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SummaryN1
Three major objectives were completed during the year.

The first demonstrates how to directly use rank-one updates

to a Cholesky factorization of the required inverse for

Karmarkar projections while fully exploiting sparsity. This

can significantly improve computational speed when only a

few variables are changing significantly at each step. The

second demonstrates a new method for adding new variables to

a quasi-Newton Hessian approximation which preserves problem .

scale and positive definiteness of the Hessian. Numerical

results show the method to be preferable to known methods.

The third examines a variety of ways of implementing a

sequential quadratic programming code, and uses numerical

testing to indicate a suitable merit function and good

algorithms for updating Lagrange multiplier and Hessian

approximations. Recent new results for updating Hessians

for unconstrained problems are currently being studied to

determine if better Hessian approximations can be obtained. For A
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The proposed research was to investigate numerical

methods for two constrained optimization problems, linear

programming problems and nonlinear programming problems with

either linear or nonlinear equality constraints. This

report will deal with progress to date and remaining

problems of interest for each of these in turn.

The general nonlinear programming problem is

minimize f(x)

subject to gi(x) =0, i=l,... ,m

and gj(x) 50, j=m+l,...,p.

THere x- (xl,..., xn) and f(x) is assumed to be nonlinear in

at least a subset of the variables. When the constraints

are linear, it is well known that this problem can be 5

transformed to the form

minimize f(x)

subject to Ax=b,

1 xSu,v

%.

where 1 and u are vectors of (possibly infinite) upper and

lower bounds. Reduced gradient methods fix some of the

* variables at their bounds, and solve the reduced problem in

* the remaining free variables. The fixed variables are then

tested to ascertain whether a better solution can be found

a.if the variable is allowed to vary freely between its

bounds. When a variable is freed, computation of a search
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direction requires that either the mixed second partial

derivatives of f(x) with respect to the variable are

explicitly calculated, or if a quasi-Newton approximation to

the Hessian is being used, that they be estimated in a way

consistent with problem scaling and maintaining positive

definiteness of the approximate Hessian. Finite

differencing will produce an approximation which is

appropriately scaled, but the approximate Hessian need not

be positive definite. Adding a row and column with a

positive diagonal and zeroes elsewhere will produce a

positive definite Hessian, but it is generally poorly

scaled.

This research has devised a new method, identical in

the amount of work to finite differencing, but which uses

the structure of quasi-Newton methods to assure both

positive definiteness and proper scaling. The method has 4

been tested numerically, and in limited testing has proved

far superior to current alternative methods. It has been

documented in the report "Adding Variables to Quasi-Newton

Hessian Approximations", which will appear in the Journal of

Optimization Theory and Applications in August, 1987.

When the constraints are nonlinear, transformation to

slacked equality constraints may or may not cause numerical

problems with singular Hessian matrices. When only the

Hessian of f(x) is considered, clearly it is singular if

slack variables are included in the constraints. If,

however, the Hessian is the Hessian of the Lagrangian

function, then singularity may not occur. While the

problem of transforming inequality to equality constraints

for general nonlinear programming is still the subject of a
,I



great deal of research, enough problems can be formulated

with strict equality constraints to generate substantial

interest in solving the problem

minimize f(x)

subject to gi(x) -0 i-l,...,m.

The Langrangian of this problem is

L(x, )=f(x)-;E7gi(x),

and the currently most successful methods for solving the

problem are the sequential quadratic programming methods,

which attempt to solve the problem by computing the first

order conditions for a solution by differentiating the

Lagrangian, and then applying Newton's method to solve these

first order conditions. Here the search directions can be

shown to solve

minimize sTBs+sTVf

Tsubject to g+N sMo,

where N is the matrix of constraint gradients, Vf the

gradient of the objective function, T=(91' ... , and B is

an approximation to the Hessian of the Lagrangian.

As B is an estimate to the Hessian of the Lagrangian,

calculation of B requires estimates to the Lagrange .,

multipliers. Further, a sufficient step along s to assure a

quasi-Newton approximation to B is positive definite can not



always be taken, for the new point may prove to be too far

outside the feasible region. Finally, some measure, called

a merit function, must be introduced to assure that

feasibility and function reduction are kept in reasonable

balance.

The goal of this research was to attempt to test

various means of estimating A and B , and to use several

different merit functions in an attempt to determine what

combination was likely to produce an efficient numerical I
algorithm. The results of this study have been documented

in the report "Numerical Experience wiht Sequential

Quadratic Programming", which is under review for the

Transactions on Mathematical Software in revised form,

having been revised to address the comments of the generally

favorable referees. The report addresses the questions

raised above in detail, with specific recommendations on

merit functions, update strategy, and Lagrange multiplier

estimates.

Finally, research is being concluded on more efficient

hybrid schemes for updating a Hessian approximations, and

will be documented in a report to be submitted to the SIAM

Journal on Numerical Analysis.

Recent research in linear programming has been "A

concerned with interior point methods, or methods which

follow a trajectory across the interior of the feasible i
region rather than moving from vertex to vertex. This was

initiated by Karmarkar, who used projective transformations

to recenter the current estimate at every point, then move

,'-~- . . . . . .. .. . ..



toward the boundary.

.

The major numerical work in Karmarkar's algorithm is in

computing a projection of the form
I

s ,(I-DA T(AD 2 A T ) 1AD)c,

where D is a diagonal matrix which changes at each

iteration, while A is a fixed matrix. Karmarkar suggests.

updating a factorization of (AD2 A T ) only for those elements I

of D which have changed significantly, and shows that this

reduces the theoretical complexity of the algorithm.

The report "Computing Karmarkar Projections Quickly",

has been accepted for publication in Mathematical

Programming. It shows how to update a Cholesky

factorization to AD2A in a way that fully and naturally

exploits sparsity, and shows that the method has great

promise for reducing computation time.
I

Finally, significant research is continuing on interior

point methods. A code implemeting a full primal-dual method

is under development, with very promising preliminary

results. This is being continued under grant AFSOR-87-0215

to Rutgers University. .
I
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Articles Accepted, Submitted, and Planned

1) D. F. Shanno and K. H. Phua, "Adding Variables to
Quasi-Newton Approximations", Journal of Optimization YR
Theory and Application (in press).

2) D. F. Shanno and K. H. Phua, "Numerical Experience with
Sequential Quadratic Programming Algorithms for Equaltity
Constrained Nonlinear Programming", Transactions on
Mathematical Software (under review).

3) D. F. Shanno, "Computing Karmarkar Projections 
Quickly",

Mathematical Programming (in press). ,.

4) D. F. Shanno, "Improved Quasi-Newton Approximations", &
(in preparation).

Paper presented at meetings

Computing Karmarkar Projections Quickly at the SIAM National
Meeting, Boston, MA., July, 1986 and at the ORSA/TIMS
Meeting, Miami, October, 1986 (both invited).
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