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Engineering Mechanics

(ABSTRACT)

A two-dimensional finite-element computational procedure is

developed for the accurate analysis of the strains and stresses in

adhesively bonded joints. The large displacements and rotations

experienced by the adherends and the adhesive are taken into account

by invoking the updated Lagrangian description of motion. The

adhesive layer is modeled using Schapery's nonlinear single integral

constitutive law for uniaxial and multiaxial states of stress.

Effect of temperature and stress level on the viscoelastic response

is taken into account by a nonlinear shift factor definition.

Penetrant sorption is accounted for by a nonlinear Fickean diffusion

model in which the diffusion coefficient is dependent on the

penetrant concentration and the dilatational strain. A delayed

failure criterion based on the Reiner-Weisenberg failure theory has

also been implemented in the finite element code. The applicability or

of the proposed models is demonstrated by several numerical examples.
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CHAPTER 1

INTRODUCTION

1.1 General Comments

Adhesive bonding Is increasingly used to fasten (metallic to
metallic or metallic to composite) structural components together.

This is because in many present day applications, conventional

fasteners such as bolts, rivets, welds etc., are unsuitable,

especially if the components are made of polymeric or composite

materials. Penetration methods (i.e., drilling holes, etc.) cause

high stress concentrations and, in the case of composites, sever the

fiber reinforcement which in turn reduces the strength of the

joint. On the other hand, bonded joints tend to be damage-tolerant

* due to the high damping behavior of the adhesive layer and less 0

expensive due to lower fabrication cost. The use of adhesives

increases the joint strength, distributes the loads more evenly, and

enables alternative jointing methods to be reduced or eliminated.

Dissimilar materials (e.g., steel, aluminum, plastics, glass, etc.)

can be joined together by bonding even where it is impossible to gain

access to either side of the joint, thereby increasing the design

flexibility.

Adhesives are not free of disadvantages, however. Adhesives are

polymers and as such have time dependent (viscoelastic) moduli and

strength properties which are susceptible to environmental effects,

especially temperature and moisture. Most polymeric adhesives are

Iwo
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rate sensitive materials and hence exhibit viscoelasticity.

Furthermore, certain types of epoxy resins have been found to be

nonlinearly viscoelastic in character. The nonlinear viscoelastic

behavior is typified by a stress-enhanced creep. Basically, at )

elevated stresses the material moduli seem to soften and the creep

progresses at accelerated rates. Time dependent properties of

adhesives raise serious questions regarding their long term

reliability or durability under creep or other more complicated

loading conditions. A delayed failure (creep rupture) long after the

initial design and fabrication process is possible. Thus, methods

are needed by which long term failures on the order of a structure

design life time (perhaps as long as 5-20 years) can be anticipated

and thereby avoided. Such a process is especially important in

applications where failures may be life threatening as is the case

for automobiles, airplanes, missiles, etc.

Failure in an adhesive joint can occur in one of two ways: (i)

adhesive failures that occur at the interfaces between the adhesive

and adherends, and (ii) cohesive failures, which occur either in the

adhesive or in the adherends. The determination of the strength,

failure and reliability of an adhesive joint requires both an

understanding of the mechanisms of adhesion and a knowledge of

deformation and stresses in the joint. The mechanisms of adhesion is

closely related to the chemical and physical properties of the

adhesive polymers. The deformation and stress states can be
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determined once the geometry, loading, boundary conditions and

mechanical properties of the constituent materials of the joint are

known. The mechanical properties of the adhesive and adherend

materials enter the stress analysis via constitutive models, which

relate strains, temperature and moisture gradients and density to

stresses and fluxes in the joint. The chemical, physical and 'p

mechanics aspects of the constituent materials enable the formulation

of appropriate constitutive models for adhesive joints. The

determination of stresses allow the prediction of the strength,

failure and reliability, in macromechanics sense, of adhesive joints.

The stresses in an adhesive joint depend on the geometry,

boundary conditions, the mechanical properties of the regions

involved, and the type and distribution of loads acting on the

joint. In practice, most adhesives exhibit, depending on the stress

levels, nonlinear-viscoelastic behavior, and the adherends exhibit

elasto-plastic behavior. Most theoretical studies conducted to date

on the stress analysis of adhesively bonded joints have made

simplifying assumptions of linear and elastic and/or viscoelastic

behavior in the interest of obtaining closed form solutions.

A good understanding of the process of adhesion from the

mechanics view point and the predictive capability for structural

failures associated with adhesive bonding require realistic

theoretical analysis methods to determine stress distributions in the

joint. The finite element method is the most powerful analysis tool

'S. '
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that can be used to determine stress and displacement fields in

complicated structures.

At present there are numerous computer programs available for

analyzing bonded joints. However, most of these computer codes

incorporate linearly elastic material behavior, and some allow for

nonlinearly elastic and plastic behavior. Computer programs which

incorporate viscoelastic material behavior are quite often limited to

the simple spring-dashpot type of model for linear materials. Such

inaccurate modelling of the constitutive behavior of the structure

can seriously compromise the accuracy of the analytical predictions.

1.2 Objectives of Present Research

The primary objective of the present research is to present a

finite-element computational procedure for the accurate analysis of

adhesively bonded joints. With this aim in mind, a nonlinear

viscoelastic analysis code (NOVA for short) has been developed. The

finite element program NOVA uses linearly elastic elements to model

the adherends. The adherends may be represented as isotropic, h

orthotropic or laminated composite materials. The large lop

displacements and rotations experienced by the adherends in many

types of loading are accounted for by the updated Lagrangian

description of motion presented in Section 2.1. It should be noted

that this description is valid only for small strains. e

The adhesive layer is modeled using a special element that
employs a multi-axial extension of Schapery's nonlinear single
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integral stress-strain law as the constitutive equation. The finite

element formulation for the viscoelastic material representation has

been described in detail in Chapter 3. The element library contains

an eight noded isoparametric element which employs quadratic

interpolation functions to represent the displacement field as well

as element geometry. The program can be used to conduct plane

stress, plane strain, or axisymmetric analysis of an adhesively S

bonded structure subject to a time varying thermal and mechanical

loading. A nonlinear Fickean moisture diffusion model and a energy-

c based delayed failure criterion are also provided in NOVA.
-'a

1.3. A Review of the Literature

Adhesive bonding has been in use for many years. Most of the0
early bonds used animal and vegetable glues, and the structural use

of these glues has been confined mostly to timber. The use of

synthetic resins in the structural bonding of timber began in early

1930's. Synthetic resins are less susceptible to moisture, fungi and

bacteria. In recent years, synthetic polymers, because of their

strength and other bonding properties have been widely used to bond
t

metals and composite materials. As noted in the introduction,

adhesive joints have several advantages over the conventional

mechanical fasteners (e.g. bolts, rivets and welding). These

include: lighter weight, savings in production cost, avoid stress

concentrations and thermal distortions due to the hole drilling or

welding, and bonding of dissimilar and/or brittle materials. •

A A



An analysis of adhesive stresses in bonded joints which included

the effects of load eccentricity was first performed by Goland and

Reissner 13] in 1944 under the following assumptions:

1. Adhesive flexibility is negligible, and joint is homogeneous

(i.e., ignore the presence of the adhesive),

2. No axial stress exists, and other stresses do not vary

through the thickness of the adhesive layer.

Under these simplifying assumptions, Goland and Reissner [3]

developed one-dimensional elasticity solutions for two limiting

cases: (i) the case in which the adhesive layer is homogeneous, thin

and stiff so that its deformation can be neglected, the axial stress

is zero and stresses do not vary through the adhesive layer; and (ii)

the case in which the adhesive layer is soft and flexible and the

joint flexibility is mainly due to the deformation of the adhesive

layer (i.e., adherends are rigid), the axial stress is zero and "s

stresses do not vary through the adhesive layer. In the first case,

the peel stress is found to be very high at the edge of the joint,

while the shear stress is zero. In the second case, the maximum

values of the peel and shear stresses occur at the edges of the

joint. The Goland-Reissner analysis gives resonable solutions for

shear and peel stresses in the interior of the adhesive layers; the

Joint-edge loads are not in equilibrium. 1
Erdogan and Ratwani 141 presented analytical solution based on a

one-dmensional model for calculating stresses in a stepped lap -.

p
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Joint. One adherend was treated as isotropic and the second as

orthotropic, and linear elastic behavior was assumed. The thickness

variation of the stresses in both the adherends and in the adhesive

was neglected.

Wooley and Carver 151 determined etress distributions in a

simple lap joint using the finite element method. The constant

strain quadrilateral obtained by combining four constant strain

triangular elements was used. One end of the adherend was assumed to

be hinged and other end was allowed to move freely in the direction

parallel to the original bond line. They investigated the influence

of the ratio of the Young's moduli of adherend to adhesive materials

and geometries on the peel and shear stress distributions. The

results compared favorably with the results of Goland and Reissner.

Hart-Smith [61 improved upon the approach of Goland and Reissner

by considering a third free-body-diagram for the adherend outside the

joint in addition to the two free-body-diagrams from each of the

upper and lower halves of the joint. With three separate sections to

consider, three relations between displacements and bending moments

were obtained. Additional boundary conditions involving

displacements and their first derivatives, not considered by Goland

and Reissner, were imposed in order to solve for the additional

unknowns. In addition to the improvement on the analysis of Goland

and Reissner, Hart-Smith [61 also established a quantitative

influence of adhesive plasticity in shear. The elastic-plastic

"V o-

-0 .,



8

theory used by Hart-Smith predicts an increase in joint strength, and

was shown to be capable of explaining premature failure predictions

found when using linear elastic analyses. The quantitative effects

of stiffness imbalance were also accounted for.

A finite-element stress analysis for adhesive lap joints using

linear elasticity and elasto-plasticity theories was reported by Liu

[7]. Stress distributions in the adhesive layer for different joint

parameters (geometry, material properties, and loading conditions)

were studied and compared. The existence of stress gradients through

the thickness of the adhesive layer, close to the joint edges, was

observed by Adams and Peppiatt L8). They subsequently performed a

linear elastic finite element analysis on adhesively bonded lap

joints employing more than one element through the thickness of the

adhesive layer, close to the Joint edges. Adams and Peppiatt [91

also studied the adhesive yielding in double bevel and scarf

joints. The adhesive was assumed to be elastic-perfectly plastic. A

nonlinear finite-element analysis of single and double lap joints was

presented by Humphreys and Herakovich 1101. The nonlinear stress-

strain response was represented by the Ramberg-Osgood

approximation. Mechanical and thermal loadings were considered but

only one element through the thickness of the adhesive layer was
I

used.

Allman [11] presented an elastic stress analysis based on the

strain energy density of a particular joint. The effects of bending,

,%

I
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stretching and shearing of the adherends were included, and the

shearing and tearing action in the adhesive was accounted for. All

conditions of stress equilibrium in the joint and stress-free surface

conditions were satisfied. It was assumed, however, that the axial

stress varies linearly through the adherend thicknesses and that the

shear stress is constant through the adhesive thickness. Allman

obtained solutions for the single lap joint, although the method also

appears to be applicable to other joint configurations. He found

that the average shear stress concentration is 11% higher than that

of Goland and Reissner's first analysis, while the average peel

stress at the joint edge is 67% lower. Compared with the second

analysis of Goland and Reissner, Allman's method yielded a shear

stress concentration of 15% and 31% less for metal and composite

adherends, respectively, while the average peel stress at the joint

edge was 27% higher and 36% lower for the same types of adherends,

respectively.

Phenomenological considerations were discussed by Hart-Smith %

1121 which greatly improve our understanding of the sources of non-

uniform load transfer, viz., adherend extensivity, stiffness

imbalance and thermal mismatch. He also explained how the lightly

loaded central area of the joint, away from the joint edges,

restricts cumulative creep damage, and suggests that this region is

vital for long term durability. The amount of lightly loaded central

area is a function of the overlap length. S
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Yuceoglu and Updike [131 presented a numerical method for

solving peel and shear stresses in the adhesive of double lap, double

strap and stiffner plate joints. Bending and transverse shear were

included in the analytical model. Shear stresses were not required

to drop to zero at the joint edges after reaching peak values close

to the edges. Yuceoglu and Updike maintained that an analytical

model which would allow the shear stresses to drop to zero at the

joint edges would give approximately the same or slightly lower peak

values of shear and peel stresses. Their method also reveals that

adherend bending has a significant effect on both adhesive shear and

peel stresses, especially the latter.

Delale and Erdogan [14,151 performed a plate analysis similar to

that of Goland and Reissner on the single lap joint assuming linear

elastic adherends and a linear viscoelastic adhesive. Separate

stress distributions were calculated for membrane loading, bending,

and transverse shear loading. They further extended their

viscoelastic analysis of the single lap joint to include time-

dependent temperature variations approximated by a piecewise constant

function.

Gall and Ishal [161 performed a finite element analysis on a

symmetric doubler model with linear elastic adherends and the

adhesive obeying a nonlinear effective-stress-strain relationship.

The effective-stress-strain relationship was derived from stress-

strain curves obtained by tensile and shear test data, and based on

I
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the Von Mises deviatoric energy yield criterion. An iteration -J

procedure was applied to the linearly elastic finite element problem

using a specific secant modulus for each element separately. The

secant modulus was found from the corresponding effective strain of

the previous solution and the corresponding effective stress was 04

found from the experimental stress-strain curves. Gall and Ishai

analyzed their symmetric doubler model using both plane stress and

plane strain and found that the plane strain solutions converged

faster and yielded less conservative results, i.e., lower stresses,

than the plane stress solutions. Nonlinear solutions were also found

to be considerably lower than the linear solutions, the difference

being more pronounced in the plane stress case. The problem was also

solved with the adhesive following an elastic-perfectly-plastic

effective-stress-strain law. The difference between these results .°

and those of the continuous nonlinear effective-stress-strain case

was found to be very small.

