

MICROCOPY RESOLUTION TEST CHART NATIONAL BURLAU DI STANDARDS 1963 A

SMALL SAMPLE COMPARISONS OF EXPONENTIAL RELIABILITY ESTIMATES FOR TYPE I CENSORING

LINDA L. CRAWFORD MOSS JERRY THOMAS

OCTOBER 1987

S DTIC ELECTE JAN 1 1 1988

3

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPURI	DOCUMENTATIO	N PAGE		FOI OA Exi	rm Approved MB No: 0704-0188 5: Date: Jun 30, 1988
A REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE	MARKINGS		
28 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	AVAILABILITY	OF REPORT	
DECLASSIFICATION / DOWNGRADING SCHE	DULE	Approved for unlimited.	or public r	elease; di	stribution
PERFORMING ORGANIZATION REPORT NUM	IBER(S)	5 MONITORING	ORGANIZATION	REPORT NUMB	ER(S)
BRL-TR-2852					
a NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a NAME OF M	ONITORING ORC	ANIZATION	
allistic Research Laboratory	SLCBR-SE-D	Ballistic H	Research La	boratory	
K ADDRESS (City, State, and Zir Code) Woerdeen Proving Ground, MD 2	1005-5066	ATTN: SLCH ADerdeen Pr	ty, State, and ZI BR-SE-D roving Grou	ind, MD 21	.005-5066
a NAME OF FUNDING / SPONSORING ORGAN-ZAT-ON	86 OFFICE SYMBOL (If applicable)	9 PROCUREMEN	T INSTRUMENT	IDENTIFICATION	NUMBER
C ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	FUNDING NUMB	ERS	
		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO	WORK UNIT
1 TITLE (Include Security Classification)			<u></u>		
anda L. Crawford Moss and Jer 3a TYPE OF REPORT echnical FROM FRO	ry Thomas COVERED TO	14 DATE OF REPO	DRT (Year, Mont	h, Day) 15 PA	GE COUNT
COSATI CODES FIELD GROUP SUB-GROUP 9 ABSTRACT (Continue on reverse if necessal is simulation study was used to confidence limit of the expone the study showed that the apprises the number of failures) gay is the number of failures) gay is the number of failures) gay is the number of failures of the study showed that the apprise of the study showed that the apprise of the study showed that the apprise of the study showed that the study showed that the apprise the number of failures of State The exact estimates of the study showed that the study showed that the study showed that the apprise the study showed that the apprise of the study showed that the study showed the stud	18 SUBJECT TERMS (Exponential Pat Reliability Est ry and identify by block of evaluate several ntial parameter to oximation using to closer estimate the exponential wer, it was disco d be found in Bat f were nonsensica	(Continue on reverse rameter, Chi timate, Small number) 1 Chi Square used in relia x ² with 2c+1 es to the exa parameter an overed that r rtholomew's eal.	approximat approximat ability for degrees of act estimat re based on not every e equation.	nd identify by l imate, Typ imparisons ions for t Type I ce freedom (te than χ^2_{2c} an algori estimate of Estimates	block number) be I Censorin the lower ensoring. where c or thm from the near the
COSATI CODES FIELD GROUP SUB-GROUP 9 ABSTRACT (Continue on reverse if necessal c simulation study was used to confidence limit of the expone the study showed that the appr s the number of failures) gay confidence limit of the exponential parameter, is could in the number of failures of confidence of the exponential parameter, is could have many and minimum values of 0 DSTRBLION AVALABUTY OF ABSTRAC Q UNCLASSIFED ON AVALABUTY OF ABSTRAC Q UNCLASSIFED ON AVALABUTY OF ABSTRAC	18 SUBJECT TERMS Exponential Par Reliability Est ny and identify by block evaluate several ntial parameter to oximation using to closer estimate the exponential ver, it was disco d be found in Bat f were nonsensica	(Continue on reverse rameter, Chi timate, Small l Chi Square used in relia y ² with 2c+1 es to the exa parameter an overed that r rtholomew's e al.	approximat approximat ability for degrees of act estimat re based on not every e equation.	nd identify by l imate, Typ omparisons ions for t Type I ce freedom (e than χ^2_{2c} an algori estimate of Estimates	block number) be I Censorir the lower ensoring. (where c or thm from the near the near the
COSATI CODES FIELD GROUP SUB-GROUP 9 ABSTRACT (Continue on reverse if necessal is simulation study was used to confidence limit of the expone the study showed that the apprishes the number of failures) gay is the number of failures of the study showed that the apprishes of study showed that the apprishes of is the number of failures gay is the number of failures of the study showed that the apprishes of the study showed that the study showed that the study the study showed that the study showed that the study the study showed that the study showed that the study the study showed that the study showed that the study the study showed that the study showed the study showed that the study the study showed that the study showed the study showed t	18 SUBJECT TERMS Exponential Path Reliability Estimation ry and identify by block of evaluate several ntial parameter of oximation using the exponential the exponential ver, it was discond be found in Bath the wore nonsensical	(Continue on reverse rameter, Chi timate, Small Dumber) I Chi Square used in relia 2 with 2c+1 es to the exa parameter an overed that r rtholomew's e al. 21 ABSTRACT SE UNCLASSIF 225 TELEPHONE (278-6832	approximat approximat ability for degrees of act estimat re based on not every e equation.	nd identify by l imate, Typ imparisons fors for t Type I ce freedom (e than χ^2_{2c} an algori estimate of Estimates	block number) be I Censorin the lower ensoring. Where c or thm from the near the near the SYMBOL

