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A two-dimensional finite-element computational procedure is
developed for the accurate analysis of the strains and stresses in
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adhesive layer is modeled using Schapery's nonlinear single integral
constitutive law for uniaxial and multiaxial states of stress.
Effect of temperature and stress level on the viscoelastic response
is taken into account by a nonlinear shift factor definition.
Penetrant sorption is accounted for by a nonlinear Fickean diffusion
model in which the diffusion coefficient is dependent on the
penetrant concentration and the dilatational strain. A delayed
failure criterion based on the Reiner-Weisenberg failure theory has
also been implemented in the finite element code. The applicability

of the proposed models is demonstrated by several numerical examples.
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CHAPTER 1
INTRODUCTION

1.1 General Comments

Adhesive bonding is increasingly used to fasten (metallic to
metallic or metallic to composite) structural components together.
This is because in many present day applications, conventional
fasteners such as bolts, rivets, welds etc., are unsuitable,
especially if the components are made of polymeric or composite
materials. Penetration methods (i.e., drilling holes, etc.) cause
high stress concentrations and, in the case of composites, sever the
fiber reinforcement which in turn reduces the strength of the
joint. On the other hand, bonded joints tend to be damage-tolerant
due to the high damping behavior of the adhesive layer and less
expensive due to lower fabrication cost. The use of adhesives

increases the joint strength, distributes the loads more evenly, and

enables alternative jointing methods to be reduced or eliminated.
Dissimilar materials (e.g., steel, aluminum, plastics, glass, etc.) —n
can be joined together by bonding even where it is impossible to gain 3
access to either side of the joint, thereby increasing the design

flexibility.

W
‘f_.f
FF

Adhesives are not free of disadvantages, however., Adhesives are *Q$

>

polymers and as such have time dependent (viscoelastic) moduli and

'1.‘.
‘,J

A

strength properties which are susceptible to environmental effects,

"y e

e

P4

especially temperature and moisture. Most polymeric adhesives are

'l
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rate sensitive materials and hence exhibit viscoelasticity.
Furthermore, certain types of epoxy resins have been found to be
1

‘5 nonlinearly viscoelastic in character. The nonlinear viscoelastic
behavior is typified by a stress-enhanced creep. Basically, at
N elevated stresses the material moduli seem to soften and the creep
1 progresses at accelerated rates. Time dependent properties of

adhesives raise serjous questions regarding their long term

;t reliability or durability under creep or other more compiicated
loading conditions. A delayed failure (creep rupture) long after the
X initial design and fabrication process is possible. Thus, methods

are needed by which long term failures on the order of a structure

w’s"w nTF &

design life time (perhaps as long as 5-20 years) can be anticipated
b and thereby avoided. Such a process is especially important in

applications where failures may be 1ife threatening as is the case

: for automobiles, airplanes, missiles, etc.

$~ Failure in an adhesive joint can occur in one of two ways: (i)
E adhesive failures that occur at the interfaces between the adhesive
E and adherends, and (ii) cohesive failures, which occur either in the
; adhesive or in the adherends. The determination of the strength,

E failure and reliability of an adhesive joint requires both an

3 understanding of the mechanisms of adhesion and a knowledge of

: deformation and stresses in the joint. The mechanisms of adhesion is
é closely related to the chemical and physical properties of the

Z adhesive polymers. The deformation and stress states can be

2

4
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determined once the geometry, loading, boundary conditions and
mechanical properties of the constituent materials of the joint are
known. The mechanical properties of the adhesive and adherend
materials enter the stress analysis via constitutive models, which
relate strains, temperature and moisture gradients and density to
stresses and fluxes in the joint. The chemical, physical and
mechanics aspects of the constituent materials enable the formulation
of appropriate constitutive models for adhesive joints. The
determination of stresses allow the prediction of the strength,
failure and reliability, in macromechanics sense, of adhesive joints.

The stresses in an adhesive joint depend on the geometry,
boundary conditions, the mechanical properties of the regions
involved, and the type and distribution of loads acting on the
Joint. In practice, most adhesives exhibit, depending on the stress
levels, nonlinear-viscoelastic behavior, and the adherends exhibit
elasto-plastic behavior. Most theoretical studies conducted to date
on the stress analysis of adhesively bonded joints have made
simplifying assumptions of linear and elastic and/or viscoelastic
behavior in the interest of obtaining closed form solutions.

A good understanding of the process of adhesion from the
mechanics view point and the predictive capability for structural
failures associated with adhesive bonding require realistic
theoretical analysis methods to determine stress distributions in the

joint. The finite element method is the most powerful analysis tool
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that can be used to determine stress and displacement fields in
complicated structures.

At present there are numerous computer programs available for
analyzing bonded joints. However, most of these computer codes
incorporate linearly elastic material behavior, and some allow for
nonlinearly elastic and plastic behavior. Computer programs which
incorporate viscoelastic material behavior are quite often limited to
the simple spring-dashpot type of model for linear materials. Such
inaccurate modelling of the constitutive behavior of the structure

can seriously compromise the accuracy of the analytical predictions.

1.2 Objectives of Present Research

The primary objective of the present research is to present a
finite-element computational procedure for the accurate analysis of
adhesively bonded joints. With this aim in mind, a nonlinear
viscoelastic analysis code (NOVA for short) has been developed. The
finite element program NOVA uses linearly elastic elements to model
the adherends. The adherends may be represented as isotropic,
orthotropic or laminated composite materials. The large
displacements and rotations experienced by the adherends in many
types of loading are accounted for by the updated Lagrangian
description of motion presented in Section 2.1. [t should be noted
that this description is valid only for small strains.

The adhesive Tayer is modeled using a special element that

employs a multi-axial extension of Schapery's nonlinear single
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° integral stress-strain law as the constitutive equation. The finite :'
element formulation for the viscoelastic material representation has ::ég

been described in detail in Chapter 3. The element library contains s:':;:

® an eight noded isoparametric element which employs quadratic

interpolation functions to represent the displacement field as well ::::
as element geometry. The program can be used to conduct plane ,':‘

® stress, plane strain, or axisymmetric analysis of an adhesively 1
bonded structure subject to a time varying thermal and mechanical ':‘2‘{:
loading. A nonlinear Fickean moisture diffusion model and a energy- :.{3::

C based delayed failure criterion are also provided in NOVA. _:
24
1.3. A Review of the Literature : :‘
Adhesive bonding has been in use for many years. Most of the "‘:'

¢ early bonds used animal and vegetable glues, and the structural use «:g
of these glues has been confined mostly to timber. The use of ,N"a:
synthetic resins in the structural bonding of timber began in early ' ":

¢ 1930's. Synthetic resins are less susceptible to moisture, fungi and
bacteria. In recent years, synthetic polymers, because of their ‘

strength and other bonding properties have been widely used to bond .“
‘ metals and composite materials. As noted in the introduction, 'i
adhesive joints have several advantages over the conventional ;.:j

, mechanical fasteners (e.g. bolts, rivets and welding). These :
include: 1lighter weight, savings in production cost, avoid stress ‘E;

concentrations and thermal distortions due to the hole drilling or 5:

) welding, and bonding of dissimilar and/or brittle materials. .
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An analysis of adhesive stresses in bonded joints which included v
the effects of load eccentricity was first performed by Goland and
Reissner [3] in 1944 under the following assumptions:

1. Adhesive flexibility is negligible, and joint is homogeneous g

(i.e., ignore the presence of the adhesive),
2. No axtfal stress exists, and other stresses do not vary
through the thickness of the adhesive layer. '

Under these simplifying assumptions, Goland and Reissner [3]
developed one-dimensional elasticity solutions for two limiting
cases: (1) the case in which the adhesive layer is homogeneous, thin
and stiff so that its deformation can be neglected, the axial stress
is zero and stresses do not vary through the adhesive layer; and (i1)
the case in which the adhesive layer is soft and flexible and the
Joint flexibility is mainly due to the deformation of the adhesive
layer (i.e., adherends are rigid), the axial stress is zero and
stresses do not vary through the adhesive layer. In the first case,
the peel stress is found to be very high at the edge of the joint,
while the shear stress is zero. In the second case, the maximum
values of the peel and shear stresses occur at the edges of the
Joint. The Goland-Reissner analysis gives resonable solutions for
shear and peel stresses in the interior of the adhesive layers; the
Joint-edge loads are not in equilibrium.
Erdogan and Ratwani (4] presented analytical solution based on a

one-dmensional model for calculating stresses in a stepped lap

o s
L% %

'/l,
L%



P orgy Satiial g8 "2l faf Vo Y9 2P 4 .00 0 W .08 0.0 20 2"0 2'8 2' 9 WU RUNL POWOWU WO WA AR TN R XN I RA VSRR Y b

X
38

Joint. One adherend was treated as isotropic and the second as "!
orthotropic, and linear elastic behavior was assumed. The thickness “":'
variation of the stresses in both the adherends and in the adhesive :ﬂ?:iﬁ
was neglected. re
oy

Wooley and Carver [5] determined <tress distributions in a "-3
simple lap joint using the finite element method. The constant ?:’.i
strain quadrilateral obtained by combining four constant strain .:.
triangular elements was used. One end of the adherend was assumed to ":SEE:'E:
be hinged and other end was allowed to move freely in the direction EE:.::.E:'
parallel to the original bond 1ine. They investigated the influence ; 4
of the ratio of the Young's moduli of adherend to adhesive materials i‘%
and geometries on the peel and shear stress distributions. The E’.:.l
results compared favorably with the results of Goland and Reissner. ;3".8
Hart-Smith (6] improved upon the approach of Goland and Reissner .E:‘-E:

by considering a third free-body-diagram for the adherend outside the 5:_"
Joint in addition to the two free-body-diagrams from each of the ;
upper and lower halves of the joint. With three separate sections to E:_"-};E
consider, three relations between displacements and bending moments :EE:
were obtained. Additional boundary conditions involving e
displacements and their first derivatives, not considered by Goland EEE
and Reissner, were imposed in order to solve for the additional %.E
unknowns. In addition to the improvement on the analysis of Goland ::::::
and Reissner, Hart-Smith [6] also established a quantitative E:EE
influence of adhesive plasticity in shear. The elastic-plastic -'-‘::
¥
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theory used by Hart-Smith predicts an increase in joint strength, and
was shown to be capable of explaining premature failure predictions
found when using linear elastic analyses. The quantitative effects
of stiffness imbalance were also accounted for.

A finite-element stress analysis for adhesive lap joints using
linear elasticity and elasto-plasticity theories was reported by Liu
[7]. Stress distributions in the adhesive layer for different joint
parameters (geometry, material properties, and loading conditions)
were studied and compared. The existence of stress gradients through
the thickness of the adhesive layer, close to the joint edges, was
observed by Adams and Peppiatt [8]. They subsequently performed a
linear elastic finite element analysis on adhesively bonded lap
joints employing more than one element through the thickness of the
adhesive layer, close to the joint edges. Adams and Peppiatt (9]
also studied the adhesive yielding in double bevel and scarf
joints. The adhesive was assumed to be elastic-perfectly plastic. A
nonlinear finite-element analysis of single and double lap joints was
presented by Humphreys and Herakovich [10]. The nonlinear stress-
strain response was represented by the Ramberg-0sgood
approximation. Mechanical and thermal loadings were considered but
only one element through the thickness of the adhesive layer was
used.

Allman [11]) presented an elastic stress analysis based on the

strain energy density of a particular joint. The effects of bending,
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stretching and shearing of the adherends were included, and the
shearing and tearing action in the adhesive was accounted for. AN
conditions of stress equilibrium in the joint and stress-free surface
conditions were satisfied. [t was assumed, however, that the axial
stress varies linearly through the adherend thicknesses and that the
shear stress is constant through the adhesive thickness. Allman
obtained solutions for the single lap joint, although the method also
appears to be applicable to other joint configurations. He found
that the average shear stress concentration is 11% higher than that
of Goland and Reissner's first analysis, while the average peel
stress at the joint edge is 67% lower. Compared with the second
analysis of Goland and Reissner, Allman's method yielded a shear
stress concentration of 15% and 31% less for metal and composite
adherends, respectively, while the average pee! stress at the joint
edge was 27% higher and 36% lower for the same types of adherends,
respectively.

Phenomenological considerations were discussed by Hart-Smith
[12] which greatly improve our understanding of the sources of non-
uniform load transfer, viz., adherend extensivity, stiffness
imbalance and thermal mismatch. He also expliained how the lightly
lcaded central area of the joint, away from the joint edges,
restricts cumulative creep damage, and suggests that this region is

vital for long term durability. The amount of l1ightly loaded central

area is a function of the overlap length.
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Yuceoglu and Updike [13] presented a numerical method for
solving peel and shear stresses in the adhesive of double lap, double
strap and stiffner plate joints. Bending and transverse shear were
included in the analytical model. Shear stresses were not required
to drop to zero at the joint edges after reaching peak values close
to the edges. Yuceoglu and Updike maintained that an analytical

mode]l which would allow the shear stresses to drop to zero at the

Joint edges would give approximately the same or slightly lower peak

values of shear and peel stresses. Their method also reveals that
adherend bending has a significant effect on both adhesive shear and
peel stresses, especially the latter.

Delale and Erdogan [14,15] performed a plate analysis similar to
that of Goland and Reissner on the single lap joint assuming linear
elastic adherends and a linear viscoelastic adhesive. Separate
stress distributions were calculated for membrane lcading, bending,
and transverse shear loading. They further extended their
viscoelastic analysis of the single lap joint to include time-
dependent temperature variations approximated by a piecewise constant
function.

Gali and Ishai [16] performed a finite element analysis on a
symmetric doubler model with linear elastic adherends and the
adhesive obeying a nonlinear effective-stress-strain relationship.
The effective-stress-strain relationship was derived from stress-

strain curves obtained by tensile and shear test data, and based on
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‘ the Von Mises deviatoric energy yield criterion. An iteration 3
)
procedure was applied to the linearly elastic finite element problem ;
gty
using a specific secant modulus for each element separately. The “:
(™ 1
‘ secant modulus was found from the corresponding effective strain of
N
the previous solution and the corresponding effective stress was ;'j:j
i
found from the experimental stress-strain curves. Gali and Ishaf fﬁ}
c‘
b analyzed their symmetric doubler model using both plane stress and ®

&

plane strain and found that the plane strain solutions converged

2

faster and yielded less conservative results, i.e., lower stresses,

AY
b than the plane stress solutions. Nonlinear solutions were also found .
tntng
to be considerably lower than the linear solutions, the difference §Qﬁ
being more pronounced in the plane stress case. The problem was also *

[
PrR

w

solved with the adhesive following an elastic-perfectly-plastic

> b
.

)
'S
‘.( ..."'-'

effective-stress-strain law. The difference between these results

P
_l. A
0y

and those of the continuous nonlinear effective-stress-strain case

N
\

.
&y

r was found to be very small.
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Nagaraja and Alwar [17] analyzed a tubular lap joint with the

a
‘El'.
'y

£

L4

-

finite element method assuming linear elastic adherends and a

. w
e,

’

nonlinear biaxial stress-strain law in the adhesive. The constants

‘e

I‘I [

appearing in the nonlinear law were obtained from uniaxial tension e

)

test data. The stress-strain relationship, however, was assumed to -
be time-independent. Nagaraja and Alwar demonstrated that for low N
stress levels, of the order of 12X% of the fracture stress, the ey

nonlinear stresses were as much as 15% lower in shear and 8% lower in NNy
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peel than the linear stresses. Nagaraja and Alwar (18] also - s'

i performed a finite element analysis on a single lap joint, treating N
| the adherends as linear elastic materials but the adhesive as a $
linear viscoelastic material. The relaxation modulus was assumed to j

: be equal to the inverse of the creep compliance, the latter being Ef
? obtained experimentally. 3ﬂ
Only recently, work involving the time dependent fracture ’:

! characteristics of adhesively bonded joints has been under way. 33
E Francis et al. [19] discussed the effects of a viscoelastic adhesive Qg
. layer, geometry, mixed mode fracture response, mechanical load g
' history, environmental history and processing variations on the %
fracture processes of adhesively bonded joints. However, their 3'
finite element analysis includes only linear elastic fracture f'
mechanics. %'

b )

Dattaguru, et al. [20] have performed cyclic de-bond research on

the crack lap specimen and performed analyses with a finite element

program GAMNAS, developed in-house at NASA-Langley. Their program
includes geometric and material nonlinearities but does not include

viscoelastic capability. Also, fracture is modeled using linear

elastic fracture mechanics but no failure law is included.
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Botha, Jones and Brinson [21], Henriksen [22], Becker, et al.