Nagaraja and Alwar [171 analyzed a tubular lap joint with the '.

finite element method assuming linear elastic adherends and a

nonlinear biaxial stress-strain law in the adhesive. The constants

appearing in the nonlinear law were obtained from uniaxial tension

test data. The stress-strain relationship, however, was assumed to

be time-independent. Nagaraja and Alwar demonstrated that for low

stress levels, of the order of 12% of the fracture stress, the .I

nonlinear stresses were as much as 15% lower in shear and 8% lower in
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peel than the linear stresses. Nagaraja and Alwar (181 also

performed a finite element analysis on a single lap joint, treating

the adherends as linear elastic materials but the adhesive as a

linear viscoelastic material. The relaxation modulus was assumed to

be equal to the inverse of the creep compliance, the latter being

obtained experimentally.

Only recently, work involving the time dependent fracture

characteristics of adhesively bonded joints has been under way.

Francis et al. [191 discussed the effects of a viscoelastic adhesive

layer, geometry, mixed mode fracture response, mechanical load

history, environmental history and processing variations on the

fracture processes of adhesively bonded joints. However, their

finite element analysis includes only linear elastic fracture

mechanics.

Dattaguru, et al. [201 have performed cyclic de-bond research on

the crack lap specimen and performed analyses with a finite element

program GAMNAS, developed in-house at NASA-Langley. Their program

includes geometric and material nonlinearities but does not include

viscoelastic capability. Also, fracture is modeled using linear

elastic fracture mechanics but no failure law is included.

Botha, Jones and Brinson [21], Henriksen [221, Becker, et al.

[231, and Yadagiri and Papi Reddy [241 reported results of

viscoelastic finite-element analysis of adhesive joints. Henriksen

used Schapery's (251 nonlinear viscoelastic model to verify the
I

.
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experimental results of Peretz and Weitsman [261 for an adhesive
layer. The work of Becker et al. 1231 is largely concerned with the

development of a finite-element stress analysis program, called

VISTA, for adhesively bonded joints. The 'intrinsic nonlinear model'

based on free-volume concept of Knauss and Emri [271 was used in_.5

VISTA. The work of Yadagiri and Papi Reddy (241 is limited to linear

viscoelastic analysis. Botha et al. [211 considered linear and

bilinear viscoelastic models in their study.

Pickett and Hollaway [281 presented both classical and finite

element solutions for elastic-plastic adhesive stress distributions

in bonded lap joints. Single, double and tubular lap configurations

having both similar and dissimilar adherends were considered. The

results show how the development of adhesive yielding will occur as

the joints are loaded to a failure condition. The detrimental effect

of adherend-stiffness-imbalance on the adhesive stress distribution

was also shown.

An approximate method to analyze viscoelastic problems has been .4

outlined by Schapery [291. In this method, the solution to a

viscoelastic problem is approximated by a corresonding elasticity

solution wherein the elastic constants have been replaced by time

dependent creep or relaxation functions. The method may be applied

to linear as well as nonlinear problems. Weitsman [301 used

Schapery's quasi-elastic approximation to investigate the effects of

nonlinear viscoelasticity on load transfer in a symmetric double lap

fS
, ....- ,
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joint. Introducing a stress-dependent shift factor, he observed that

the enhanced creep causes shear stress relief near the edges of the

adhesive joint.

Alvazzadeh and Verchery [311 developed several special interface

finite elements based on Reissner's principle which take into account

all the continuity conditions at the adhesive-adherend interface.

These elements were then used to perform a two-dimensional analysis

of an adhesively bonded butt joint. It was observed that the

interface stress distribution could be evaluated more accurately

using the interface finite elements compared to classical ones.

The analytical procedures reviewed in the preceding pages are

primarily applicable for bonded joints with homogeneous isotropic

adherends. These procedures have been modified for composite

adherends to account for their anisotropic and heterogeneous

nature. A comprehensive review of publications relating to all

aspects of adhesively bonded joints in composite materials is

presented in [321.

Reddy and Sinha [331 extended the work of Erdogan and Ratwani

(41 to obtain analytically, the stress distribution in adhesively

bonded joints between two orthotropic materials. Similarly, Renton

and Vlnson [341 extended the work of Goland and Reissner [31 to

obtain the linear elastic response of two generally orthotropic

adherends adhesively bonded together. Barker and Hatt [351 used

linear elastic finite-element analysis to evaluate the behavior of an
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adhesive joint bonding an advanced composite to a metallic -u

substrate. A special element was used to model the adhesive layer as

a separate elastic medium of finite thickness in order to remove the

stress singularity that exists when dissimilar materials are

joined. Adams and Peppiatt [36] performed two dimensional finite

element stress analysis on lap, bevel and scarf joints. The

adherends were treated as homogeneous anisotropic materials with

linear elastic properties, while the adhesive was treated as an

elastic-perfectly plastic material. The effect of adhesive spew

fillets on the stress distribution was also taken into account in

this analysis. It was observed that the predicted joint efficiency

was almost doubled when non-linear adhesive behavior was accounted

for.

Renton and Vinson [37] used laminated plate theory coupled with

a structural mechanics approach to obtain analytical solutions for

stresses and deformations within a bonded single lap joint. The A

closed form solutions were then used to conduct a parametric study

which revealed that changes in adhesive moduli, adherend longitudinal

modulus, and bond overlap length have a significant effect on the

magnitude of the peak stresses within the adhesive. However, changes

in adherend ply orientation appeared to have only a modest influence

on adhesive peak stresses. These predictions were verified by the

authors from experimental observations.

lop%
'. j
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Schaffer and Adams (381 carried out a nonlinear viscoelastic

analysis of a unidirectional composite laminate using the finite

element method. The nonlinear viscoelastic constitutive law proposed

by Schapery [251 was used in conjunction with elastoplastic

constitutive relations to model the composite response beyond the -

elastic limit.

Ghoneim and Chen (391 developed a viscoelastic-viscoplastic law

based on the assumption that the total strain rate tensor can be

decomposed into a viscoelastic and a viscoplastic component. A

linear viscoelasticity model is used in conjunction with a modified
4%

plasticity model in which hardening is assumed to be a function of

viscoplastic strains as well as the total strain rate. The resulting .

finite element algorithm is then used to analyze the strain rate and

pressure effects on the mechanical behavior of a viscoelastic-

viscoplastic material.

Analysis of crack growth in viscoelastic media are mainly t.

limited to linear isotropic, homogeneous materials. Schapery [401

proposed the use of parameters similar to the J integral for quasi-

static crack growth in a class of nonlinear viscoelastic materials

subject to finite strains.

Czarnocki and Piekarski (41] used a nonlinear elastic stress-

strain law for three-dimensional failure analysis of a symmetric lap

joint. Taking into account the variation of Poisson's ratio with

strain within the adhesive, the authors concluded that the failure of

....-
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the adhesive layer originates in the central plane of a joint (at the

front edge). It was also observed that the joint width does not have

any effect on the stress peaks in the central plane and that the

application of a weaker but more flexible adhesive results in higher

load carrying capacity and lower stress concentrations in the

adherends.

Over the years several time-dependent failure criteria have been m

proposed for predicting yield and fracture of polymeric materials.

Nagdhi and Murch [421 and Crochet [431 have used a modified von Mises

criteria for viscoelastic materials by assuming that the radius of

the yield surface depends upon the strain history. An energy based

delayed failure criterion for polymeric materials subjected to

isothermal creep was developed by Reiner and Weissenberg 1441.

According to this theory, failure occurs when the stored deviatoric

strain energy in a viscoelastic material reaches a certain maximum

value called the resilience, which is a material constant. Bruller

[451 and Hiel et al. [461 applied the Reiner-Weisenberg failure

criterion to various viscoelastic materials, including composite

laminates, and obtained good agreement with experimental

observations.

It is now well known that moisture diffusion can have a

significant effect on the stress field within an adhesive layer in a

bond. Weitsman [471 used a variational method coupled with Fickean

diffusion law to study the interfacial stresses in viscoelastic

S3.'
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adhesive-layers due to moisture sorption. From the results of this

uncoupled linear thermoelastic analysis, he concluded that the

location of the maximum interfacial tensile stress depends on the

geometry of the joint as well as the progress of the diffusion

process within the joint. Weitsman [481 used the correspondence

principle to generate a linear viscoelastic solution from the linear

elastic analysis of moisture sorption within an adhesive layer. He

observes that the viscoelastic analysis predicts detrimental effects

due to stress reversals caused by fluctuations in relative humidity,

that are not predicted in an elastic analysis. However, he

acknowledged the omission of the effect of moisture content on the

viscoelastic response of the resins in his analysis.

Tobing, et al. [491 used the finite element method to study the

micro-mechanical effect of moisture sorption in graphite-epoxy

composites. Using a constitutive equation based on the Flory-Huggins

lattice model for polymer solvent interactions, they concluded that 4
the stresses at the graphite-epoxy interface have a strong dependence

on moisture content, fiber spacing, and applied load.

Yaniv and Ishai [501 developed a linear viscoelastic closed form 7

solution as well as a nonlinear finite element solution algorithm to

study the hygrothermal effects in a bonded fiber-reinforced

plastic/aluminum system. The linear solution was used for short-term

predictions at low strain levels, whereas the finite element solution

was used for long term predictions in which geometric and material

I
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nonlinearities were taken into account. The authors observed that

the presence of moisture tends to considerably reduce the stress

level in the adhesive layer and may lead to significant variation in

the time-dependent deformation of the test specimen as compared to

the dry state. -.,,

In the references cited above, various authors have underscored

the effect of moisture content on the viscoelastic response of the S

test specimen. However, the effect of the viscoelastic stress field

on the diffusion coefficient was not considered. Lefebvre et al.

[511 extended the free volume concept to define a diffusion

coefficient that is a function of temperature, dilatational strain

and solvent concentration. The proposed nonlinear diffusion model

showed good predictive capability for different values of temperature

and moisture conentrations. They concluded that in order to obtain

an accurate solution for the hygrothermal effects within an adhesive

bond, the nonlinear diffusion problem needs to be solved in

conjunction with the nonlinear viscoelastic boundary-value problem

until convergence is achieved.

A review of the literature reveals that previous finite-element
a,'. 0

analyses of adhesive joints were either based on simplified

theoretical models or the analyses themselves did not exploit the

full potential of the finite element method. Also, several

investigations involving finite element analyses of the same adhesive

joint have reported apparent contradicting conclusions about the

..,
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variations of stresses in the joint [24,521. Thus, there is a need

for a closer examination of the theories, underlying assumptions on

material behavior and boundary conditions, and the finite element

formulations used in the analyses of adhesive joints.

[" .
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CHAPTER 2 -s

NONLINEAR DESCRIPTION OF SOLIDS *6

2.1 Introduction

In the linear description of the motion of solid bodies it is

assumed that the displacements and their gradients are infinitely

small and that the material is linearly elastic. In addition, it is ,.-

also assumed that the nature of the boundary conditions remains 0

unchanged during the entire deformation process. These assumptions od

imply that the displacement vector u is a linear function of the
-S

applied load vector F , i.e., if the applied load vector is a scalar

multiple aF then the corresponding displacements are au

The nonlinearity in solid mechanics arises from two distinct

sources. One due to the kinematics of deformation of the body and

the other from constitutive behavior (e.g., stress-strain

relations). The analyses in which the first type of nonlinearity is

considered are called geometrically nonlinear analyses, and those _.

in which the second type are considered are called materially

nonlinear analyses. The geometrically nonlinear analysis can be

subclassified according to type of nonlinearities considered. Two

such cases are: (i) large displacements, large rotations, but small

strains, and (ii) large displacements, large rotations and large

strains. In the first case it is assumed that rotations of line

elements are large, but their extensions and changes of angles %.%

between two line elements are small. In the second case the

2
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extension of a line element and angle changes between two line

elements are large, and displacements and rotations of a line element

are also large.

2.2 Incremental Equations of Motion

In the Lagrangian description of motion all variables are

referred to a reference configuration, which can be the initial
I

configuration or any other convenient configuration. The description

in which all variables are referred to the initial configuration is

called the total Lagrangian description, and the one in which

all variables are referred to current configuration is called the

updated Lagrangian description.

The equations of the Lagrangian incremental description of

motion can be derived from the principles of virtual work (i.e.,

virtual displacements, virtual forces or mixed virtual displacements -

and forces). Since our ultimate objective is to develop the finite

element model of the equations governing a body, we will not actually

derive the differential equations of motion but utilize the virtual

work statements to develop the finite element models.

The displacement finite element model is based on the ,

principle of virtual displacements. The principle requires that the

sum of the external virtual work done on a body and the internal

virtual work stored in the body should be equal to zero (see [531):

N : N NR ,,>f, W - .-. .W: .. .: - 2 - .z .% ;44' - v .'% - , ,-. ,'- .l ';

L,
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whr 2r iJ (2eij ) dV - s(2F) - 0 (2.1)

V

2

2
T ij the Cartesian components of the Cauchy stress tensor in

configuration C2 at time (t + at) occupying the volume2
2l = the Cartesian components of the Cauchyitesstnsrin

-.

tensor associated with the displacements ui in going

from configuration C1 at time t to C2 at

time (t + at) : 0

au au
2 e -1 + ) (2.2)

;,.

x = Cartesian components of a point in configuration

C2  .5%

= Cartesian components of the body force vector

measured in C2

= Cartesian components of the surface stress vector

measured in C2.

Here a denotes the variational symbol (i.e., 6ui denotes the virtual

displacement in ui) and dV and dS denote the volume and surface. ..

elements in configuration over which the integrals are defined.

' ' a W''.U1 -,,U1 , q % -' 'U-' " '.N 'j N/' " ' r :f' " -'.. - .' .. • . ' :-. . - " " "-'-V " . " '
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S

Equation (2.1) is not so useful in its present form because the

integrals are defined over the volume V2 and surface S2 of the

configuration C2 , which is yet unknown. In the linear analysis, it

is assumed that the configuration of the body remains unchanged and

therefore Eq. (2.1) applies to the initial (undeformed)

configuration. The fact that the configuration of the body changes

continuously in a nonlinear analysis requires us to use appropriate

measures of stress and strain and their interrelationship (i.e.,

constitutive equations) so that Eq. (2.1) can be used to calculate

the configuration C2 . In order to compute the current configuration
C2 (often, the displacements, strains and stresses) from the

knowledge of applied forces and displacements, and known previous

configuration C1 , we must make some assumptions. A description of

the procedure based on the updated Lagrangian approach is given

below.