SUMMARY

Stor Cal

Our study has shown that using χ^2_{2c+2} to estimate θ and R for small sample sizes, produces estimates that are too conservative when compared to Bartholomew's exact method. If χ^2_{2c} is used to estimate θ and R, optimistic estimates will be obtained. Better estimates can be obtained for small sample sizes by using χ^2_{2c+2} . Therefore, for small sample sizes, we recommend using χ^2_{2c+1} instead of χ^2_{2c+2} or χ^2_{2c} .

During our study, much to our surprise, we found that the lower confidence limits could not be computed for all realistic values of $\hat{\theta}$ in Bartholomew's exact method. This occurred when $\hat{\theta}$ approached its maximum theoretical value for very small sample sizes. An explanation for this has not yet been determined by the authors.

4006610	n For		
NTIS Diacos Jost Fea	CRA&J TAB Saccel		
			 1
• •	AP 1.7	e lec	
	An Charles Agencia	190 190	
A-1	i		

ACKNOWLEDGEMENTS

The authors wish to acknowledge the helpful suggestions given by Dr. J. Richard Moore, Ballistic Research Laboratory and Dr. Alan W. Benton, US Army Material Systems Analysis Activity. in the formative stages. and the authors wish to acknowledge the reviewers. Miguel Andriolo and David W. Webb, BRL, for their detailed look at the report.

TABLE OF CONTENTS

EXTERN DA

		Page
	SUMMARY	. iii
	ACKNOWLEDGMENTS	. v
	LIST OF ILLUSTRATIONS	. ix
I.	INTRODUCTION	. 1
II.	SIMULATION	. 3
III.	DISCUSSION OF RESULTS	. 3
IV	UNRESOLVED FINDING	. 12
	REFERENCES	. 16
	NOMENCLATURE	. 17
	DISTRIBUTION LIST	. 19

