F/6

NOV 87 RADC-TR-97-171-VOL-2

2(U> SCIENCE UP'LuI.CHTINS INTERNATIONAL CORP SAN

AD-A190 819 METHODOLOGY FOR SOFTMARE RELIABILITY PREDICTION VOLUME

[
UNCLASSIFIED F30602-83-C-0118

OIS .

e -., M v . - 1 ..l Ly o “ % -,_ v 6 .
Py - NS PN WP A R A NN T e T PRI I R PO

12 hdm..ﬁ.-...h @ S Lt @I NSNS @ E s @t @ s
RLERELLs SHIIIIPN s.u.......w.hrw.u i T e e e T ..nw. A PO

CBY ¥

L i
PRV NN

P
ISR

o

N .

»Le
|

v

’
LI I S S N
BTN SO A

, =
Ly

==
Ol

: R o
2___= 3E 3= Mh

dUA9940000

16

=

s
flis,

l

«

14

—
—

SN
Al

o

“~

W,

1.0
125

I
i
'

.

St "

W]
RN

DT AT
vp-
Y

A
“\"\" ‘le-.";f‘.f

LU

R e S A AL rx . . . P R EARR: IRARNIIIEE (> e Yo 5 P

Lo

\J
1,
4
{
[
\
¥
+
)
L}
L
p

e FILE C0BY

AD-A190 018

(PR KRR

-

RADC-TR-87-171, Vol Il (of two)
Final Technical Report
November 1987

METHODOLOGY FOR SOFTWARE
RELIABILITY PREDICTION

Science Applications International Corporation

J. McCall, W. Randall, C. Bowen, N. McKsivey, R. Senn, J. Morris, H. Hecht, S. Fenwick,
P. Yates, M. Hecht and R. Vienneau

TIC

~ELECTE Y
= FEB 2 61988 A B
9 ‘_vi"-y'
APPROVED FOR PUBLIC RELEASE DRSTRIBUTION UNLAMTED, ’ ‘\E
g 2 25 032
ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

»
.
,
-
-
3
Q
-
.
(]
r

s

- -

Y
0
B This report has been reviewed by the RADC Public Affairs Office (PA) and
; is releasable to the National Technical Information Service (NTIS). At NTIS
z\: it will be releasable to the general public, including foreign natioms.
o~
X RADC-TR~-87-171, Vol II (of two) has been reviewed and is approved for
N, publication.
A
T
)
»
s

2!

2 . ‘ APPROVED: 7{%«7/ /O ((,;«L/{'tttc/ g

' JOSEPH P. CAVANO
n® Project Engineer

] -

wrvoven: X ayronel. 4 /@@v

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

.t ,‘r W
RO & M lf

FOR THE COMMANDER: ww Lo M

N
o
g
e RICHARD W. POULIOT
lnﬂ Directorate of Plans & Programs
o)
10
.
i If your address has changed or if you wish to be removed from the RADC
Y mailing list, or if the addressee is no longer employed by your organization,
- - please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in
N maintaining a current mailing list.
D:f'
\i Do not return copies of this report unless contractual obligations or
b notices on a specific document require that it be returned.
"

b
ba

>
8y
\-I

cp e R g - o W - ™ 0 T ™ ¥ AAYC A |
e S N N o NP R SO

\ - - e AT Tt AT T 0 At T
A T AT AT R R AT A R N e A e N N TN A N
K B N oM o »! - B 3 B ¥ Nal

O O R R Y A AN TRy Ty

URI LASSIFICATION OF THIS PA

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

N/A

L INCLASSIELED
2a. SECURITY CLASSIFICATION AUTHORITY

=~ E—
3 DISTRIBUTION / AVAILABILITY OF REPORT
N/A

BT Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE
N/A distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-87-171, Vol II (of two)

6a. NAME OF PERFORMING ORGANIZATION
Science Applications Inter-

6b. OFFICE SYMBOL

7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Rome Air Development Center (COEE ashstarleet
national Corporation ome Air Developm er {)
6 ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code) PTRSO
W iy
10260 Campus Point Drive ey
San Diego CA 92121 Griffiss AFB NY 3441-5700 ﬁ.'::.t:
St b4
» KN
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDFNTIFICATION NUMBER il ";":Q
ORGANIZATION (If applicable) ‘f!\ h& '..,'
¥
Rome Air Development Center COEE F30502-83-C-0118 | p
Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS :. AT
PROGRAM PROJECT TASK WORK UNIT Y 0y
Criffiss AFB NY 13441-5700 ELEMENT NO NO. NO ACCESSION NO. $\J‘~. N
62702F 5581 20 43 AR
e ryvrT YT LR
11, TITLE (Include Security Classification) “’:\.r 3_.’
t
METHODOLOGY FOR SOFTWARE RELTABILITY PREDICTION :*:"’i“‘: 3
12 PERSONAL AUTHOR(S) J, McCall, W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht, "‘.F':".‘F 5
S. Fenwick, P. Yates, M. Hecht, R. Vienneau AR
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day} |15. PAGE COUNT NN
Final FROM Iuyn 83 TO May 87 November 1987 . 180 > '_-' :-.__
16. SUPPLEMENTARY NOTATION Ry iy
/ TS
N/A A tte Fal
17. COSATt CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number) ['! o
FIELD GROUP SUB-GROUP Software Reliability .'u_"f\f, ety
12 05 Software Reliability Engineering earale N
Ay
12 08 Software Measurement AR XN
19 ABSTRACT (Continue on reverse if necessary and identify by block number) __":\:;-.‘;\
The Cuidebook provides detailed procedures for the preparation of software reliability predich " -':J.'I, .
tions and estimations on DOD projects. In developing the Guidebook, 59 software systems A
werc examined and 19 key variables were identified that affected the software reliability of —] o
those systems. Procedures to measure these variables were developed to account for the type .:-‘.?.:-'.--'
of application, development, environment, various software characteristics (such as modular- -.;--:'.:;:
ity and complexity), test technique, test effort and test coverage. A methodology was also o)
provided to use these measures to predict software fault density and software failure rates. s .'-‘:'-':'f
AT
The Guidebook could be applied by an Air Force acquisition office to help plan for adequate N A
software reliability early in a project's life, specify achievable software reliability geals Y
in a RFP, evaluate progress toward those goals at key project milestones and decide when to PARRY AR
release the software. The Guidebook could also be used by the technical staff to establish f.:-'::\':'f.
thresholds for critical measures such as complexity. Cal
P y ” PRy
(over) AR
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION ‘- ',:, o
Bd uncassipiEDUNLIMITED O SAME AS RPT L] oric users JUNCLASSIFIED - 'r..r:vf
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) | 22¢ OFFIEE SVMgoL ®
Joseph P. Cavano (315) 330-4063 RADC (COEE
- o,
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE ':_1\-.:::_-: j
A
UNCLASSIFIED AT AT
_F‘-‘,,\ ~~
\,-?V’\
.
N ok
N
- . - W
Ly - LRI TR TR RN A AT AT AT T AT AT A AT T AT AT .‘d:\-;.'r..r, .:\r\ RGNy \F‘.- "\ ,
R e e A R
- . b «* " ¥ n, " . 9 1 et y [QLIRS g
\ \\N. _$ -»\-q. ~ > -\.- * xi S s'_x o 0")#4“-"‘-’-]‘"-}' \ ,\‘_;\\-;\ \'.k O i\.f . 'y

i A A ALA (W KA AN A
oA IANARANZL o o, Qe \.r\mw.\\. <X @SS O
b ,-nu.;‘n{.)ﬂ.uﬂ.lnf ,I.....a e S s e T %N N ﬂ‘-f-‘-(b- a8 ,-)-p-;{.-v\-*n-vl

. o AN .-.-\\\\-\-. : z \\ﬁ AN AP AR | I
%ﬂv FENEAE N RN AP I FR Bt e Je PR O ML B 3 5 B A R A

fan
234
—
19
-
a 7
3
o
g

The checklists provide good guidance for ensuring that quality is built

-

GRA&I

~

The Quality Review Checklists are used to assess the quality of the requirements and
‘Accassion For

|

Speclial

i

-

TAB JEF
anounced 0O
tification e

Avail and/or
S
::r:f:a
P g
oty

Availability CQdes

pistribution/

D
t
By

‘Dist
\A—/
Y.
PN
N

f—
{

can be used in conjunction with the software reliability prediction and estimation methodo-

logy.
design representation of the software while the Standards Review Checklist would be applied

’In addition, the Guidebook also contains Quality Review and Standards Review Checklists that
to software code.

into the software.

UNCLASSIFIED

2 et ad S ettt et P - T . \ - -
AT U LAY R O) 1 N - | L a1ttt B P Al A ALY 4 J C4 %

EREFACE

Producing more reliable software will lower both production costs and post
deployment support costs because additional resources will not be expended
correcting problems that could have been avoided or detected earlier. If the most
error-prone projects could just be brought up to today's average, their fault density
could be cut 2 to 4 times. To make this level of improvement possible, RADC
developed this guidebook to improve software reliability. Air Force acquisition
offices could apply the guidebook to specify achievable and measurable reliability
goals in terms of fault density and failure rate and evaluate progress toward those
goals at key project milestones.

To develop the software reliability prediction and estimation methodology described
in this guidebook, RADC analyzed 59 projects, totaling over 5 million lines of code.
Although the 59 projects studied do not represent all the diversity of Air Force
applications, the results should be wuseful to any project with high reliability
requirements that can be matched to the generic applications used here. As RADC
receives additional reliability information based on this methodology--it is hoped
that project experience will be shared with RADC/COEE on a confidential basis--this
guidebook will be updated.

In the absence of quantitative data dealing with software reliability concepts, the
RADC guidebook provides information, based not on conjuncture but on
measurement, to help predict and estimate fault density and failure rate. The real
value of this guidebook is not the numbers it will produce--since they are only the
means to the end--but rather the processes it promotes for planning software
reliability and controlling key variables that are shown to affect reliability.

For example, there is empirical evidence that a software component's fault density
doubles when its complexity exceeds certain thresholds. Although it is not known
that increased complexity causes more errors to be introduced, any component
exceeding the established threshold should be carefully reviewed or modified to
reduce its complexity.

To more actively promote software quality engineering, the guidebook contains
checklists that can be used in conjunction with the software reliability prediction
and estimation methodology. The Quality Review Checklist represents important
quality questions to be answered from requirement and design documentation; the

Standards Review Checklist applies to software code. The checklists provide
guidance for ensuring that quality is engineered into the software during its
development.

To support the data collection inherent in this approach, RADC developed the
Automated Measurement System (AMS); the AMS is a quality analysis tool that
reduces the cost to collect, store, and analyze quality-related data. The AMS
interfaces to requirements and design tools to support early life cycle quality
analyses and also analyzes Ada and Fortran code. The AMS runs under VAX/VMS as
well as a MicroVax Il Workstation. A beta-test version of the AMS is currently
available from RADC/COEE to support quality analysis on Defense Dept projects.

Joseph P. Cavano
Project Engineer

1ii

T % % 3% |

5,7 I,'!,J A

s

L.,

5%

I"

7 'e '’

.._‘~‘ - __ i ~ta¥fa8 - ,._ .'.‘7- .. g TWIRFANRN I » 3.4 » - . YT 9 m"*“v"";"yvmtfzw
PN L

.J"ﬁ;"f '
¥

o
et
VOLUME II "'.'

TABLE OF CONTENTS

Pothy

SECTION PAGR Pt
praale:
o Y Y= 1-1 A~ ,’f(c X
D R < T = 1-1 oty

1.2 Application....... ..ottt e 1-1 -

D R S T) 7= N 1-1 R

1.4 Numlp;ering SYSEOM. « vt vttt e 1-2 A ;‘.:"&.
1.4.1 Classification of Task Section, Tasks, and b (:.-]
Methods....... ... i i 1-2 A

1.5 REVASIONS. .. ittt ittt ittt i te it et 1-2 f_@"‘ Y
1.5.1 Standard........cooiitinnennenntenieanean.. 1-2 At

1.5.2 Task Sections, Tasks, and Methods.......... 1-2 2

1.6 Method Of REFETONCE. ...t vvt i it inennennnn.. 1-2 ﬂ.‘ !

s

2.0 Reference DOCUMENELS.t reeeneneoenennnn 2-1 2 -,"'u."
2.1 Issues of Documents.......... ... 2-1 o (

2.2 Other PUbLiCALIONS. .. .veeeerurrrrnnneeenennnnnn.. 2-2 -...J;

3.0 DEfAnLBAOnS . .ttt ettt ettt e e e e 3-1 RIS
T T = < = S U 3-1 ;:U-;':
Py

4.0 General ReqUITEMEDES.ovirenenrnneneneeneneennn.. 4-1 -".‘:i':-&
Q.1 GEMOBTAL. . oottt ittt et e 4-1 {edmg
4.1.1 The Reliability Problem.................... 4-1 o
4.1.2 The Role of Reliability Prediction and BRIy
Estimation In Software Engineering......... 4-1 i

4.2 Software Reliability Program........... v evunnn 4-2 };w.j-."r'
4.2.1 Program Requirements..................... 4-2 U

4.2.1.1 Reliability Engineering.................. 4-3 AN,

4.2.1.2 Rellability Accounting................... 4-3 I)

4.2.2 Reliability Program Interfaces........... 4-7 PSR

4.2.3 Quantitative Requirements................ 4-7 RN

4.2.3.1 Categories of Quantitative Requirements.. 4-7 PR

4.2.3.2 System Reliability Parameters............ 4-7 ARG
4.2.4 Limitations of Reliability Predictions... 4-7 :J':-‘:I'::

4.3 Implementation............ ..., 4-8) ‘o

4.4 Ground Rules and Assumptions...................... 4-9 o TX

4.5 Indenture Level............. 4-9 v

4.6 Coding System........... ittt 4-9 ST

4.7 Mission Reliability Definition.................... 4-10 e

4.8 Coordiation of Effort.........ccoviiieineennennn... 4-10 ISRENEN

4.9 Genmeral Procedur@.......... ...ttt 4-12 NTeTaT
4.9.1 Comparison with Hardware Reliability -;\._,,Q,;
Prediction.t i e 4-12 e

4.9.2 Software Component Level................... 4-17 -:._'_-:.;-,'.:-'

4.9.3 Identify Life Cycle............... 4-17 N

4.10 Reliability Program Plan and Reliability Modeling -'.:-r_.j-:ﬁ

and Trediction Report. ettty 4-18 MRS

o WYt

™ "2t - ol ol 2 oIR8 aVE ol ‘adl” ok’ ath ‘a

‘g 8'a 8% 470 4 ¢ y i f) A% a0 An*al 3 A e T A A"Vl W DAL AN S A AV A a0 0
!.9' \J..:J."-‘-

¢ Ky :.4
e A
5 S ;..
X ;- «
:;:' v:°:"
q‘l et .
e 1}-'« \
:'c' .\:;-'\,
9" (
A'&. .‘L‘,
e VOLUME II ,
: TABLE OF CONTENTS (CONTINUED) ::;
W,
e SECTION PAGE ’.,u'
e "-'l':"é
4.10.1 Software Reliability Program Plan.......... 4-18 Fu B
- 4.10.2 Software Reliability Modeling and Prediction A,
S 2=) <L o 4-19 *.;5
" 4.10.2.1 SUMMBIY. .. otvtninrn i onnnsnnnnn 4-19 i
o 4.10.2.2 Reliability Critical Element Lists....... 4-19 vl
’ 4.10.2.3 Prediction and Estimation Methods........ 4-20 Py ‘ Y
" 4.11 Software Reliability Program TaSKS................ 4-20 oy
@
A Task Section 100, Software Reliability Predictiom...... TS-1 vy
_.4-’ Task Section 101, Software Reliability Prediction Based '1:-,,, 1
o~ On ApPPlication. i e i e TS-8 ..:,"‘- ’
e Task Section 102, Software Reliability Prediction Based Yot
on Development EDVATONMENELovvrveenennnnnns TS-10 Ml
i Task Section 103, Software Reliability Prediction Based ®
™ on System/Subsystem Level Software Characteristicg. - TS-12 Pty
N Task Section 104, Software Reliability Based on !
~ CSC/Unit Level Characteristics...................... TS-16 R
-\: %-l““f
o Task Section 200, Software Reliability Estimation...... TS-19 iR
> Task Section 201, Reliabilty Estimation for Test " a
L @
Environment. e e e TS-22 T
A Task Section 202, Software Reliability Estimation for :‘.ﬁ-.'
o Operating ENVATONMENLt vir e e, TS-27 I
: %
j Appendix A. Definitions and Termimology..................... A-1 .'-ﬁﬁ__
; Appendix B. Data Collection ProceduUTES...................... B-1 A
n Appendix C. Metric Data Collection Worksheets............... Cc-1 P
o~ Appendix D. Quality Review and Standards Reveiw Worksheets. D-1 BASY
~]
N Y
" N
3 _e
:: :::::-
-, e
¥ e
b
N
I\‘
:'{
S
LY

vi

VOLUME II
LIST OF FIGURES

PAGE

FIGURE

4-4

Framework for Software Reliability....

4-1

4-2 Software Reliability Functions..................

4-5

4-6

4-3 Software Reliability Engineering Management..

4-11

4-4 Relationship Between Hardware and Software Reliability..

4-13

® 6 s s 6 2 s e 0

Software Reliability Prediction and Estimation

Procedures......

4-5

TS-25

e 42 e e 4 s e

Test Methodology Assessment Approach......

TS~201-1

TS-29

« s s .

Effect of Workload on Software Hazard...

TS-202-1

h Yo I

. S A mwnkxﬁ_

s g AthV Ah.mﬂﬁﬁm&
NN o .-.-;-. v;-ﬂ \Ks‘f\\ 3 -.-n. . -.-._
ARSI X -wh S MR AAS 0o

D gy

vii

1.0 SCOPE

1.1 SCOPE

This Guidebook provides procedures for the preparation of
software reliability predictions and estimations for embedded and
separately procured computer systems. The results of prediction
and estimation are primarily intended to serve as relative
indicators of reliability in connection with design decisions and
in monitoring progress of a project. Caution must be used in
equating predicted or estimated values of softwae reliability
with operational values, as 1s also the case in hardware
reliability prediction.

1.2 APPLICATION

The requirements and procedures established by this Guidebook may
be selectively applied to any Department of Defenss
contract-definitized procurements, request for proposals,
statements of work, and in-house Government projects for system
development and production. It 4is not intended that all the
requirements herein will need to be applied to every program OT
program phase. Procuring activities shall tailor the require-
ments of this standard to the minimum needs of each procurement
and shall encourage contractors to submit cost effective tailcr-
ing recommendations.

1.3 SCOPE

Software reliability prediction and estimation technigues are
described as a methodclogy im this guidebook for assessing a
software system’'s ability to meet specified reliability
requirements. Softwase reliability prediction translates software
measurements taken during early 1life cycle phases, 4into a
predicted reliability. Software Reliability estimation
estimates, based on test phase 1indicators, how reliably the
software will perform its required functions in its operational
environment. At this time no software techniques are documented
in this Guidebook to estimate the demand for malntenance and
logistic support caused by software systems unreliability. When
used in combination, the two techniques provide a basis for
identifying areas wherein special emphasis or attention 1is
needed, and for comparing the cost-effectiveness of various
design configurations. This guidebook 1s intended as a companion
document to MIL-STD-785B, MIL-STD-756B and MIL-HDBK 217E.

r',;.'/ .)'-'_.
X
1)
s 5 ey
f.'l' AAS

(s

» 2
Sy
L 4

"“4
n',l
L
AL

v
i

[N NN
] .' .
“ ’5;':
< '.;:4

.
7

'

.

oy

PV
L4
r

'.N'* ‘
Y
g

55%5%

A 4
¥

Aty -
7

.

S
l’l’l
Y

,
7

.
A
i

]
[4
Pl

I B
[

Il >
ey
s

P
4‘1:‘
NS S
Pl

“x
"(

V4

.
.

T YO
AR AR
II..IJ;.I’

%
el

[%

00 6.0 .68 88" e 8t A% 35 Aa Ale At Ty g
! J ! UGN WV N TN Ve W ¥ A P 9

. 'f.v'
LR
i
: AT
; 1.4 NUMBERING SYSTEX RN
._‘,\:,
Task sections, tasks, and methods are numbered sequerntially as I::Z}-j'.'- :
they are introduced into this Guidebook in accordance with the I
following classification system. R
Mt
1.4.1 Classification of Task Sections, Tasks, and Methods ﬁé&
e
100 - Reliability Prediction Task Section) :Cs;t:
101-199 - Reliability Prediction Tasks pate X
1001-1999 - Reliability Prediction Methods T
200 - Reliability Estimation Task Section AL
201-299 - Reliability Estimation Tasks TNty
‘» 2001-2990 - Reliability Estimation Methods NN,
| Aoy
PRNoeY
1.5 REVISIONS M‘-f-
1.8.1 Standard RSN,
B
Any general revision of this guidebook which results in a D :
revision of sections 1, 2, 3, 4 or 5 will be indicated by a "_,E,. .
revision letter together with the date of revision. iy
1.8.2 Task Sections, Tasks, and Methods i:-:::‘
.-':‘f:f:..
Revisions are numbered consecutively indicated Dby a letter "\'\;‘.x';-
following the number. For example, for task 101, the first ;5:5_:3:
revision 48 10l1A, the second revision is 101B. When the basic DNl
document 1is revised, those requirements not affected by change ®
retain their existing date. ;@E;{_;
A LSy
N A
G
t 1.6 METHOD OF REFERENCE ;::-‘.:}:.\‘.:3_
TR
* Lg
The. tasks and methods contained herein shall be referenced by o :b
specifying: RSN ASY
RS
“‘_n.' \n
e This guideline number Ny
e
e Task number(s) '::‘\;::'
(Bl T
e Method number(s) 'z_‘.‘?-i-'.
:':~:‘:\""
e Other data as called for in the individual task or method BARARAY.
e
':"_:-:'_:r'
Pl
v ‘-‘.*\
“":J‘::-':-
,‘,‘1’,_-'\- Y
OO
R
RSN
o
n“..-_-
1-2 AN
qc:"' \v i
:‘:_.
)
SN
IR TR YL '_.‘-;.*-;.";-",-".-";"fxi' N AT N A I A I R I A A :}f-_‘
t - o _.: ,'-_.:-_.‘- .:-_.",*' -",p::,-".r:.-“a: : :J:.r:.-:\-:.r\i\.ﬁ:-r A A :.-,, J“-":I:J’xv‘_:-f: \.':.-_:.- ; '\..-_:-*::.- o :.'\'.‘.:J‘::" . #,:
. e < AT A g e '\ A A '_:. RS ‘-’\'Z\;-.;:\".\;'-;'\‘. pRhN,
mAnlalatlata®aliaftaCaSYalaSaXarlan. .

Gt La® 12 0" tat Mav te? Sat A?

2.0 REFERENCED DOCUMENTS

2.1 ISSUERS OF DOCUMENTS

The following documents
invitation for

bids

of the issue 1in effect on date of
or request for proposal, are referenced in

this guideline for information and guidance.

MIL-STD-785B

MIL-STD-721

MIL-STD-781C

MIL-STD-108

MIL-STD-1521A

MIL-HDBK-217E
MIL-STD-756B
MIL-STD-2167A
MIL-STD-2168
MIL-STD-1679
MIL-STD-490

MIL-STD-480

MIL-STD-483

MIL-Q-9858

MIL-STD-52779A

STANDARDS

Reliability Program for
Development and Production

Systems and Equipment

Definitions of
Maintainability

Terms for Reliability and

Reliability Design Qualification and Production
Acceptance Tests: Exponential Distribution

Sampling Procedures and Tabbles for Inspection
by Attribute

Technical Reviews and Audits for
Equipment, and Computer Programs

Systems,

Reliabllity Prediction of Electronic Equipment
Rellabllity Modeling and Prediction

Defense System Software Development

Software Quality Evaluation (Proposed)

Weapon System Software Development
Specification Practices

Configuration, Control,
Deviations, and Walvers

Engineering Changes,
Configuration Management Practices for System,
Equipment, Munitions, and Computer Programs
Quality Program Requirements

Software Quality Program Requirements

2-1

LR
R

R T
PN,
'.{ \"ﬁ_

Lﬁﬁj}_
Thh]

o a

l‘

‘l
2.
-
P
» LY
':"‘

>
1

s
Id

“»
L
.

,‘xf‘ r’.‘) .'n 2t
v N
'l ’
P4
N
s

[

-
2
»

r
L
Xors
AN

]
t

0 . . e

N

’ f. ". “u "1"’

a5 .7

2 p 2
ﬁkﬁﬁﬁhmp

P AL

s K .
yi . ,
_". -“'-‘ ;
A

Vs

RS e T B

N .1[,’,
Ry
ﬂ

<
’
.

h’.
o
Wy
o

AR)

}. SN

s - - P e s o i Iy - . _ - . s
o) AR AR] A PP : RN A O S ol e W A A Lt e sraie =
» “" L, e A .ﬁ- o lalaaln a8 n J-J.-f > PRI N .y

.,A-v.t-ﬁ.vbf”-v .&-’V\f\.ﬂyy *. -f“u.“f\.fM“’“”‘JA \H\“ \-n- \-” -\‘”.-N! KN . . k“- f\»\. A&‘ . ,-\I-l(“»- o -}U-I‘”.i.‘\-. ‘ ”v .-tnv\” -” A-“ \“- ns“-.“ -\ ﬂ\{&-f-.«i\f\f%n . r.\ -\ -wb.- l.».. <-. .,ﬁ-;-- J- f.-.r I\f- .v\ . I. . -. .-n .-. o .. I\. e
PP “ & [A A ARG] DN . R O] st el Ty et e e, S
_ AN NS RS2 I R N e LA R A A G bt]
19#%9 wﬁﬁwvh. 3 ARSI rﬁ?vzvvy P TR L A A JUA A A O AR o R B AN PR T S & 2
ol

1

J LN 4
3 . .A
_ S
L ~lh
Y asa - =4 > \\1.
N L AP < Q L .\..\..\.
K, d.g o w) - s
g+ o () 9] — Pﬁ
: » > -
) > A o w2 Q
N L PO £ 1]
. -~ - i
’ — 3 P (N —
. Bl (o] »$ 2] (1]
ad » o] m
3 S O K <
. —AH0 L
; ~N P . > ©
DOOM»™ ¥ @ [} [0)]
. [F- 7 W B ~ ¥ —
S0 A o o
g D> (] e d e d o]
ode fad el P [¢)
o » O “ “ H
Nnow o o] (@] o]
[01] (o2 +} (1] [/} /5] b
0od 4 ~mn
HA OO o O © -
" o) 0w q pe HO =
! ogsos~ » d — M
. un o 3] “ < 3 H o]
2 T (o] g O o
. 300 w MR W o]
7 4 O o o o
—- O [TEY md a
* LR O fa]) o
o a] © 0
b o™X"g o H MO
- L3O 2] [o 2] P
s OHE&GP oMW w - O w
a8 @ ~ © O:= 8 - 0
‘ PHDN PO > 0= 2]
’ [V e o $ de
b hag s 9] ~4 - g [+]
S g A — 30 ~
[] 9 M P (&2 < o
) N @ 0o 0 3
B\ L0 w 0OH S o n P
(@) n@Oi OH O w
) (1] ~« 0O 2,,Q a4 (5] [e]
[5] BEHA%w O no H O < 0 /2]
K u A4 = Mm = o : £ =
oOgqo0ow
bt () o0
K, - TO MO
: L WA - ©
> 00 - 2 >~ (2]
» Ao L [2] o~ — n
< Q 0] | 1 | |
S~ -3))] ¢
: OHME o© © © ©
- ~ OO
’ ~Hnoun 14 24 [s4
: o0 3 & &
s “9g oo
g~ O Q O O
- 4] O A3 QO (e (& (e
2 e g HIJIO0 < < < <
k N OV U M o o o

P ET FENIFIE T N STy IR

1

AR IR N
L Y !v
e e B

BRSNS AN

PV Y VAN AT, c >
iy

TN

A
",
L

; <
3 |
y b
d
b a
y o
. 2
e
<
a
-
-]
= ke,
o]
H a
e -
H oY
H o
o
o @]
(=] < -
o f
oy [\
0
P
d
1]
8
=}
0]
[o]
d
/)]
~
A
P
=]
]
tn d
Q
/7]
g
w
1=l
~ H
* (V]
n =
ol i A5 & o X X & & g L LN Fala 4w - [N . " >y, . - LILIPRI I Rl T Rt > s @ -
“-\”\-H‘\. 'h-g’hl kﬂ .-\.-.J .Anr.\,.-ﬂ, .l.**\. _\f\-\\.. -.‘ -..\-\J\-* ¢f\-h-\.- . L n-..\-\ﬂ\,.. YA A E ,-..v-\.\ ala Pl AR o ~

?:}"’J-""J-jf.‘.ﬁ AP AR LN BV LS B0 por b AL R pgb gt g

w
>

LA

4.0 GENERAL REQUIREMENTS

LAY

4.1 GENERAL

Software reliability prediction and estimation shall be planned
and performed in accordance with the general requirements of this
guidebook and the task(s) and method(s) specified by the procur-
ing activity.

4.1.1 The Reliability Problem

When it 1is proposed to design a system which lncludes computers
to perform a complex and demanding job, it is assumed that the
required investment will be Justifled according to the perfection
by which the Jjob 1s performed or by the large number of times
which the system can do the Job. This assumption cannot be
Justified when a system fails to perform upon demand or fails to
perform repeatedly. Thus, the reliability of a system is
critical to it cost effectiveness.

Reliability 1is a consideration at all levels of electronics, from
materials to operating systems to application software because
the components are combined 1n systems of ever increasing
complexity and sophistication. Therefore, at any 1level of
development and design, 1t is natural to find the influence of
reliability engineering acting as a discipline devoting special
engineering attention to the unreliability problem. Reliability
engineering has been primarily concerned with the time
degradation of materials, physical and electronic measurements,
equipment design, processes and system analysis, and synthesis.

A

Y

This Guidebook extends that discipline to software reliability 3
engineering. None of these can be isolated from the overall }{;.
electronics context or software development process but must be A
carried on in conjunction with many other disciplines. °
g

4.1.2 The Role of Reliablility Prediction and Estimation in ;E::
Software Engineering ;&3’
.\.""_\:_
To be of value, a prediction or estimation must be timely. -}gr
However, the earlier it is needed, the more difficulties will be ‘;
encountered. It is certainly true that the earlier a prediction o

)
O

has to be made about the unknown nature of a future event, the _}
more difficult it 1is to make a meaningful prediction. As an EROSK
example, it can be seen that the reliability of an electronic e

LA P

N equipment 41s known with certainty after 1t has been used 1n the RN
; field and 1t 1is worn out and 1ts failure history has been K
- faithfully recorded. But, for purposes of doing anything about ;:g
o the reliability of this equipment, this knowledge has little AR
F- value. Before this point, reliability cannot be known with NG
o certainty; but a great deal of knowledge about reliability can be AN
g- accumulated over a short period early in the useful life. Even N

though the degree of certainty of knowledge is less, there 1is N
;, some opportunity to do something to influence the reliability of <

4-1

ik AR

D

the remaining l1ife portionm.

AR AR
R A
X

e

Similarly, considering the various stages back through installa-
tion, shipment, test, production, test design, development,
procurement, etc., 1less and less can be known with certainty
about reliability. However, what is known or predicted becomes
more and more valuable as a basis for taking action. After all,
there 1is no value in simply knowing that a certain failure will
occur at some specific time 1n the future. The value comes in
having the opportunity to do something to prevent the failure
from occurring. Once this 1is done, the future is changed from
what was predicted with certainty. Thus, prediction becomes part
of a process of "designing the future".

An early prediction is made on the basis of preliminary knowledge
in order to evaluate the reliability of alternative software
designs, and to permit selection of an alternate that has a high
likelihood of meeting the reliability objectives. The process, in
order to have any meaning at all, requires predicting, acting,
measuring (or gaining new knowledge), then repredicting, acting

again and remeasuring continually throughout a program of
development.

-

[af Wl

The two +trends in the prediction art are: (1) To gain better
records of class characteristics 1in more usable and realistic
forms and (2) To develop improved techniques for applying the
consequent knowledge to predictions 1in appropriate confidence
settings. The current state-of-the-art in software reliability

x\':\i.\‘-,

predictions rests at the level of development of these data and

techniques. Much room remains for advancing the state-of-the-
art.

N
‘~
.

S A

A]
SHAN SN

2’
.
NaL A .

4.2 Softwvare Reliabllity Program

}l
9

The contractor shall establish and maintain an efficient
reliability program to support economical achievement of overall
program objectives. To be considered efficient, a reliability
program shall clearly: (1) improve operational readiness and
mission success of the major end-item; (2) reduce item demand for
maintenance manpower and logistic support; (3) provide essential
management information; and (4) hold down its own impact on
overall program cost and schedule.

oy -.3.

L
T RIS
.

XN

b o
7
-y

Y :i,'i .'i':l . :'

w
~.
u_.

4.2.1 Program Requirements

S ALY
’, .«

o
W D
. e
LR
. STet . ~
PR

Each reliability program shall include an appropriate mix of
reliabllity engineering and accounting tasks depending on the
life cycle ©phase. These tasks shall be selected and tailored
according to the type of item (system, subsystem or unit) and for
each applicable phase of the acquisition. They shall be planned.
integrated and accomplished in conjunction with other design.
development and manufacturing functions. The overall acquisiticn
program shall include the resources, schedule, managemen=
structure, and controls necessary to ensure that specifiled

MR RN

et
f‘((‘d'.‘,:{
- P AL
5 “j

b

[¢

4-2

reliability program tasks are satisfactorily accomplishead.
Figure 4-1 1illustrates the 1insertion of software reliability
rrediction and estimation into the software development process.
Note that the methodology actually spans the software life cycle
including reliability specification and reliability assessment
once the system is operational.

4.2.1.1 Reliability Engineering

Tasks shall focus on the prevention, detection, and correction of
reliability design deficienciles, unreliable units, and
workmanship defects. Reliability engineering shall be an
integral part of the design process, including design changes.
The means by which reliability engineering contributes to the
design, and the 1level of authority and contraints on this
engineering discipline, shall be identified in the rellability
program plan. An efficient reliability program shall stress
early investment in reliability engineering tasks to avoid
subsequent costs and schedule delays.

Figure 4-2 1illustrates the software reliability prediction and
estimation discipline in context of an overall approach to
inproving software relilability. As 1llustrated, the concerns
with software reliability must permeate the entire software
development pPpProcess. In fact, these same disciplines are
applicable to post deployment software support, 1.e., software
logistics support. The developers must approach the software
development with reliability as a goal. Use of formal approaches
such as MIL-STD 2167A, modern techniques and tools, provide the
foundation for Dbuilding reliability into the product. The
testing process must also account for reliability demonstration.
RADC TR 84-53, Software Test Handbook, provides a methodology for
planning testing techniques and tools which aid 4in meeting
testing objJectives. The prediction and estimatlon techniques
advocated in this document provide the oversight role. Companion
documents are the proposed MI1-STD 2168, which states software QA
requirements for DOD software developments; RADC TR 85-37, which
establishes a methodology for quality specification and measure-
ment; RADC TR 85-47, Impact of Hardware/Software Faults on Sytem
Reliability which establishes a new modeling approach to software
reliability; and RADC TR 83-176, which is a guidebook on the use
of existing software reliabllity models.

The incorporation of this approach 1n software developments
promises significant Dbenefit. This general approach could be
viewed as a software reliability discipline. Functions of that
discipline are portrayed in Figure 4-2. The activities that
comprise that discipline are indicated in Figure 4-3.

4.2.1.2 Reliability Accounting

Tasks shall focus on the provision of information essentlal to
acquisition, development, operation, and support management,
including properly defined inputs for estimates of operational

4-3

P

‘.I .' ‘.‘.

s @Y
YRS

va
.ﬁsx....?.s. OSA
A% % YA LY
ﬂfaﬁ...mu..w“.v, 72

Hf..ﬂ.f. n.. O w...-.‘..- h.v.

NOI1LV N IO DNINNO
IINVYNNO0 IV I
IVALIV MO GISVE

255)

| » o % >
Ol Ly O
7 LR
s.r%. T3 P
bl S RIS

DSOS Y & X
AN

AR A

ALITTEVIT3Y JYYMI40S dO4 NHOMIWYHY T-v 3H¥N9T4

UIHIO HIOVI 0L G1iv1iIy ONY

GIYVIN0I AVINIONINVYIN 30 AVIN AIHL LVHL OS AININIHVNSYIW 4O SLINN INVYS IHL Nt OINIFIO0 39
1SN SHIVWNN NOILVYWILSI AL1HBVITIY 3HL ONV HIBWNN L3N JO IUNDIS ALITNEBVITIIY INL sioy

ANIVNOMIAND TYNOILYE IS
N1 G3123T10I VAiVO WO viva 1S3
W04 OIAINI0 ¥ IBWNNN IALLVLILNYND

SHNULIW 20 NOI1A DN 4
¥ SV ALIVEVIIIY IWnUN
ANOBY ANINILVLS JAILVLIANVNO

Frs i)
25 GO Rl AT IS @
r g Nf\ Pl AL A

%
L . . A i NN o S Lo
rf ffﬁ .I--.. O -Iv}ff\-\-.\-' v-\
LA S = LN NN A AN AL ORI

-V- a
N L
AR S AR RAAN A

XN AR
ORI

ANIWIVIND IV
ALIVaviIav 40
ANINILYLS IALLULNYNO

14 30NN
11830 20 IVNDIH
NOLNOINY ALV

*

(U IBWNN MOILYINLSI ALITIOVITIV)
NOLLVINILSI ALITIEVIVIN

<.<% vivoe viva viva vivo SOLIN $MAIN SHULIN SHULIN
uuzad.....c- uu.. 3 1 1531 i1s3L ASIL NOILVANIWNI 1o NDISIO ANINIVIND IV NOIL VI VeaV

NOILINISIO' NOILVILING
JUVAMLIOS | NOILISIND IV
/MILSAS | LNINGOIIAIO

INOISSIN | 1432002

e,

1 sisa vwnv

1NINA0VI0 NOLVNIVAS oNILSIL NDISIA 1 g pi3ey

auv OnILS3L

ANMVYN [} "N
TYNOILYY 340 WNILSAS o~ s

123 WG Vyuvm s08
1

SOFTWARE RELIABILITY

FUNCTIONS
SOFTWARE
RELIABILITY SOFTWARE
SOFTWARE PREDICTION RELIABIITY
ENGINEERING AND TESTING
ESTIMATION
s « MIL-STD 2167A + MIL-STD-2168 « RADC TR 84-53
N DEFENSE SYSTEM SOFTWARE (DRAFT) SOFTWARE TEST X
W DEVELOPMENT SOFTWARE QUALITY HANDBOOK -
PROGRAM o
3 + MODERN MANAGEMENT « EARLY INVOLVEMENT
APPROACHES TO SOFTWARE +« RADC TR 85-37 BY TESTING t-: '
5 DEVELOPMENT SPECIFICATION OF ORGANIZATION
f.; SOFTWARE QUALITY :
N + MODERN SOFTWARE ATTRIBUTES « USE OF MODERN TEST =
s DEVELOPMENT TOOLS AND N
" ENVIRONMENT « EMPHASIS ON QA, IV&V TECHNIQUES N
- ~
- » MODERN SOFTWARE » SPECIFICATION OF + IDENTIFIED TEST *
8 DEVELOPMENT QUALITY (RELIABILTY) OBJECTIVES s
, TECHNIQUES GOALS >
- ,
) « RADC TR-85-47 e
.’ IMPACT OF HARDWARE/ T
SOFTWARE FAULTS ON s
‘¢4 SYSTEM RELIABILTY . !_
o “Wa
» Ly
" - RADC TR 83-176 RONY
’ A GUIDEBOOK FOR ,:j--;‘. \
N SOFTWARE RELIABILITY :.\:__:
" ASSESSMENT AN
.)
' R,
. o
. SO
‘ FIGURE 4-2 SOFTWARE RELIABILITY FUNCTIONS Y
: I
:' e
~, ,'.-:’-:
) ;:::: -
bt X\
o

L

»
¥
]
.

o

hal
P

'-\,S

=
v

-

v w
P4

)

N
.\\\ﬁ‘\'l.\-_‘n" T MVt AT, N TR AT T aT AT (A
I N e Y
AR R SN O A N AN "
SULCAE LS

e

-

-. »
Painias Jm..ﬁ.hw.r.... 5

PSRy \»-h 1»-1
e A s a A f
R AT

5 & ¢
F. + \f\-ﬂ-

y
:
;

<

AL T

[

=
3

"=

R T e

INIWIOYNYIW ONTHIINIONI ALINIGVITIY YYMLIO0S

IWHUUONAL Y
evonei2d0
u) JUAUsLettY
19}

Aupgeay
wWersAg
oewnsy

Bunse)
VoIS Bayy

AvenD
158) 8snsuj

uonN.NEr)
ssauyBnoioyy
o) WISAS

uoneBeiuy
Apgeiay
818M} 05
Jo1empIeyy
sisAleuy

10113 21801)0G
1319MPIeYy

UMW INtR Yy
Avjigmiiey @
OuRINIty

AienD @

Sunisey
uonssbey @

1910
/9N11S31 ONY
NOILYHOILNG

WNILSAS

JINVRILINIVR
any
SNOILYHId0

Bunsa)
2due1dadrdy

Hui
sansuerg
1oday
weqo.d
Anpgeey
s1em§0g
w3y
Bunise}
uoseBoyy
AgenD

159) sansuy
$IOMBY
Buing
spsepuels
uinimew
uolIenien]
sseuyBnoroy
13
slusWeINbeY
0] 159}

INILSIL
TIAITIST
/1831 ONY
931w 28I

ree e M e B o
PRt L4yL..r\..
e P LR 5
!n--r i AN54Y ‘

LY .
LA et W

»

SRER

Anpamiey
81eMA) jOS
P4 @
1I8QP8e 4 s8N
10 4 sppng
odAl0104 @
e 4
18407 8iNpOYY
SAOWSY O]
BulBngsQ
/Bunse j iun
12npuo) @
ueNINPoIY
(2 LT
®qeyeyy
oBeinod>uy
o] prepung
Swpa)
ysyqeisy @

Aprgenayy
vIpIng @

NILSIL
1mn
anv 981007

HOo) ®
HOd ®

Alrpgeney
a19m3 06
1npeid @
OUBWIO | I8¢
Anjpigmiiey
Mnung
/9tAeuy @

ubiteQ
819Mm3)05
NQe oy
eBeinod>u3z 0}
(TR TR TV
ubiseQ
ymngeie3 o
sivsuodwo)
8193 JOG O)
fuswWe Nnbeyy
Anprgeyey
108png
pue ssodwole(] 8

NDIS30
IYYML40S
0311v110 ONY
AUVYNINITIYd

‘£-v 3¥n9ld

{4qas)

1UsWINtSY

uys ® Aqrgeey
nusweInbey weisAS @

Jo Anqiqueee 4

szApuy @ 918105 PUR

BICMD IR

1UswWwe NnNbeyy 0] Heon

10 Aupgmiss) Auprgesy
srApuy @ Qe0)y @

0Mm})05 0L wesAg

fuswesnnbeyy 20 4 00

Avpgeey Anpgeviey
neo)Y @ L]

SININIYINDIY
JYUvMl 40S

SININIVINDIY

WNI1SAS

/noIss

O
S
P,

s v

1080y O)
Aoy
ey ©
8)joepes)
19407 Yy
uro)sgd @
VeSS INbey
Aupgemisy
ywqeisy @

NOLLVELING
NOULISINDDY

/183IN4013A30

1433800

*

oA s e -

L R

AT

L SRR

IO RO KRR ry) O " y " Sat oa Ryt s8a 400 RV 500 sl giu Ble §0a 41, 4" 8708 LA'RS 28 R Bt

X
\dl'.' 0y
i Yele]
ol
".rt?' ’
AKY :::‘
effectiveness and ownership cost. An efficient reliability ff:
program shall provide this information while ensuring that cost v,,"'_~ "
and schedule investment 1n efforts to obtain management data AN
(such as demonstrations, qualification tests, and acceptance .
tests) 1s clearly visible and carefully controlled. ,?_;.
u
4.2.2 Reliability Program Interfaces 2 -';.';""
MY T
The contractor shall utilize reliability data and information P
resulting from applicable tasks 1n the reliabllity program to
satisfy Post Deployment Software Support (PDSS) requirements. TR
All reliability data and information used and provided shall be ::ﬁ-”_-;-{
based upon, and traceable to, the outputs of the reliabllity -_.:'-\:.:
program for all maintenance support and engineering activities ':;-:7-,;-,.
involved in all phases of the system acquisition. e
4.2.3 Quantitative Requirements ! .
™ :
The software system reliability requirements shall be specified ::f N
contractually. r‘,':Q{'h
S
4.2.3.1 Categories of Quantitative Requirements «'»’"-‘d‘
TR T
There are three different categories of quantitative reliabillity : _1-;:‘_"
requirements: (1) operational requirements for applicable v,,:-,,:-,);
software reliability parameters; (2) basic reliability P
requirements for software design and quality; and (3) statistical 'j'f.f.
confidence/decision risk criteria for specific reliability tests. AT
These categories must be carefully delineated, and related to _—
each other by clearly defined audit trails, to establish clear e
lines of responsibility and accountabllity. \.:\':,:j
A
4.2.3.2 System Reliability Parameters A
AN
Software reliability parameters shall be defined in units of -
measurement directly related to operational readiness, mission O
success, demand for maintenance manpower, and demand for ,:-',_"_x:
maintenance support, as applicable to the type of system. ;-:j.j-':-
Operational requirements for each of these parameters shall ,.:-,:-f,:
include the combined effects of design, quality, operation, RSN
maintenance and repair in the operational environment. The basic P
measurement used in this guidebook for software reliabllity is AR
failure rate. Definitions are provided 1n Appendix A. -:'-;._-:::
NN
4.2.4 Limitations of Reliability Predictions RN
RN
The art of predicting the reliability of software has practical T
limitations such as those depending on data gathering and SRS
technique complexity. Considerable effort is8 requlred ¢to :._.::.:-‘
generate sufficient data to report a statistically valid relia- NGAN
bility figure for a class of software. Casual data gathering AN
accumulates data more slowly than the advance of technology: PO UAR
ccnsequently, a valid 1level of data is never attained. 1In the s
» case of software, the npurber of pecple participating in data ._._.\
) ALY
|) o
-".“'.l\:.
.'-.-_\.
DA
“l'_f.f
s
£

ﬂ‘.
-

(-
5

. e

gathering all over the industry 1s rather large with consequent
varying methods and conditions which prevent exact coordination

and correlation. Also operational software reliability data is
difficult to examine due to the lack of suitable data being
acquired. Thus, it can be seen that derivation of failure rates

(being mean values) is empirically difficult and obtaining valid

confidence values 1is practically precluded because of lack of
correlation.