The coordinates of a general point in CO and C1 and C2 are

denoted by (XI 9 (X1, X2, x and (xI, x x3)'

respectively. The displacements of a general point in C1 are denoted

(lu1, u2, u3). In C2 they are given by

2ui = lu + UI , i = 1,2,3 (2.3)

where u, are the components of the displacement vector from C1 to C2.

During the motion of the body, its volume, surface area,

density, stresses and strains change continuously. The stress

',.
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measure that we shall use is the 2nd Piola-Kirchhoff stress tensor. -*

The components of the 2nd Piola-Kirchhoff stress tensor in C, will be

denoted by Sij. To see the meaning of the 2nd Piola-Kirchhoff stress

tensor, consider the force dF on surface dS in C2. The Cauchy stress

tensor T is defined by

(n • T) dS dF (2.4a)

where n is the unit normal to dS in C2. Note that the Cauchy stress I.

is the force per deformed area (i.e. measured in C2 ) and referred to

C2. The 2nd Piola-Kirchhoff stress tensor at time t + at referred to

Ci is defined by

(n 2S) dSo dF (2.4b)-0e

where n denotes the unit normal to the surface element dSo in Ci.

The force dF is related to dF by
-00._ t.

dFoz J-  dF (2.4c)

where
1=aX T

- ax

From the definition it is clear that the 2nd Plola-Kirchhoff stress

Is measured in C2 but referred to Ci. It can be shown that that the

components and 2J are related according to

Oo aX1i aXl'

lii ~ ax m ax~s - )2,, m (Li) (2.5a)

I ij ax..mn ax
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2 = (_-1) 2 S n  (2.5b)
ij o00 1 'n -X

where a denotes the density in C1 and o is the density in C2. The

2nd Piola-Kirchhoff stress tensor is symmetric whenever the Cauchy p

stress tensor is symmetric. Note that S2j = Tij 2ij.
2 ij t j 2t

Similarly, the Green-Lagrange strain tensor E and the

infinitesimal strain tensor ejj are related by

2E  'Xm 'xn  e 261 ij = axax 2emn (2.6)

It is also important to note that the 2nd Piola-Kirchhoff stress

tensor is energetically conjugate to the Green-Lagrange strain tensor

and the Cauchy stress is energetically conjugate to the infinitesimal

strain tensor. In other words, we have "

2S 6( 2E d i~ (2.7)
V1 ij d V2  ij 6(2eO)dv

Substituting Eq. (2.7) into Eq. (2.1), we obtain

O f 6( Ei) dV - &(2F). (2.8)

Next we use the incremental decompositions of the stress and strains:

2 1 +1Sij - Tlj Ilj

E = 1elj + i (2.9)
1 ij I 1i

.-'.
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where -I

1tj = incremental components of 2nd Ptola-Kirchhoff stresstensor t

lej (incremental) components of the infinitesimal strain
tensor

2 aXm ax-'au au

I m m (2.10)Ini aX1 aXj

Recall that ui is the i-th displacement component of a generic point

in C1 (in going from C1 to C2 ). Substituting Eq. (2.9) into Eq. '

(2.8), we have 0

V ij iSij) (leij j ij) dV F)

or 0

.-. w

' 5u 6leij + Ij dV + lTij6(inlj)dV =

1f 2
LV arij 6(leij)dV + 6(

2F). (2.11)

Linearize the equations by assuming that

S eC es E e (2.12)

where iCijrs are the components of the linear elasticity tensor.

Constitutive equations of linear and nonlinear viscoelasticity will be

presented later. We obtain the approximate equation of equilibrium,

t% .'I%~
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J'~llirs lers 6(letj) dV + f'Tjj 6( )dV ,

-vi 'Tij 6(leij)dV + 6(2F). (2.13)

This linearization can be interpreted as a representation of the

nonlinear curve between two consecutive load steps by linear line

segments.

2.3 Finite Element Model

Here we construct the finite element model of Eq. (2.13) for the

two-dimensional case (see Reddy [541). Let each displacement increment

be approximated as

= n 
4dUi =ji i lj(xl~' (2.14)

Substituting Eq. (2.14) into Eq. (2.13) we obtain

([KLI + [KO1) {au} (FL} (F0} (2.15)

where LBL] T [CI [BL ] A,!

[KL  = h B [ dA h = thickness
A 
1

* c11 C12 0 .Ic] =|C 12 C22 0

L]I1 ,I 0 02,1 0 . . . n,l 0 ,

[BLI = 0' 1,2 0 02,2 .. 0 n n,2(3 x 2n) L 11, 2  1i,I "2,2 "2,1 . . . ' n 2 "n,l I'

4lo



29

T4

[K0] = h .rA 1 BT [rI [Ba] dA
A1

I Tl 12 0 0
L2 22

0~ 0 T11 T 12

0 j0 0 T12 T22

0 12,1 0 " n,1 0

[ B 0] , 2 2 , 2 0 " " n , 2 '.1n,
(4 x 2n) 0 I 0 2,1 . 0

0 01,2 0 12,2 . . . 0 On,2 •

{FL } = h f 1T]T {f}dA, (F} = h " [BL]T (TidA
A1  A1

[I0 02 0 . .. 0 1
(2 x 2n) F I 0 0 ,

L 2'1* n''

It houd b noedthat l1 i should be computed using the Almansi
Ti-

strain tensor, bh-tt

0j

s r n. e.,r,
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1i = I'ijkm lekm (2.17)

where,

am k aukaum
1 ( k + U __ U_ n Un)

lekm = 2 (aX + k Xk -m

Also, since Eq. (2.13) is a linearized version of Eq. (2.11), the error

introduced into the calculation of the displacements ui between

configurations can drift the solution away from the true solution

(especially, if the load steps are large). Therefore, a correction

should be made to the displacements at each load step. This can be done

as follows: The solution {Au} of Eq. (2.15) allows us [with the aid of

Eq. (2.3)] to compute the total displacements at time (t + at)

2 1 +2ui = l i +u i %

which can be used to compute the strains and stresses (with appropriate
constitutive equation) at time t + at. By the principle of virtual

displacements, the true displacements, strains and stresses at any time,

say at time t + at, are such that the internal virtual work is equal to

the external virtual work done. Since aui (hence the strains and

stresses computed from them) are approximations, there will be imbalance

between the internal and external virtual works performed on the body.

This imbalance can be minimized by updating the internal virtual work

through an iteration (for a fixed system of loads and time); the

iteration is continued until the imbalance is reduced to a preassigned

value (i.e., a convergence limit). For example, displacement increment

?I

-. - ~'p~-\4 X'.
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at the (r + 1)st iteration is calculated from the equations

([KLI + [0,1r {aU r + 1 = {FL} - (F') (2.18)
([rK I 'z r

wherein [T] and {} are calculated using the displacements,

2 = + (2.19)O IJrl +1 ) (au1),

Equations (2.18) and (2.19) correspond to the Newton-Raphson

iteration. If the left hand side (i.e. [K0 ]) is not updated during the

iteration, the iterative scheme is known as the modified Newton-Raphson.

iteration.

'A'
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CHAPTER 3 1

NONLINEAR VISCOELASTIC FORMULATION

3.1 Introduction

A thermodynamically consistent theory for a single integral

representation of nonlinear viscoelasticity was first proposed by

Schapery [251. The law can be derived from fundamental principles using

the concepts of irreversible thermodynamics. A comprehensive review of

the thermodynamics basis of Schapery's theory has been presented by Hiel

et al. [551.

The following two sections deal with the review and application of

Schapery's single integral constitutive law to problems with uniaxial

and multiaxial states of stress respectively. The constitutive

equations thus obtained are suitable for non-linear viscoelastic finite

element analysis.

3.2 Uniaxial Stress State

The uniaxial nonlinear viscoelastic constitutive equation of

Schapery [251 can be written for an isotropic material as, "

E= g tto + gt it 4D(4 t - 0s) L. [gso 5Jds (3.1)

tIn Eq. (3.1), e represents uniaxial kinematic strain at current time

t, at is the Cauchy stress at time t, 00 is the instantaneous elastic

compliance and aD() is a transient creep compliance function.

t d n t sSuperscript, t, denotes current time. The factor g0 defines stress and

temperature effects on the instantaneous elastic compliance and is a

32
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oS

measure of state dependent reduction (or increase) in stiffness, -.

o g(aT). Transient (or creep) compliance factor g has similar

meaning, operating on the creep compliance component. The factor

gt accounts for the influence of load rate on creep, and depends on

stress and temperature. The function ot represents a reduced time scale

parameter defined by,
t

0 t (as )-ids (3.2)

0 aTJ

where, aT is a time scale 'shift factor'. For thermorheologically

simple materials, a = a(T) is a function of temperature T only. This

function modifies, in general, viscoelastic response as a function of

temperature and stress. Mathematically, aaT shifts the creep data

parallel to the time axis relative to a master curve for creep strain

versus time. In this model, four material parameters (g , g , g and at) V..

are available to characterize nonlinear behavior instead of only one

with the time scale shifting procedure of Knauss and Emri [271.

The transient creep compliance, aD(*), can be expressed in the

following exponential form,

AD = Dr 1 -e (3.3)

where D and r are constants. Substituting (3.3) in (3.1), gives,
ct t t t t - r - s) d s

=o + g o [1r e I d g2  ds. (3.4)

)~ rI
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Letting the product g as be expressed as Gs and simplifying the

integrand on the right hand side of Eq. (3.4) yields, P

=gto at + gt 10dr  GSds - gt Dr 0 " e- XrPt --4s ~ ds.
o 0  r0 ds"

(3.5)

The third integration term on the right hand side of Eq. (3.5) is

now separated into two parts, the first part having limits from zero

to (t - at) and the second integral spanning only the current load step,

i.e., from (t - at) to t. Hence,
t 0t- O)dst-At - 0t_ Os) d[s

fe r T-) ds e- r  ds
0 0 ds

t e-Xr(0 t- 1s) dGs ,."

+ t-t dT ds. (3.6)

The first term on the right hand side of Eq. (3.6) can be rewritten as, .

t Sf" e r -G_s ds
0 ds

t-at -Xr(,t-,4 t-&t )  X r(Ot-At_ sS) do e e rdGS ds

-(t ,t-&t) t-at ,-t,)"

=e r f " e r -4d0S ds
0 ds N.

= e A t-A (3.7)

where,

I
-S
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at t-at (3.8)I

_X(t-At_, )-

t-At eds dsd (3.9)r 0

The second integral on the right hand side of Eq. (3.6) is now

integrated by parts. To carry out the integration, it is assumed

tthat G varies linearly over the current time step at. Hence,
t -x .( t_ )s)

f e r ds
t-At ds

-dGs e r t d2Gs  e r(1 t s) ""dl e- " ds N^
ds xr 2 x= r  t-&t t-at ds2  r

*t- t-At
dGt dGt - t e Vrttt'

dtx 7 dt x 0,
r r

-xtee- rA~

dGt 11 - r (3.10)
dt Xr

In arriving at the second step, the fact that Gs is assumed to be
tIlinear, hence its second derivative is zero, is used. Since Gt has been

assumed to be a linear function of time over the current load

step at, we can write, 5p

dGt Gt - Gt-At  *-,

dt t t-&t ;

4AA
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or, dGt =Gt - Gtt (3.11)
dtt

Substituting (3.11) into (3.10), gives

t xdGSs t Gt-at 11 - e r

t-At x
r

, dGe ds [Gt Gt-tst (3.12)or, e rds - r
t-At

where,

t-r~ x
,a. 1 - e.Br  - rAIt (3.13)

Sr'

* Substituting (3.91 and (3.12) back into (3.5) and

writing Gt = go

t t tt90 o 0oa + g I IOrg at

g9 t 1Or e- ra  _t-4t + gtat gt-AatAtsti. (3.14) :

I qr + -r r (
r

Collecting those terms in Eq. (3.14) that are multiplied by current
ot

stress yields,

t tFt 19t 0 t 9t 0 Dr  t 9t 0 r)a :i
00 1 2 g g 2  r.r
g) ,t-t tt-at ra t-At,
+r2 8r - e qr (3.15)

Defining instantaneous compliance DO as the compliance term

tmultiplying the instantaneous stress a and the remaining terms in Eq.

g I .

'I
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(3.15) as hereditary strains Et, yields,

t Ott t Fa
= + E F(a) (3.16)

where,

Ot= tot + gt t I Dr t t Dra t(317)
0 0 a 1g2 r glg2 r r r

E =g { [g Br - qtAt} (3.18) _-

1 r r 2 rr

Hence, Eq. (3.16) expresses Schapery's single integral constitutive

law in terms of a stress operator that includes instantaneous compliance

and hereditary strains. •

t-At n th
It is to be noted that the term q in Eq. (3.18) is the rt.r

component of the hereditary integral series at the end of the previous

load step (i.e. at time equals t - At). The expression for the •

hereditary integral at the end of the current load step (i.e. at time t)

can be derived in the form of a recurrence formula as shown below.

By definition [see. Eq. (3.9)],
t-S)

t-X (0 )t r dGqr= e .d
e ds

00_ r( t_,s) "--.
It -r(,t-, s )  dGs ..

e dS ds + e r ds. (3.19)
0 t-at ds

Using the results from Eqs. (3.9) and (3.12), the above equation reduces

to,
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J.

ql -X= A + g i a e - B (3.20)

where a m is defined by Eq. (3.13).
r

3.3 Multiaxial Stress State

For a thermorheologically simple anisotropic viscoelastic material

under a multiaxial state of stress, the constitutive law proposed by

Schapery [251 is,

ex+ of aE.( mn (3.21)

tn as H J(ov ,t - possb /a (3.22)

where, ej and ai are the strain and stress tensors respectively, GR is
ij.

the Gibbs free energy, and A are second and fourth order material
ij mn

property tensors respectively and aG is a material kernel function

defined in [251. The quantities GR, aG and a mn are, in general,

functions of ten variables, and temperature T. Note that all

i'j

repeated indices in Eqs. (3.21) and (3.22) are to be summed out over

their range (1,2,3).

