
70-8M K9l METHOOLOGY FOR SOFTWUREE RELIMILITY PEDOICTION VOLANI 1/2
2(U) SCIENCE RlPPLICRTIOIS INTERIURTIOUR. CORP SM DIEGO A
CR J MCCALL ET AL. NOV 6? RAC-TR-67-171-VOL-2

7UICLASSIFIED FUM2-B3-C-S116 Fi'G 12/5 N

W; |" I 2f

A.1.8

N%.m

% %

,.% "

C-C-°%

.* C:-

: a -i

." ," ,' . " " ".. " ,] " ", ",' ",t" " . .,, .,. .- ."-,'-. .-. '-,"--",.-.".,,".- .- ,- ,. t .-.- - . ,,-,,-,- - .

AD-A 190 019
RADC-TR-87-1 71, VoI1 (of two)
Final Technical Report
November 1987

METHODOLOGY FOR SOFTWARE
RELIABILITY PREDICTION

Science Applications International Corporation

J- McCall, W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht, S. Fenwick,
P. Yates, M. Hecht and R. Vlenneau

DTIC
~ELECTE .

FE ro 188B

-48 2 2 5 032
ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RADC-TR-87-171, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: /?:

JOSEPH P. CAVANO

Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director

Directorate of Command & Control

FOR THE COMMANDER: ~

RICHARD W. POULIOT
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

S . .A . .oo% .S'%' ~ \~~ ' I'% .~ .S

Form ApprovedSEURTYCASIFCTION F THIS PAE

REPORT DOCUMENTATION PAGE OMB No.0704-0 1

Ia REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

_QrCL&SSIzF D N/A
Za. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

N/Ad
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-87-171, Vol II (of two)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Science Applications Inter- (If applicable)
national Corporation Rome Air Development Center (COEE)

6c ADDRESS (City, State, and ZIPCod) 7b. ADDRESS (City, State, and ZIP Code)
10260 Campus Point Drive
San Diego CA 92121 Griffiss AFB NY f3441-5700

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDFNTIFICATION NUMBER *

ORGANIZATION (If applicable) 1,

Rome Air Development Center COEE F30602-83-C-0118
Bc. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS L.

PROGRAM PROJECT TASK WORK UNIT %

Griffiss AFB NY 13441-5700 ELEMENT NO NO. NO ACCESSION NO.

11I TITLE (include Security Classification) 620F I 51 2

METHODOLOGY FOR SOFTWARE RELIABILITY PREDICTION ?

12 PERSONAL AUTHOR(S) J. McCall, W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht,
S. Fenwick, P. Yates, M. Hecht, R. Vienneau 'e

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT , ,,
Final FROM un. 83 TO 7 November 1987 180

16. SUPPLEMENTARY NOTATION -. 1
N/A

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) *,

FIELD GROUP SUB-GROUP Software Reliability %.

12 05 Software Reliability Engineering

12 I 08 Software Measurement %
1-9 ABSTRACT (Continue on reverse if necesary and identify by block number)

LTh, Cuidebook provides detailed procedures for the preparation of software reliability predic- ..
Lions and estimations on DOD projects. In developing the Guidebook, 59 software systems "%
were examined and 19 key variables were identified that affected the software reliability of
those systems. Procedures to measure these variables were developed to account for the type

of application, development, environment, various software characteristics (such as modular- ,
itv and complexity), test technique, test effort and test coverage. A methodology was also \-% %
provided to use these measures to predict software fault density and software failure rates. .

The Guidebook could be applied by an Air Force acquisition office to help plan for adequate .' .','.,

software reliability early in a project's life, specify achievable software reliability goals
in a RFP, evaluate progress toward those goals at key project milestones and decide when to

-. %release the software. The Guidebook could also be used by the technical staff to establish * ,
thresholds for critical measures such as complexity. e -

(Over)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
F UNCLASSIFIED/UNLIMITED C SAME AS RPT C3 OTIC USERS UNCLASSIFIED '

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFIE SYMBOL
Joseph P. Cavano (315) 330-4063 RADC COEE) S

DD Form 1473, JUN 36 Previous editions are obsolete SECURITY CLASSIFICATION OF THiS PAGE %,,%

UNCLASSIFIED % %

% % %.

V..

% %~

UNCLASSIFIED

-S

Jk

JIn addition, the Guidebook also contains Quality Review and Standards Review Checklists that

can be used in conjunction with the software reliability prediction and estimation methodo-

logy. The Quality Review Checklists are used to assess the quality of the requirements and

design representation of the software while the Standards Review Checklist would be applied

to software code. The checklists provide good guidance for ensuring that quality is built

into the software.