The use of failure rate data, obtained from field use of past
systems, is applicable on future concepts depending on the degree
of similarity existing both i lhe software design and in the
anticipated environments. Data obtained on a system used in one
environment may not be applicable to use in a different environ-
ment, especially if the new environment substantially exceeds the
design capabilities. Other variants that can affect the stated
failure rate of a glven system are: different uses, different
operators, different maintenance practices, different measurement
techniques or definitions of fallure. When considering the
comparison between similar but unlike systems, the possible
variations are obviously even greater.

Thus, &a fundamental limitation on reliability prediction is the
ability to accumulate data of known validity for the new applica-
tions. Another fundamental 1limitation 1s the complexity of
prediction techniques. Very simple techniques omit a great deal
of distinguishing detaill and the prediction suffers inaccuracy.
More detailed techniques can become so bogged down in detail that

the prediction becomes costly and may actually lag the principal
development effort.

This Guidebook includes two methods: reliability prediction and
reliability estimation. These methods vary 1in degree of
information needed and timing of their application. References
to other or complementary methods are provided.

The content of this Guidebook has not been approved by the
Military Services and has not been coordinated with appropriate
segments of industry. It provides an initial attempt to document
a methodology ¢that would provide a common besis for reliabllity
predictions during acquisition programs for military systems. It
also establishes a common basis for comparing and evaluating
reliability predictions of related or competitive designs. The
failure rates and their assoclated adjustment factors presented

herein are based upon evaluation and analysis of the best
avallable data at the time of issue.

4.3 IMPLEMENTATION

Reliability prediction shall be initiated early in the definition
stage to aid 1n the evaluation of the system architecture and
design and to provide a basis for system reliability allocation
(apportionment) und establishing corrective acticn priorities.

[

%
o
B, Sy
<,

)
o,

AASS

)V e

A
» At
hY
[}

£ ”.’{':‘. o, .

]
) %

4 v
..4’1 P
) Ny,

. 4 a_ s o«
SN@ i oN
-". &

2,

e
AN
"I.I

LY
_'-.l.

AN
. _a
~
b0

AL)

»
WA

A 'C"E’

-

]
o .
e
J.Csufp

4'-.
h S

RN
(. "
X
N

B

"-
&

.
“~ N
-
&
L
h)

.
‘\) .
“ % 4
N

»

Y

eLs

o

QA & AR P A

..
LACA,

"..‘.‘-"-\-J P e

PRr A af AL

» -
LNE R =

-\

el

Yy

.............

Reliability estimation shall be initiated early in the test
phases utilizing the observed fallure rate during testing as a
basis to estimate how the software will behave in an operational
environment. Reliability predications and estimations shalli be
updated when there is significant change in the system design,
availability of design detalls, environmental requirements,
stress data, failure rate data, or service use profile. A
planned schedule for updates shall be specified by the procuring
activity.

4.4 GROUND RULES AND ASSUMPTIONS

The Government Program Office or contractor shall develop ground
rules and analysis assumptions. The ground rules shall identify
the reliability prediction and estimation approach in terms of
this Guidebook, the 1lowest indenture level to be analyzed, and
include a definition of mission success in terms of performance
criteria and allowable 1limits. The SPO or contractor shall
develop general statements of item mission success in terms of
performance and allowable 1limits for each specified output.
Ground rules and analysis assumptions are not inflexible and may
be added, modified, or deleted if requirements change. Ground
rules and analysis assumptions shall be documented and included
in the reliability prediction and estimation report.

4.3 INDENTURRE LEVEL

The indenture 1level applies to the software or functional level
at which the software configuration is defincd. Unless other
wise specified, the contractor shall establish the 1lowest
indenture level of analysis using the following guidelines:

e The 1level specified for the prediction measurement to
ensure consistency and allow cross referencing.

e The specified or intended maintenance level for the
software.

The methodology described in this guidebook supports reliability
prediction and estimation at the system, CSCI, CSC, and unit
levels.

4.6 CODING SYSTEX

For consistent identification of system functions and software
elements, the contractor shall adhere to a coding system based
upon the software breakdown structure, work unit code numbering
system of MIL-STD-780, or other similar uniform numbering system.
The coding system shall be consistent with the functional block
diagram numbering system to provide complete visibility of each
modeled element and its relationship to the item.

“ %
e

rs

teTe '/ "l
L4

PR L Y
o %
PR

AR
ALl PN
'-,' Pl oS L YN
.'sl'li',’i.

PRSP .
LA

»
€

M)
h] :r

guy
~

""$.
2
{E@fﬁ;ﬁ

4
%
)

- i

) g gy - Py D oy o sal "ab" 20 Ake Ala’
Wi v M 28 a8 k" gY - a "8, W W U P et ~ate Y SV N A wWy N die il)

4.7 MISSION RELIABILITY DEFINITION

System reliability for mission i1s assumed to be represented by a
series arrangement of hardware, software, and possibly other
components as shown in figure 4-4. The mathematical formulation
for the system mission reliability is therefore

R=Rx*Rg*Ry

Hardware-software interactions, such as software fallures induced

by hardware anomalies, or failures of hardware reconfiguraticn NS

caused by software faults, must be 1ncluded in the Rx term. zhﬂck‘

Other components that may have to be added to the series model ”Q£§§~
include the personnel subsystem and support equipment (power, :RN*+‘

airconditioning, etc.). Only the prediction or estimation of the ARG
Rg component is covered by this Guidebook. " e

e

If the reliability of individual components is high, eg. at least fﬁﬁ,#ﬁ

0.95, a good approximation of the system reliabllity can bhe ALY
obtained by dn

(;-. 'v:;'\

) '-}q ~ A

F=Fg+Fg+Fx f—-;”

where all F terms are mission fallure probabilities (R=1-F). The fj?iil
software mission failure probability 1is the product of the AN

software fallure rate and the mission duration, expressed in
identical units of time.

Where mission phases differ in hardware or software utilization

or environment, & separate reliability model is required for each ﬁﬁfif
phase, and the total mission reliability 1is the seriles MRS
combination (product) of the individual mission phases. LA
Differences in software utilization are presented if (a) MERKRAS
functionally distinct software 1s utilized, such as automatic e
approach and landing software in an aircraft flight control ®

system, or (b) there is a substantial difference in the mix of
software functions. Differences in the software environment are

present if there are substantial changes 1in the computer
workload.

4.8 COORDINATION OF EFFORT

Reliability and other organizational elements shall make coinci-
dent use of the reliability predictions and estimations.
Considerations shall be given to the requirements to perform and
use the reliability predictions and estimations in support of a s
reliability program in accordance with MIL-STD-785B, T

maintainability program 1in accordance with MIL-STD-470, safety TR
program in accordance with MIL-STD-882, survivability and DAY
vulnerability program in accordance with MIL-STD-2072, logistics ‘cuggj
support analysis in accordance with MIL-STD-1388, malntenance :¢¢Q
plan analysis (MPS) in accordance with MIL-STD-2080, fault H&ﬁb@
diagrams analysis in general accordance with MIL-STD-1591, and '-‘i:
other contractual provisions. -
:'\-:N\.'
4-10 Sl
ANATN
3

LA
s
"-v- -'.‘-.-\5-,-.'[.' -: .- -“- » "~ --- " - -.-.~ ~. RO AN XN -,.- - - .'. - - -._ ------- '.- -'\\‘I
B S 0 O A NN A SO
IR VAN v ',:-': f_;}~1\1,‘l.21~l.:f\{ J.'_ Pl ' AN AN NN "'w. N .. 'f‘:\l‘ S . -n\, :‘-\.-.."' __‘ AN

~

o RO PR AT . RS g R A e b a2, BNRGh Y OO Saeh
....rxv.-. L RAAAARAIA T oy z ; e ..\mm..m.nw OIS @SN NN @ AN .x.......».w\.“...“..a o
e | N R e S Bl A A R L X AR S A A X AT e
SISO ey SLATSRTE e SIS WSS i

b =, i AR AP A A CIALLICES G S SR

a‘a v ¢

ww\a\ ' r\..\:\..\(\..\n. i AL o

--‘ -"-' =

o

ALFHAVI'TIE JYVMLAOS UNY JYVMAIYH NIIMLIAEG dIHSNOLLY 1Y ¥y JdNDIA

W."-"

FNTTST

Al1118v80YHd 34NTIV4 GINISBWOD

AR

AllNiavaoud
univd
FHVYMOUVH

AlLiN18va0Yd
3¥NIvd
JHVYMLIOS

SQOHLINW

- uww«.a s LNIWNOHIAN3 Q3HSINEV1S3
: Eyehigt $31NAOW A8 $31vH
: Q3YIND3Y JUNIV4 NIV180

JYYMLIOS NOISSIW ‘ JHYMOYYH

4.9 GENERAL PROCEDURE

The steps set forth below define the general procedure for L
developing & software reliability model and performing a relia- e
bility prediction and estimation. Specific tasks are contalned

in the Task Sections in Section 5. Figure 4-5 provides a road

map for use of the procedures and tasks. Effort to develop the
information for the steps below shall be closely coordinated with

related program activities (such as design engineering, system
engineering, maintainability, and logistics) to minimize
duplications and to assure consistency and correctness.

e Define the software component level for prediction (See
paragraph 4.9.2).

e Identify Life Cycle and Prediction and Estimation Mile-
stones (See paragraph 4.9.3).

e Identify Data Collection Procedures (See Appendix B).

e Obtain or Develop System Architecture Diagram to Appro-
priate Component Level (requires allocation of software
component to hardware components) (See Reliability
Prediction Task Section 100).

e Define Software Components (See Task Section 100).

e Define Reliability Model (See Task Section 100).

¢ Implement data collection procedures (See sppendix C and
D).

e Proceed through Prediction Procedures (See individual
Reliability Prediction Tasks 101 through 104).

PR

W

® Preceed through Estimation Procedures (See 1individual :=3
Reliability Estimation Tasks - 201 through 202). Qﬁg

l--- .\

4.9.1 Comparison with Hardware Reliability Prediction e
NI,

Reliability prediction for hardware is an established technique, Q;}
and it 1is therefore useful to compare the proposed software 3:;
reliability procedures with those in use in the hardware fileld. NG
The governing document for hardware reliability prediction for 5;&
DoD applications 1is MIL-STD-756B "Reliablility Modeling and °®
Prediction”, and MIL-STD-785B, "Reliability Program for Systems A
and Equipment Development and Production”. The essentlal steps AR
for reliability prediction identiflied 4in MIL-STD-756B have el
parallel equivalent procedures for software with one exception. O
That exception is the absence of software equivalents for step e. ;-c:
Hardware components consist of separate parts, each of which may ;'

be used in many other applications, such as a 1A 250V diode or a

\; 16k dynamic RAM chip. Failure rates can be established for these o
N

4-12 ‘;ﬁa'

: A

P
y-*

N
e

v
N PR N B IV I T P o o e . N (Sl
) e “ e e . ". . M A T tay N e Nl .
(~"- .) SR S " - - “u ~ \.F\. \'".‘ " ‘-".)‘-' \'p‘-
Wy > S e e
P A N A N AN
P Y

Bt g2 §aaVE- " oy ak. el - Al
A Pt A A Y S w LN MY a ™ amn e R P R R W O, W A W RO LW IR RS AAN - = Padra e e)
v

AN
" \a;r
" Ry N
* N
D
* 9
[:5‘ -
‘Jﬁﬁl-‘
~
N NAdOEN
NP
nanIAt
o
DEFINE (OENTIFY i f
h SOFTWAAE LIFECYCLE
COMPONENT bm@{ AND PREDICTION
LEVEL FOA AND ESTIMATION F..f\l',v 3
. PREDICTION MILESTONES :‘:,\:_ﬁ
. rbﬂ??
» N "’
> { ‘ pﬁﬁ“\:
'q ORTAIN OA e
' IDENTIFY DEVELOP oA
DATA SYSTEM ARCHITECTURE
COLLECTION DIAGRAM TO
PROCEDUAES APPROPAIATE = 9
X T COMPONENT LEVEL ANy
RN
- g .
')y K ’\jﬁg‘t
SN
g} 'J‘\J&f .'
OEFING PRGN
» OEFINE RELIAQILITY Foa
v COMPONENTS MOOEL Mol L WA,
TASK 100
) { l LA (]
& e
Y R
) IMPLEMENT ‘ﬁ)
DATA COLLECTION A,
PROCEOUNES :IN
! it tefoN !
i ®
{ w - tw,..v:j-t 4
b ESTABLISH ot
DEFING et
, INITIAL RELIABILITY e
ApeLicATION [T eDicTIoN PATATN
TASK 101 SRR
A SAN
! ':‘."f.':"‘ ‘
) 'l\ ' -‘.
OEFINE REFINE
OSVELOPMENT > RELIABILITY ..
ENVIRONMENT PREDICTION A
- SK 102 SOFTNARE ‘,p_x "~
: TA . RELIABILITY A
) f PREDICTION Pl
. PROCEDURE W
OETERMING REFINE)
svsTemLeveL L) AELIABILITY NNy
SOFTWARE PREDICTION .l et
CHARAGTERISTICS :
[TASK 103, Y
RN
DETERMINE SOFTWARE el
COMPONENT LEVEL REFINE e
SOFTWARE —__— RELIABILITY AN
CHARACTERISTICS PREDICTION OACRTN
If Required) AN
IASK 1ss A
LI ."'-
@
OBSERVE ESTABLISH INITIAL AR
FAILUAE RATE SN RELIABILITY e
DURING TESTING ESTIMATION g
TASK 200 :
SOFTWARE -
DETEAMING TESY REFINE LP RELIABILITY -
ENVIRONMENT - RELIABILITY ESTIMATION
MEASUAEMENTS ESTIMATION PROCEDURE
TASK 201
ESTIMATE REFING
OPERATION — RELIABILITY
RELIABILITY ESTIMATION
CHARACTERISTICS)

FIGURE 4-5 SOFTWARE RELIABILITY PREDICTION AND ESTIMATION PROCEDURES

e

-
L™

£

Ak Tt I
h)

< <,
]

)t <
g

'

& 5%

- oy

1

R PO L

L

i v n g

5

by s s 27 2)

parts either from test or from analysis of field data. The
procedures of MIL-STD-756B assume that the reliability of a
component 1s the product of the rellability of its (series-
connected) parts. The software analog to this would be to test
individual assignment, branching, and I/0O statements and to
declare the reliability of a procedure to be the product of the
reliability of its individual statements. This analog is faulty
because: (a) statements cannot be meaningfully tested in isola-
tion and (b) many software fallures arise not from faults in a
single statement, but rather from interactions between multiple
statements (or from interactions between hardware and software).
As reuseable software gains wider acceptance, the assignment of a
reliability index (equivalent to parts failure rate) to standard

procedures may become practicable but this is still in the
future.

The application of the other steps to software reliability
prediction is discussed below.

The following paragraphs describe the application to software
reliability prediction of those steps of the MIL-STD-756B proce-
dure that were found ¢to Dbe suitable. the steps are numbered
here, but the lower case alphabetical designation from MIL-STD-
756B 1s 1indicated in parentheses for ease of reference. Only
asterisked steps are required for the prediction of fault
density. These steps have been taken into account in Figure 4-5.

o

[1O & o Lo QIPONSNH QDS Qyereqd D k&
prediction. This includes an unambiguous identification
of the component, a statement of the performance
requirements and the hardware environment, and a listing
of 4inputs and outputs by type and range. This informa-
tion may be available initially only at a high level of
abstraction but should be decomposed for permitting
tracing predictions during successive stages of develop-
ment, and comparing predictions with estimates and
measurements during later periods.

Q 5 e
is recognized that the fallure rate of software 1s s
function of the life cycle stage. Particularly, there
are significant differences in the failure rate between
test and operations, and between initial operation and

mature operation. Therefore, the life cycle stage(s)
for which the prediction is to be made must be identi-
fied. The probability of fault removal depends on the

extent to which the software is exercised. Therefore
the use (4in CPU-hours) between the time the prediction
is made and the target for the prediction must be known.

3. (e) Define the executlon dependencles within the
software component. This will in general require review

j
:
1
j
:
;
v S

'\'l
202!

A

. At
o S
N <O

P
Vot

t

o

<

H . ["
05
[}
I")\t‘.-f Pd

'
Y
%

=

¢
N

.I
]
s

futh
_,gs?
.S

Lo
~ &

o
e !
piprny, @

;ﬁf??
o2

aa
T
et

IS % 2k S8]
0y

‘i

= s .T:l.
S
= .:'} .
n>¢' (4

%

‘-1
.l
=

N
iy

R :i{'i
iy
3?

b
o

v
o

»

W N T W T T TR R M T W s T T L W Y T w T W YN . v A

ny ,
a

»
R >

",
2 sy
v, \r\f.\f
v »)
: e
=%
) :.f;‘.r"';
\"\JN
§ of a top level flow chart or block diagram of the s
software component in order to identify units (a unit in e
- this context 1is a software element at or above the S
module level) that are executed: el &
. A,
® Routinely - during every invocation of the ggt‘l
e softwara component, or once during each defined TN,
- cycle for iterative programs (e.g., closed loop -
control); A
. STadn
) e Irregulary -- segments that deal with non-routine PO
w events within <the program, including exceptions to DA
R conditions postulated within the program (but not RSRA
exception states of computer or operating system); - "'
s ©¢ Conditionally -- segments that are executed only oatriy
N if some other (non-routine) segment had been invoked NN
y (examples are message logging or creations of new .
files); -
- ¢ For exception handling -- response of the program -
. to exception states identified by the computer or o~
: operating system; ;:fy:
'f_\r:‘;
{ ¢ On demand -- segments accessed only by specific pRs S
{ operator actions such as initialization, data base YL
cleanup, or rehosting. . @
j Discussion of a technique +to0 represent execution
k- dependencies is found in RADC TR 85-47.
N
~ 4. Since both the probability of execution and the accumu-
. lated execution time will differ between these classifi-
” cations, separate reliability predictions will usually
A be required. N
- IV)
. SN,
3 5. (d) De na 8 nogde Q he ® J A Y ‘:-_:"’_:::
! nents. The mathematical models will represent: R
! ®
P) The predicted fault density of each Segment as PO
A derived in the next section; kas'
. S
3] The execution ¢time of each segment prior to the ifai-
. prediction interval -- ¢to determine the expected RN
. fault removal; and "’;
e The execution time of each segment during the s
prediction interval -- +to determine the failure RN
probability. N
~_..:J- Y
Where the prediction interval covers more than one Tt
life cycle phase (such as test and operation) a d

separate mathematical model will be required for S
each phase.

Ry
A 6. (e) Define apnd describe the parts of the item. Use o
’ application area factor. As discussed in the preceding
section, a major divergence of software from hardware

1 ’ .
‘ reliability prediction practices 1is due to lack of an ;ﬁ%&
z equivalent to the hardware part. However, software oy
$' reliability prediction is still based on concepts of o
. quantity, the average number (fraction) of faults per N
. line of code. The number of faults in a software e
] component 1s thus assumed to be proportional to the
o, number of 1lines of code. Although we cannot, at the
i present state of knowledge, identify one computer
i program as being made up of high fallure rate parts and
., another one of low fallure rate parts, there 1s evidence
NS that high and low failure fault densities are associated
with certain application areas. The application area
k factor captures this experience as a basic predictor of
54 the fault density.
ﬁ v (£) Defipe the operational environment., The operational
e environment determines the rate at which the faults N
inherent 1in the software will be transformed to fail- ®
. ures. Operational environment in this sense means the :if'
- environment in which the software will be operating O
v during the intervzl for which the reliability prediction N
;: is to be made. It can apply to test, operation in a f\jv
. prototype environment, or a full scale operational IRy
' environment. The most important characteristics of the :‘
~ operational environment which affect the reliability e
2 are: e
N N
2. [] Computer performance (throughput), .$;$
Z
: e Variability of Data and Control States, and G
: N
i e Workload. ;5&
o RASAN
.. The contribution of each of these to the reliability {5&
e estimation is discussed in Section 5. AR
Rt Pyl AN
- 8. (g -8
~f Differences in the software e
» development environment and in the software implementa- el
i tion affect +the fault density in a manner similar to AR
3, that in which stress levels affect the failure probabll- -xﬂt
v ity of parts. SN
®
N 9. (h) Define the failure distribution ip execution time, s
o Software falls only when it is being executed. There- R
[fore, the natural normalization factor for software .y::
. fallures 1s exsecution time. The software failure rate it
. bsaed on Computer Operation hour is analogous to the s
hardware failure rate ("lambda“) per hour (implying ®
N operating hour of the component). T
) :\:::,
; d-1o .:,:
3 3
I. f.
: 2.
s
() ‘.n"
o WA

l-b --

”
563
oty
27 e

2
a

l.'s'j'\'-.’ van
e
L Y 54y

¥

A\ ¥
?
l(’
ARAR]
..l

7’
’u
,.
{1

)
'i"\
v

\ft
o
P

10. (1)* Compute the Reliability. The algorithms for
predicting fault density are discussed in Section 5 as
well as the conversion of fault density into failure
rate. The estimation of reliability based on testing
experlience is also described in Section 5.

Y
o
N

L T 6
I.'.,].
"u"n"’

.‘ v e
A

N

4.9.2 Software Component Level Rt

L)

v
A
v

>

The 1initial step 1in following the prediction and estimation
procedures 1s the determination of the 1level at which the
software reliability will be modeled. The levels of software are
defined by MIL-STD 2167A as System, Computer Software Configura-
tion Item (CSCI), Computer System Component (CSC), and Unit. The
Reliability prediction and estimation procedures on this Guide-
book can be used at any of these levels.

The following procedure is recommended.

e During early phases of development (Concept Development,
Mlission System/Software Definition, Software Requirements)

model at software system level. ;
e During design phases, model at CSCI level. }'_:::;::“-::'\;Z'
RN

e During coding model at the CSC 1level. For critical -jﬁ?ﬁ:
software the contracting agency may direct modeling at a ROASCSAL

lower level (such as unit). Support software or SN
commercial off-the-shelf programs should be modeled at the o

CSCI level or system level. o
e During testing, model at CSCI level or, if directed, a ”
lower level. R

4.9.3 Identify Life Cycle e
AN

S L \

The software life cycle according to MIL-STD 2167A is illustrated ;ﬁyﬁﬁ;
in Figure 4-1. Applicable points during this 1life cycle when a ,1}3&}”
rellability prediction or estimation is recommended are: ,p}ﬁ{ﬁ
ERONEN

e During Concept Development to support Feasibility Studies. e

e During Mission/System/Software Definition to support high
level architectural studies/tradeoff studies and to
establish development goals/specifications. Results . T
should be reported formally at SDR. <

. J

e During proposal preparation by contractors for evaluation IR

purposes. .?i\f%

3 T

e During Software Requirements Analysis to support feasibil- RINASANA

ity analyses. Results should be reported formally at SRR. NN

AN NA

e During Preliminary Design to support software architecture g

decision and allocation. Results should be reported Lo

RO

_ RSATARAS

4-17 'ﬂ:xfxf\

HOATRN

\f‘_;_,_,,

e R

e e e e T e e e S e S S e e T e e e S e Y ‘:.r}_.- ‘:.:_:J":..':. :.:,\.:":.:\ SONN ::.:‘_.:\'.:\.::.:_\‘.::.:\.-.:‘f:.::.-
;I\ _:l‘_-.f\l\.'.".)_‘,f\r_‘_-_'_ T e e S e .-_‘,.__-\.»_‘.-_..:‘..: - .:_H:..."_:._‘.N\.-‘ o \.{:\. ‘..'\..\ -\i\.-\..__-.\:’\-:‘. \:‘\.‘\,\..
“J‘_'--\q'_-f.:‘\l_ l\f\f 4"" RO S _J'\-f\-'_ :\J‘~. \I_--' .J.-J".-f".-\- > - \-:\-"\2_{'\-" ~“n ._‘-’\- \- LRt H LS L " .‘I‘!_- N

o

[P T A T T O O I N T Y Y "X
v o
~I
i
ﬁ
N

A
NG

formally at PDR.

e During Detalled Design to support detailed design deci-
sions/tradeoff studies/algorithm development. Results
should be reported formally at CDR.

® During coding and unit testing to support developer's
decision to release software to formal testing. Results
can be reported through QA audit reports or problenm
reporting process.

e During testing phases to support test and evaluation

process and acceptance. Results can be reported at the
end of each phase of testing or periodically during
testing. Results of any acceptance testing should be

formally reported.
® During OT¥E as formal evaluation process.
e During post deployment support as an assessment of actual

reliability achieved and to support a Reliability
Improvement Program.

_:.':'.f:‘:r
A
4.10 RELIABILITY PROGRAM PLAN AND RELIABILITY MODELING AND NN
PREDICTION REPORT A
NN
e

[]
g,
o)

4.10.1 Software Reliability Program Plan

A Reliability Program Plan shall be prepared and include, but nct
limited to the following:

a. Recognition of the Reliabllity Program within the
development organization responsible for the development.

b. Description of the software reliability requirements
established for the system and their relationship with the
system reliablility requirements.

¢. Descripticn of how the Software Reliability Program will

be conducted to meet the software reliability
DL
requirements. ’SQ}:
d. Establishment of responsible personnel for the conduct of 55&;:
the Reliability Program with appropriate authority. A
AT
e. A description of the relationship of the Reliability '\",'
Program with appropriate authority. NS

DU}
A ’

f. A schedule (see previous paragraph 4.9) of the reliability Sl
prediction and estimation activities (milestones).

g. Identification of data collection requirements and
procedures to support the reliability prediction and
estimation activities.

3.5

Te LY
- - - - 3 ‘.- '.
.."._’._-' KRR U Rt S et
‘:._",.'_.-' ...,.. RPN = :'.. o \- -
5 ‘.J'.'-'.".'.':-‘."‘."-"./'." y .'.'. ,/ N
. » ’ -

h.
E
v
v
v
,
g
]
y
b
L'-
b,
LI
G

.. - LIS . L P P N . . -
A e A A A e e A A v et et Y P L)

h. Description of the reliability prediction and estimation
procedures to be used.

1. Identification of potential or known reliability problems.

J. Procedures for recording the status of actions to resolve
the problems identified.

4.10.2 Software Reliability Modeling and Prediction Report

The reliability models and reliability predictions and
estimations shall be documented in a report that identifies the
level of analysis, summarizes the results, documents the data
sources and techniques wused in performing the analysls, and
includes the component definition narrative, resultant analysis
data, worksheets, ground rules and assumptions. Interim reports
shall be avallable at each design review to provide comparisons
of alternative designs and <¢to highlight high fallure rate
elements of the design, and yproposed design corrections or
improvements. The final report shall reflect the final design
and provide 1identification of potentially high fallure rate
software elements and of software elements that are especially
critical to mission success. ¥hen submitting &a report
applicable for an Exploratory/Advanced Development Model, a
simplified reliabllity modeling and prediction report Is
appropriate.

4.10.2.1 Summary

The report shall contain a summary which proiyvides the con-
tractor’'s conclusions and recommendations based upon the analy-

sis. Contractor 4interpretation and comments concerning the
analysis and the recommended actions for the elimination or
reducticn of failure risks shall be included. A design

evaluaticn summary of major problems detected during the analysis
shell be provided 4in the final report. A list of software or
functicnal elements of the system omitted from the reliability
nodels and reliability predictions shall be 1included with
rationale for each element’'s exclusion.

4.10.2.2 Reliability Critical Element Lists

Reliability critical software components of the system extracted
from the reliability modelircg and reliability prediction effort
shall be 1listed and included in the summary. Reliability
critical software components include high failure rate components
(experienced during testing), real-time processing components,
and those components performing mission critical functioms.

~iAAAL

d

P O

X
v
$I

s
’
v
0

“‘"'
P R
NN

‘:’".',.-'

51
-"

..‘.
Py

S Yy
SN A

LT T S
.
-
b

]

b P
2

ns
g

o’ ‘l’
I
»

L
~ YA
)‘I'.(\
*u‘ LA
s

AR
<

XA
[4
)
AL

“o N
P
.'-""l
< 0
.
2

h
PN AN
waias
[

N
Xy

-
.
a4

AL
LI
.‘l'l‘l
<ua
St

b

»
]

g
.

' f. . L] . * e . - l
A ."'vlr;."-.',-. A
4 B

g'. -‘.":'::I, LA
REP NS,
AALUARILIL

.!
0

[
<@

<

L7
A %

s
(,\..
'1.:;.'/

G AS G AL LG LA L hs's S0/t 08 =3
" A
A
N
4 oy
S
s Ay
N oS

L §
.'I'. v
XX
) i.

P
X
[l 5

','.'.'.

4.10.2.3 Prediction and Estimation Methods

’
.'
>

&

.‘-

The data c¢ollected and results of the methods and procedures
described 1in Section 5 of this guideline should be provided as
appendicies to this report to substantiate the summary
conclusions and the identified critical elements.

F

5

%)

y Ay Ny
S
5

4.11 SOFTWARE RELIABILITY PROGRAM TASKS

In addition to developing the Software Reliability Program Plan,
using the procedures in Task Sections 100 and 200 of this
guldebook to do reliabilty predictions and estimations, and
documenting the results in a Rellability Prediction Report., other
tasks to be performed with the Software Reliability Program are:

MONITOR/CONTROL OF SUBCONTRACTORS AND SUPPLIERS

e a0

The contractor shall assure that software components obtained
from subcontractors or suppliers meet reliability requirements.
The contractor shall, as appropriate:

]

Bl

a. Incorporate quantitative softvare reliability
requirements in subcontracted software specifications.

PR)

b. Assure that subcontractors have a Reliability Program
» that 1s compatible with the overall program and includes
. provisions to review and evaluate the software to be
delivered.

y c. Attend and participate in subcontractors design reviews.

r""

d. Review subcoatractors predictions and estimations for
[accuracy and correctness of approach.

e. Review subcontractor’'s test plans, procecdures, and
reports.

PheiOnd) X
4 % S N

f. Require delivery of appropriate data collected irn
accordance with the Reliability Program.

M g. Assure the subcontractors have and are complying with

N corrective action reporting procedures and follow-up

" corrective actions.

' h. Monitor reliabillity demonstrations tests.

N A reference doucment is MIL-STD 52779A.

Y

AS

£ PROGRAM REVIEWS :

b ARG

) The Reliability Program shall be planned and scheduled to permit _®

g the contractor and the Government to review program status. O,
RS

4-20 ::.\. '

SN

X Ny

\ v \":‘\'.

.\J-:‘ NS AN NPT N :'-. '.:'.

7

B %
’’,

PR AP S ‘ LI " e]
t&ﬁ‘\:&"‘r\"\’\ﬁ"' DG
ALY

Formal review and assessment of contract reliability requirements
shall be conducted at major program points, identified as system
program reviews, as specified by the contract. As the program
develops, reliability progress shall also be assessed by the use
of additional reliability program reviews as necessary. The
contractor shall schedule reviews as appropriate with his

subcontrators and suppliers and insure that the Government is
informed in advance of each review.

The reviews shall be identified and discuss all pertinent aspects
of the reliabilty program such as the following, when applicable:

*

&
0
5

¥
X
)

<+
h)
Y

AR o
RRF A
Y
X7

SO

NS
-I
Ll A o

;n

Pl
-

fw
N

','i
XA A
\;‘. *

h)

P N
-'i‘.,"'-ﬁ

a. At the Software Requirements Review
(1) Identify reliability requirements in terms of fault
density and failure rate (see Table TS101-1). .
r~;;'-~'— 0
(2) Establish allocation of software reliability SN
requirements to software components (CSCI). ej:.-}_.-',:i
AR)
b. At the Preliminary Design Review (PDR): E:‘_::::m
-"w-.f
(1) Update reliability status including: 0
f..-'..-...-:..
a. Reliability modeling Ny
b. Reliability apportionment RSN
c. Rellability predictions AN
d. Failure Modes, Effects and Criticality Analysis RN
(FMECA) e 2
e. Reliability content of specification PN
f. Design guideline criteria RS
g. Other tasks as identified :.:-;':_.::.j
OTNCY
(2) Other problems affecting reliability O,
(3) Reliability critical items program. p!‘-
__.\,‘.,‘-
JRSICRA NN
c. At the Critical Design Review (CDR): ',‘\-:.-\-'f.-\-‘;-_-_
IASLGE
(1) Reliability content of specifications ey
e
(2) Reliability prediction and analyses BRSERbL
\'_\:.\ ‘-'_
(3) Reliability critical items program NN,
NN,
(4) Other problems affecting reliability :.:\.-‘,-
(5) FMECA o
“n.‘_- \‘:»:‘.-
d. At Interim Reliability Program Reviews: ARG
(1) Discussion of those items reviewed at PDRs and CDRs ::_ __\?.,
|_‘ ~
(2) Results of failure analyses FFRY
D LAY
4-21 R
- . N
o
AR
Ly
SR
A0 AT AT AT AT AT RIS P I I SRS Rty Wi A Rt v N A ARSI ST NV sy ‘-:.,'-' O S ."'".'::\)
e L Ry
R AR RSN R N e A

. r B S AR A Y 45 Vb L T AN S AN
4

AN
i
d 24
L J
v
NN
, (3) Test schedule: start dates and completion dates 3§¢~.,
. ALY (]
(4) Component design, reliability, and schedule problems 5Oy
) Kb
(5) Status of assigned action items -Eﬁer
P
(6) Contractor assessment of reliability task ::25%;
effectiveness Tt)
(7) Other topics and issues as deemed appropriate by the .
contractor and the Government. ;ijq
VA
e@. At the Test Readiness Review: :'_; ~
e
(1) Reliability analyses status, primarily prediction ”‘i’
\ g
¥ (2) Test schedule v '.::'.c".
; h
K (3) Test profile 3;~r
A
M
(4) Test plan including fallure definition Li#f?
(5) Test report format Ry
- _--:_;.f_:.
(6) FRACAS implementation PRI
«* -. 'J'-
DAY
A reference document is MIL-STD 1521A. PSS
...
FAILURE REPORTING, ARALYSIS, AND CORRECTIVE ACTION SYSTEM }ﬁ}i&,
N
(FRACAS) NN
LIRS
The contractor sball have a closed loop system that collects, Q?SQ
analyzes, and records failures that occur for specified levels of S S

the software prior to acceptance by the procuring activity. The
contractor’'s existing data collection, analysis and corrective

’. ‘l --.
y action system shall be utilized, with modification only as 53 i~
\ necessary to meet the requirements specified by the Government. j::;-:\';;
: RN
R Procedures for 4initiating failure reports, the analysis of ;}“;{
failures, feedback of corrective action into the design, P
manufacturing and test processes shall be identified. The e
analysis of failures shall establish and categorize the cause of e
failure. RS,
I.\-.\.
SN &,
The closed 1loop system shall include provisions to assure that R
effective corrective actions are taken on a timely basis by a TeTate
follow-up audit that reviews all open fallure reports, failure q;vgé.
analyses, and corrective action suspense dates, and the reporting RN
of delinquencies ¢to management. The failure cause for each N
failure shall be clearly stated. 35{Qj
NNy
¥hen applicable, the method of establishing and recording NN
operating time shall be clearly defined. e
,-_'.F.::; R
422 i
RSR
AT
NS
®
-';'-'::'. ;
:.';\'::-::-C:-:.';-." ::'C:\’_-;;'.",\::-.:\ R A e T LT T I N YA AT W O N A ATRTAFRFATRSIEAY N e
n" o, CRIES ", i.n‘ N Tagt A A A n A Y '.'\,"\. RS ASR AS \:_'_ NN SN ‘,:-‘.._'y..\ Y AV AR I .-'_:l'. 0 .- .
S O e A T L O SRR ok $$§«“.-‘§x-.’-.“.'-..- AR

Prg i gt RO B s Rt)t Rt 0 el fal 0 Rt et
v Y . - -

L - . at - - -
- U -l - - - - - - - - .

The contractor’'s closed loop failure reporting system data shall
be transcribed to Govermment's forms only 1f specifically
required by the procuring activity. Appendicies B, C, and D
provide appropriate forms. A reference document is MIL-STD 785B.

PAILURE REVIEW BOARD (FRB)

The FRB shall review functional/performance failure data from
appropriate inspections and testing including subcontractor
qualification, reliability, and acceptance test failures. All
failure occurrence information shall be avallable to the FRB.
Data 4including a description of test conditions at time of
failure, symptoms of failure, faillure isolation procedures, and
known or suspected causes of failure shall be examined by the
FRB. Open FRB 1identified items shall be followed up until
fallure mechanisms have been satisfactorily 1dentified and
corrective action initiated. The FRB shall also maintain and
disseminate the status of corrective action implementation and
effectiveness. Minutes of FRB activity shall be recorded and
kept on file for examination by the procuring activity during the
term of the contract. Contractor FRB members shall include
anappropriate representitive to the FRB as an observer. If the
contractor can identify and utilize an already existing and
operating function for this task, then he shall describe in his
proposal how that function, e.g., a Configuration Control Board
(CCB). will be employed to meet the procuring activity
requirements. This task shall be coordinated with Qualilty
Assurance organizations to insure there is no duplication of
effort. A reference document 1is MIL-STD 785B.

CRITICAL RELIABILTY COMPONENT IDENTIFICATION

Based on the Software Reliability Program, the predictions and
estimations, and other analyses and tests, the contractor shall
identify these software components which potentially have high
Tisk to system reliability. Techniques such as Failure Modes,
Effects and Criticality Analysis (FMECA), Sneak Clrcuit Analysis
(sCA)., Design and Code Inspections, Walk throughs, etc. are
recommended to assist 1in this identification process. A
reference doucment is MIL-STD 785B.

TEST PROGRAM

The Reliability Frogram shall be closely coordinated with the

P,
A)

’1

AR
/) efi
53&}? 4

..

o
R
. : -
f Iﬁpaﬂp
]
iy "{'.d"n’ @

L
1)
o

3
.
.
o

»
[

¢
0y

Al L

LN
e

@
o
"
'
o,
N 0

?q

}&ss\
W

3y

A=

NS

3
P
N
g

@ .
:

o "

oy
f

P e

)
el

Ve s
A3
P e
l,';;.;"\
f\’ oy

Ry

[4

s
&

7$k

e

- e

S

L)
UL
s
o 4
S
s 2

P

)

N el
“
. e

*s L
:'-":‘
u.""'"'.\ -

PR N
."4‘-
Mh
"
.

e
s T

,. a

Sl .
Ql... .‘ *

5 %

P

]
5 &
W
7
b

‘it
ANS
.
DI,
v ,
w5

)
.
-
.
-
-

’
[4

R aa

Test Progranm. The Test Program shall include a Reliability ... 9
Qualification Test to demonstrate achievement of the reliability 5¢\?gh
requirements. The Test Program shall be specified by reference eeel
toc appropriate Military Standards. Reference documents are PECORSRS
MIL-STD 781C and MIL-STD 2167A. A
KRARANCY
L 4
[N oM
e

. 'f%{&\

1-23 AR
'5-\‘ AR

W

PG

L J

Kt WIAT

. P e~ a- - - D T T T S P a™a

M e e MW L% T e ™y % Wt L e e T % s ‘._\-'&"N,‘-‘.\‘\‘-'\."-‘.‘-'\.'\\v“-"-‘_._'-_'.\ _'\\‘-_\'.\\\
::"'\:'-.':'.',‘-5--f:4$-.';-.$~.;«.$-.$s$\$\§~?.':-.'_':\.i\‘-’_-.: \‘;:f .:\;,\j-.:\:';\j--:\:\f,a: \::‘-:\:‘-f:'\. .r‘r.:'\‘}":-":»"f-"':' ;\;\‘,-.:\:_\:‘.‘_:-\::\:\..
B R R R R R N AN

TASK SECTION 100

SOPTVWARE RELTABILITY PREDICTION

100.1 PURPOSE

The purpose of task 100 is to
describe the general procedures for predicting software
reliabilty, 1in terms of FD based on character of the application
Development Environment and Software Implementation.

100.2 DOCUMENTS REFERENCED IN TASK SECTION 100

MIL-STD 2167A

MIL-STD 2168 (proposed)

RADC TR 85-37

RADC TR 85-47

MIL-STD 756B

MIL HDBK 217D

MIL-STD 785B

100.3 PROCEDURES

Make Reliability Prediction

Use the measurements 4in Tasks 101, 102, 103 and 104 to predict
reliability as follows:

e Project Initiation: Use metric A as prediction: Rp = A.

e Requirements and Design Phases: Use metrics A, D, S1:
RP = A*D*Sl1.

¢ Coding Phase: Use metrics A, D, S1, S2: RP = A*D*S51*S2
100.3.1 SYSTEM ARCHITECTURE

A system architecture diagram should be obtained or developed.
This diagram should show a high level allocation of software
components (typically at the CSCI level) to hardware components.
If available, control flow and or data flow diagrams prepared by

the design team are valuable for preparation of the reliability
model.

2% g%

*r

" "
'i‘-"-.\
i /...:; '...
Ao 2
Py) A

Y
LR

'

=hhh Y
Id

?

v
]

L
"l

0

2

>
AN

L 4
P

PR A A
N
XS
[]
(\(~11‘1

5
X

7,
2
S
"

\'?

B
T
3

21

N

&
{_
=

TEY Y Y
LA
A

i
e

. .f,

“?:ﬂ.

LR
P

NTATS

h 4

=

[d
h o

A 5 4

2
‘—I‘ &
.éﬂﬁﬂ

e

1

A
X
A

7

100.3.2 DEFPINITION OF COMPONRENTS

IR A 'y
AN
LA
ls)
hp

Pd
X
Y

Each software component to be modeled should be identified and
defined. This information is typically available in a system/
subsystem specification. See Section 4.9.2 of for a description
of suitable component levels.

TR

oY

Yy

<

100.3.3 RELIABILITY MODEL

- o e

Based on the system architecture dliagram, the software compornents
allocated to hardware components can be identified. This
allocation should be overlayed on the hardware reliability block
diagram. The reliability block diagram shows interdependencies
among all elements or functional groups of the system. The
purpose of the reliability block diagram is to show by concise
visual shorthand the various series - parallel block combinations
(paths) that result 4inm successful mission performance. A
complete understanding of <the system’'s mission definition and
service wuse profile (operational concept) is required to produce
the reliability diagram.

A4

L R]
[

o AL

"

'. ’. ;‘. '.. ’l "1.' C

QR

lﬁ ey JJ‘J

At this point, two approaches can be taken. The first is to
utilize the prediction techniques described in Tasks 101 through
104 to calculate a Reliability Figure of Merit (RP)for each
component identified in the block diagram. This is typically
done at a CSCI level. The second approach is to model at a lower
level the software processing within each software component.

L]

.\"- LN S
o e T Yo T S

100.3.3.1 Reliability Model 1

A

For each software component or component grouping on the block
diagram, follow tasks 101 through 104. These tasks provide the
procedures for calculating a predictive Reliability Figure of
Merit (RP) according to the following equation:

-,
-
<,
o
M
o,

RP = A*D=*S

where RP 1is the predicted fault density, A the application type
metric, D the software development environment metric, and S the
software characteristic metric. A is expressed in (fractional)
faults per 1line of code, and examples of actual values are
presented in Task 101. D and S are modification factors, and
each of these can have a value that is less than one (1) if the
environment oOr implementation tends to reduce the fault density,
or &a value of greater than one if it tends to increase fault
density. These factors are equivalent to pli factors in MIL HDEK
217E. The Application Area metric represents an average or
baseline fault density which can be used as a starting
point for the prediction. The Tasks 101 <through 104 are
Preliminary procedures for prediction. The tables, coefficients,
and algorithms will be updated as a result of data collection and
statistical analyses being performed on more software systems.
Refer to Data Collection Procedures (Appendix B) and Worksheets

RN N

W W T I g WW?‘P-—TTI-W‘-;'-'I’!W

LV L VU O O NP N X ANV ™

g I -, Py N
AV W m v e O ST R T, MNP AR A S WW LS WLV, AR AR

(Appendix C and D) to comply with these prediction procedures.
This 1s a generic procedure and should be applicable to all
software components.