Due to the complex nature of Eq. (3.21) it is not possible to

determine the material properties in this equation from the uniaxial

tests outlined in [251. However, it is possible to construct a set of

small strain, three dimensional constitutive equations from (3.21),

which is consistent with the thermodynamic theory in [251, and which yet

enables all properties to be evaluated from uniaxial tests. The

% %S
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assumptions which need to be made for this purpose are as follows:

(a) The Glbb's free energy GR is a quadratic function of stress.

(b) =Oj aij (3.23)

When the free energy GR is a quadratic function of stress,

aGR n(O)
ij mn (3.24)

where sm0() are the instantaneous components of the linear viscoelastic S

creep compliance tensor. Equation (3.24) implies that the initial 01

response of the material is linearly elastic under suddenly applied

stresses, which is often the case for metals and plastics.

The second assumption, on the other hand, leads to the

linearization of the coefficient of the transient term in Eq. (3.21).

Mathematically, this is given by,

3'mn 1, if i - m and j = n
= { (3.25)

0, if i m and j *n

Equation (3.25) implies that the jump in strain due to load application •
• -'-2...

equals the jump when the load is removed. This behavior is exhibited by .

some types of plastics [561.

Substituting Eqs. (3.24) and (3.25) in (3.21) and (3.22),

-t,

et  Smn(O) + Ae(.
ij ij mn (3.26)

at t t
de = JA - 0 ) (gomn)dt (3.27) -

where, 2 1/a. Superscript, t, denotes current time. Equation

(3.26) is a set of three dimensional constitutive equations for

"..1! .
..-,"
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anisostropic viscoelastic materials which includes the nonlinear

functions gt and a t  appearing in the uniaxial relations (3.1) and

(3.2). Note that the functions g and at are expressed as a function

of the octrahedral shear stress, which is a stress invariant.

For a homogeneous isotropic nonlinear viscoelastic material, Eq.

(3.25) reduces to the form presented by Schapery ([251 and [561),

et {J{gt I+ to - J} a 6 (3.28)

where,

jJ}1g2a t} = J(O)aiJ + I t - T 3)L (gTOlj)dT (3.29)

t- t tt - .
{- J}{g2am} [0(O) - J(O)lIat + [ 0 (t -

-J( t  T)I I (g ' aT
- T (g2mm)dT (3.30) .

in which,

tt _ = .f (a T -ds (3.31)

T.

Expanding Eq. (3.28) term by term for the strains,

e t j t t t t t t t t

t!
e 1 {J}o 1 } all {+ - J1{g2all + 92022 +2 ga 33

Arranging terms,

e {D}{t t {D - J}{gta22 } 
+ {D j}gt (332e 1g2ta11 103 }gt (3.32)..

11,

,.'€,. - - '.. .- .d *-. .. .. ... .. .... .. . . ... . - ..-- -. - . . .. .. , -. -.? .- -.? ; . , -.- -: -.-..--- -
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Similarly, -6

{g2ii 0 uOD}g21 + O jig 31 (3.33) "
2 2{J}{g21 2} (3.34)

e33= {D - j}g~ l} t {D _ j}{g~o22} + {D}{gj a 1a to (3.35)

The transient components of the creep and shear compliances can be O

written in the form of Prony series as,

A 0 r[1 - en (3.36)
r•

= r - e r (3.37)
r r

where xr and nr are the reciprocal of the retardation times in creep and
o

shear respectively. Also, let,

D(O) = D (3.38)

J(O) = Jo (3.39)

Considering a term of the form {O} a2i} in Eq. (3.32) and substituting

Eqs. (3.36) to (3.39) gives,

t -x(t){D{g~t} = D + 0 Dr [ 1 - e I d [g%:  Jdt (3.40) -.?
2i 0 j 0 r ., 2 i

Recognizing that Eq. (3.40) is similar in appearance to Eq. (3.6) and

making use of the results derived in Section 3.2,

tt t t tt )" "

{D}{g2al} Dli + Qt (3.41)

where D is the instantaneous creep compliance function at time t, given

"°T '

° **.

p g
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h"

by,

D : + g Or(1 - 8t) (3.42)1 0 2 r r r

t Ilj are the hereditary strain components due to tensile creep at time

t
t t-At t t-At r A t t-At

Qij rg 2  BraiJ -e qr,ij] (3.43)

Bt I - (3.44)r r AVt

an t
and, rij are components of the hereditary integral given by the

recurrence formula, 
-

ttq t1 =j e r q t-tt + [gt atj -t-Atat-At 18t (3.45)
rr,ij 20 1 g2  0ij ]r

Similarly, a term of the form {J}{gtaij I in Eq. (3.32) can be

expressed as,

{J}{gaj} : itij + Pt (3.46)
2 i I ii S

t P
where, J is the instantaneous shear compliance function at time t, and

is given by,

tt tJ 0 + g2  1 Jr~ -( r), (3.47)
~~ rr

pt are the hereditary strain components due to shear at time t,

t.5
t t-at t t-at nrA4 t-At

: [g rat i - e Pr (3.48) -.

r J
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tS

rt = - e
r r A 3t.49

and, r are components of the hereditary integral given by the

recurrence formula;

-n AJt
p ij et-, [g t g2t A Irr (3.50)r, er,i 2 i 2 ij r

Substituting Eq. (3.41) and (3.46) in Eqs. (3.32) to (3.35), and 0

dropping superscripts, gives,

e = 01011 + (DI - Ji) 0 22 + (01I Ji) 0 33 + H11  (3.51)

e22 ( (Df - Ji)o11 + D1 22 +(D -1)033 + H22  (3.52)

Y12 2J1"12 + H12  (3.53)

e33 = (D -J ll + (DI - Ji0022 + 1033 + H33  (3.54)

where,

1 I + Q22 + Q33 P22 p 33  (3.55)-

H22 Q11 + 22 + 33 P1  - P33  (3.56)

H12 = 2P12  (3.57)

H Q i. + - 3.8

33 Q11  Q22  Q33  P 11  P (3.58)

Written in form of a matrix equation, this becomes, .p

. . . . -.. .. . . i - I.n--
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p..

{e} = [Nitol + (HI. (3.59)

Note that the left hand side of Eq. (3.59) is a vector containing the

algebraic difference of kinematic strains {e} and dilatational strains

{e}T = {(I - e)9(e 22 - e)y 12 9(E33 - e)} (3.60)

while, ja} contains four components of Cauchy stress,

fal l' ,a2 2 ,a1 2 ,a3 3 } (3.61)

I

and {H} is a vector of hereditary strains given by,

tH}T = ilHH22,HI2H (3.62)

The matrix [N] is a 4 x 4 coefficient matrix given by,

-p<

OI  (I- J I )  0 (D l-iJ)

(DI-J) D 0 (Dl-dJ) (.3
[N 02J 0 (3.63)

L (DI-JI ) (D-JI) 0 O 1 _j

Pre-multiplying Eq. (3.59) by [NJ I an explicit expression for stresses

in terms of strains is obtained, #*

4.,
{a} = [MJ({e} - {H}) (3.64) '

a
S
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where, I

[MI = [NF -  (3.65)

Equations (3.64) and (3.65) provide a general viscoelastic

constitutive relation that c.n be applied to either plane stress, plane

strain or axisymmetric problems. For plane strain, the out-of-plane

strain component e33 is identically zero. The corresponding stress

component, 033 may be obtained from Eq. (3.64) by setting e33 = 0.

Since for the plane stress case, 033 is identically zero, the

corresponding strain component e33 can be evaluated from Eqs. (3.59) and-,

(3.63) as, 0

e33 = (DI - J1)( 11 + 022) H33  (3.66)

Note that the use of creep and shear compliances as material property

input allows the Poisson's ratio to be time-dependent. Hence, the

present formulation is applicable to any thermorheologically simple

isotropic viscoelastic material over any length of time.

For the special case where the Poisson's ratio is a constant with

time, then,

J(*) = (1 + v)D(o). (3.67)

The matrix [NJ in Eq. (3.59) takes the form,

I -V 0 -v

(NJ = 0 (3.68)
0 0 2(1+v) 0

- -v 0 1J

W% %

~~ ~* ~ ' i
"

. I5555
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and, the corresponding hereditary strains are,

HI = QIl - V(Q22 + Q33) (3.69)

H +=
22 Q22 - (Q11 Q33) (3.70)

H12 = 2(1 + v)QI2  (3.71)

H + Q (3.72)
33 Q33 w v(Q11  Q22)

If the viscoelastic properties of a material are defined by its

bulk and shear compliances instead of the creep and shear compliances,

then the creep compliance D(,) in Eq. (3.28) is replaced by the bulk and

shear properties. Using the viscoelastic relationship betwen creep,

bulk and shear compliances given by,

0) M(+) + 2 (3.73)
9 3

and substituting in Eq. (3.28), the matrix relation given by (3.59) is

obtained. However, for this case the matrix [N] has the form,

(M 2 1j 1, 1 M I
1 1 3 9)39

(I M -. j1) (M (I M j
IN]-=+ J1 ) 9 1 3 1 J3 (3.74)

0 0 2J 0
(I M-JI) (1 MI - i ji) 0 (M1  +  Ji)9 1 3 9 3 1

and the corresponding hereditary strains are,



4 7 or -00

H11  1 22 33)  P11 (P22 +  P33 )  .7

2 (Qli + Q + Q33) + § P11 - 3 (Pl2 + P33) (3.76)

2 9 n 22 p33) 3 P22 - 3 1 33) P'*~

H12 = 2P12  (3.77)

H33 = +2(Q11  Q22  Q33) 3 33 - 3 + P22 ) (3.78)

3.4 Finite Element Model 
J.

This section describes the finite element implementation of the

nonlinear viscoelastic constitutive law presented in Sections 3.2 and

3.3. Since viscoelastic materials often undergo large displacements

especially when subjected to creep type of loading, the geometrically

nonlinear analysis described in Chapter 2 has been incorporated into the S

viscoelastic formulation.

Invoking the principle of virtual work and following the procedure

outlined in Section 2.2 gives,
.' .%

J M e 6( e )dV + 1*.6( 1ni)dV
Vl ijrs lrs lij) v ij..

= 'vl l j1 6(leij)dV + lf lfi6uidV +.s  iti6uidS (3.79)
1i 1i .j . -

where, iMijrs are the components of the viscoelasticity constitutive

tensor. The rest of the quantities and the superscripts in Eq. (3.79)

have the same definitions as in Section 2.2. Let each displacement

increment at any time t, be approximated as,

... '

p....

',U ,
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Au Auij (AIA/ (3.80)ji I (X '2)'

Substituting Eq. (3.80) into Eq. (3.79) gives,

([KL ] + [KO1){Au} = [FL} - {F0 } (3.81)

where,

[KL] = hf [BL IT[MI[BL dA, h = thickness (3.82)
A 1

and [MI is the 4x4 viscoelastic constitutive matrix defined in Eq.

(3.65). Note that for the nonlinear viscoelastic case, the 'linear'

stiffness matrix [KL] is not really linear, but has nonlinearities

imbedded in it due to the presence of the material kernel functions (go,

g1, g2) in the matrix [MI. The nonlinear stiffness matrix [KI is the

direct result of the geometrically nonlinear formulation and is given

by,

[Kl = hf [BOIT[ ][BOIdA (3.83) :%
A1

The definitions of matrices [BLI, [Ba], {FL}, {F0} and [r] are the same

as in Eq. (2.16). The Cauchy stress components, are computed by using

the viscoelastic relation,

{o} = [MI({e} - {H}) (3.84)

which has been derived in Section 3.3. For a geometrically nonlinear

analysis, the vector {e} contains components of the Almansi strain

tensor given by,

I a k um  au n aueam nn) _ (3.85)

k. = m 3xk axk axm

,I
9.-,,
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It is evident that Eq. (3.81) contains two possible sources of -6

nonlinearities: material nonlinearity due to Schapery's law and,

geometric nonlinearity arising from the large displacement

formulation. In order to obtain a solution to this nonlinear equation

at any time step, the Newton-Raphson iterative technique is used. The

incremental displacement {AU}r obtained at the end of the rth iteration

is used to update the total displacement for the nth time step, S

u (3.86)r nr-1 +  nr .

The iterative procedure continues until a convergence criterion is

satisfied. After that, the solution proceeds to the next time step. 4r

Note that for the first time-step, ur =.

The complete solution procedure for each individual time step is 0

presented in a logical step-wise fashion and can be used directly for

programming purposes: .,

01. At the beginning of each time step, the stress vector

{(a} from the previous time step is accessed. Note that for "Z"

the initial or starting time step, the stress vector

a(t - At) denotes the initial stress state at t = 0, given -

by {o}. Since it is customary to assume a stress free state

to exist at the start of the solution, foo} is usually set to

be zero.

2. Temperature T at time t is computed from T = f(t) which is

supplied by the user for problems involving thermal loads.

,%

- -. / ,., .- ,.-.-.,.... . ... . -, .- v . ..:.,.:.. , .... :-.-.-;-.,...'..-.-..:.'. ,-:.- 0-.
", .. .".. .. .- ,..-.' : .'. ,. . . , , - , ,,.' " ."J" ... . .. • . . . • ," , , , " " V . .
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Sh 9el and at which are known functions

of temperature and stress, are evaluated next, using the stress

vector obtained from previous load step.

4. Assuming atT to be a linear function of time over the timeaT

step At, the average value of shift factor is given as

t t-At t ta (a + a T) 2 and the change in reduced time A t .
is computed as A t =t/at . In order for this assumptionis cmu aTavg.

to be valid at should be made sufficiently small.