(23], and Yadagiri and Papi Reddy (24] reported results of N

N

viscoelastic finite-element analysis of adhesive joints. Henriksen a

used Schapery's (25] nonlinear viscoelastic model to verify the %?
)
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experimental results of Peretz and Weitsman [26] for an adhesive

layer. The work of Becker et al. (23] is largely concerned with the
development of a finite-element stress analysis program, called
VISTA, for adhesively bonded joints. The 'intrinsic nonlinear model'
based on free-volume concept of Knauss and Emri [27] was used in
VISTA. The work of Yadagiri and Papi Reddy (24] is 1imited to linear
viscoelastic analysis. Botha et al. [21] considered linear and
bilinear viscoelastic models in their study.

Pickett and Hollaway [28] presented both classical and finite
element solutions for elastic-plastic adhesive stress distributions
in bonded lap joints. Single, double and tubular lap configurations
having both similar and dissimilar adherends were considered. The
results show how the development of adhesive yielding will occur as
the joints are loaded to a failure condition. The detrimental effect
of adherend-stiffness-imbalance on the adhesive stress distribution
was also shown.

An approximate method to analyze viscoelastic problems has been
outlined by Schapery [29]. In this method, the solution to a
viscoelastic problem is approximated by a corresonding elasticity
solution wherein the elastic constants have been replaced by time
dependent creep or relaxation functions. The method may be applied
to linear as well as nonlinear problems. Weitsman [30] used
Schapery's quasi-elastic approximation to investigate the effects of

nonlinear viscoelasticity on load transfer in a symmetric double lap
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! joint. Introducing a stress-dependent shift factor, he observed that L
" the enhanced creep causes shear stress relief near the edges of the
\ adhesive joint.

Aivazzadeh and Verchery [31] developed several special interface ) .
finite elements based on Reissner's principle which take into account
all the continuity conditions at the adhesive-adherend interface. )
These elements were then used to perform a two-dimensional analysis ¢
of an adhesively bonded butt joint. It was observed that the '

interface stress distribution could be evaluated more accurately

- -

using the interface finite elements compared to classical ones. v

Rl

The analytical procedures reviewed in the preceding pages are

< primarily applicable for bonded joints with homogeneous isotropic .

adherends. These procedures have been modified for composite +

adherends to account for their anisotropic and heterogeneous

nature. A comprehensive review of publications relating to all :

aspects of adhesively bonded joints in composite materials is o,

presented in [32].

v Reddy and Sinha [33] extended the work of Erdogan and Ratwani
(4] to obtain analytically, the stress distribution in adhesively

A bonded joints between two orthotropic materials. Similarly, Renton

ﬁ and Vinson [34] extended the work of Goland and Reissner [3] to

; obtain the linear elastic response of two generally orthotropic

adherends adhesively bonded together. Barker and Hatt [35] used 4

linear elastic finite-element analysis to evaluate the behavior of an )
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® adhesive joint bonding an advanced composite to a metallic }
Py
* b
substrate. A special element was used to model the adhesive layer as ’r"
&
| a separate elastic medium of finite thickness in order to remove the :-.,.
S stress singularity that exists when dissimilar materials are _ _;,
Fafat!
joined. Adams and Peppiatt [36] performed two dimensional finite "
5(."", '
element stress analysis on lap, bevel and scarf joints. The :'; -
\ ‘1
o adherends were treated as homogeneous anisotropic materials with _'
I.|.|:
linear elastic properties, while the adhesive was treated as an '.:'.‘.e
Q0
W,
elastic-perfectly plastic material. The effect of adhesive spew :, "
O
< fillets on the stress distribution was also taken into account in g_
L)
this analysis. It was observed that the predicted joint efficiency \ )
-
was almost doubled when non-linear adhesive behavior was accounted :'?;
® for. 0
:\'.
Renton and Vinson [37] used laminated plate theory coupled with 1-_:;4:
i
a structural mechanics approach to obtain analytical solutions for _ o
® stresses and deformations within a bonded single lap joint. The 1%3
~
closed form solutions were then used to conduct a parametric study :'.:5_' \
~
which revealed that changes in adhesive moduli, adherend longitudinal '_2__
®
< modulus, and bond overlap length have a significant effect on the NTA
s
magnitude of the peak stresses within the adhesive. However, changes ;2:.:'.‘{
in adherend ply orientation appeared to have only a modest influence oy
®
¢ on adhesive peak stresses. These predictions were verified by the N
L] * "
Y
authors from experimental observations. o)
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Schaffer and Adams (38] carried out a nonlinear viscoelastic -
analysis of a unidirectional composite laminate using the finite ;1
element method. The nonlinear viscoelastic constitutive law proposed o
by Schapery [25] was used in conjunction with elastoplastic %
constitutive relations to model the composite response beyond the EE
elastic limit. g
Ghoneim and Chen [39] developed a viscoelastic-viscoplastic law :(
based on the assumption that the total strain rate tensor can be ﬂz
decomposed into a viscoelastic and a viscoplastic component. A é
linear viscoelasticity model is used in conjunction with a modified tj
plasticity model in which hardening is assumed to be a function of ES:
viscoplastic strains as well as the total strain rate. The resulting Eéi
finite element algorithm is then used to analyze the strain rate and ;
pressure effects on the mechanical behavior of a viscoelastic- EE
viscoplastic material. iﬁ‘
Analysis of crack growth in viscoelastic media are mainly E
limited to linear isotropic, homogeneous materials. Schapery [40] E'
proposed the use of parameters similar to the J integral for quasi- E‘
static crack growth in a class of nonlinear viscoelastic materials E;
subject to finite strains. fﬁ
Czarnocki and Piekarski [41] used a nonlinear elastic stress- ;;
strain law for three-dimensional failure analysis of a symmetric lap E{
joint. Taking into account the variation of Poisson's ratio with Eﬁ’
strain within the adhesive, the authors concluded that the failure of EE
»
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the adhesive layer originates in the central plane of a joint (at the
front edge). It was also observed that the joint width does not have
any effect on the stress peaks in the central plane and that the
application of a weaker but more flexible adhesive results in higher
load carrying capacity and lower stress concentrations in the
adherends.

Over the years several time-dependent failure criteria have been
proposed for predicting yield and fracture of polymeric materials.
Nagdhi and Murch [42] and Crochet [43] have used a modified von Mises
criteria for viscoelastic materials by assuming that the radius of
the yield surface depends upon the strain history. An energy based
delayed failure criterion for polymeric materials subjected to
isothermal creep was developed by Reiner and Weissenberg [44].
According to this theory, failure occurs when the stored deviatoric
strain energy in a viscoelastic material reaches a certain maximum
value called the resilience, which is a material constant. Bruller
[45] and Hiel et al. [46] applied the Reiner-Weisenberg failure
criterion to various viscoelastic materials, including composite
laminates, and obtained good agreement with experimental
observations.

[t is now well known that moisture diffusion can have a
significant effect on the stress field within an adhesive layer in a
bond. Weitsman [47] used a variational method coupled with Fickean

diffusion law to study the interfacial stresses in viscoelastic
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adhesive-layers due to moisture sorption. From the results of this -
uncoupled linear thermoelastic analysis, he concliuded that the
location of the maximum interfacial tensile stress depends on the
geometry of the joint as well as the progress of the diffusion
process within the joint. Weitsman (48] used the correspondence
principle to generate a linear viscoelastic solution from the linear
elastic analysis of moisture sorption within an adhesive layer. He
observes that the viscoelastic analysis predicts detrimental effects
due to stress reversals caused by fluctuations in relative humidity,
that are not predicted in an elastic analysis. However, he
acknowledged the omission of the effect of moisture content on the
viscoelastic response of the resins in his analysis.

Tobing, et al. [49] used the finite element method to study the
micro-mechanical effect of moisture sorption in graphite-epoxy
composites. Using a constitutive equation based on the Flory-Huggins
lattice model for polymer solvent interactions, they concluded that
the stresses at the graphite-epoxy interface have a strong dependence
on moisture content, fiber spacing, and applied load.

Yaniv and Ishai [50] developed a linear viscoelastic closed form
solution as well as a nonlinear finite element solution algorithm to
study the hygrothermal effects in a bonded fiber-reinforced
plastic/aluminum system. The linear solution was used for short-term T

predictions at low strain levels, whereas the finite element solution

was used for long term predictions in which geometric and material
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L nonlinearities were taken into account. The authors observed that
the presence of moisture tends to considerably reduce the stress
level in the adhesive layer and may lead to significant variation in
P the time-dependent deformation of the test specimen as compared to

the dry state.

In the references cited above, various authors have underscored

P’ the effect of moisture content on the viscoelastic response of the

2@ <
x5 1

test specimen. However, the effect of the viscoelastic stress field

5 S

on the diffusion coefficient was not considered. Lefebvre et al.

L

‘ [51] extended the free volume concept to define a diffusion

°
-{3

AT

coefficient that is a function of temperature, dilatational strain

-
-
-

and solvent concentration. The proposed nonlinear diffusion model

55 %

o
y

showed good predictive capability for different values of temperature

P ‘:“

and moisture conentrations. They concluded that in order to obtain
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an accurate solution for the hygrothermal effects within an adhesive
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bond, the nonlinear diffusion problem needs to be solved in

!

e X

conjunction with the nonlinear viscoelastic boundary-value probiem
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until convergence is achieved.

A review of the literature reveals that previous finite-element
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analyses of adhesive joints were either based on simplified

y &

theoretical models or the analyses themselves did not exploit the
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full potential of the finite element method. Also, several

h
'-‘J”

o Xy
<

?r

7’

investigations involving finite element analyses of the same adhesive
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joint have reported apparent contradicting conclusions about the
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variations of stresses in the joint [24,52]. Thus, there is a need
for a closer examination of the theories, underlying assumptions on
material behavior and boundary conditions, and the finite element

formulations used in the analyses of adhesive joints.
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CHAPTER 2
NONLINEAR DESCRIPTION OF SOLIDS
2.1 Introduction

In the linear description of the motion of solid bodies it is
assumed that the displacements and their gradients are infinitely
small and that the material is linearly elastic. In addition, it is
also assumed that the nature of the boundary conditions remains
unchanged during the entire deformation process. These assumptions
imply that the displacement vector u is a linear function of the
applied load vector F, i.e., if the applied load vector is a scalar
multiple of then the corresponding displacements are au .

The nonlinearity in solid mechanics arises from two distinct
sources. One due to the kinematics of deformation of the body and
the other from constitutive behavior (e.g., stress-strain
relations). The analyses in which the first type of nonlinearity is
considered are called geometrically nonlinear analyses, and those
in which the second type are considered are called materially
nonlinear analyses. The geometrically nonlinear analysis can be
subclassified according to type of nonlinearities considered. Two
such cases are: (i) large displacements, large rotations, but small
strains, and (ii) large displacements, large rotations and large
strains. In the first case it is assumed that rotations of line
elements are large, but their extensions and changes of angles

between two 1ine elements are small. In the second case the
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extension of a 1ine element and angle changes between two line

elements are large, and displacements and rotations of a line element

are also large.

2.2 Incremental Equations of Motion

In the Lagrangian description of motion all variables are
referred to a reference configuration, which can be the initial
configuration or any other convenient configuration. The description
in which all variables are referred to the initial configuration is
called the total Lagrangian description, and the one in which
all variables are referred to current configuration is called the
updated Lagrangian description.

The equations of the Lagrangian incremental description of
motion can be derived from the principles of virtué] work (i.e.,
virtual displacements, virtual forces or mixed virtual displacements
and forces). Since our ultimate objective is to develop the finite
element model of the equations governing a body, we will not actually
derive the differential equations of motion but utilize the virtual
work statements to develop the finite element models.

The displacement finite element model is based on the
principle of virtual displacements. The principle requires that the
sum of the external virtual work done on a body and the internal

virtual work stored in the body should be equal to zero (see [53]):
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J-V 21'13 G(Zeij) av - 5(2’:) =0 (2.1)
2
where

s(ZF) = | Zf1 su; dv + [ Zt1 su; ds
Y 32

ey
S

A
I’ A\l

Ty
LT L

P

. r1J = the Cartesian components of the Cauchy stress tensor in

=L J

v
configuration C, at time (t + at) occupying the volume ﬁ:"

oM
V2 LS

o
ot J

281y = the Cartesian components of the infinitesimal strain ;,?A
g2
tensor associated with the displacements u; in going ﬁ:::‘
J'.'f"
from configuration C; at time t to C, at 200
ol
time (t + at) : .9
e
au, au nens
1. 1,1 o
%4572 G, * %) (2.2) A
j 1 ) N ||
YRS
Xy = Cartesian components of a point in configuration ';!a-
c NN
2 isjt
R
2fi = Cartesian components of the body force vector &;E:
o A
measured in C, ?gg
NN
zt1 = Cartesian components of the surface stress vector o
measured in C,. Eﬁfﬁi
RS R
-0
Here § denotes the variational symbol (i.e., Su, denotes the virtual E;Eﬁ
RS
displacement in u;) and dV and dS denote the volume and surface .:}S:
,-.::x“
elements in configuration over which the integrals are defined. '.'*
e
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integrals are defined over the volume Vo, and surface S, of the :
configuration Co which is yet unknown. In the linear analysis, it .

r .

Equation (2.1) is not so useful in its present form because the -

is assumed that the configuration of the body remains unchanged and '
1
-

therefore Eq. (2.1) applies to the initial (undeformed) E
configuration. The fact that the configuration of the body changes E
continuously in a nonlinear analysis requires us to use appropriate .
measures of stress and strain and their interrelationship (i.e., E'

N constitutive equations) so that €q. (2.1) can be used to calculate

the configuration C,. In order to compute the current configuration

C, (often, the displacements, strains and stresses) from the

- -

knowledge of applied forces and displacements, and known previous

Py e

configuration Cy, we must make some assumptions. A description of "
the procedure based on the updated Lagrangian approach is given :
below. ..
The coordinates of a general point in Co and Cy and C, are L
s
0 0 ,0y. -
denoted by (Xl, XZ’ X3), (Xl, XZ’ X3), and (xl, X5 x3), ::
respectively. The displacements of a general point in C, are denoted ;%
1 11 3
( Uys Uy, u3). In C, they are given by ]
: 2, = by wu, . i=1,2,3 (2.3) N
i i i -
where u; are the components of the displacement vector from Cy to Cy. 5!
. :
! Ouring the motion of the body, its volume, surface area, Iz‘
density, stresses and strains change continuously. The stress ::
N
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measure that we shall use is the 2nd Piola-Kirchhoff stress tensor.
The components of the 2nd Piola-Kirchhoff stress tensor in o will be
denoted by Syj. To see the meaning of the 2nd Piola-Kirchhoff stress

tensor, consider the force df on surface dS in C,. The Cauchy stress

tensor 1 is defined by

PN

(n - 1) dS =df (2.4a)

where é is the unit normal to dS in Cy. Note that the Cauchy stress
is the force per deformed area (i.e. measured in Cz) and referred to

cz. The 2nd Piola-Kirchhoff stress tensor at time t + at referred to
Cy 1s defined by

-

(n, - I5) a5, = oF (2.4b)

where ao denotes the unit normal to the surface element dSo in C1-

The force dfo fs related to df by

oF =31 ar (2.4c)
where
-1 ax T
J o= (;g) .