100.3.3.2 Reliability Model 2

For specified software components, a detailed model based on a
functional flow analysis can be developed. A functional decompo-
sition of the software component is required as well as a mission
thread analysis. For each subcomponent as defined by the
procuring authority, the procedures described imn 100.3.3.1 can be
used to devise an RP. The flow between these subcomponents with
individual reliability numbers can be modeled as a Markov
Frocess. RADC TR 85-47 describes this modeling approach.

100.4 SOFTWARE RELIABILITY PREDICTION

The results of using Reliability Model 1 or 2 is a prediction of
software reliability for each block in the system/hardware block
diagram. A description of the format and documentation required
for a Dblock diagram is in MIL-STD 756B, Task Section 100. The
software reliability prediction numbers should be entered on the
block diagram and incorporated into the mathematical model of
that diagram. The use of these prccedures and assumptions made
should be documented under paragraph 2.3.8.1, Software
Reliability Assumptions, 1n that task section.

When wusing Model 1, the predicted software reliablity figure of
merit is a fault density as described above. When using Model 2,
the predicted software reliability figure of merit 1is a
probability that the software will not cause failure of a mission
for a specified time under specified conditions. The probability
of failure for a specified period of time is given by the failure
rate, the expected (average) number of failures per unit time,
usually taken as a computer- or CPU-hour. Because the failure
rate has a direct correspondence to the definition of software
reliability, it 1is selected as the primary unit of measure for
software reliability.

The fault density, predicted by Model 1 is used as an early
indicator of software reliability based on the facts that: (1)
the number of problems being identiflied and an estimate of size
are relatively easy to determine during the early phases c¢f a
development and (2 most histcrical data available for software
systems support +the calculation of a fault density, but not
failure rate. Fault density is the number of faults detected (or
expected to be detected) in a program divided by the number of
executable lines. Fault density was found to range from 0.005 to
0.02 1in high quality software, 1in early research on software
reliability. The predi:tion of fault density does not regquire
knowledge of the executicn envircanment, and thus it is suitablie
for the wearly stages of software development. As informaticn
about the intended execution eunvircrment becomes available, <the
predicted fault density c¢an be <translated 1into a predict=d

2%&&5
o
R}ﬁa'
AN

S\\E:

Qﬁ&ﬁ
an_w A
e

2

A
J‘v
(s

B]
£
F& 4

o

o
27,
)

»
P
»

Y
AN
/,

A 1

22,7
¢¥?¥
LY,

5
¥

&
P4

T
LA
A .

kT

P
L

)'
AR

}"v:‘
L
"
oA
y

-
-
| 4

-

1
:aﬁ.

'
L5 Y ¢

-rl:: ~ Y
[

he)
‘:l;i

SN
AN
N5

y ty
L .I
Yoy

.

Y i _'l_':'

St
ey

o« =
,}ﬁ\'
e % %

‘.'l"
T d
LA
""'
P A
%5 5 %
P 4

5/ Py
fen

E]
e

Vs ’?
¢

‘™
Y
.
.~

i
[
N
S
2

P T D T T O TN Rl e ke ¥ o - gat fav age -
A R i S A N Y L L L Sl P S N S Sl ---lx--.‘ ------------

failure rate.

The fault density cannot be used directly in the system block
model. Instead it can be used as an indicator for unreliable
components or critical reliability components. The fault density
derived by the prediction methods can be compared to Table
TS101-1 which contains industry averages or with the specified
fault density requirement, if stated in the RFP. Actions can
then be taken in +the early phases of development to remedy
pinpointed unreliable components through redesign,
reimplementation or emphasis and rework during test.

A transformation mechanism between fault density and failure rate
is based on the following. A faulty statement will not result in
a fallure under any circumstances until it is executed, i.e.,
until it affects either the memory content or the control state
of a computer. Given that a fault exists, the probabillity of
initiating a failure is dependent on three characteristics of the
execution environment:

e Computer performance (throughput),
e Varianility of data and control states, and

® Workload.

These characteristics affect both test and operation and the

metrics applied to them are discussed under separate headings ﬁivi

later. Q}:}‘
The following three approaches can be used for the ,;!

transformation: 'fi5~

e Using established empirical values, such as are included e

in Table TS101-1. e

-".--. »

e Developing a theoretically based transformation function. e

oo

e Using in-house data to derive an empirical relationship. BN

As a baseline for the transformations discussed here, Table -:EE
TS101-1 provides currently available data. Using the Average NN
row, a transformation ratio of .1/.0094 = 10.6, operational .9

fallure rate to fault density, 1s a baseline transformation A

ratio. Examination of Table TS101-1 shows that for individual RS

application categories contributing to that average, the el
transformation ratio ranges from 1.2 to 23. Table TS100-1 is o
provided as currently available transformation ratios for the et
individual application areas. K.J
Y

The second approach requires the following deviation and data Lbﬁ

collection. Practically all software failure rate models RN
postulate a direct functional relationship between the fault e
content of a program and its failure rate. In the simplest case, R
@

SRS

AN

TS-4 :.:‘:,.\

NN

-y
I,

)

7
7

] g e, P SN s g NI gt TP XA NN
s e $ s s ® St
r"ﬂ......f..: ISR RRARI ..W..-..nm L3 VAT R S U NR SEEIRARST NI Je RO
"

m
3
A
r
A
%
W
5
5
h Z
(@)
m = = -
r. A MAO
! ot e o mll. ~ ~ MM 00 o %
= C«] © — — ot o > =
; O = pf <
=D Z >
o — - Z (@]
¢) Z = « Z
=0« &
L, =
b wh -
= m m
&
P
L H Q =
% < e et
(7 sR72]
: =z 7
< [+
A= - o) m
4 = m G| 2
3 - >t Z z
3 < O B O O S m
. [z > P w et @) i
7 Sz |82] ¢ E| & | &
; B o | & Wl 213 2
., *lelg|g(8|g|8|8
. %) f m m Qa <
)
"

A ‘..uh. Wlh h JJL.N .\)\--u-.-.-\\ -n.f- -l-d.i--».- - o e e~ BN oy L e

v P p 1 P . ¢ 2

WO La% ' afasta pta- et gty At e it alnt iy et Ant A A et Bgh 008 Lhgt thel Y OIS At ey phe RNt A A S A

X) Rl
s R
®
N the functional relation is a constant, e.g., the failure (hazard) ﬁ?
'y rate is proportional to the expected value of the number of r :;
' faults remaining. ﬁ? V
X oo

These relations permit the estimation of fault content, given the
failure rate, or vice versa. Two cases are the estimation of the
> number of faults removed in a give time interval (expressed in

7. terms of execution time). For the first of these we use:
.
o L - Lo * exp (-Qt/No)

where L 1s the fallure rate at time t, Ly is the initial failure
. rate, Qt 4is a factor that is considered constant in a given
environment, and No 4is the initial fault conteat. Given the
program size, the fault content can be converted to fault
density.

The number of faults removed during e time interval can be
obtained from:

H
B,
" n = Ql * (Ll - L2)
i
. where n is the fault decrement, Q1 & constant in a given environ-
ment and L1 and L2 are the failure rates at the beginning and end
=, of the period over which the fault removal 1s estimated. T
(:3 In spite of the mathematical simplicity of these formulas, e,
o considerable effort 1is wusually required to find values for the N
AL constants Qt and Ql that are applicable to generic environments. A
. The +tbird approach requires that fallure rate data be collected '?!{:
& during operation of the software and compared with the fault :;;\.
y density recorded during the development. This 1s possible 1if ol
- parts of the system are implemented prior to other parts, i.e., N
:: an incremental development, and those parts that are implemented ‘f?E\
e early are put through an IOTYE phase of testing. Another e
’ situation where data may be available 1s in an environment where _,g.
R, a new system or a new generation of an old system is being *ﬁéxi
r: developed and existing fault density and fallure rate data has iggh
I been collected on the existing system and can be compared with NS
X the new development. Data Collection Procedures 5, 6, and 7 in "
o5 Appendix B can be used to calculate fault density. et
-3 ®
= If one of the empirical approaches (first and third approach) is A
Ko used, the computer throughput must be taken into account if the {y::
2 baseline is derived from a different computer than the target for ANOY
:} the 1intended application. Computer performance determines the A
, frequency with which statements are executed. All other things TN
- being equal, a program continuously executing on a fast computer ®
< will experience a higher failure rate than the same program NS
- executing on a slower computer. ni&}
- LA
- Failure rates expressed in computer-hours (also referred to as N
5 wall-clock-hours) or CPU-hours are the most useful reliability .;¢;
’]
o
N I'S~¢ f:’:;:
.. AN
A et

S ¥ oia

> X R AN y RN T MR R R KA *

metrics in a given enviromnment, but it must be recognized that
the failure exposure of a program is dependent on the number of
executions rather than on passage of time. Thus, 1if one pass
through a program with a given data set takes 1 second on
computer A and 0.1 second on computer B, then the failure
exposure per unit time imparted by the latter is ten times that
of the former. Other things being equal, one expects the failure
rate (expressed in common time units) in B to be ten times that
of running the program in A.

The customary measure of computer performance is the instruction
processing rate expressed as MIPS (Million Instructions Per
Second). Although this relates to the native imstruction set of
each computer, and is therefore not strictly comparable across
computer types, it can form a working basis for most of the
transformations required for reliability prediction.

A faulty program executing on a computer, even on a very fast
computer, will not experience software failures if it constantly
operates on a data set that has already been run correctly. On
the other hand, introducing deliberate variability into the input
data, as in a test environment, will accelerate the occurrence of
failures. Thus, metrics for capturing the variability of the

environment are an important component of the transformation
procedures.

The workload of the computer system affects the software failure
rate even if the execution frequency of a given program is held
constant (e.g., in a multi-tasking environment where the workload
is a composite of several programs). It has been found that at
very high workloads, the failure rate can increase by more than
an order of magnitude over the baseline (low workload) rate.
Suitable metrics are discussed in later sections.

The primary use of +the transformation mechanism is to permit
reliability prediction using fault density level to be translated
to failure rate prediction.

100.8 DETAIL TO BE SPECIFIED BY THE PROCURING AUTHORITY.
a. Requirement of tasks 101 through 104.
b. Statement of reliabillity requirements.

c. Define the software component level <for prediction
(different 1levels may be specified for each life cyle
phase).

d. Define 1life cycle phases to be covered and prediction
milestones.

e. Identify data collection procedures (see Appendix B of
this Guidebook).

d. Identify fault density/failure rate

transformation
procedure to be used.

.....

TN
f'.,'n,'."-f‘.

P s
v, l'{ . P‘..\.'('v.:l".l 1

5".”1
7
5

I.}
%
‘sf

N A At Y

[o 1
i
4 #k

e A
i

ﬂn
Q
aﬂ

b

h‘p
D
]
P
<5

KL

{

[A

A ST
M 2_1

Pg

) 8
s,
RS

g

° ‘....' .
R

N

>
)
,

1)
77,
P4
e

r
?
Y

l“ls l..
" .'

v |'~:
#
o
"." Py

L ANYS SN

] PP SRS
RRARE X
‘.,\".'l."{ e d-.

” ~.1.$..".‘.'.‘
P/

vl
AN
1zq33}
LN]

(4 Il: -"’4

GRS
h

L v e Y
y .
-, q 4
1
oL
'{""

27 -
L

‘s

.
v

v

- oo »om 5, B s Al Bl A A P . v e s e Bab Bl B o]
iy pig 20, RS, RV, IS, - e e g BN Padta ARl RA Rl LS AN -~ " -

‘gl tpt et sl it iy Rog RO ROl N b R A R L P I I e I It A et e R ol el A A A A A A S Attt el b
. Poi iy
L. @
M :,\' T
) BN
TASK SECTION 101 :.;:',’;:_.;-;
, -:\)_'f_':l
b SOFTWARE RELIABILITY PREDICTION BASED ON APPLICATION ST
: e
NN
101.1 PURPOSE NN
PO Y
R
The purpose of task 101 is to provide a method for predicting a :-.{\:' N
baseline software reliability. N
101.2 DOCUMENTS REFERENCED \
See Task Section 100. N

101.3 GENERAL PROCEDURES ARG

APPLICATION TYPE (A)

Tt Wy =)

PN
Using Data Collection Procedure 1 (Apgendix B) and the -_’.:'-j:s'-: ,
corresponding Worksheet O (Appendix C), identify which RGN
application the subject software represents. Assign the corre- ~j.s_.'_-;'.
sponding fault density to A using Table TS10l1-1. Use the average NS
fault density column. .
RS

An initial RP = A. AN
NN

> M
101.4 DETAIL TO BE SPECIFIED BY THE PROCURING AUTEORITY. ;:;-‘,‘.'j :
RN

a. Statement of reliability requirements. ;
"\- \"'.-. 3

b. Define the software component 1level for prediction ‘.‘_:';.-:5
(different 1levels may be specified for each life cycle A

phase). > N

e

c. Define 1life cycle phases to be covered and prediction i
milestones. SLATAT

NN
d. Identify data collection procedures (see Appendix B of C;:«.-'_:',‘
this Guidebook). AN
\."’\‘:\"

e. Identify fault density/failure rate transformation SN
procedure to be used. -,

AN,

)
LA,

SN
:\\"'{\'
oy

=%

.-r:".

“7“.
A :

N

e SRR

r Pl 8 .".h\:n":

\-',.\..'\

RO,

LY

S
e e e B e G g e B e e e 0 e e e A e e N e T e e
e D T S e i o D e e

Ay A AT AN N A A R A R R R A A AR L A

L
VoY

-y
«a

— -
Ot

-

LA laks

AT

i

. ... N l-h' »
....;lﬁaﬁﬁ{{dd

PP

™ L @
e LSRR
AP BANEA
O O AN AT

[PI01 UL apTEUT 10U *1SIT JUUMP SIIPL IN|TR) TR SINRA OM IS |4

AR ER RN
!-\u.\.-..f\-\.‘-
) ...-. O
Pl s

, _‘.J.-.JI-I.A- W
LI @ BRAANSY
..-<f|-.] --r.-.-.-s .\vc.-ﬂx-.Qﬂ_F“f\

6l U

14!

Lo

600

59°¢LT°S

(1

JOVIIAV/IIVIOL

o7

£600

€Ly

SEv'Le

TVINIWJOTIANA

R61

S600

S8OO°

LTY'SLS'T

HALNAD
NOLLINAOHd

OO0’

8100

060°0%1

TOXINOD
SSHY0¥d

190

RLOO

TST'RY

BASIERA RN

v

o0

feRe6L’

MOALVALS

OO0

RZ10

L19°0%S

ANYOSINHLY

rS00 801

L} 0L

- oRO

4LVH ALVH
cENRINZ ANV
AdA (LS TYNOLLVNAJO

SIWALSAS ALISNAA NN SIWHLSAS
! 110v4 1 40 SANI'T !
40 "ON Ada ars| 1Iv4 VIOL 10 ON

ALISNAA

WAHLSAS Ad

440.)

NOILVOI'lddY

JIvE ANV

ALISNAQ J1NVA

SAVIVA JLVE JHINTIV ANV
ALISNYA LIV ANTTASVY

1018 L

AUV

. .
e s sy
[AVAPAPLA AN

‘ TASK SECTION 102
‘ SOFTWARE RELIABILITY PREDICTION BASED ON
y DEVELOPMENT ENRVIRONMENT

102.1 PURPOSE

The purpose of task 102 1is to modify the baseline software
1 reliability prediction calculated in task 101 based on the tyre
g of development environment.

102.2 DOCUMENTS REFERENCED
See task Section 100.
102.3 GENERAL PROCEDURES

DEVELOPMENT ENVIRONMENT (D)

Using Data Collection Procedure 2 (Appendix B) and the
corresponding Worksheet 1 (Appendix C), identify which class of
development environment is being used.

Three classes of development environments have been provided:

e Organic -- Software 1s being developed by a group that is
responsible for the overall application (e.g., flight

control scftware being developed by a manufacturer of
flight control systems);

o Semi-detached -- The software developer has specialized
knowledge of the application area, but is not part of the
sponsoring organization (e.g., network control software
being developed by a communications organization that does
not operate the target network); and

® Embedded -- Software that frequently has very tight
performance constraints being developed by a specilalist
software organization that is not directly comnnected with
the application (e.g., surveillance radar software being
developed by a ¢group within the radar manufacturer, but

not organizationally tied to the user of the surveillance
information).

v

The baseline 1s the semi-detached enviromnment. It is expected
that the organic environment will generate software cf lower
fault density and the embedded environment software of greater
fault density. Based on the selection, assign the correspcrding
value, Dy, to D from Table TS102-1.

D-Do

LA Y .I'
Il"‘

,
+
2
2
'

ey 4
A
.'
xﬁﬁf.'

~Y
v,
7,

oo
Pd
“

)

v % %
I.“h
5
;" Pg
5 %

4
A

i
W)
v":i}

1'.,-

o Pl

- 5 @
"-",{.. L]

4
v’

b
":'.

14

v
v L}
2

h]

~ 4
K
A
".

o h
NN e
! /."';'. A |,‘v(R
S O SN

frreT
L

R .
’

A
.{l

P oS
l'{l.s'll
STy
P
L AR
P

P
AT T
4554}~

x
'."l‘"{ ﬁf.id .

2 P
* .‘
Ps 4
« o
2 @7
[l

..
RSRSAS
N

.
.
.

LIRS Al

WHANNN

[el b W o

3 YR

-

&

i '. .'- ’t '.- “-

e

1
r.r

Ll Sl Nl S

TABLE TS102-1. DEVELOPMENT ENVIRONMENT METRICS

4 ME R I SR S SR MK MG IR TE 3 NE SN ME ND NN SR SN S G EE NN SN NN MR NK NS NE EE SN SR 2N S NE S5 MR R NN SR S5 ST NN S0 BN K A BN SR SN BN SK SN 3% N O3S WS 3R 3K 4

1 ENVIRONMENT | METRIC (FAULT DENSITY MULTIPLIER) Do |
'*-------------------’--------------------------------------+
| ! |
! ORGANIC | .76 |
) [|
i SEMI-DETACHED I 1.0 |
| | |
+ EMBEDDED | 1.3 !
| H |
; | '
+ +

If more specific data about the environment 1is available,
calculate D using the checklist in Data Collection Procedure 2
(Appendix B) for Development Environment. This modified approach
is based on specific organizational/personnel considerations,
methods used, documentation to be produced, and tools to be used.
Recalculate D as:

D-Dm

where Dy is calculated from the following:

(.109 Dy + -.04)/.014, Embedded

v}
g
]

o
=]
'

(.008 Dg + .009)/.013, Semi-detached
Dp = (-.018 Dg + -.003)/.008. Organic

where Do = the ratio of methods and tools checked divided by the
total number of methods and tools in the checklist in worksheet
1. Do 1s a ratio of methods + tools checked/38. Dc is a number
vetween O and 1. Dy should never be less than .5 or greater than
2. If the calculations result in a number less than .5, set Dy =

5. If the calculations result in a number greater than 2, set
Dm=2-

D‘Dm
PREDICTION

An updated prediction is calculated by:
RP ~ A*D
102.4 DETAIL TO BE SPECIFIED BY THE PROCURING AUTHORITY.

a. Identify data collection procedures (see Appendix B of
this Guidebook).

b. Specify wvhether a generic or detall development
environment factor is to ke generated.

TS=-11

LGy
AL

s

L P et o)
LY

T T]
N g
oy ’“:-»}2;

.o
Pl
h 2]
&

'l
b
(A
L

'l';-l
AN

(o

e

~.
0

Y
ERENEND
S

:.. » v A
LA s
k2l S)

Y

VA
R
L2
’l,{

v

v

»
v

¥

1

2@

P
[N
PN &

'. p "v
v

.
MYy

P LAY
R I)
« a4 l.'

R
a

St

.“’1.

S
oy

”
el Ll

.,".

Y

L g0 4B aa o AN g

v

L (s

TASK SECTION 103

SOFTWARE RELIABILITY PREDICTION BASED ON SYSTEM/SUBSYSTEM LEVEL
SOFTWARE CHARACTERISTICS

103.1 PURPOSE

The purpose of task 103 1is to modify the baseline software
reliability prediction calculated in task 101 based on the
software characteristics as they evolve during the requirements
and design phases of a development.

103.2 DOCUMENTS REFERENCED

See Task Section 100.

103.3 GENERAL PROCEDURES

SOFTWARE CHARACTERISTICS (S)

The Software Characteristic metric, S, is a product (composite)
of two submetrics;

S =~ S1*S2

Each one of which 1s imn turan the product of several simple
metrics as shown below:

REQUIREMENTS AND DESIGN REPRESENTATION METRIC S1 = SA*ST*SQ
Anomaly Management (SA) - optional
Traceability (ST) - optional

Quality Review Results (SQ) - optional

SOFTWARE IMPLEMENTATION METRIC S2 = SL*SM*SX*SR

Language (SL) - recommended
Modularity (SM) - optional

Complexity (SX) - recommended
Standards Review (SR) - recommended

S1 is described in this task. S2 is described in task 104.

Note: These metrics and theilr corresponding impact on the
reliability prediction are based on data collected from

Ta-l1

)‘.’

PPl

Py

<.
f'

-
i
Y,

-

A
1
PN
22 2]

apreil e

£
D
3
LS
R

l‘ s|
[}

> ¥ WM W_w
LI,
N
5%? 7>
Coacarelel X

3

‘l
h)
>

X

y
2@

b
5

,Y
A

I'l

st l‘,ﬁ
5o 8 ka0

P4

[S
5AN 555
LAl

» l"
{1‘1’..-‘.
Pl d
"(

~

hY
L4

L A
\\{
TS
\

.)

» 4 % 5

A
‘5‘
™ «
.:C~‘

.

A

SN
MY
L
- B

v{’)l
e s
i,

I ®
Pl H

3
H

-.:‘-.' ‘p;.r < -
TERAL
I
[
Y

&
3

-
'@

LS

.4
-~

« ‘%'(-1‘ 4
L) l-.
Sy

LN
’.".'-‘.\
".l") A

5\ 4
'\.".{' B

.
‘e
| @
h

x
v
By

PR

200
<l

P
v Tt S S

7
i
’

-9
,
D

* «
2,1
P A
&, 4, 0 0,
O

/f{

hBn J ame aae 4

VT ST e T T T

several projects. Those identified above as recommeded
have exhibited consistency good predictive results. Those
listed as optional provide the reliability engineer
additional information upon which to base the prediction
but because either their predictive qualities have been
inconsistent or they are based on a limited sample size,
they are not recommended.

A description of the procedures for calculating these metrics
follows.

dnomalv Management (SA) - optional

Apply Data Collection Procedure 3 (Appendix B) and the
corresponding Worksheet] in Appendix C to the
Requirements and Design Specifications of the subject
project. Answer all questions related to Anomaly
Management (AM.1 through AM.7).

Calculate the Anomaly Management Metric using the follow-
ing equation:

SA =~ .9 IF AM > .8
= 1 IF .6 > AM > .4
= 1.1 IF AM <« .4

where AM equals the score received using the worksheet.

Note that SA is applicable at SPR, PDR, CDR, and during
coding. The appropriate worksheet should be used
depending on the reliability prediction milestone to
calculate the AM metric.

Iraceability (ST) - optional

Apply Data Collection Procedure 4 (Appendix B) and the
corresponding Worksheet 3 in Appendix C to the
Requirements and Design Specifications and code of the
subject project. Answer the traceability questions. If
unable to answer, use following substeps:

- Itemize all specific requirements 1in Requirements
Specification.

- Count the number of individual requirements (NR). See
Data Collection Procedure 7 in Appendix B.

- Review Design Specification and 1identify specific
design statements that represent the fulfillment of a
specific 1itemized requirement (a requirements derivi-
tive).

- Count the number of requirements not addressed by
design that should have been (DR).

L]
P A "-:"':
R
ALY
;

B

‘(

AR
X

>

Pl

LI
RN

-
o @

G

e
4

‘s v &
S
r2rPPLS

AR RS
'I S

RO g

’

I
»
»

2«
.

S
.
[
']
P

R
' .-.'-‘.
v
e B e
7/

DY
." ‘C. \‘ :

»

- “ '.l:..-'
. %

T v .
l”. ' N

[S W
1
8y

l/"
2y & &4

&
L/

REEL NS
,',’4"* ".fffl

2o

Pd
?},‘:{EJ

s % %,
P

[N v
AN
»{,‘I.
K T
a e e
A
NN

i

P X
e e
vyy'®

A

(2

® Calculate ST as follows:

% g
[
-":"

e

P
&
¥

ST = 1.1 IF NR_ - DR « .9
NR

e
»
‘>

te e

= 1 IF NR_ - DR » .9
NR

Quality Review Results (SQ) - optional

e Apply Data Collection Procedure 5 (Appendix B) and the
corresponding Worksheet 10, in Appendix D of this report
to the Requirements and Design Specifications of the
subject project. Answer all questions related to Accuracy
(AC.1), Completeness (CP.1l), Consistency (CS.1l, CS.2) and
Autonomy (AU.1, AU.2).

.
o ..
LY

(}(,‘E
<
74

Sy
%

{\;‘

hY

Identify discrepancies. Total the number of discrepancies
identified (DR). See Data Collection Procedure 12 in
Appendix B and Worksheet 5 in Appendix C.

e
Ly

2

b

%
4’.:’

4_,
M':b 7

!

x
e
)

Count the number of individual requirements (NR). See
Data Collection Procedure 6 (Appendix B) and Worksheet 3
in Appendix C.

Calculate the SR metric using the following equation:

During Requirements
and Preliminary
Design:

5Q

During Detailed
Design: SQ

KRR M

A AN
.

PREDICTION

If these optional metrics are applied, then an updated prediction
is calculated by:

ol RS
versA® PR AR XA TV&N\A.{&&P&
X A X RN
L e VIR ERAVR AL TR)
(A A RO L T
O RN IO A I

- -vlufn-flr.\, ..L-‘ -

...--n\-ﬂ\- ~N-~V f\ !n. LA A <, ® > -..-p- H.-t -.-IN Nﬁ

LATNS .-.--v.r- --\-\, \f- 3 -'funuv
X .\.f\ AU I AR

LR 3 \.u\!n\\ﬁ- Cala yN
PELLALEAL e a e T e L R R

%% % W L P
s Whh H -,.-.-upn._ e e SN SNA

efafuaa P ey

.
. .uf.... N

L)
[P,

shall be traced throughout

Identify data collection procedures (see Appendix B).
requirements

Specify that
dvelopment

RP = A*D*S1

a.
b.

103.4 DETAIL TO BE SPECIFIED BY THE PROCURING AGENCY

P e

ave a8 & &

2. "k 2 ‘G b RAEat &0 80" o o Ty i
LS AT A S S S Bl S Bl Wl Gl el A A S f - 180 i A g Aad Bal N

TASK SECTION 104

SOFTWARE RELIABILITY PREDICTION BASED ON CSC/UNIT
LEVEL CHARACTERISTICS

104.1 PURPOSE

The purpose of task 104 is to modify the baseline software
reliability prediction calculated in task 101 based on the

software characteristics as they evolve during the coding phase
of a development.

(This task can only be specified if Task 103 is also specified.
See Task 103 for algorithm for ~-ubining the iadividi.isl Funiors
computed in Task 104.)

104.2 DOCUMENTS REFERENCED
See Task Section 100

104.3 GENERAL PROCEDURES

For each of the following metrics calculate their influence on
software reliability. Note that some metrics are recommended and

some are optional. See Task 103 (Note) for an explanation of the
opticnal metrics.

Language Type (SL) - recommended

® Identify the total number of executable lines of code
(SLOC) 1in the system (estimated or actual), the number of
assembly language lines (ALOC), and the number of higher
order language lines (HLOC). Use data collection proce-

dure 6 and 8 in Appendix B and Data Collection Worksheet 4
in Appendix C.

® Use the followlng equations to calculate the language
metric

SL = HLOC/SLOC + 1.4 * ALOC/SLOC

Modularity (SM) - optional

@ Count the number of modules in the system (NM) and the
lines of executable code in each module (MLOC(i)). Use
data collection preoccedure 9 in Appendix B and Data
Collection Worksheet 4 in Appendix C.

e Table TS104-2 1illustrates the impact on the predicted

reliability by tke number of modules in each size
category.

e Use the following equatinn to calculate modularity:

T5- 1k

LY
-
&
P
“r

a,
NN
22
X

{‘\
“y

.

I
l. l‘

P

hJ

saess
vy oy
_¥k43¢¥i

o

.,

XAs

¥

~
-

<5

DRIR

[

v
A
P

-' q', .

AL UL

Sy
l"'l
Y
&

el

NN o,
¢ LA
IRARIOIMS
SAARARS

s
P A

A
“

RN

/
P

TR
afat

l‘. "'4 L
s ol

@

qJELS

. & '-,'v,'
X
SN

a

VA
Pd
P

’
o'

@

3
2 % %

'.. IJ A
e fr Do te S
AR

4
ot

A
»
-

".‘-A.S;.\\\

S L S

22,

.
e .
. [A
. . n
L
o *v e O
»
»

5,
‘l

AN

L

Za

A 240 Pt AN R AR AR O i e Ut Ot e Sn et Sty e A et e A p A gB s g st s ot Mg I 0l 0 B Il S A A)

LA
YAYA
s

.l
?

€ n % _8_ -
AT
XX
NARAAAS
h Y M ;
s -

. SM = (u*.9 + w + x*2)/NM

e

[

& 8
'.‘\-'?.
S % % S

where NM = u + w + X

‘--—q.'
L

N
:

'
N N

TABLE TS104-2. MODULE CATEGORIES

!‘»'

i
AR
AN

»

P P E Y Y Y Y I I T Y I Y I I I Tl T I T s rrrr e -

| SIZE CATEGORY | NUMBER OF MODULES { MODULARITY n
| [IN SIZE CATEGORY [METRIC (SN) |

4= R AR AR N R S NE AR R MK ER AN N WD NN MR N NN S NN NN A S S N R N NS S A N R SE G S SR S S W e A ER D W N G AR SR N N NN SN N NN N W AR A
| | | !
LOC « 200 u .9

RIPE
ot '
wh éﬁ,
[R
:ﬂﬁﬂf
e

1]
[
&
.'l
‘7

¥

.
[4

]

DI
i

s "4~
ALl
K

n

P

200 « LOC « 3000

“n

]
> .
"'. . '
XA
‘el

v
"l

g
o

f | |
I I I
I f I
I w | 1 !
]] I
f x [2 !
I | |

+

|

|

|

|

|

I 3,000 <« LOC

|

+

Complexity (SX) - recommended v
¢ Apply McCabe’'s complexity measure to each module in the i

system (sx(1)). Use data collection procedure 10 in NN
Appendix B and Data Collection Worksheet 4 in Appendix C. WASEREY

P

¢ Use the following equation to derive system complexity ATy
multiplier:

SX = (1.5(a) + 1(b) + .8(e))/ NM

N 5N NG
)
[N

P4
P
et

where

a = number of modules with a complexity greater
than 20.

VSN

Jy

Pk
t“\
)

b = number of modules with a complexity between
7 and 20.

ey A
L -

e -
:

LA R AN

2"t

“'s
Y

l"l"l

oy
‘-‘\v Y

¢ = number of Modules with a complexity less -
than 7. -

an
AL

NM = the total number of modules = & + b + C.
Standards Review (SR) - recommended

e
. o
s r

".-‘-f
[ARARR

e Apply data collection procedure 11 (Appendix B) and
corresponding Worksheet (11) in Appendix D to the code.
Answer all questions related to SI.1, SI.2, SI.4, SI.S5,
MO.1, MO.2.

¢ Identify the number of modules with problems (PR)

TS-17
N N N R LY AT AT AT AT R S R N SR G L RPN SR RS R N ARl e N NGt Ol
AN ARSI o T P e R A A .r‘\'r_‘f"..':' " -,'-,'.':'l;"‘.r T LA IS
o .'.‘ ‘(-..‘\..('., o . n., '-\-'\Il' '-'-‘A‘-.-.'\I R -'. A, 4'."-.. -’\" T v-.r ----- ¢ v -'&,wr\r _4-,"
L‘-:.&".';i VO 7oVt TSI NI NI M AN NN \ N N

v a eyl SR YA NN
B OIS AL O .»....w..u‘m ®
< --l-\f-’-\.-. f-f. li‘l’l'-'li-'l‘f _Y\i\ P u-“ : -N-\f.-m!\h.‘-h- R

: PR i i T T B A

. X
LTINS TSNS

° a o

N O 4+
» Eal

] FS) —

t C .

i 4 Gy ~
1 ko] (0] m

i)

; 3 Q M

. o, =] e
. 9 3 g

s] > ﬂ o
8 L Q

y o o m oy

¥ o <
. 0, 2] m

. =] ©0 o

0 - o)

._ i 3 i B

; s B
L - 0 - 0

A [7s) aQ w <] o
]] . o) H

" z -~ Fe] =]
w - v H P o

. 5 = = m o S

’

p — mN o HN =1 [(o]

g — 7] (5] [

Y O % & o =] [} ”
DU -~ 0 ™

3 & o > da o

. n o - 0n] » m o o
o . >~ e o -

o — — . a m »
(9] (W 9]

p -~ 1 o] - (]

. N [} e ~

! + [+4 d 17 . —~

' ® w o Qa o L o
p g - (7] M O

L P

) w0 o » 0 75} o
» -~ (o} (o} $
P ¥ - - M o

’, + — 0 ~ m (@]
P, P.- t -

' o ey » Q K m ™
o L o Q 680 4
by o (@] - -

l o9 A &
b S0 = — P u d
o PP o~ ()
g — 8 < g m o
o < O~ —
' (&) od 1 A3 A
. (v] LA
~H A B .
' L g o OH W o
'] ec - .
- W o M
S n 4 o
m HP

.
)
ol Y
o,
N
(N

7. ". ,. ’- {L'L’&

e

‘D AI
s

POl N S B

i O
..I.I‘I\ .l\\

SN Y

(1
o

+

TASK SECTION 200
SOFTWARE RELIABILITY ESTIMATION

200.1 PURPOSE

The purpose of task 200 is to describe the general procedures for
estimating software reliability during testing.

200.2 DOCUMSNTS REFERENCED IN TASK SECTION 200

MIL-STD 2167A
RADC TR 83-11
RADC TR 84-53
MIL-STD 756B
MIL-STD 785B

200.3 GENERAL PROCEDURES
200.3.1 RELIABILITY MODEL

The general block diagrams apriicable to software reliability
prediction can also be used for software reliability estimation.
For each block in the diagram (at a level where a block is a
processing component 1like a computer), software reliability
estimation 4is golng 1o be based on performance results durlng
test conditions.

Once software 1s executing 1ts failure rate can be directly
observed and a transformation is no longer required.

The failure rate of a program during test is expected to be
affected by the amount of testing performed, the methodology
employed, and the thoroughness of the testing. The following
models are applicable to an estimation of the failure rate based
on results from the test environment.

Estimating software reliability for a software component (whether
it is at a system level where all software operates on one CPU or
at a CSCI 1level with CSCI's operating on various CPU’'s) can be
approached 1in two ways. The two approaches are described in the
following paragraphs. Each requires observing the fallure rate
and testing time. Data collection procedures 12, 13, and 14 in
Appendix B are used for measuring the software failure rate.

200.3.1.1 Reliability Estimation Modeling Approach 1

Several models have been suggested for relating fallure
experience to execution time (see RADC TR 83-11). The Musa model
as an example, assumes that the failure rate is proportional to
the number of faults in a segment, and that the number of faults
is belng reduced every time a failure 1s encountered (not
necessarily one fault removed for every failure encountered).
This leads to an exponential distribution of faults with

...4 . ~, N D -..-i"--A Ny e - vy - -2 £ Boped aet AR

,‘......
SN T A A A
";“‘\ N :\'.\":"u".‘."-:"s"\
’ ey L4
) \
@ NN B

~

VA

.
s

b T T 2 e 4
AP
[] '. .‘. s

..' ".l
2

.
‘ .
. .
@ . N
Taty e e .
o
o .

S
i
? »
(8

7
i)

.
7

\'.}
4 5

Ferst

}-"‘-;l

P,
*

A
“l\

2>

RN
"snhs @

;?1::{

Py
A &

L4

" l" v" Y ."!

e % N
WP

“ats'e
[
N
"
P
AN
PPN

7
3 { . PR
Pl ‘
54 ’
“J

-~
s
P

e
s
272

A

4
7

ay e
[

R
SRR

L AR
| NN
i »
b execution <time, a one parameter distribution in which the scale Eo AN
{ parameter can be estimated by established methods. In spite of SO

substantial evidence that the execution time to encounter a fault A

can vary by several orders of magnitude, the Musa model seems to ﬁxjytj

' yleld acceptable results for the test and early operational Pt
phases. The general prediction and estimation methodology can oo

be used with any other execution time based model (RADC TR RO ALy

; 83-11). Fa Al

Y

The failure rate during test, F, is given by ?ﬁ*ﬁﬂ?

-‘;\:\,\’
F = Lo exp(- L1 * t) B

where +the amount of test time, t, is measured in terms of
CPU-time, Dbased on a 32-bit, 10 MIPS execution. L, and Ll are
the scale parameters proportional to the fault density. Any of
the models described in RADC TR 83-11 can be used to model the U
failure rate observed during testing. Once modeled, the time -

A.. T e N

untlil an acceptable failure rate is achieved can be calculated : il
and operational performance can be estimated. ufﬁﬁa*
\"’\{‘\{_’-
200.3.1.2 Reliability Estimation Modeling Approach 23 E:E:‘.;:—:-‘-
"'- .‘-‘.':..' 4
This approach does not use the models described im 200.3.1.1. It ?uﬁﬁﬁ'
uses the fallure rate observed during testing and modifies that .
rate by parameters estimating the thoroughness of testing and the Ny ’ﬁﬂ*

extent to which the test environment simulates the operational

environment. This 1is the approach used in Task Section 201 of
this guidebook.

::’x
,::I
/sl

L 4% o8 §
e
P
n g 5y
%

The estimated failure rate them is

-

2
4 5&‘!.
»

R
F=-Fr * T or NESl
RRALAGIY
R
Frz * T2 RN
SN
where Fp; 1s the average observed faillure rate during ’

testing.
and Frg 1s the observed failure rate at end of test.

..
e
l. .‘

Ty = .02 * T
Tg = .14 * T
and T = TE * TM * TC
wvhere TE 1s a measure of test effort, TM is a measure of

test methodology and TC is a measure of test coverage.
Definitions and calculation of these measures is in task

201. s
AT,
The most significant aspect of the test environment is that it RS
represents a deliberate increase in the potential for detecting .xj:fy
‘--_ a¥ e "
|]
| NS,
| AT
Nl)
TS=20 ,:j:ﬁ>;=
‘_\._-.:.n.‘
e
AR NAN
.)
AN,
N W, v, LA P4 L. o RN,
a ?::W“f.\.d}.‘_)}:.‘_f:f X L G e e
Ao SO G R e
: v F TN A N IS NI NI

failure by:

¢ Construction of +test cases that represent a much higher
variability of +the input and control states than is
expected in operation;

¢ Close scrutiny of the computer output so that practically
all failures that do occur are detected; and

e Creating a high workload, particularly for stress tests,
which increases the probability of failurse.

Empirical data has shown that the average rate during test is 50
times greater than during operation and the failure rate at end
of test 1is approximately 7 times that observed during operation.
The .02 term 1in the T1 equation and the .14 term in the T2
equation above represent these observatioms.

The stress the operating environment will have on the software
also must be taken into account. The basic failure rate relation
for the 1nitial operating environment is similar to that devel-
oped for the test environment except that the operating environ-
ment metric, E, replaces the test environment factor.
F = Fpg * Tg * E

Here T, 1s .14 and the baseline value for E is 1. Modifiers for
the operating environment factor arise from variability of the
data and control states (EV) and from workload (EW) as discussed
in task 202.
200.4 DETAILS TO BE SPECIFIED BY PROCURING ACTIVITY

a. Requirement of tasks 20 .nd 202.

b. Definition of test phases to be used.

¢. Definition of qualification test requirements.

d. Statement of requirement for discrepancy reporting.

i

5y
2R s
)1z;h

:3

Fd il

Vﬁ.
'
o

v _»

DN

(]
N !

LY

AN
RN

.

N

Foo

O, t
e [
o L

&

?
3

S
"]

v :"
[\I /
%)

&

‘I’(
%
3

L g

X

Ve

s
o

(AP |
X

g f:l";'l‘_f

AP
Y
o

*y
[
AN S

R4
\{
P

o
v @
1]

3ﬂ??i
AR
J'.. I‘

& %
e
y;’
P '
o @

)

1, % %
§}
vy

.

Q}i'
s\f

o«

iﬁﬁs&
Iy
&

TN
%
1}

L)

)
]
LA

N

BN

5 LN

NS
.‘l‘i.I,‘.

O s

NN

REAA

-
.Pl

)
.

» w
AN

v
|“"

Pd

%}

A

Y ol O

5 &,

.

x
b)

-

l]..“

2 A

.5"

A Pl
'.I LAEA R4
P

NSNS

“ o 4
e e

i

DO Al
[A

D)
b

L] I'-v'.. I..

LN

LA

’l

AL

TASK SECTION 201

RELIABILITY ESTIMATION FOR TEST ENVIRONMENT

201.1 PURPOSE

The purpose of task 201 1s to describe the procedures for
estimating what the operational reliability will be based on
observed failure rate during testing.

201.2 DOCUMENTS REFERENCED IN TASK 201
See task Section 200.
201.3 GENERAL PROCEDURES

The influence the test environment has on the estimate of fallure
rate is described by three parameters described 1n the following
paragraphs.

Several characteristics of the test environment are accounted for
in the estimation of reliability. The observed fallure rate may
not accurately represent what the operational reliability will be
because:

e The test environment does not accurately represent the
operational environment,

¢ The test data does not thoroughly exercise the system
thereby leaving untested many segments of the code,

e The testing techniques employed do not thoroughly test the
system, and

e The amount of testing time does not allow for a thorough
test of the system.

These characteristics are taken into account by the metrics to be
discussed in this paragraph. In each case the metrics will be in
the form of a multiplier, the product of all of these to be used
to adjust the observed failure rate (Fp) up or down depending on
the 1level of confidence in the representativeness and thorough-
ness of the test environment.

DETERMINATION OF FAILURE RATE DURING TEST

Using Data Collection Procedures 12, 13 and 14 1in Appendix B and
Data Collection Worksheets 5 and 6 in Appendix C, calculate the
current average fallure rate during testing (FPp;). The average
failure rate during testing can be calculated at anytime during
formal testing. It is based on the current total number of
discrepancy reports recorded and the current total amount of test

TS-22

.

-
"
.
-~
~
“~

L
L]

hY

AR
.I .I .D " ‘.

»

L\ h R TR
4
'n‘

R
.]
vy O
e ®

PR AR
Ty NS
XK

)

"y

"f'.".l.'

l'.

PR A
Y&

4 l'f‘.'}
AR

PR
5 %
4

s

Sl el Al
-,

v,
"1 e
red

| &

"y
£d

e e,

h Y

FrF ST Y Y B PN ™ ™ Ty VN Y T T e e e

W W O R RN W

operation time expended. It is expected that the failure rate
will vary widely depending on when 1t 1s computed. For more
consistent results, average failure rates should be calculated
for each software test phase: CSC Integration and Testing, CSCI
Testing; and, if required, for each system test phase: Systems
Integration and Testing, and Operational Testing and Evaluation.

If the estimation 1s being made at the end of testing prior to
deployment of the system, the estimation can be based on the
fallure rate observed at the end of CSCI testing (Fpz). The
failure rate calculation in this case is based on the number of
discrepancy reports recorded and amount of computer operation
time expended during the last three test periods of CSCI testing.
Data Collection Procedure 14 should be used to calculate Fpj and

FTZ .
ESTIMATE SOFTWARE RELIABILITY

Using the currently observed average failure rate during testing,
an estimate of the operational faillure rate can be calculated by:

F=Fpy * Ty

where T = .02 *TE*TM*TC

The multipliers TE, TM and TC are determined as follows:
Test Effort (TE) - optional

e Three alternatives are provided for measuring test effort.
The choice will primarily depend on availability of data.
Data Collection Procedure 15 1is in Appendix B and
Worksheet 6 1in Appendix C aid in the collection and
calculation of this metric.

- The preferred alternative is based on the labor hours
expended on software test. As a baseline, 40% of the
total software development effort should be allocated
to software test. A higher percentage indicates
correspondingly more intensive testing, a lower
percentage less intensive testing.

- The second alternative utilizes funding instead of
labor hours.

- The third alternative is the total calendar time
devoted to test.

e The metric, TE, will be set based on observing these three
characteristic during the validation phase of the project.
Use data collection procedure 15 (Appendix B). The three
characteristics impact TE as follows:

........

LY

LA RSN

Ve
27,

L4
5
E4
5(

»

o

by

v
‘l'\
p ata
.

YNNAN

PRl

"-‘l
27,
E X I"l x

=

“x Ta M

[v"a' -

A
S
» .l “
o

&
#

‘w Cwd
PP
% 4,

s

N v e
1

A
s

.

SN

AN
N5 5

vty
¢

e
LA

& 0 F ¥ F
P)
)

L]

s"i ’I "l I.. '.I .
RN

»

o TS
N

L4
L Y

) A
~ \“'.I-

y x?ﬁ

'

A
N

.
[

.

L

5

2 a

k)

5 z
{‘..’sl P

(S

P

B4
.

Is
.

<oy
‘Jfﬁﬁégﬁd.