LIST OF ILLUSTRATIONS

Page

1.	Lower 95° Confidence Limits on θ . Exact vs Estimates (n = 10)
2.	Lower 95 ^C Confidence Limits on θ . Exact vs Estimates (n = 20)7
3.	Reliability Lower $95\widetilde{c}$ Confidence Limits. Exact vs Estimates (n = 10)
4 .	Reliability Lower 95° Confidence Limits. Exact vs Estimates (n = 20)
5.	Maximum Absolute Difference in Reliability Lower Confidence Limits for $\alpha = .05$
6.	Comparison of Binomial with Maximum and Minimal Exact Reliability Lower 95° Confidence Limit
7.	Alpha Level versus $\hat{\theta}_{\rm L}$ ($\hat{\theta} = 1.95$)
8.	Alpha Level versus $\hat{\theta}_{\rm L}$ ($\hat{\theta} = 1.98$)

I. INTRODUCTION

The problem of estimating reliability using censored data and determining a lower confidence limit on reliability is discussed in this paper. Censoring occurs when testing is terminated before all items have failed. There are two basic methods of censoring: (1) Type I censoring, where testing is terminated at some predetermined time; and (2) Type II censoring, where testing is terminated after a preassigned number of failures. When failures occur, either an item is replaced or it is not replaced. For this paper, we are interested in Type I censoring without replacement for small sample sizes (less than 25) with one or more failures. Suppose we have n items on test until time T (censored time). Each item is tested until it fails or the c failures occur at times, t_1, t_2, \dots, t_n where $t_i < t_{i+1} < T$.

One could simply ignore the failure times and just consider that c failures occurred out of n items, then use the binomial distribution to put a lower confidence limit (l.c.l.) on reliability. However, too much information is ignored and the confidence bound is very conservative.

A better approach would be to utilize both number of failures and failure times. If the failure times (t_i) are assumed to be exponentially distributed, the probability density function (pdf) for t is $f(t) = \frac{1}{\theta} e^{-\frac{t}{\theta}}$, and the reliability is $R(t) = e^{-\frac{t}{\theta}}$, t > 0, $\theta > 0$. In a 1960 paper. Epstein¹ gave estimation procedures for both point and confidence limit estimates for θ . For Type I censoring without replacement of the failed items, the exponential parameter θ can be estimated by its maximum likelihood estimate, (m.l.e.), which is

$$\dot{\theta} = A/c$$
 (1)

where

$$A = \sum_{i=1}^{c} t_i + (n - c) T = Total amount of test time$$

 $\sum_{i=1}^{c} t_i = sum$ of the failure times for the c items that failed

n = total number of items on test

c = total number of failures

T = censored time

(This is a biased estimate: $E(\hat{\theta}) = 1/c \left[\sum_{i=1}^{c} E(t_i) + (n-c) T\right]$ = $1/c \left[c\theta + (n-c) T\right] = \theta + \frac{(n-c)}{c}T$)

¹ Epitem Benjamin "E-finiation from Life Test Data" Technometrics, Vol. 2, No.4, Nov 1960

Then the lower 100 (1 - α) percent confidence interval for θ is estimated by

$$\hat{\theta}_{2c+2} = 2\Lambda/\chi^2_{2c+2}(\alpha) \tag{2}$$

where $\chi^2_{2c+2}(\alpha)$ is the upper α percentage point of a χ^2 distribution with 2c+2 degrees of freedom. Therefore, the lower limit on reliability using this l.c.l. for θ would be $\dot{R}_{2c+2}(t) = e^{-\frac{t}{\dot{\theta}_{\infty+2}}}$. Epstein's approximate procedure is the most commonly used and is cited in text books such as Bazovsky²; Mann, Shafer, and Singpurwalla³; Hahn and Shapiro⁴; and others.

In lieu of the many approximations that exist for the l.c.l. of θ , the exact distribution of θ can be found. This exact distribution of θ was derived by D.J. Bartholomew⁵ for small sample sizes where at least one failure occurs, i.e., c > 0.

