguloids, these are in turn composed
of planar rectangular regions which are composed of joined lines and so on. In
a connectionist memory, the initial layer is composed of local feature detectors,
i.e. local upconnects to nodes that posit a low-level feature. These feature nodes
serve as input to a higher level whose nodes posit rectangular planar regions;
the scheme continues until a complete object is represented by a "grandmother
cell" at the apex of the hierarchy. A given node is indexed by its level in the
hierarchy and parmeters such as location and orientation of the feature.

We built a three-layer compositional hierarchy to recognize arbitrary 2-D
shapes structured at three levels of composition: corners, squares, and arrange-
ments of squares. The connection pattern for such memories is local in that a
node at layer I upconnects only to those nodes at 1 + 1 of which it can possibly
be a part of, and a node at layer I + 1 downconnects only to those nodes that
might compose it. This Hough transform connection scheme follows principles
advocated in [17] and in the "parameter net" architecture of Ballard[181. The
details of our work are presented in [21] [19] and this appears in the Appendix.

A rather elaborate neural-net simulator was built to run this compositional
hierarchy. This simulator described in [221, allows the user to engineer and run
the net interactively with a mouse. The state of the net is presented in iconic
forms to the user. We continue to use it and variants of it for our current work.

The uplinks in compositional hierarchies are just the IN-A links of our model-
based neural net described earlier, and the downlinks are just IS-A links; but
the links connect nodes that directly posit features in the input image instead of
positing matches between elements of a model and the input. Because the nodes
represent the pattern directly (iconically), the compositional hierarchy does not
enjoy the advantages of a structural representation outlined earlier.

11
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Our compositional hierarchy was ad hoc in that no correctness measure, such
as an objective function, was used to design the newtwork. We realized that it is
indeed possible to store memories that are the minima of an objective function
in a compositional hierarchy if we replace the threshold units at higher layers
with summation units as shown in Fig 12d. Here, the links are bidirectional and
the net acts as a Hopfield memory. Because the memories are structured, far
fewer links are neeeded than in a structured memory.

While the general idea of a compositional hierarchy has been abandoned in
favor of the optimization approach, the idea of coding structured memories with
local feature detectors is attractive [13].

4.3 Optical Implementation of Neural Network Mod-
els
Our interest in the optical implementation of neural network models is an out-
growth of previous work in the area of optical computing systems for visual
pattern recognition. We built an optical system for the rapid delivery of im-
age features[23]; many of the features discussed in that paper have invariance
properties that make them attractive for use in pattern recognition. One of the
feature spaces discussed, the Hough transform[241, is a technique for recognizing
image primitives (in our case straight lines) that can be described by a limited
set of parameters; in the case of straight lines the slope and intercept parameters
completely specify the line. In the optical system we constructed, the connection
pattern was implemented in a time multiplexed manner as a series of positions
of a cylindrical lens.

Part of the work to date has been to identify what it is an optical neural
network should be able to do and then how to best build one in hardware. It
seems painfully clear to us that any difficult problem, such as vision, requires an
approach that breaks the problem into subproblems of a manageable size. These
subproblems, it is hoped, are such that they can be solved efficiently in a neural
network that is itself of a manageable size. The solution to one subproblem will
direct the attention of the system to another subproblem, much as in the index-
ing structure of the shape recognition system discussed in the previous section.
We envision a system such as shown in Fig. 13. The problem formatter is a high
level controller that takes in input from the world and, together with results
from previous subproblems, directs the neural network to solve a particular sub-
problem. The neural network problem solver is basically a network whose nodes
and interconnection weights are loaded and then allowed to run (converge) to a
solution. The subproblem memory contains the connection pattern required for
each of the subproblems and potentially any of the node values that should be
preset for that subproblem. Data nodes or input nodes are set by the formatter.
The overall structure of the problem solution can be interpreted as a controlled
sequence of optimization subproblems.