- 7
ks s

Ps

hY
)

LS

b3

2,

4

<

.
Y
O Y,

il '-v .
A B

?(',
&£

P4

RS
B S AL

i
XXX Y
~_ b 'Y

s
]

LAY

fd

A
?.l'- i)

e s
b S S A
PN
RN

r
7\
L)

% %

1]
*
.
rd
v

oY
e

e & "o

- l.'
S S
PN

~ s
. Ny
PR A

.
>

@

s
KRR

Vol e)

S %ty

e

PSS

h

: I\-’:’.'.

N ' S

‘i

. -
5%

PRV M R Y

g oy o b N

Ll ak W g

Ay

RS ar ¥

Pl i Y 2 S g

o -
el
PR
1f 40/AT « 1 e
f-.‘:a:\"‘
where AT = the percent of the development effort ;ﬁ(ﬂt
devoted to testing, then TE = .9 IOV
NN
or 1f 40/AT > 1 > ":i'
where AT = the percent of the development schedule ;ﬁﬁyt‘
devoted to testing, then set TE = 1.0. ';\:\::.
T
Test Methodology (TM) - Optional AONN
PO
¢ The test methodology factor, TM, represents by the use of 3qﬂﬂt
test tools, and test techniques. In most cases the tools, RTIEN
and techniques are being operated by a staff of special- DAY
ists who are also aware of other advances in software test N AT,
technology. o
ARG
e In the Software Test Handbook, RADC TR 84-57, a technique NV
to determine what tools and techniques should be applied oo
to a specific application is provided. That technique is }a}ﬁ}'
illustrated in Figure TS201-1 and results in a recommended NN
set of testing techniques and tools. The approach is to
use that recommendation to evaluate the techniques and A
tools applied on a particular development. Use Data AORAY
Collection Procedure 16 and Worksheet 7. This evaluation rbnz;
will result in a score that will be the basis for this Al
metric as follows: RN
™ = .9 for TU/TT » .78 RGASTN
.-:.'::-)
™ - 1 for .7%5 > TU/TT » .8 :\ N
..:\ o
TM - 1.1 for TU/TT « .5 AN
)) '-:.I"J‘"\
o
where TU is the number of tools and techniques used and TT ;j:*
is the number recommended. e
Test Coverage (TC) - Recommended E
® This metric assesses how thoroughly the software has been ..
exercised during testing. If all of the code has been e
exercised then there 1s some level of confidence estab-
lished that the code will operate reliably during opera-
tion. Typically however, test programs do not maintain
this type of information and a significant portiom (up to
40%) of the software (especially error handling code) may
never be tested. Use data collection procedure 17 and
Data Collection Worksheet 8.
¢ This metric can be calculated in three ways depending on

lllll - . -

. ,. \ v. ...‘ .
ARBI ’ Y : LAY N A R IR
......- P A it : oo I T PRE A . L A L PRI

IATSEIG 3 S AL L 50 B AL AL AL AL A R T i T I T e T A S A
<N .nr\- _\f\f. [N .unnf- s -‘f \.*\J-\.f.-w.\ Vw(\.] .\f\fﬂf LY --f b] TR AN ...-.J 'l

. R .
P A]

CH

IN SOFTWARE

TEST
METHODOLOGY

EVALUATION

APPROACH
DOCUMENTED
METRIC

HANDBOOK
[PRES84]
TEST

r
>

"

\

J

1

y
SSMENT APPROA

APPROACH 3
IDENTIFY
ERROR TYPES
TO BE AVOIDED

ASSE

[¥a)
[aR]

APPROACH 2
SELECT
TeST
OBJECTIVES
DETERMINE
TESTING
TECHNIQUES
DETERMINE
APPROPRIATE
TEST TOOLS
EVALUATE
DEVELOPERS
APPROACH
VERSUS
RECOMMENDED
TECHNIQUES &
TOOLS

APPROPRIATE
SCORE APPROACH

TEST METHODOLOGY
s

URE TS201-1

APPROACH 1
OETERMINE
TESTING
CONFIDENCE
LEVEL
SELECT
SOFTWARE
CATEGORY

;

FI(

) AR il e S

f-cf -NA.--.-\\. N\.W\-.-ﬂ . f.-WM-J-. -n-!; £ e ‘.-‘-. NS

' Al M AL MA S o 2% » wVa » Wos WL N N ARERA R N O A - " ':‘;::t.::
o WAL
- NNy
.
.
h the phase of testing as follows: Qﬁf&ﬁ
: :-“\-':.r:,
. TC = 1/VS A
>
; where VS = VS1 during CSC testing PRI
! = VS2 during CSC integration and test NN
1 = VS3 during CSCI testing ALY
{ and AN
4 VSl = (PT/TP + IT/TI)/2 RN,
J where PT - execution paths tested PRI
l TP = total execution paths 2
4 IT = input tested NN
S TI = total number of inputs NN
s vS2 = (MT/NM + CT/TC)/2 NN
(MT = units tested RN
NM = total number of units AV
CT = interfaces tested ®
S TC = total number of interfaces "
‘ VS3 =~ RT/NR ~
E RT = Requirements tested Ay
NR = total number of requirements hﬁth
v,
t AU
®
An updated reliabllity estimation can Dbe made using these e
multipliers at the end of test by using: RTINS
'_.-',\:f.‘-f“-
AT AT A
F-Ffra* Tz S
where Ty =~ .14 * TE*TM*TC SR
A comparision of the predicted fault density (determined usirng :355:2.
Tasks 101 through 104) with the actual fault density realized can A
be made. Using Data Collecticn procedure 7 in Appendix B, the NS
fault density realized is the number of discrepancy reports N
reported during testing divided by the total number of executable AT
lines of code 1in the system. A comparison of the predicted .
failure rate, transformed from the predicted fault density, can AR
also be made with the estimated failure rate calculated in this NOUNN
task. Significant variation 4in these values suggests that RARENEN
analyses be conducted to evaluate the differences. Consistent s
values suggests accurate predictions and estimations. RN
201.4 DETAILS TO BE SPECIFIED BY THE PROCURING AUTHORITY.
a. Define the software component level for estimation
(different 1levels may be specified for each life cycle
phase)
b. Define 1life cycle phases to be covered and estimation
milestones.
¢. Identify data collection procedures (see Appendix B cf
this Guidebook)
Ts=2n

A T T T . N W (Y VL T LV LT T O T T T, VW W WL g0 atite fa= o 0at o) 20" 0an /00 W W " pig *alla® a0

' TASK SECTION 202 :
SOPTWARE RELIABILITY ESTIMATION FOR OPERATING ENVIRONMENT g
202.1 PURPOSE. .o

The purpose of task 202 1is to describe the procedures for Qﬁ@qﬁ
estimating what the operational reliability will be based on FQEPﬁ
estimates of the operational environment and the observed failure NN

rate at the end of test. At

-

b 202.2 DOCUMENTS REFERENCED IN TASK SECTION 202 :;i&itf
' Ny
» See Task Section 200. R
N \‘.r_:.:

202.3 GENERAL PROCKDURES ¥l

@
Two factors are accounted for in estimating the failure rate for o :gi‘
the operational environment: the workload expected and the input ~4}\f{'
variabillity. These both represent expected stress on the system. EQPQLE}
‘."\.‘;\:\ :
ESTIMATE SOFTWARE RELIABILITY AT 7

®
Using the end of test faillure rate (see Task 201 and Data Nty
Collection Procedure 14 in Appendix B). Fpo, an estimate of the R
operational reliability is calculated as follows: .:_;?,-;;-;:

* % :-“:-“'.r:

F = Fpa*To*E RSP EAL

where Fpp is the failure rate at end of test

Ty = .14 e
NS

E - EV*EW, modifiers representing stress of input NI

variability, EV, and workload, EV. SRR

The modifiers are calculated as follows:
vYariabllity of Data and Copntrol States (EV) - Recommended

e Software that 1is delivered for Air Force use should be
essentlally fault free for nominal data and control
states, i.e., where an input is called for, an input fully
compliant with the specification will be present: when an
output 1is called for, the channel for receiving the output
will be available. A majJor factor in the occurrence of
failures, and therefore affecting the failure rate, will
be the variability of input and control states.

e The frequency of exception conditions as a measure of
variability 1s used here. Exceptlion states include:

- Page faults, 4input/output operations, waiting for

Ts-27
D L R A A ST U I RS PR T L S RSN
AR RPN CC LN .'x"'.‘_'.' A T T AT e -
A N A A A AR A A AR A A A A A Iy
A L Y D A SR AN e e . > . .
J‘\. NS (\. RO _'.',.-r._ - \1\. _..r_‘. RO ISR f\f\.“\- R
[S AP Y P A A S o R P L A P P AT)

NaP ™ Y s U m® gV g” 2V A A G i S W T N . W LT e T Y, LA

v «"\,". o
\ N
RGNy
..
r hieldy
" completion of a related operation -- the frequency of -,f}jy
] all of these 1s workload dependent and the effect on e
\ software reliability is discussed in the next TN
2 paragraph; LYy
- Response to software deficiencies such as overflow, TN
zero denominator, or array index out of range; and j;{gf
e
; - Response to hardware difficulties such as parity RS
) errors, error correction by means of code, or noisy ?}gy:
! channel. Ed
The last two of these are combined in the input variability g
modifier for the operating environment, EV. Data illustrated in T

Table TS202-1, indicates that approximately 1,000 exception
conditions of the 1latter two types were encountered in 5,00C
hours of computer operation. A value of 0.2 exception conditions

L RS0
Y

_ per computer hour has therefore been adopted as the baseline, to —
., be equated to wunity. Because failures may arise even if no NN oY
. exception conditions at all are encountered, it is desirable to NGaInInd
: bias the modifier to a small positive value. The suggested form NN,
. ig ROt
8 BV = 0.1 + 4.5EC ALt
®
where EC 1s the number of exception conditions per hour. For EC AR
= 0.2, BV = 1. Use Data Collection Procedure 18 (Appendix B). -qgﬁyx
‘ »
T
¥orkload (EW) - Recommended .fQ£§J
RN
Significant effects of workload on software fallure rate have ®
been reported. The hazard function, the incremental failure rate RO

due to increasing workload, ranges over two orders of magnitude.

; ':'_:{

YR e 4
For military applications, workload effects can be particularly T
important. During time of conflict, the workloads can be RPN
expected to be exceptionally heavy, causing the expected fallure P
rate to increase, and yet at that same time a failure can have T
the most serious consequences. Hence, predictions of failure ,{bxi
rates that do not take workload effects into account fall uo OB
provide the information that Air Force decision makers need. jg".

The mechanism by which workload increases the failure rate 1is not
completely known, but it is generally believed to be associated
with a high level of exception states, such as busy I/O channels,
long waits for disk access, and possibly increased memory €rrors
(due to the use of less frequently accessed memory blocks). Data
show that the highest software (and also hardware) failure rates

were experienced during the hours when the highest levels of
exception handling prevailed.

Details of workload effects on software fallure rate are still a
research topic, and no specific work in that area has been
included in this Guidebook. The estimations will be based on
published work, such as Figure TS202-1. The quantity plotted

[5-28

ALY, s) . 3

v PN . 4 YLLAN =Y .

AL @ ru.....f.m.\..s..‘..v ALK x...w.r.mmr..;...n

AR AR A AKA | Y 0 il O R
B AP P I S5k S XA b
R Ny O N A L AL
PR SER ,-r\-u-\-\--r\f\fr .\-\\-fv-nnﬁl s Th) »

b oy w.-\\-Oi.\-.-\ ..-.-.f.-‘-a
O rris s i@ 0...._.....fx..xr......,...p. @l
LA o S LU AR
%&I\nﬁ Nf-- ’d ‘ .u--\-v.-. .-I%. &-.' P4 -.- -. L)
' “f > NJ.J! \V& — - -n --'\- --»n\.t\;.\p.-n-. - -#.--_. .-.-x.---.«..f..qr

JAVZVH JAVMLAOS NO AVO'INIOM 0 LIAA44

20AYNEI aS Mol -NA
(oS) x
os) oot 09 0

ﬁu MAAAE RAGAE RANSS |

bbbﬁbbbbbb‘bb

(‘puny) oIS

<0000
01000

000 0

(x)2

20AYME! RS INOH -RA
(avaHu1A0) X

90 0 20 0
?%311 »-01
ﬁ 1
F_ 1L ﬂlO—
[

.} Lu-e.
.Pr’P-_PP’b—Eb

(‘pungd) AVIHYIA0

(z)2

1-202S.L FANDIA

ZOAVRET AS MO -RA
(ua9vd) X
00F 08 09 O O2 O

q(lt<—1114—111<—<1-4—:11
}
4

R 4+

D RN
(‘pung) NI3OVd

A VAL WS

c-0t

2-01

A A
A .-\....-..v\-.\:.-t--\ .

(z)8

..\. P eEE . v

NN

PN

T5-29

QLS ALRE G LELIALAS LELL O A GOLIR

.

»

along the vertical axis 1is the inherent 1load hazard, z(x),
defined as:

Probability of failure in workload interval (x, x+ delta
x)/Probability no failure in interval (0,x).

T, measures the incremental 1risk of failure ianvolved in
increasing the workload from x to x+delta x.

The horizontal axis shows three different measures of workload:

- Virtual memory paging activity, number of pages read
per second (PAGEIN);

- Operating system overhead, fraction of ¢time not
available for user processes (OVERHEAD); and

- Input/output activity, number of non-spooled input/
~itput operations started per second (SIO).

These graphs provide an option of estimating workload effects by
any of the indicators of workload used here. The fraction of
overhead usage is probably the most commonly obtainable quantity.
From a practical point of view, before a computer installation
becomes operational, the fraction of capacity to be used at
maximum expected workload is probably the only indication of this
factor that will be available early in the development. Data
Collection Procedure 19 in Appendix B and Worksheet 9 in Appendix
D should be referenced.

The workload metric takes the form
EW ~ ET/(ET-0S)
where BT = Executive Time
OS = Operating System Overhead time
202.4 DETAIL TO BE SPECIFIED BY THE PROCURING AUTHORITY.
a. Define the software component 1level for estimation
(different 1levels may be specified for each life cycle

phase). CSCI level is recommended.

b. Define 1life cycle phases to be covered and estimation
milestones.

¢. Identify data collection procedures (see Appendix B of
this Guidebook).

TS

,
.';'\.
.

3 v s v =
Kl

APPENDIX A

DEFINITIONS AND TERMINOLOGY

This appendix presents definitions of the principal terms and
concepts used in this report. Where possible, the definitions
are taken from established dictionaries or from the technical
literature. Where a rationale for the selection or formulation
of a definition seems desirable, it is provided in an indented
paragraph following the definition. The sources for the defini-
tions will be found in the list of references at the end of this
Guidebook.

ERROR - A discrepancy between a computed observed, or measured
value or condition and the true, specified, or theoretically
correct value or condition. [ANSI81]

This definition 1s 1listed as (1) in the American National
Dicticnary fcr Information Systems. Entry (2) in the same
reference states that error 1is a “Deprecated term for

mistake". This is in consonance with [IEEE83] which lists
the adopted definition as (1) and lists as (2) "Human action
that results in software containing a fault. Examples

include omission or misinterpretation of user requirements in
a software specification, incorrect translation or omission
of a requirement in a design specification. This is not a
preferred usage."

FAILURE - The inability of a system or system component to
perform a required function with specified limits. A failure may
be produced when a fault is encountered. [IEEE83]

This definition is listed as (2) in the cited reference which
lists as (1) "The termination of the ability of a functional
unit to perform its required function” and as (3) "A
departure of program operation from program requirements”.
Definition (1) is not really applicable to software failures
because these may render an incorrect value on one iteration
put correct values on subsequent ones. Thus, there is no
termination of the function in case of a failure. Definition
{(3) was considered undesirable because it 1s specific to the
cperation of a computer program and a more system-oriented
terminology is desired for the purposes of this study.

FAULT - An accidental condition that causes a functional unit to
fail to perform its required function. [(IEEE83]

This definition is listed as (1) in the cited reference which
lists as (2) "The manifestation of an error (2) 1in software.
A fault, if encountered, may cause a failure". Error (2) is

A-1

-
4

- 2 1
ﬂﬁ?(?
» ‘!\f
;-a
"

o
ol

g w\As
'l
h3

-
-
»

L4}
[l

vy
"‘,l‘ .

L3
sler,

LY

’

'
v'.{‘

s
P

s
PRy

'f?f?.
"
A
LA

',
(‘C .‘ [4
]
o

)

[S 20]
r‘.
»
.
A
2
—a
»

. .\
\-
]

%
fbf??“
.\ﬂ'-‘-

h
b
)
Q'

d‘\l
2

;??
)

,.
»»
LAY
LN
*.
naa

L I
AR
LI
PR
v,
¥
3

[,

[
4

st

s 2 2N .
.’I.
el l T
E
f‘l-'l’

S, X

l. 'l .l

st
2

(2

[l
ﬂé 4

Ve ®
A]

LR AR
rvﬁp"
W uln b
Y
e
e

L4

s FaP
r'a’
LN
g

LN

>

.......... U L Al 0 M) e PN
A
PRy
NSy
ldentified as synonymous with "mistake". Thus this defini- }tﬁiéﬁ
tion states that a fault is the manifestation in software of Aot
a (human) mistake. This seems 1less relevant than the NN
identification of a fault as the cause of a failure in the a falatd
primary definition. It i1s recognized that the presence of a n-43-
fault will not always or consistently cause a unit to fail Qy-?a*
since the presence 0f a specific environment and data set may 3'ijﬁ
also be required (see definition of software reliability). fﬁjt,’
) >
MISTAKE - A human action that produces an unintended result. fﬁﬂb.'
[ANSI81]
R A
DA R
SOFTWARE QUALITY FACTOR - A Dbidad attribute of software that nyl@?:
indicates 1ts value to the user, in the present context equated A
to reliability. Examples of software quality factors are RSN
maintainability, portability, as well as reliability. May also JOENA

be referred to simply as factor or quality factor. [Based on
MCCA80]

SOFTWARE QUALITY METRIC - A numerical or logical quaatity that
measures the presence of a given quality factor in a design or
code. An example i1s the measurement of size in terms of lines of
executable code (a quality metric). May also be referred to
simply as metric or quality metric. A single quality factor may
have more than one metric associated with it. A metric typically
is associated with only a single factor. [Based on MCCAS80Q]

SOFTWARE RELIABILITY - The probability that software will not
cause the fallure of a system for a specified time under speci-
fied conditions. The probability is a function of the inputs to
and use of the system as well as a function of the existence of
faults in the software. The inputs to the system determine
whether existing faults, if any, are encountered. [IEEES83]

This definition 4is 1listed as (1) in the IEEE Standard
Glossary. An alternate definition, listed as (2), is "The
ability of a program to perform a required function under
stated conditions for a specified period of time." This
definition 1is not believed ¢to be useful for the current
investigation Dbecause (a) it Is not expressed as a proba-
bility and therefore cannot Dbe combined with hardware
reliability measures to form a system reliability measure,
and (b) 1t is difficult to evaluate in an objective manner.
The selected definition fits well with the methodology for
software reliability studies which will be followed in this
study, particularly in that it emphasizes that the presence
of faults 1in the software as well as the inputs and condi-
tions of use will affect reliability.

SOFTWARE RELIABILITY MEASUREMENT - The 1life-cycle process of
establishing quantitative reliability goals, predicting, measur-
ing, and assessing the progress and achlevement of those gcals

during the development, testing, and O¥M phases of a software
system.

SRS
ik
o

-
[4 I(
of ol

)
IA}

’e
o
h 3
o5

(A

5
“x

v or:

| S ll '

KRS

L] ' ".

Al
‘, X

-;‘s

“HNh
Pl s

b MRARNA
2

“rer L,
s

XY
L

-
-
- m
Y
n
A
te

a

L3
[

AT

R
]

LAY
P

e
N Y "
{\.\‘,/.._ .
P NN "{\{\{'|’|4
P »
)] .‘,J ® "I
LA A, Sl

€

3

v
z,

T TR

- Tt te T S
P R

R NN .
A R AR R R R LA e N

r0e

e W P T Y ™
v .-“.\. ‘,f:f‘,“:{\"

TN T

-
e

1)
-
|]

»
3
L]
R
)

L
1

'r.
1
A
>
&
_.l
b
.‘
"
b
e

-
S
¥
&

ible with that intended to be used in estimation and measure-
ment.

SOFTWARE RELIABILITY ESTIMATION - The interpretation of the
reliability measurement on an existing program (in its present
environment, e.g., test) to rTepresent its reliability in a
different environment (e.g., a later test phase or the operations
phase). Estimation requires a quantifiable relationship between
the measurement environment and the target environment. [(HECH77]

X I
N A
. PR A
s :
. RARNLY/
; SRR
n, :.n...-.:” d
AC A
" SOFTWARE RELIABILITY PREDICTION - A numerical statement about the R
reliability of a computer program based on characteristics of the DN N
design or code, such as number of statements, source language or ®
t complexity. [HECH77] .:::::j::.'_;:
« .,. -..-..
R Software reliability prediction is possible very early in the PN
3 development cycle before executable code exists. The numeric ?}{nﬂ-
. chosen for software reliability prediction should be compat- ?&y:i'
N
b
o

N
T

.' e L' i
..ﬁg{{
L4
0

,
a
)

The numeric chosen for estimation must be consistent with
that used in measurement.

R

SOFTWARE RELIABILITY ASSESSMENT - Generation of a single numeric
for software reliability derived from observations on program
execution over a specified period of time. Defined sections of
the execution will be scored as success or failure. Typically,
the software will not be modified during the period of measure-
ment, and the reliability numeric is applicable to the measure-
nent reriod and the existing software configuration only.
{HECH77)

4
4

LIRS '\‘\
P A

LS

y e

e €
(]

«
’

e e

o
YRR

" 'I S .
2 .

by

P4
iov e
'~

2

The statement about not modifying the software during the s
period of measurement 1s necessary in order to avoid committ- N
ing to a specific model of the dekugging/relliabllity NN
relation. 1In practice, if the measurement interval is chosen
so that 1in each interval only & small fraction of the
existing faults are removed, then the occurrence of modifica-
tions will not materially affect the measurement.

/
v %
A7,

s

PREDICTIVE SOFTWARE RELTIABILITY FIGURE-OF-MERIT (RP) - A
reliability number (fault density) based on characteristics of
the application, development environment, and software implemen-
tation. The RP 1is established as a baseline as early as the
concept of the system is determined. It 1s then refined based on
how the design and implementation of the system evolves.

RELIABILITY ESTIMATION NUMBER (RE) - A reliability number
(failure rate) based on observed performance during test condi-
tions.

FUNCTION - A specific purpose of an entity or its characteristic
action. [(ANSI81] A subprogram that 1is invoked during the

evaluation of an expression in which its name appears and that
returns a value to the point of 4invocaticn. Contrast with

L ‘2 gy PO LU S St L) St S S e Mt e tad SetaSateRat ytiatSetaly Al s s bt At ey e bt e ngl AR agh gt O nd Bt A A AL
o,

.

o*

"

o

L4

v

¢ subroutine. [IEEE83]

~

N MODULE - A program unit that is discrete and identifiable with

respect to compiling, combining with other units, and loading:
for example, the input to, cor output from, an assembler,
compiler, linkage editor, or executive routine. (ANSIB1] A
logically separable part of a program. [IEEE83])

hY

S

LR o v |
t.l._l.;.{%_‘.?\
LA :'\ 1, *y

SUBSYSTEM - A group of assemblies or components or both combined
to perform a single function. [ANSI73] In our context, a sub-
system 1ls a group of modules interrelated by a common function or

W o

>
*a
L

g

; set of functions. Typically identified as a Computer Progranm
A Configuration Item (CPCI) or Computer Software Configuration Item
. (CsCI). A collection of people, machines, and methcds organized
,: to accomplish a set of specific functions. [IEEE83] An inte-
3 grated whole that is composed of diverse, interacting, special-
' ized structures and subfunctions. [IEEE83] A group or subsystem
, united by some interaction and interdependence, performing many
i duties but functioning as a single unit. [ANSI?3]
" SYSTEM -~ In our context, a software system is the entire collec-
- tion of software modules which make up an application or distinct
} capability. Along with the computer hardware, other equipment s
X {such as weapon or radar components), people and methods the A
“ software system comprises an overall system. RN
: v
- A AN
- R]
F_“-' g;‘
f..l-...'\
i RN LAY
. : :_\i-\.:_s. l
8 RN
. Pais
E: PO
> o
L
: T
' AN
~ - '-- .’- 2
iy
R
e
RN,
:_\'_\‘_'.
, A
Y A
1] T

sl

- w -
El Ak A

-

AR AN)t

A

AAAASIHT bl g~ e

T

N A . - o YAl A St Aat At A STAT ST NN > %A
APPENDIX B
DATA COLLECTION PROCEDURES
This appendix contains Data Collection Procedures. These
procedures describe what data must be collected tc use the
Software Reliability Prediction and Estimation Procedures
described in Section 5 of this report. Complementing these
procedures are the actual worksheets contained in Appendix C and

D. The intended process then is for reliabllity engineers to use
the worksheets in c¢onjunction with +these data collection
procedures to collect data. That data will then be used when the
engineer or analyst uses the prediction and estimation algorithms
to determine a reliability number. An index of data collection
procedures 1s provided in Table B-1. A cross reference to the
Worksheets in Appendix C and D is in Table B-2.

The utility of the metrics is based on their representation of
the characteristics 1dentified and the correlation or affect of
these characteristics on software reliability. There 1is,
however, another important aspect to the utility of the metrics.
That 1s the economy of their use, 1.e., the cost of collecting
the data to calculate the metrics is an important consideraticn.
Automated collection tools are essential for many of the
measurements. Some measures, such as the ones which simply
require classification, are easy to colliect.

This appendix contains
required to calculate
following format:

data collection procedures for all data
each metric. The procedures follow the

PROCEDURE QUTLINE

1. Title: Identifies metric or data element this procedure
relates to.

2. Prediction or Estimation Parameters Supported:
Identifies the higher 1level metric this procedure

relates to.
3. ObJjectives: Objective of the title metric.
4. Overview: Provides overview of this metric.

5. Assumptions/Constraints: Describes any
constraints related to this metric.

assumptions or

6. Limitations: Describes wany 1limitatlons to

using the

s <
av ¥,V

Ay ol § .
R AC A AN

:,
X

C 5,

7,
<A
XA

v’1/
S J

4

[y
Ve - -

l"

L4

"" .l
802,
A

‘s
v
-'.‘

P
.

‘e Ty B8
Ly

NG

.
v
X

v
TS
h)
[

A
AR
P
4

R
Y

<
s
LN
I’

[}
&(

g

"
»

P 4 o

h

, o
s
P4

"l"(.
I) »
R
a ‘.l n
!‘I"- (-', "

o .:‘ \). \'

RS v
N LR
Py PR LI
N P

e .
y “‘I‘: |~-.‘-

B
PR

z
"
,

\
hY
MR Y

LA
AR

ARG

VAN
Bl
\"‘h.‘n b
. . L]

s reld

VAN

L]
v fi)‘

y q.{-,’ﬁ{-. ,"f’
NEES
s
P

*»
el

L4
&N

RN
A
o 3%
.ll'|.'-'

P

DA
vy
o'y
)

S
l. .. " .. ‘I .‘}t' .
(AP AP X A4 2, <
-, q 4
S e
X AR Ny LAEN []

.
o
5

-
- '15.
s

2

. A an A

y SR P R I S WY e N e e e
By AT A ::.-: N _‘_.-:‘z. Fa -‘:J'._ AR)
B N N A N N e N IS At e
" T - - . - - - - - L i- I'- .f -r ". f -J ‘. --. - - h-.
O I N AN A AL A AN AT

procedure or metric.

7. Applicability: Describes when the metric can be applled
during the software life cycle.

8. Required Inputs: Identifies the required data for
calculating the metric.

9. Required Tools: Identifies any required tools needed for
data collection.

10. Data Collection Procedures: Provides step by step
guidance on collecting the appropriate data.

11. Outputs: Describes output of procedure.

12. Interpretation of Results: Provides guidance on
interpreting the results.

13. Reporting: Provides any required reporting format.

14. Form: Identifies any applicable forms for data
collection or metric calculation.

15. Potential/Plans for Automation: Describes potential and

any known plans for automation of this data collection
procedure.

16. Remarks: Allows any remarks/comments about metric.

The data required for these metrlics is available during most DOD
software development. Data collection is required. It involves
applying worksheets to the typical documentation produced with
MIL-STD 2167A, MIL-STD 490/483, and MIL-STD 1679 and automated

tools to the code produced. It also 1involves collecting data
during test.

re el

"
- \'
- J\ -
",
---\
~

o

a0y
> ’\ {N{‘- P

o

JNN
LY
&

DA

I'}

&S
hARERRS

s »

u"'.l.‘-
I\ K
\- .

»

I° A
5\
WY

w
] E\

L e i B)

I‘l
1 ".

(]
AL
l'.
L}

LA
e’y
" .

«
/':" o

AR LA
ey '

l" 't ﬁ !".

: < ". 7

A

N
L AN
. _.l.'f..{5f5?$

&

8

h)
5 % &

S
Pl

"y e v
0

B
>
AN A
)
-‘u'_r

.I.‘..'."..'
IR
AL
L

@

=
4
1}

’
[4

Y
h]
PAC AN

5
"-'\
YNy

%

"\
LA
P

\

.
I':’
P4

2

0 «®

L A

AL ALY

Y

@

.:;.'
-
G

P AT P AR

PO W NS ’ EEd F.or vy Tanan Mo T ey
) LRI JPFL L ALIN -~ PR PRI AN ' v S
" ..”..” ..“.....f...u.m..... X0 ..HanHM. u...'... it @ vrh.u..w..w...“.. N @I NALTL @ & e
hih} » ' " L) WP Y) Pl i N St S L LY aE P AN St
G P AR A A %N - : AR AR AR -
.........‘.. > ../....: kT \.......s.'\ : -w.u..r.s...\fu...... H..J AW mr.p.”x.h\.n..........u J.”f,..‘ A AN Tan i
LA AN A TN -n\L . vF\P f‘\‘n...r-v AANNISY R R O A A A 0 .z.... s
A _
)
.-
L S
.
\
X 0|
b [L I}
' [+ A1
o1
L D |
. 2] “ ©
. 3 i © ~
. M ! o - » -
. 23] (<Y - ~ o
. a 1 [I I I N I - o 0. o T o S I <o I T R I I |
\ -4 [© [2] ard a4 -
[[l - O 0 W
N M S o =
_ -
@ 3 -
! D [
a [« 2|
. S
(94 $
; ¥ =}
, 0
= =]
: 'e) A]
d = O | o ¥ »
p [H | 4 [>
O o AN oA Q@ < 3o ™ P
[£2] (S > H a O O v
-3 L2 I a0 2 0O —~ Q0 o —
3 x| Mo O > > A —~ Q-
(®)] gt P P ~HO® OwQ
&) Qo RLrAeLr > M PPLPOTSCS
2| odgdad~« OR W > O S H O A
< B AQ0EAMAA PPruogdad o O H
= M_ PEHE H POIPAAT IO wPP>aAd
< ! SANADPNNAVOHMHUAAODOHDOD> O
(&} 2 | OO0~ 8+ M SIS OL M EDO O
[« A A4S PA PIAATHII P
AOPEHEOADPHWNWI RAOO~HPLP PP IM
- >0 INIACUESNO-H NN AN
— APANSHIdOOPLAMHBSDODODODAO
n_u CACEHEUERIXEODOVLAMNKHEEHEBHZE
m [o A
I 2z
m om
< HXE |
[=D |
O i
(%} ! O QAMIDONORD
ME_ AN HEOO-OND A A A A At~
o |
[ex=3u]
oA
£ 4
<0
2O |
< oL
(o -V

PR AN RIS S S S

flxvrngavr:vxvcwwrw.“vtﬁvTnv1nvwwrvfvn1ﬁ?"varvw"wv?fvffvﬁrvﬁwvrr?ﬁf?:Tv;fvnvfﬁqum
® -
:

At

PROCEDURE NO. 1

1. Title: Application Type (A)

L am o aw g e o L=

2. Prediction or Estimation Parameter Supported: Application
Type (A)

3. Objectives: At the system level categcrize the systen
applicaticn according to the application eand “irme dependence
schemes identified in Worksheet 0. At a CSCI level, if possible,
categorize the software by function.

T

4. Overview: Manual inspection of documentation to determine tkhe
{ type of system according to preceding classifications. This
determination can be made at the Concept Definition phase.

5. Assumptions/Constraints: Ambiguities or other difficulties in
applying this scheme should be resolved in favor of the dominant
H or most likely classification.

6. Limitations: None
7. Applicability: Identify Application Type at project

initiation. Metric worksheets require update of information at
each major review. It should not change.

e o
.
v.'

8. Regquired Inputs: Statement of Need (SON), Required
Operational Capability (ROC)., or system requirements statement
should indicate application type.

N
REBJLR
Fal
A
,."I'
DASAD
4

vy

l'-{ 1]
'-\l\l-
"

N

9. Required Tools: Visual inspection of documentation.

Y
>

10. Data Collection Procedures: Functional description of system
extracted from documentation and matched with an application
area.

e

Cal)
SNANS
l‘!.I,.

0
AThY

.‘.\-

11. Outputs: A baseline fault density, A, will be associated with
each Application Type.

12. Interpretation of Results: Application type may be used early
in the development cycle to predict a baseline fault density.
These rates are then modified as additional information
concerning the software becomes avallable.

13. Reporting: Application type, together with projected baselline
fault density, 1s reported. The Dbaseline rate should be made
available to the prospective wuser to ensure that the user Is
aware of failure rates (or fault density) for this applicaticn
nd has provisions which will affect the characteristics of the
specific software as they unfold during system devaliprent.

. i O e AT
B TR e P IR T e AR
S T T g AR A T I o RN

TSN EREREIIIF EPIEIIAP ST IE S AP I IE S AT AR IR IPRRTSIORIP PRI RFNIIN,

X R

P AP o hd
¥ Ay
LAY @ DS
XN
) .h..-h-b -LV.V&J
/s
4
e
¢
o
7
/)
: o
5
: =
o o a
(o)
b PR
[4)] 9
. Q]
E] g8
w0 (o]
M P
[3
O <«
< 3
~
) (9] o
-~ a4
S ~
A L w0
k D =] Q
¢ = o a
P, — O
[0 2] =
A [/}
P, =) —
~. a .o
3 —- u
: . P oM
* 0] =] H
4 =]) o
3 Ho® B
* O [o] Q
¢« fxq P [+ 4
[, <+ s} ©
A — —t -~
s
Lld vy vy Y

LY

-
RACAS LW WA,

Pl el 4

%

P YA

i o
.
A AN

Overview:

therefore,

PROCEDURE NO. 2

Title: Development Environment (D)

Prediction or Estimation Parameter Supported: Development
Environment (D)

Objectives: Categorizes the development environment according
Boehm's [BOEH81 classification. Additional distinguishing
characteristics derived from RADC TR 85-47 are also used.

Organic Mode -- The software team is part of
the organization served by the progranm.

Semidetached Mode -- The software team is

experienced in the application but not
affiliated with the user.

Embedded Mode -- Personnel operate within
tight constraints. The team has muck computer
expertise, but is not necessarily very
familiar with the application served by the
program. System operates within strongly
coupled complex of hardware, software,

regulations, and operational procedures.

survey 1in RADC TR 85-47 revealed the following factors, were
have significant impact on the reliabllity software.
provide a checklist for predicting the quality
of software produced using them:

° Organizational Considerations
- Separate Design and Codirng
- Independent Test Organization
- Independent Quality Assurance
- Independent Configuration Control
- Independent Verification/Validation
- Programming Team Structure
- Educational Level of Team Members
- Experience Level of Team Members

] Methods Used

In Boehm's classification the system is categorized
according to environment as follows:

5 hR
i,
L]

] .l

oy
}s

NI
X 7
— d'j' [I"(q

¥
%
o)

7]

,.
o
P4

Ly

5,

2]

A
’

"l
NS
g
)

[
P

e

o
o

&l

h

B

vt .-s .;\,-“v

:.“\;'('-‘:r *
Y

.
“w
NS

Y ’ !
. NUSLSN
'{i’f:"‘:\l

-}'HS'-'-

LYK

[)
1, 5
PSS

N PLA PR A A I N R ted A it

-
LS
Y

7
s
AR

[
¢

- Definition/Enforcement of Standards

hJ
.

55Ny
P2
L]
by}

h]
]

¢
/
h]

- Use of High Order Language (HOL)

'S

&
5

- Formal Reviews (PDR, CDR, etc.) g
- Frequent Walkthroughs -
-
- Top-Down and Structured Approaches ;::‘:

- Unit Development Folders e
- Software Development Library
- Formal Change and Error Reporting

- Progress and Status Reporting

L5

o Documentation

o
-,

)
v

- System Requirements Specification

<

"‘
o
&

- Software Requirements Specification

7
.
.

e
"“ .

14

Pl

- Interface Design Specification

oL

[]
.'l
e

' L
?:I:I‘:’ L
S

[§

L] ,'

- Software Design Specification

'.
Y

'

- Test Plans, Procedures and Reports

- Software Development Plan ‘
- Software Quality Assurance Plan

- Software Configuration Management Plan
- Regquirements Traceabllity Matrix .
- Version Description Document s
- Software Discrepancy Reports ;

) Tccls Used

p

d B

9 - -,
E Requirements Specification Language oy
i - rogram Design Language -

- Program Desigan Graphical Technique Sl
s (Flowchart, HIPO, etc.)

) - Simulation/Emulation

. -
.

P
[
Sl f St

. ".|\ ‘ - ‘.‘ \ LS DA W Rl Fadl Rl 2 - o m T e T my . LA i i el \ \

r
.,
o

N

A A
A8 ANY

2l
ShESNN

- Configuration Management

o)
Ay

- Code Auditor

R T TR YA

l. ’l
(SN
v "
AN

[

- Test Data Generator

- Test Driver

- Automated Verification System
- Data Flow Analyzer

- Automated Measurement Tools

The developmental environment should be described in the Software
Development Plan. If it is not, it will be necessary to review
product reports or to interview the software developers.

5. Assumptions/Constralnts: Use of the Boehm metric assumes a
single dimension along which software projects can be ordered,
ranging from organic to embedded. Care must be taken to ensure
that there 1s some allowance made for variations from this
single-dimensional model -- e.g. when inexperienced personnel are
working 4in an in-bhouse environment. In such cases, the dominant
or most important characteristic will be used.

The checklist developed from RADC TR 85-47 provides a rating fcr
the developmental environment and process. Higher scores are
assumed to be associated with more reliable software. However,
this relationship is not likely to be linear (that is, it 1s not
likely that each item on the checklist will increase reliability

by an identical amount). Calibration of the score will be
required during tests of the metrics. Current values are from a
survey.

6. Limitatiomns: The reliability of these metrics will be

affected by the subjective judgments of the person collecting the
data. Data concerpning project personnel may not always be
available after project completion, unless 1t has been
specifically gathered for this purpose.

7. Applicability: The Development Environment will be indicated
during the requirements phase and, combined with expected fault
density/failure rates for the Application Area, can be used to
obtaln an early forecast of reliability.

8. Reguired Inputs: Information 1s extracted visually £from
requirements or specifications documentation.

9. Required Tools: Manual data extraction from existing
dccumentation. A checklist is provided in the Data Collection
Wworksheet 1 in Appendix C.

10. Data Collection Procedures: Using the classification scheme N
and checklist in Metric Worksheet 1, use Software Development sl
Plan to determine the Development Environment metric. Where N

AN
appropriate information is not included in available) ®
documentation, it may be necessary to interview project AN,
personnel. N

AL
1i. Outputs: Classification and completed checklist as indicated it
in paragraph 9 above (Metric inputs D, and Dg). J;fvﬁw

- pe
. ‘7

1. Interpretation of Results: As a refinement, regression
techniques can be used to obtain metric values for each of the
indicated environments 1n the Boehm classification. These are
combined with the score obtained from the Martin Marietta
checklist to obtain the score for this factor.

7’4

13. Reporting: Where the predicted failure rate differs from :,
specified or expected values, changes 1in the personnel mix, MM
project organization, methodology employed, or Other T
environmental factors may be required to improve predicted yﬂky;z
reliability or to reduce costs. Early reporting of this NN
information will permit such changes to be made in a timely 2 A
fashion. ! L

i4. Forms: Use Metric Worksheet 1

15. Potential/Plans for Automation: This factor will be obtained
manually. .

16. Remarks: None

.......

PROCEDURE NO. 3

1. Title: Anomaly Management (SA)

2. Prediction or Estimation Parameter Supported: Software
Characteristics

3. ObJectives: The purpose of this procedure is to determine toe
degree to which a software system 1s capable of responding
appropriately to error conditions and other anomalies.

4. Overview: This metric is based on the follcwaly
characteristics:

Error Condition Control,

Input Data Checking,

Computational Failure identification and Recovery,
Hardware Fault Identification and Recovery,

Device Error Identification and Recovery, and

Communication Fallure Identification and Recovery.
In general, it 1s assumed that the fallure rate of a system wil_

decrease as anomaly management, as measured by this metric.
improves.

This metric requires a review of program regquirements

specifications, and designs to determine the extent to which tne
software will be capable of responding appropriately =c
non-normal conditions, such as faulty data, hardware failures.
system overloads, and other anomalies. Mission-critical software
should never cause mission failure. This metric determines
whether error conditions are appropriately handled by thre

software, in such a way as to prevent unrecoverable syster
failures.

5. Assumptions./Constraints: Elements of this metric are obtalned
manually 1n checklist form. Thils metric assumes that syster
requirements and specifications contaln sufficient informatico to
support computation of the required values.

6. Limitations: By its very nature, an anomaly 1s an unfcresecer
event, which may not be detected by error-protection mechanicrs
in time to prevent system fallure. The exlistence of extensive
error-handling procedures will not guarantee agalnst <
failures, which may be detected during stress testing or 1lnpitial
trial implementation. However, the metric will assist el
determining whether appropriate error procedures have een
included in the system specifications and designs.

N

‘l"r'? \v A

q [
I N K]
o .
. « . . "'\

"

%
Ll
Pt

x "t

’

’l

e ;‘": d
e

t
b

n’.i"
., a4
S 5L 8
.l
R

o,
1

P 4R
I'l"".

v
¢

.. ﬁ. '.. "- a
PO 4
LALS

L X

P

..
o«

s
.

(O
VA

'l

v
L)

)

:}:}"i‘)‘" P A A A e STFTET T
5 -

s T
""-: _“.__»:P*
> e

»)
Eﬁ :j;£
I-‘ ‘~l...l..

PO 7. Applicability: Elements of this metric will be obtained O
o throughout the software development cycle. e
W :.;. :..'_“
8. Required Inputs: This procedure requires a review of all ®

system documentation and code. RS

A

9. Required Tools: ©No tools will be used in the collection of jﬁ*ﬁ

data for this metric. A checklist is provided in the Worksheets Pagiat

in Appendix D.

v
V'S

(9N
»
» e

10. Data Collection Procedures: Data to support this metric will
be collected during system development, Data must be obtained
manually, through inspection of code and documentation.

11. Cutputs: The measurement, AM, is the primary output of this
procedure. In addition, reports of specific potential trouble

o

areas, 1in the form of discrepancy reports, will be desirable for Pk
guidance of the project manager and the program supervisor. V:q:

RO
12. Interpretation of Results: Anomaly conditions require special ﬂf;:
treatment by a software system. A high score for AM would AT
indicate that the system will be able to survive error conditions LR

without system failures.

A
s

13. Reporting: An overall report concerning anomaly management
will be prepared. It should be noted that the cost of extemnsive
error-handling procedures must he balanced against the potential
damage to be caused by system failure. A proper balance of costs
and benefits must be determined by project management; the
purpose of this metric 1is to assist the manager in assessing
these costs and benefits.

14. Forms: Metric Worksheet 2 in Appendix C.

15. Potential Plans for Automation: Information for this metric
is obtained manually.

16. Remarks: Proper determination of this metric will require
some imagination and intelligent Judgment on the part of the
reviewer. Since error c¢onditions take a wide variety of forms,
the reviewer should be experienced in developing error-resistant
software.

.

-
C4
D

LB

PN
[

P A

- ¥y ¥YV W v v
DRt e
Cot

2,

" N : y a . . v O 7
R YR P Y e 1o i'arite Bin-te e el Nail b ol ML SR AR B ‘. Ao ae" s A SACANLS B A b A ST N AN o P L A L R R Rl S 5

AR
0y
-
: f.:,

PROCEDURE NO. 4

-
.

»
PR

x
5
b
7

{.i
14
i

1. Title: Traceability (ST)

I A

2. Prediction or Estimaticn Parameter Supported: Software
Characteristics

3. Objectives: The purpose of this metric 1s to determine the
relationship between modules and requirements. If this
relationship has been made explicit, there is greater likelihood
that the modules will correctly fulfill the requirements. It

should be possible to trace module characteristics to the
requirements.

4. Overview: This metric indicates whether a cross reference
exists which relates functions or modules to the requirements.

5. Assumptions/Constraints: The intent of the metric requires an
evaluation of the correctness or completeness of the requirements
matrix. It is assumed that the existence of the matrix will have
a positive effect upon reliability.