Bartholomew's exact method of calculating the l.c.l., $\hat{\theta}_{exact}$, for the exponential parameter, θ , is the solution to

$$\Pr\left(\theta_{0} \geq \dot{\theta}\right) = \frac{1}{1 - e^{-nT/\dot{\theta}_{exact}}} \sum_{c=1}^{n} \left(\begin{array}{c}n\\c\end{array}\right) \sum_{i=0}^{c} \left(\begin{array}{c}c\\i\end{array}\right) (-1)^{i} B$$
(3)
$$= \alpha$$

where

$$B = \exp \left\{ -\frac{T}{\dot{\theta}_{exact}} (n - c + i) \right\} \int_{x}^{\infty} p(\chi_{2c}^{2}) d\chi_{2c}^{2}$$

and

$$x = \frac{2c}{\dot{\theta}_{exact}} \langle \dot{\theta} - \frac{T}{c}(n-c+i) \rangle$$

The symbol $\langle - \rangle$ means that the expression is to be taken as zero if the contents are negative. Subscripts on θ 's indicate l.c.l. (except for θ_0) and subscripts on χ indicate degrees of freedom.

² Balovsky, Igor. "Reliability Theory and Practice." Frentice-Hall, Inc., 1961

³ Mann, N.R. Schafer, R.E., and Singpurwalla, N.D., "Methods for Statistical Analysis of Reliability and Life Data," Wiley, 1974.

⁴ Hahn and Shapiro, "Statistical Models in Engineering," Wiley, 1967.

⁻⁵ Bartholomew, D.J., "The sampling Distribution of an Estimate Arising in Life Testing," Technometrics: Vol. 5, No. 3, August 1963

This equation is a weighted sums of χ^2_{2c} integrals. This is quite cumbersome without the aid of a computer, especially when n > 2. It is obvious that even for a sample size of two. Bartholomew's exact method is quite complicated. Complications and complexities using distribution theory leads, in most cases, to the use of asymptotic arguments for inference about parameters. However, because we are only interested in small samples, asymptotic results are not applicable. Therefore, we decided to compare Bartholomew's exact method with Epstein's method and variations of Epstein's method.

II. SIMULATION

A simulation study of the exponential distribution was performed with $\theta = 1$ and $T^{\dagger} = 1$. We first chose $\alpha = 0.05$ and then chose $\alpha = 0.10$ while letting the sample size, n. range from 2 to 20. For each sample size, 2000 simulations were run.

Uniform random numbers were used to generate random exponentially distributed times. After each exponential time was generated it was compared to T = 1. If the exponential time was less than T = 1, then it was considered to be a failure occurring at t_i . After n of these times were generated with c failures, A and $\hat{\theta}$ were calculated. Lower confidence limits for θ were then calculated using Bartholomew's exact method, $\hat{\theta}_{exact}$, and using Epstein's method with modifications in the degrees of freedom for χ^2 . The subscript on $\hat{\theta}$ indicates the degrees of freedom for χ^2 . Thus lower confidence limits $\hat{\theta}_{2z+2}, \hat{\theta}_{2z+1}$, and $\hat{\theta}_{2z}$ were calculated.

The lower limit on reliability was calculated using the computed lower confidence limit for θ in the following equation

$$\dot{R}_{L}(T) = e^{-\frac{T}{\theta_{L}}}$$
⁽¹⁾

where

T = Censored time

 $\theta_{\rm L} =$ Computed lower confidence limit.

III. DISCUSSION OF RESULTS

For those simulations where $\alpha = .05$, we would expect $\hat{\theta}_{L}$ to exceed θ only $5^{C_{L}}$ of the time, i.e., $P(\hat{\theta}_{L} > \theta) = .05$. Since there were 2000 cases for each sample size, we would expect 100 of our $\hat{\theta}_{L}$ to exceed $\theta = 1$. **Table 1** shows the number exceeding 1.