12
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We envision the neural network problem solver as an optical computing en-
gine that can be updated or controlled to solve any neural network optimization
problem, or associative memory problem, whose size falls within the upper bound
of the network. The neural network itself consists of two fundamental structures:
nodes and interconnects. The generic structure of the neural network is shown in
Fig. 14. The interconnection element is capable of generally interconnecting the
node outputs to the node inputs with arbitrary bipolar continuously-valued con-
nection weights; the nodes themselve perform a nonlinear mapping from input to
output, where the node values can also be continuously valued. Part of the work
to date has been to identify the alternative technologies that might be employed
in the implementation of this type of network. Our first year progress report
was an ellucidation of these alternatives. Basically the technological alternative
we have identified are outlined below:

" Nodes

1. Electronic detection, nonlinearity, and display

2. Spatial light modulators (e.g. Hughes LCLV)
3. Nonlinear Fabry-Perot etalons

" Interconnects

1. Lenslet array and mask.

2. Spatially multiplexed planar hologram
3. Volume hologram

There are a multitude of possible system configurations that can be concep-
tualized for implementating the neural network problem solver. Each has its
advantages and disadvantages, and each creates a set of problems that needs to
be addressed. We have reached some conclusions concerning the technologies
that seem to offer the greatest potential for success for the overall system con-,-
cept described above, but, before discussing the approach, we will first describe
a simple neurocomputer that was built which helped us define and delineate the
important attributes of an optical neural network.

An extremely simple problem was chosen as a first shot for network imple-
mentation. The problem is that of stereopsis, or stereo vision. The general
problem is to determine the depth of surfaces in the environment from the two
views detected at each eye. The problem is trivial when a single point object ex-
ists; a triangulation using the image points and the known vergence point of the
eyes yields the correct result. For more complicated scenes, such as random dot
stereo patterns, the problem becomes much more complex because it is difficult
to know which points correspond in the two views. The general problem is re- ,%
duced to solving this so-called "correspondence" problem. Once the proper pairs
are identified, the depth can be easily determined using triangulation. Marr and S
Poggio[47] described an algorithm for solvitig the correspondence problem which,
from a computational point of view, can be solved by a neural network. In the
network, nodes represent hypotheses about the existence of a surface patch at
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a particular depth and the connections encode the constraints about the world
(surfaces are opaque and tend to be continuous).

We chose this particular problem because the connection pattern between
nodes was simple and space invariant. The details of the optical implementation
of this network were presented at the IEEE Neural Net cotference[48]. This
problem, though simple, was significant because it did require bipolar connec-
tions (both inhibitory and excitatory links exist in the network). As seen in
Fig. 13 two-channel incoherent optical system was employed; one channel im-
plemented the positive connection pattern and the other channel implemented
the negative connection pattern. This Figure also shows the actual resulting
output of the optical neural net and its close comparison to the digitally com-
puted result. The necessary difference operation was obtained in two different
ways. In one approach the two images were electronically detected, stored, sub-
tracted, mapped through a nonlinearity, and redisplayed. In the other approach,
two displays were used; the nodes in the negative channel were represented as
a subtraction from a bias. The action of the node plane was simply to sum the
positive channel light and the negative channel light and to apply a nonlinear
threshold. This result was mapped through a linear lookup table to the positive
display and through an inverted lookup table to the negative channel display.
The reason this approach was investigated is because it can be implemented all
optically using the transfer characteristics of standard spatial light modulators or
nonlinear Fabry Perot etalons. Using either of these technologies, an all optical
neural network could be built, whi .h was one of our goals.

The experiments performed did demonstrate to us that all optical neural
networks were possible, but they also pointed out a serious deficiency of the bias
subtraction approach. This approach is only appropriate when the number of
negative connections a node makes with other nodes is a constant. It is not
necessary that the connection pattern be space invariant but the constant fan-
out of the node, at least for inhibitory connections, is important, otherwise the
threshold point will be a node dependent. A network with this behavior is not
uniform or flexible enough to be useful.

The following conclusion was reached. Since all optical nonlinearities func-
tion on the optical intensity, and since the only way of representing negative
quantities with optical intensity is through the bias subtraction technique, opti-
cal nonlinearities are inappropriate for the implementation of neural networks.
The obvious corollary is that an electronic implementation of the node function
is the only general approach. We, therefore, envision a node plane such as shown
in Fig. 15. General bipolar interconnections can be obtained by dedicating two
integrating detectors for each node; one detector is used for negative connections
and the other for positive connections, The integrated output of each detector
is transferred to a storage node. The difference of these two values is imple-
mented electronically. A nonlinear mapping is applied and the electrical output
signal drives a light source. The approach is basically the same as that used
by Psaltis and Farhat[28] in their original work except that a 2-D array of inte-
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ACCOMPLISHMENTS (cont.)
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grated electronic nodes is considered here. The individual nodes in the system
can be addressed by the controller or the subproblem memory of Fig. 13 either
electronically or optically.