From the definition it is clear that the 2nd Piola-Kirchhoff stress

is measured in CZ but referred to Cl' It can be shown that that the

26 2

components i3 and 15 are related according to

2 142
S15 7 22 G tan ) (2.52)
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ax ax
2. .o (2 .|
Tij 00 (aXm)l Smn (axn) (2.5b)

where A denotes the density in <y and o is the density in Cy. The
2nd Piola-Kirchhoff stress tensor is symmetric whenever the Cauchy
ZS = zr = 21

271 ij = 2'ij°
Similarly, the Green-Lagrange strain tensor Eij and the

stress tensor is symmetric. Note that

infinitesimal strain tensor e1j are related by

IX_ IX

2 - m™"n
Eij B aXy aXJ 2%mn°

1 (2.6)

It is also important to note that the 2nd Piola-Kirchhoff stress

tensor is energetically conjugate to the Green-Lagrange strain tensor

and the Cauchy stress is energetically conjugate to the infinitesimal

strain tensor. In other words, we have

{ {SU 6({Eij)dv i 21” (584 )dV. (2.7)
I} v
1 2
Substituting Eq. (2.7) into Eq. (2.1), we obtain
2 2 2
0= Iv 1511 ‘(151j) dv - §(°F). (2.8)

1

Next we use the incremental decompositions of the stress and strains:

2 1
1345 % i3 " 1543
2 = e, .+ n (2.9)
1595 = 1845 * 1"y :
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where
151J = 1incremental components of 2nd Piola-Kirchhoff stress
tensor
1e1j = (incremental) components of the infinitesimal strain
tensor
= 2 Gx )
J i
u_ au
. l_m_m
LR B 3 A (2.10)

Recall that u; is the i-th displacement component of a generic point
in €y (in going from C; to Cp). Substituting Eq. (2.9) into Eq.
(2.8), we have

1 2
0= + ,S s(.e,, + dv - s(°F
fvl Cryg * 15eg) 6085+ 1y °F)

or

\:‘-:'.v
1 _ A
N
1 1 l".hw'.ﬁ
2
1 2 NN
- ., 6(,e,.)dV + &(°F). (2.11) e
v iJ "MTij E;?*
-\(_;.r
. . e
Linearize the equations by assuming that ;5:{
S c 2g 2.1 35%1‘
= = . e
1313 = 1%43rs Brse ¢ 1815 7 1% (2.12) RN
:-'1-‘:1
A
where lcijrs are the components of the linear elasticity tensor. Cf;j\
[ J
Constitutive equations of linear and nonlinear viscoelasticity will be Spf:
AN
presented later. We obtain the approximate equation of equilibrium, ;53?
3 »
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g 163rs 18rs 80184 AV + fv Tyy 8(gnyylav =
1

1

1713 8(184 )V + s(%F).

- f (2.13)
1

This 1inearization can be interpreted as a representation of the

5 noniinear curve between two consecutive load steps by linear line
)
' segments.
'0
3 2.3 Finite Element Model
’ Here we construct the finite element model of Eq. (2.13) for the
- two-dimensional case (see Reddy [54]). Let each displacement increment
o
; be approximated as
' T aud 2.14

sy, = ) auy wj(xl,xz). (2.14)

J=1
Substituting Eq. (2.14) into Eq. (2.13) we obtain
L o . el g
(IK™] + [K®]) (auy = (F-} - (F% (2.15)
ﬂ where
' (K7 =h [ (8417 [c] (8] ¢A , h = thickness
A

1
: C11 €12 @

ICT =1 Cp Cpp O '

0 0 C66
L ’Ul . 1 0 wz . 1 0 - . . wn . 1 0
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(K% =h [ (8% (<] [B°] dA
A

(11 2 0 0]

(o] = T2 22 0 0
0 0 T T
11 t12
F'*1,1 0 vpp O ...
@] - | ‘2 % Y22 f
0 " 0 v . ..
(4 x 2n) 1,1 2,1

_0 “’1,2 0 “’2,2 . . .

L

Y =h [ (T (FrdA, F% =n [ (84T
A A

1 1

0 0 0 vy 0
11 £

{x} ={tn|» {f} =1
22 ¢
le 2

wn,l 0 )
wn,Z 0

0 ¥n,1

0 wn'?_J

{t}dA

(2.16)

It should be noted that lfij should be computed using the Almansi

strain tensor,
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1 i
%5 = 1% 3km 15km (2.17)

where,

3Uk aum 3Un aun

1
e =3 (o *+ T - )
1°km 2 axm an an aXm

.
;
o)
.
N
E
A
E

Also, since Eq. (2.13) is a linearized version of Eq. (2.11), the error
introduced into the calculation of the displacements u; between
configurations can drift the solution away from the true solution
(especially, if the load steps are large). Therefore, a correction
should be made to the displacements at each load step. This can be done
as follows: The solution (au} of Eq. (2.15) allows us [with the aid of
Eq. (2.3)] to compute the total displacements at time (t + at) ,

2ui = lu1 + B, o
which can be used to compute the strains and stresses (with appropriate
constitutive equation) at time t + at. By the principle of virtual
displacements, the true displacements, strains and stresses at any time,
say at time t + at, are such that the internal virtual work is equal to
the external virtual work done. Since au, (hence the strains and
stresses computed from them) are approximations, there will be imbalance
between the internal and external virtual works performed on the body.
This imbalance can be minimized by updating the internal virtual work
through an iteration (for a fixed system of loads and time); the

iteration is continued until the imbalance is reduced to a preassigned
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value (i.e., a convergence limit). For example, displacement increment
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at the (r + 1)st iteration is calculated from the equations

)
-

it

(K] + (K01 eud, = F5 - F%) (2.18)

-

L2 L
¥

wherein [t] and (<t} are calculated using the displacements,

2 2 o
(“up)p = Cupdo g + (auy) (2.19) Nl

Equations (2.18) and (2.19) correspond to the Newton-Raphson °

iteration. If the left hand side (i.e. [K°]) is not updated during the

iteration, the iterative scheme is known as the modified Newton-Raphson

iteration. .
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CHAPTER 3

NONLINEAR VISCOELASTIC FORMULATION
3.1 Introduction

A thermodynamically consistent theory for a single integrail
representation of nonlinear viscoelasticity was first proposed by
Schapery [25]. The law can be derived from fundamental principles using
the concepts of irreversible thermodynamics. A comprehensive review of
the thermodynamics basis of Schapery's theory has been presented by Hiel
et al. [55].

The following two sections deal with the review and application of
Schapery's single integral constitutive law to problems with uniaxial
and multiaxial states of stress respectively. The constitutive
equations thus obtained are suitable for non-linear viscoelastic finite

element analysis.

3.2 Uniaxial Stress State
The uniaxial nonlinear viscoelastic constitutive equation of

Schapery [25] can be written for an isotropic material as,
t tt t bt s d s
e =900, +g; IO aD(v" - ¥%) g3 [gza lds (3.1)

In Eq. (3.1), et represents uniaxial kinematic strain at current time
t, ot 1s the Cauchy stress at time t, D, is the instantaneous elastic
compliance and aD(v) 1s a transient creep compliiance function.
Superscript, t, denotes current time. The factor gg defines stress and

temperature effects on the instantaneous elastic compliance and is a

32

. . i e
. 3 A A LT T N eI Y R P e P AR P g o T 0T AT TR e Lo o O i
AN A NI I NI TR LN L W S o A W o o Fr I P ) ) WIS, . i

TUTAY

AN E TR R E TN EE T F LTI TSI LN

ST LR

PEEE A w5

-

s
) -

£ 200

.’.ﬂ- ]

P
"l"l. e, N,

'. .l

Xy



. - N R B N N B B N . - . - . 5 0 3 - TS ‘bl - . v Rl 2 ] RN) o Bt
2" et Pt e 0t at fat et 1 Na8"00 0 W™ \ U O W U 18 Vel el el Sal A St o . TR a%a N . ¥ h 0

b

O \\‘

33

measure of state dependent reduction (or increase) in stiffness,

gg = go(°’T)’ Transient (or creep) compliiance factor g§ has similar
meaning, operating on the creep compliance component. The factor

g; accounts for the influence of load rate on creep, and depends on
stress and temperature. The function wt represents a reduced time scale

parameter defined by,
t t s -1
o= [ (a3)7ds (3.2)
o °71

where, a:T is a time scale 'shift factor'. For thermorheologically
simple materials, a = a(T) is a function of temperature T only. This
function modifies, in general, viscoelastic response as a function of
temperature and stress. Mathematically, a:T shifts the creep data
parallel to the time axis relative to a master curve for creep strain
versus time. In this model, four material parameters (g:, g{, gg and at)
are available to characterize nonlinear behavior instead of only one
with the time scale shifting procedure of Knauss and Emri [27].

The transient creep compliance, aD(v), can be expressed in the

following exponential form,

t
-xrb
aD(v) = ; Dr[1 -e I. (3.3)
where D. and A, are constants. Substituting (3.3) in (3.1), gives,
t s
t A (v -97)
t th .t t d
e = goooa + 9 IO ; Drll -e ' ] ey [ggaslds. (3.4)
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Letting the product g;cS be expressed as 6> and simplifying the
integrand on the right hand side of Eq. (3.4) yields,

t s
t t A (v-v) .S
d .S t r dG
Z=Gds -g; ] D [ e = ds.
0 ds 1 £r’y

t ty t t
e = 900" + 9 ; o f

ds
(3.5)

The third integration term on the right hand side of Eq. (3.5) is
now separated into two parts, the first part having limits from zero
to (t - at) and the second integral spanning only the current load step,

i.e., from (t - at) to t. Hence,

t s t s
t - (v - - A (v -v) .S
e T J e T %Q_ ds
0 s

t s
t A (v -v7) .S
s e T G 4s. (3.6)
ds
t-at

The first term on the right hand side of Eq. (3.6) can be rewritten as,

t s

e -— ds
0 ds

St ot-at t-at s
t-at -2 _(v--v ) (v -7) 4GS

e e - ds
0 ds

t  t-at t-at s
-xr(w -v ) J_t-At -xr(w -v°) 463

= e e — ds
0 ds

t
A 8%

e qt-At

r
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A" =0 -y (3.8)

t-at_ s
q:‘At s I:-At e-’\"(w v) gg ds. (3.9)
The second integral on the right hand side of Eq. (3.6) is now
integrated by parts. To carry out the integration, it is assumed
that Gt varies Tinearly over the current time step at. Hence,

t -kr(w %) 468

e -— ds
t-at ds

t s |t
Ap(v-0%) ¢ 2. M=)
- f dG e ds

r t-at t-at ds r

dGS e
ds A

t_ t-ot
t-at (00T

dt ‘r

6" 1 _de

1
dt AL

-A A\bt

t r
_dG [l—e l-

dt A\

(3.10)

In arriving at the second step, the fact that G is assumed to be

1inear, hence its second derivative is zero, is used. Since Gt has been
assumed to be a 1inear function of time over the current load

step at, we can write,

AT S R I -, -
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t t t-at
dG G -G
or’ = (3.11)
dt Awt

Substituting (3.11) into (3.10), gives

t
t s =2 8¢
t A (v -v7) L aS r
e r %g__ ds = [Gt_Gt-At][].‘et ]
t-at A_AY
r
t - (vE-v%)
or, [ e T gg ds = [6* - g-*%]gt (3.12)
t-at
where,
t
~A_AY
B: = l_:_E_EL___, (3.13)
A LAY
Substituting (3.9} and (3.12) back into (3.5) and
writing 6t - ggot
t t t t
e = goﬂoo * 9 ; Drgzo
t “r”“’t t-at tot _ gt-at t-at
-9y 10.(e 9. *+[g50" - g5 st ME (3.14)
r

Collecting those terms in Eq. (3.14) that are multiplied by current

stress at yields,

t t t t t, t
= (90, + 919; z 0, glgz z 08yl

t-st,t t-at _ 200t
+ 9] 2 0.9, ""8L0 e a1t (3.15)
Defining instantaneous compliance D% as the compliance term
t

multiplying the instantaneous stress o, and the remaining terms in Eq.
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et = 0l" + €' = F(o) (3.16)
where,
t .ttt tt tt t
O = 9% * 9192 1 O - 9197 [ Oy (3.17)
t

et = gf{; D lg5t%ato b0t e ¢ttt} (3.19)

Hence, Eq. (3.16) expresses Schapery's single integral constitutive
law in terms of a stress operator that includes instantaneous compliance
and hereditary strains.

It is to be noted that the term q&'At in Eq. (3.18) is the rth
component of the hereditary integral series at the end of the previous
load step (i.e. at time equals t - at). The expression for the
hereditary integral at the end of the current load step (i.e. at time t)
can be derived in the form of a recurrence formula as shown below.

By definition [see. Eq. (3.9)],

t s
t -xr(w -$°) 46s

t- ——
9 = IO e ds_ 98

t s t s
t-at -a_(v -0>) .S t A (v -v7) S
= [ e ' %%— ds + [ e ' %%— ds. (3.19)
0 t-at

Using the results from Eqs. (3.9) and (3.12), the above equation reduces
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t
t -xrAw

qr = e qt-At + t

t t-at t at
r gzo - gz ]8

(3.20)

where 8% 1s defined by £q. (3.13).

3.3 Multiaxial Stress State

For a thermorheologically simple anisotropic viscoelastic material
under a multiaxial state of stress, the constitutive law proposed by

Schapery [25] is,

-~

3G 3a
_ R mn ~
eij o 3011 * 3011 4€mn (3.21)
1 ~
- f st - v & CRVIWEL (3.22)

where, eij and c1J are the strain and stress tensors respectively, GR is

the Gibbs free energy, ; and AS%i are second and fourth order material

iJ
property tensors respectively and ag is a material kernel function
defined in [25]. The quantities Gp, a; and ;mn are, in general,
functions of ten variables, °ij and temperature T. Note that all
repeated indices in Eqs. (3.21) and (3.22) are to be summed out over
their range (1,2,3).

Due to the complex nature of Eq. (3.21) it is not possible to
determine the material properties in this equation from the uniaxial
tests outlined in [25]. However, it is possible to construct a set of
small strain, three dimensional constitutive equations from (3.21),

which is consistent with the thermodynamic theory in [25], and which yet

enables all properties to be evaluated from uniaxial tests. The
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assumptions which need to be made for this purpose are as follows:
5I L 4
(a) The Gibb's free energy Gp is a quadratic function of stress. :.:"?*E
- \J\J.
When the free energy GR is a quadratic function of stress, B
26 o
R _ mn L,
" 30,0 " 313(0opn (3.24) i
1] =1
,h. -~
where ST?(O) are the instantaneous components of the linear viscoelastic )
o
creep compliance tensor. Equation (3.24) implies that the initial :};
P
response of the material is Tinearly elastic under suddenly applied f}._.h
o
stresses, which is often the case for metals and plastics. 1:,*
BeTN'S
The second assumption, on the other hand, leads to the T-Cj:j
ls.l.\ ]
linearization of the coefficient of the transient term in Eq. (3.21). i:;-:
SN
Mathematically, this is given by, ~
J‘.:-_
L. 1, if i =mand j=n ":\'
2 = (3.25) NI
°1j 0, if i =mand j = n I
n' \ _
Equation (3.25) implies that the jump in strain due to load application -_,:;_
X
equals the jump when the load is removed. This behavior is exhibited by oy
'1_:."_'
some types of plastics [56]. 2\-_;
Substituting Egs. (3.24) and (3.25) in (3.21) and (3.22), -2,
S
t mn t "-::::
= RN
eij = Sij(o)°mn + Aeij (3.26) G
t DI )
“t mn, t Ty 3 (AT T 9.
seyy = ! 8875067 = ¥7) 37 (950,)dr (3.27) e
- ST
il
where, g; = l/aé. Superscript, t, denotes current time. Equation ~.-:_::';
A
(3.26) is a set of three dimensional constitutive equations for °
o,
}:\."
N
R,
l.-\ "
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e
o, NP PIPUL Sl
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anisostropic viscoelastic materials which includes the nonlinear
functions gg and aET appearing in the uniaxial relations (3.1) and
(3.2). Note that the functions gg and agT are expressed as a function
of the octrahedral shear stress, which is a stress invariant.

For a homogeneous isotropic nonlinear viscoelastic material, Eq.