The nicety is that T θ and $\theta_{\rm L}$ scale proportionally so if T = 60 hours $\theta = 30.0$, then $\theta_{\rm L} = 18.33901$. If T and θ are solid by dividing by 60 T = 1 and $\theta = 0.50$, then $\theta_{\rm L} = 30565$, which is 18.33901 \div 60. Thus we chose to keep T = 1 for our examples and simulations.

n	$\dot{\theta}_{\text{exact}}$	$\hat{\theta}_{2c}$	$\hat{\theta}_{2c+1}$	$\hat{\theta}_{2c+2}$
2	76	0	0	0
3	95	0	0	0
4	87	261	6	0
5	102	123	118	13
6	87	162	57	47
7	104	136	108	35
8	105	156	80	69
9	111	155	110	37
10	98	134	82	54
15	98	121	88	63
20	89	106	83	63

TABLE 1. Simulation Study with $\alpha = 0.05$ Observed Cases where $\hat{\theta}_L > \theta$ Expected Number = 100

The results obtained for n = 4, 5, 6, 7, 8, 9, 10, 15 and 20 for the $\hat{\theta}_{exact}$ are typical of what one expects. However, we see that for n = 2, the exact is conservative. By conservative we mean that the lower limit tends to be too low, since in less than $5^{C}\hat{\epsilon}$ of the simulated runs, $\hat{\theta}_{exact} > \hat{\theta}$ but $\hat{\theta}_{2c}$, $\hat{\theta}_{2c+1}$, and $\hat{\theta}_{2c+2}$ are extremes, i.e., for n = 2and 3 there are no $\hat{\theta}_{L}$ greater than $\theta = 1$. We can see that $\hat{\theta}_{2c+2}$ is very conservative, with $\hat{\theta}_{2c+1}$ being better. For $\hat{\theta}_{2c}$, we get more than 100 lower limits exceeding the true value, except for n = 2 and 3.

Similarly, simulations were run with $\alpha = .10$. Here we would expect 200 cases of the $\hat{\theta}_{\rm L}$ to exceed θ . **Table 2** gives the actual number of cases for each sample size. Again we see that $\hat{\theta}_{2c}$ overestimates the number of lower confidence limits of $\hat{\theta}_{\rm L}$ which exceeds the true value of θ which equals 1 for sample sizes except n = 2. $\hat{\theta}_{2c+2}$ is very conservative and $\hat{\theta}_{2c+1}$ is less conservative (except for n = 2 and 3).

Another observation made from the simulations for computed values of $\hat{\theta}$ was that for each value of $\hat{\theta}$, the lower limit on θ tended to follow the pattern;

$$\theta_{2c+2} < \theta_{2c+1} < \theta_{exact} < \theta_{2c} . \tag{5}$$

Examples of this can be observed for n = 10 and 20 by examining Figures 1 and 2. This indicates again that $\hat{\theta}_{2c+2}$ and $\hat{\theta}_{2c+1}$ are conservative, i.e., they underestimate θ_{L} . On the other hand, $\hat{\theta}_{2c}$ overestimates θ_{L} slightly.

The $\hat{\theta}_L$'s were used to establish a lower limit on reliability, \hat{R}_L , at time T. Selected values of $\hat{\theta}$ were plotted against the \hat{R}_L 's for the four methods under study. The plots appear in Figures 3 and 4 for n = 10 and n = 20, respectively. We can see that for small values of $\hat{\theta}$, the four methods give approximately the same lower limit on

n	$\hat{\theta}_{\mathrm{exact}}$	$\dot{\theta}_{2c}$	$\dot{\theta}_{2c+1}$	$\hat{\theta}_{2c+2}$
2	174	0	0	0
3	190	274	0	0
4	184	252	193	2
5	192	280	126	114
6	180	263	180	67
7	188	258	152	123
8	201	279	198	110
9	193	254	163	130
10	183	-225	171	112
15	194	232	167	125
20	170	203	158	117

TABLE 2. Simulation Study with $\alpha = 0.10$ Observed Cases where $\hat{\theta}_{L} > \theta$ Expected Number = 200

reliability. For larger values of $\hat{\theta}$, we can see that \hat{R}_{2c} lies above \hat{R}_{exact} everywhere, with \hat{R}_{2c+1} and \hat{R}_{2c+2} lying generally below \hat{R}_{exact} . We also can see that \hat{R}_{2c+1} is much closer to \hat{R}_{exact} than the other two, especially for n = 20.