The requirements on the node output (light source) are that it be bright
,. enough to allow for a reasonably short integration time on the detectors and that

it have a very high contrast ratio so that the off signal is truly off. If this is not so,
the accumulation of many "off" signals at a node input can exceed the threshold
and cause the node value to change incorrectly. The other consideration for the
optical output is whether it should be temporally coherent or not. This depends
on the particular method chosen for implementing the connections.

From our standpoint, there are few general comments concerning the re-
quirements for a general connection element. First, it must be general (i.e. be
capable of implementing any space variant connection pattern). Second, it must
be clean. By this we mean the following: the creation of a particular connection
between two nodes can not create an undesired connection between two other
nodes. And third, the connection pattern must be able to be rapidly changed to
a new connection pattern to solve a new subproblem.

We began to explore two technologies for implementing connection patterns:
spatially multiplexed planar holograms and lenslet-array/mask systems. Spa-
tially multiplexed holograms, such as those described by Jenkins[38,391, are ca-
pable of general interconnectivity. The key question is how many nodes can be
interconnected with sufficient accuracy. Jenkins has analyzed the problem from
the standpoint of the connectivity of digital optical gates and has estimated that
an array of 100x100 gates can be interconnecected using a single 10cm x 10cm
e-beam fabricated hologram. The situation is different for neural networks be-
cause the connection weights are continuous valued and the fan-in to the nodes
is typically very large. On the other hand, neural architectures are often much
more tolerent of errors in the system.

The investigation of e-beam holograms for general neural network intercon-
nections will proceed along three lines. First, an analysis of the interconnection
capacity of holographic elements will be performed using an associative memory
model. A statistical approach similar to that described in our paper on non-
zero diagonal connection matrices[16 will be used. The errors in connection
strength caused by finite apertures and discrete number representations will be
modeled, and their effect on the performance of the network determined. An-
other approach will be to write a computer program that models the holographic
interconnection element and, using it, study the behavior of a network when in-
plemented with this technology. Physical effects such as scatter and alignment
can be studied in this manner. Finally, e-beam holograms will be fabricated and
investigated for their performance. A set up such as that shown in Fig. 16 will
allow us to evaluate these holographic interconnect elements. In the system of
Fig. 16, the node outputs (sources) can be controlled via the computer and frame
buffer, and converted to a coherent optical signal by the spatial light modulator
(Hughes Liquid Crystal Light Valve). The optical signal at the output (node
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input plane) can be sensed by any of a host of imaging or nonimaging detectors e :
to study the properties of the light signal and therefore the properties of theholographic interconnect element. .

The holographic interconnect technology is amenable to being modified or
updated at a reasonably high rate. A system that stored multiple holographic _,
interconnections on a large disk structure, whose regions could be rapidly ac-
cessed, is a possibilty. Also a possibility is a juke box approach, where connec- T~.
tion patterns are stored, accessed, and inserted into the neural net computing
engine by a high speed mechanical device.

The other technology for interconnection we intend to investigate is that
of lenslet arrays. Glaser[37] has discussed how these arrays can be used, inw.',
conjuction with a mask, to implement a general connection pattern. His focus
was on the implementation of general linear transformations, but much of his
discussion is germane to neural networks as well. The issues of aberrations,
mask alignment, and illumination are certainly key ones that need to be carefully ....
analyzed if this technology is going to work at a scale that is useful for optical .- ,
neural networks. The main advantage of this approach is that the light sources ,..
can be incoherent.""

-a,.

We have recently purchased a 40x40 element lenslet array. We intend to -.
investigate this device in '.he context of a winner-take-all network. The mask•
structure for this network is relatively simple and can be fabricated either with-'--
the e-beam facility or with the microdensitometer film-writing instrument at the ,,
Optical Sciences Center. The actual construction of the network will use a video ,

dslydevice as the node output and a video camera as the node input. Non-',:
linear node responses will be performed by the computer and frame buffer. The
demonstration of this network will undoubtedly delineate the problems associ- .
ated with lenslet array/mask interconnects. 'o

On a conceptual level the lenslet array approach to interconnection is also '"
capable of being rapidly modified in the same way that the holographic systems ..
are modifiable; instead of repositioning a hologram, a new mask is repositioned. '%
However, the repositioning of the mask is far more sensitive to position errors
than the hologram. The mask position tolerence is extremely small for lateral '.

'--,.

position, angular position, and focus. The updating of a series of masks does
seem to pose a serious problem. One solution would be to position a lenslet
array with each mask and insert the whole structure into the optical system.
This would increase the positional tolerence tremendously.
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