(3.25) reduces to the form presented by Schapery ([25] and [56]),

efy = (9Hgjoih + (0 - IH950rm! 61 4 (3.28)
where,
{J}{ggogj} = J(0)ay; + f 8 - ) & (g5 1y (3.29)

t
(0 - JHgbel } = (0(0) - J(O) oty + I [80(s" - v7)

- (et - )] L (g5or)de (3.30)
in which,
t -1
= [ (a7 les (3.31)
T

Expanding Eq. (3.28) term by term for the strains,

tt bttt . tt
eh = {JHgzopy} + {0 - IHaz0y) + 9595, * 95933
Arranging terms,

ef) = {0}aje],} + (0 - JHgzos,) +
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‘ Similarly,

0

«
.‘1":'

esp = [0 - JH{ggob } + {0} {gpo5,) + {0 - J}{gfols] (3.33)

(9,51
' ({} Fe)

v$, = 2{3}{gbet,) (3.34)

&

.“- <
an

®
[N N o g
w
]
——
o
]
[ 49
——
——~—
[T=]
N ot
Q
—cr
—
———
.\k
—
Q
]
[
A
——
[e]
N e
Q
N
(a8 ]
s
+
——
(=]
——
—
[Ve]
cr
cr
—
P ']
&
’

(3.35)

RN RS

'& X “-

LN

The transient components of the creep and shear compliances can be ) o.

written in the form of Prony series as,

-2 Y :. ‘
aD(v) = ] 0 [1-e "] (3.36) A
r

-n.v
8J(v) =] J[1-e "] (3.37)
r

where A and n. are the reciprocal of the retardation times in creep and RGN

¥
5

4

I
5ty
..4"

shear respectively. Also, let,

.
as
)

A

1]
o

0(0) o (3.38)
J(0) o (3.39)
Considering a term of the form {D}{g;cg

(AN
P s
LA

P
T
L]

[}
Cs

.70

o
L]
]

Sy

} in Eq. (3.32) and substituting

[ &N
i
.

)

." :{ -.‘ -.
»

AT T Y

Egs. (3.36) to (3.39) gives,

KA

e

t <
t -2 (v -v')
tt t d
(0}H{gzo4 5} = Doy + Io ; D.[l-e 7 | g5 1a5e3ldr (3.40)

)
~ _\‘.‘.‘_‘-‘.s“. o
. .‘ " .-

Recognizing that Eq. (3.40) is similar in appearance to Eq. (3.6) and

making use of the results derived in Section 3.2,

F\. N
tt, _ntt t aa
pOSY
where D% is the instantaneous creep compliance function at time t, given ®
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t t
0, + 9, ; Dr(l - 8.), (3.42)

’ 'Y' ‘: Y .l.'l.‘ e

QEJ are the hereditary strain components due to tensile Creep at time
t,

R A
o
DN

B
ol

t

t-at t t-at AAYT 4 st
=L l9 ey e O qj) (3.43)
t

-XrAW

LA

(3.44)

and, q:,ij are components of the hereditary integral given by the

g - { (]
RO LL LSS

recurrence formula,

t
t A8V 4 st

_ -8t t-at
9r,iy = © I 45 * (950 13 - 9 o5 le}

(3.45)

e AT NS NS

Similariy, a term of the form {J}{9§°§j} in Eq. (3.32) can be

expressed as,

e s 0 2 %

LIS

P L

{J}{ggcgj} I TREAT (3.46)

Yy

-

where, J% is the instantaneous shear compliance function at time t, and

"

is given by,

,, _’ -.' [ 4 ,";,

(3.47)

P

ng are the hereditary strain components due to shear at time t,

t
Z (gh tettoot e nptv ot-ot)
Tr %3 r ij

e vy

2 ¢

(3.48)
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-nrAwt
g = l_:_g_f____ (3.49)

nrAw

r

and, p:,ij are components of the hereditary integral given by the

recurrence formula;

t

-n_A4Y
t r t-at + [gtot t-at t-at

p- .. =@ P t

rdj F 19295 - 93 oy Irg (3.50)

Substituting Eq. (3.41) and (3.46) in Egs. (3.32) to (3.35), and

dropping superscripts, gives,
ey = 0oy * (Op - dplogy + (O - Jpogg + Hyp (3.51)
€2 = (Dp - Jpdogy + Dpogp + (Op - Jp)ogz + My (3.52)
v1p = 2joyp *+ Hyy (3.53)
€33 = (Op - Jp)oyy + (Op - Jpdogy + Dpogg + Hyy  (3.54)

where,

Hip = Qqp + Qpp + Q33 - Ppp - Py (3.55)
Hap = Qqp * Qp * Q33 - P - P33 (3.56)

Hyp = 2P, (3.57)
H33 = Qpp * Qpp + Q33 - Ppq - Pyp (3.58)

Written in form of a matrix equation, this becomes,
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{e} = [NI{o} + {H}. (3.59)

Note that the left hand side of Eq. (3.59) is a vector containing the
algebraic difference of kinematic strains {e} and dilatational strains
{8;50}
{e}T = {(811 - 8)s(ey, - 8)svyps(egz - 8)} (3.60)
while, {0} contains four components of Cauchy stress,
(o} = (oggeogpr0150033) (3.61)

and {H} is a vector of hereditary strains given by,

T .

{H}' = {HII’HZZ’HIZ’H33}' (3.62) '

The matrix [N] is a 4 x 4 coefficient matrix given by, ff
= S

0y (0p-3p) 0 (D-dp) Ly

(D,-J,) D 0 (D,-d,) v,

_ I 71 I I VI NP

N =1 ¢ 0 2, 0 (3.63) 2

L(DI'JI) (DI'JI) 0 DI | A

L]

e

N

Pre-multiplying Eq. (3.59) by [N]‘l, an explicit expression for stresses §}
I,:

in terms of strains is obtained, o~
{a} = (MI({e} - {H}) (3.64) :ﬁ
.:-_‘:'
:-:‘:n
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where,
Ml = (N7 (3.65)
Equations (3.64) and (3.65) provide a general viscoelastic
constitutive relation that cdn be applied to either plane stress, plane
strain or axisymmetric problems. for plane strain, the out-of-plane
strain component e33 is identically zero. The corresponding stress
component, a3s MAy be obtained from Eq. (3.64) by setting e33 = O.
Since for the plane stress case, 933 is identically zero, the
corresponding strain component ej3 can be evaluated from Egs. (3.59) and
(3.63) as,
€33 = (DI - JI)(all + 022) + H33 (3.66)
Note that the use of creep and shear compliances as material property
input allows the Poisson's ratio to be time-dependent. Hence, the
present formulation is applicable to any thermorheologically simple
isotropic viscoelastic material over any length of time.
For the special case where the Poisson's ratio is a constant with
time, then,
J(¥) = (1 + v)0(w). (3.67)
The matrix [N] in Eq. (3.59) takes the form,

| 0 v
(Np=p | b 0 (3.68)
0 0 2(l+y) O
| -V -V 0 1_
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and, the corresponding hereditary strains are, -
Hyp = Qg - v(Qpp + Q33) (3.69)
Haz = Qg - v(Qyy + Q33) (2.70)
le =2(1 + v)le (3.71)
Hyz = Q33 - v(Qyy + Qpp) (3.72)
If the viscoelastic properties of a material are defined by its
bulk and shear compliances instead of the creep and shear compliances,
then the creep compliance B(v) in Eq. (3.28) is replaced by the bulk and
shear properties. Using the viscoelastic relationship betwen creep,
bulk and shear compliances given by,
-1 2 30
D(v) = 5 M(v) + 3 J(v) (3.73)
and substituting in Eq. (3.28), the matrix relation given by (3.59) is
obtained. However, for this case the matrix [N] has the form,
1 2 1 1 1 1,y
(GM +39) GM-3d9) 0 GM-3dp
1 1 1 2 1 1
(M, -35Jd;) (M +35J;) 0 (F M -5 J;)
(N] = 9T 371 9 1 371 91T 371 (3.74)
0 0 ZJI
1 1 1 1 2
G -39 GM -39 O (@M +3 3

and the corresponding hereditary strains are,
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_1 2 1
Hip =g (Qqp + Qp + Q33) + 3P -3 (Pyy +P33)  (3.79)
Moo = & (Qqq + Qpy + Qag) + 2Py = £ (Py + Pa2)  (3.76)
22 =g (Qqp + Q55 + Q33) + 3 Py5 - 3 (P + Py3 .
Hip = 2P, (3.77)
Hag = 5 (Qyy + Qpy + Qpg) + 2P0 -1 (PP ) (3.78)
33 =9 (Qqp + Qpp + Q33) + 3 P33 -3 (P + Py .

3.4 Finite Element Model

This section describes the finite element implementation of the
nonlinear viscoelastic constitutive law presented in Sections 3.2 and
3.3. Since viscoelastic materials often undergo large displacements
especially when subjected to creep type of loading, the geometrically
nonlinear analysis described in Chapter 2 has been incorporated into the

viscoelastic formulation.

Invoking the principle of virtual work and following the procedure

outlined in Section 2.2 gives,

1
IV1 Mijres 18rs8(18g500V + fv 38 ()

- Ls(e v+ lesudv+ lteuds  (3.79)
137113 I it
v v S
1 1 1
where, 1M1jrs are the components of the viscoelasticity constitutive
tensor. The rest of the quantities and the superscripts in Eq. (3.79)

have the same definitions as in Secticn 2.2. Let each displacement

increment at any time t, be approximated as,
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n
Z AU w (xl,xz). (3.80)

Substituting Eq. (3.80) into Eq. (3.79) gives,
(kM) + [N {au} = {FY} - (F°) (3.81)

where,

Yy = nf  (8YT(MIBL1dA, h = thickness  (3.82)
A

and [M] is the 4x4 viscoelastic constitutive matrix defined in Eq.
(3.65). Note that for the nonlinear viscoelastic case, the 'linear’
stiffness matrix [KL] is not really linear, but has nonlinearities
imbedded in it due to the presence of the material kernel functions (995
di» 9p) in the matrix [M]. The nonlinear stiffness matrix [K°] s the
direct result of the geometrically nonlinear formulation and is given
by,

[k°] = hf  [B%]T[<][8°]dA (3.83)
M
The definitions of matrices [BL], [B°], {FL}, {F°} and [t] are the same
as in Eq. (2.16). The Cauchy stress components, are computed by using

the viscoelastic relation,

{a} = [MI({e} - {H}) (3.84)
which has been derived in Section 3.3. For a geometrically nonlinear
analysis, the vector {e} contains components of the Almansi strain
tensor given by,

(auk N aum ) aun 3Un)
axm axk axk ax

- 6,8 (3.85)

N —
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It is evident that Eq. (3.81) contains two possible sources of ®
o
nonlinearities: material nonlinearity due to Schapery's law and, :2‘:
'-}-‘
geometric nonlinearity arising from the large displacement ;;:
ot
formulation. In order to obtain a solution to this nonlinear equation .
“‘:‘f
at any time step, the Newton-Raphson iterative technique is used. The bhﬁ
w
s
incremental displacement {Au}r obtained at the end of the rth iteration -ﬁj}
A
is used to update the total displacement for the nth time step, d
o
PN
LTI TR Y (3.86) N
r r-1 r * PN
v
a
The iterative procedure continues until a convergence criterion is .:2\
oy
satisfied. After that, the solution proceeds to the next time step. {g?;
N
Note that for the first time-step, nur_1 = 0. i{i:
The compliete solution procedure for each individual time step is Tﬁiu
.". ii
S I
presented in a logical step-wise fashion and can be used directly for gﬁﬁV
N
programming purposes: ?;@;
1. At the beginning of each time step, the stress vector 35&:
B
{a} from the previous time step is accessed. Note that for E;:
SNA3
the initial or starting time step, the stress vector iajz'
N~
o(t - At) denotes the initial stress state at t = 0, given o
.r_'_.:
by {c°}. Since it is customary to assume a stress free state ﬁ:}?
to exist at the start of the solution, {c°} is usually set to ;ii
be zero. ;Ei
2. Temperature T at time t is computed from T = f(t) which is ::i:
supplied by the user for problems involving thermal loads. o
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12.

. Total displacement {u}

The parameters 9gs 9p0 959 and aET, which are known functions -~
of temperature and stress, are evaluated next, using the stress

vector obtained from previous load step.

Assuming agT to be a linear function of time over the time

step at, the average value of shift factor is given as
t = (at'At + at )/2 and the change in reduced time %
OTan ol al
is computed as Awt = At/atT . In order for this assumption
“avg
to be valid At should be made sufficiently small.

a

Hereditary integral {q:} is computed using the recursive
formula given by Eq. (3.45).

{F ..} =alF

(Foxt } where A is the load factor that corresponds

to the time step under consideration.

The residual vectar {R} is computed for each element as,

RI® = (Foeel® - [ (817 {a}%av.
e

The tangent stiffness matrix [KT]e = | [B]T[M][B]dv.
v

e
Incremental displacement {au} = [KT]'I{R}.
i = {u}i_1 + {Au}i where the subscript i
denotes the number of iterations.
The strains and stresses are computed using the known

displacement.

! {Aui}ll

u{ui}u

Steps 3 through 12 are repeated till < tolerance.
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13. Solution proceeds to the next time ste
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CHAPTER 4
MOISTURE DIFFUSION AND DELAYED FAILURE
4.1 Governing Equations for Diffusion
The nonlinear Fickean two-dimensional, diffusion model presented in
the present study is the one investigated by Lefebvre, et al. [S1]. The
diffusion model can also be appiied for penetrants other than moisture.
Fick's law for the two-dimensional diffusion of a penetrant within

an isotropic material is given by,

3 (p3Cy , 2 p Sy . A€
% 050+ 2y (0 ay) 5t (4.1)

where, ¢ is the penetrant concentration, which is a function of position
and time, and D is the diffusion coefficient.

[n order to model the transport phenomena in polymeric materials,
Lefebvre et al. [51] derived a nonlinear diffusion coefficient based on
the concept of free volume.

According to this theory, the diffusion coefficient for a polymeric
material above its glass transition temperature is given by,

D -B{1l/f - 1/f_}
Te 0

(e
[}
3
o |10
'

(4.2)

“ on, s ® COR
[P PPN O

where, 0 is the diffusion coefficient, T is the temperature, f is the

[ ]

free volume fraction, and B is a material constant. The subscript 'o’

-

denotes values at the reference state. It is then postulated that the

o4
a2 2

ey

change in fractional free volume is due to changes in temperature,
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penetrant concentration, and the transient component of the mechanically
induced dilatational strain. [t is further assumed that these changes
are additive, which is similar to the assumptions made by Knauss and
Emri [27], giving,

f = fo + 3aaT + ey, + 3ycN (4.3)
In Eq. (4.3), a is the linear coefficient of thermal expansion, y is the
linear coefficient of expansion due to moisture, N is an exponent for
the saturated state, and LL is the transient component of the
mechanically induced dilatational strain. The dilatational strain due
to the ambient stress state can be written as,

ek = ekk(O) + de, (4.4)

where ekk(O) and se,, are the instantaneous and transient components of

the mechanically induced dilatatioral strain @k Hence,

5
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e, (0) = % M(0)oy, (4.5) 53

and e
1 t t Ty, 23 V:V

Aekk = § IO M(w -V ) 3? (gzokk)dT (4'6) \f?
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where M(v) is the bulk compliance of the material. Combining Eqs. (4.4)

and(4.5),
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Substituting (4.7) in (4.3),

1 N
f = fo + 3aaT + {ekk -3 M(O)okk} + 3yc (4.8)
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Substituting (4.8) in (4.2) gives,
N 1
D 3(adT + yCc') + (e, -3 Mo.,)
D =727 exp (3 3 e ke 1 (4.9)
0 0 fo + 3(adT + yc') + (ekk -3 Mo°kk)

From the viscoelastic formulation presented in Chapter 3, it is evident
that the dilatational strain ek is dependent on the stress history,
temperature and penetrant concentration, that is,

ey * ekk(°kk’T’C) (4.10)
Hence, the two sources of nonlinearity in Eq. (4.1) are moisture
concentration ¢, and dilatational strain erk* Consequently, in order to
accurately model the penetrant transport phenomena, the diffusion
boundary-value problem needs to be solved in conjunction with the
nonlinear viscoelasticity boundary-value problem by using an iterative
procedure. The same solution procedure can also be applied for
diffusion in polymeric materials where the plasticizing effect of the
penetrant may cause the viscoelastic time-scale shift factor to be

concentration dependent, that is,

agrc = a(s,T,c) (4.11)

One example of such a shift factor definition can be found in the work
of Knauss and Emri [27], where the authors have used the unifying
concept of free volume to define a shift factor given by,

aAT + yc + se

a(T,c,e ) = exp{- o

)} (4.12)

f (fo + aaT + yC +

where § is the coefficient of the dilatation term. Note that the

coefficients a and vy in Eqs. (4.9) and (4.12) are, in jeneral, functions
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of T, ¢ and €Lk but have been assumed to be constant for the sake of

i

simplicity. This assumption is valid for temperatures above the glass
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»
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transition temperature.
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4.2 Finite Element Formulation
Fick's law for two dimensional diffusion in a homogeneous isotropic

material is given by,

3 ac, . 3_ (3Cy _
TRY U ay (ay)

subject to the boundary conditions,

ac ac .
D "t D 3y "y +q=20o0n Iy s t20 (4.14)

c on FZ , t

with the initial condition,

c i (4.16)

where, q is the two dimensional region in which diffusion occurs,
and r is the boundary to this region.