6. Limitations: To achieve the true intent of this metric, a

scphisticated tool or requirements specification language must be ,;.;?:
used . In its simplest form, the metric can simply be a check to NN
see if a cross-reference matrix exists. AT
\:_-.:.-. J"
7. Applicability: Traceability may be determined during the '\;‘::\
requirements and design phases of the software development cycle. AR
:"\."':“5
8. Required inputs: Requirements and design documentation should -25}2:’
include a cross reference matrix. i
“ iy :\::
9. Required Tocls: No special tools are required, however, use CATRN

of a formal requirements specification language, PDL, or
traceability tool provides significant savings 1in effort to
develop this metric.

et
v e e oa

10. Data Collection Procedures: Documentation 1s reviewed to

determine the presence or absence of the cross reference matrix, e
to 1itemize requirements at one level and their fulfillment at L
another. Metric Worksheet 3 in Appendix C can be used. ;;jegj
WL SN
AT
11. Outputs: Problem Reports should be written for each instance e
that a requirement is not fulfilled at a lower 1level Eﬁ}?xi
specification. NG
12. Interpretation of Results: The cross reference should be DALY

taken as an indication of software quality, in that the presence

of the matrix will make i1t more likely that implemented software }‘_;ﬁf
actually meets requirements. Identified traceability problems “?}g{\
should be reviewed for significance. DR
_ ®
AN
B-1 :-".-“:5 »
o S

AT

'1"::.
P

AN

4,
it
»

13. Reporting: The project engineer should be made aware of the
presence or absence of the stated cross reference, to determine
wvhether contractual requirements have been met.

l4. Forms: Discrepancy Reports should be generated for all
instances of lack of <traceabllity. Metric Worksheet 3 in
Appendix C contain checklist items for this item.

15. Potential/Plans for Automation: Tools such as PSL/PSA, SRENM,
RTT, USE-~IT assist in the determination of this metric.

16. Remarks: None

..",T,f'f';:a'.':?
:: 3:5 ';":"'-"
(PR
N NN

4@

4
8 5

L 3 2
s
4
Pl

” .
4
vy
"
z

~ -
-

Yy
LY

r:.r:r"

*sZ,

P r A
s

o
"
8 a
>
]
»
r -
L
"
‘I
1]
2]
W
iy
l.)
>,
Ly
L {
b v
P
b
) "
1'
)
~
¥,
\
18]
L
=
Al
R
P -
)
: These
1
LAV L LI SR RE I N B L
PN NN AN S o
v LA .
{N(‘i$"‘f‘\‘. :_"-'{“-:."" \;\' “»
) o R N, AL P LT S T Y

J'., Al‘ll.‘-n.t» ‘a0 heh Bl Bt et . s ¥

WL, L - - - ¥ u¥a a®a"

PROCEDURE NO. S

1. Title: Quality Review (SQ)

2. Prediction or Estimation Parameter Supported: Software
Characteristics

3. Objectlves: This procedure consists of checklists to assess
the following characteristics:

are

Standard design representation;
Calling sequence conventions;
Input/output conventions;

Data naming conventions;

Error handling ~conventlons;
Unambiguous references;

All data references defined, computed, or
obtained from all external source;

All defined functions used;

All conditions and processing defined for each
decision point;

All defined and referenced calling parameters
agree;

All problem reports resolved;

Accuracy analysis performed and budgeted to
module;

A definitive statement of requirement for accuracy
of inputs, outputs, processing, and constraints;

Sufficiency of math library;
Sufficiency of numerical methods;
Execution outputs within tolerances; and

Accuracy requirements budgeted to functions/-
modules.

combined to form a metric, SQ, which represents how

well these characteristics have been designed and implemented in

B-14
R R Sy T e e e e e e e T e e e e L Mmoo,
i r.z.:.:.f.f;f.?\f‘*\ix - ~’x’\’:"jzﬂc:;';"n’\‘\;u’\
I e e gt Wt T T e e T T Gy - ol A e " -~ A WA
e e S T ﬂ.""-’-_""'\."’.*'\.» T e N W NN S A
NI I S AN o
"o " L L e e 0%y h

. -
LNESar Ok Wl S

Eﬁﬁyﬁ
fiﬁ“:
AN
AARA

@
o'

A%

P
LI
APRRY J

RN

’
LAY

PP

A
e o

L4
%

w
4
5]

ORA SN
: ~

’
C

e e
.l..-.-.'
") &

"’

e At
r.l.
'}

. rl fl“
asa
*

o
L
L

.
EE Y
.

'l
’
)
[

R

P
'y,‘\{'v‘r'
, 2

5 48
LA s

-l

P

", ., ‘n-l
»

. ': *

-“,v"'n','?

: .
- -

AP
t

e

t
o

S
[]
r

Pl 4

N aha e BTE ETS

AT TR UL VY P 1Q 200N Vgl o % U i il LA R CA L L Sl Gy

v

Vev's's
l.. \. V‘. I‘ .
hY

h)

!\'5 g
AT
the software system. :5:5:5\"\:"
\'J\-- f\\l
4. Overview: This metric will be determined at the requirements s "".;,':i _'
analysis and design phases of a software development. The metric ‘05{' o
itself 1s the number of problems found during reviews of the] .
requirements and design of the system. In order to make this RALIAN,
metric relative among systems, this number 1is divided RO AN
(normalized) by the number of functional requirements identified EIRSOHLE
for the system. NN
Il
5. Assumptions/Contraints: Formal probler reporting during L::}-;»
requirements and deslign phases of software developments has been AT
inconsistently performed in the past. Methodologies advocated in AT
recent years and more disciplined contractual/Government T uitntel
requirements and standards now encourage this activity. Assumed AT
in this metric is a significant effort to perform formal reviews. O
Techniques such as Design Inspections or walkthroughs are the) PS
mechanism through which problems will be identified. Use of the e
worksheets at Appendix D are also an alternative. %\",\vx .,
A n R
6. Limitations: The degree to which the requirements and design v":::a",,t,.
specifications are reviewed will influence the number of problems ‘.‘_'.‘é:-f\-f
found. Consistent application of the worksheets at Appendix C as 5;"'- w4
a QA technique will alleviate this limitation. __'
7. Applicability: The primary application of this metric is to ::I:}:.':i::::'
the requirements phase and design phases of the software RSN
development. RN
¢ -' “u ":"-
8. Required Inputs: Requirements Specification, Preliminary S,
Design Specification, Detailed Design Specification are required. ..:-:-:,.:-ﬁ:
":-:':ﬁ"":"'\.
9. Required Tools: Checklists will be used in determining this '_.;-j.:ﬁ--“,'l:
metric. - -:';-.j:"_'-\
AL e,
10. Data Collection Procedures: Documentation will be reviewed at - 2)
the end of each phase of the system development to determine the NN s
presence or absence of these characteristics. tﬁ:ﬁ:ﬁ:lc
n_"\.\‘.\'.-_‘\
Since this procedure assesses the quality at early stages of the ;-'.C}';}_.'- '.;
development, it will require a comprehemnsive review of RGN
documentation. Detailed records must be maintained (Discrepancy °
Reports). Reviews will be performed using the worksheet in AN
Appendix D. VAN
.-'“"'.'-.\.r
11. Outputs: Reports of the current number of discrepancy reports fi‘.'_:‘:‘:\‘jl
(DR), together with detalled information for the project manager, ENEALRYA

will be prepared.

12. Interpretation of Results: To some extent, software will be
incomplete throughout most of the development cycle, until the
point at which all variables, operations, and control structures
are completely defined. This metric serves, then, as a measure

of progress. An 1incomplete software system by definition, 1s

AN

B-15 e

"-*-'-'-'.\i

NS

N

- - N '«"-\"A.'h '
AN SN

AN RN AN

A AR A

2

unfinished.

13. Reporting: Detalled reports of problems should be furnished
to the project manager and the software supervisor, to assist in
determining the current status of software development.

14. Forms: Worksheet 10 at Appendix D will be required.

15. Potential/Plan for Automation: RADC-developed Automated

Measurement System (AMS) provides checklists for use in reviewing
documents.

16. Remarks: Determination of quality will require extensive
review of documentation, and will thus be expensive. The extra
cost may be Justified if the information obtained can be used to
correct faults as they are uncovered.

B-16

N
;n ‘-..\

X
lJﬁ
o
54
o oL

PRy
b

I 4
r}
e,
¢
2

é{
5%

\,
5

I
%

N
l"‘

»
v
Ly s

.{l
l.l.
Ak 54
[

.
' T,

.
2

»
*
]

Db
v h
-“. {' '

»

e &Y
v
£«

)
L
&S
k"l)l
e)

e
2
,l

5
e

5
Y
Y
!

« f._

el
o n oy

'-f'r"i'-
NN
L NN ". “"r

\{'s" s
o A

¥

.
2
[4 Y ".-‘l
. ‘.
LSS
ORALLTEA

PATISaiy et gtaciie 04 N g as g i » A S N G I T T T T T T o v W e vV,

v
LA A

v
AESEAENEN
IR

« -
) N
* e

%

SRR

S
AR Y

PROCEDURE No. 6

v
CX A AN
BRSSO
ﬁbﬂﬂi i RN
|“- \lli
nESSS s

7 v
4
‘i'

1. Title: Size Estimation (NR and SLOC)

-

"
+

2. Prediction or Estimation Parameter Supported: Fault Density ,'-:_-..:4-:.-:
LG
3. Objectives: To determine fault density, some measure of size ’ '
must be used as the sample size (denominator). Described here RYSOERER!:
are two alternatives: number of system requirements and number of :tylﬁf'
\ source lines of code. RO
"\'.:“.-..‘t-:'
’ 4. Overview: During the early phases of a development, problems ?kﬁ:ﬁ,
identified are typically at a system or subsystem level. 1In T e
order to provide some relative measure of the significance of VL
these problems, a sizing measure is needed at a system level. A AAS}
simple measure of size is the number of functions required in the t’ﬁ?~‘*
System Specification (the number of shall statements may %ﬁbﬁ)

accurately reflect this).

™=
’
%
ﬂ
o<

Later in the development, an estimate or actual count (during

KGN
coding) of the number of lines of code will provide a basis for NN
Judging problems identified at the module level. Program size is ﬁﬂ&ﬂ&(.
not generated automatically by operating system software, since .“ﬁ&t?
the number of printed lines may include comments, declarations. oA
blank 1lines, or 1lines containing multiple statements. Our iy

accepted definition of source lines of code will be the number of
executable statements.

5. Assumptions/Constraints: It 1s assumed <that the number of
executable statements can be compared among systems. This
assumption 1s not 1likely to hold when systems are written in
different languages: a comparison of FORTRAN with LISP or APL
would be misleading because of the greater compactness of LISP
and APL in many applications. However, most of the HOLs to be
considered are similar enough to make this metric sufficiently
reliable for estimates of program size.

6. Limitations: Counting the number of requirements involves
significant discipline. Use of a formal requirements
specification language simplifies the task significantly. Use of
the concept of function points is another alternative. The key
is to be consistent.

7. Applicability: Estimates of program size should be available

during all development phases. a;q-;vq
T -.__-.;

8. Required Inputs: The Size Estimates will be based on the LN

Requirements Specifications and the software. :5*3¢1
LR L S,
Teletey
L)

3-17

O A0 A A AP et S Ryt b A LA A oA RA Y 30 N Mgt Syl

,. el
T Lo QPG

Lﬁ,;l

ANy

1Y
iy

(" . Gl » - -,
A A A A% S AR SN INLAC S ASAS

9. Required Tools: Requirements Specification languages or
analysis tools such as PSL/PSA, SREM, RTT, USE-IT are applicable.
Compilers or code audit routines generally provide lines of code
counts.

10. Data Collection Procedures: To determine the number of
requirements, individual requirements must be itemlized by
analysis of the Requirements Specification. Data Collection
Worksheets 3 in Appendix C can be used.

To estimate lines of code, use of senior personnel familiar with
the specific application or reference to a historical data base
which provides code counts for certain applications are the most
proven techniques. Data Collection Worksheet 4 1in Appendix C can
be used.

Use of the compiler output or code auditors provide actual counts
once coding is underway.

11. Outputs: Program size (SLOC) and number of requirements (NR)
are reported.

12. Interpretation of Results: Program size can be used as a
predictor of error rates. However, its primary use in this
research 1s in combination with Software Discrepancy Reports in
determining fault density.

13. Reporting: Program size is reported to the project manager as
required for estimating resource requirements.

l14. Forms: The standard worksheets in Appendix C provide for
reporting Program Size.

15. Potential/Plans for Automation: Moderate revisions of
existing system software should make it possible to obtain more
accurate counts of program size in terms of number of lines of
executable code.

16. Remarks: As noted, the measurement of program size has been
used in the past as a predictor of software quality. Program
size should be correlated with software fallure rates, where
appropriate, to determine the significance of this metric.

N

LY

.D-l.t Y
Wy
I

L]
-

..é

v rrars
R
PO
P Y R

'
o

" L
XA
5 8

L h AN NA
Wy
v
AL

'z
%
o

. l::'&
"
f':’ ‘

yATY S
R

J® >u

L' I o ¢
‘I
&R{ﬁﬂ'
RS

LA

- N
¢
‘?

“x X
-
.

} ‘3

r %S
>

o

hY
A‘ ’

[d

AT

<
"(
Ld
I.]
o
N
-
Yy
I.~l

2
LA

&, -

b

?Z

I‘
)

et '
PP e
Saa @

N
]

b
o &

-
s
'.?-’f-'

PV
A

4

> -
.
.

PROCEDURE NO. 7

1. Title: Fault Density

2. Prediction or Estimation Parameter Supported: Fault Density

3. ObJjectives: Fault Density represents a measure of the number
of faults in a software system.

4. Overview: Fault Density may be used to provide a preliminary
indication of software reliability. Because of the functional
relationship between this metric and the Failure Rate, it
provides an alternative measure of software reliability. Its

major advantages are that it i1s fairly invariant and that it can
be obtained from commonly available data.

5. Assumptions/Constraints: The predicted fault density will
depend 1in part on the review and test procedures used to detect
software faults. In any case, there is no guarantee that all
faults have been found. Although it can be used to estimate

fallure rates, it cannot be directly combined with hardware
reliability metrics.

6. Limitations: As noted, the Fault Density estimates may be
affected by the review and testing procedures.

7. Applicability: This number 1is confirmed during the formal
testing phases where faults are observed and discrepancy reports
formally recorded. During early phases of the development, a
fault density measure can be obtained by using the number of

problem reports documented during reviews or the prediction
methodology.

8. Required Inputs: Estimates of Fault Density are obtained from
software discrepancy reports. The number of faults reported,
divided by the number of lines of executable code (or number of
requirements during early phases of development), gives the

required metric. Reference is made to Data Collection procedures
6 and 12.

9. Required Tools: Accurate records of software faluts are
essential for this metric. A data base management system to
prepare summary reports would simplify record keeping and
preparation of calculation of Fault Density.

10. Data Collection Procedures: A counv of software faults is
obtained through inspection of software discrepancy reports. The
number of lines of executable code will also be required. Use of

a discrepancy report such as that at Worksheet 5 in Appendix C is
recommended.

>

4
%
L

?;fq&
AR
QQ

;z'

~l..' -y 5
P

$_ 2

P A4
o & “r

[AL}

LA

)

NN
e

5% %o
[[$
o
BN

P

v

L, Wy
!
L

5
o

1 4
‘P
o
;
Ll
7 PC
LS AN

(-
2

h]

AJie

L L2

S
(s

4,
*,
’
Ly
-‘:l v
5

".l 'l)‘
s Mo
s

A
oL
oty
e
'd'x".l
¥
[4

2
‘5{5
I‘
&‘

1.(- '*"{

ERR Y

A
L 27
-

Fid
s
PO
A, A, 8

P
Ve

o a s
ATNTHLN
PP,
'ﬁ'll
P .'.‘,;’
T

X
wAs

Yo e

Rt e ialy -

11. Outputs: The predicted Fault Density (RP) is the primary
output. In addition, estimates of fallure rates, based on the
transformations described in Task 100, will also be output.

12. Interpretation of Results: The Fault Density is used as a
predictor for the Failure Rate, and thus should provide an
important indicator of software reliability 1in advance of
full-scale system tests. It also can be compared with a specified
fault density as a requirement or with industry averages
represented in Table TS101-1. It 4is also an indicator of
individual

components that are potentially high risk elements or
unreliable components.

13. Reporting: This metric
estimates of falilure rates,
of software reliability.

is reported, together with the
to support predictions and estimates

14. Forms: Metric Worksheet 5 in Appendix C.

15. Potential/Plans for Autcmation: The software discrepancy
reports may be kept in standard formats for access through a data

base management system. The system should be sufficiently
powerful to provide counts of errors for each module and to
calculate fault densities, if the module lengths are available.

16. Remarks: The fault density, because of 4its functional
relationship to failure rates, will provide an estimate of

software reliability during coding and early testing.

P R

"".l‘l.'.‘
Y9 %S

WA

PP

’,‘d

skﬁgﬁ o
e
LT L

L

<
&

o,

\%

v

P4
n?'i

['d

“W %%

e Y

n¥d

LN
l,’,,

» ,~ “
. .".::._‘ 58 q

LRESEN

e

>SS

54,0
v
la}
a5
L N
x

/

5,4,
2

A
P
x
N

.n' /.
. [.' l,

"y
‘:".
f, ln‘)
-:":l,l. L .

: ..Il'(l'{l ".-r .

‘h

4

PR A
L
Qﬁu
A
l‘

','
l{'
Se 4

LY

.

'.",1 ®

Ta N

s, 87

e
(NS
A
¢
g
PP

e T Tho i R gurJ
{Bﬂﬁ
v
LS N
sy,
L N] L4
"’."AJA

L4
x

AR

rg A Safh ta i tad Ot LA AORAEA S S o " N ARG AN AL N gL Aes S0 e sl At W N NIV DIV YLSOY,

v
[
.
.
v

.

D
Gl
o

AT A
TR
Loy

e

%

e
L
AT
LA

5 %
‘f &

w PROCEDURE NO. 8

[y
Wy
Y, A

Ay
YN

Y
a

S

1. Title: Language Type (SL)

o &

2. Prediction or Estimation Parameter Supported: Software
Chacteristics

YA

: 3. Objectives: Categorizes language or languages used in
software unit as assembly or higher order language (HOL).

4. Overview: In the Language Type metric, the system 1is
categorized according to language. Language Type has been shown
to have an effect on error rates.

DR 2a Talt T B

S. Assumptions/Constraints: Because of the significant effect
that language can have on software reliability, use of this

metric will provide an early indication of expected faillure
rates.

During the requirements phase, language requirements may be
I tentatively indicated, particularly when a new system must
interface with existing software or hardware.

T
L

vy e e

During the specifications phase, detailed information concerning

proportions of HOL and assembly code will normally become
i availlable.

[RE=REY '.'.'.

-

VKA,
S M M

'. l‘ « r
Rk

: (A

. . (’

Finally, during integration and test, it may become necessary to
change the specified proportion of assembly code in order to meet
space, time, or performance constraints.

6. Limitations: Accuracy of this metric will depend on the
accuracy of estimates of lines of HOL and assembly language code
during early phases of development. ¥hile detailed
specifications will normally include an estimate of program size,
this estimate must be revised during software development.

7. Applicability: This metric is obtained during the preliminary

design phase to provide an early warning of potential effects of

language selection. Because of the higher error rates encountered
/ when assembly language programming is used, it may indicate a
choice of HOL rather than assembly language.

More 1importantly, it can provide a measure of the cost, in terms
of higher error rates, to be balanced against projected savings
in time and space, for a proposed design.

8. Required TInputs: Information 4is extracted manually from
requirements or specifications documentation. During
implementation and test, more accurate measures of the number of
lines of code will be available from compilers or automated
program monitors.

T T At AT AT A At A e

3‘.(\('-,\{‘-"‘\.’\.._PN__ 0

SASE RSN AT AT

AR PSR N
LA Iy A A
A

FahRF:

7
NN

o l“l‘)"JyJ.'JﬂJ !

“am e

.,l[l’l t‘l.’k’

L

]
a 4

Ly Iff"

|
..)'.'I

. w_a_v

[S e

LA

A
NG
B

v 0
‘l L *. .. ’
DR .. PR

" € -‘l
porre S,

PR At Y T s P}

'|~'l."
i

At SRS gt LALANA A A A e T T T . S N T L V. v . v vV

9. Required Tools: Information 1s extracted manually from
existing documentation during requirements and specifications
phases. During implementation and test, information will be
avallable from compiler output or code auditors.

10. Data Collection Procedures: Initial estimates of lines of
code will be extracted from existing documentation. When this
information i1s not available, the value of the metric will be set
to 1.0. Counts of the number of lines of source code may be
obtailned from compilations of software units. Comments and blank
lines should =not be 4included in this total, and it may be
necessary to exclude them manually.

11. Outputs: The following outputs are required from ¢this
procedure,

ALOC = The number of 1lines in assembly
language

HLOC = The number 0f lines in HOL

SLOC = ALOC + HLOC = +total number of
executable 1lines of code (see Data
Collection Procedure 8).
These are combined according to the following formula:

SL =« 1.4 *ALOC/SLOC + ALCO/SLOC

12. Interpretation of Results: When combined with other metrics,
SL will indicate the degree to which the predicted or estimated
error rate will be 1increased because of the use of assembly
language. This information, when compared with the expected
increase 1n efficiency through the use of assembly language, can
be used as a basis for a decision concerning implementation
language.

13. Reporting: The value of SL will be reported and combined with
other measures in obtaining a predicted fallure rate.

14. Forms: Forms for reporting the number of lines of code, the
proportion 1lines 1n each stated category, and the composite SL
are 1in Appendix C, Worksheet 4.

15. Potential/Plans for Automation: Language Type will normally
be specified 1n requirements and specifications, and must be
obtained manually.

16. Remarks: As research progresses, 1t may become possible to
make finer distinctions among languages, and among versions of
the same language. For this reason, the specific implementation
should be 1ncluded 4in this report. That 1s, the name 0f the

1'.‘

-
T
.

Ol
l""l" "' .

’

Vl "' (l “'

1"
5
2,

- N A1
[}
7y

A b A
L LN

A v';fll
EAs
v iy !

M

.7

N
B

<L

LA S
NN
B A R

- g o o o TR

- - > e Y, , |\ X a ey g unnnuv- u--.\ A A RN v-...-..\n- n.\-.

LAASS s slele \l.-f.ﬂ\f\?\f\ﬂ. A Ot v- (o ﬁh_ v P R \..-......r.\.. AR DARK .J\.\.
f.-.-. . -\... -I\-S-.\f...-...-.--._. rﬁ LA A A A A \-\”n\“n\J\ \w L \. il d W\ . L ARSI .vJ Ny e L4yt IR M

v o) . . , 18q s
. - a o . [A DR M IR b A AR AL AT
1 \‘ \..p--.f I\A-cf\b-f\.v-n .] J\-\ -\J‘Jﬁ-ﬂ ’\-A'l\ﬁtiflvf\n . [1- \f JM-F.!A-\. Ic- -n-\‘-\n-\w‘-\..-‘v-l* Tale s u---..-\ R . ..-
.\.\.\.- ALY J\-wu-nu..-.f. oty f\- ,-..-...-.\.;..».A PRI W \f\.r\l\f.’..-uz . AR v
PRy SN Y N .\:x.u...\..w..u.\..._ RAAXAAO A A I P T e L A P o T T T T A
lui.\. I-AHA ’u'“-‘ L] LRI - . . I-I - - . PR . » - . -

.

.
'y
.

’

and the
formation

stem and version

<
.y
-

-
«.

- A A P
the operating s
should be reported when this in

name and type

the version,
is availakle.

language,
processor

SN N X ALY
oJa b
*]

'
-" .

B

ey

eyt

Is n.\

> A
ANAN

¥

»

Pl
KA

Ja

DSy W e)
s 2 22 W

b N

-

e e thie Sarie - pA Sy SaAs -pie S aie S arie Syl Tl Snts N 2a R i A A SR AAMEAMERACA. SR B AYLEASCR DA A KA AR A ST A A
ADASANEAKAICAS ML SEAEARIRASLACA SIS SAS At)

.................. “~

PROCEDURE NO. 9

1. Title: Module Size (SM)

2. Prediction or Estimation Parameter Supported: Software
Characteristics

3. Objectives: Structured programming studies and Government
procurement documents have frequently prescribed limits on module
size, on the basis of the belief that smaller modules were more
easily understood, and would therefore, be less likely to contain
logical errors. This metric provides an estimate of the effect of
module size, based on the proportions of modules with number of
lines of executable code as follows:

No. of Modules
u Less than 200
w 200 to 3,000
x Over 3,000

4. Overview: Inspection of compiler reports, edltors, or scurce
code will provide module length. Lines of code are counted on
the same basis as that used in the Program Size metric.

5. Assumptions/Constraints: Lines of code include executable
instructions. Comments and blank lines are excluded.
Declarations, data statements, common sStatements, and other
non-executable statements are not i1ncluded in the total line
count. VWhere single statements extend over more than one printed
line, only one 1line 1s counted. If more than one statement is
included on a printed line, the number of statements is counted.

Assembly language lines are converted to HOL line equivalents by
dividing by an appropriate expansion factor, and program size is
reported in source code lines or equivalents.

6. Limitations: The precision of the reported Module Size may be
affected by human factors, 1f the reporter is required to count
lines wvisually, or to revise the figure reported by the compiler
or editor. When the project is large enough to support it, an
automatic 1line counter, which would produce consistent line
counts, should be supplied.

7. Applicability: This metric will not be available until
detailed program specifications have been written. Estimates of
module size will normally be included in specifications.

8. Required Inputs: Specifications containing module size
estimates may be used for early computation of this metric. As
modules are completed, more accurate figures for size willl become

V‘_U"- -‘-'- - n'--
PR R S TN

.
.
£
“r 'y fa

Y I

s’

KR
f. f a
/ l.

...
.l .
‘. ‘I
AR
S

r
&R
',‘u

a
Y

.’r
)
.
el

Y
?

(‘,(
&

I's
o %
o <

2

b %]

)

4

- Bt A . - - " * oa
V‘J‘JJ--.'-‘.‘_-~-'. EAAL S 2 A JACsie Bl e O AR i o .t N T N W T W (N e e LS

- ~ ‘ L)
R
R
’ o
SN A
RSO
available. For existing software, module size 1is normally AR O
contained in system documentation; otherwise, it may be obtained »‘-f}_.,ﬁ._
LA P
through inspection of the code. N
o s'@_"_s
9. Required Tools: The compiler or editor will provide counts of ?uﬂ .Q,
the total number of 1lines in each module. Additional software YR
tools could be provided to count 1lines of executable code, o gqgf
excluding comments and blank lines. AN,
I‘,\-f..-(,_fw
10. Data Collection Procedures: Compiler or editor ocutput is UG/t

examined to determine sizes for each module. Where counts include . P
comments or blank lines, these must be eliminated to obtain a net R,
line count. Modules are then categorized as shown above, and a ! .
count is made of the number of modules in each category.

11. Outputs: Results are reported in terms of the raw counts of

the number of modules 1in each category, together with the
resulting metric SM.

-

12. Interpretation of Results: In general, it has been assumed f&ﬁ@gh
that any large modules will increase the potential fallure rate ;}Af:ﬁﬁ
of a software system. Later experiments will test this RSN,
assumption. r e
. S
13. Reporting: The values of u, w, and x will be reported. }iék?j
MAYN

14. Forms: Metiic worksheet 4 in Appendix C includes this metric. ig?ﬁiﬁ
NN

15. Potential/Plans for Automation: Compilers and editors rﬁ” Ve
typically provide enough data to compute this metric. A fully AN
automated system would give more accurate estimates of the number NN
of executable statements. o]

16. Remarks: Mcre sophisticated measures of modularity should be R :;
explored. '; £
S

i

A

'{l

PROCEDURE NO. 10

1. Title: Complexity (SX)

2. Prediction or
Characteristics

Estimation Parameter Supported: Eoftware

3. Objectives: The logical complexity of a software component
relates the degree of difficulty that a human reader will have in
comprehending the flow of control in the component. Complexity
will, therefore, have an effect on software reliability by
increasing the probability of human error at every phase of the
software cycle, from initial requirements speclification ¢to
maintenance of the completed system. This metric provides an
objectively defined measure of the complexity of the software
component for use in predicting and estimating reliability.

4. Overview: The metric may be obtained automatically, where
complexity = number of branches in each module + 1. This is
McCabe's cyclomatic complexity metric.

5. Assumptions/Constraints: Some analogue of the complexity
measure might be obtained during early phases -- for example,
through a count of the number of appearances of THEN and ELSE iro
a structured specification or by counting branches in a Prograxm
Design Language description of the design - but actual complexity
can be meastred only as code 1s produced, at softwar:
implementation.

6. Limitations: Another limitation may be found in the possi:i’..
interaction of this metric with 1length - longer progracos
likely to be more complex than shorter programs -- wi<tl
result that this metric simply duplicates measurements of 1.:. '

7. Applicability: Complexity measures are widely ay:
across the entire software development cycle. Reliabil: <. ..
have not yet been defined for the Requirerents ::
probably cannot Dbe applied unless a formalio.l
language 1s wused. To the extent that specif: -
formalized, a complexity metric may be used. TLe ™ u -

to be used here, may be extracted automatica..- .

is produced. A series of measures will be *akr-:
increases or decreases in complexity will e iy

8. Required TInputs: Coded modules aurw
complexity measurement.

9. Required Tools: An &anal sis 100
and counting program branches 1t [iFn ¢

10. Data Collecticn Fr-ced . rv.
should be possible to lni* iy«
filename of the --de *

4

¢
A
¢x.¢
2l
LN Y
S

N RSy
Jlffq

5

A
s

v s e

S

".
N-’

s

s

AT
Y,
} A

AR

[
a

L
N

'~
-
o
LIS

<
¢ oty
e

"_."...
PR

IR

N

F/G 12/3

NOV 87 RADC-TR-87-171-VOL-2

J NCCALL ET AL.

CA
UNCLASSIFIED F30682-83-C-0118

2
-
-
(24
(=3
m
>
[
-
4
-
2
=]
-
w
o
m
-
[
o
w
s
[
>
m
-
¥

2¢U> SCIENCE APPLICRTIONS INTERNATIONAL CORP SAN D1EGO

. “AD-A190 019

g":'lg " S ‘p_ . S .‘-.4'..-‘. ' "'e,) XL e h Y W WaCa Ve Wal o KU N e N o N Na IR - AL e T VU IRITCY "0‘;‘";'!.’!
' ’}:..,':'5.::."
{ Wy Y,
st
X
D)
t’ \'.
')
&
ety
A
4 &"'!
,; g,
: e
: ri
. k':,:;
¢ ‘;.:".r
'@
9,0 Sat
¢ e
J)0
h T o ’ ~'.:l.‘
= 28 25 iy
| O g - e
= LW “o
= F e M=s N
[S
- g 20 - 00
» = B ~

jﬁ
,;;)

; s - S
: 2 is ne
.Q .

-

I TN v

-

e

etu AT R AN

" -
P4
4

4 .‘i "
o

»
N A i IR T TG U LN S S T O S LTI S o e T N e e Y p WY W LR AT N
AL AN K WS A AR AN N e e e e e e A T S e AR

S Rat a0 it 0yt 8 0 gt Ml R At lat Bt it 8 Rt il R 00 W IRKTR P M Y N R

a visual count of the number of edges or paths ir a flowchart
representation of the modules. Another approach would be to count
the number of appearances of THEN, ELSE, GOTO, WHILE, and UNTIL
together with a count of the number of branches following a CASE,
computed GOTO, or Fortran IF statements.

11. Outputs: An complexity measure (SX) will be output.

12. Interpretation of Results: A large value for SX indicates a
complex 1logical structure, which will affect the difficulty that
a programmer will have in understanding the structure. This in
turn will affect the reliability and malntainability of the
software, since the probability of human error will be higher.

13. Reporting: Abnormally high values for SX should be reported
to the program managers as an indication that the system is
overly complex, and thus difficult to comprehend and error promne.
Comple? %ndividual modules will also be identified by high values
for sx(1).

14. Forms: The report form for each module and for the system as
a whole should indicate the complexity, obtained either from an
automated procedure or by hand. Metric worksheet 4 in Appendix C
can be used.

15. Potential/Plans for Automation: A code auditor should be
obtained or written to provide automated estimates of program
complexity.

16. Remarks: Further experimentation with complexity metrics is
desirable, and any automated tools written for this purpose
should include alternative approaches, such as Halstead's
metrics.

e ¥ ’Y.‘], .:’ T -
PO OXA
VAR S Y
ey ®
SR

5. T]
5

i,
*,
Z
3

<
!‘.
)

P

SO

iﬁﬁ

Ao
7’

-

o L

.l

l. "
I
)

Lo

NS
-
Palle®,}

S N R I OO TON YO POU TR i P T R W N ® 03 0a” 26a* ! Ve’ Bat fa ba? PR O O O I R T OO TR P WY T] Ty

PROCEDURE NO. 11

1. Title: Standards Review (SR)

! 2. Prediction or Estimation Parameter Supported: Software
“ Characteristics
)
3 3. Objectives: This metric represents standards compliance by

the 1mplementers. The code 1is reviewed for the following
[~ characteristics:
;{ -~ Design organized in top-down fashion,
b -- Independence of module,
L -~ Module processing not dependent on prior processing,
i -~ Each module description includes input, output,
T processing, limitationms,
»

-~ Each module has a single entry and at most one routine
< and one exception exit.
: -- Size of data Dbase,
~
b -~ Compartmentalization of data base,
-—- No duplicate functions, and

. -- Minimum use of global data.
’é 4. Overview: The purpose of this procedure is to obtain a score
" indicating the conformance of the software with good software

engineering standards and practices.
r 5. Assumptions/Constraints: This data will be collected via QA

) reviews/walkthroughs of the <code or audits of the Unit

Development Folders or via a code auditor developed specifically
) to audit the code for standards enforcement.

_ 6. Limitations: 1In general, components 0of this metric must be
~ obtained manually and are thus subject to human error. However,
~ the measures have been objectively defined and should produce
N reliable results. The cost of obtaining these measures, where
N they are not currently avallable automatiocally, may be high.

7. Applicability: This data 1is collected during the detalled
design and more readily during the coding phase of a software
development.

F O)

n 8. Required Inputs: Code

-~

9. Required Tools: A code auditor can help in obtaining some of
the data elements.

10. Data Collection Procedures: Use Metric Worksheet 11 4in
Appendix D and review (walkthrough) code.

11. Outputs: The number of modules problems with (PR) is
identified.

12. Interpretation of Results: Noncompliance with standards not
only means the code i1s probably complex, but it is symptomatic of
an undisciplined development effort which will result in lower
reliability.

13. Reporting: The modules which do not meet standards are
reported via problem reports.

14. Forms: Metric worksheet 11 in Appendix D may be used.
15. Potential/Plans for Automation: In general, components of

this procedure are inappropriate for automated collection.
Implementation data can be collected automatically.

16. Remarks: Modification of the metric worksheets in Appendix D
nay be necessary to reflect different standards due to
environment, application, or language.

e

N

"’.’.1-
5
&
[l

oy
[)

}.
<

S L e
A
ﬁ%@ﬂgq
e
5

’
Y,
7
2,

%

P
o

)
o
~
X

ML A

LAY

PP A 4
,ﬂff?
oy

.'-.' v,
[AN
'.- s

M .
t,*':l’l(
[Y 'y

W

PROCEDURE NO. 12

1. Title: Discrepancy Reports (DR)

2. Prediction or Estimation Parameter Supported: Fault Density
and Fallure Rate

3. Objectives: The basic metric for estimation will be the
observed failure rate during testing. During Operation and
Maintenance, the observed failure rate will also be used. The
failure rate is based on the observed number of failures over

time, which 1s derived from Discrepancy Reports and Execution
Time measures.

4. Overview: A Software Discrepancy Report is generated at the
time that an error is discovered or a failure occurs, typically
during formal testing. An error 1is a discrepancy between a
computed, observed, or measured value or condition and the true,
specified, or theoretically ocorrect value or oondition. A
failure occurs when the system or system component is unable to
perform a required function within specified limits. A count of
failures will be obtained from the Discrepancy Reports.

5. Assumptions/Constraints: Reported failure rates will not
accurately reflect actual failure frequencies unless procedures
for preparing and recording software problems are strictly
enforced by project management. It i8 necessary to assume that
differences in reported failure rates reflect actual differences
between software components. Care must be taken to ensure that

these differences are not merely artifacts of the collection
procedures.

8. Limitations: Software induced failures will differ in
seriousness, ranging from low-priority (easily corrected or
avoided) to high-priority (results in mission failure). This
information should appear on Discrepancy Reports, although it is
not presently used directly in determining failure rates. The
recommended categories of High, Medium and Low are defined in
paragraph 8 Delow. Further research in the utilization of
severity as a prediction criterion is warranted.

7. Applicability: Discrepancy Reports will be obtained during
any formal reviews, coding and unit testing, CSC integration and
testing, CSCI-level testing, acceptance testing, operational test
and evaluation and O¥M. MIL-STD 2167A references Software
Problem Reports as backup to the Software Test Result Report.
The Discrepancy Report described here meets that requirement as
well as provides a mechanism for recording other discrepancies
identified formally.

8. Required Inputs: Discrepancy Reports are documented by the
program development staff, QA, customer testers or by the O¥M
staff as problems occur or are identified. Specific procedures

B-3n

a A
~
\

e

b T S
AN
1 N
A ey
s

4".
%
v
Lot~ =i

]

S oK SN R ¢

LARNE)

Py
AAERR
-"'I 5(: P 4

rAd P

h]
hY

l' " ’ {
S0
5544

® ":"-.

N

LAY

e
S
h T

.
\;&
4

S
'.l'
YAV

NN

3
ﬂ::::tf};
a a9

r

'
-

Sy

A)
AN A
WPaTe e

s

e
A
PA ARG

PR N T Y DU RN NP A R 4Y gat o et B S fat aus gut Aat favayat Gatata: tn: et bat o let Aetape o6y gl - w . ") ‘9 «
§

l‘ -: *-"\
k/ - ‘w{'i (]
; wﬁﬁﬁ‘
.., B
N :-Jb?ﬁ v
a are to be 1included in the Software Quality Assurance Plan and 5g$.,,
i Configuration Management Plan for the system. The Discrepancy .jq;,x
" Report contains an identification section in which a title and VS
K identification number are entered as well as as the author, date, o2rae!
. and any references that should be included. It also 1is §
i recommended that a discrepancy report includes a categorization SH: A;
. scheme that will support trend analyses. The discrepancy report :E .?4
" recommended in this guidebook (see Metric Worksheet §5) oy 3
categorizes <the discrepancy by type and criticality level. The ~ Woh
' criticality levels are: e
! High causes system to abort or fail to perform mission. o L5
» ,\n' -F.‘
Medium incorrect results are obtained but does not ABB*
necessarily Jjeopardize mission. \i :v
A\ e
Low typically 4involves incorrect format, documentation T o
s errors, oOr miscalculations that does not threaten Ryttt
n mission performance but should be fixed eventually. xe'urf
4 : o't
. Also described by the discrepancy report are the method used to f{i ¥
A detect the discrepancy, a description of the problem, the impact “&ﬁh‘
' or effects of the problem, the recommended solution, and data on ®
z the test case and execution time, 1f the discrepancy was found A
: during a test run. Discrepancy reports usually are approved ﬁf\\.
| after the appropriate fix has been made and QA releases it to o
configuration management for formal update of the current version fzéﬁﬁ.
; of the software. QLAY

9. Required Tools: On-line entry of Discrepancy Reports will
require storage of appropriate formats for the reports, and
subsequent storage and retrieval facilities. Automatic

l.‘
-'N
~

computation of failure rates for system components is desirable. -ﬁ-g:

10. Data Collection Procedures: Discrepancy Reports will be N
collected during system tests and operation as one of the — e

. responsibilities of the project manager. -g}:x
e

11. Outputs: Discrepancy Reports will be accessibla in a BASANAS
designated file. Their primary relevance will be in Lo
determination of the FPailure Rate. i

@

p 12. Interpretation of Results: Discrepancy Reports play a central KOuERY
! role in the validation of software reliability metrics. The yﬁ;m%
Failure Rate, based on information obtained from the reports, gﬁfﬁ@
provides the baseline against which metrics for prediction and Ale
estimation are validated. AN

. 13. Reporting: For the purposes of this research, the Failure oy
Rate will be reported. Since the Discrpancy Reports contain RESAN
additional information of interest to project managers, they will AR

be available for further reference and analysis. :@yﬁi

DAY

14. Forms: A standard Discrepancy Report form is recommended (see

B- 3 l :_:‘-_- .
v:’.\'-
'-Ih
.
N
N
. . B . . e et e . L, e M g R N A UR R M T AT T M A" N " a" R at [N L S)
T N N AN AN AL AT T L ANABASA LS i Sk '.;\:s.:-.:'_ “‘\-.';n.:\'\“-y:\,’-.-'q,f\- N A N A AN
DCARSOUER I A N A A e A e e e e m e e "l'\\‘-\\'f\\- hcH .-f\ o -ﬂ“.‘ fxf.-’\-_-"-l'. ENCAEN A,
- et « . A \ A \v DI AR S S S S N L L
B N A Y N G N 2 A A A AT N A
RPL PPN N A A AL AT I M AN N NN NP MR AP A P NN PN AN M N PATIOS RN N N

Py

S/ pliats brts et faty)

AR IR v
AR - [t
T R
R, R R AR R
R P & S
al Aiﬁhl-“lrbh)ﬁll
Qo
HH
o o
L)
03
L Q
=~
o -
24 H
[1]
o P
(5]
[
e
9]
a4
s d
2,0
-]
O
O v
0«
- 4
Ad
=1
)
g
O
~f G4
Fi)
)
8.d
Oy
FE)
- 34
~ <« 00
w0 3
(o]
4+ H K
o o d
m G P
(] o
& (]
- n >
o q9
= S
—~ ~
A S
o ~ 0
Lal —~ "
L o
O +HAY
® +£4d
— g
- [+)]
e} L
O (ol e}
(<7]
< H
» - O
qa 0P
(@] - 0

aTatan

* ‘ ‘ pe ’I b L) oy .- Lol
h Ay r.fov‘. &.. ° N .~f~...-..~.... ® ’ rxdd
. ;H# VIS AN] Yoo
. o E
h At h Rk S AR A AN NP X L LA

prepared manually.

of the importance of accurate and complete

the

rate,
collection and maintenance of the reports should be included in

in determination of failure

VJ.
q e
g O
o
—
O
O H
G
o w g
n ey o]
) ~ M
s O Ay
O [
QO 7]
NMEYPL O
<]
[
.. m (o]
N> O3
MO0 AP P
-+ g o
S < g~
Fapraddd
[l m.ue
o K Q@
[} -3
K] Q4
OH 0400
~ 0O P

of fallure rates

systems will be misleading unless the same criteria

have been used for both systems.

software included in the current
Comparisons

X £ &8 . By -: Y ;--.'
P o £
. .ﬁ ..fﬂf“..\.-\f\fs...h
-I
‘.\r\&. >va »....f......f.-f&.r.. ..A

o

- 2 a8 8 & -

-- s_
F)
o oL
P A AR
.,w.w....w.,..n..x.....

PN ALY
a BBy Y TN

R R A& e ey

.\\“\..\..\mu._\\\.. NN
P A "
R \-'.V‘-..\ ..--\

R IRORRG
et ey @1 ..A‘

A et
. e LA AN

PROCEDURE NO. 13

1. Title: Execution Time (ET)
2. Prediction or Estimation Parameter Supported: Fallure Rate
3. Objectives: Execution ¢times are used in conjunction with

Software Discrepancy Reports to obtain fallure rates. The number
of fallures per time period is the basic reliability measure used
in this Guidebook.

4. Overview: Execution time
central processing unit (CPU) of +the computer executes the
progran. Two measures are suggeted. One is the actual CPU
execution time. The other is computer operation time. Execution

time will generally refer to each. Computer Operation time will
be the default.

is the interval during which the

5. Assumptions/Constraints: Execution time cannot be directly
compared between machines of different word length. Significant
differences 1in machine architectures may make it impossible to
compare execution times accurately. It 1s assumed, using the
method given in item 10, that comparisons of sufficient accuracy
can be made. The unit of time used in both measures of execution
time 1is hours.

6. Limitations: The accuracy of execution time estimates will be
affected by the type of timing device avallable in the system
under test. Since not all operating systems are capable of

sufficiently precise timing, statistical measures derived from
the Execution Time measurements must not assume greater precision
than is actually available.

7. Applicability: Execution time may be obtalned during CSC
integration and testing, CSCI-level testing, system integration

and testing, operational test and evaluation and operations.
Since it 1s used in conjunction with Software Discrepancy
Reports, 41t should be obtained during the relevant reporting
periods.

8. Required Inputs: Execution times are typically obtained from

software operating system reports or test reports.

9. Required Tools: No special tools, other than those provided
by the operating system, will be required.

10. Data Collection Procedures: Execution time is obtained from
operating system records,or tester’'s logs, which typically report
the execution time for each program or project on a run basis, as
well as daily, weekly, or monthly totals. VWhere operating system

reports are not available, execution time may be expressed in
computer time, the time during which the computer (as contrasted
A-3
A N e T N e O e R R N SRR S R S N S GO SRR AR LA N
\:'_\':\:\;\'_\'; ‘_:-..';s::\';x:,\:-\.i\:,\',\f:\:,\':_\:,:\i\:-.:-.:}.d._-.'.-,‘;«.{ o ..::\jl-.{-f. .,:.‘-:._::._:..':\:\3; bt \'t f:\;\-.\-:_._::\:‘.._} ._:._:’ Iy
A A R S A R R B s R S S R R TR

“g °
&1;%.