5. Hereditary integral [qt1 is computed using the recursive

formula given by Eq. (3.45).

6. {F = x[F where x is the load factor that correspondsext app
to the time step under consideration.

7. The residual vector tRI is computed for each element as,

{R}e = {Fe}e - * [B]T{ }edV.
V

e

8. The tangent stiffness matrix [KT le = [BIT[MI[Bldv.
e

9. Incremental displacement {Au} = [KT]-{R}.

10. Total displacement (u}l = {ui_l + {au}i where the subscript i

denotes the number of iterations.

11. The strains and stresses are computed using the known v

displacement.

12. Steps 3 through 12 are repeated till < tolerance.

II {u i} .

LU

,%.

* * - U *~U *UU *U*~'UU*

'.U . -- ... '- -. ., .' .- ' , . '.', .- ,-.' . ,V .--- -" U-".. -" " - ".*.i.- - - ' * .. '-,'.'
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13. Solution proceeds to the next time step for which steps 1
through 12 are repeated. ,

S.

**l'

.4.,

I

C.

.. '
.

J.;

* I
,,CC

r. ,. ,.'w.' " .'- ",""---'..-.w'- '-- .-'-
" 2 -
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CHAPTER 4

MOISTURE DIFFUSION AND DELAYED FAILURE

4.1 Governing Equations for Diffusion

The nonlinear Fickean two-dimensional, diffusion model presented in

the present study is the one investigated by Lefebvre, et al. [51]. The

diffusion model can also be applied for penetrants other than moisture.

Fick's law for the two-dimensional diffusion of a penetrant within

an isotropic material is given by,

-- D L) + a (D ) =- (4.1)
i ax ay 3y 3t4.)

where, c is the penetrant concentration, which is a function of position

and time, and D is the diffusion coefficient.

In order to model the transport phenomena in polymeric materials,

Lefebvre et al. [511 derived a nonlinear diffusion coefficient based on

the concept of free volume. 'S

According to this theory, the dlffusion coefficient for a polymeric

material above its glass transition temperature is given by,

Oo  -B{1/f - 1/f 0

D=- Te (4.2)

where, 0 is the diffusion coefficient, T is the temperature, f is the

free volume fraction, and B is a material constant. The subscript 'o'

denotes values at the reference state. It is then postulated that the

change in fractional free volume is due to changes in temperature,

521
.4
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penetrant concentration, and the transient component of the mechanically

induced dilatational strain. It is further assumed that these changes

are additive, which is similar to the assumptions made by Knauss and

Emrl [27], giving,

eNf = f+ 3AT + Aekk + 3yc (4.3)

In Eq. (4.3), a is the linear coefficient of thermal expansion, y is the

linear coefficient of expansion due to moisture, N is an exponent for 0

the saturated state, and aekk is the transient component of the

mechanically induced dilatational strain. The dilatational strain due

to the ambient stress state can be written as, S

ekk ekk(O) + Aekk (4.4)

where ekk(O) and aekk are the instantaneous and transient components of

the mechanically induced dilatational strain ekk. Hence,

ekk(O) = M(O)okk (4.5)

and
t S

Aekk 3 M(,t - , ) (g2okk)dT (4.6)

where M( ,) is the bulk compliance of the material. Combining Eqs. (4.4)

and(4.5),

kk M(O)Gkk (4.7)

Substituting (4.7) in (4.3), 0

f3f +3aAT+ e + 3yCN (4.8)0 k 3M(O)Okkl+3y {eS

.. *.p,
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I.

Substituting (4.8) in (4.2) gives,

B 3(oaT + ycN) + (ekk - 4 Moakk)
0 = -T exp {L [k + 1 ]} (4.9)

0 0 fo + 3(caT + ycN) + (ekk - M k)

From the viscoelastic formulation presented in Chapter 3, it is evident

that the dilatational strain ekk is dependent on the stress history,

temperature and penetrant concentration, that is,

ekk = ekk(akkT,c) (4.10)

Hence, the two sources of nonlinearity in Eq. (4.1) are moisture

concentration c, and dilatational strain ekk. Consequently, in order to

accurately model the penetrant transport phenomena, the diffusion

boundary-value problem needs to be solved in conjunction with the

nonlinear viscoelasticity boundary-value problem by using an iterative

procedure. The same solution procedure can also be applied for

diffusion in polymeric materials where the plasticizing effect of the

penetrant may cause the viscoelastic time-scale shift factor to be

concentration dependent, that is,

at : a(oT,c) (4.11)GTc

One example of such a shift factor definition can be found in the work

of Knauss and Emri [271, where the authors have used the unifying -.

concept of free volume to define a shift factor given by,

ex B cAT + yc + sekka(T,C,ekk expl- L (Tfo +  a C+kk )  (4.12) '
a(~~kk) f 0  0 + OATj + yc + 6e kk

where s is the coefficient of the dilatation term. Note that the

coefficients and y in Eqs. (4.9) and (4.12) are, in leneral, functions

'a

C.'

C.'

%.

-a'
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vi

of T, c and ekk but have been assumed to be constant for the sake of
simplicity. This assumption is valid for temperatures above the glass

transition temperature.

4.2 Finite Element Formulation

Fick's law for two dimensional diffusion in a homogeneous isotropic

material is given by,

a- 1-) + l- (-) = in a (4.13) '
Tx ac a ac acti

subject to the boundary conditions,

O -c nx D L2 ny + q= 0 on r I , t 2! 0 (4.14) .""
ax x ay y qO r1  ,tO (.4

and •

c =c on r2  , t 0 (4.15)

with the initial condition, 0

c =c in , t= 0 (4.16)

where, a is the two dimensional region in which diffusion occurs,

and r is the boundary to this region. -.

The finite element formulation for Eq. (4.13) incorporating the

initial and boundary conditions (Eqs. (4.14) to (4.16)) was carried out

following the variational procedure used by Reddy [541. The time .

dependent moisture concentration is approximated as,

w.-
d" .'.

~ ~ .~-.i' . *. Y".~ *~ ~ %~/ *.i~\~..~ ~ 4~'p~.*..*~~$* * % ~ 9" ~r-%I.,r.r.,f.,
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n
C(x,y,t) j~ .(x,y)c .(t) (4.17)

The resulting finite element equations cast in a matrix form are given

by,

[M(e)I{E} + K(e)I{c} J F(e)} (4.18)

where,

M(e) =f .. dxdy (4.19)

K~e) f ( i + !-J)dxdy (.0ij 0e ax ax ay ay

F(e) 0 - ~ qds (4.21)

The superscript (e) is used to denote that the equations are valid over

each element. The range of the subscripts i and j is equal to the

number of nodes per element. .

The time derivative { } is approximated using a a family of

approximations given by,

{Cn+1 C

where, n is the time step. Using the approximations (4.22) in (4.18)

for time tn and tn+1 gives,

(A(e)J{c}j~ -B(e)1{Cj~ -p(e), 0 (.3

where,
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[A(e)I [M(e), + 66 [K(e)] (4.24)

n+I
Pk %

[B(e)I ( M(e), 0 1 )&t n+1 [K (e)1 (4.25)%

p(e)} = At 1  F(e) + (I - e){F(e)}, (4.26)

Recognizing that a source of nonlinearity in the form of the diffusion

coefficient 0 is imbedded in the matrix [K(e)1, the Newton-Raphson

technique is employed to solve for the concentration at achtim

step. Note that for n =1, the value of {c} in Eq. (4.23) is known from .

initial conditions.

4.3 Delayed Failure: Uniaxial Formulation

When a viscoelastic material undergoes deformation, only a part of

the total deformation energy is stored, while the rest of the energy is

dissipated. This behavior is unlike elastic material where all the

energy of deformation is stored as strain energy. Reiner and Weisenberg

[441 postulated that it is this time-dependent energy

storage capacity that is responsible for the transition from

viscoelastic -esponse to yield in ductile materials or fracture in

brittle ones. According to this theory, failure occurs when the stored

deviatoric strain energy per unit volume in a body reaches a certain

maximum vae called the resilience, which is a material property. Note

that when -.-ere is no dissipation, that is, when the material is

elastic, t,'en Reiner-Weisenberg criterion becomes identical to the von
M,,,p ce.,

Mises criter', "

A,. '

• ,A.--,,
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Consider the single Kelvin element shown in Fig. 1, subject to the

uniaxial tensile load a(t). The total strain response e(t) due to the

applied stress can be divided into two components: the instantaneous

respone eo, and the transient response e1 (t). Hence, L

e(t) = eo + e1(t) (4.27)

For uniaxial creep, the applied stress a(t) is given as,

a(t) = a0H(t) (4.28)

where H(t) is the unit step function.

Substituting Eq. (4.28) into Schapery's nonlinear uniaxial single

integral law given by Eq.(3.1), and expressing the transient creep

compliance Dc(o ) as,

-X.

Dc( = 0-D 1 (1 - e 1) (4.29)

results in,

e()= g 0 oao + g1g2a0ol(1 - e (4.30)

where o is the reduced time defined in Eq. (3.2).

Comparing Eq. (4.30) with (4.27),

eo =g0 Da0  (4.31)

-rel(,)= g0 1 (1 - e )g2ao (4.32)

For a given applied stress ao, stress developed in the nonlinear spring

5 swith compliance Dogo is a and the corresponding strain is e0. For the

spring with the nonlinear compliance Dlgl, the stress is given by,

V
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S es

where the superscript Is' denotes quantities related to the springs.

From Fig. 1 it is evident that es and eI are equivalent. Hence,

s
= g2(l - e )a (4.34)

The total energy, WS, stored in the two springs over time t is (see Hiel

et al. [551), '

W e Sde+ t a dt (4.35) %

0 0 0

Using results from Eqs. (4.31), (4.33), and (4.34), Eq. (4.35) becomes,

WS = 2 goDoCo + g11 [1 - e (g2  )2 (4.36)

For a viscoelastic material represented by multiple Kelvin elements in

series, Eq. (4.36) takes the form,

W g0 Doa 2 g1g22 2 [Or(l - e r (4.37)
r=1

According to the Reiner-Weisenberg hypothesis, failure occurs when the

stored energy WS reaches the resilience of the material. Denoting the

resilience as R, the expression for the time dependent failure stress

obtained from Eq. (4.37) for uniaxial stress state is,

f n-xr) ] 1/2 (4.38)
f 1 n Xr2 1
{9 o0 + 1 glg 2 2 [Dr (1 - e 2}

2,2..r.

S.,
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4.4 Delayed Failure: Multiaxial Formulation -.

If 01' a2 and 03 are the principal stresses at any point in a

viscoelastic material, then by definition, the shear stresses are zero

on the principal planes. In order to simplify the derivation, let it be

assumed that the viscoelastic material is represented by means of a

single Kelvin element (see Fig. 1) in each principal direction. The

applied multiaxial creep stresses in the material principal directions

are given by,

a11 a1H(t) (4.39)

022 =aH(t) (4.40)

033 =oH(t) (4.41)

Substituting Eqs. (4.39), (4.40) and (4.41) in Eqs. (3.32), (3.33) and

(3.35) result in the following expressions for the corresponding .

viscoelastic strains,

Jo J -x'Ir

00
ell(t) = Oo[aI + (I- o)2+ (I - -o3J + Ol[(l - e )g2ai .

+ e( - e r) + (I - r)92a2 + {(i - e r)

+ L I er }g03] (4.42)

From Eq. (4.42) it is evident that the effective stress developed in the "

spring with compliance D0 acting in principal direction 1 is given by,

J Jo

o a +a (1- + (1 (4.43)
0 0Col +

I.

I
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Similarly, the effective stress developed in the spring with compliance

01 and acting in principal direction I is,
-X -XrL) Jl -nr1

as = (- e + - e + (1- e r g

J 1 -r-

(1 - er +0 (1 - e )19203 (4.44)

On the left hand side of Eqs. (4.43) and (4.44), the superscript 's'

denotes the effective stress within the spring, the first subscript

indicates the spring number, and the second subscript determines the

principal direction in which the effective stress acts.

The total energy, W stored in the two springs in material

direction 1 over time t, can now be obtained by using Eq. (4.35).

Hence, '.

S 1 s 2 1 s 2 ( .5 'W (4.45)

W 10 (aol ) + 1 D1 (a 1 1 ) IAA.

Using a procedure similar to the one just described, it can be shown

that for an isotropic material the total stored energies W2 and WS may
2..3

be expressed in a form similar to Eq. (4.45). Therefore, the total -'4'

energy, WS stored in the springs in direction j, over time t is given

by,

WS 1 D0 (as~) 2 +D 1 D(as ) 2 (4.46)
.j 2 lj 2 S

If the viscoelastic material is represented by n Kelvin units in series

in each material principal direction respectively, then, 0
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W I°( s)2 + I r( 2 (4.46) .j 20 0 i 2 r ' r(

where,

s Jo o
y = (1 - F + 02+ Lo 6 (4.47)

oj 00 2 03) 0 ii
0 0

and,
o - r*) Jr -nrt'

a = g2[(i- e r r (1 e r + a2 + 03]

+ g2 Ur (1 - e )oi6ij ij = 1,2,3 (4.48)

Note that in Eqs. (4.47) and (4.48), repeated indices imply summation,

and 6ij is the Kronecker delta operator. Also, the Prony series for the

creep and shear compliance are required to have the same number of

terms.

Equations (4.46), (4.47) and (4.48) define the energy stored in the

jth principal direction in an isotropic viscoelastic material.

Therefore, according to the Reiner-Weisenberg failure theory, the

criterion for creep rupture in the jth principal direction is given as,

WS > R (4.49)

where R is the resilience of the isotropic material.

For a material with a constant Poisson's ratio,

J( = (1 + )D() (4.50)

For such cases, Eq. (4.46) is still valid, but Eqs. (4.47) and (4.48)

simplify to,

~ .5. 5 ~ . .z
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A

S0 (al + 02 + 03) + (1 + v)oi6 .. (..1

and, %

0rj = -vg2 (1 - e )(al + 2 + 03) + (1 + )g2( - eij

(4.52)

._-.