The finite element formulation for Eq. (4.13) incorporating the
initial and boundary conditions (Egs. (4.14) to (4.16)) was carried out
following the variational procedure used by Reddy [54]. The time

dependent moisture concentration is approximated as,
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n - !.
c(x,y,t) = § w.(x,y)c.(t) (4.17)
j=1 J J
The resulting finite element equations cast in a matrix form are given
by,
M@ e + (k@ e} = (r8)) (4.18) 2
where, éi
o
)
mie) - [ v v.dxdy (4.19) 3
] N e 1J M
2 4
vl
v, v 3y, av ]
(e) . A _J,_1_1 ;
Kij f D(ax TRRMETEET] Ydxdy (4.20) ;'
Q ;
N \J
Fge) =-] vads (4.21) Q|
r® 3
The superscript (e) is used to denote that the equations are valid over 5_
each element. The range of the subscripts i and j is equal to the fs
e
number of nodes per element. 2\
The time derivative {¢} is approximated using a & family of E;
\-“
approximations given by, "
e}y - fc} A
\ . . _ n+l n A
: e{c}n+1 + (1 - e){c}n = T for 0 <8 <1 (4.22) )
n+l -
where, n is the time step. Using the approximations (4.22) in (4.18) o
for time t and t ., gives, g9
)
(e) - (g(®) - qple)y “
(AY e}, - 1B Heh, - (PP} =0 (4.23) i
:.-
*J'
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(A& = &) v aar x(®)) (4.20)
88 = () -1 - eyt k(8] (4.25)

P} = at  lF®) s - o)) (a26)

Recognizing that a source of nonlinearity in the form of the diffusion
coefficient D is imbedded in the matrix [K(e)], the Newton-Raphson
technique is employed to solve for the concentration {c}n+1 at each time

step. Note that for n = 1, the value of {c} in Eq. (4.23) is known from

initial conditions.

4.3 Delayed Failure: Uniaxial Formulation

When a viscoelastic material undergoes deformation, only a part of
the total deformation energy is stored, while the rest of the energy is
dissipated. This behavior is unlike elastic material where 3111 the
energy of deformation is stored as strain energy. Reiner and Weisenberg
(44] postulated that it is this time-dependent energy
storage capacity that is responsible for the transition from
viscoelastic response to yield in ductile materials or fracture in
brittle ones. According to this theory, failure occurs when the stored
deviatoric strain energy per unit volume in a body reaches a certain
maximum va'.e called the resilience, which is a material property. Note
that when --ere is no dissipation, that is, when the material is

elastic, thren Reiner-Weisenberg criterion becomes identical to the von

Mises criter zn,
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Consider the single Kelvin element shown in Fig. 1, subject to the
uniaxial tensile load o(t). The total strain response e(t) due to the
applied stress can be divided into two components: the instantaneous
respone e,, and the transient response e(t). Hence,

e(t) = e, *+ el(t) (4.27)
For uniaxial creep, the applied stress o(t) is given as,
a(t) = aOH(t) (4.28)
where H(t) is the unit step function.
Substituting Eq. (4.28) into Schapery's nonlinear uniaxial single

integral law given by Eq.(3.1), and expressing the transient creep

compliance Dc(w) as,

-xlw

D.(v) =D, —-0;(1-e °) (4.29)
results in,
-A 7}

e(¥) = g0 0, + 9,9,0,0,(1 - e 1) (4.30)

where v is the reduced time defined in Eq. (3.2).

Comparing Eq. (4.30) with (4.27),
e, = gODocO (4.31)
ALY

For a given applied stress g9 stress developed in the nonlinear spring
with compliance Dogo is o; and the corresponding strain is eg. For the

spring with the nonlinear compliiance 0191' the stress is given by,
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91%1 AT
where the superscript 's' denotes quantities related to the springs. Pt

L From Fig. 1 it is evident that ei and e, are equivalent. Hence,

c§ =g,(1-e *)og (4.34)
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k The total energy, WS, stored in the two springs over time t is (see Hiel
et al. [55]),

74
;¢5¢2

e

0 t
WS = [ ode + [ oféldt (4.35)
0 0

getals

P
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Using results from Eqs. (4.31), (4.33), and (4.34), Eq. (4.35) becomes,
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W= 3950005 + 7 91011 - e 17(g50,
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(4.36)
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For a viscoelastic material represented by muitiple Kelvin elements in

zf('
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series, Eq. (4.36) takes the form,

s at
a

. 7,
v

n =x ¥
WS = % 90475 * % glggoz 21 (0.(1-e "% (a.37)
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According to the Reiner-Weisenberg hypothesis, failure occurs when the

5

stored energy WS reaches the resilience of the material. Denoting the
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resilience as R, the expression for the time dependent failure stress

R

obtained from Eq. (4.37) for uniaxial stress state is,

177 (4.38)
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4.4 Delayed Failure: Multiaxial Formulation

If I 9y and 0y are the principal stresses at any point in a
viscoelastic material, then by definition, the shear stresses are zero
on the principal planes. In order to simplify the derivation, let it be
assumed that the viscoelastic material is represented by means of a
single Kelvin element (see Fig. 1) in each principal direction. The
applied multiaxial creep stresses in the material principal directions

are given by,

9 = olH(t) (4.39)
9o = OZH(t) (4.40)
933 = °3H(t) (4.41)

Substituting Eqs. (4.39), (4.40) and (4.41) in Eqs. (3.32), (3.33) and
(3.395) result in the following expressions for the corresponding
viscoelastic strains,

-1

Jo Jo oY
e11(t) = Ogloy + (1 - gNoy + (1 - ghagh + 0j[(1 - & " )gpo)

-\ ¥ J -n_¥ -2 b
t{l-e ") et (l-e Tlge,+{(1-e )
1

J1 =N
+ q (1 - e )}9203] (4'42)

From Eq. (4.42) it is evident that the effective stress developed in the

spring with compliance D, acting in principal direction 1 is given by,

S

%1

JO JO
= 01 + (1 - x)qz + (1 - 6;—)03 (4.43)
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Similarly, the effective stress developed in the spring with compliance

0, and acting in principal direction 1 is,

A A

n_¥

A A -
o$)(0) = (L-e ")gyo + {(1-e ’)+ﬁ%<1-e ") 1950,

- b J -n ¥
+{(l-e ")+ 5% (1-e ")lgyo (4.44)

On the left hand side of Eqs. (4.43) and (4.44), the superscript 's'
denotes the effective stress within the spring, the first subscript
indicates the spring number, and the second subscript determines the
principal direction in which the effective stress acts.

The total energy, Ni, stored in the two springs in material

direction 1 over time t, can now be obtained by using Eq. (4.35).

Hence,

WS = 30 (o3)% + 0,32 (4.45)

Using a procedure similar to the one just described, it can be shown

that for an isotropic material the total stored energies WS and w§ may

2
be expressed in a form similar to Eq. (4.45). Therefore, the total

energy, w?, stored in the springs in direction j, over time t is given

by,

s _ 1 s 2, 1 s \2
Nj =5 Do(°oj) + 3 Dl(°lj) (4.46)

If the viscoelastic material is represented by n Kelvin units in series

in each material principal direction respectively, then,

‘1)\,,\..\,'-'."4.1..\”\ "*‘.._-"_,‘.-"_-“'n""- -_,\",\J.\_,'n.__\;,‘-‘_\‘_.',\'_-."', ) IR S
. ad N v

A

=

L4

2
.

Ay XA,
"5

e

OO,

wl ]
;.O‘L

R g
ot

&
22

%

.

@ R

vh 5 S

e

L s
a5 % %y PR
i@ S
7 .'ﬁ "'.-.a';"f.‘.’

f,
&

Y

ars,
:’ ';"x%'-'

P A

Sy

r

a BN
OEIERURY
RPN

]

%
7

-5

g 0 T P J
’,
/]

2
~
’4.

s
" _a
P .

L

27,
"’

%

o 4

N A A

.f
A



e T XN Y

62
f
; o
[ -g
' s _ 1 s,2 .1 % s (2 T
‘ W=3 Do(°oj) +3 rzl Dr("rj) (4.46) -
) N
4
where, ‘
)
/ J J
s _ __0 o b
, %5 = (=g o1 * o2 * o3) + 5 948y (4.47) g
f and, N
1 ALY -n_b 1
s _ _ ry __r _ r _
ong = Gpl(1 -e 7)) 0, (1-e " )lloy + 0, + o4l 2
; Jr (1 —nrw) :
| + 49, 7 -e a:é i,j=1,2,3 (4.48) v
! 2 Dr iij ;
Note that in Eqs. (4.47) and (4.48), repeated indices imply summation, %
) Y
and 51j is the Kronecker delta operator. Also, the Prony series for the P:
creep and shear compliance are required to have the same number of 3
‘o )
, terms. b
' Equations (4.46), (4.47) and (4.48) define the energy stored in the 3
"W
jth principal direction in an isotropic viscoelastic material. o
Ky
Therefore, according to the Reiner-Weisenberg failure theory, the w
criterion for creep rupture in the jth principal direction is given as, ;5
A
; S
W 2R (4.49) '
where R is the resilience of the isotropic material. ::‘
For a material with a constant Poisson's ratio, ™
J(8) = (1 + v)D(v) (4.50) o
For such cases, Eq. (4.46) is still valid, but Eqs. (4.47) and (4.48) <]

[ simplify to,
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CHAPTER § -~
NUMERICAL RESULTS
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5.1 Preliminary Comments

- e Sl

In this section results of a number of linear elastic, linear

’

viscoelastic and nonlinear viscoelastic analyses are discussed in light

of available experimental or analytical results. A1l results are

T e s

obtained using NOVA on an IBM 3090 computer in double precision

-

arithmetic. The first problem deals with 1inear elastic (both adhesive

- - A
o A

and adherend) analysis to show the effect of boundary conditions and

<

mesh on the stress distributions. Next, results of geometric nonlinear

analysis are presented and compared with those obtained with VISTA.

Then linear and nonlinear viscoelastic analysis results are presented,

AR

first, to validate the finite element procedure described in the

preceeding chapters and, second, to obtain new results for certain

adhesive joints.

5.2 Linear Elastic Analysis: Effects of Boundary
Conditions and Mesh

To investigate the influence of boundary cobnditions on the elastic

R l:'"l.'l;l.-'.'.ﬁ (W :—'..'..s-"-’..‘-$~r-

stress distribution in a single lap joint, the three different boundary
conditions shown in Fig. 2 were used in the linear elastic analysis.
During the present study it was also observed that the type of finite-
element mesh (i.e. uniform or nonuniform) has also an effect on the
stress distribution in the bondline. The material properties used are

given in Table 1.
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Figures 3 and 4 show plots of the peel stress obtained by unifornm ® 1
,Jﬁ-}
and nonuniform meshes, respectively, along the center of the bond ﬁgﬁ
&7
line. Boundary conditions of Type 1 and 3 give almost the same j
Ay
distribution of the stress, while Type 2 differs significantly at the )
N
edges of the adhesive. Stresses obtained with Type 1 and 3 boundary e
conditions exhibit stress distributions that are almost symmetric about f;ﬁﬁ
the vertical centerline of the joint (with Type 3 being the most e
'J' ,
)
symmetric). It is also observed that the distribution is not quite f“\
s-".'\.
smooth when a uniform mesh is used. For an accurate description of the Sﬁy
Y
stress gradients near the edges, a more refined mesh than that used at _!L
'.r:'.r
the center (i.e., nonuniform mesh) must be used. This observation is t{;
o
supported by the resuits shown in Fig. 3. 35;
Sy
The effect of boundary conditions (Type 1 to 3) on the distribution ;2,\
._\:_-
of the peel and shear stresses along the upper and lower bondlines 3§§-
.I.‘J'-
(i.e., interface bewteen the adhesive and adherend) are shown in Figs. jsj;
5-8. The nonuniform mesh was used in all cases. From these results it ;:~‘
'K’\‘-
is clear that boundary condition of Type 2 gives significantly different ;E:‘
.."\.
results than Type 1 or 3, especially near the edges. NG
. @
5.3 Geometric Nonlinear Analysis w0
Next, geometrically nonlinear analysis of a bonded lap joint was }ifﬁ
considered. The geometry and boundary conditions of Type 2 shown in .‘;"
9.
v
Fig. 2 are used. The material constants used are given in Table 2. The Lol
present nonlinear elastic analysis results are compared with those ﬁ;ﬁ;
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ootained using the VISTA program {23] in Figs. 9 and 10. The results
are in excellent agreement.

Next, the nonlinear response of a bonded cantilever plate under
distributed transverse loads was investigated. The plate geometry and
the two finite element meshes used are shown in Fig. 1l. The material
properties used are given in Table 3. Both the adhesive and the
adherends were assumed to be linearly elastic and isotropic.

The load on the plate was increased in steps until a fairly large
free-end deflection was obtained. For the present analysis the
magnitude of the deflection was over 50% of the beam length. The
resulting load-deflection curves obtained by the two meshes are shown in
Fig. 12. The results obtained by using linear analysis is also plotted
for comparison purposes. C(Clearly, the nonlinear analysis predicts a
stiffer response. This is due to the fact that the large transverse
deflection causes a bending-extension coupling which resulits in an
increase in the flexural stiffness of the beam.

Figure 13 shows the compressive bending stress at a specified point
(near the fixed end) in the lower adherend plotted against applied load
for the two different meshes. The discrepancy in the two curves is due
to the fact that the axial stress values for one curve were obtained at
an x-location slightly different from the other curve. The flattening
out of the stress curve at higher loads is a result of the shortening of

the moment arm due to extensive bending of the beam.
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‘ Figures 14-16 show the variation of the flexural, peel and shear
stresses in the lower half of the adhesive layer plotted along the plate
axis for two different meshes. Adjacent to the clamped end, there

P exists a narrow region where both the flexural and peel stresses are
tensile. However, as one moves further along the plate Tength, the
flexural stress turns compressive, which conforms to what is predicted
b by the elementary plate theory. The shear stress attains its maximum
value near the clamped end and decreases rapidly as one moves out

towards the free end. A1l three stresses vanish at the free end of the

plate, thus satisfying the stress free boundary condition.

5.4 Linear Viscoelastic Analysis

The nonlinear constitutive law due to Schapery may be linearized by
assuming that the nonlinearizing parameters g,, 91, and g, have a value
of unity. In addition, the stress dependent part of the exponent in the

definition of the shift factor is set to zero. Consequently, the

constitutive law reduces to the superposition integral form commonly
used to describe a linear viscoelastic material.