For each sample size, the maximum absolute difference in lower reliability estimates were computed, i.e., $|\hat{R}_{exact} - \hat{R}_{2c}|$, $|\hat{R}_{exact} - \hat{R}_{2c+1}|$ and $|\hat{R}_{exact} - \hat{R}_{2c+2}|$. These differences are plotted versus sample size in Figure 5. We can see that the differences were larger for small sample sizes (n = 2 and n = 5) and generally \hat{R}_{2c+2} differed the most from the \hat{R}_{exact} . As the sample size got larger (n = 10, 15 and 20), all the reliability estimates converged i.e., the differences converged to zero.

Earlier in the report it was mentioned that one alternative to this confidence limit estimate problem would be to ignore the failure times and simply use the number of failures to put a binomial lower confidence limit on reliability. To show how conservative these binomial limits are, we used the minimum and maximum lower reliability estimates obtained from Bartholomew's exact method (2000 simulations; n = 10) and compared them to the binomial lower confidence estimates. These comparisons are shown in Figure 6 for the various number of failures observed. We can see that the binomial limits are always at or below the minimum calculated using Bartholomew's method. Thus by ignoring the failure time information, we are lowering our estimate of reliability.

Figure 1. Lower 95° Confidence Limits on θ . Exact vs Estimates (n = 10).

Sectors Street Avenues and the

Figure 2. Lower 95^{°°} Confidence Limits on θ . Exact vs Estimates (n = 20).

Figure 3. Reliability Lower 95% Confidence Limits. Exact vs Estimates (n = 10).

いたい

Figure 4. Reliability Lower 95^{c} ; Confidence Limits. Exact vs Estimates (n = 20).

Figure 5. Maximum Absolute Difference in Reliability Lower Confidence Limits for $\alpha = .05$.

B5555

Figure 6. Comparison of Binomial with Maximum and Minimal Exact Reliability Lower 95% Confidence Limit.

IV. UNRESOLVED FINDING

During the simulation it was noted that on occasion we were obtaining estimates of $\hat{\theta}_{exact}$ that were greater than $\hat{\theta}$. Some $\hat{\theta}_{exact}$'s were several magnitudes greater than $\hat{\theta}$. Then there were a few instances where computer error messages were obtained instead of an estimate of θ_{exact} . Looking into the problem we noted these anomalies were occurring when $\hat{\theta}$ approached its maximum value.

Take for instance the case when n = 2, c = 1, $\theta = 1$, T = 1 and $\alpha = .05$. We can obtain a closed form for $P\{\theta_0 \ge \hat{\theta} \mid \theta\} = \alpha$. However, this is not a continuous function: there are three ranges:

For
$$[0 < \hat{\theta} \le .5]$$
, $\alpha = \frac{1}{1 - e^{-2/\theta}} \left[-e^{-2/\theta} + (2\frac{\hat{\theta}}{\theta} + 1) e^{-2\theta/\theta} \right]$ (6)

For
$$[.5 < \dot{\theta} < 1]$$
, $\alpha = \frac{1}{1 - e^{-2/\theta}} \left[2e^{-1/\theta} - e^{-2/\theta} + (\frac{-2\dot{\theta} + 2}{\theta} - 1) e^{-2\dot{\theta}/\theta} \right]$ (7)

For
$$[1 < \dot{\theta} < 2]$$
, $\alpha = \frac{2}{1 - e^{-2/\theta}} \left[e^{-\frac{\dot{\theta}}{\theta}} - e^{-2/\theta} \right]$. (8)