‘,. e

e)
55N

fﬂ i
5%

P
LAY
X

2z
-4

-

& £ o
PR T

o
1

b
2

L) “(,

W]

1-1'1
A

O
-

AL
v <.

>

Y

A
o
s

o

<
%
@

,
%
P
o o

I

ﬁ

P

5
L.

’.
B
22

>

.
™

s
5

|

P AP
::I::-':('_."

v »
e

o2

Y
P
<

\{

4
rd -;-J". '.‘"
v
NEEIT B

nLLALAs
’
Xy
XXX

&

H
?
: 1.), \
X

e
U4

5% %
%
; I‘- S

LBt tNay Spp eal ", A PV NPT IR UNLVE N R WV L MWW 0 L Ba® Ba® ha® Sot wyvy bt e y % gad Sav_gav gat
3 - &

) :'-\-"ﬁ:
;:: ';‘:::"'f
ROA L L
.

0 with the CPU) executes the program. rt&#
".' /:N-',\H’\'
:: In cases 1in which execution time is not available, it may be SN
' estimated from total computer time with one of the following
0 methods: Tty
R) -f\.'

‘ Y
,% -- Running a benchmark HOL program on a mainframe on which Q;'&g
el execution time will be reported, and then running the RN,
e same test case on the target computer. -;,'.""
0 (N

. -- Running a program on the target computer in a manner
that will eliminate or minimize disk access (e.g., by

e

ohoele

i putting data in memory) and output operations, thus 2 &
5. obtaining essentially an execution time measurement, and A

gR then running the same test case in the normal manner. A

- Counting the number of I/0 operations involved in a
h program and computing the nominal time for these from

o the computer instruction manual.

L)

f\ When comparisons are made between programs running on different

By computers, it is necessary to normalize execution time for word

R length and execution speed. Raw execution time is divided by the .

o number of bits executed per second, which 1s obtained by }{C;d

o multiplying computer word 1length in bits by the number of e

} instructions per second. This figure may be modified in the case }{3?
of machines which use more than one word for instructions, or i?tﬁ

d which can have more than one instruction per word. oy

¥ 11. Outputs: Execution times are reported for use in calculation - oy
3 of failure rates. This guidebook recommends the use of computer R
i operation time since it is more generally avallable. =
~"
o 12. Interpretation of Results: As noted in paragraph 10, raw .
. execution times may be misleading, because of variations in
o, computer word 1lengths, speed, and timing mechanisms employed. O
’ Because of the importance of the Fallure Rate in validation of bR
) software reliability metrics, it will be essential to obtain N
- accurate and reliable measures of Execution Time. {sﬁ;
‘f '-u (e “
[S5
‘ 13. Reporting: Execution times are reported for use in Fallure A
5 Rate measurements. AMFRR
' ot
- 14. Forms: Worksheet 6 in Appendix C is prepared manually from PRyt
- data obtained from operating system outputs or tester’'s logs. fP£$
- e
- 15. Potential/Plans for Automation: This metric is generated AR
. automatically by most operating systems. GG
i
. 16. Remarks: As noted, Execution Time cannot be compared directly et
. between systems running on different machines. This problem can ORI
™ be expected to increase as specialized machine architectures are NN
S used (e.g., data base machines). ’~;“
‘o) :.::":'-"
n) ::‘\::'::;
e B-34 Nt
o N
', S?aa
' 2%
: L.
ey it p C - C . e - . RO
e R T N N N N P L T N T e T N
N AN “» e Y A e :.' PNTEIEN Y N :.-: N
5 " o) 5 < N X

‘-’.’b

~

MU AU ATYN

PR "t “u, .1‘~\ o 'x-- e’ et -‘ . ‘-'l l‘.\.'..". ‘8 (] IR X A 'Y Y

PROCEDURE NO. 14

1. Title: Failure Rate (F)
2. Prediction or Estimation Parameter Supported: Failure Rate

3. Objectives: The Fallure Rate 1is the ultimate measure of
software reliablity used in this guidebook. It represents the
ground truth, which the metrics, in combination, are attempting
to approximate. Failure Rate provides a measure of system
reliability. Mission software failure probability is the product
of software failure rate and mission duration; mission software
reliability is 1 - mission software failure probability.

4. Overview: This metric is obtained by dividing the number of
failures reported over a standard time period. Time-stamped
software discrepancy reports are used to provide a count of
system failures during the stated time period. The reports also

typically indicate the module or CSCI with which they are
assoclated.

5. Assumptions/Constraints: It is assumed that software
discrepancy reports will provide an accurate measure of the
failure rate of software over time. Preparation of discrepancy
reports may not follow similar procedures on different projects.
Even on the same project, as a deadline approaches, programmers
may tend to feel that there is not time to prepare reports for
failures that they perceilve as minor, even though they might have
prepared them at earlier times. The assumption, then, is that
the programming environment 1is disciplined enough to enforce a
consistent error reporting procedure. Automation of error
reporting, 1f feasible, would help ¢to increase consistency.
Nevertheless, since the failure rate is essential for testing and
validating all other metrics, it will be necessary to enforce
consistency in the collection of data for this purpose.

6. Limitations: As noted in the preceding paragraph, consistency
in data collection is assumed.

7. Applicability: This metric 1is obtained during operational
tests and 1later operations and maintenance. It serves to
validate predictions and estimates obtained during preceding
phases of the software development cycle.

8. Required Inputs: Software discrepancy reports are used to
measure the number of failures over time. The operating system
is used to track the operation time.

9. Required Tools: None.

10. Data Collection Procedures: The software discrepancy reports
are counted. In many cases, reports are maintained on disk, so
that counts will be immediately available. Time stamps and
modules are wused to permit identification of reports with

2
o

'b'h’.
o

'{-
“x
2’5"
- &
)

4

-
.’és
i,*

s

.
o
g

8,

FPre
PN 4
I'n‘".'..\

>

$5%%
A
L Y

P N ¥ 4
AN
LS

o/

1

'.‘.__‘
g5
5

i
vy,

re«

v %
NPy
['.".

N
.
s

XA

‘s

J

r<

designated time periods and software segments. The required
metric 1s obtained by dividing the number of discrepancy reports
by the number of hours of computer operation time to obtain the
failure rate for any designated unit, CSCI,or system. The
average failure rate during testing, Fpy, is calculated by taking
the number of discrepancy reports recorded and dividing by the

total amount of test time recorded. This average can be
calculated anytime during testing and represents the current
average fallure rate. When calcualted, it 1is based on the

current total number of discrepancy reports recorded and the
current total amount of test operation time expended. It 1is
expected that the failure rate will vary widely depending on when
it 1s computed. For more conslstent results, average failure
rates should be calculated for each software test phase: CSC
Integration and Testing, CSCI Testing; and, if required, for each
system test phase: Systems Integration and Testing, and
Operational Testing and Evaluation.

The failure rate at end of test, Fps, is calculated by taking the
number of discrepancy reports recorded during the last three test
periods of CSCI Testing and dividing by the amount of test time
recorded during these last three periods. This failure rate can
be updated at the end of System Integration and test and at the
end of Operational Test and Evaluation. A test period is defined
as a test interval or session with specific test objectives. A
test period could be a test run, a day or a month.

11. Outputs: The basic statistic output by this procedure is the
failure rate. Since all metrics have been stated in terms of
this rate, no further transformation should be required.

12. Interpretation of Results: The failure rate is interpreted as
the primary measure of software reliabiliity.

13. Reporting: Fallure Rate 1is a basic measure of software
quality and may be specified by the sponsoring agency or user.
It 1is, therefore, essentlal to report failure rates to the
project manager, to provide evidence that contractual
requirements are being fulfilled.

14. Forms: Failure rates are to be reported for each module,
CSCI, and system as part of the normal reporting procedure.

15. Potential/Plans for Automation: An automated procedure will
provide an objective record of unit failures, although it is not
likely that it will be able to provide complete information
concerning the reasons for errors. In addition, it may not be
able to detect failures in which outputs are not within required
tolerances. In short, not all software failures are detectable
by an automated system. Automation will be most valuable in
maintaining error reports on-line, 1in an accessible form, for
review by the project manager and quality control personnel.

o
I
NN

«

KA
whG Gl

TH YT

P4 v".l E
iﬂf"-‘

¥ 'y‘ oy

AN
o

b

L X PRI
®

A3
I: 9,
Pyl
'éeqa
hY "n)

o
%
h)

» 8,
e
LY

>
SRy

e

Ay o

XA
b7,
iy

.
o
P4
X,

xS SRR Crev SNl XXX NP . gt AR
- =P [$A S P %" (AN 10 N 3 A T N P
R S A @ Y el

, e Y Oty ‘ e " N
e r I ..ﬁfn.m. X , £9 % Y e xa.uk\»\an.e.v&.. ORI A AR A S N At ’ \....M?\..\.
oy NN, S Lo O N A O S QN LR
TR A PN AU KA .'n%-t Lk M T M R A 0 A A JUR AR AL A AN L M AV A A ATt AL A A R

x
m
;
:

An accurate measure of failure rate 1s essential to

the success of efforts to obtain appropriate metrics.

Remarks

16.

NN L T W AW UW UV U UV U

WOV ﬁ"r.v.‘r.mv.wrng
OV

N

- PROCEDURE NO. 18

1. Title: Test Effort (TE)

W W yn
2. Prediction or Estimation Parameter Supported: Test »j,:j:j
Environment O
A.j'_u."t x4
3. Objectives: Test Effort is a measure of the quantity of ‘;.f‘f
testing to be performed. Three alternative measures are ok
avallable. One 1is determined by the number of calendar days - \
expended during each phase of testing, normalized by the total RGN
number of days (or hours) for the development effort. One 1is Yy ~.0"'
determined by the number of person days expended. One is "_;a- Y,
determined by the amount of funds allocated to testing. ;»;5:)" ,.
Paripiiy.tle,
4. Overview: Estimates of the number of hours to be expended in e
testing are used during the early phases of the project. As .‘::." Y
actual numbers of hours become available, they are used to , 3
correct the early estimates. SRS
o™ “"_;
5. Assumptions/Constraints: The Test Effort measurement requires :"\,.m;-
access to labor hour data for a project and a work breakdown e
structure accounting system that delineates labor expended during AT
testing. It 1is assumed that accurate figures for the hours of NN
testing and total hours for the project are available. Because SraiaT)
reported hours are not always accurate (e.g., because of unpaid ::.{’;:,-
overtime), some inaccuracy may appear in the reported hours. j-.';':_'__
6. Limitations: A measure of formal program testing may not ‘r.;a;’;
include all testing performed. Typically, informal tests are .‘_‘,'sj,':;-.
performed at all 1levels <throughout the development cycle. If 'f:..c\,,-:
these 1informal tests are frequent, and are not reported as such, ::\/:F\.
the metric may be somewhat distorted, since the time for formal ;k,,;t
testing may be reduced without reducing the reliability of the /- '.'
software. Rt
RN
7. Applicability: Estimates of the amount of testing to be DAY
performed may be obtained throughout the software development - '-:2-;'.:
cycle. R
AR
8. Required Inputs: For measurement of the amount of testing, .9
Job records from the software development project may be used. At ::x-\vt
earlier phases of the project, estimates of time to be spent in ".-Q&:;.p\
testing will be employed. i&:‘,:'.:::\
9. Required Tools: This factor will obtained manually from 332*1“
management reports. .
* ST
10. Data Collection Procedures: Periodic project reports will be -.:Cu.:_n.'i
reviewed to obtain data concerning hours expended on software ::.-:«';}
! tests. xj\jtj
TAlErv)
__e
AN
"‘:':\ N
B-38 PN
NI
W,

AR

.

(\-r,\v‘:.‘-\._‘- N e c RS e "m o v m e o e a £ A - i“f:\ M
G R I B S A R A0 R

$ * VR e S s’:-‘. =~ :"':'"n"‘r" o

" . i
ITATIS M N W AN D

5 e
3 Qg
v 11. Outputs: The number of hours (or days) of testing, divided by i\,{~
the total number of hours (or days) in the development, will be bty e
used in computing this metric (AT). The value of the metric AT %
is used to determine the multiplier, TE. ALY
-F Ly &D N .
N 12. Interpretation of Results: The amount of testing should ?ﬁﬁ;'
. provide an indication of software reliability, in that more DARESLG
. thoroughly tested software is likely to contain fewer remaining §:dp
v errors. The effect of this measure could be balanced against the .ol e
difficulty or complexity of the application, but no effective ;
~ aeasure of the difficulty is available. Doy
- AT
a 13. Reporting: A monthly report of the amount of testing would be Q}fk(
o appropriate, and would provide the project manager with a RSS
- continuing record of effort expended on tests. e
[]
» 14. Forms: The metric worksheet 6 in Appendix C can be used. E&f~
Ca “\
15. Potential/Plans for Automation: This metric will be extracted NN
2 manually from management reports. $ﬁ§h,i
- NN
16. Remarks: The project manager should keep accurate records of °
- the time spent in software testing. In some instances, testing is A,
. not clearly broken out as & separate project task. Alternative RSN
- methods for collecting this measure are by using funding instead e
< of time. s
- N
L It}
s AN
- :¢§Q5
y el
LY
\f'-'.'q)
LSl Wl &
o

]

PR 4

}

IR 54

LS T §

SN

O
»
s

.

P4

AN

-

¥
Lo
.5
La
v
)
\U

2 ot el

AN

AL SN

NN N o N R N s Ny e S Y .

PROCEDURE NO. 16

1. Title: Test Methodology (TM)

2. Prediction or Estimation Parameter Supported: Test
Environment

3. Objectives: This metric 1s a measure or assessmeant of the

test methodology. It 1s Dbased on the techniques and tools
employed.

4. Overview: The RADC PSoftware Test Handbook, RADC TR 84-53,
provides an approach for identifying what test tools and
techniques should be employed based on the type and criticality
of the software being developed. This simply uses that technique
(or 1list of tools and techniques) as a score sheet to assess the
test methodology actually employed.

5. Assumptlion/Constraints: Determination of this metric requires
that the number of test tools be counted. This assumes that 1t 1is
possible to count different tools and techniques meaningfully,
although 1in some instances a tool may have several functions, or
a number of tools may be integrated into a comprehensive testing
environment. It also assumes that the distinction between

software test tools and other support software (such as editors)
is clear-cut.

6. Limitations: As noted, the use to test tools and technigues

relies on several elements that may not be well-defined in
particular applications.

7. Applicability: Information concerning projected use of test
tools and techniques will be available at the requirements phase,
as part of the Test Plan. The projected use of tools and
techniques will be included in the Software Development Plan

also. Reports on actual use of tools will become avallable during
test and evaluation.

8. Required Inputs: Test Plans, Test Procedures, Software
Development Plan.

9. Required Tools: Information concerning the use of tools and

techniques will be obtained manually from project reports, as
noted.

10. Data Collection Procedures: The Software Test Handbook, RADC
TR 84-53, should be wused to develcp & 1list of tools and
techniques that should be used. Each one used, confirmed by
observing testing or reviewing documents, would be checked off.

11. Qutputs: Output from this procedure will be the reported

number of test tools and techniques were used (TU) and the total
recommended (TT).

SN

s
¥ 5 A%
AR X

RS R ST
Ja
I Ie
NN

o

o @i

L%

o
Iy

3

VY

e
[s
e

h]
&

-
» @

A0y

.": '\r‘: :
{‘f . I'd a s
L
s

Y
.I
s

/

Pd '.\'-’
k
Ly

4%
4%

v
I/

PR AR

AL
[N
" l:":‘",;

LA LS

[4
P

oo KRR
[l;s". "'. N W \\'I_":'
AL X NG MY

e'ne

PR AS AN
LY
a

iy
)" .
I{)

=,

¢

A

2
b5,

i
/)

5 ._¢
h:"-‘- J‘J

.
o

)
)

L] Lo
d S,

');511d{

- Mmoo

..... ol "ol Sul ol s g F U W L VA W WL WY LAE 020 0" ANA LML AR EAR S g Sy MRS aia s Ry BP L a o LA e e,

12. Interpretation of Results: The use of test tools and
techniques 1is expected to produce a more effective and objective
testing methodology, which should be reflected in greater system
reliability.

13. Reporting: Information concerning the use of test tools and
techniques should be reported back to the project monitor, as
well as the project manager, to ensure that there is
understanding of the role of tools in the software development
effort.

14. Forms: Forms are avallable in the Software Test Handbook and
in Data Collection Worksheet 7 in Appendix C.

15. Potential/Plans for Automation: This metric is essentially a
description of test management, which is extracted manually from
project documentation, rather than through the use of automated
tools.

16. Remarks: Proper calibration of this metric, and procedures to
avoid the effects of extreme values (such as zero), will be
required.

B-41
T R e S N N i LI T P PP IR R B SR P TR JHE SR
A $\'.\'.;\'\)\“'\'-\-"‘.\':\'.:'.s':"i}'\"\"\"\ RPN o L ’\:-" SRR YRy
. e
’

CAGAE AN (SRR A A
N A A N A T T N AR

TN IO LN Y,

.".-?'%

hY
I"I 2,

Lo o
"

-
Ay

"

5%

o)
ﬁﬁﬁ

‘I

[.‘.'

‘{

“z e % v Bt
-

"o
27
o~

?
5 &

v

b
<

A% Y
s

X;

o th
2
oy,

a
e

™
)

W,
-

b §
2%

[..':
e
L

.?.:IQI'Y'T
P
Ay Ly %

0 "l h

NN
P s

:"-l -

-
o
L g
Ly
-3

e

PN A S o P |
. AR
;{Q%%g{’
AP

o

l‘ .
'$?

N
LA,

TN
.ﬂ
o

L N]
AR A
B AL ACRCY
P

A

ey
A, 4,8 11

* s v
"l".
B
XA

Ly .'; N

LA

[T T N NS
7.
[

-

o
R

s'.

3

-
-
-
-
.
3
-
-
-
.
]
.

------- -

-

-
- -

PROCEDURE NO. 17

- -

1. Title: Test Coverage (TC)

o 2. Prediction or Estimation Parameter Supported: Test Enviroment

3. Objectives: Test Coverage is a measure of the thoroughness of

testing 1in terms of how thoroughly the code was executed during
dynamic testing of the system.

4. Overview: Using available test tools, a count is taken which
assesses coverage (VS). This coverage can be assessed during unit
testing looking at paths executed, at integration testing lookirg

at units and interfaces tested, or at system testing looking at
requirements tested.

.- The following data will be obtained during the indicated test
phases:

-— Unit Test

--- Percent of executable lines of code exercised
during all unit tests

--- Percent of branches exercised during all unit
(> tests
)

-- Integration and test

-—- Percent of modules exercised during
implementation and test

LA
.

--- Percent of all interfaces exercised during
implementation and test

Demonstration/Operational Test and Evaluation

tl‘l)-’
|
I

-—- Percent of functions exercised
--- Percent of user scenarios exercised
: --- Percent of I/O options exercised

" 5. Assumptions/Constraints: Not all branches and calls are
~ actually equal in determining software reliability. For example,
’ a well-designed system may include a large number of error
procedures which are never called during normal system operation.
Some portions of code may be used only when hardware or software

failures are encountered. It may be difficult to exercise these
portions of code during system tests.

6. Limitations: It should be noted that the exercise of a

. ;

sV VaTa®T e LN
s
T
Drels

v

*y
B
»

SN
NNy
y s B
)

[

A
%

vy
y;
el
o,

':.

o .l'.
. "'."‘-' ‘y
L)

*

»
RN
s '

L R

LS Y

v 1
V

YN
SRS

-
L]
o

- NN S AT AT T R T AT R B T T R L S S P NN N P N NN NPT N o
A R R R S I R TR
A N N R R S R S e
N f‘a‘-r:f‘f:-r:a‘ :.-tf"\f: A e e L M o i e P TSN
K aiafle RS oy 0 L) o 8 g n Aal

FOV A VLN IRV VYL

.......

portion of code does not, in itself, provide any guarantee that
the code will perform correctly over the full range of program
variables. At best, it provides evidence that the code 1s capable
of functioning for some value of the variables that it uses.

7. Applicability: This metric may be obtained during unit tests,
integration and testing, and demonstration and operational test
and evaluation.

8. Required Inputs: Test programs normally provide data
concerning the extent of testing, as noted above. The following
data elements will be required:

TP = Total number execution paths

PT = Number of execution paths tested
TI = Total number of inputs

IT = Number of inputs tested

NM - Total number of units

MT = Number of units tested

TC = Total number of interfaces

CT = Number of interfaces tested

NR = Total number of requirements

RT = Number of requirements tested

9. Required Tools: Appropriate test tools are available for
exercising software systems and for obtaining required inputs. It
will be necessary to identify appropriate test tools for specific
systems to be tested.

10. Data Collection Procedures: The inputs described in paragraph
8 above are to be extracted during the project phases in
paragraph 4. These are combined using the formula in Task 201 to
obtain the Test Coverage metric, TC.

11. Outputs: The Test Coverage metric will be used in the
computation of the Test Environment metrioc.

12. Interpretation of Results: A complete testing procedure would
exercise all possible combinations of paths through the software
system, using data for the <full range of permissible and
inpermissible (erromneous) values. Such tests of any reasonably
complex system become expensive, because 0f the enormous number
of combinations of values and paths to be exercised. The Test
Coverage metric must therefore be interpreted in terms of the
ultimate user of the system, the cost of failures, and mechanisms
for recovery. From the point of view of cost-effectiveness, full
tests of a system may not be preferable to less expensive partial
tests, providing that the cost of failure is not excessive.

13. Reporting: Reports should indicate serious failures in the
testing process, where tests have failed to cover significant
portions of the software system. For the project manager, such
reports are valuable.

14. Forms: Worksheet 8 in Appendix C is for each of the three

B~%3

el a " T I S, L o ’ N ST S - R N P UL
...... “a e e e et . = .. . N et e L L. P ¢

N A A A A I - ‘:.'_ AN el TR AT .'-:.-: .-‘.-: -

,'r.:.- ” T INP A e i S 2 e e e, NN O A A :I\'-'\-‘\:J' e
I AN N PO T IO NS TN S s e g A I AN A N R RN N

-'-%
Lo %y
o

"

r s
54

v.,'-'

N %

v

4 LE 55 S,

X<

ol ad

L%)

X ‘/‘.J'/'- N

Y

o

) A

f

sy

i

LEL

o A

s 7.
h]

(A e

N A VIS UM TN W YNV v v i")r;};;“

. 3

)
£

255

h
F A
o

% Y

h)

LY

v

>

r

\.'.‘I._-

<

o ‘v N
L4
2 n
1 .

¢

<
e

s

é. 7

.....

e

.
f\

N

&

AL
p)

A

Pl

« 4w " ‘

\’%‘5‘5'..{'

(o)

i,

B

N

' I
[}

[}
Pl

L]
«

o3l ¢

ﬂl‘l

s

i

A%

rXNY)

&

-
"

Y ARGSH Y

L4

L

OIS

-,

AL

l.l

- - A
s
t e
. ..
st
NN
PR
-
CORIEN
.-
N
"

P

— . x- .a;

B A s r..r:..-es.. e LK N n A N I T LR
XX T SR »...T. A-'“. %ﬂ.. PN @ WSS g @ldy a.......-sx. LN
.x‘ a......)a 1% .. ﬁAA.b\ '.r#.r..n.....\......f...,..‘.,...x.....-.!. u..»................f. \v \....e.....q.... ._r..\..»,.\

PR XN LA A A AL o * T PP ARRREAAREL TR AR ...r..f.v..,. BRRR A ot

N J\. \..‘.\.r\} ans.rs.f..;.\f\..\f.n UV .\NVQ \a”.. A g AN AN .\fua... yoans’ RN S fhr.-.f\.,........\a.f er.- e

'f...v.... 1 AL LLSAA e b Nt .‘-\\\..J. LAY-.5. LA &4\&\\ SRS ¢ r.:.;..f&...

.... - TR A AN Fﬁ ﬁrﬁl L AR ..\.......\.\..m AR Rl AL W S WAL LI .7 ne
PLAR IS A _is B » RN
LN

Test Coverage is an important metric for evaluating
a measure of the degree of confidence that
the manager can have in the results of testing.

the quality of testing that has been applied to the software

18. Potential/Plans for Automation: Test Coverage can be computed
It provides

automatically through the use of software test tools.

16. Remarks

metrics.
system.

PROCEDURE NO. 18

1. Title: Exception Frequency (EV)

2. Prediction or Estimation Parameter Supported: Operating
Environment

3. Objectives: This metric represents the view that the greater
the variability of 4inputs to the program, the more likely an
unanticipated input will be encountered and the program will
fail.

4. Overview: A measure of program variability (EV) will be
obtained through a count of exception conditions that occur over
a period of time. Hardware monitors will provide the required
data. The value of EV may be represented as:

EV = .1 + 4.5EC

where EC is a count of the number of exceptions encountered in an
hour.

5. Assumptions/Constraints: There has not been sufficient
testing of varlability as a possible factor in software system
failures. In the form described here, however, it 1s plausible to
suppose that the number of minor and recoverable problems, as
measured by the number of exception conditions, 1s proportional
to the number of major failures, and may be used during system
implementation and test to estimate failure rate.

6. Limitations: This metric 1s derived from bhardware and
software exception reports, which are normally generated by the
operating system. It will, therefore, provide the basis for
estimating failure rates to be expected during operation of the
system. It will not be avallable until initial system test.

7. Applicability: Exception Frequency 1s determined during the
coding phase, testing, and OYM.

8. Required Inputs: Exception reporting is obtained from system
monitors which generate records of hardware and software
failures.

9. Required Tools: The appropriate system capabilities for
monitoring, reporting, and summarizing exceptions must be
available for use.

10. Data Collection Procedures: Records of hardware and software
exceptions are obtained, from which a count of exceptions over a
series of time periods will be prepared and averaged.

NI R

Lol O AR

‘)
¢

.,
.
'. .
.
0
]

oy oy

A7

PN N

11. Outputs: The results are reported as BV, as defined above.
This represents a normalized figure for the number of exceptions
per time period. The normalization permits the value of BV to
represent the degree of increase in expeoted failures, reflecting
the frequenocy of exceptions.

12. Interpretation of Results: Hardware failures are likely to
account for a substantial number of exceptions. A faulty disk or
tape, oOr faulty oomponents in the drive mechanisms for their
supporting equipment, oan generate large numbers of exceptioms
over a period of time. For this reason, it will be important to
provide some explanation of the ocauses of the exceptions, to

permit & proper interpretation of abnormally high exception
rates.

e,

ey

13. Reporting: Exoeption frequencies should be reported back to
the project monitor in ocases 1in which excessive or anomalous
values are encountered. This metric is valuable in estimating
potential failure rates, by identifying specific modules or
funotions for vhich the anomaly rate is high.

Tary
Yol

Pt A
2
P2 X4

5,

%§}

14. Forms: BExoeption rates are based on data collected by
hardvare and software monitors and reported by operating system
functions. This information oan be entered into report forms to
obtain the required value for BV.

'

B &5
7,

5

18. Potential/Plans for Automation: A system for the collection
of software metrics oould 1include required functions for
obtaining exoeption rates and for transforming them into the
specified outputs.

[/ 0.2.0.2.4,°,

LRI I “ T T 4

.ﬁ N A
o L

L4
L4
"’

16. Remarks: The exception rate appears to provide the basis for
& highly accurate estimate of the failure rate to be expected
during later system operations.

*,
o>,
L
Ca
>
y)
4

s 7

’ 4
h'%h)

s N

Spreee
-,‘ " [4
e
s
[y

";
."4. >

[ST N
i
2l s
t' 1)
el l:’l' ’

l.l '.
‘- -“ l"l..

e ":'-It .
)

A

L

Poee'e
..\‘-"

«

L4

D
"...(-o
.,

s
s
VYA s

27
P4

1)
oe, st

. ..’-‘,"

s AL AANL Y
z
[y

;‘, M
‘2

P A N R il et la" s ba” it abe tat Aa’ . . « o "l By Ty TN TN
2 VR s¥a . W " VWUW. WOV P U o W . %

PROCEDURE NO. 19

1. Title: Workload (EW)

2. Prediction or Estimation Parameter Supported: Operating
Environment

3. Objectives: The Workload metric represents an estimate of the
workload of the system. It is thought to be more likely that a
specific task will fail in a heavily loaded system than in a
lightly loaded system.

4. Overview: One measure of workload is the amount of overhead
being wutilized. It represents how much I/0, system calls,
swapping/paging,etc is going on. In most mainframes this measure
is reported by the operating system. The EVW is obtained by
calculating the ratio of execution time to execution time minus
overhead.

5. Assumptlions/Constraints: To obtain a metric which will
predict reliability, it will be necessary to obtain a figure for
overhead which is typical of the times when there is significant
activity. Overall averages for workload will have 1little
predictive value 1f they include long periods when the computer
system 18 completely idle. For that reason, the average should
be computed during peak usage.

6. Limitations: Estimates of workload should accurately reflect
conditions in the operating environment. The possiblity of rapid
system degradation under conditions of heavy overload should be
considered. Another point for consideration is possibility that
system reliability will degrade -~ i.e., the failure rate will
increase -- 1in a non-linear fashion as the workload increases.
There may be no failures attributable to system overload while
the workload 1is 1less than, say, 95 percent; at this point, the
fallure rate begins to 1increase dramatically. The manner in
which this metric is calculated assumes & linear relationship
between workload and fallure rate.

7. Applicability: A measure of workload can be determined during
the coding phase, testing, and O¥M. We are attempting to
estimate what the workload will be 1like in operation. Stress
tests, during which workload is deliberately kept at a high
level, can be used to measure the effect.

8. Required Inputs: Computation of this metric will require data
concerning total run time and overhead time.

9. Required Tools: Information required for this metric is
normally avallable through the system monitor.

10. Data Collection Procedures: As data concerning overhead and
total run time become available, the ratio is computed and

:ﬂ"‘;

e e e At AT ATt et s et et A AT A AT et A AT AT AT A ’ A AT AR AT A A
e A e A N N N i S 2
SO "\': \'-'s.i:" "\'f‘\'"\ B A R A A R O, Ot N QL

LA AR NG PO N A AN N ¢ N A A A M A ARG A AN A G N A AR

b
h
R
Xy
7/

o
4 4
g
v

e
;}

v
o

h v
s

P o
'.':'-\ ks ::
'%ﬁﬁ 8
MY
s 2

e
SRR

Pave
&%
.
’.

b,
T
XX

?"l
i o

3y
v
’

5

Y
'ﬂs
N5

!
[4

1

(4
gLyt
Y A4
A
N g

N &

%) 5’1 ‘;- L1,
/
A

1 4

|

’ Y,
.'
L4

e, ".(

LI]
YA

]

NSNS

._\ >

LS

&
3

l.';'.'l

...
DRI PN
1.

e et etat
\ 5-.'l..I..-Pﬁ‘l.'l »
,’ I':.d'\f f‘l

A -
%%
NN

-"
sf
v

-]
RN
.'.'.l

Y
S

.
Wy
.

f-;:\ :.
WYY
PN
N NTNCSNNT]
PLAT S

“ .
* e .

J

e

"
\;&

lﬁf
5

[
"

-
Y
kY

s
Ed
4

:2

5 2
R
;{}ﬁ;
I

.“
A

)

’ P4
P

r

[4

N
N

X%
vl
7

LY

'
, e

reported.

LAC
DAY
4

7
5
Iyl

o

Often, the ratio appears in accounting information produced by
the system monitor.

)

‘r‘:r.‘ d

]

11. Outputs: The ratio (EW) 1is reported as an output to the
computation of the Operating Enviroanment metric.

2
7
rry

-

20,

12. Interpretation of Results: In general, it may be expected
that system performance will degrade rapidly as the CPU
approaches saturation. TLe problem for comnsideration will be the
extent to which software degrades in a nondestructive manrner,
maintaining as many mission-critical functions as possible.
Outputs from this metric should be useful in identifying a point
at which degraded performance begins. Typically, Government
specifications required that no more than 75 percent of system
capacity be used, i1.e., that there is a 25 percent margin for
error, for mission-critical systems.

e

™
x

13. Reporting: Busy time or workload should be reported with
cther management data concerning resources use.

14. Forms: Workload is obtained from system management records,

which are normally generated automatically by the operating
systen.

15. Potential/Plans for Automation: Information concerning

workload and overhead is routinely gathered in automated computer
management systems.

16. Remarks: It should be noted that this metric could also be
the difference between idle time and total time. In a time-shared
system, a significant portion of the busy time may be occupied by
system overhead. In addition, in some applications, time that
would otherwise be idle is absorbed by low-priority tasks (such
as checking data bases for consistency) that would otherwise be
idle. If a low-priority task is used to soak up idle time, it may
produce a misleading estimate of the actually busy time -- 1i.e.,
the time used by higher-priority tasks.

A
[N

..a'\l,\.5\.|
LA
P

1
.
r
e
nlt((.k

-l{i

P

PAE AR AN
',“. P
l.'.:vl‘.
1y

»
7,

s

»
".f
%

»
7,7

Ty

[4

5It‘

4
[p

:
v N
Y}

2.,
S LS
N

Ls
XX
P @

O
7
A

. I T e LI A "v % i
AYAABAN 0NN
T OO AN
) ...r Ca ~f~l'

+

FRT R

. . Cp e a T mt A " L R P I R B T e T e O P I T M A S S S I L S S S P VL T S L S)
B A A e A R
A A A A e A S R TN S SN S R N O OO I P N SRR SN SN SN
&, o L NS . OO0 B N S ASLY ~
[\ AR Y AN W l- Lol ':.V AT O g "N 2 RO YA SN O NS A

pOAA NP Y W W Ve . MAEAAR AT I Al Al Sl YuM s | AN Al A A B g C L P W

APPENDIX C
METRIC DATA COLLECTION WORKSHRETS

Appendix C contains metric worksheets used to collect metric data
during development phases. Nine different worksheets are applied
to development products in different phases and at different
levels of abstraction. These worksheets are modeled after those
documented in RADC TR 85-37 listed here:

1. Metric Vorksheet o, systenm level, system/software
requirements analysis.
2. Metric Worksheet 1, CSCI 1level, software requirements
analysis.
3. Metric Worksheet 2, CSCI level, preliminary design.
4. Metric Worksheet 3A, CSCI level, detailed design.
5. Metric Worksheet 3B, unit level, detailed design.
6. Metric Worksheet 4A, CSCI level, code and unit testing.
7. Metric Worksheet 4B, unit level, code and unit testing.
One difference 1s that only those worksheet items pertinent to
reliability prediction and estimation are included 1n this
appendix. Any questions relating to definition, explanation, or
application of these worksheets should be referred to RADC TR
85-37. Another difference is that the worksheets related to the

Quality Review (SQ) metric and the Standard Review (SR) have been
separated and reorganized in Appendix D.

Terminology used 1in the worksheets generally is consistent with
CoD-STD-2167A (e.g., CSCI, unit). The term "software" is used in

a broad sense and refers both to the end product (code, data and
documentation) and to the product 1in 1its current stage of
evolutionary development. A glossary is in [BOWE85]). An index

of the worksheets showing the phases of development when they are
applicable 1is provided in Table C-1. Multiple occurences of
worksheets in Table C-1 represent either the application of a
sukset of the worksheet applicable to that phase or the fact that
the worksheet could be updated at that phase if required.

w

A
'd

5
2
X O

]

X o . |
@
2

L
Wy
P X4
{%
-l.’

»
S

K]

e g
R
L4
7
‘.ﬂ(.l.

A
A
Sy
LAY

Y
~7
T T 5

Pd «
§nan
\l

[}
f
«

N

0y

l' '. ‘.
l. £] .

.."..’.f

NN
»
‘I

'l
&

i)
[4

LY

NAAA NS
e
YRS

»
X

.
Y

PN

>

W
[
(e
‘I Il
7
Vee

’7e
1R)
l. '. .

[N

P
ENN

LY G NEN
AN
AR
NG
l'.','i

h
'~
.
II.

()
DAY
s %

’

R
N '-" ' "‘

.

Y

"1'»‘:'

Veleels,
e "

4 %y
P AR

e Te
L
e

.t,.. g
‘\‘-'l

q..'

r'rs
/.' Pl

1}
e
Qgﬁﬁ

NS
’l

v
0
P A
»

N .,

. aa ma el A AR e et gat . aat_gaatg® pa’ g J S gl 9,0 (ot S fat O et finfd SRl et et Aot g,
- W MW N o Wy W W Ny Wy N (RS (AN LS LIl Sl Vot L Sl Tl Sl ¥ kA.LLL'\.I.'L‘\..l.\.\.\-.‘-’\'\

"\.)"
~ S
%]
N
o TS "
Il aaaty
h, LY AT,
N g;ﬁr.-:{-
)
A
o
. Py
N
A f L f‘. {
i -’x..‘.’
\-‘,‘l}- 5
TABLE C-1 NI
. METRIC WORKSHEET INDEX N
! ;
PHASE APPLICABLE et
N LEVEL METRIC WORKSHEET --i:‘,"-j
RIS
N CONCEPT INTTIATION SYSTEM APPLICATION TYPE 0 .'_-;'.‘_-;.'_5 !
- a” AT Y A
. SYSTEM SOFTWARE SYSTEM APPLICATION TYPE 0 Al
! DEFINITION PY
. SOFTWARE REQUIREMENTY SYSTEM APPLICATION TYPE 0 e
d ANALYSIS DEVELOPMENT ENVIRNOMENT 1 RN h
)
X SOFTWARE REQUIREMENTY CSCI ANOMALY MGMT 2 ﬁ]
v ANALYSIS TRACEABILITY 3 oy
M QUALITY REVIEW RESULTS ;0 (Appendix D) Py
PRELIMINARY DESIGN SYSTEM APPLICATION TYPE 0 .»,_.--._%
DEVELOPMENT ENVIRONMENT 1 AT
- N
| DETAILED DESIGN CsCl ANOMALY MGMT 2 PRNGIAS!
A TRACEABILITY 3 p_.‘_\-{',’\- ~
" QUALITY REVIEW RESULTS 10 (Appendix D) FALNN
S O
ANOMALY MGMT 2 ™~ :
CsCH TRACEABILITY 3 v
QUALITY REVIEW RESULTS 10 (Appendix D) o
5 NI
UNIT ANOMALY MGMT 2 RS
TRACEABLLITY 3 RIS
QUALITY REVIEW RESULTS 10 (Appendix D) '\-‘-.;-\;‘,
5 RUARLLS.
CODEING AND UNIT SYSTEM APPLICATION TYPE 0 - .
TESTING DEVELOPMENT ENVIRONMENT 1 R
-..- '-l‘.- o
CODING AND UNIT cscl ANOMALY MGMT 2 NG
TESTING (CONTY TRACEABILITY 3 NN
2 SOFTWARE IMPLEMENTATION Xt e
X LANGUAGE TYPE 4 e
3 MODULARITY + ®
COMPLEXITY 11 (Appendlx Dy F I
STANDARDS REVIEW RESULTS 5 PN
\ AN
, UNIT ANOMALY MGMT 2 I
TRACEABLLITY 3 InaTs
) LANGUAGE TYPE 3 PN
‘ COMPLEXITY 3 vy
STANDARDS REVIEW RESULTS 11 Appendix D ®
s .
SC INTEGRATION SYSTEM TEST EFFORT 6 NG
AND TESTING TEST METHODOLOGY ? Larn,
TEST COVERAGE 8 ey --',:
S I':.-l". X
OPERATIONAL TEST SYSTEM WORKLOAD 9 e
ANDEVALUATION VARIABILITY OF INPLT 9 DT
[)
AL
. b e
‘ -2 B
':'\::\j:\
LFy
PN
.r:-': "
P A
L)
I ot e T T e
' :-$r.,-;§.->;.¢».v.
e T 'a;f
NRVRAN

by
ANy

R .8
“.I.-J\fw.f
Ny Y Y

P

W §700%320°0,8% 0%.0° §%

2pPA

™ ™ g

x rA,...m 3 @A
et
5 . XA

R R Doy B ARI

METRIC WORKSHEET 0
SYSTEM LEVEL

SYSTEM SOFTWARE DEFINITION
GENERAL INFORMATION

PROJECT

1.

&R A CHERS XX R R 5 A S~y W T "y

DATE

2.

ANALYST

3.

PRODUCT

4.

SOURCE DOCUMENTATION

5.

R
o
b
S
DRk

\ﬁ:.u

'~
s
»

™,

o,
<
s
s
LAY

N
Y
;:#
P

0

~ AN R
\:_\ \":\J:\-'_:'\-
AT

ol

~
-

%

B N R N T T T O SV Y v v

. NN
Ay o
A
\ '::;"’u'"
- METRIC WORKSHERT O x: :v
ul AN
o APPLICATION TYPE (A) Y
-:\ .\'\ i
}: Categorize software application according to application area as "'"“,_I
> follows (Circle one category in each scheme): :}f‘i :
: s
- SYSTEM NAME: CSCI NAME(if Applicable) @:y
) N
e APPLICATION (for System Level) FUNCTION (for CSCI Level) ;i;v
1 ~.‘:
] | i
|@ AIRBORNE SYSTEMS | @ EVENT CONTROL !
o | - MANNED SPACECRAFT | | S
o | - UNMANNED SPACECRAFT | @ PROCESS CONTROL : A
- I - MIL-SPEC AVIONICS a |
| - COMMERICAL AVIONICS | e PROCEDURE CONTROL u
, ! ! i L
2t le STRATEGIC SYSTEMS | e MESSAGE PROCESSING | = O
:’_- | - C31 I [:"\':*..‘;\
- | - STRATEGIC C? ! | RN
j { PROCESSING | @ SENSOR AND SIGNAL ! KOSt
I | - INDICATIONS AND WARNING | j NN
C | - COMMUNICATIONS | | NN
| PROCESSING | @ PATTERN AND IMAGE) ol
I I i A
o e TACTICAL SYSTEMS | e EXECUTIVE/OPERATING SYSTEM | RN
-4 | - STRATEGIC C? PROCESSING | i Rt
2 i - COMMUNICATION PROCESSING | | s
v | - TACTICAL C? | : Y
d | - TACTICAL MIS [@ SUPPORT SOFTWARE/UTILITIES ! R
- | - MOBILE | | SR
X | - EW/ECCM | ! oA
oo 1 | @ RESOURCE MANAGEMENT/CONTROL ! A,
. l | | LRy
o @ PROCESS CONTROL SYSTEMS | & SCIENTIFIC/ANALYTICAL | SN
| -~ INDUSTRIAL PROCESS CONTROLI! PROCESSING | ®
Y } ! " :i‘u-:“: '
v ! | e DECISION AND PLANNING AIDS ! Haghy
7 i@ PRODUCTION SYSTEMS | l NS
Y | - MIS | e DATA MANAGEMENT ' 2T
")~ DECISION AIDS | | 2l
‘ i - INVENTORY CONTROL | e DISTRIBUTION/COMMUNICATION ®
! ~ SCIENTIFIC | st
| | @ DISPLAY/DATA PRESENTATION BN
e DEVELOPMENTAL SYSTEMS ! KRN
i~ SOFTWARE DEVELOPMENT TOOLS! e DIAGNOSTICS DA
|~ SIMULATION ! i
! ~ TEST BEDS | N
L (- TRAINING i hAS i
. | | o
o) TIMING CATEGORY ! B
y .: ‘ " ‘ "'\"?
n ‘e REAL TIMF | e BATCH ! BNy
s I | ! - N
s e ON-LINE | @ SUPPORT (o
~ T | SAY,
X c-4 e
" &'\\
N NN
f\ e T T L T e - . :&f
S e e e e e el
e e e A R N A R T B N S

'I' _____ 9204 el 'S b I " .4 oy A ¢ At A RO «vy Pl adie iy e%ava© . -::\::\::\::

'.':J‘.'.':.‘-

\ '::'\'.t".-"l
- . .

i NN

t: METRIC WORKSHEET 1 .;::.&;\':

: DEVELOPMENT ENVIRONMENT (D) e,
. .:.\"""\
i Categorize development environment according to the following: NN

>3

;: DEVELOPMENT ENVIRONMENT

) . /'.:

i () Organic Mode: The software team is part of the VR

. organization served by the progranm. S

' () Semi-detached Mode: The software team is experienced in

the application but not affillated with the user. NCNN

ﬁbﬁﬁﬁ'

; () Embedded Mode: Personnel operate within tight PO dte
: : constraints. The team has much computer expertise, but NS

1s not necessarily very familiar with the application :Rﬁﬁwd

served by the program. System operates within strongly
coupled complex of hardware, software, regulations, and -
operational procedures. Ak

In addition, if data is available, complete the following NN
supplementary checklist: ~a

.,
Pt
A

N® LY,

“
-

S
SRy,

h)
o
L Sty

sl
['d
[}

53

.
S
I‘o‘

‘J d

4
Pg
-~

f Tl
Ny

A

S
SRl

.I
h Yol
hY

>

AR AN
e
ﬂ‘,‘-’\
g « 4
'y
P

LA
'@

<

4

AR
s %S
558

.1.:"-.
v

.:’- <\
N

." (.' \.' ULy
)
T

LI
e N
|l

't

5%

o
»

[
o
s
o

Sl
AR
'-\S,*.

e
[
:":.

A58

SUPPLEMENTARY CHECKLIST FOR DEVELOPMENT ENVIRONMENT

L

%-

o
-

X
o
N A
il "
XS

=
III
Z
N

Identity all characteristics that are applicable
development environment to be used on subject project:

o
b

v
o

> .
o5}

e
Pl

~

ORGANIZATIONAL CONSIDERATIONS

LAY

4

Separate design and coding

Independent test organization

Independent quallty assurance

Independent configuration management
Independent verification and validation
Programming team structure

Bducatioual level of team members above average
Bxperience level of team members above average

AR
)]
VXX,

i;
5

-)
fl'g .