Two test cases are used to validate the linear viscoelastic
analysic capability implemented in the present finite element program
named NOVA. In the first case, the tensile creep strain in a single

eight noded quadrilateral element was computed for both the plane stress

and plane strain cases using the program NOVA. The results were then

compared to the analytical solution for the plane strain case presented

in [57]. A uniform uniaxial tensile load of 13.79 MPa was applied on
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the test specimen. A three-parameter solid model was used to represent =
‘ the tensile compliance of the adhesive. The following time dependent
functions were used in [57] to represent the tensile compliance and the
Poisson's ratio for FM-73M at 72°C:
J J
- . 0 1 -t/0.85
: D(t) = Zo(myT * T - e ) (51

Approximating the Poisson's ratio with the elasticity relation gives,

(5.2)

_ where G(t) and K(t) are the shear and bulk modulus (mm/mm/MPA)
‘ respectively, and Jo, Jl are the shear compliance coefficients. The
analytical solution to the creep problem for the plane strain case is
given in {57] as:

e(t) = 2.728 x 1072 + 1.334 x 1072 &7t/0-85 _ 7 g59 x 107% ~1/0-3921

It is to be noted that for the three-parameter solid charac-

terization of FM-73M the value of the Poisson's ratio actually increases
with time. However, in the present analysis the Poisson's ratio is
assumed to be independent of time. Hence two discrete values of the
Poisson's ratio are used to match the exact solution for few initial
time steps and final time steps. The values of the Poisson's ratio
chosen for this purpose are Vg = tig v(t) = 0.32 and v_ = LZTQ v(t)
= 0.417. Figure 17a shows the creep curve for v = 0.417 for both plane

strain and plane stress finite-element analyses. As expected, the plane

strain results exhibit close agreement with the exact solution for large
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values of time, followed by progressive deterioration of predicted value
as one moves towards smaller values of time. The finite element results
for the plane stress case points to the fact that the strains are higher
for plane stress than for plane strain.

Figure 17b shows the creep curve corresponding to v = 0.32 for the
plane strain case. In this case the finite element predictions are
accurate only for first few time steps and deviates more and more from
the analytical solution as time increases. This is not surprising since
the choice of Poisson's ratio for this case makes the comparison
meaningful only when t is small.

The above results indicate that the program NOVA provides
reasonably accurate results in regions where the input parameters are
accurate, and that the variation of Poisson's ratio during the period of
analysis may cause significant deviations from the actual solution.

Next, the Model Joint analysis problem presented in [57] was used
as the second validation example. In this case, a linear viscoelastic
finite element analysis was carried out on a model joint under a
constant applied load of 4448 N giving an average adhesive shear stress
of 13.79 MPa. The specimen geometry, discretization and boundary
conditions are shown in Fig. 18. The thickness of the adhesive layer is
taken to be 0.254 mm. A nine parameter solid model was used to

represent the tensile creep compliance of FM-73 at 72°C and is given by:
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D(t) = 0.5988 x 1073 + 1.637 x 107 (1 - ¢-t/0-01,

+0.6031 x 1074 (1 - e7t/0-1y
+0.9108 x 1074 (1 - e7t/1-0y
+2.6177 x 1074 (1 - &-t/10.0,

The adhesive Poisson's ratio is assumed to have a value of 0.417 and
remains constant with time. The material properties for the aluminum
adherends are presented in Table 3.

Figures 19 and 20 contain plots of the bond normal and shear
stresses, respectively for t = 50 secs. and t = 60 min. of loading.
These stresses represent the value at 1/16 the thickness from the upper
adhesive adherend interface. The sharp peak at the left hand edge is
due to the singularity caused by the presence of a re-entrant corner in
the vicinity of the edge. These results are in good agreement with the
results presented in [57] which uses the linear viscoelastic finite

element code, MARC.

5.5 Axisymmetric Analysis of a Linearly Viscoelastic Rod
The axial displacement of one end of a linearly viscoelastic rod,
subjected to a spatially uniform end traction that varies sinusoidally
with time, was obtained by using the program NOVA. The shift factor for
the material is defined by the WLF equation and the temperature is held

at a constant value. The specimen geometry and material properties are
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presented in Table 4. The exact solution to this problem has been
presented in [23] and was used to validate the finite element

predictions. As can be seen from Fig. 21, the finite element results

are in excellent agreement with the closed form solution over one cycle

of loading and unloading.

5.6 Nonlinear Viscoelastic Analysis of Adhesive Coupons
In order to validate the nonlinear viscoelastic model, three
uniaxial test cases are analyzed. The results are compared with the
laboratory tests conducted on similar specimens by Peretz and Weitsman
[26]. The material properties used in the verification analysis are
those reported in [22]. The creep data, together with other relevant
material properties, are given in Table 5. A constant value for the
Poisson ratio is assumed for the adhesive. The results from a linear
viscoelastic analysis are also presented for comparison.

In the first verification test, a uniaxial stress of 10 MPa is
applied to the adhesive coupon for 1200 secs., followed by a step
increase to 26.6 MPa for a further 1200 secs. The temperature of the

specimen is held constant at 50°C and is assumed to be uniform

everywhere. The finite element predictions for this test are plotted

together with the experimental data in Fig. 22. The predictions are in

good agreement with the experimental results of Peretz and Weitsman
[26].

The second test involves creep predictions under simultaneously

. p e am - e e e WV W v
AN LR L R AT -.":\ UL \. AT
P : . .

“u

AN e .Y

.......

.....

varying stress and temperature, both increasing linearly with time. The

Ly

NNy

o

S o Prs

h)
’ (\'f?

e vV e
Y

s
o 4 &
LA

i
L >

-

PR RAR]
3 i5¥5?'

-~
> & &
T s

LR R A
[d
Y

s

EA A
P

N

v
24

L4

.'r'_‘/

[
2.2

D MO
.O

AN

) ',. .;. ’-. ':‘ ."_-

. .®

«
L)

LA M)
)

AR
\\\,\
)

l/"

o

il
rd
)

-

(.

.
-

)
’I (l
2 2

A 4
»
T

|
.Il

Pl
%

]
*

F

58
Pl )

v
~

@ ."_:“.-- ‘: N

N e
LTy

2

A

5N

L

55

B4

1"7‘.1
5%
S [s

[




prery > Cadil LA PR A AL SO Al Gl Sl Gk Sl Al A Wl Ral )
“gralpAalitargte b ey v IV R KN e tihf ) 1000 20a8 30t Ant i Achat AaRpin* ARt ARt el A"t A Y PR A AR AR SR O LA L% ."-,\,--_'.

temperature is again assumed to be uniform throughout the test -
specimen. The finite element predictions (linear and nonlinear) and
experimental data are compared in Fig. 23. There is a good agrzement
between the two sets of results

The third test involves creep under a constant stress of 10 MPa
with a linearly varying temperature as a function of time. Figure 24
shows the strain vs. time curves obtained in the experiments and finite
) element analysis. Satisfactory agreement between the experimental
é results and the analysis is observed.

A further set of tests were conducted in order to evaluate the
accuracy of the finite element code for the case where creep is followed
’ by creep recovery. A qualitative depiction of the loading and the

resulting creep strain is given in Fig. 25. Rochefort and Brinson [61]

- R
Y {-,A,'\vl.‘.- 1.

,‘

N presented experimental data and analytical predictions on the creep and p
! ’:

creep recovery characteristics of FM-73 adhesive at constant &

o

temperature. The Schapery parameters necessary to characterize the

PR

viscoelastic response of FM-73 at a fixed temperature of 30°C are

yua T VA

‘AT

obtained by applying a least squares curve fit to the data presented in

-y

[61]. The resulting analytical expressions for the creep compliance

PP
-
]

function D(w), the shift function a_, and the nonlinear parameters g,
gy and g, are presented in Table 6. From the point of view of

programming convenience it is more suitable to work with an exponential g
series than a power law. Hence the power law creep compliance function 2

was converted to an equivalent five term exponential series of the form
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given by Eq. (3.5). The five constant coefficents for this series were
cbtained by means of fitting a curve to the aforementioned power law
function and then minimizing the error in a least-squares sense. The
exponential series form of the compliance function is presented in Table
7 and it is plotted against the power law curve in Fig. 26 for
comparison.

Figure 27 shows the geometry of the tensile dogbone specimen used
to carry out the creep and creep recovery tests. This geometry is
identical to the one used by Rochefort and Brinson [61]. Due to the
symmetry of specimen geometry and applied load, only the upper right
hand quadrant of the specimen was analyzed. The finite element
discretization consists of two elements along the length of the specimen
and one element in the width direction. Eight-node quadrilateral plane
stress elements are used for this analysis. A constant tensile load is
applied on the specimen for the first 30 min. followed by creep recovery
over an equal length of time. The procedure is repeated for three
different stress levels at a fixed temperature of 30°C.

The stress input for a uniaxial creep and creep recovery test is
given by,

a(t) = oOH(t) - coH(t - tl) (5.3)
where H(t - t;) is the unit step function, and t; is the time at which
stress is removed.

Substitution of Eq. (5.3) into Eq. (3.1) coupled with a power law

representation for the compliance yields,
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e (t) = (g0, + Cgls;z(;—o)“lao (5.4)
and
! 1 n n
e (t) TS [(1+ax)" - (a )] (5.5)

for the creep and creep recovery strains respectively. In the above

expression,

= 5.6
b (5.6)

is a nondimensional parameter, and

t
bey = e (ty) - ¢, = Ccoglgz(si)n (5.7)

represents the transient component of creep strain just prior to
unloading. Hence, Egs. (5.4) to (5.7) provide a closed form solution to
Schapery's nonlinear single integral law for the simple load history
involving creep and creep recovery given by Eq. (5.3).

Figures 28 a, b, and ¢ show the results of the finite element
analysis plotted along with the curve representing the closed form
analytical solutions for applied stress levels of 21, 17 and 14 MPa
respectively. The finite element predictions are in excellent agreement
with the closed form solutions except at the beginning of creep and
again at the onset of creep recovery. This discrepancy is clearly due
to the discrepancy between the power law and the exponential series
representation of the creep compliance function aD(w), as shown in Fig.

26. The presence of too many data points in the far field region has
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caused the least square curve fit to give less weight to the initial
data points and therefore overlook the error present near the beginning
of the time axis. The complete agreement between the closed form
solution and the finite element prediction for large values of time
corroborates this fact. From Fig. 28 it is also evident that the error
in the predicted value of strain decreases as the applied stress is
reduced. This is exactly what is expected since the stress dependent
nonlinear parameters g; and gp act as scale factors on the transient
component of the creep strain. Thus, a reduction in the applied stress
causes the values of g; and g, to reduce, which results in a

proportionate reduction in the error magnitude.

5.7 Linear and Nonlinear Viscoelastic Analysis of a Model
Joint

The loading, boundary conditions and specimen geometry used in this
analysis is the same as the one used in the earlier model joint (see
Fig. 18). In addition, the same nine parameter solid model was used in
this analysis. A linear viscoelastic finite element analysis was
carried out over a period of one hour at a constant applied load of
3336 N. The results for the linear analysis are shown in Figs. 29-30.
The sharp peak at the left hand edge is due to the singularity caused by
the presence of a re-entrant corner and dissimilar materialis. ATl
stress plots show the same basic trend in that the stresses are

attempting to redistribute themselves to achieve a more uniform

distribution.
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For the nonlinear viscoelastic analysis of the model joint, the T
same specimen geometry and material properties were employed. However,
the nonlinearizing parameters and the shift function were no longer held
constant, but were allowed to change with the current stress state
within the adhesive layer. The results from this analysis are presented
in Figs. 31 and 32. It is immediately apparent that the effect of the
nonlinearity causes a 'softening' of the adhesive, leading to a response
that is less stiff compared to the linear case. Hence, even though the
applied load is the same, the shearing strain for the nonlinear case is
significantly larger as compared to the linear case (Figs. 30 and 32).
Moreover, the increment in creep strain for the nonlinear case is 0.0058
as compared to 0.0041 for the linear case over the same period of
time. This is exactly what {s expected since the nonlinear model takes
into account the acceleration of creep caused by the stresses within the
adhesive.

The effect of the nonlinearity on the stress curves (Figs. 29 and
31) is to create a more uniform stress distribution by reducing the
stress peaks near the edges while increasing the stresses at the mid-
section of the overlap. The significant reduction of the stress peaks
effected by the nonlinear model is very important from a design point of
view since the reduction of stress levels at the critically stressed

regions results in an improved joint efficiency.
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b 5.8 Elastic Analysis of a Composite Single Lap Joint
Renton and Vinson [37] used a closed form elastic solution to
conduct a parametric study of the effect of adherend properties on the

peak stresses within the adhesive in a composite single lap joint. A
similar parametric study was carried out using the finite element
program NOVA. The geometry, finite element discretization and boundary
conditions for the composite lap joint are shown in Fig. 33. For the
sake of simplicity, only identical adherends are considered. Each

adherend is made up of seven laminas of equal thickness. The

orthotropic material properties for a lamina are given in Table 8. 1In
order to maintain material symmetry about the laminate mid-plane and
thus eliminate bending-stretching coupling, a 80/00/-60/00/-80/Q00/80 ply
orientation was selected for the analysis. Note that this type of ply
orientation places the 60 ply immediately adjacent to the adhesive
layer. The adhesive used is FM-73 and its isotropic linear elastic
properties are listed in Table 9. The adhesive layer is modeled using
sixteen eight-noded quadrilateral elements along its length and two
elements through its thickness. A series of elastic finite element
analyses is performed to study the effect of ply orientation, lamina
primary modulus (011), and geometric nonlinearity on the peak stresses
in the adhesive.

In order to study the influence of ply orientation on the adhesive
stress distribution, stress analyses were performed for ¢ = 0°, ¢ = 15°,

8 = 45°, and 8 = 90” respectively. The results are shown in Figs. 34
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and 35. The plots show the variation of stresses along the upper

bondline of the overiap. The parameter x/c is the normalized distance

from the bond centerltine such that the value x/c = -1 corresponds to the
left-hand free edge of the bond overlap. It is evident from these
figures that an increase in the ply orientation angle 8, causes the peak
stresses to increase near the free edge of the bond overlap. The
adherend with a 0°/90° ply orientation (cross-ply) shows a 28% increase
in peel stress and a 17% increase in shear stress over the corresponding
values for a 0° (unidirectional) ply orientation. This is not
surprising since a cross-ply adherend has a lower bending stiffness
which results in a larger lateral deflection causing higher stress
concentrations at che overlap ends.

The influence of the lamina primary modulus (011) on adhesive peel
and shear stresses can be seen in Figs. 36 and 37 respectively. A 0°
(unidirectional) adherend ply orientation is used for this analysis.

The two figures show a significant increase in the peak adhesive stress
as the value of Q; decreases. This is understandable as a more
flexible adherend would undergo larger bending and hence produce higher
stress concentrations at the overlap ends.

Harris and Adams [65] conducted large displacement finite element
analyses on a single lap joint with aluminum adherends and observed
significant reduction in peak stresses at the edge of the adhesive as
compared to linear results. In order to observe the effect of geometric

nonlinearity on a single lap joint with laminated composite adherends, a
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large displacement analysis was performed using the program NOVA. Due
to its greater susceptibility to bending, cross-ply laminated adherends
were used for this analysis. The results can be seen in Figs. 38 and
39. The geometrically nonlinear analysis results in a 30% reduction in
the peak peel stress and a 15% reduction in the peak shear stress. The
horizontal shifting of the nonlinear curves is due to the configuration
coordinate update required by the large displacement analysis.

5.9 Nonlinear Viscoelastic Analysis of a Composite Single

Lap Joint

A nonlinear viscoelastic analysis of a lap joint made of composite
material was carried out over a time period of forty hours using NOVA.
The specimen geometry and the finite element discretization are the same
as for the elastic analysis as shown in Fig. 33. However, instead of a
uniform end traction, a uniform end displacement of 0.363 mm is applied
to the end of the joint and is held constant with time. The adherends
are made of symmetric cross-ply laminates whose properties are given in
Table 8, while the adhesive used is FM-73 and its creep compliance and
Schapery parameters can be found in Table 5.