The discontinuities at 0, 1 and 2 can easily be seen by looking at the maximum and minimum values that $\hat{\theta}$ can take on. Recall that

$$\hat{\theta} = \frac{A}{c}$$

$$= \frac{\sum_{i=1}^{c} t_i + (n-c) T}{c}$$
(9)

Let ϵ be a very small time, T = 1, and n = 2. Then for one failure (c = 1) near T, $\dot{\theta} = [(T - \epsilon) + (n - 1)T]/1 = 2 - \epsilon$ is the maximum value that $\hat{\theta}$ can assume. For two failures near T,

$$\hat{\theta} = (t_1 + t_2)/2$$

$$= 2(T + \epsilon)/2$$

$$= 1 - \epsilon.$$
(10)

Assume one failure occurs near time 0, $\hat{\theta} = [(0 + \epsilon) + T]/1 = 1 + \epsilon$; for two failures near 0, $\hat{\theta} = [(0 + 2\epsilon)/2 = 0 + \epsilon$. The maximum value of θ is 2 - ϵ . This indicates that the failure occurred only ϵ time before the censoring time T.

To study the problem, we selected $\hat{\theta} = 1.95$ and started at $\hat{\theta}_{exact} = 0.2$ and solved for α . Then $\hat{\theta}_{exact}$ was increased by increments of $\Delta = .2$ until $\hat{\theta}_{exact}$ reached 2.0, the theoretical maximum. The largest α obtained while solving for α at each increment was less than 0.03 (See Figure 7). To get an $\alpha = 0.05$ for $\hat{\theta} = 1.95$, it was determined that

 $\hat{\theta}_{exact}$ would have to be greater than 500. This means that $\hat{\theta}_{exact}$ solved in the equation would be much larger than the set value. Similarly, when n = 3, 4, and 5 there were a few cases where $\hat{\theta}_{exact} > \hat{\theta}$. This phenomena did not occur when n = 6, 7, 8, 9, 10, 15 and 20. At $\alpha = 0.10$, this also occurred for n = 2 thru 7. Similarly we selected $\hat{\theta} = 1.98$ and solved for α . The largest α obtained was less than 0.015 (See Figure 8). Yet we have not been able to explain this anomaly.

Steere

REFERENCES

1. Epstein, Benjamin, "Estimation from Life Test Data" Technometrics, Vol. 2, No. 4, Nov 1960.

2. Bazovsky, Igor, "Reliability Theory and Practice," Prentice-Hall, Inc, 1961.

3. Mann, N.R., Schafer, R.E., and Singpurwalla, N.D., "Methods for Statistical Analysis of Reliability and Life Data," Wiley, 1974.

4. Hahn and Shapiro, "Statistical Models in Engineering," Wiley, 1967.

5. Bartholomew, D.J., "The Sampling Distribution of an Estimate Arising in Life Testing," Technometrics, Vol. 5, No. 3, August 1963.

NOMENCLATURE

80.000

1970-1976-1974

m.l.e.	-	maximum likelihood estimate
l.c.l.	-	lower confidence limit
θ	-	exponential parameter
θ	-	m.l.e. estimate on θ
$\hat{\theta}_{L}$	-	l.c.l on θ
$\hat{\theta}_{\mathrm{exact}}$	-	l.c.l. on θ using Bartholomew's exact method
$\dot{\theta}_{2^{c}+ 2 }$	-	h.c.l. on θ using Epstein's method - subscript indicates d.f. for χ^2
$\dot{\theta}_{2z+1}$	*	h.c.l. on θ using Epstein's method (modified) - subscript indicates d.f. for χ^2
$\boldsymbol{\theta}_{2^*}$	-	h.c.l. on θ using Epstein's method (modified) - subscript indicates d.f. for χ^2
$\dot{R}_{L}(t)$	-	computed l.c.l. on reliability using $\hat{\theta}_{\mathbf{L}}$
\dot{R}_{exact}	-	l.c.l. on reliability using $\dot{\theta}_{\text{exact}}$
R_2	-	l.c.l. on reliability using $\hat{ heta}_{2c}$
$\dot{\mathrm{R}}_{2\mathrm{c}$ + 1	-	l.c.l. on reliability using $\dot{\theta}_{2c+1}$
$\dot{\mathrm{R}}_{2^{n}+2}$	-	l.c.l. on reliability using $\hat{\theta}_{2c+2}$