»
o
0

U
LR
[}

“»
L)
I.\':i

»

A

ONINININONNINN

'’
A

£L%
R: l'. L)

LI I
LA

METHODS USED

-G
1@ .

Definition/Enforcement of standards
Use of higher order language (HOL)
Pormal reviews (PDR, CDR, etc.)
Frequent walkthroughs

Top-down and structured approaches
Unit development folders

Softwvare development library
Formal change and error reporting
Progress and status reporting

.l‘
.%bv<
e
“~ %
gﬁ??l
LA TR
‘_’"",

“y
»

2t
P4

e
P ¥

hg
-

1@ 5%,

Jﬁ?q
SN

ONTNSNONISNINNN
Nl N/ Nl N N N N/ NN

)
sl’(
Pl o

DOCUMENTATION

S
-

L3

System Requirements Specification
Software Requirements Specification
Interface Design Specification
Software Design Specification

Test Plans, Procedures and Reports
Software Development Plan

Software Quality Assurance Plan
Software Configuration Management Plan
Requirements Traceability Matrix
Version Description Document
Software Discrepancy Reports

o1

Ve

NN

oy,
/.'-' s 'n "n:..i: Wy
a l:

P
"
o~
LA
nt

e
N

AAAS

f v :

o G 5

e
v"'-'.li. S

r
! 4

Pl A4
3
8
t
n

[yt ¢
¥
nes

a
...v"
R

USED

R
"
s

[

T
"

a4

Requirements Specification Language
Program Design Language

Program Design Graphical Technique (flowchart,
HIPO, etc.) -

Simulation/Emulation

Configuration Management

Code Auditor

Data Flow Analyzer

Programmer ¥Workbench

Meagurement Tools

Others

l“.

WA
L

L

[
4
"n‘. .
Eit,

P
b}

|
;.."f P
AL

«
i

SNSRAN]

NINININ NN NN
N N N Nt N N S N S

iCount the number checked. Assign that number divided by
138 o Dn.
!Dc = No. checked/38 = ______

%

v RO P e i X o AL AN 3 T T e TP
L @SV : \..\v.n.mu....c o>, .1\..».,. ..Nuw 2 ®\..h.x....”..s..”»M !..V............”.......\ N iy :
g . . A AR) A X ~ ¥, ", .\.\\.\f.....«.. PR ‘......... LA
T RGN SN ANS A..V CXy NG w... R R A S A AR
SRR X AAAA AN PLCAA AR , : ot WO A A AT R A XA SRR
3
‘
3
3
“-
b ~
b, ﬂ
g o
w. —
Q
m
(9]
r
~
2y
2
o
ap B
zZ H
= mMm 3]
mxE <
m m b] o
BqYU bt
n<g O [1/]
Mz B —
o M = MM o]
O 2] X X M <]
= < < o]
o ..Vw. M - (nw
HS M
KxE m
BHBO & ~
mny <3 Q
E< U = 2]
S o
3 o
& q
= &) S <]
2] = (9} Q
b2 H < PH H
o] e o nOODH
O ZOQA0O A& g
an neoOo M.. noop
H [[
O nn O M . Y IS
o3] o oo O [£5] 0O 4
L) Mm I a ~ (7] [0} m
O = < Q o] < Kel >
¢4 < = ¢4 o o] O 23]
Ay Q < Ay 175] [+ % - J
N © -

is
as follows.

on the 1line next to the question in the value column.

LA . . et) Y R, .k l, : ; ! 3-..v .
e ...\...H..“rufu....s.vf a3 \..n\-.nh.n\r\ AT L.‘.u&. e ; . ORI \f~¢xu.;....m..w
AN A AR LN Sy Ly N AL T e e T S S0 T) ‘ /S L 0 S)
N ANy wlet [o A P A A A AN o, A o
A .v..x»......”. ..-.e.‘d, ..,..w..s_r.......u.“v wAN RS AN .V-., J ! . _.-.. A 2
A l\.\-s-.-nuﬂﬁﬁxf_ F\F\F\F f\f\f .\.. INANERL LN T Y 2 0) AR NN - R L A2,
s
, o -
e g -~
(o] Q
» -~ Q
[} > =
>
, Fey /7]
. —~ .M [
Ca |
' -3 [¢4] ~
. a & @
> [+}] 2
. H =]
g o0 Ll <3}
[} 2
-~ o!
Q Q
Q 4
[+)
1]
[
< d
ey
L
]
[72]
e}
<

At Preliminary Design Review
At Detalled Design Review
At Unit level during coding

tolerance)
The checklists should be applied as follows:

e

b .

0 e et
L .

-

METRIC QUESTIONS

on the line 1f question requires a yes or no
AT APIES

Check NA to a question that is not applicable and these

do not count in calculation of metric.

checklists are used to assess the degree to which
(error

Complete the worksheets

IR~ o

=) =

23] g6 -

X [O18 =]

3 ©0vOQ £4

[&) g a4 [}

< A8 W0

= 3 o > ~ q M ¢

S 55T HRRAN °_3

— (1)) o> o

g I o BN ¥ o o
_ H Ao H Q

< g3 e M o
" = g P ® 300

S 28% 5aa0
’ o)

< Hdu = HO H

'i‘.‘- AY .‘.L -

181 - SRR

a. How many instances are there of

different processes (or functions,

subfuactions) which are required to
be executed at the same time

(1.e., concurrent processing)?

b. How many instances of concurrent
processing are required to be ceatrally
controlled?

¢. If b/a ¢« 1, Circle N.
If b/a = 1, Circle Y.

AX . 1(2)a. How many error conditions are

AM . 1(3)

AM . 1(4)

AM . 2(1)

AM 3(1)

required to be recognized (identified)?

b. How many recognized error conditions
require recovery or repair?

c. If b/a < 1, circle N,
If b/a = 1, cicle Y.

Is there a standard for handling
recognized errors such that all error
conditions are passed to the calling
function or software element?

a. How many instances of the same process
(or function, subfunction) being required
to execute more than once for comparison
purposes (e.g., polling of parallel or
redundant processing results)?

b. How many instances of parallel/redundant
precessing are required to be centrally
ccatrolled?

c. If b/a « 1, Circle N.
If b/a = 1 > Circle N

Are error tolerances specified for all
applicable external input data (e.g.,
range of numerical values legal
combinations of alphanumerical values)?

Are there requirements for detection of
and/or recovery from all computational
failures?

VALLE

YES

NO

A

-
?l‘t’.
"o‘

LA
y
A
':":"\‘c
LA

NS
¢t
o

)

£ 2
-
hY

%

.»,::'_::1

s
7

YHANS5 54
Pl A
A

[

rer
',

.r'
)
h I}

4
s
v

'
-'.u. ‘\.

s
4

L
A
".l' ""'- A
."l:a

]
"l
’

\l
;s'\
P S
» SN

"F.']
MY
N

RS S
LY 'n’ *y ‘e 'y '

K .
PR 3
"

8.4 A% 2L N e aul gt ¥ A SR AR A N AR AR Ll A A e e

A e ava AR A B8 a & 50 A AL 'R 0 0 D AU R RS Sty pt i g L Sa L A A A Al B G

NN
[§ "l ,.'in-!.
L o
NN
- :\‘E:":'Q
f BN
! -‘a‘?‘«p
-I * ~
= de S
. Oyl
N PPN
- T R
[VALLE JYES N h AR
AM 372) Are there requirements *: range -es< vj | ‘ ﬁbﬂy:j;
| all critical (e.g.. supporting a | AR
aissicn-critical function) loop and \ AV LTS
aultiple transfer index parameters
before use? ‘
AM.3(3) Are there requirements to range test
all critical (e.g., supporting a
nission-critical function) subscript |
values before use? |
{
AM.3(4) Are there requirements to check all { l
critical output data (e.g.. data]
supporting a mission critical system
function) before fipal outputting? I
AX.4(1) Are there requirements for Tecovery I
from all detected hardwars faults i |
(e.¢.. arithematic faults, power ‘
failure, €lock interrupt)? ,
AM.5(1) Are there requirements for recovery
from all I/0 device errors?
AM.8(1) Are there requirements for reoovery
from all communication trangmission
errors? N
AM.7(1) Are there requirements for recovery RSASANAS
from all failures to communicate with ! \,‘,\4:‘
other nodes or other systems? ‘*‘izi
AX.7(2) Are there requirements to periodically kf:%xi
check adjacent nodes or interoperating Sty
systems for operational status? ; A
i i :'-'?\':\-'- :
AM.7(3) Are there requirements to provide a | 7 :}:}5:‘
stratedy for alternate routing of messages”? I) e '.'
1 . -
RE.1(1) Are there requirements to ensure : NN
compunication paths to all remaining AR
rodes/communication links in the AN
event of a failure of one node/link? RO
NN
RE.1(2) Are there requirements for maintaining "':.‘
the integrity of all data values SRR
following the occurrence of anomalous T
conditions? R
AT ALY
BT A
| R,

HhSN
« fﬂf\f\f '
Wun..A
LV Nu?.v\

T.f Ja B
.

R

RN o

-
s
C
7.
[7g]
w
-
w
—
-
o<
-
—
A
[
Jd Qd
b4 a >
» tt
M VO Py
g oo
O K L) a4
>Son © »
~Pwno 9
~ OO Q K 24
40088 » O g4d
O+ @ o 2
OO0 K 0 O ugd > 8
AP 3 o0+ d
ge e 48 M MO 00
oa n 90 o
aa.d o+ oouw
OHPO K O Qq. @
0O K oo=m <
OnPd oM
L oOd » O 0w
«.d8 (2] wzla
w PO @ O = @
PO B P jadt
g+ dm q @ 9t % @ >
o O>» @ Ao oo
03w H+LO hel
o0 o © (a3 A
ted ® & AO o0AaAs
39sd §oe 44
S on
R Tew 583,
OYdOWw O L O ade
®>O0 o 8 a
Lo o - DO D%
00w o© & 4460
HODA AWV R
g0 @ 91 Ak
a0 A £ 0O LOLIOXE
SOt o nnCMA
000 Lo 33
WvS.vu enw OO0 30
SR $4 U asy
< de <« ORA ©©
~ o
— 4
o] «* &
N N O
-4 A £}
") (S|
o o M

c-11

MR R LN

AM

RE

AX.

RE.

RE.

RE.

.8(3)

6(4)

-7(1)

.7(2)

.7(3)

(1

1(2)

1(3)

1(4)

182 - ANOMALY MANAGEMENT "I°v - PLP

e -she phagtes SR AR Jen P i 0 D I) A A

Are there provisions for recovery from all
ccmputaticnal failures?

Are there provisions for reccvery from all
detected hardware faults (e.g., arithematic
faults, power failure., clock interrupt)?

Are there provisions fcor recovery from all
I,0 device errors?

Are there provisions for recovery from all
communication tran checking information (e.g.
checksum, parity bit) computed and
transaitted with all messages?

Is error checking information computed
and compared with all message receptions?

Are transmission retries limited for all
transmissions?

Are there provisions for recovery from all
failures to communicate with other nodse3
or other systems?

Are there provisions to periodically check
all adjacent nodes or interoperating systems
for operational status?

Are there provisions for alternate routing
of messages?

Do communication paths exist to all
remaining nodes/links in the event of
a failure of one node/link?

Is the ipntegrity of all data values
maintained following the occurance of
anomalous conditions?

Can all disconnected nodes rejoin the

network after recovery, such that the

processing functions of the system are
not interrupted?

Are all critical data in the system (or
CSCI) replicated at two or more distinct

nodes, in accordance with specified
requirements?

NS
'VALUE YES

r |

<
t
-
t

g

P 4
O
'..l

v
LR

'n.;\ R T T T 2k A
I N

[
s
\ 4
f..t‘
2

Y
I"I o’

hY

G %
EA X4
‘a'.;n;v

«
[4

W re v ¢ 88

»55S

%

Yy
':"r"-'&'.‘.

LI TR IR

L4
-

.
o Ps
5 L%
p' e e A A
Sy @A e
rd PP 'I’I-’.{{

. ’
el
K

= A% . e : : i x A K AN s PN lY Vg naasRs R R A
- - . ey .Y Y .\.\-.-. (£ Ay A Sy Ty 2 p e Ll
7 e \vm..s.. 7 e Q”.\”..Hs..W\ 7 @K NN @ AT @I @ .m..m...ax....“. £vne OV IS
A !, LR . . & a L

v \f\'\ N \ J . \b\ 7 Y hpt--~\~n -‘I-q\' N . -.I -f -f\-f\ fn\(-i J- ol -‘wb\'\-“\l“.\h\. ‘ nil\fﬂ
! »

&7 \---kn\f--f\ TR ST N .ﬁn-.v.n.- 2Vt

-
X
X —r — ————- I e it
!
. i _ B . _ L ~ _ ;
.+ 1
| !
d ot
2 ¥ - T - T T T T T - - T T T T T TomrTT -t T - - - - - - -
L i
" . —_— -
d 7 o . e — —————— . R el o=
) s
” (o ‘
- '
K - 21
— — e
. " o)
. 4 _) [
O
O Ie)
. -1
. 4204 @
o« a oY
[B R |
. O o
3 o D>
i1
o e Qe
' 0 g
S @ e st
4+ FS)
o o >
Dt A
) 43 ol
- LY e
e b QU
Nt
r . P)
t 2 '
.- 4y4
e 7
DU
Qa4 N -
RSN
] ha) . .‘A
[FEEX BRI &) p
s q G o a .
AL oA
£y W e 0 Yy
by g
i 102 Ly A o 1
. 3 e
Q@ %4 ot e -vw.(.
g is00a0 .ﬂdfm
v .
. k@ b /. -UI.\
L odo ool
3] hm@m 4 0 .--.-- l-.
e £ -
~ O 3@ IUF .-....' ..h
a OO < \.I-- ‘5
. n ,.--n.-\-
. N
; § a
O PAACAC
3B B 2o
s \I-..--fA
p 23 Y X
) < el
4 \n-- .\I.‘u
iy
L
b’ lf {
> ’
: vﬂr
(o IA’OI. - O 3 8 0y, g by F - g) -

CHECKLIST

p

AN.1(3)

AN .2(2)

AM. 2(4)

AM . 2(8)

AN .2(8)

AM 2(7)

183 - ANQMALY MANAGEMENT (5A; - LUR

LG E AL OA S LA

a. Howv many units in CSCI? NM =

» Pcr h~w mazy ‘ini*s, +het an &rrorT
condition is detected, : s resolutisn of
the error determined by the calling unit?

¢. Calculate b/a and enter score.
d. If b/NM O check N, otherwise check Y.

Are values of all applicable external
inputs with range specifications checked
with respect to specified range prior

to use?

Are all applicable external icputs checked
with respect to specified conflicting
requests prior to use?

Are all applicable external inputs checked
with respect to specified illegal
combipnations prior to use?

Are all applicable external inputs checked
for reasonableness before processing
beginae?

Are all detected errors, with respect to
applicable external inputs, reported
before processing begins?

a. Hov many units, &o cot perform a check
to determine that all data 1s available
before processing begins.

b. Calculate a/NM and enter score.
c. If a.NM > O check N, otherwise check Y.

Are critical loop and multlple transfer
index parameters (e.g.. supporting a
miseion-critical functicn) checked

for out-of-range values before use?

Are all critical subscripts (e.g.,
supporting a migsion-critical function)
checked for out-of-range values before use”?

VALLE

YES

N()L}«
1

[}
.
-
v
"

I" \'l\"..
P NLSA
R
1] \ .‘ N
PN AN

.
LA AU

.

’®

NS
LAY

.
A
LY ~‘
.

[g

"\’Wn

5"' ':")
P ':f. "3

}
-

i
‘(
X

2o

]
i

[R i el Bt ']
R
gﬂei'

’

_\,\,S
LA
P

5N

%% &
P

&
P4

Y

N
-~
~
~
)

L
L'd
oy
s N

LN Y
e
e

.I
by

[N
& . f'-

] (e . 2

LS.
LA

‘p'e

o
.
s

04
Al
-

e

-- --4 -f L] .-l \o \- nn. -vF--f-o’-V
.
'
L]
)
1
+
1
7
1
?
v
o
a
[
4
1 *
»
.
.
L)
-
o T [

~ .- -i t- .' --
2 X WAl
’\f I- .-\l- ¥,

I ST Wi n TV
\a\..\f..fsf\ o xa...“...”\.“u...s..n..., .0 L4 2 \..\f.\ .r\”mf-.\ ' 1
Lo LN N A alplss s 4 » N Y X !
pe st s T, DAL A MY LAAN B A S
£ Lk ...JM U na syt q Sy
(SN YT AN BRI B exz\.....r\......bv JONeT A v b
i O 0 1, 0.5 PR A RN N [k Ml S ML R N
-~
7
c
7
B -
-
w “
)
7 % it
< . ——
> 7
) g
T
o
ko) [
o]
~ s 9
mm o4
3 LEE
58 0o
wA A e s
B I) MA“ <
@ e Ay o
- £
@ @e
K .
839 Z O w
o dtu
vod 30w
O b 9. <
q4 00 z
e ! 4 SO
» 11 R PRI
uad‘u >~ w
O ~+ A
@ o ¥4 O >
,MS 21 00 ;Hd
oA
SRR LS
- few Qe o
o o 4 9
-4 rooy q5 0w
[V ' R B 3 -
Ol e oS- 4
-4 8]
42 a1 () D DO W
oM PRSI
a4 i om A AN
Ao VW
@® LT 6} [N
[VR Y| £1 0 al
< ' 9. FRIPEE TN 31
AR
Ly oy g C
< i)
P 85
) B
x
<
b e ¥
I - Ee
5, PP .
‘I ~ Yy R RIS « s e .

-

g,

e ...-. ' _r-.-.-q---..‘. .n--..'.f R -\-\ X
PP 4 AN NS @y sl g s L I
-J.Mfr -v-\u-\f h .ﬁ-.f f.f\f-)-h' -(.s. \J‘-f- -.\a-.\?& . -\-\\-\-\-. f - h-\n- ._- .---.u.-.. -f..-.-fk ® .rﬂ-\awnn-unun -.-- \J\.
. - r & i’ lq o'a’s .l LI . .‘ - o
LY h Y AR AR .-nh--u-&f\-. " .v-n- c\.\-\ -v.-p-. --f. ik -.--\- . .'f.u h] .r-f\-\.vc- _v . .-n Iy \.\
Il] P -..'.-J..J.. . w- g \f) -.- ...J.- A e, \.._ o ..\.- .\. o ..-..\.4.. A r_r) .-f S,
lfhfvuvkv— I-l.--... CRERALIN e LGN L RPN MR
o
- - —_ . i
C
7
v
o
[%¢]
s 31
-2 8 -—
- =1~
5 ol
il =
/]
o o :
o] VO)
- R [o
sl - Q4 2
[- Q g.u °
= o [< R k-
a L4 [<
g 58 23 5
< P H O o
' D ke o u o
gy o 4~ g
- (54 e g .
<< 0o < B
v - [Y .
~ an o0 ,
4
s oo oy =
w N ® e~ .
= o Eolg]
L M o i o °
% 4090 Qo .
=z o Ad 14
< O (9]
= O
H %o A3l
- con 2e |
< Had R °
= ® 0o] e
= -4 M e 4
=z guw 9o
ba B¢ | [IS 4
' ~+ g0 a
10~ og J
<t [T] O
m W“ [] W O 3
— O P
— —~ —~ N
v %) ™~ Wm
— N A
Z ~] o
S ¥ X 3
x . .
(€]
—

'v‘.'ﬁ-
~
LW

)
)
’

BB P R e

. y y Cals v e 4 » gt 0e” Pat o A ot e et A BB oy o oW da’d
- - . Aut Al 0t A el At ' ot A

METRIC WORKSHEET 3
TRACEABLITITY ANALYSIS

TRACEABILITY
LY The following questions are used to assess the traceabllty of the
¥ system. Metric Worksheet 3 can be used to comply with these
- T.estions. Trhe questions should be applied as follows:
\ QUESTIONS APPLICATION
. 3A At software Requirements
. Review
. 3B At Preliminary Design
. Review
. 3C At Detailled Design Review
. and During Coding
. QUESTIONS 34
d TC.1(1) Is there a table(s) tracing all of the CSCI's

"\ ~ -
,\izis RANANIAY LY
LA

o L P g g
A R M A, 75 /A

allocated requirements to the parent system
or the subsystem specification(s)?

3T SCORE: 1 1if Y, 0 1if N. SR =

«JESTZONS 3B

TC.L7) Is there a table(s) tracing all the top-level
CSC allocated requirements to the parent CSCI
specification?

AT SCORE: 1 4if Y, O 1if N. ST =

+<EZSTIONS SC

TC.1(1) Does the description of each software unit

identify all the specified requirements (at
the top-level CSC or CSCI level) that the
unit helps satisfy?

iC.1(2) Is the decomposition of top-level CSC's into
lower-level CSC's and software units graphically
depicted?

3T SCORE: 1 1f both questions answered with Y.
0 if either or both answered with N. ST =

c-17

EN AT IC N
A N

(] 1.“.
vy
oy
2

» :..
L] 'i)'l
N

[/
1“. -

2,

b Zu B 2 M
O
[4 (3in g Js
‘.{"’l
-
5

¥

i

v e
.' ." '.
Yy
L4 -“:“ ‘

¥
LN l, l.

Al
IO
'l'
[N
L]

"
‘s " 'd

J. I.I,.II.'{-I'.. -

<, oy R
AFXZLN

P

1
1

i

[s
i

*s ‘s
.

¥,
«

Pd

-

AN B R
o

: AN 7 0
[.
AL ‘7,

[V |

.

@
P
v ‘e "o

AL

“

L ". !
!'1-1':1'. e
BARK LY

v

Satale s
l.ll
e

T e,

s’
’

¥,

¢

W

"

)

b

14

‘|

L}

J

o

K -

/ »

»

]

A

i

"
1}
2
)
]

.

L
)

o

of

o

[}
¥

»

L]

»

e ar o s
TR

. -~

HMENERERCL ¢
s atadad

- - . WO wEETYy
A Sl G R Gl Dol Ll Wl Ol A 't XS st

METRIC WORKSHEET 3
TRACEABILITY

Itemize 4individual requirements and trace their flowdcwn thrcuph
design to code. Worksheet 3 1is available to trace this
requirements flowdown. Contractor specified format :
acceptable.

! SYSTEM !
I REQUIREMENTS |

SOFTWARE
COMPONENT

DESIGN !
DERIVATIVE I

| Example ISSS Para 2.4.1.1
ISRS Para 2.4.1 ISSS Para 2.4.1.2 iPDS Para 3.10.1.

|] IPDS Para 3.10.1.3.
| | I :
I it e e Rk R 1

{PDS Para 3.10.1.

q
4
2]
<

|
|
|
|
!
|
|
|
|
I
|
|
|
l
|
i
I
|
|
|
|
!
i
|

Count Total Number of Itemized Requirements: NR=

5y vy
PR
"VI*‘.‘"
£ 358

b}
P
5 %

v

2
’
o

?
a

79 .

LaL"
'.
7

[#
2/,

%]

L Y
>
-#?Qﬁf
W
sy

3

(9]

4 \I".}‘
i' L3
"
Wy

L

s

(. .l ~
I
‘g x"l "I"
AT

i

x
’
",7
‘|
& A &
Pl
o rpx

7

<

. .y « -qan
@ S Nt R R Y PRAPIFR I R L P e)

METRIC WORKSHEET 4
SIZE/COMPLEXITY/LANGUAGE DATA

Several of the measures used in the prediction methodology
require sizing data about the software at various levels of
detail. Such information as the overall size of the system and
how 1t is decomposed into CSCI's, CSC’'s, and units, 1is required.
Initially during a development, these data are estimates, then as
the code 1s implemented, the actual size can be determined.
Worksheet 4 can be used to record the data required by Data
Collection Procedures 6, 8, 9 and 10. A worksheet should Le
filled out for each CSCI. Each unit’'s (MLOC) size and complexity
(sx(1)) 4is recorded in the right hand columns. An indication of
the number of 1lines of higher order language (H) and assembly
language (A) for each unit should be provided. The size data
should be summed for all units in a CSC and for all CSC’'s in a
CSCI. The totals are recorded at the bottom of the worksheet.

Complexity (SX(1)) is calculated as follows:

(1) Count the number of conditioned branch statements in a
uni;'(eg. If, While, Repeat, DO/FOR LOOP, CASE).

(2) Count the number of conditioned branch statements in a
unit (eg. GO TO, CALL, RETURN).

(3) Add (1) and (2)

at
Ay

&
SLEEL--

r

RS
Il‘
58y

?
]
LAY

e o2

:,?
<

i
l" &.
AL

s
1

[4E)
Gyt

e’ e
s e e

ENENCRESS
AL
s .

NNy
el
4 &, 4

v, .
.

’
.
‘I'

‘l

I
h
l. .
5 .' '.. " & 3

v
2
’

AP

.
e
»

L S T T B
h)
'i' .t".l AY

|]
'h
e

B

LA A OO L SN
YA Ve, @ 1l @Y, R
Yolx RO e AR AANS

a4, B4 N s S Tt s " L
\\“r&-hs F\-n\-.. [-./-.v.sf-.r-l. ; _\-'\-n\qr\f\hn %

a
b
o=

COMPLEXITY
NO OF UNITS
sxti) »20:
205>8xi0>7:

sxtil ¢ 7t

U=
W=
X=

NO. OF UNITS BETWEEN 200 AND
3000 LOC:
NOQ. OF UNITS > 3000 LOC:

NO,OF UNITY <« 200 LOC:

TOTAL NO. OF
UNITS: NM=

ALOC

o
[
-
(=]
w
&)
<

M

P

B

T

2 >

o

z3
&
et
b}
o
o
P
N
w

CSC NAME

TOTAL MO OF HOL LOC: HLOC
TOTAL NO. OF AL LOC:

CSCI NAME
CSCI sLOC

a4

%

¥ W e O e T W N N WA Y v) Dol i S Bab S il S ™ e i PN a0, 0 40 .8 804 Vs

WORKSHEET 5

During the Quality Review, Standards Review, or equivalent
reviews such as Design and Code Inspections or Walkthroughs;
during formal reviews such as SRR, PDR, CDR; and during testing,
problems should bDbe formally documented. The Discrepancy Report
(Worksheet 58) or an equivalent problem report form should be
used. The discrepancy report records the following information:

e Problem title and ID

¢ Analyst who uncovered problem

¢ Data 1t was found and phase of development

e Type of Problem

e Criticlity of Problem

e How it was detected

e Description of Problem

¢ What <test run and how much test time was expended if it
was found during testing

¢ Impact of Problem

® Solution

® Acknovledgement that it is a problem and date

® Acknovledgement that it has been fixed and dated

I

n};
7,
XAt
)

"y
s
2
h

X B
oy 2l
i
oLl <3 o, 2

LA A
Yy

L
L4

YT
.l.‘.';;-)
Sus

(4

&

-
@

’
[}
'
]
-,
’

L4
%

',
'l 'l

P4

g l(- I‘. l,
Y % %

P
L]

I. [
)

:}:)'.}'.’.. '..
P l" é‘ I, | J '.
NGNS
Pl
;’1:’" '@ .

A d
0
A
S
<s

o
S
l-..

'.
-

P4
Sy

’

i .

1. :l' - .."-‘:-,"

. /4
Ll

(AL
-, A'{ﬂ
[l

>

s s
Vit
)
‘.'

N
(l

'-' T
vrd
l.l.s
¢

[
7

AT A

O R A AR
DAAACL SRR AR S SN A X XN ; .
* ‘y &, ¢ ,\\\-\\q-\] - j'-.o)ff’-..- ’ A &
O O, N s O LA, BN ‘SN e M..wy...u..w ’
RN AC A VARAN:.\\. NS
weTE = A \...\..\,. 5 h A AR SA LAY) A ._.a..ﬁ...n-......»f..-.
p o AL PLAL T MR B AR AR AR
v-
.
V-
.
—-
-
&
b,
) .
1 w
3 O X
- 7. [o
1 Fad =
: M F ..
1 R g
£ SEE E Z
", Zgg © =
. S ES z
- ‘e e
£ &
P, R 9 a
| ¥ oy Q
g M & mm W »
7 = g I
. o 2 EL g = & =
' e < i cEd S o
. ~ w e G v a
. - My V.. “ m ..
' > m wm & & a .m mm _..m
C O A V (-9 O [IS -]
. 7 =) Y ® gc o <«
- [+ 9} 173 o 4 o)
, S -8 2
‘ =) b} 5 vmm.n a
; & o2y Q8 ¥ =
) a e i mw.mmn o
: Q & gsEz3sg -
y Z2Poudan = 2
by w) . o e e e &
_. T w T
. [@5)] g [an)
y, = 5 ¢ m
b O
x m m.mm ..
3 K 5888 2 7
\ & 7z 82228) o
. o OB SE = =
S B3 : < &
f = w g 2 o
s = 2285488 z | & z =)
. 8 glgis Q o = m
A 0 xOwvOo & [- N, =) by
; gl | R S |e R
b El 83 e > = z = - w
& z 2% f R c o w e
] b = Z. « W.SS .IL.. a — aq = Z
w - o0 o a = o ~ 0 A
A — “ €3} .S..M © < w »l v l\l o
a & goT w = <4 wl — <
Q b S ESE e oz = O =z -
[24 o = 6 € 9o — - [t O s) C .
E e 2 -] & |72} ~ w o,
B il B a = I] < G
- 2} N ¥ |.'. - - % N v r

R

- v .
..... v P g AR e g L L g n LA AR SR et A ChdE A A -

o,
-
;'ﬂ:'f: '
in B
. ".::.‘qv):.:‘-
A
WORKSHEET 6 A,
-:{-?\-PR.I
S
’I',$.,\.(
\ TEST RECORD NP
During formal <esting, 4t 1is important to record not only the en e
K problems encountered (see Worksheet ©§) but also the amount of :ﬁﬂ%&:.
& testing verfcrmed. This data allows calculation of the failure ,quwﬁ
r rate reing experienced during testing. Worksheet 6 is provided NN
¥ to facilitate the required record keeping. Each individual AN
‘ Tester should complete these worksheets. Each individual test Mo ave)

riyn s5aould be recorded, the date it was run, a reference to a

if a problem 1s encountered.

b test plan or procedure if appropriate, reference to a descrepency fﬁ__
report 1f there was a problem encountered during the test run, o .
and the execution time of the test run. Note, successful test NI,

. Tangs as well as unsuccessful test runs should be recorded with e
executicn time. Reference to a discrepancy report is only made e

@

~ =
; Executlca time should be recorded in computer operation hours Shﬁfq’
. (wall <clock time of run) and/or in CPU hours if CPU execution \jﬁbvn
' time 1is available. The measure of time should be indicated. :§Q$3~_
S,
worrkshest €A can be used to track testing progress. The units of S
tixe on the horizontal axis should be chosen to represent the
test phase of the project. The number of problems recorded each
test period should be plotted to facilitate observation of the
trend in failure rate.

Worksheet 6A also supports calculation of the average failure
rate during test test (Fpi) and the failure rate at end of test

C Foo). .
»” _J‘
Worksheet 6B 1s provided to support calculation of the Test)
Effort metric. The three alternative calculations are described -
in that worksheet. Inputs to these calculations come from -
management reports which track resource and budget expenditures q;ww!L,
and schedulese. RAUAS
R
__:.‘_'.._‘. !
ST
DAL
A
. L
B PN
AR
'.'\I\-' !
A
AT
SR
:*:::j:
NG
. y
235
C-23 N
'\;"-

MCA AN A XA
ARAR
..N..\Jv g NJ. <’

h&“ﬂ-’-\ L

YWS Y

s R RRARIIRSRGN OO
.-\-.\f\- N N-\f\-\-\-\f\; ..--.-.\. ;...-«-f...‘ ﬂ\f\-
e e XA X
S e R AN S 3
r\f-uf-F\PFC LA AL SN AR
4
e
7z + @
o =
) m 1 E
[
b =
E T ~- E
I - =
m (=4
e
oz =
o
wlu Jr
w>
> el
L]
-t 4
(e
i 1 1 1 i 1
T T T LJ L Ll
2
b .
Ccwl
)
-]
So
-
=9
" el e & S S A ey S e a0 0L

_.nrv,ff.-ff-'\
is® ¢ P
® \\......f.ra.

YA
I '] F\- -- n- \.,\.

AN AN

PSS

FAILURE RATE CALCULATION

AVERAGE FAILURE RATE DURING TEST:

RS

. \. -- -&.

LA L LK G
(TR AK A AT
N—'\)n-'\-”din ; ; +
* \ Ih' -51-- an -n lhl

Total number of Discrepancy Reports during Test
Total Test Time

LR LI Y

Failure Rate at end of Test:

/.

Totl Test Time dunng last 3 test periods

= No. of Discrepancy Reports duning last 3 test penods

g Y XF X XA

-r
[Q¥}

Ve T e T

" AN e Lad- et ey gat pav gat jae + amt
U R AT a T A Wy T Ve T T

TEST EFFORT (TE)

Test

testing.
effort.

40%.

ALTERNATIVE 1

DOLLARS

a.

b.

Each evaluates

the

effort in terms of dollars

C.

d.

ALTERNATIVE 2

LABOR HOURS

a.

.
effort in terms of labor hours

Calculate .40/c and enter score

percentage

WORKSHEET 6B
TEST EFFORT

Budget in terms of dollars for the
software testing effort.

Calculate a/b and enter score

effort represents the amount of effort applied to software

Three alternatives are available for evaluation of test

of effort, budget or

schedule devoted to testing and compares that with a guideline of

The recommended alternative,

alternative 2. The second choice would be alternative 1,
last choice would be alternative 3.

if data is available,

Budget for the entire software development

Budget in terms of labor hours for the software
testing effort

Budget for the entire scftware develcpment

c. Calculate a’/b and enter score
d. Calculate .40/c and enter score ™
ALTERNATIVE &
SCHEDULE
a. Schedule for software testing in terms of
work days
b. Schedule for entire software development
in terms of work days
¢. Calculate a/db and enter score.
d. Calculate .40/c and enter score. ™
C-25

AR TR ALY RIS - -
“&"i\(":“ A O SO RN A
¢ - w L - 4 \. \'-
~ “ ‘-‘_\)\f\’\{-)\}'\ N YA

Phdnd . X

;,
h)
5

Yy
L4 s {
4 80y

2

L AN

.¢
XX
&
s}

PL
ﬁéf
r‘I

'rxr..'—‘ !
Fi
L5
2T
747 &

¥ 1 @

o

‘.
I
J"wl'.

P
<
e
LYY
<
s

l'.'
¢
Z,
£

-

N 4
9

n
»

v
‘_(
t

L

L4

S b

’
20
[3
'.l':x..‘I . !
e

',

.
:)d' «
& Y

[}
a,
5N
PPy
k)
»
%

=
f

R)

.
]
NN
1] U

LR R
« w ¥ _a & ¢
55 5"
PR
\.\"h,‘-‘-
P DL
\..-. ".“."\..’s M
& -

. B "
-\I.\l"
‘. ¥
e
W

’

LI B (4 4
3y .

.
\‘;fo:
L

7 i®

[
[4
LS A S

DA -
: 'v._'&
Al Hﬁ-:
@ S,
YNNG

A RN

-\

AKX
{l

% & &

Cll A ..".1

s'l'- .ll? .
LSS

H 4% .,
DM
O

L A i
o

LA e
AR A

P
)

»*

LA et
hn |

'l

]

II.
’I ‘I‘
R
XENR
122?!
PNy
e

Ay

P L]
-’ -f --l a

:::ﬁh.Jfofui

e v
LI v |

b4

LA N

oy .-

SOl

-

METRIC WORKSHEET 7
TEST METHODOLOGY

P X

. LA KRN W
L SR B
LR uL-p\!-.ﬁ\c\ﬁ\F\f\f

3 [1

<,

: P Ly NNy
R G AL A @
o n A A, L ap A A)
SR RSN

\ (» 13
e WP Y RO
N vu“-...-.-.-(-'..-.-) AR .\f\-.\-\vl -
O OY OM N - g
Lpadd—<an~—a4d o
BOP I o030 d
AE PLOVPLPOAHE oA
LA nMOnQ O ANy - O
oA OO®W IO o L K
o] I& odgqd” A o=
LOP NduaPo 0
ASH OO UM du > 0
a0 d |))
el PHNO VKA g H
N v
oL P> O 2B O
AHHAEO ~U'0OH g0
P3OHHPWNAI D o
3 P A6 3 L
wPpoagDTAd P d
nfrewntc o o
40 WE<SQO® O ®n o
NP HE 0L 0 a3 &
% o w L . Q
AgdodO0 400
Y tti@gcrh 0~
g 00 AP - D
oRARBPrPrUA-19d 3 &
A O0ORMOAN3IPQ A
AHHORGD 4 o 1]
A4 30" wo P
ne ©O”TO wwud L -
O "BhROL -0 A w0
«wOod® O AL o -
nOOoOoOdoOw0O 3 ® o
ngssdnodod.g &= O
[TP g e L 0 49
200 g O o -
SPo L0000 o0
Lo A d 8 - L - g
P HEMPLPLIPO K8
O M oL HWL +£d
(oMo} Lo} (o] —AL I3 Q
HOoud® O+ YIS XE
apAW -cHOM O)
fa R0 p000d (1]
/)] < QO+ OQ >3
Qd - gqdnd H 3 o0 bt
o8 #£PA8PMO MA@ OH
3P O [2] he -~ ~d
> [M OB Od > O
o] o o x ugoe Yo
huduod wujdgdu OO0
a0 UMOd o a8
@kre <] v
nmbBHoRr «“AY>AQ O
40 °© O®AO Ed
i 4% ® UuAdY)
< o n3gIdL A -~
0 QO A0OO0O0 (= =) £~
e.o@lt POO w©/
(LI 1nMo1h O 0
[OLPH00 S W [\
ecnfm 1
VP04 od
MSolc ORAO0Dd OO
ODRhODDPOBH & .
fLpMPLPATOdNA HP

P .-'. e
AP

LA A S R

SO

RN BRI

v e e Ay s &

NN
PV RV R i N 4

2= 2

C=26

techniques and tools (TT).

b ..-.r&r. %

MAIRAIA A Al Sl O 0t 20 ¢ pR

Actahmatsel i e e

WORKSHEET 7A
SELECTION WORKSHEET FOR PATH 1

SOFTWARE TO BE TESTED

SOFTWARE CATEGORY

TCIL

h \-v.--o.-f-.-u\-n\fn. .-. -.-\- \.- \n-.-- .\A- \-.\ ,r. -. ..-. .\.-...- .
L A A s e S

Celee e
I i
5
AN,
- .l " " -' '
WA XARS

v -. -\- -- -.. .-— .-‘- !, -.- \hi ’, 3
SRS @ @

.
P

. (]
AR '.ﬂ(’.ﬂ!.’.’?-’ acs L Al e Al s

!

NOTES
COMDMENTS

NS INNNY
.r//// v/u//u,,/
// //
AN\
. X R
= N N
= N W
- N N
o N S
NN Ny
~ N RO
= N N
= N RN
- N N
NN AN
N N
- /N ///
z \ N\
> N
& \ N
N N
NN N
o
2
g = g
S E| ol g
(7]
= | E |2 2 8 2 o Cl »
gl 3|2 =8 Mot BN =T | -~
b 218 [|=]|«& g1 = | 2| =1 <
w O boct c 2 = o « a | .3 =l >
Lo sle |28 o | % A IR - al 5
e 812 Ela|l S [5[3] 2 Bl = |2 2| w| 2| Bl =
= » > W« .m. m WJ/ v < ° c 2 w m) MB m b= = = 7
WO ¢ 1s 158 v 1<]| 3] e gl < 9|ls| S| 2| 3 <
e L2122 (3% (E% |0l sl 2l 2ls|<|z2|&) 8|8
“Z 1 Zls|=|ofs]|<|[5|elz} E| 2l Elg]|w|e]s]e] e 2] =
“H v c L a. g .= ke Y = Ne) O m e c 1= £] S
co |23 (615 |5|E 5| gl gl s{s|2|E|sl|glec]e]s
[Y 5 < Bbls |l a . 2l o Pl o o al o — ;
N EIR AR ~1Z] = e el 21 3|3 2| &
) . . .]] 3 - q o
> Cla|dja|s|l<lalo|8l & “la|dl|lal|l&||ZlZ] S

N1 = O A7 A 0>n.wn

Qx/ 17 . .0

A7 TA>wnw

T T
Fal

C-27

. ce T A A A SO s y SRR
KRR N 4 b wfa 0 a Y : . ", K . A
CRENNLAL T T -...-..\.-\ ' ‘22 '.- R A-f fhfliu o) - W .‘I.-\.-\I. f\. ‘.2,
] P PN R Yo b) ., , %y
U e g0 R T S .w.\:l.!.\-‘!- e
AN SR A AL A AR AN : .

[l S Rl Sl SIS

USED

CHECK THOSE
THAT ARE
ACTUALLY

: TU=

TOTAL NUMBER

USED

3
<)
—
2
3]
=

~o

5 >

=1L

O

7]

O

=)

=

=
=
>

-

75}

4]

=

LIST TECHNIQUES
AND TOOLS RECOMMENDED
IN RADC TR 84-53
: TT=

TOTAL NUMBER
RECOMMENDED

.“...L........“...‘........... < -ﬂ\%f- --.‘. .‘r

A)

g /Y .- » o Y
MR PLISEREN bl S S P T T T T P

]

Tale s a4

PEAESETT

L
0
s
o
v
-

- o Sptaa0a"3ts Rie- shnpte spfanpin. pha gty pha popl pg Bl] S'at -

METRIC WORKSHEET 8
TEST COVERAGE

Collecting data to assess how thoroughly a software system is
tested is difficult unless:

(1) A Requirements/Test Matrix has been developed

(2) A tool is used during testing which instruments the code
and reports coverage data based on test case execution.

This worksheet assumes one or both these data sources are
available in which case the following data can be collected:

DURING UNIT TEST (FOR EACH CSC OR UNIT):

TOTAL NUMBER OF EXECUTION PATHS: TP=
TOTAL NUMBER OF EXECUTION PATHS TESTED: PI~
TOTAL NUMBER OF INPUTS: TI=
TOTAL NUMBER OF INPUTS TESTED: IT=-

DURING INTEGRATION TESTING (FOR EACH CSCI):

TOTAL NUMBER OF UNITS: NM=
TOTAL NUMBER OF UNITS TESTED: T™M=
TOTAL NUMBER OF INTERFACES: TC=
TOTAL NUMBER OF INTERFACES TESTED: CT=

DURING SYSTEM TESTING:

TOTAL NUMBER OF REQUIREMENTS: NR=
TOTAL NUMBER OF REQUIREMENTS TESTED: RT=

Values for NM and NR were collected on other worksheets. Data
Collected during unit testing can also be collected during
integration testing and system testing. The unit and CSC level
data should be accummulated and averaged at the CSCI level. Data

collected at the Integration Test level can be collected during
System Test also.

C-29

L

A B Y Y w)
'.'ft"I'l'

. .
”fg'
AN

LAY Y
2

Vaas
I
A

5
7,
“x

V?

a,

s
oy

.{ N
»
b

.
f?.:#

l,l
("l
PR

-{. .{.
[

-'\.'{ ..-
Pl e
l. .
uyb'.