Figures 40 and 41 show the variation of shear stress and shear
strain respectively across the entire bond length over a period of 40
hours. The sharp peak on the left-hand edge is due to the presence of a
re-entrant corner and also due to the difference in material properties.
Figures 42 and 43 provide a close-up view of the shear stress and strain

gradients at the free edge. As might be expected, the shear stress

VEENS
P
f?k&

el
AR

25

PR RS
P :

€2l



x"s

undergoes relaxation which results in a 36% decrease in the peak value
at the left hand edge. The stresses have been normalized with respect
to an average shear stress value of 4.5 N/mmz. The peak shear strain,
however, shows an increase of 35% over the same period of time.
Similarly, Figs. 44 to 47 reveal that while the peak values of the peel
and axial stresses decrease by 26% and 32% respectively, the
corresponding strains show a respective increase of 63% and 6%. The
reason that the strains increase with time even though the joint end
deflection remains fixed, is because the adherends are modeled as
elastic continuums. As the stresses in the adhesive relax with time,
the elastic adherends deform to attain a new equilibrium configuration
and this leads to an altered state of strain within the adhesive.

Hence, it is very important that the elastic nature of the adherends be
taken into account in an analysis. Also, the significant increase in
adhesive strains with time is a viscoelastic phenomenon and therefore it
cannot be predicted by means of a purely elastic analysis. This fact
emphasizes the need to model the adhesive layer as a viscoelastic medium
in order to be able to predict the long-term durability of a bonded

joint.

5.10 Nonlinear Fickean Diffusion in Polystyrene

In order to validate the diffusion model implemented in NOVA and
discussed in Chapter 4, results from a nonlinear diffusion analysis
presented in [66] are used. The test problem involves unsteady sorption

of a penetrant in a semi-infinite medium for a diffusion coefficient
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that is an exponential function of penetrant concentration, that is, “f;‘
N

D= Do exp (kC/Co). Finite element predictions were obtained for k = S;y:
%) 'f

AL

0.614 and k = 3.912 and the results were compared with the published ﬁ;?ﬁ
NS

S

results represented by the solid lines in Fig. 48. Excellent agreement -

AL
is observed for the two values of the coefficient k. jf;fg
Levita and Smith [67] conducted experiments to study gas transport ﬁ;ﬁ;‘

MY

in polystyrene and found that the diffusion coefficients for gases °
I- ' v .
decreased with time when the polystyrene film was subject to a constant jfk N
Dy * .

uniaxial strain. This effect was attributed to the continuous free ;_’:
BTl

volume recovery (densification) in the polystyrene specimen at constant )
HoES
!
strain. The study also indicated that larger free volume elements ;}if.
) \l

'y

decrease in size faster than the smaller ones as volume recovery 9;3?:
t

progresses. Using the results published in [67] as a guideline, NOVA @
A
was used to study the time dependence of the diffusion coefficient for 2§E§E
ALY
NSRS
carbon-dioxide gas in a polystyrene fiim at constant strain. For this :‘3,
[l '.-.".r !
case, the temprature and moisture concentration effects presented in Eq. - !L,
o]
(4.9) were neglected, resulting in a diffusion coefficient that is 1&6};
s
solely a function of the transient component of the dilatational strain }{igf
'I | Wt
which, in turn, is a measure of the change in the free volume. Figure "%?
RO
49 shows the variation of the diffusion coefficient with time for three ;xﬁ;i
VX
different strain levels. The material properties for polystyrene which A
LGl O
were obtained from [68] are given in Table 10. From Fig. 49 it is ;1§!:~
evident that, independent of the strain level, the diffusion coefficient ;ik:’
S ._\\
reaches a peak value t = 1 at hour and then slcwly decays to the S
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reference value, Do‘ This behavior can be attributed to an initial

increase in free volume due to the application of the uniaxial strain, ‘

followed by a continuous recovery in free volume (densification) at a

constant strain as the polystyrene film undergoes relaxation. A larger
LY

applied strain produces larger initial dilatation, and this results in a N

higher peak in the diffusion coefficient. Figure 49 also reveals that -

the time rate of free volume recovery, and hence the time rate of ;’

decrease in the diffusion coefficient, is proportional to the applied
strain level.

The influence of penetrant molecule size on the diffusion
coefficient for gases in polystyrene was studied by varying the

magnitude of the material parameter B in Eq. (4.9). The temperature and

M A LM LN Wy

1

strain were held constant at 50°C and 1.8% respectively. The prediction

obtained from NOVA are shown in Fig. 50 for two values of B. The faster gi
rate of decrease in the diffusion coefficient for a higher value of B ii
impiies that the larger free-volume elements decrease in size faster %v
than the smaller ones as volume recovery progresses. The NOVA 2;;
predictions are qualitatively in good agreement with the resu.ts %E
presented in [67]. g%
When a polymeric material is in the rubbery state, equilibrium is ;EZ
reached very rapidly in response to variations in temperature, stress i&
and penetrant conentration. By contrast, a material in the glassy state :\-
is not in thermodynamic equilibrium and the response of the free volume ?E;
to changes in external conditions is delayed. This metastable state EES
®
iy
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causes the free volume to slowly collapse with time until equilibrium is “®
KS6S
reached. This phenomenon is known as physical aging and causes fgaL
Ko
relaxation processes to take place over a longer time. Struik [69] ﬁ?t
AN
proposed that for a material in the glassy state, effective time A is 5%
VA
related to actual time t by, ol
v/‘“-'.
el
t t u :f‘ .::q
e[ =) - dg (5.8) R
0 te te )
g,
where te is the aging time at the start of service life or testing :&:
Sy,
and u s a constant such that 0 < u < 1. For such a material, the ;e?:
taty,)
definition of reduced time given by Eq. (3.2) is no longer valid and h_ﬁ_
should be modified to, ?:;
s
A Iy
Vo= (a3 las (5.9) oyt
0o ¢
o
where a3_ is the shift factor. NN
ol o
The effect of physical aging on the diffusion coefficient for i':*
carbon-dioxide gas in polystyrene was studied by implementing Egqs. (5.8) }é;
Ry
and (5.9) in NOVA. The values of temperature, strain and t, were set at fbi
A
50°C, 1.8% and 24 hours respectively. Figure 51 shows that an increased ﬁsjc
physical aging denoted by a higher value of the parameter u, causes the ;s:
X
diffusion coefficient to decay slower than the one for which u is ot
'4-__4-
lower. This behavior is expected since increased physical aging causes ;:E‘
the free volume recovery to take place over a longer period of time. N
Note that when there is no physical aging, u and t, are equal to zero ;ii}
and A is identically equal to t. pae
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5.11 Linear Elastic Analysis of a Butt Joint )
Aivazzadeh et al. [31] used special linear elastic interface 3;
elements to study the effect of adhesive thickness and adhesive Young's El
modulus on the stresses within a bonded butt joint. A similar %?
parametric study was carried out using NOVA where both the adhesive and g?f
adherend were assumed to be linearly elastic. The specimen geometry and §3
loading are shown in Fig. 52. Due to symmetry, only a quarter of the . ::
butt joint was modeled. The finite element discretization is shown in é;
Fig. 53, together with the boundary conditions. The various adhesive 3:
and adherend properties used in the parametric study are given in Table E;«
11. A plane stress elastic finite element analysis was performed and 3\;
the normalized shear and normal stresses plotted along the interface ézﬁ
close to the free edge. Figures 54 and 55 show the influence of the ;;
ratio b/e (where b is the width of the butt joint and e is the thickness EE'
of the adhesive layer) on the adhesive shear and normal stresses is;

respectively. It is observed that the maximum value of shear stress and
the minimum value of normal stress are nearly equal for different joint

thicknesses. The influence of the ratio of adhesive to adherend Young's

wF

moduli on adhesive stresses are shown in Figs. 56 and 57. As this ratio

NI L O ]

e
; . "
increases, the maximum shear stress and the maximum normal stress :
v
increase in value for b/e = 60. N
L ]
S
\
‘.I
\. -~
AT
>
v
»

- MM TR YRS AL WYLt W A e e M LM\ ® " m s e . oy L R PRSI R I I N P AL LT o T v ur.--__r [ 3 A ()
LN\ ey T ATOP BTSSRI R e r e S TS ',,.‘,r.. R g R S AR ey " SN A N

L aX



§ g a B Al A o) . ol Nl - >
LN 192"1% %200 % . g Al'e. NP T A P W, O e W W W W T ) 8, 8

5.12 Nonlinear Viscoelastic Analysis of a Butt Joint
Including Moisture Diffusion

The effect of a change in the free volume of a polymer on its
viscoelastic response was discussed by Knauss and Emri [27]. They used
the unifying concept of the free volume by considering that fractional
free volume depends on three variables: temperature T, moisture
concentration ¢, and mechanically induced dilatation 8. Lefebvre et al.
[51] extended the free volume concept to define a nonlinear diffusion
coefficient, which results in a coupling between the viscoelasticity and
the diffusion boundary value problems (see Section 4.1). The influence
of this coupling on the viscoelastic response and moisture diffusion
within the adhesive layer of a butt joint was investigated by using the
program NOVA., The specimen geometry and finite element discretization
are the same as shown in Figs. 52 and 53, respectively. However,
instead of a uniform end traction, a uniform axial displacement of 0.1
mm is applied at the end of the joint and is held constant with time.
The adherends are made of aluminum and the adhesive used is
polystyrene. The various material properties are listed in Tables 10
and 11. The selection of polystyrene as an adresive was prompted by the
fact that it is one of the few polymeric materials that have their
viscoelastic properties and diffusion parameters adequately
documented. The normalized moisture concentration at the free edge of
the adhesive layer is unity, and the initial concentration throughout

the adhesive layer is zero. The tests are conducted at the reference

temperature of 50°C.
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g Figure 58 shows the moisture concentration profiles within the

g{ : adhesive layer at three different times when there is no coupling. In

3§ this case the diffusion coefficient remains constant with time, that is,

N D= Do' Fig. 59 shows the moisture concentration profiles for the case

gb where there is viscoelastic coupling only, that is, when the diffusion

%5 coefficient depends on the transient component of the dilatational

o strain. Fig. 60 depicts the case where there is full coupling, that is,

%i the diffusion coefficient is a function of the dilatational strain and

%& the moisture concentration at any given point in the adhesive.

] Conversely, the viscoelastic shift factor is now a function of the

E; dilatational strain and the moisture concentration /see Eq. 4.12). Figq.

?3 61 presents the results for each of these three cases for comparison at

fﬁ time t = 8 hours. From these figures it is evident that the effect of

i i coupling is to accelerate moisture diffusion in the adhesive. The

E. mechanically induced dilatation together with the swelling due to

;ﬁ moisture sorption results in a higher free volume fraction within the

" adhesive which, according to Eq. 4.9, causes diffusion to proceed faster

g; over the same period of time. It is to be noted that in Fig. 61, the

’.; curves become less concave as the coupling increases, which is in good

’EE agreement with the results published in [66].

’EE Figures 62 to 65 show the variation of the stresses and strains

;: with time within the adhesive layer in the butt joint when there is no

'ﬁ coupling due to moisture induced swelling. Mathematically, this implies

;5~ that y= 0 in equations 4.9 and 4.12. From Figs. 62 and 63 it is evident
Y
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® that the stresses do not relax significantly over the time period of the ‘
B
analysis. This is because the elastic adherend acts as a spring causing ;;E::
I":.Q
the adhesive to creep even though the joint end displacement remains :E::{
(N
°® fixed. However, there is a slight relaxation in the normal stress as
L0
one moves towards the center of the bond. The large increase in the .::‘
Vel
)
strains, as shown in Figs. 64 and 65, is due to the creep caused by the {‘.}
A
® strain recovery in the elastic adherend. This observation is supported
WK1
W
by Fig. 66 which shows that the normal strain in the adherend :;f::
Vet
immediately adjacent to the interface undergoes significant reduction ::::-
oy
c with time. The decrease in the adherend normal stress, as shown in Fig. :
1
67, reflects the concurrent stress relaxation that occurs in the '
&
adhesive and triggers the strain recovery in the adherend. |
e Figs. 68 to 71 show the effect of moisture induced swelling on the 0!
i
viscoelastic stresses and strains in the adhesive layer. e
Y0
Mathematically, this means y has a nonzero value in Egs. 4.9 and 4.12. ':.1
® The actual value of y selected for this study is 0.001. For this value ,;.
e
of y, the moisture absorbed causes large swelling strains within the :::':;
l‘g't
adhesive, which increase in magnitude as the diffusion progresses. This 'a::“
¢ moisture induced swelling strain causes a reduction in the mechanically n
"\"
induced normal strain and hence a lower value for the normal stress in N \
A
the adhesive. This effect can be observed in Fig. 68 where progressive W
( swelling has caused a 25% reduction in the peak normal stress over a :,‘
period of 8 hours. It is interesting to note that the difference E‘
)
between the two stress curves diminishes as one moves towards the center ;’Z
. ®
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e
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W
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R

N hg" By 0yt N W W Ly Wy W) w7 a0 Wiy = wn q‘-'.~-_‘-‘\'\-“-\-\vl‘
'l.n,'.!' '-'l'o X ¥ R Bie XS ’ A ', X L e .c.t.?'\. T‘*. 'i.“ -.I h ~ .- .- M B * \ .i\ Y v




(3 T PR TV S YA P S e

of the bond. This behavior is expected since there is very little

moisture near the center of the bond and so the stress reduction is

primarily due to viscoelastic relaxation. The large increase in the

adhesive strains, as seen in Figs. 70 and 71, is due to the adherend
acting as a elastic spring.

Fig. 72 shows the influence of the moisture coefficient y, on the
normal stress in the adhesive layer after eight hours of sorption. As
can be seen, the swelling induced for y = 0.001 results in a
significantly lower normal stress near the free edge as compared to the
case where y = 0. Away from the free edge, the two stress curves appear
to merge as one moves towards the interior of the bond. This is because
the low moisture concentrations present in the bond interior is
insufficient to cause any significant reduction in the normal stress due

to swelling.