Actessilon For

L713 GRA&I
"

n 3 TAB
t7 '-nounced Q
J. tificatio

By --- - --- --Distribution/ -.

A-ailabilitY CodeS
/ /,

:Dist Special

LS

NO I

%~ % % %

% % %%-% %

%54\ 4.5

,-/-.. ., .5-

Producing more reliable software will lower both production costs and post -.
deployment support costs because additional resources will not be expended
correcting problems that could have been avoided or detected earlier. If the most
error-prone projects could just be brought up to today's average, their fault density
could be cut 2 to 4 times. To make this level of improvement possible, RADC
developed this guidebook to improve software reliability. Air Force acquisition
offices could apply the guidebook to specify achievable and measurable reliability

goals in terms of fault density and failure rate and evaluate progress toward those
goals at key project milestones.

To develop the software reliability prediction and estimation methodology described
in this guidebook, RADC analyzed 59 projects, totaling over 5 million lines of code.
Although the 59 projects studied do not represent all the diversity of Air Force
applications, the results should be useful to any project with high reliability
requirements that can be matched to the generic applications used here. As RADC
receives additional reliability information based on this methodology--it is hoped
that project experience will be shared with RADC/COEE on a confidential basis--this
guidebook will be updated.

In the absence of quantitative data dealing with software reliability concepts, the -
RADC guidebook provides information, based not on conjuncture but on
measurement, to help predict and estimate fault density and failure rate. The real
value of this guidebook is not the numbers it will produce--since they are only the
means to the end--but rather the processes it promotes for planning software ---
reliability and controlling key variables that are shown to affect reliability. -

For example, there is empirical evidence that a software component's fault density .*-

doubles when its complexity exceeds certain thresholds. Although it is not known . ,
that increased complexity causes more errors to be introduced, any component
exceeding the established threshold should be carefully reviewed or modified to
reduce its complexity. ."--

To more actively promote software quality engineering, the guidebook contains
checklists that can be used in conjunction with the software reliability prediction -

and estimation methodology. The Quality Review Checklist represents important ...,-
quality questions to be answered from requirement and design documentation; the
Standards Review Checklist applies to software code. The checklists provide
guidance for ensuring that quality is engineered into the software during its
development.

To support the data collection inherent in this approach, RADC developed the
Automated Measurement System (AMS); the AMS is a quality analysis tool that-. -.
reduces the cost to collect, store, and analyze quality-related data. The AMS
interfaces to requirements and design tools to support early life cycle quality " "

analyses and also analyzes Ada and Fortran code. The AMS runs under VAX/VMS as S
well as a MicroVax 1I Workstation. A beta-test version of the AMS is currently
available from RADC/COEE to support quality analysis on Defense Dept projects.

Joseph P. Cavano
Project Engineer

-"- %

-p. ~. Np ~$~~'N4 2An

VOLUME II

TABLE OF CONTENITS

SECTION PAGE

1.0 Scoe.pe... 1-1
1.1 Scope ...1-1
1.2 Application ... 1-1
1.3 Scope ...1-1
1.4 Numbering System 1-2

1.4.1 Classification of Task Section, Tasks, and
Methods 1-2

1.5 Revisions ...1-2
1.5.1 Standard 1-2
1.5.2 Task Sections, Tasks, and Methods 1-2

1.6 Method of Reference 1-2

2.0 Reference Documents2-1
2.1 Issues of Documents 2-1
2.2 Other Publications 2-2

3.0 efi iti ns 3 -
3.0 DfnTions .. 3-1

.".N
-~

4.0 General Requirements4-1 J
4.1 General 4-1

4.1.1 The Reliability Problem4-1
4.1.2 The Role of Reliability Prediction and

Estimation In Software Engineering 4-1
4.2 Software Reliability Program4-2

4.2.1 Program Requirements4-2
4.2.1.1 Reliability Engineering4-3
4.2.1.2 Reliability Accounting4-3
4.2.2 Reliability Program Interfaces4-7
4.2.3 Quantitative Requirements4-7
4.2.3.1 Categories of Quantitative Requirements 4-7
4.2.3.2 System Reliability Parameters4-7
4.2.4 Limitations of Reliability Predictions. 4-7