's
h
)
‘f

Y
727

P s
5 %
o

P4
F 4

AAAE S8 &) deth . " VN A R M WO VR W AT SRR NS NN P A TR Y e N S0 s A

1
L
'

l

.
AN,
WORKSHEET 9 PN
OPERATING ENVIRONMENT DATA NG
Nois
Three data items are required to derive the two metrics used to e
estimate the impact the operational environment will have on the PRIy
failure rate. These data items; the amount of system overhead, Pt
the amount of execution time, arnd the number of execption A
conditions encountered during an hour of operating time, can be é@ﬁf:
derived from the test eavironment, estimated, or calculated from Vﬂﬁiﬂ
a Dbenchmark. In the first case, the data can be collected from TN
the test environment and, based on the assumption that the test T
environment 1s representative of the operational environment, _Af{
used for the metric calculation. In the second case, sample data o,
can be collected from +he test environment and based on an i,
experienced analyst’'s Jjudgement, that data can be adjusted to NN
represent the relative workload and stress differences expected Rt
between the test environment and operational environment. In the e
third case, a benchmark can be run in the operational environment NN
to provide the data. The data required is typically available AL
from mainframe vendor operating system utilities. It is more RN
difficult to collect 1in an embedded computer application where I
the target computer may be a special processor without a AN
significant operating system capability. e
Ny
To collect the data, monitor the processing during a specified 'gﬁf;
time period (test period). This time period should be P

representative, or as close as possible, of the operational
environment. During that time period collect the following:

ik

Total Execution Time ET- o DA
N

Amount of Operating System Overhead {Eiﬂz
time: OS= o Y
o

Number of exception conditions _:¢:=
encountered: NEC = . ERRS
Number of exception conditions encountered BN
per hour of execution then 1s N
EC = NEC/ET=_____ SETE,

Lo

NI

. ‘l."‘
\ 4
.
wd
..'l" U

3

XA A

t
-..
{
‘]

o
)
—
=)

BRI AT

AR
f

1]
-

el

N
& -

LS et aet Sgh et iat fyd it it it S nd ARt I e ol e S S y’ it Bl 80 00 ot R i® fev but v p AORA S 0 S A
\

:'.':’".f\:"
R0
x: ’ .l‘
NG
N
:-':.n‘:‘i’:l
AN
l-..n.*."\
Y Tl
APPENDIX D __V_i_)
QUALITY REVIEW AND STANDARDS REVIEW WORKSHEETS '::.:_.:j'.:'
A
WA
'."\-P\J\' ¢
Appendix D contains worksheets used to conduct design and code Tﬂp}Af‘
reviews. These worksheets are recommended for use in conjunction POLSAN
with the software reliability prediction and estimation
methodology. Alternative techniques that can be used are design AN
and code inspections or design and code walkthroughs. The intent ﬁ?ﬁbﬁ
of these worksheets and these alternative techniques are to e
uncover discrepancies that should be corrected. IR AN
PR
The worksheets contained 1in this Appendlx relate to the metric
worksheets in RADC TR 85-37 for metrics completeness, RN
consistency, accuracy, autononmy, modular design and code 5@}{{5
simplicity. ,F::f::f"v; }
PRI
The following checklists are used to assess the quality of the gﬁﬁkﬁ:
requirements and design representation of the software. Check °
the answer, yes, no or not applicable, or fill in the value Oy
requested 1n the appropriate column. The checklists should be Y AR SRSA
applied as follows: A
'*2‘-::".:';':
CHECKLIST APPLICATION e
\?.'.‘J-. a
10A At Software Requirements Review .
10B At Preliminary Design Review RS
1 ,: _.N':\-.,
10C At Detalled Design Review SR

v

fu
“utw

(CSCI Level) SR

10D At Detailed Design Review
(Unit Level)

AR
-\"-.‘ _'x _Q

A
Y

[}

D-1

N
;..1' s
1 %

R

C N AT ST AR S A A BNE
I ,'.r_'..-:.'.:.-,'z:'.-,'.-.'.'_'.-“ N RO

AL R A SN RN -
T LR RSV e RS S

A iy J'AJ".('.MM

Nt \-f-‘—f\. -~-u X) LY Y uu!\-
o .y un-) . P
N | . ﬁ.. Nu-

N -.-Jﬁ

LPA AL = v . . . AT ?N.\\Mﬂ\n“-\-\.

2
(@] (o]
— H
= |3
& m <
M x
Bl > e 4
oo lLa] (®]
w2 o f,
[%]]
o H
2h g
=] < w%
O« ¢4 0
=D =3
o
& 2]
23] &)
>
o]
(0]
-3
Fe)
[}
o
a
:
(o]
(o]
> (@]
o) »
9] n O o
[¢1] > o o]
4 - ©® 4 9 5]
“‘ O » @ O o
% @8 d #© O
m I & N L R |
v R .
wlu
3
o<
N
:
:
od
rl*" Qn.’lftflf. ..W---I; LTS PV 3 B " v e -
.40#“ R \ ANAh LY LA LA u.~.. £, .‘..h-..,.......vzr...\.w.\.nxf\-\\ NN N g g g g T A

pl
'y
!
&
!
')
[}
0
v
'
L)
’
L
rs
&
A
)
«
’
”,
]
’
1
.
.
H
[}
1
’
3
.
.
&
?
.
1]
t
a
!
»
[l
1
L g
A]
»
[
-
v
[8
v
.
.
L4

. S
.'[. L) °
.. N LS
- ,\":\";\'
X AN
s IS M)
. S .~.\:
. A
AN ,\"’\,‘c
o RANARAN
[f,‘.f\f\
:\, :f\-r o
ot
[LN G
®
i CHECKLIST 10A - SRR QUALITY REVIEW el
N e et mreeome mmeier v IR - VIR RVECN) . . | '-P.\J'\:'
~ Sels RTeLIw BEO-Led 1SS TESes s VALUE [YES| NO P BN
M ' Lt
P FACACH
3 . ‘\IJ‘F-'
N '_-:"'.ﬁ.!.n
) AC 173) Are there quantitative accuracy —
e requirements for all applicable inputs N
Ny associated with each applicable function ;
~ (e.g.. mission-critical functions)? S
W) “
] y
X AC.1(4) Are there quantitative accuracy X
s requirements for all applicable outputs
agsociated with each applicable function
< (e.g., mission-critical functions)? DI
», ALY i
" AC.1(8) Are there quantitative accuracy ’:’: Y,
- requirements for all applicable constants VNS
N associated with each applicable function P
s (e.g.. mission-critical functions)? AN
L
- AC.1(8) Do the existing wath library routines which SN
- are planned for use provide enough precision PN
.~ to Ssupplrt accuracy objectives? -‘-‘.‘-}.‘-‘;
o A VASLE
. N ¢
" AT.1(1) Are all processes and functions partitioned ::r‘.':":-:
r.. to be logically complete and self contained . ".'*-f..\
! 80 as to minimize interface complexity? e
. IR
o AJ.2(1) Are there requirements for sach operational NN
CPU/System to have a separate power scurce? ;._:.\:'_.:-'
R ANA
% AU.2(2) Are there requirements for the executive -"::.-":ﬂ
= software to perform testing of its own DN
J operation ard of the communication links, e
memory devices, and peripheral devices? \:
’ et)
‘ - “ N Y
: CP.1(1) Are all inputs, processing, and outputs SN
- clearly and precisely defined? KR ACN
3 g oy W
AR AN
- ZP.1(2) a. How pany data references are NARAN
- ‘dentified? AR
o
A b. How many identified data references are NS
? documented with regard to scurce. meaning, AR
& and format? ! L,
:: | ':'._-: :.~
¥ c. Calculate b/a and enter score. l RO
. 4. If bsa ., 1 check N, otherwise check Y. ! AN
L
. TP 1!3) a. How mpany data items are defined (i.e., l AT
: dccumented with regard %9 source, mneaning, | r Y
: and format)? | RS
| MERITR T
. BN
:. b Hov many 4ata items are referenced”? I o
Cn l } -\’."-\
|
- |

N T T T N T R T N N R F N TN N

¢. 1f{ b/a « 1 circle X
if b/a = 1 circle Y

CP.1(5) Eave all defined functicms (i.e.,.
documented with regard to source, meaning.
and format) been referenced?

CP.1(8) EHave all system functions allocated to
this CSCI been allocated to software
functions within this CSCI?

CP.1(7) Have all referenced functions been defined
(1.e., documented with precise inputs,
processing, and output requirements)?

CP.1(8) 1Is the flow of processing (algorithms)
and all decision points (conditions and
alternate paths) in the flow described
for all fuanctions?

CS.1(1) BHave specific standards been established
for design representations (e.g., HIPO
charts, program design language. flow
charts, data flow diagrams)?

Cs.1(2) Have specific standards been established
for calling sequence protocol between
softwvare units?

CS.1(3) Have specific standards bheen established
for external I/O protocol and format
for all software units?

CS.1(4) Have specific standards been established
for error handling for all software units?

Cs.1(8) Do all refereunces to the same CSCI
function use a single, unique name?

CS.2(1) Have specific standards been established
for all data representation in the design?

CS.2(2) Have specific standards been established
for the naming of all data?

C5.2(3) Have specific standards been established
for the definition and use of global
variables?

CS.2(4) Are there procedures for establishing
consistency and concurrency of multiple
copies (e.g., copies at different nodes)

0f the same softwvare or data base version?

VALLE

YES

NSO s

s
ey
("f [o\

L
X

v
v

t

EA
! “n
P
[A

<

1,
Pl
[a

g L

LS
LA
oL
I}
i]

"
-I
B
e

"L
b 2o
o
el

&
v e s
YA g

}ﬂ(
~
gar) ‘

‘.

.I
X7

'

Y
vy
g

o
[4 -‘
”

ot
v, L
)

£

-“'
'(
S

k "I.‘n’.f

e

TS]

-
. '

LI

RPN

X L
N N 2
PSS ARRASS
ORI XA
T...x....h..sr._-w vl el
i
ol
v
\Io
3
'Yn
b
:
.
,
W
A}
.
g
W’
‘
’
VA
-‘.
L]
3
“
k.
‘
!
3
3

Ll A)

[APR PSR 5) f.u-f-'-f.

NS

BRIy
Awm&ﬁBMNﬁw
SALCLEEAL

~

VALUE JYES| NO ;

ying
ency of multiple

copies at different no
ftvare or data base

Are there procedures for verif
consistency and coanour

coples (e.g.,

C§.2(5)

N des)

of the same so

version?

ata use

Do all references to the same d
a single, unique name?

CS.2(6)

Count all N's Assign number to DR.

-5

CHECKLIST '10B_- PDR QUALITY REVIEW

e

QTALITY REVIEW RESTLTS (5Q)
CSCI NAME:

AC.1(7) Do the numerical techniques used 1in
implementing applicable functions (e.g..
mission-critical functions) provide
enough precislion to support accuracy
cbjectives?
AU.1(1) Are all prccesses and functions partitioned
to be logically complete and self-contained
80 a8 to minimize interface complexity?

AU.1(4) a. Hov much estimated process time
is typically spent executing the
entire CSCI?

b. How much estimated processing time
is typically spent in execution of
hardwvare and device interface protocol?

c. 1f b/(b+a) » .3, circle N
12 b/(b+a) « .3, circle Y

AU.2(2) Does the executive software perform
testing of its own operation and of the
communication links, memory devices,
and peripheral devices?
CP.1(1) Are all inputs, processing. and outputs
clearly and precisely defined?
CP.1(2; a. How many data references are defined?
b. Eow many identified data references
are documented with regard to source,
meaning, and format?

c. 12 < 1, circle N
1?2 b/a = 1, circle Y.

CP.1(3) a. Howvw many data items are defined
(1.e., documented with regard to
source, meaning, and format)?

b. How many data items are referenced?

c. Calculate b/a and enter score.
4. If b/a « 1 check N, otherwise check Y

VALLE

YES

NO

re Y

AR

%
A
AR Y

RV
Y, &
P
7

LR
by
b}
oy

A
»

4

T % N
s
o

%
o] @

Pd
-:-

/s
-~
P A

7

P
.'\ &%
Joyl

hY
b

Y
%
1.,

.

=

'y 4
N
Vo

8oy

.-"".l
s %y v

et
I. -
“ 5

‘,"J. .

N
.

,

AARY
./
L

R
.l
Ny

R A
Y Th)
S LS
2 NS
-'.:'."-
» s
LA S
T

v

.",
.
A
"y
5{9.
v

s

A Th e
3

2
ey

, .
ey
ﬂ’ Sl.. "

ey

Y A
LY
s
7.7
Yy

-
L]
«
.
€
3
0

. .)'\ :. .

Y
Sy

.ﬂ
LA
-"I'
~e

o

S
".

»
o ¥

t"'(‘-: P

LY

Y e Nk

SRR

P

Y M

LA A S Al A B AT A SR B2 g T IV ICTRCR S TS LSl i « Ya L%

CP.1(4) a. How data references are ldentified?

b. Howv many identified data references
are computed or obtained from an external
source (e.g.. referencing global data
vith preassigned values, input parameters
with preassigned values)?

¢c. 4f b/a <« 1, circle N
if b/a = 1, circle Y

CP.1(8) Have all functions for this CSCI been
allocated to top-level CSC’'s of this CSCI?

CP.1(9) Are all conditions and alternative
processing options defined for each
decision point?

CP.1(11) a. Hov many softvare discrepancy reports
have been recorded, to date?

b. How many recorded softwvare problem
reports have been closed (resolved),

to date?

¢. Calculate b/a and enter score.

4. If b/a « .78 circle N, otherwise circle Y

CS.1(1) Are the design representations in the
formats of the established standard?

CS.1(%) Do all references to the same top-level
CSC use a single, unique name?

CS.2(1) Does all data representation comply with
the established standard?

£5.2(2) Does the naming of all data comply with
the established standard?

CS.2(3) 1Is the definition and use of all global
variables in accordance with the
established standard?

CS.2(4) Are there procedures for establishing
consistency and concurrency of multiple
copies (e.g., copies at different nodes)
of the same softvare or data base version?

VALLE

YES

NO

27
.-
o,
YA
s

i

é?r PN
s,

[L'
’5

P v
£
K;.

LA A

2
T

2,

q?'
i
LS

x
x,
Y

;??
e
Sy

o s oo

[

)

)
4 4
Pl

’Y

.
L)

«
'~
1A

r
P
o l‘
4 7
o e 64, ,"
{'r' f‘:

v
4

‘l
(3

“r
s
r

a
LA P

.
..
N
Al N

- e
.
«
L
.

R

--v .ﬁc\- »Jr ~ h . . ! B) ' . ..“A-- .J.-JN-\ -n. . --”n--
-AfA- ‘-.f. . M -.. -.... W
; LU P I A
R N 18 2 -.
e mmmwwwwmﬁx :
y - ‘.l-l -

PR A Y

AP ey

)

S

VALLE |YES| NO

o
Q
(o]
»
a
o0
-
[}
w
<

vency and copcurrency of multiple

Are there procedures for verifying
unique name?
Count all N's

cCcz8eis
coptes (e.g., copies at different nodes)

of the same software or data base version?
Do all references to the same data use a

single,
SQ INPUT:

C3.2(5)
Cs 2(86)

» s, g ey
U . . SRS sh Y A B Eat Rty at -

THECKLIST 10C - CDR QUALITY REVIEW (CSCI)
VALUE [YES| NO | NA
QUALITY RBVIEW RESULTS (sSQ)
CSCI NAMB: _

AT 172 a. Hov nany estimated exscutable lines of

source code? (total from all units)
LOC-
b. Hov many estimated executable lines of
source code necessary to handle hardvare
and device interface protocol?
c. 12 b/LOC » .3, circle N.
if b/LOC ¢ .3, oircle Y.

AT.1(3) a. Hov many units in CSCI? NX=
b. Bov many units perform processiang of
hardware and/or device interface
protocol?

c. If b/(NM) » .3, circle
If b/(NM) < .3, circle
AU.1(4) a. How much estimated processing time 1is

(@]
b4

")

typically spent executing the entire
CsCI?

b. Hov much estimated processing time 1is
typically spent in execution of hardware
and device interface protocol units?

c. 12 bs/(a) » .3, circle N
12 b/(a) « .3, circle Y

a. How many units clearly and precisely
define all inputs, processing, and
outputs?

. 12 b/(NM) » .3, circle K
1f b/(NX) ¢« .3, circle Y

a. Hov many data references are
1dentified? (tctal from all units)

b. Eow many identified data references
are documented with regard to source,
zmeaning. and format? (total from all

LLi%8

2 Calculate ¢/b and enter
value (totalfrom all units)

’

W
o

4
5

h 4

Y

Pl)
II'.
N
[|

‘

‘-"u N .\’\ hJa!
A R R ek
AAAL RN SN

.
-
»

.
L
LS
ll. .I
Yoo
(SN

-
o
o

SN

A Y

v !

{,g_l.v_l':
l,'l. P4
AN IR RS
cLAS S

o

¢

A
e %)
E

DNEN

]

[0

¢

e
A W R

R,
Sty

B "

%y
ey

i,
‘l

.5‘5\3
e

Ve
o' &8 & LA,

P
B

'y ‘e N T

E I RV R e

tsl‘

RN
F L A

}l "n "l l..

.
P

oy
» vt B
.
A 'I\"\' .

MRS AN AN “ e Ve P T e Ve Ve Ta Ve L% * Ad'AA" o, -
VALLUE |YES
4. Calculate ¢'b and enter score.
e. I 4 » O check N, otherwise check Y.
CP.1(3) a. How many data itexms are defined
(L. e.., documented wvith regard to source,
meaning, and format)?
b. How many data items are referenced?
¢. Calculate b/a apd enter
d. Hov many data references are computed
Oor obtained from an external source
(e.g.., referencing global data with
preassigned values, input parameters with
preassigned values)? (total from all units)
e. Calculate d/b and enter scCOre.
£. i ¢ » O check N, otherwlse check Y
g. 12 4 » O check N, otherwise check Y
CP.1(9) a. Hov many units define all conditions
and alternative processing optlious
for each decision point? (total from
all units)
b. Calculate a/NM and enter score.
¢. If a/NM <« 1 check N, othervise
CP.1(10) a. Por how many units, are all parameters
in the argument 1list used?
b. Calculate a/NM and enter score.
c. If b « 1 check N, otherwise check Y
CP.1(11) a. Eow many software problem reports

have been recorded, to date?

b. How many recorded software problenm
reports have been closed (resolved),
to date?

¢. Calculate b/a and enter score.

4. If ¢ « .75 check N, otherwise check Y

" N
T A

« e
e
y e

»
.

27
‘ ‘l'&

s {FFI .

RSy, L4

L0 8
6%
5 Yy

»
.x{‘n
Iﬁ‘

.5.,
X

»
PRy |
TN

"

v
e,
LA

LI

f

o &
'

e
A

i

m
7

-,
Ld

ANy
,'..l\'ls » '{ '. ‘l
5');' f.'?

L T)

voe
a_ & ¢ l" '.

St .
5%)
’
'l
L4
.
«

RSN
“ %

9]
(o8}
t

-

Cs 1(2)

CS8.1(3)

2 1(4)

25.272)

a. Por iacw marny units are all design
Tepresentations in the formats of

=22 astablished standards?

5. Calculate a,NM and enter score.

¢c. If a/NM <« 1 check N, otherwise check Y.
a. Por hovw many units does the calling
sequence protocol (between units)

comply with the established standard?

b. Calculate a/NM and enter score.

c. If a/NM <« 1 check N, otherwise check Y
a. For how many units does the I/0
protocol and format comply with the
established standard?

b. Calculate a/NM and enter score.

¢c. If a/NM <« 1 check N, otherwise check Y
a. Por how many units does the handling
cf errors comply with the established
standard?

b. Calculate a/NM and eater score.

¢. If a/NM « check N, otherwise check Y

Por bow many units do all references
O the unit use the same, unique name?

[]

(o4

Calculate a/NM and esnter score.

c. If a/NM < 1, check N, otherwise check Y
a. Por hov many units dces all data
representation comply with the
established standard?

b. Calculate a/NM and epnter sCOre.

c. If a/NM <« 1 check N, otherwise check Y
a . Por how many units dces the naming

of all data comply with the

established standard?

b. Calculate a/NM acd enter BSCOre.

¢c. If a.NM « 1, check N, otherwise check ¥

VALLE

YES

NO

e
%

’.
hY
A}
*

5t
;o
Iy
.
.
s

SN
ssﬂvv&#ﬂ
'Y NT B
LALUMLE S

&
Ay

e

- e e e s
. P

et trd
.,‘- "- "\/‘-
[,‘-:“- .*-.:
13 ‘l

e

. ", 'NJI

ty 'l ‘l
NN

;x
LY

:,’j
4

7
)

P

R
BN

1,

e, . Z d whlg e Vc. ? Y XX -....--.-.A
l.-f.-..-..-.-\..\iv-n- .skf\.-uuuului TN ...f.f%l..).l : L hARS AN .r..\. ?,
O A I sshﬁﬂﬂax 5 P NSNS ALY

NN Yy . :

-l“\\\f-‘-r\fw Sl gy

o T LA PRI A A

otherwise check Y
Assign %0 CR

>
M
[}
[}
Fe}
(9]
[
w
-
>
2]
[}
Ee]
»
(o]

giobal varlables in
accordance with the established stazdard-

1 ckheck N,
check N,

5
-

-
-

<
<

>f al

.se
Por how many units do all references tc

the same data use a single, unique name?

If a/NXM

Por how many uzits is <the definition
If a/NX

b. Calculate a/NM and enter score.
b. Calculate a/NX and enter score.

a.
c.
6) a
c.

7
\

Cs. 2

£

J

CP

CP.

CP.

Cs.

(A g N - w* - .
M ACAEN
L
._-;\ .
[\ o
LS,
RSN
LR Y
ASANANLY
N
RN
P N
CHECKLIST 100 - (OR QUALITY AEVIEW (UNIT) VoL
. : T RN,
VALUE |YES| NO | N3 UM,
.'-.',.\:,*.':p.‘
P ETYy DD I-Tedab it '\"'N-l‘\-f\‘
ALITY REVIEW RESTLTS A
. Nyl

IT NAME:

100 re Aa.lL inputs, prccessing. and cutpucs
clearly and precisely defined?

1(2) a. How many data references are identifled?

b. How pany identified data references are
documented with regard to source, meaning,
and format?

¢. If bp’a < 1, circle N, otmerwvise clrcle
Y?

.1(4) a. EHow many identified data references are e "R
computed are computed or obtained from an '\..e
oxternal soruce (e.g., referencing global NG
data with preassigned values, input SN N
parameters with preassigned values)? :-f:-r.;'\:

el
b. If b DRI ¢« 1, circle N, otherwise ,,:,'\.-\
circle Y ALY,

) ®

1(9) Are all conditions and alternative PR
processing options defined for each . :-.-:-_.:-_,.‘_
decision point? AN

.1(10) Are all conditions and alternative e
processing options defined for each
decision point?

(1) Are all design representations in the
formats of the established standards?

(1) Are all design representations in <the
¢srzats of the established standard?

1(2) ©rCces the calling sequence protocol (between
uaits) comply with established standard?

173) =Cces the I/0 protocol and format comply
with the established standard?

'1/4) Does the handling of errors comply with the
established standard?

1(5) Do all referemces to this upit use tte

same, unique name?

N v

PP et S

A

Lo

RS S
A e ha s s B adn Cade alese

NN
B B B A A A

~ -

N ey
RSN TR)
PR VR R WP R, W .

] o P] . -y .
Y WX XN X AR N NN N N AN . AL)
e Y} DR PP
’ ..--1\;-- --F-n-l- .. ' -\{I.I . .

R R
oS A 4 ..\. ...- ..\. LLAS

P R P g

1
-]

cta
tx
use a

g+
ta

Assign %0 DR.

-
L]
~
o]
o
w
3

the same da

and
accordance

established standard?

to

eferences
NC answve

definition
in
all

the
ies

ablished standard?
variabd

CS.2(2) Cces the naming of all data comply with the
est
Is

25.2(3)

A A, At

@ SLAASHNT .

__ » L .
e S
ARSI SSAS hwwhnv.; :

Pl
x -
R AAL-LA Sk Tl Jo s AR

Al f e A : va_e N

—
—
=
(3R]
[N]
py >
it g
w0 o
M
[A7)
&
15
(=)
24
[SE 3
1
x

GENERAL INFORMATION

SOURCE DOCUMENTATION

PROJECT
ANALYST

[¥

P s
.\..... h
AL

L3
ﬁ“w

*TRY v

S0

SI0
ls

eve

1l1A applies to CSCI or CSC

Review worksheet can be applied at the CSCI, C
Worksaeet

standards
Unit 1level.
Worksheet 11B applies to Unit level.

The
or

gy 9 W_F

L%)
[e,
.u........\....\;-._..h

LR S P

=16

A A R] PR RN A AR J® e e g A I gt t g '8 gt %J Coaie it Wl AngufS s Sl ol A 4-. PR ARl Jin ity on J00e el -f AA 2
N e
- s
. e
. ® ’.'.'~ e
®
~, :J',:.f_:f:
:, :::s:'-.f\
. AN
::' .::\::A.::-.
P ;-_.}-_.{
WORVSHEET 11A STANDARDS REVIEW RESULTS (SR) ®
£ —- S Y
:- VALUE [YES| NO | NA -:J'_‘.f:f
' -.r,;.r._-?‘
V. r.;.' o
b 233 CR CSC NAME '~":ﬂ"
: r,_.f\v@
”
MO 172) Are all units ccded and tested according to S
tructural techniques?
v
a MZ 1.3) a. Hcw many units ipn CSCI or CSC?
:.: b. How many upnits with estimated
executable 1lines of soruce code less than
- 1CO lines?
v ¢. Calculate b/NM and enter score. O Y
Lol AT
- 0. 1{(4) a. How npany parameters are there in the i‘:”‘
b . calling sequence? (total from all units) j«-.‘..,_.'_'.
EASAC N
= ALY
. b. How many calling sequence parameters ey
) are control variables (e.g.. select an Y
AN operating mode or submode, direct the T
. sequential flow, directly influence the SN,
. function of the software)? (total from all g
: units) - SN
: RAVREN
. c. Calculate b/a and enter score. LV
4. Calculate c¢c/NM and enter 8score.
. MO 1(5) a. For hov pany units is all input data
. rassed into the unit through <calling
; sequence parameters (i.e., no data is input
: through global areas or input statements?
) b. Calculate a/NM and enter score
X MZ 1!6) a. For how many units is output data
. rassed back to the calling unit (e.g..
. through calling sequence parameters of
- global areas)?
b. Calculate a/NM and enter score
MO 1({7) a. Fur hov mapy units is control always
returned to the calling unit when execution
is completed?
b. Calculate a/NM and enter score
7 T
GG
N
.‘:' -l ,‘.\
..
5 v - \'_- .:F- -
. IAGRERT
y - A Y
), D 1] v.\‘..\-!‘_. J
: VY,
) N)

g
(]

EAN,
e

s
RN

T

AW\ of o

Lo N

MO . 1(8)

MO.2(2)

M0.2(3)

40.2(8)

31.1(2)

51.1(3)

SI.1(4)

a. For howv many units Ls tempoTrary sticrage
(1.e., workspace reserved for immediate cor
partial results) used only Dby the unit
during execution (i1.e., i8 not stored with
other units)?

b. Calculate a/NM and enter ScCOTe

a. How rmany interfaces among software
units?

b. How many unit interfaces include:
bl. content coupling

b2. common coupling

b3. external coupling

¢. Calcylate 1-(bl+b2+b3)(3*a) and enter
score.

a. How many uait interfaces incliude:
al. control coupling

a2. stamp coupling

ald. data coupling

b. Caluclate
and enter score

((a1+a2)/(2*TI) + (a3/TI))

What is the cohesion value?

a. How many units are independent of the
source of the ipput and the destination of
the output?

b. Calculate a/NM and eater score.

a. How many units are independent of
knowledge of prior processing?

b. Calculate a/NM and enter 8coOre

a. For hovw many units does the unit
description/prologue include input,output
processing., and limitations?

b. Calculate a/NM and enter score

]VALCE

YES

. .
L

-
L

.
AR

.
> N

NI

»,. '.-.’ \' :',' _.\
NN

’ h ‘. ‘ %

A
h RN

> vy
b
.

o
AL AL/
\ -
<ﬁﬁ?b4
> "1":‘:‘
L5 %580

R
o

P
a2

-";'.‘-'ﬁl’ "‘.{ o,
Y a9rh
l . ../,"‘.. '-ll
PO
I AL

[s

EAE A

Vo,
~‘.'\..\.'_

RIS
AR

IR

v
.

v . R
N
A Ve
3 .. .
.

4
R A,

.
AT

e
l' l. , l‘ l'
' %y 4

——— i ,‘ - ‘ 1'. .
.-.\-\\\-,.-.--un- .-...-....-.. PELELY ;-\\-‘\\\\ MY Y Y. 4 2 RN A% -
LYY ‘ o, . ISP L ’2.2 K N A N LA . e
r”.... f}.,.... ...m.......e . Y A o \...._».u\w“x..”\..\.a ® N e ex...“. s ol ...An..\).m., L TN ICICON 1V ,x..x..&..w\w...yw
- o . AR Ja » s Dl N ul Y Al sy sy el gy, s B RS REATAE arbe o
ST 4 KR I A S N | I EEAEL AL nun--\ ’ [BR At P B . L 4 > RN Ty Y P
Pala'y'ne 270 . AR A YRS S LN WAL A Y Ay A T A A A Ly ey
N AN LR AR » s e N Y I e LRV R S I -..in‘.r.
.ﬂ_\\ St S o T Ve o 3o 201 L L P l\nl\-ln\ruiihﬂ iy .-n\ LN A8 A \.....--.\. ...-.'.-\r.-..--).h T .-.. ;...-.-n\f\f\.-.”n .v.....A.f. .--\u.\-ww-.
m
b,
v,
; =
2
Iu
O
A 7.
B (75}
[§8]
LS
S
“ w
)
b N
<
) >
”
&} - % [:]
- [o N o] 9o
K]
] 3> o % [] -
- 4 o oo a o X o
— L — o~ -~ [o e}
b] ke o] —~ a LR ¥ FK] (4] [
] w e [- [] XY ® ~
] o~ » =] Q - o (o]} m
d o ~ a ® 2 o O o o) d ® 4 -—~ ® O » @
5 L] o [t (7 4] [] u (-] « POD> R (8] o o (2}
o~ o - o © M O ® » o] -4 O u ®» O -
a o 0 3] 0O o » d O w4+ O g O u)
~ o w] w] o 0O A ©] W A @ @ o o [@]
] 4] -] —] qae <] [0} uﬁ H e
% el >~ [Tt (TR A =] @ v - ad K ® g & ﬂi
o N o o o N m ~d O WoP © @ ® o u [] a -
» ~ ~~ o dJ e a ® ~ et 2 PPLE P <] ~ 2 » o &
v = < ~] a o £ ~ Ao g ALk A 0 o o . !
» » o o © M qa «¢ow -3 ® dAO0On © A X} ~ © e o
' - o ~ [+] » [A J09 ey ©0 4 -
, «© > Q e ﬂ. Le) L] o N D e < o [] L] Le])
[~ g 4 9 0O d9 o0 t O <] O A u — [u [J
& O —~ 9 0 a dQ o 4 D u u > w 7] ~— A
w o + qa (] @ @6 W%k @ d - a ~ o
) @ L4 W 3 x m. W. @ ©o M S P M » Lo fo] W @ M
fo o -~ Z 4 OO0 » 4 8O 3 L s ~ [
A » bod . ~ ~ - - ~ HePYy HJ ~ PP N O 0 @ 1 ~ o
s a o) ~ [N 0o qa 4 A £ dk do d o 9 N Q@ + O OA
« [4 o u o =] vt @ o/ u > 2] @ aoe ~ g
P, L o e [} o - A - © OBH [] o o o P
‘ ™ > e © HM £ DM > 9 kA et b » gO@Wm L D > R 2 P "o
' a q L L) 0O €8 A0 A4 «d O~%vw g O ¢ Y ¢ u ux 8 ¢ as
ot 9 ! ol 0O + 640 8 ~+ w8 d~ @ “O0 o o~ A4 A . N
Py f g o 5 3,4 9 H4 B 9 © H Hew I « W I EH A4 w I3 I A
\ (¢] O oaQ o Q 0O YN0 @ O O o (8] ut 0O o o
o > > 4 ~ m ~H 3 > ~ “ME 330 A fudd ~ 3200 3dEdA A A I3
b | o> O~ o o 4 @8 O0Ad O 8 @®«% O»O o OO0 @8 00U 00oA ® ®d Ok
4 m® B OO0 O O O MO ™M O ALK MWMOK O ese O MW M43 O O m<
) s s Iay g m vao 3 pop o o ol
. 8 - o o o 1 a - O~ o
, “ 3 . O : - O - o . od S 1 b . 00 e A - o
) A O’ ow W &40 Q4 840 O O AW« dofH QA $00 o ¢ 008 O U
o ~~ -~ (@) - —~ “~ —
g)y © - 4 et] o [2]
R N N - o S -
x ‘ n4 ot = ~N o+ < o
ry X ‘e +a ' X »a X ‘e
b, %) 0 5] [75] wn) 0" [22] [65]
L
7
.\
¢

| 2N i)

-
-

w
e

SI.

SI.

SI.

SI.

4(4)

4(5)

4(8)

4(7)

4(8)

.4(9)

b
I

e.§ .

Howv aary locps with unatural exics
jumps cu*% b3 4 lcop. resura

statement)? (total from all units)

c.
d.

a.

Calculate 1-(b/a) and enter score
Calculate ¢/NM and enter score

How many iteration loops (i.e. DO/FOR

loops)? (total from all unite)

b.

How many iteration loops are indices

modified to alter fundamental processing

c.

d.

a.

of the loop? (total from all units)

Calculate 1-(b/a) and enter score
Calculate C/NM and enter sQore

How many units are free from all self-

modification of code (1.e., does pot alter
instructions, overlays of code, ect.)?

b. Calculate a/NX apnd enter soore
a. How many statement labels, excluding
labels for format statements? (total from

b.
score

a.
(total from all units)

a.
unconditional? (total from all units)

a.
(total from all units)

b.

all units)

cC.

b.

cC.

b.

Calculate 1-(a/SLOC) and eanter

Calculate b/NM and enter score

What 1is the maximum nesting level?

Calculate l/a and enter score
Calculate b/NM and enter 8Qore

How many branches, conditional and

Calculate b/NX and enter 8core

Hov many declaration statements?

Hov many manipulation statements?

(total from all units)

C.

Calculte 1{((a+b)/SLOC) and eater

gcore

4.

Calculate ¢ YM and er%er score

VALUE

YES

N,

MA

0-2C

N

-.
2

N

\:. -

%

L)
b

’’
A

” l‘ .§(d'
1 4« ‘q

%S Ny S
]

I.'I.:' [d
PX
h3h)
s 1 3

7,
4,
s

Oy
P

2l
Vol Sl
XA
Pana
TINA
)

&

B i]
. &
0%
- %

o
L4

o
P P4
"
»

5

40

kS
‘;l
2o’y

LN
(2

. ;’&f., L)
P

»
®

‘1." .‘. "‘
P,]

- . "
g0 atatn ta A AR A0 PO AN M ey 0N S o - oA

vy
X
7
2,

2
.\.
AY
"
}
o)

oy

Ny
O
2o

7,
"’
~
ey

NALLE NESING NA v

Rt

=

A RS

SI.4(10) a. Hcw many total data items, local and
global, are used? (total from all units) DD

b. How many data items are used locally

(e.g.. variables declared locally and

value parameters? (total from all units)

¢. Calculate b -a and enter score.

d. Calculate c¢/NM and enter score.
SI.4(11) a. Calculate DD/SLOC and enter score.

b. Calculate A/NM and enter scorea.
SI.4(12) a. How many units., does each data item

have a single use (e.g., each array

serves only one purpose)?

b. Calculate a/NM and enter score.

SI.4(13) a. How many units, are coded according
t~ the fequired programming standard?

b. Calculate a/NX and enter score. ‘ﬂdzJ
e A
SI.4(14) Is repeated and redundant code avoided o
(e.g., through utilizing macros, P
procedures and functions)? A

-,_z_'_.‘ ‘.'_:

SI.S5(1) a. How many data items are used as input? et
ftotal from all units) ’ ;

b. Calculate 1/(l+a) and enter score. -
c. Calculate b/NM and enter 8cCore.

SI.5(2) a. BEow many data items are used as output -
(total from all units)?

U

b. How many parameters in the units calling N
sequence return output values (total from
all unitse)?

\.\"_l

=

-' -‘.

c. Calculate b/a and enter soore.
d. Calculate o/NM and enter score. ce

SI.5(3) a. How many units perform & single,
non-divisgible function?

b Calculate a/NM and enter score.

| NN
)
D-21 o4
e

vt amas e L A AL AT R A A AL YLV AR SR A SN NS
B N e A T I ﬁzﬂ."-\.j\.f_-.j-._{-.j-.;-.'.-.:.-.j- RN

. .. P el PR et ERCATALRN Y Sl i DLt O RS ORI Ok KDL
W N;*Sﬁf\ W _\1\)“ "“¢5$ﬁ¢¢v*a* o \f?a”:‘f‘ MY, f.i.r A RN A NN
A » 2 ¥ - - o

N f L § X 4. |I
L
O [l

.n\-\ AR R

fi Y -.\-.. N 2 \\\\'4\\\
W\.A.\;..f..f S Basans sl fv;. s AL \--..\.
ATy %A S ANA -.-.\«\-I\ JE T W\.-.‘f Pasl
A A T I T R LR N o T A PR DEIR T YA S st
RN Ry IRECIATRT RS IR oV A N BRI P Jrol P

E
- --
7
e
U8
—
v
= - "
- <
| — o
1. o I
- =
P g e
oo
z 6 a
z N
oq®
L som
a3 ke
QL4 O
< D>
he) > w
o [e]
[N] [
£~
[]
e O 6 %
4 o]
> ~y
w e ~
A g K f
QWAO @
(] WR
- A [®]
> a8 a
- (o]
— —~ Y
~ <O
[zZaga
~ 2 B0
o -4
Jears | w
~A @~
l&m‘DA
[oo -
P 4
N]
0w 3>
W O vt <
<D LY

PP P e

o

¥ v ge e N CEETRT ST o

T "'1.

C NN Y,

’
MAL A
LN
:'E'fhih\",’ 2yt
!\.qu—."-
f_\"hf)‘.'t?
FATAS
g
%)
N ‘
DS
PRSI SAY
f-!n!lb
] ®
I S
ROAG
WORKSHEE™ 118 - STANDARDS REVIEW RESULTS (SR) Ly :5_\
VALUE BNESINO IN3 NN
Y]
UNIT NAME: OV A
Couznt number 2f executable lines of code. v e
Set egual *o MLOC= AR
ALY
PCAA NSRS
MO.1(3) Are tze estimated lines of source code PN A
for this unit 100 lines or less, hAOSRIANG
excluding comments? KYEh RS
LN
MO.1(4) a. How many parameters are there in Tt
the calling sequence? -
b. How many calling sequence parameters ‘. ‘
are control variables (e.g., select an " .
operating mode or submode, direct the v -
sequential flow, directly influence the TR
function of the software)? i-“- v .-f
c. Calculate b/a and enter score. PR
_ N
MO.1(5) Is all input data passed into the unit Loind
through calling sequence parameters NS
(1.e., no data is input through global :r,:f::.','f.:
area or input statements)? AU A
01 ..,.9
MO.1(6) 1Is cutput data passed back to the ESRGAR A,
calling unit (e.g., through calling ALY
sequence parameters or global areas)? -;.r:.r_’.-::
[)]
A [,
MO.1(7) 1Is control always returned to the ﬂ,':-:::f
calling unit when execution is completed? N
®
MO.1(8) 1Is temporary storage (i.e., workspace s.\:.--:.i-j.
reserved for intermediate or partial \:
results) used only by this unit during ST
execution (i.e., is not shared with SR
other units)? NN A
BN
P
MC.1(9) Does this unit have a single) PY
processing objective (i.e., all AL
processing within this unit is related :_-.__-.:_a.jx
to the same objective)? '~‘.\J:.':-l‘:
G
RAGARESAN
MO.2(5) What is the cohesion value of this unit? R :.\E‘\
-t N A
R
SI.1(2) Is the unit independent of the source N ;
of the input and the destination of LTI
the output? L
L . .. - L}
\'. -‘l ,.‘ '.
SI.1{3) Is the unit independent of the kmnowledge *'_,
DA
of prior processing? :.__:J:.-_:.J,
AT At
]
TSR
'x.':-.":'s'_,N‘P :
NSRS
L SR,
n-23 WA
'._\“\'J\
R,
NN,
']
P -'""-'R
AT
) LR R e '\..'- -"’- ~u '-.“n'\ " ‘-'.'ﬁ- Py _‘.,‘. L \._‘\.'P‘. '.}‘-‘/‘- \-"\;"“f \."i_\}'._.‘._:-;“.;" :.":_'.' \".-,.:_ '_1‘-‘;'\—1"-:‘\.’\:!:";:“J‘":;:'::\ -
$'\-';'\- ":::\:\: "'\"-’.:'.:'.";s o J'\:-.;-\ - \;.f:-.:\ ',\:,\:‘_-."*. "-.::-\.__-..,-..,-.._*-_.? {: N J.:_.: o _,.\.' ,"._.‘_;‘,\- (:: _;) ':_.:- _,':_.?_.:-J.:_.:-‘.?-v.\- ,_._-_.: '
e s Ny e N Y R S Y N N RN

4
&
a
d

Fe¥2Ta 2

Coes the unit description/prologue
include input, output, processing,

and limitations?

a. How many entrances into the unit?

b. How many exits from the unit?

¢. Calculate (l/a + 1/b)(*

enter score.

bottom (i.e.,

a. How many negative boolean and
compound boolean expressions are used?

b. Calculate 1-(a/MLOC) and enter score.

a. How many loops (e.g., WIILE, DO/FOR,

REPEAT)?

b. How many loops with unnatural exits

Is the flow of control from top to
flow of control does not
Jump erratically)?

1/2) and

(e.g.. Jumps out of loop, return

statement)?

¢. Calculate 1-(a/MLOC) and enter score.

DO/FPOR loops)?

a. How many iteratioa loops (i.e.,

b. In how many iteration loops are

indices modified to alter the fundamental
processing of the loop?

c. Calculate 1-(b/a) and enter score.

Is the unit free from all

self-modification of code (i.e.,

does not alter inmnstructions,
of code, eto.)?

a. How many statement labels,

labels for format statements?

b. Calculate 1-(a/MLOC) and enter score.

8. What is the maximum negting level?

(o4

Calculate a/XLOC and enter score.

PN PR
AN T
f\-ﬁ--(’\f.-'. > -"“"-_\
A N RN,

RN

T

‘~-.’-."\

N A AL

L
"u'..-'
NP
(] ‘l .l

e
.

'Y
" L}
"."\t’ \
TR
o

SRR
Ny
P l"

-

\‘

‘:\
w

s

y

.
1 3

5
A
gy

- l.
.‘?.
.
.

s

e a, vy ety
LA

7y
o

A
-

@

Gf‘

YY)
L

Pd
o

&y
» "y
’, r"’

l:"l hy v 4
s
] .l

X
.
=,

.

<

b
o
h)

4
L4

L

»
" a

L

-
Y

.y
b

-

overlays

LI -
AN

AT Y

excluding

‘l."l 0,
L9 Y
e

.‘J

a v s
B

Y

e
TN A

W o W

B o A o R . T T e W o N o R Y o A . R Y oV e v T e vy ..
e
.r_:v-_
AL
J‘I
o
A
Iy
(\:-
I.'-'
. »
\::.Eu_
Lh
~\ N
NALLE NFSINO N X -.:"
SI 4.3 a. Hzw zmany rranches. conditional azd . L : -:\w":q‘:'f:
vzconditional? A
'.,-f. AR
. ul 1- X and enter score.
Calculate 1-(a MLOC) e l:;.-;.s"~
SI1.4(9) a. How many data declaration .-‘_-:':-::-f.‘_-}
statements? IS LY
RS
AR
b. HOw many data manipulation e A
staterents? e
¢. Calculate 1-((b+c)/MLOC) and enter .\}g.*-
gcore. A :,;,'
A,
SI.4(10) a. How many total data items, local and :-.:4;-.:».';
global, are used? (total from all units) - N
I RV }
b. Hcw many data items are used locally o |
(e.g.., variables declared locally and 9
value parameters)? f
c. Calculate b/a and enter score. <
RSOSSN
$I.4(11) a. Calculate 1-(DD/MLOC) and enter ecore. NS,
) ®
SI.4(12) Does each data item have a single use B
(e.g.. each array serves only one
purpose)®?
SI.4(13) Is this unit coded according to the k
required programming standard? .
ST (1) a. How many data items are used as
input?
b. Calculate 1/(1l+a) and enter score.
§I.5(2) a. How many data items are used for
cutput?
b. How many parameters 1in the units
calling sequence return cutput values?
c. Calculate b/a and enter 8scCore.
SI.5(3) Does the unit perform a single,
nondivisible function?
SR INPUT: Assign a value of 1 to all Y answers and a
value of O to all N answers. Count the
total number of answers (not NA's). Total|TOTALS
score of answers aad iivide by number cf
answers. Assign to CR. DR =
J-25
oUS COVERNMENT PRINTINGOFFICE 198 Rr 1 13 17/ a4 "¢

o s i iy S S, SpR N Pt NSRS by

"o
.'.»{
I'l.{ A

k)
~

e
L4
::'.

ki
LR R
hY

¥
NN
o

A ol ol ol
AN
l‘l
";‘I

LY

FY]
DAy
PELESS
RN N e,
e 4'\{ A
o,

v"\

[y
‘..’I-
h]

'-n
*y
- %
L)

s

TCACK]
LR P
Y4y Y
I.'I'.flfn'lu
’
,,S‘f
LAl iy

Lo
!.’s
Ps
YAy
i

Yo

b srr 2

W W LW
»

MISSION
of

Rome Awr Development Center

‘I
g

2 o
‘l

t

Dbl M &

SN
.I
[

RADC plans and executes nesearnch, development, test
and selected acquisition programs in supponrt o4
Command, Controf, Communications and Intelligence
CPT) acteveters. Technicad and eagdneering
Supporl walnan areas v§ competence L4 provdided to
ESD Program Offices (POsA) and othen ESD elements
to penform effective acquisition of C31 systems.
The aneas of technical competence include
commundications, command and conthol, battle
management, 4Lnformation processing, surveillance
sensons, 4intelligence data collfection and handling,
scled state sciences, electromagnetics, and
rropagation, and electrondc, maintainability,
and ccmpatibility.

o "]
o

rar el

[

P

“,v -
.

ane,
BN
e
l" P

. »
,I,llilltl
a l’,‘, ‘. 1
s;;.,'-.*.,", -
SR
e

N

NS P P PP PP PP LE - P L P I L EP

LR PR)

KA A
* &

2

g

% P8 S AN
W
1PN ,
Ay J_‘S.\f.‘d‘\
alytadalals

o x.ﬁx..\f.\.
A A

L}
3 .-.-..--c._ R Ao Si

LA A LA >y - s g . -3 - , - o ,pego

AL

v, . A

.II/».. [1A
R

A

U

NN AN Wt e

SN
o

R
W

=

9
s

CENC IR N
\{"‘n‘-{\

AT,

-, .
-I'A'f

"

“A

-';-

CIC I
"\-"\-r-’

TN

% v

o N