,% 
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CHAPTER 5

NUMERICAL RESULTS

5.1 Preliminary Comments

In this section results of a number of linear elastic, linear

w-

'p

viscoelastic and nonlinear viscoelastic analyses are discussed in light -

-p

of available experimental or analytical results. All results are [

obtained using NOVA on an IBM 3090 computer in double precisiont

arithmetic. The first problem deals with linear elastic (both adhesive

and adherend) analysis to show the effect of boundary conditions and

mesh on the stress distributions. Next, results of geometric nonlinear

analysis are presented and compared with those obtained with VISTA. .
Then linear and nonlinear viscoelastic analysis results are presented, -

~first, to validate the finite element procedure described in the

preceedilng chapters and, second, to obtain new results for certain

adhesive joints.

5.2 Linear Elastic Analsis: Effects of Boundary 

Conditions and Mesh,€

To investigate the influence of boundary cobnditions on the elastic

stress distribution in a single lap joint, the three different boundary

conditions shown in Fig. 2 were used in the linear elastic analysis.

During the present study it was also observed that the type of finite-

element mesh (i.e. uniform or nonuniform) has also an effect on the

stress distribution in the bondline. The material properties used are

given in Table .

5ct

CodtosadMs 'p
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Figures 3 and 4 show plots of the peel stress obtained by uniform

and nonuniform meshes, respectively, along the center of the bond

line. Boundary conditions of Type 1 and 3 give almost the same

distribution of the stress, while Type 2 differs significantly at the

edges of the adhesive. Stresses obtained with Type 1 and 3 boundary

conditions exhibit stress distributions that are almost symmetric about

the vertical centerline of the joint (with Type 3 being the most S

symmetric). It is also observed that the distribution is not quite

smooth when a uniform mesh is used. For an accurate description of the

stress gradients near the edges, a more refined mesh than that used at

the center (i.e., nonuniform mesh) must be used. This observation is

supported by the results shown in Fig. 3.

The effect of boundary conditions (Type 1 to 3) on the distribution -

of the peel and shear stresses along the upper and lower bondlines

(i.e., interface bewteen the adhesive and adherend) are shown in Figs.

5-8. The nonuniform mesh was used in all cases. From these results it

is clear that boundary condition of Type 2 gives significantly different

results than Type 1 or 3, especially near the edges.

5.3 Geometric Nonlinear Analysis

Next, geometrically nonlinear analysis of a bonded lap joint was

considered. The geometry and boundary conditions of Type 2 shown in

Fig. 2 are used. The material constants used are given in Table 2. The

present nonlinear elastic analysis results are compared with those

-,r, .lF .+ F + 'P- -+ + J .. F ,, . . . . *' * . * ' .- . S. -. . . . -- 1
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outained using the VISTA program [231 in Figs. 9 and 10. The results

are In excellent agreement.

Next, the nonlinear response of a bonded cantilever plate under

distributed transverse loads was investigated. The plate geometry and

the two finite element meshes used are shown in Fig. 11. The material

properties used are given in Table 3. Both the adhesive and the

adherends were assumed to be linearly elastic and isotropic.

The load on the plate was increased in steps until a fairly large

free-end deflection was obtained. For the present analysis the

magnitude of the deflection was over 50% of the beam length. The

resulting load-deflection curves obtained by the two meshes are shown in

Fig. 12. The results obtained by using linear analysis is also plotted

for comparison purposes. Clearly, the nonlinear analysis predicts a

stiffer response. This is due to the fact that the large transverse

deflection causes a bending-extension coupling which results in an

increase in the flexural stiffness of the beam.

Figure 13 shows the compressive bending stress at a specified point

(near the fixed end) in the lower adherend plotted against applied load

for the two different meshes. The discrepancy in the two curves is due

to the fact that the axial stress values for one curve were obtained at

an x-location slightly different from the other curve. The flattening

out of the stress curve at higher loads is a result of the shortening of

the moment arm due to extensive bending of the beam.

L

............................................................... %= .
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Figures 14-16 show the variation of the flexural, peel and shear -6

stresses in the lower half of the adhesive layer plotted along the plate

axis for two different meshes. Adjacent to the clamped end, there

exists a narrow region where both the flexural and peel stresses are J

tensile. However, as one moves further along the plate length, the -

flexural stress turns compressive, which conforms to what is predicted

by the elementary plate theory. The shear stress attains its maximum

value near the clamped end and decreases rapidly as one moves out

towards the free end. All three stresses vanish at the free end of the

plate, thus satisfying the stress free boundary condition. 0

5.4 Linear Viscoelastic Analysis

The nonlinear constitutive law due to Schapery may be linearized by

assuming that the nonlinearizing parameters go, gl, and g2 have a value

of unity. In addition, the stress dependent part of the exponent in the

definition of the shift factor is set to zero. Consequently, the

constitutive law reduces to the superposition integral form commonly

used to describe a linear viscoelastic material.

Two test cases are used to validate the linear viscoelastic

analysis capability implemented in the present finite element program * ;"-

named NOVA. In the first case, the tensile creep strain in a single

eight noded quadrilateral element was computed for both the plane stress _

and plane strain cases using the program NOVA. The results were then .

compared to the analytical solution for the plane strain case presented

in [571. A uniform uniaxial tensile load of 13.79 MPa was applied on S

I,--_.,,%N,-i
I.:
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the test specimen. A three-parameter solid model was used to represent

the tensile compliance of the adhesive. The following time dependent

functions were used in (571 to represent the tensile compliance and the

Poisson's ratio for FM-73M at 72°C:

Jo + 1 e-t/0.85D(t) -2[1l+v(t)] + {2[1+v(t) ( - (5.1)

Approximating the Poisson's ratio with the elasticity relation gives,

[3K t 1
~2G t)V(t) = 3K (5.2)IT -y + 11 '
GtC

where G(t) and K(t) are the shear and bulk modulus (mml/mm/MPA)

respectively, and Jo, J, are the shear compliance coefficients. The

analytical solution to the creep problem for the plane strain case is

given in [571 as: -S

£(t) = 2.728 x 10- 2 + 1.334 x 10-
2 e-t/0 .85 - 2.659 x 10-4 e-t/0.3921

It is to be noted that for the three-parameter solid charac-

terization of FM-73M the value of the Poisson's ratio actually increases V

with time. However, in the present analysis the Poisson's ratio is

assumed to be independent of time. Hence two discrete values of the

Poisson's ratio are used to match the exact solution for few initial '

time steps and final time steps. The values of the Poisson's ratio

chosen for this purpose are vo = Lim v(t) = 0.32 and v = Lim v(t)
t-~0 t

= 0.417. Figure 17a shows the creep curve for v = 0.417 for both plane

strain and plane stress finite-element analyses. As expected, the plane

strain results exhibit close agreement with the exact solution for large

-, .- V% -E'.% " -- * .- -. . -'. -. ,., -* . ....: -.-.- - % -.. .- . ..- - . - - ..-- 5 '. ..
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a %

values of time, followed by progressive deterioration of predicted value
*s V

as one moves towards smaller values of time. The finite element results %

for the plane stress case points to the fact that the strains are higher

for plane stress than for plane strain.

Figure 17b shows the creep curve corresponding to v = 0.32 for the

plane strain case. In this case the finite element predictions are

accurate only for first few time steps and deviates more and more from 0

the analytical solution as time increases. This is not surprising since

the choice of Poisson's ratio for this case makes the comparison

meaningful only when t is small.

The above results indicate that the program NOVA provides

reasonably accurate results in regions where the input parameters are

accurate, and that the variation of Poisson's ratio during the period of

analysis may cause significant deviations from the actual solution.

Next, the Model Joint analysis problem presented in [571 was used

as the second validation example. In this case, a linear viscoelastic

finite element analysis was carried out on a model joint under a

constant applied load of 4448 N giving an average adhesive shear stress

0
of 13.79 MPa. The specimen geometry, discretization and boundary

conditions are shown in Fig. 18. The thickness of the adhesive layer is

taken to be 0.254 mm. A nine parameter solid model was used to

represent the tensile creep compliance of FM-73 at 72°C and is given by:



D(t) = 0.5988 x 10- 3 + 1.637 x 10-5 (1 - e - t/ 0 0 1 ) -

+ 0.6031 x 10- 4 (1 e - t / ' 1

+ 0.9108 x 10
-4 (1 - et/l.0)

+ 2.6177 x I0 - 4 (1 - /I0.0)

The adhesive Poisson's ratio is assumed to have a value of 0.417 and

remains constant with time. The material properties for the aluminum

adherends are presented in Table 3. I

Figures 19 and 20 contain plots of the bond normal and shear

stresses, respectively for t = 50 secs. and t = 60 min. of loading.

These stresses represent the value at 1/16 the thickness from the upper

adhesive adherend interface. The sharp peak at the left hand edge is

due to the singularity caused by the presence of a re-entrant corner in

the vicinity of the edge. These results are in good agreement with the

results presented in [571 which uses the linear viscoelastic finite

element code, MARC.

5.5 Axisymmetric Analysis of a Linearly Viscoelastic Rod

The axial displacement of one end of a linearly viscoelastic rod,

subjected to a spatially uniform end traction that varies 
sinusoidally .5

with time, was obtained by using the program NOVA. The shift factor for 5.

the material is defined by the WLF equation and the temperature is held F-

at a constant value. The specimen geometry and material properties are

%, I
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presented in Table 4. The exact solution to this problem has been -6

presented in [231 and was used to validate the finite element

predictions. As can be seen from Fig. 21, the finite element results

are in excellent agreement with the closed form solution over one cycle

of loading and unloading.

5.6 Nonlinear Viscoelastic Analysis of Adhesive Coupons

In order to validate the nonlinear viscoelastic model, three

uniaxial test cases are analyzed. The results are compared with the

laboratory tests conducted on similar specimens by Peretz and Weitsman

[261. The material properties used in the verification analysis are

those reported in [22]. The creep data, together with other relevant

material properties, are given in Table 5. A constant value for the

Poisson ratio is assumed for the adhesive. The results from a linear

viscoelastic analysis are also presented for comparison.

In the first verification test, a uniaxial stress of 10 MPa is

applied to the adhesive coupon for 1200 secs., followed by a step

increase to 26.6 MPa for a further 1200 secs. The temperature of the

specimen is held constant at 500C and is assumed to be uniform

everywhere. The finite element predictions for this test are plotted

together with the experimental data in Fig. 22. The predictions are in

good agreement with the experimental results of Peretz and Weitsman

[26).

The second test involves creep predictions under simultaneously

varying stress and temperature, both increasing linearly with time. The
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temperature is again assumed to be uniform throughout the test

specimen. The finite element predictions (linear and nonlinear) and

experimental data are compared in Fig. 23. There is a good agreement

between the two sets of results

The third test involves creep under a constant stress of 10 MPa

with a linearly varying temperature as a function of time. Figure 24

shows the strain vs. time curves obtained in the experiments and finite

element analysis. Satisfactory agreement between the experimental

results and the analysis is observed.

A further set of tests were conducted in order to evaluate the

accuracy of the finite element code for the case where creep is followed
r'

by creep recovery. A qualitative depiction of the loading and the

resulting creep strain is given in Fig. 25. Rochefort and Brinson [611

presented experimental data and analytical predictions on the creep and

creep recovery characteristics of FM-73 adhesive at constant

temperature. The Schapery parameters necessary to characterize the

viscoelastic response of FM-73 at a fixed temperature of 30°C are

obtained by applying a least squares curve fit to the data presented in
[611. The resulting analytical expressions for the creep compliance