4.3 Implementation4-8
4.4 Ground Rules and Assumptions4-9
4.5 Indenture Level4-9 wb
4.6 Coding System4-9
4.7 Mission Reliability Definition4-10
4.8 Coordiation of Effort4-10
4.9 General Procedure4-12

4.9.1 Comparison with Hardware Reliability
Prediction 4-12

4.9.2 Software Component Level4-17
4.9.3 Identify Life Cycle4-17

4.10 Reliability Program Plan and Reliability Modeling
a~ r, rolict ion Report................................ 4-18

V

%S

%I- -
% .-

VOLUME II
TABLE OF CONTENTS (CONTINUED)

SECTION PAGE

4.10.1 Software Reliability Program Plan 4-18
4.10.2 Software Reliability Modeling and Prediction

Report 4-19
4.10.2.1 Summary 4-19
4.10.2.2 Reliability Critical Element Lists 4-19
4.10.2.3 Prediction and Estimation Methods 4-20

4.11 Software Reliability Program Tasks 4-20

Task Section 100, Software Reliability Prediction TS-1
Task Section 101, Software Reliability Prediction Based

on Application .. TS-8
Task Section 102, Software Reliability Prediction Based

on Development Environment TS-IO
Task Section 103, Software Reliability Prediction Based

on System/Subsystem Level Software Characteristics.......... TS-12
Task Section 104, Software Reliability Eased on
CSC/Unit Level Characteristics TS-16

Task Section 200, Software Reliability Estimation TS-19
Task Section 201, Reliabilty Estimation for Test

Environment ... TS-22
Task Section 202, Software Reliability Estimation for
Operating Environment TS-27

Appendix A. Definitions and Terminology A-il%
Appendix B. Data Collection Procedures B-i
Appendix C. Metric Data Collection Worksheets C-i
Appendix D. Quality Review and Standards Reveiw Worksheets. D-I

VA.

%~ %

£ ,K ' ' '?--" :' - ' ¢-'-'2'-' .'.' -J-' £-£ " .' ' "- -' -'.'', ";--" -'---- .'.-" - ," -."." " v -- .-.-.-.

1J(

VOLUME II
LIST OF FIGURES

FIGURE PAGE

4-1 Framework for Software Reliability4-4 .

4-2 Software Reliability Functions........................... 4-5

4-3 Software Reliability Engineering Management 4-6

4-4 Relationship Between Hardware and Software Reliability.. 4-11

4-5 Software Reliability Prediction and Estimation
ProceduresB..4-13

TS-201-1 Test Methodology Assessment Approach TS-25

TS-202-1 Effect of Workload on Software Hazard TS-29 ~ ~ a

0

vii... b

N~~~.p
V d N

1. 0 SCOPE

-pJ

1.1 SCOPE

This Guidebook provides procedures for the preparation of
software reliability predictions and estimations for embedded and
separately procured computer systems. The results of prediction o
and estimation are primarily intended to serve as relative
indicators of reliability in connection with design decisions and .J
in monitoring progress of a project. Caution must be used In
equating predicted or estimated values of softwae reliability
with operational values, as is also the case in hardware
reliability prediction.

1.2 APPLICATION

The requirements and procedures established by this Guidebook may
be selectively applied to any Department of Defense
contract-definitized procurements, request for proposals,
statements of work, and in-house Government projects for system
development and production. It is not intended that all the
requirements herein will need to be applied to every program or*- :~

program phase. Procuring activities shall tailor the require-
ments of this standard to the minimum needs of each procurement
and shall encourage contractors to submit cost effective tailor-
Ing recommendations.

1.3 SCOPE

Software reliability prediction and estimation techniques are
described as a methodology in this guidebook for assessing a
software system's ability to meet specified reliability
requirements. Softwa1.e reliability prediction translates software
measurements taken during early life cycle phases, into a
predicted reliability. Software Reliability estimation
estimates, based on test phase indicators, how reliably the
software will perform its required functions in its operational
environment. At this time no software techniques are documented*
in this Guidebook to estimate the demand for maintenance and
logistic support caused by software systems unreliability. When
used in combination, the two techniques provide a basis for
identifying areas wherein special emphasis or attention is
needed, and for comparing the cost-effectiveness of various
design configurations. This guidebook is intended as a companion
document to MIL-STD-785B, MIL-STID-756B and MIL-HDBK 217E.