DISTRIBUTION LIST

No. of Copies	<u>Organization</u>	No. of <u>Copies</u>	Organization
12	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Aviation Research and Development Command ATTN: AMSAV-E 4300 Goodfellow Blvd St. Louis, MO 63120
	HQDA DAMA-ART-M Washington, DC 20310	1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center
	Commander US Army Materiel Development and Readiness Command		Moffett Field, CA 94035
	ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Commander US Army Communications - Electronics Command ATTN: AMSEL-ED Fort Monmouth, NJ 07703
	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-TSS Dover, NJ 07801	1	Commander US Army Electronics Research and Development Command Technical Support Activity
	Commander Armanent R&D Center US Army AMCCOM ATTN: SMCAR-TDC	1	Fort Monmouth, NJ 07703-5301 Commander
	Dover, NJ 07801		US Army Missile Command ATTN: AMSMI-R Redstone Arsenal, AL 35898
	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299	1	Commander US Army Missile Command ATTN: AMSMI-YDL Redstone Arsenal, AL 35898
	Director Benet Weapons Laboratory Armament R&D Center US Army AMCCOM ATTN: SMCAR-LCB-TL Watervliet, NY 12189	1	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL Warren, MI 48090
		19	

DISTRIBUTION LIST

Second Street

() •

<u> 1</u>

No. of <u>Copies</u>	<u>Organization</u>	No. of <u>Copies</u>	Organization
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL White Sands Missile Range, NM 88002	4	Dir, USAMSAA ATTN: AMXSY-R, A.W. Benton AMXSY-R, Bobby Bennett AMXSY-R, Harold Pasini AMXSY-R, Walter Mowchan
2	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905	2	Dir, USACSTA ATTN: STECS-MA-A, E. Jackson STECS-MA-A, Vernon Visnaw
1	Commander US Army Development & Employment Agency ATTN: MODE-TED-SAB Fort Lewis, WA 98433		
1	AFWL/SUL Kirtland AFB, NM 87117		
1	Air Force Armament Laboratory ATTN: AFATL/DLODL EgUn AFB, FL 32542-5000		
Abe	rdeen Proving Ground		
2	Dir. USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen		
2	Cdr. USATECOM ATTN: AMSTE-TO-F AMSTE-EV-S, Larry West		
3	Cdr. CRDC, AMCCOM, Bldg E3516 ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-SPS-IL		

USER EVALUATION SHEET/CHANGE OF ADDRESS

an ina fan dia faa fan fan Hendre fan Ke

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number_____Date of Report_____

2. Date Report Received

CALLS STREET

Ĩ

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)_____

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Name

Address

CURRENT ADDRESS Organization

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

N	ame	
	anc	

OI D ADDRESS

Organization

Address

City, State, Zip

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

والمراجز والمراجر والمراجع والمراجع والمراجع والمراجع والمراجع والمحاص

Director US Army Ballistic Research Laboratory ATTN: DRXBR-OD-ST

Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE. \$300

FIRST CLASS PERMIT NO 12062 WASHINGTON, DC POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

BUSINESS REPLY MAIL

Director US Army Ballistic Research Laboratory ATTN: DRXBR-OD-ST Aberdeen Proving Ground, MD 21005-9989

- FOLD HERE

FOLD HERE

ENP DATE FILMED 4-88 DTIC