function D(o), the shift function a , and the nonlinear parameters go,

g, and g2 are presented in Table 6. From the point of view of

programming convenience it is more suitable to work with an exponential

series than a power law. Hence the power law creep compliance function

was converted to an equivalent five term exponential series of the form

" "I
~~~A J.0~ -
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given by Eq. (3.5). The five constant coefficents for this series were -m

obtained by means of fitting a curve to the aforementioned power law

function and then minimizing the error in a least-squares sense. The

exponential series form of the compliance function is presented in Table

7 and it is plotted against the power law curve in Fig. 26 for

comparison.

Figure 27 shows the geometry of the tensile dogbone specimen used

to carry out the creep and creep recovery tests. This geometry is

identical to the one used by Rochefort and Brinson [611. Due to the

symmetry of specimen geometry and applied load, only the upper right S

hand quadrant of the specimen was analyzed. The finite element .)5p

discretization consists of two elements along the length of the specimen

and one element in the width direction. Eight-node quadrilateral plane

stress elements are used for this analysis. A constant tensile load is

applied on the specimen for the first 30 min. followed by creep recovery

over an equal length of time. The procedure is repeated for three -

different stress levels at a fixed temperature of 300C.

The stress input for a uniaxial creep and creep recovery test is

given by, -

oC(t) = aoH(t) - oH(t - tI) (5.3)

where H(t - tj) is the unit step function, and t1 is the time at which

stress is removed."-P

Substitution of Eq. (5.3) into Eq. (3.1) coupled with a power law

representation for the compliance yields,

,** %
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C(t)=(gO +C1.2( L)n o (5.4)
0 0 a

and

r (t) gl [(1 + a x)n  (aoX) n] (5.5)

for the creep and creep recovery strains respectively. In the above

expression,

X = ti (5.6)

is a nondimenslonal parameter, and

= £c(tl) - o= Caoglg 2 ( )n (5.7) ,

a

represents the transient component of creep strain just prior to

unloading. Hence, Eqs. (5.4) to (5.7) provide a closed form solution to

Schapery's nonlinear single integral law for the simple load history

involving creep and creep recovery given by Eq. (5.3).

Figures 28 a, b, and c show the results of the finite element

analysis plotted along with the curve representing the closed form

analytical solutions for applied stress levels of 21, 17 and 14 MPa ,

respectively. The finite element predictions are in excellent agreement -.

with the closed form solutions except at the beginning of creep and

again at the onset of creep recovery. This discrepancy is clearly due

to the discrepancy between the power law and the exponential series

representation of the creep compliance function AD(,), as shown in Fig.

26. The presence of too many data points in the far field region has

?S
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caused the least square curve fit to give less weight to the initial -6

data points and therefore overlook the error present near the beginning

of the time axis. The complete agreement between the closed form

solution and the finite element prediction for large values of time

corroborates this fact. From Fig. 28 it is also evident that the error

in the predicted value of strain decreases as the applied stress is

reduced. This is exactly what is expected since the stress dependent

nonlinear parameters g, and g2 act as scale factors on the transient '

component of the creep strain. Thus, a reduction in the applied stress

causes the values of g, and g2 to reduce which results in aN

proportionate reduction in the error magnitude.

5.7 Linear and Nonlinear Viscoelastic Analysis of a Model

Joint 0

The loading, boundary conditions and specimen geometry used in this

analysis is the same as the one used in the earlier model joint (see

Fig. 18). In addition, the same nine parameter solid model was used in

this analysis. A linear viscoelastic finite element analysis was

carried out over a period of one hour at a constant applied load of

3336 N. The results for the linear analysis are shown in Figs. 29-30. _

The sharp peak at the left hand edge is due to the singularity caused by

the presence of a re-entrant corner and dissimilar materials. All

stress plots show the same basic trend in that the stresses are

attempting to redistribute themselves to achieve a more uniform

distribution.

A
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For the nonlinear viscoelastic analysis of the model joint, the

same specimen geometry and material properties were employed. However,

the nonlinearizing parameters and the shift function were no longer held

constant, but were allowed to change with the current stress state

within the adhesive layer. The results from this analysis are presented

in Figs. 31 and 32. It is immediately apparent that the effect of the

nonlinearity causes a 'softening' of the adhesive, leading to a response

that is less stiff compared to the linear case. Hence, even though the

applied load is the same, the shearing strain for the nonlinear case is

significantly larger as compared to the linear case (Figs. 30 and 32).

Moreover, the increment in creep strain for the nonlinear case is 0.0058

as compared to 0.0041 for the linear case over the same period of

time. This is exactly what is expected since the nonlinear model takes L

into account the acceleration of creep caused by the stresses within the

adhesive.

The effect of the nonlinearity on the stress curves (Figs. 29 and

31) is to create a more uniform stress distribution by reducing the

stress peaks near the edges while increasing the stresses at the mid-

section of the overlap. The significant reduction of the stress peaks

effected by the nonlinear model is very important from a design point of p
.

view since the reduction of stress levels at the critically stressed

regions results in an improved joint efficiency.

i'
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5.8 Elastic Analysis of a Composite Single Lap Joint -

Renton and Vinson [37] used a closed form elastic solution to

conduct a parametric study of the effect of adherend properties on the

peak stresses within the adhesive in a composite single lap joint. A

similar parametric study was carried out using the finite element

program NOVA. The geometry, finite element discretization and boundary

conditions for the composite lap joint are shown in Fig. 33. For the S

sake of simplicity, only identical adherends are considered. Each

adherend is made up of seven laminas of equal thickness. The

orthotropic material properties for a lamina are given in Table 8. In

order to maintain material symmetry about the laminate mid-plane and

thus eliminate bending-stretching coupling, a eOo//-eo/Oo/eo/Oo/eo ply

orientation was selected for the analysis. Note that this type of ply _

orientation places the e0o ply immediately adjacent to the adhesive

layer. The adhesive used is FM-73 and its isotropic linear elastic

properties are listed in Table 9. The adhesive layer is modeled using

sixteen eight-noded quadrilateral elements along its length and two

elements through its thickness. A series of elastic finite element

analyses is performed to study the effect of ply orientation, lamina S

primary modulus (Q11), and geometric nonlinearity on the peak stresses

in the adhesive.

In order to study the influence of ply orientation on the adhesive

stress distribution, stress analyses were performed for a = 00, e = 150,

= 450, and e = 90 respectively. The results are shown in Figs. 34

.A
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and 35. The plots show the variation of stresses along the upper

bondline of the overlap. The parameter x/c is the normalized distance

from the bond centerline such that the value x/c = -1 corresponds to the

left-hand free edge of the bond overlap. It is evident from these

figures that an increase in the ply orientation angle e, causes the peak

stresses to increase near the free edge of the bond overlap. The

adherend with a 00/900 ply orientation (cross-ply) shows a 28% increase

in peel stress and a 17% increase in shear stress over the corresponding

values for a 0* (unidirectional) ply orientation. This is not

surprising since a cross-ply adherend has a lower bending stiffness

which results in a larger lateral deflection causing higher stress

concentrations at che overlap ends.

The influence of the lamina primary modulus (Q11) on adhesive peel

and shear stresses can be seen in Figs. 36 and 37 respectively. A 0°

(unidirectional) adherend ply orientation is used for this analysis.

The two figures show a significant increase in the peak adhesive stress

as the value of Q11 decreases. This is understandable as a more

flexible adherend would undergo larger bending and hence produce higher

stress concentrations at the overlap ends.

Harris and Adams [651 conducted large displacement finite element

analyses on a single lap joint with aluminum adherends and observed

significant reduction in peak stresses at the edge of the adhesive as

compared to linear results. In order to observe the effect of geometric

nonlinearity on a single lap joint with laminated composite adherends, a

zi

,'
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large displacement analysis was performed using the program NOVA. Due

to its greater susceptibility to bending, cross-ply lamioated adherends .' ,

were used for this analysis. The results can be seen in Figs. 38 and ,J..

39. The geometrically nonlinear analysis results in a 30% reduction in

the peak peel stress and a 15% reduction in the peak shear stress. The

horizontal shifting of the nonlinear curves is due to the configuration

coordinate update required by the large displacement analysis.

5.9 Nonlinear Viscoelastic Analysis of a Composite Single

Lap Joint

A nonlinear viscoelastic analysis of a lap joint made of composite •

material was carried out over a time period of forty hours using NOVA.

The specimen geometry and the finite element discretization are the same

as for the elastic analysis as shown in Fig. 33. However, instead of a

uniform end traction, a uniform end displacement of 0.363 mm is applied

to the end of the joint and is held constant with time. The adherends

are made of symmetric cross-ply laminates whose properties are given in

Table 8, while the adhesive used is FM-73 and its creep compliance and

Schapery parameters can be found in Table 5. P.

Figures 40 and 41 show the variation of shear stress and shear

strain respectively across the entire bond length over a period of 40

hours. The sharp peak on the left-hand edge is due to the presence of a

re-entrant corner and also due to the difference in material properties. .

Figures 42 and 43 provide a close-up view of the shear stress and strain

gradients at the free edge. As might be expected, the shear stress

S.- ,i' S
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undergoes relaxation which results in a 36% decrease in the peak value

at the left hand edge. The stresses have been normalized with respect

to an average shear stress value of 4.5 N/mm2 . The peak shear strain,

however, shows an increase of 35% over the same period of time.

Similarly, Figs. 44 to 47 reveal that while the peak values of the peel

and axial stresses decrease by 26% and 32% respectively, the

corresponding strains show a respective increase of 63% and 6%. The

reason that the strains increase with time even though the joint end

deflection remains fixed, is because the adherends are modeled as

elastic continuums. As the stresses in the adhesive relax with time,

the elastic adherends deform to attain a new equilibrium configuration

and this leads to an altered state of strain within the adhesive.

Hence, it is very important that the elastic nature of the adherends be

taken into account in an analysis. Also, the significant increase in

adhesive strains with time is a viscoelastic phenomenon and therefore it

cannot be predicted by means of a purely elastic analysis. This fact

emphasizes the need to model the adhesive layer as a viscoelastic medium

in order to be able to predict the long-term durability of a bonded

joint.

5.10 Nonlinear Fickean Diffusion in Polystyrene

In order to validate the diffusion model implemented in NOVA and

discussed in Chapter 4, results from a nonlinear diffusion analysis

presented in [661 are used. The test problem involves unsteady sorption

of a penetrant in a semi-infinite medium for a diffusion coefficient

%
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that is an exponential function of penetrant concentration, that is, -

0 = DO exp (kC/Co). Finite element predictions were obtained for k =

0q

0.614 and k = 3.912 and the results were compared with the published ,-.

results represented by the solid lines in Fig. 48. Excellent agreement

is observed for the two values of the coefficient k. "''

Levita and Smith [671 conducted experiments to study gas transport ,-.

in polystyrene and found that the diffusion coefficients for gases.

decreased with time when the polystyrene film was subject to a constant ',

uniaxial strain. This effect was attributed to the continuous free .r

volume recovery (densification) in the polystyrene specimen at constant

strain. The study also indicated that larger free volume elements \""

decrease in size faster than the smaller ones as volume recovery '

progresses. Using the results published in 1671 as a guideline, NOVA

was used to study the time dependence of the diffusion coefficient for , -

carbon-dioxide gas in a polystyrene film at constant strain. For this,..'

case, the temprature and moisture concentration effects presented in Eq.

(4.9) were neglected, resulting in a diffusion coefficient that is

solely a function of the transient component of the dilatational strain..'

which, in turn, is a measure of the change in the free volume. Figure

49 shows the variation of the diffusion coefficient with time for three, .

different strain levels. The material properties for polystyrene which

were obtained from [681 are given in Table 10. From Fig. 49 it is -.

evident that, independent of the strain level, the diffusion coefficient ':"

reaches a peak value t 1 at hour and then slcwly decays to the-. '

ZZ" I
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reference value, D. This behavior can be attributed to an initial

increase in free volume due to the application of the uniaxial strain,

followed by a continuous recovery in free volume (densification) at a

constant strain as the polystyrene film undergoes relaxation. A larger

applied strain produces larger initial dilatation, and this results in a

higher peak in the diffusion coefficient. Figure 49 also reveals that

the time rate of free volume recovery, and hence the time rate of S

decrease in the diffusion coefficient, is proportional to the applied

strain level.

The influence of penetrant molecule size on the diffusion S

coefficient for gases in polystyrene was studied by varying the

magnitude of the material parameter B in Eq. (4.9). The temperature and

strain were held constant at 50°C and 1.8% respectively. The prediction

obtained from NOVA are shown in Fig. 50 for two values of B. The faster

rate of decrease in the diffusion coefficient for a higher value of B

implies that the larger free-volume elements decrease in size faster

than the smaller ones as volume recovery progresses. The NOVA

predictions are qualitatively in good agreement with the resuts

presented in [671.

When a polymeric material is in the rubbery state, equilibrium is

reached very rapidly in response to variations in temperature, stress

and penetrant conentration. By contrast, a material in the glassy state

is not in thermodynamic equilibrium and the response of the free volume

to changes in external conditions is delayed. This metastable state
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causes the free volume to slowly collapse with time until equilibrium is 6

reached. This phenomenon is known as physical aging and causes

relaxation processes to take place over a longer time. Struik [691

proposed that for a material in the glassy state, effective time x is

related to actual time t by,

t t u"S (te ) d& (5.8) ,
0 e

where te is the aging time at the start of service life or testing

and u is a constant such that 0 5 u 1 1. For such a material, the

definition of reduced time given by Eq. (3.2) is no longer valid and .

should be modified to,

; (asT)- ds (5.9)
0 O

where aT is the shift factor.

The effect of physical aging on the diffusion coefficient for

carbon-dioxide gas in polystyrene was studied by implementing Eqs. (5.8) 0

and (5.9) in NOVA. The values of temperature, strain and te were set at

50°C, 1.8% and 24 hours respectively. Figure 51 shows that an increased aKfl

physical aging denoted by a higher value of the parameter u, causes the S

diffusion coefficient to decay slower than the one for which u is

lower. This behavior is expected since increased physical aging causes

the free volume recovery to take place over a longer period of time. -

Note that when there is no physical aging, p and te are equal to zero

and x is identically equal to t. -.
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5.11 Linear Elastic Analysis of a Butt Joint

Alvazzadeh et al. (311 used special linear elastic interface