5.13 Delayed Failure of a Butt Joint

The theory presented in Secs. 4.3 and 4.4 was applied to predict
viscoelastic creep failure within the adhesive in a butt joint. The
specimen geometry and the finite element discretization are the same as
shown in Figs. 52 and 53, respectively. The adherend is made of
aluminum and its material properties are given in Table 11. The
adhesive used is FM-73 and its tensile creep compliance is listed in
Table 5. The failure parameter (R) for FM-73, also known as the
resilience, was obtained by computing the area under the stress-strain

curve presented in [70]. This procedure yielded a value of the
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P resilience as 1.3 N.m/m3. Note that the area under the visco-plastic .u
yield plateau was not included in computing the value of R. According ::E':::
to the Reiner-Weisenberg theory, failure occurs when the stored energy ":.E::-Y
® per unit volume in the body reaches the resilience R, for the material. _‘:_-
Using this postulate as a failure criterion, NOVA was utilized to : ':{
predict failure in the adhesive layer of the butt joint subject to a );
® constant uniaxial tension. The influence of applied stress level on D
delayed failure was studied by using a stress level of 69, 60, and 54 :;:'::::
MPa respectively. In all three cases, failure was initiated in the ‘::j‘:
' adhesive element located right at the free-edge and immediately adjacent e
to the interface. It was also observed that the direction of the plane .§S
of failure was always inclined at an angle of 18°, counter-clockwise to {::'E
o the x-axis. Since the direction of failure coincides with the direction A.‘
of principal stress, it is evident that a multiaxial state of stress é:
exists near the free edge, even though the applied stress is uniaxial. \-i\\
[ This observation is in agreement with the results presented in Secs. ;
5.11 and 5.12. Fig. 73 shows the variation of normal (or creep) strain "'
with time at 30°C for the element in which failure is first initiated. }-_’:
C The right hand termination point on the curves indicate the point at s
which failure occured. [t is observed that for an applied stress level ,‘;"
of 69 MPa, the time to failure (tg) is 1.5 secs. In other words, for :;'_
¢ this stress level, failure occurs almost instantaneously. For an ;_::
applied stress of 60 MPa, t. increases to 400 secs. Reducing the ::{
applied stress to 54 MPa results in a time to failure of approximately 0
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10 hours. These results are qualitatively in good agreement with the -
. .‘
results presented by Bruller [45] for PMMA. $
Y,
From the above observations it is clearly evident that for g
A.x

viscoelastic polymers 1ike FM-73, the time to failure depends strongly -

%
on the applied stress level. Fig. 74 shows the evolution of stored &}
] 9'0
energy with time for different stress levels. For very high applied ‘g
B¢

stress levels, almost all the strain energy is conserved as stored )
K]
energy and failure occurs almost immediately. For intermediate levels ::',:
. Lo
of applied stress, viscoelastic creep causes a part of the strain energy ﬁﬁ
L A
to be dissipated. As a result, only a fraction of the total strain >
1“”.
energy is conserved as stored energy. Consequently, the stored energy 's
builds up slowly, analogous to a "leaking vessel", resulting in delayed :'
! b4
failure. For an applied stress level that is below a certain threshold T %
.'l
value for a given material, the dissipated energy may constitute a large uss
'(
fraction of the total strain energy. In that case, the stored energy _ @h
would increase too slowly to exceed the resilience of the material over T X
W,
any realistic length of time, and hence there would be no failure even *k
Y
if the applied stress acts indefinitely. 45
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CHAPTER 6
SUMMARY AND CONCLUSIONS

6.1 General Summary

A nonlinear viscoelastic computational model is developed,
validated and applied to the stress analysis of adhesively bonded
Joints. The large displacements and rotations experienced by the
adherends and the adhesive are taken into account by invoking the
updated Lagrangian description of motion. The adhesive layer is modeled
using Schapery's nonlinear single integral constitutive law for uniaxial
and multiaxial stress states. The effect of temperature and stress
level on the viscoelastic response is taken into account by a nonlinear
shift factor definition. Optionally, a nonlinear shift factor
definition based on the concept of free volume that was postulated by
Knauss is also available. Penetrant sorption is accounted for by a
nonlinear Fickean diffusion model in which the diffusion coefficient is
dependent on the temperature, penetrant concentration, and the
dilatational strain. A delayed failure criterion based on the Reiner-
Weisenberg failure theory has also been implemented in the finite
element code. The program is validated by comparing the present results
with analytical and experimental results available in the literature.
Additional results for a bonded cantilever plate, single lap joint,
thick adherend specimen, and butt joint are also presented. The program
capability has been extended to account for laminated composite

adherends and adhesives with a time dependent Poisson's ratio. In
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general, the computer program developed herein, named NOVA, is believed
to provide accurate predictions over a wide range of specimen

geometries, external loads, and environmental conditions.

6.2 Conclusions

The results presented in Ch. 5 underscore the importance of
modeling the adhesive in a bonded joint as a viscoelastic material.
This allows the analyst to predict the large increments in adhesive
strains that occur with time and cannot be predicted by a purely elastic

analysis. Furthermore, other events (such as moisture diffusion and

delayed failure), that are highly relevant for bonded joint analysis,

cannot be accurately predicted unless viscoelasticity is taken into
account. At high stress levels, nonlinear viscoelastic effects can
produce creep strains that are significantly larger than the linear
viscoelastic predictions and such effects, therefore, should be
accounted for. The effect of change in Poisson's ratio with time in
some polymers have a significant bearing on the final response and must
be taken into account in order to obtain accurate results.

The results in Chapter 5 also indicate that the stress boundary
conditions at the free edges of the adhesive are not exactly
satisfied. This deficiency in the model is expected because a
displacement based finite-element formulation satisfies the boundary
conditions only in a global sense. Even so, the shear stress, as
presented in Chapter 5, shows a tendency to drop towards zero as it

approaches the free edge. Any deviations from this behavior can be
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attributed to either the presence of a re-entrant corner or the lack of

a refined mesh near the free edge.
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Table 1. Data for Linear Elastic Analysis.

Adherend (Aluminum) Adhesive (Araldite)

E = 10.3 x 108 psi E = 8.19 x 106 psi

v = 0.3 v = 0.33
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Table 2. Data for Geometric Nonlinear Analysis of a Lap Joint. 9}!?"‘

Adherend (steel) Adhesive (FM-73) ..‘.;':gf
E =29.3 x 100 psi E = 0.2437 x 108 psi o
v = 0.33 v = 0.32 ..-'

™

- atm - - RN T ™ ¥ ~
'.l'- i ., "..I,“\. !‘n‘lv.l.\‘o WS, A\l ‘!‘\.' A\ RN M ‘ LA 0 "-‘l.- ALR" RN Cn



Table 3. Data for Geometric Nonlinear Analysis of a Bonded Cantilever

Plate.
Adherend (Aluminum) Adhesive
E =70 x 103 MPa E = 2.8 x 103 MPa
v = 0.34 v =0.4

"™ L3N Y]
0

Al
‘," ._.‘l,.'l 0 WA A A s ¥

)
\~

2

ﬂ,- {p

N = -
'5‘—.‘,{’,‘;}’ (I

VI e PP

-
[

LN
DS

S e
s,

M



. . B . v - Ny ~y oat - Ty . . - - . " r -
REERA R E AR INAR LN UN YL O UMOVUUTARY 880 4 N eY § eV i ata AR L AL A G Pt A% plg AY PR "Rk’ ; "y,

(\ 97 :

\.‘; ’

o L T a G
gy

S

MY
A

«“»_»
5
l.‘
SO

PR

Y Table 4. Data for Viscoelastic Rod.
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C; = 8.86 v = 0.32
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101.6 E(t) = 5.065 + (1.0E6)e~t/2 psi
¢ T, = 120 F(t) = 4500 sin(3) Tb.
T = 123.5734 L =5 in.
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Table 5. Material Data for FM-73 Unscrimmed at 30°C.
"
Elastic Compliance, D: 360 x 1075/MPa
Poisson's Ratio, v: 0.38

PP

; Coefficient of Thermal Expansion, a: 6.6 x 10-5 m/m/°K

Prony Series Coefficients:

: D; = 11.05x1075/MPa t; = 10 secs.
; D, = 12.27x10~%/MPa t, = 102 secs.
D3 = 17.35x10~5/Mpa T3 = 103 secs.
D4 = 21.63x10-6/Mpa T4 c 104 secs.
D5 = 31.13x1076/MPa tg = 10° secs.
Dg = 41.78x1075/MPa tg = 108 secs.
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Table 6. Data for Creep and Recovery of FM-73 Adhesive.
D(v) = D° + Dc(v)
D, = 227.573 x 107%/MPa

« D () = c¥”
¢ = 31.763 x 10~5/mpa
n=0.151

) a=1-3.53 x 1075174
g, = 1 + 2.247 x 1072,1:005
g = 1 +6.981 x 1074188

® g, = 1 +3.098 x 1075412

where o is in MPa.
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Table 7. Compliance Data for Creep and Recovery of FM-73.
D(w) = Do + Dc(m)
D, = 227.573 x 107%/MPa

5 -wlrr
NORIN NCEE ]

19.86 x 10-5/MPa

(=]
—
]

1 min.

= 28.99 x 10-6/Mpa t. = 10 min,

o
(A ]
[

17.66 x 10-5/MPa .

(=)
w
[]

100 min.

1000 min.

(=
F-
[

= 36.20 x 10-6/Mpa c
= 8.51 x 10-6/Mpa ‘
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b Table 8. Orthotropic Material Properites for Composite Adherend.

Qqp = 46.885x10° MPa X
01, = 0y3 = 4.137x10% MPa e
* Qpp = Q33 = 14.962x103 MPa )
Qp3 = Q3p = 2.068x103 MPa o

.
044 = 055 = 065 = 3.447)(103 MPa 7 :
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Table 9. Isotropic Linear Elastic Properties for FM-73.

E = 2.78x103 MPa

G = 1.01x103 MPa
v = 0.38
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Table 10. Material Properties for Polystyrene at 50°C. ;-
0
o

Bulk Compliance: !
Y
l My = 1.2x10-/MPa ‘s
-4 . 2 e
M = 0.2896x10~%/MPa t, = 1.515x102 sec. o
My = 0.2246x10~4/Mpa r, = 1.516x103 sec. 20
by’

M3 = 0.3721x10~%/MPa tg = 1.515x10% sec. o
Mg = 0.1354x10~%/MPa t4 = 1.515x10% sec. o

U
Shear Compliance: ‘E:‘:':
b,
J, = 1.0x10°3/MPa 2
J) = 2.16/MPa ny = 1.515x10% sec. 3 3
J, = 2.92/WPa ny = 1.516x1010 sec. )

Tl
3 = 1.38/MPa ny = 1.515x10'2 sec. £

34 = 2.88/MPa ng = 1.515x1013 sec. R

S
Jg = 2.31/MPa ns = 1.515x1014 sec. N
Jg = 3.59/MPa ng = 1.515x101% sec. ®

= = 16 "-‘(
J; = 0.648/MPa ny = 1.515x1016 sec. 2
-l'\' ‘
Reference free volume f, = 0.033 ::: '
Oiffusion coefficient D, = 9x10-6 mm?/sec .'-11:::
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Table 11. Properties for Elastic Analysis of a Butt Joint.

Materials
Steel
Aluminum
Eponal
Rigid Epoxy

E(MPa)
2.07x105

0.7x10%
5.8x103
2.2x103

0.29
0.33
0.33
0.33

ERAE "_\'-."-.'_\"." AN ~. -. -. .

L)

L

Pl S oW ¢
A N

ﬁ' P

ARSARENTLINCRAY

.
]
o

LT Ao gl
- - -



. EREE
R5s
WK

Tt
»
’

XA IR SR
-

I S

AR RESES (241, Aol i

105

e, (1)

n, L

e(t) [__1 T

Figure 1. A Single Kelvin Unit Subject to Uniaxial Stress.
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Figure 5. Variation of the Peel Stress along the Upper Bondline.
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Figure 11. The Geometry and Finite Element Discrctizations for a Bonded Cantilever
Plate.
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Figure 21, Plot of Axial Displacement against Time for a Viscoelastic Rod.
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Figure 22. Variation of Creep Strain with Time for 2 FM-73 Coupon Subject to Step
Loads at Constant Temperature.,
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Figure 34. Influcnce of Ply Orientation on Adhesive Peel Stress.
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Figure 40. Variation of Shear Stress with Time for Entire Overlap.

r. s

e

ﬂ'f"f. T

v e
‘e

'
.

""r'-{‘.




- -
- e tm N e e T LY .\-_\ ‘J"J“"-h‘ " -. . A
NI RIS NS MACIOA SN NA SIS AN, >

0.10

0.04

.00
-1.0 -0.5 0.0

0.8 1.0

Figure 41. Variation of Shear Strain with Time for Entire Ovcrlap.

.
«
»

1] > L }l-m.

1 PG

NN

"y
l' ~

o

app
AN

.
‘

LA
[s

. I( “. g
A%

hY

-';{
b P

s
‘.J P

r2 L4
N

v

R .'!.
(3 4
RAA

el



( »‘-\\\\\ -l- ---.v-. --l\-\t -..-.\_\\-\-\l
! < T YT T Sl Y S A M S St R
LR RN LYY DL O ) arates ? NIV AP AP AN MRSV
\--\--.- -...n-- ’ l- --, A JeCh B (A \. \. \P\r\’\ﬁ <, v -ﬁ\l \A-\h\-n--. { --.--”I-.f...-. .u.. A N A ~n-n”n,n. .u- i ‘.—-”-\-I S Palt C " g \.. s -.-”f el

3 - LR MR A A > > 7
Pg A I ot . [ . a4
XA A CY AR TN T GUNNIN I @G ®

(TN

e

-
-

.

\-{"‘c'\d‘ \J‘
o

=0.90

A A
AT

.0.92
e

(g \‘d‘

X TME«0HRS.
O  TME = 40 HRS.

~0.94
NSRS

DISTANCE, X/C

- ° L 90
AGRORY.

W

Lo

-
»

B o B S e S S L UM o o M B2 e A e o
=-0.68
.
- »
S W
e Py Ty

-1.00

o

Figure 42. Variation of Shear Stress with Time Ncar the Free Ldge.
i

16

14 1

12 A

10
8
6

4

2

0
-

2
:
|

. .
3.0,

NS PPy
RS

- --"'-
_Ta 878

‘S




L AR A e shicari i ar it A Al A Sl R PR S NI R

]
.

6.10

i, W N

"..‘-"‘l:- ‘-{

LEA 4 .;
s

.4,
o

o~

o . 02 - oy R :-'
e + Y .-"

> 2 2

3

b4

[ R e e e maa e

-1.00 -0.08 -0.96 -0.04 =0.02 =0.90
DISTANCE, X/C

7,

roy ¥ W

Iy

» .}'.f ‘.J -

» v
£

)

Figure 43. Variation of Shear Strain with Time Near the Free Edge.

~
7/

{_rf"&fp

g

.‘-"-'1"
y
L

A 4
b

(A 4
IO I

TR TR TR N
A |
Catetae
S,

o s
e

A
lal

e P,
o e AR T e A 4 T O T AT e

I R 4
G R R LR R R e af el
WSS NF N L

e
za



; Yy D ol ....n.-. ,.-\...., ......f... \\\....
‘ -\ -N .»\ ’ \- \-A . n .\L-b\x“ .4-..-..“%}\--..! *x .-A--- ”-.-.-. - .I . -.— -- -..v.. . -‘v-- e n- -w .-I\nh'f qﬂh .f\-\'-\ \ \
bvv.ﬂﬁmﬂ . AR AAAIAOIRE uﬁvﬂfx». S TERN A, KQ@ r::nu,
ae ' e PRl

-0.987

-0.98

153
Al LA ]' T T
-0.98
DISTANCE, X/C
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Figure 51. Effcct of Physical Aging on the Diffusion CoefTicicnt for Polystyrene.
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Figure 52. Spgdmcn Geometry and Boundary Conditions for the Analysis of a Butt ':::‘
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Figure 53. Finite Element Discretization and Boundary Conditions for the Analysis of
a Butt Joint,
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Figure 54. Influence of b/e Ratio on Adhesive Shear Stress.

* ‘
.

4
-‘
L

/‘,I"(' 'R Rl
" ‘, "'
5 :’:'4'

’
r’,‘- ~
N

1®

P L LA R RN
S XL At
A SO L

A

PSR RF NI RE N S SRR, by



ARA LM RAIE R A N S

.
37
I

[}
1.8 X B/E « 80
d B0

©
[ ]
e

AR AR A AL RS S AN S R AN S Al A A R I A S AL AN ARM S S AN S S SN A A B S S SR

0.40 Q.47 g.48 0.49 0.560
OISTANCE, Y/ WDTH

e T
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Figure 56. Influence of Modulus Ratio on Adhesive Shear Stress.
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Figure 57. Influence of Modulus Ratio on Adhesive Normal Stress.
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Figure 58. Moisture Profiles Within the Adhesive When There Is No Coupling.
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Figure 59. Moisture Profiles Within the Adhesive For Only Viscoclasti. Coupling,
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Figure 60. Moisture Profiles Within the Adhesive For Viscuelastic and Moisture Cou-
pling.
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Figure 61. Influcnce of Coupling on Moisture Profiles at Time = 8 H{ours.
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Figure 62. Variation of Normal Stress in the Adhesive Wwith Time For Viscoelastic

Coupling.
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Figure 64. Variation of Normal Strain in the Adhcsive With Time For Viscoclastic
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Figure 65. Variation of Shear Strain in the Adhesive With Time For Viscoelastic Cou-
pling.
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Figure 66. Variation of Normal Stress in the Adherend With Time For Viscoelastic
Coupling.
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Figure 67. Variation of Normal Strain in the Adhcrend With Time For Viscoclastic
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Figure 68. Variation of Normal Stress in the Adhesive With Time For Viscoclastic and
Moisture Coupling.
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Figure 70. Variation of Normal Strain in the Adhesive With Time For Viscoelastic and
Moisture Coupling,
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