elements to study the effect of adhesive thickness and adhesive Young's

modulus on the stresses within a bonded butt joint. A similar

parametric study was carried out using NOVA where both the adhesive and

adherend were assumed to be linearly elastic. The specimen geometry and

loading are shown in Fig. 52. Due to symmetry, only a quarter of the I

butt joint was modeled. The finite element discretization is shown in

Fig. 53, together with the boundary conditions. The various adhesive-Wk

and adherend properties used in the parametric study are given in Table

11. A plane stress elastic finite element analysis was performed and

the normalized shear and normal stresses plotted along the interface .4.

close to the free edge. Figures 54 and 55 show the influence of the

ratio b/e (where b is the width of the butt joint and e is the thickness

of the adhesive layer) on the adhesive shear and normal stresses

respectively. It is observed that the maximum value of shear stress and ,

the minimum value of normal stress are nearly equal for different joint

thicknesses. The influence of the ratio of adhesive to adherend Young's

moduli on adhesive stresses are shown in Figs. 56 and 57. As this ratio

increases, the maximum shear stress and the maximum normal stress

increase in value for b/e 60.

.)

.5
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5.12 Nonlinear Viscoelastic Analysis of a Butt Joint -i

Including Moisture Diffusion

The effect of a change in the free volume of a polymer on its

viscoelastic response was discussed by Knauss and Emri [271. They used

the unifying concept of the free volume by considering that fractional

free volume depends on three variables: temperature T, moisture

concentration c, and mechanically induced dilatation e. Lefebvre et al.

[51] extended the free volume concept to define a nonlinear diffusion

coefficient, which results in a coupling between the viscoelasticity and

the diffusion boundary value problems (see Section 4.1). The influence

of this coupling on the viscoelastic response and moisture diffusion

within the adhesive layer of a butt joint was investigated by using the

program NOVA. The specimen geometry and finite element discretization

are the same as shown in Figs. 52 and 53, respectively. However,

instead of a uniform end traction, a uniform axial displacement of 0.1

nmi is applied at the end of the joint and is held constant with time.

The adherends are made of aluminum and the adhesive used is

polystyrene. The various material properties are listed in Tables 10

and 11. The selection of polystyrene as an adhesive was prompted by the

fact that it is one of the few polymeric materials that have their

viscoelastic properties and diffusion parameters adequately

documented. The normalized moisture concentration at the free edge of

the adhesive layer is unity, and the initial concentration throughout

the adhesive layer is zero. The tests are conducted at the reference

temperature of 500C.
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Figure 58 shows the moisture concentration profiles within the

adhesive layer at three different times when there is no coupling. In

this case the diffusion coefficient remains constant with time, that is,

0 - 0. Fig. 59 shows the moisture concentration profiles for the case

where there is viscoelastic coupling only, that is, when the diffusion

coefficient depends on the transient component of the dilatational

strain. Fig. 60 depicts the case where there is full coupling, that is,

the diffusion coefficient is a function of the dilatational strain and

the moisture concentration at any given point in the adhesive.

Conversely, the viscoelastic shift factor is now a function of the 6

dilatational strain and the moisture concentration (see Eq. 4.12). Fig.

61 presents the results for each of these three cases for comparison at

time t = 8 hours. From these figures it is evident that the effect of

coupling is to accelerate moisture diffusion in the adhesive. The

mechanically induced dilatation together with the swelling due to

moisture sorption results in a higher free volume fraction within the

adhesive which, according to Eq. 4.9, causes diffusion to proceed faster

over the same period of time. It is to be noted that in Fig. 61, the

curves become less concave as the coupling increases, which is in good

agreement with the results published in [661.

Figures 62 to 65 show the variation of the stresses and strains

with time within the adhesive layer in the butt joint when there is no

coupling due to moisture induced swelling. Mathematically, this implies

that y= 0 in equations 4.9 and 4.12. From Figs. 62 and 63 it is evident
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that the stresses do not relax significantly over the time period of the

analysis. This is because the elastic adherend acts as a spring causing

the adhesive to creep even though the Joint end displacement remains

fixed. However, there is a slight relaxation in the normal stress as

one moves towards the center of the bond. The large increase in the

strains, as shown in Figs. 64 and 65, is due to the creep caused by the

strain recovery in the elastic adherend. This observation is supported

by Fig. 66 which shows that the normal strain in the adherend

immediately adjacent to the interface undergoes significant reduction

with time. The decrease in the adherend normal stress, as shown in Fig.

67, reflects the concurrent stress relaxation that occurs in the

adhesive and triggers the strain recovery in the adherend.

Figs. 68 to 71 show the effect of moisture induced swelling on the

viscoelastic stresses and strains in the adhesive layer.

Mathematically, this means y has a nonzero value in Eqs. 4.9 and 4.12.

0 The actual value of y selected for this study is 0.001. For this value

of y, the moisture absorbed causes large swelling strains within the

adhesive, which increase in magnitude as the diffusion progresses. This
S

moisture induced swelling strain causes a reduction in the mechanically

induced normal strain and hence a lower value for the normal stress in

the adhesive. This effect can be observed in Fig. 68 where progressive

swelling has caused a 25% reduction in the peak normal stress over a

period of 8 hours. It is interesting to note that the difference

between the two stress curves diminishes as one moves towards the center

.'. '
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of the bond. This behavior is expected since there is very little

moisture near the center of the bond and so the stress reduction is

primarily due to viscoelastic relaxation. The large increase in the

adhesive strains, as seen in Figs. 70 and 71, is due to the adherend

acting as a elastic spring.

Fig. 72 shows the influence of the moisture coefficient y, on the

normal stress in the adhesive layer after eight hours of sorption. As

can be seen, the swelling induced for y = 0.001 results in a

significantly lower normal stress near the free edge as compared to the

case where y =0 . Away from the free edge, the two stress curves appear

to merge as one moves towards the interior of the bond. This is because

the low moisture concentrations present in the bond interior is

insufficient to cause any significant reduction in the normal stress due

to swelling.

5.13 Delayed Failure of a Butt Joint

The theory presented in Secs. 4.3 and 4.4 was applied to predict

viscoelastic creep failure within the adhesive in a butt joint. The

specimen geometry and the finite element discretization are the same as

shown in Figs. 52 and 53, respectively. The adherend is made of

aluminum and its material properties are given in Table 11. The

adhesive used is FM-73 and its tensile creep compliance is listed in

Table 5. The failure parameter (R) for FM-73, also known as the

resilience, was obtained by computing the area under the stress-strain

curve presented in [701. This procedure yielded a value of the

, I
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resilience as 1.3 N.mm/mm3. Note that the area under the visco-plastic

yield plateau was not included in computing the value of R. According

to the Reiner-Weisenberg theory, failure occurs when the stored energy

per unit volume in the body reaches the resilience R, for the material.

Using this postulate as a failure criterion, NOVA was utilized to

predict failure in the adhesive layer of the butt joint subject to a

constant uniaxial tension. The influence of applied stress level on

delayed failure was studied by using a stress level of 69, 60, and 54

MPa respectively. In all three cases, failure was initiated in the

adhesive element located right at the free-edge and immediately adjacent

to the interface. It was also observed that the direction of the plane

of failure was always inclined at an angle of 188, counter-clockwise to

the x-axis. Since the direction of failure coincides with the direction

of principal stress, it is evident that a multiaxial state of stress

exists near the free edge, even though the applied stress is uniaxial.

This observation is in agreement with the results presented in Secs.

5.11 and 5.12. Fig. 73 shows the variation of normal (or creep) strain

with time at 30°C for the element in which failure is first initiated.

C The right hand termination point on the curves indicate the point at

which failure occured. It is observed that for an applied stress level

of 69 MPa, the time to failure (tF) is 1.5 secs. In other words, for

this stress level, failure occurs almost instantaneously. For an

applied stress of 60 MPa, tF increases to 400 secs. Reducing the

applied stress to 54 MPa results in a time to failure of approximately

( ,



go

10 hours. These results are qualitatively in good agreement with the

results presented by Bruller [451 for PMMA.

From the above observations it is clearly evident that for

viscoelastic polymers like FM-73, the time to failure depends strongly

on the applied stress level. Fig. 74 shows the evolution of stored

energy with time for different stress levels. For very high applied

stress levels, almost all the strain energy is conserved as stored

energy and failure occurs almost immediately. For intermediate levels

of applied stress, viscoelastic creep causes a part of the strain energy

to be dissipated. As a result, only a fraction of the total strain

energy is conserved as stored energy. Consequently, the stored energy

builds up slowly, analogous to a "leaking vessel", resulting in delayed

failure. For an applied stress level that is below a certain threshold

value for a given material, the dissipated energy may constitute a large

fraction of the total strain energy. In that case, the stored energy

would increase too slowly to exceed the resilience of the material over

any realistic length of time, and hence there would be no failure even

if the applied stress acts indefinitely.

-- 'I



CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 General Summary

A nonlinear viscoelastic computational model is developed,

validated and applied to the stress analysis of adhesively bonded

Joints. The large displacements and rotations experienced by the

adherends and the adhesive are taken into account by invoking the

updated Lagrangian description of motion. The adhesive layer is modeled

using Schapery's nonlinear single integral constitutive law for uniaxial

and multiaxial stress states. The effect of temperature and stress

level on the viscoelastic response is taken into account by a nonlinear

shift factor definition. Optionally, a nonlinear shift factor

definition based on the concept of free volume that was postulated by 6

Knauss is also available. Penetrant sorption is accounted for by a

nonlinear Fickean diffusion model in which the diffusion coefficient is

dependent on the temperature, penetrant concentration, and the

dilatational strain. A delayed failure criterion based on the Reiner-

Weisenberg failure theory has also been implemented in the finite

element code. The program is validated by comparing the present results 0

with analytical and experimental results available in the literature.

Additional results for a bonded cantilever plate, single lap joint,

thick adherend specimen, and butt joint are also presented. The program

capability has been extended to account for laminated composite

adherends and adhesives with a time dependent Poisson's ratio. In

91
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general, the computer program developed herein, named NOVA, is believed

to provide accurate predictions over a wide range of specimen

geometries, external loads, and environmental conditions.

6.2 Conclusions

The results presented in Ch. 5 underscore the importance of

modeling the adhesive in a bonded Joint as a viscoelastic material.

This allows the analyst to predict the large increments in adhesive

strains that occur with time and cannot be predicted by a purely elastic

analysis. Furthermore, other events (such as moisture diffusion and

delayed failure), that are highly relevant for bonded joint analysis,

cannot be accurately predicted unless viscoelasticity is taken into

account. At high stress levels, nonlinear viscoelastic effects can

produce creep strains that are significantly larger than the linear

viscoelastic predictions and such effects, therefore, should be

accounted for. The effect of change in Poisson's ratio with time in

some polymers have a significant bearing on the final response and must

be taken into account in order to obtain accurate results.

The results in Chapter 5 also indicate that the stress boundary s

conditions at the free edges of the adhesive are not exactly

satisfied. This deficiency in the model is expected because a

displacement based finite-element formulation satisfies the boundary

conditions only in a global sense. Even so, the shear stress, as -

presented in Chapter 5, shows a tendency to drop towards zero as it

approaches the free edge. Any deviations from this behavior can be

_Ig.
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attributed to either the presence of a re-entrant corner or the lack of

a refined mesh near the free edge.

''
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Table 1. Data for Linear Elastic Analysis.

Adherend (Aluminum) Adhesive (Araldite)

E = 10.3 x 1O6 psi E = 8.19 x 106 psi

v = 0.3 v = 0.33

1l
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Table 2. Data for Geometric Nonlinear Analysis of a Lap Joint.

Adherend (steel) Adhesive (FM-73)

E = 29.3 x 106 psi E = 0.2437 x 106 psi

= 0.33 v = 0.32

A
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• % ,



.4lr4mi-

96

Table 3. Data for Geometric Nonlinear Analysis of a Bonded Cantilever

Plate.

Adherend (Aluminum) Adhesive

E = 70 x 103 MPa E = 2.8 x 103 MPa

v - 0.34 v = 0.4
V"

' .4
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* Table 4. Data for Viscoelastic Rod.

C1 = 8.86 0.32

C2 = 101.6 E(t) = 5.0E5 + (1.0E6)e-t/2 psi

( r = 120 F(t) = 4500 sin(r.) lb.

T 123.5734 L =5 in.

T = IOE- A =0.3 in2.

* 16

%.r r orLw)-f, 14% r, r I
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Table 5. Material Data for FM-73 Unscrimmed at 300C.

Elastic Compliance, D: 360 x 10-6/MPa

Poisson's Ratio, v: 0.38

Coefficient of Thermal Expansion, a: 6.6 x 10-5 m/m/°K

Prony Series Coefficients:

DI = 11.05xlO-6/MPa TI = 10 secs.

02 = 12.27x10-6/MPa T2 =102 secs.

03 = 17.35x10-6/MPa T3 = 103 secs.

D4 = 21.63x10-6/MPa T4 = 104 secs.

D5 = 31.13x1O-6/MPa T = 105 secs.

D6 = 41.78xlO- 6/MPa T6 = 106 secs.

.
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Table 6. Data for Creep and Recovery of FM-73 Adhesive. S

D(*) = 0 + Dc(O )

00 = 227.573 x 10- 6/MPa

-6-

Dc (,) = n •

c - 31.763 x 106 /MPa

n = 0.151

a = 1 - 3.536 x 10-3a1.74

go 1 + 2.247 x 10-2 1.00 5 "

g= 1 + 6.981 x 10-4 1 88

92= 1 + 3.098 x 10-6a
4 .12

where a is in MPa.

'1

a.:.
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Table 7. Compliance Data for Creep and Recovery of FM-73.

D(*) - Do + 0 c(O)

00 = 227.573 x 10-6/MPa
5 -O/Tr

DC(W = r [or (1 - e ]r= 1 f": e )

01 = 19.86 x 10- 6/MPa TI = 1 min.

02 = 28.99 x 10- 6/MPa T 
= 10 mi,

2

03 = 17.66 x 10-6/MPa T3 = 100 min.

04 = 36.20 x 10- 6/MPa = 1000 min.

05 = 8.51 x 10-
6 /MPa S = 10000 min. t

V%

a.'.
.

-,..

I i" r t" z-
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Table 8. Orthotroplc Material Properites for Composite Adherend.

Q = 46.885x103 MPa

Q12 = Q13 - 4.137x,03 MPa

Q22 = Q33 - 14.962x,03 MPa

Q23 = Q32 = 2.068x,03 MPa

Q44 = Q55 = Q66= 3-447x10
3 MPa

4

~. C,

,w
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Table 9. Isotropic Linear Elastic Properties for FM-73.

E - 2.78x,03 Mpa

G - 1.01x103 MPa 
.

v 0.38

Ile
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Table 10. Material Properties for Polystyrene at 500C.

Bulk Compliance:

=Oa1 .2x10-4/MPa

M, 0.2896x10-4/Mpa ri=1.515x,02 sec.

M2 = 0.2246x10-4/MPa T2 = 1.515x,03 sec.

M3 0.3721xj10 4/MPa T 3 - 1.515xl04 sec.

M4 -O.1354x10- 4/Mpa 4~ _ 1.515x,05 sec.

Shear Compliance:

Jo a1 .0x10-3/MPa

J, 2.16/MPa ni=1.515x108 sec.

J= 2.92/MPa q2 z 1.515x10'0 sec.

J= l.38/MPa nl3 - 1.515412 sec.

J4 2.88/MPa nl4 - 1.5,5x,1 3 sec.

J5= 2.31/MPa 15= 1.51541 4 sec. --

J6 3.59/MPa "6 - 1.51541 5 sec.

J7 0.6481MPa n7= 1.51541 6 sec.

Reference free volume f0 = 0.033

Diffusion coefficient 0C) = 9x10-6 nu,2/sec
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Table 11. Properties for Elastic Analysis of a Butt Joint.

Materials E(MPa)

Steel 2.07x,05  0.29

Aluminum 0.7x,05  0.33

Eponal 5.8x,03  0.33

Rigid Epoxy 2.2x,03 0.33
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