%% %*%-%

*. % %, * % %

1. 4 NUMBERIN SYSTEM ''

Task sections, tasks, and methods are numbered sequentially as
they are introduced into this Guidebook in accordance with the
following classification system. -

1.4.1 Classification of Task Sections, Tasks, and Methods

100 - Reliability Prediction Task Section
101-199 - Reliability Prediction Tasks

1001-1999 - Reliability Prediction Methods
200 - Reliability Estimation Task Section '

201-299 - Reliability Estimation Tasks
2001-2990 - Reliability Estimation Methods -id

1.5 REVISIONS ~-k.~

1.5.1 Standard

Any general revision of this guidebook which results in a
revision of sections 1. 2, 3, 4 or 5 will be indicated by a
revision letter together with the date of revision.

1.5.2 Task Sect ions, Tasks, and Methods

Revisions are numbered consecutively indicated by a letter .K'.'

following the number. For example, for task 101, the first
revision is 101A. the second revision is 101B. When the basic
document is revised, those requirements not affected by change
retain their existing date.

1.6 URTIOD OF REFERENCE

The. tasks and methods contained herein shall be referenced by
specifying:

0 This guideline number ,., .

* Task number(s) %4'4,

* Method number(s) *,*-

* Other data as called for in the individual task or method

% -%

* .~ - - - --. -.- -

2.0 REFERENCED DOCU ENT S

2.1 ISSUES OF DOCUMENTS W,%

The following documents of the issue in effect on date of
invitation for bids or request for proposal, are referenced in ~
this guideline for information and guidance.

STANDARDlS

MIL-STD-785B Reliability Program for Systems and Equipment
Development and Production

MIL-STD-7?21 Definitions of Terms for Reliability and
Maintainability

MIL-STD-781C Reliability Design Qualification and Production
Acceptance Tests: Exponential Distribution

MIL-STD-105 Sampling Procedures and Tabbles for Inspection
by Attribute

MIL-STD-1521A Technical Reviews and Audits for Systems, I
Equipment, and Computer Programs

MIL-RDBK-217E Reliability Prediction of Electronic Equipment

MIL-STD-756B Reliability Modeling and Prediction

MIL-STD-2167A Defense System Software Development

MIL-STD-2168 Software Quality Evaluation (Proposed)

MIL-STD-1679 Weapon System Software Development

MIL-STD-490 Specification Practices

MIL-STD-480 Configuration, Control, Engineering Changes,
Deviations, and Waivers S

MIL-STD-483 Configuration Management Practices for System,
Equipment, Munitions, and Computer Programs

MIL-Q-9858 Quality Program Requirements

MIL-STD-52779A Software Quality Program Requirements -

2-1 .. ''

2.2 OTM PUBLICATIONS

The following documents are potential sources of reliability data
or describe techniques that may be used in conjunction with this --

Guidebook. Specific requirements for use of these or other data
sources must be specified by the procuring activity.

RADC TR 85-37 "Specification of Software Quality Attributes",February 1985 -,>%

RADC TR 85-228 "Impact of Hardware/Software on SystemReliability", January 1985 _.v

RADC TR 83-176 "A Guidebook for Software Reliability ."VV.
Assessment", 1983

RADC TR 84-53 "Software Test Handbook", March 1984 0

2-2-

a"o .- '. ,

-.-. '.

- .. v-,.

4* .~..

2-2,' -.'.
": ..: ::::

Sl

,,,, .. % ".% %-°. . % "% .-.. ...% .- % , ,% - % , % , ,'% % ,. . ,.% -.%, % % , .j% . ..2-2...'".

ft .1 TERMS S

Terms used in this document are as defined in Appendiz A. .

• "o -.

a'. aft,

.:.t.-

4. a"

3 - i." -,,,,S

'."'m .';'."'."#.'.,.''.''."'.'._, .'.'. ., " '." > "'" --. "." .,' . "."'.'" .".,.. .-"," %,/ "..,r ' .
-%

-"."...,-#. ,".".-"-"a .. , ',? m 'm", ft.,....
"

X

* 4.0 GENERAL REquIREMENTS

4.1 GENERAL

Software reliability prediction and estimation shall be planned
and performed in accordance with the general requirements of this
guidebook and the task(s) and method(s) specified by the procur-
ing activity.

4.1.1 The Reliability Problem

When it is proposed to design a system which includes computers
to perform a complex and demanding job, it is assumed that the
required investment will be Justified according to the perfection
by which the job is performed or by the large number of times
which the system can do the job. This assumption cannot be
Justified when a system fails to perform upon demand or fails to
perform repeatedly. Thus, the reliability of a system is
critical to it cost effectiveness.

Reliability is a consideration at all levels of electronics, from .~..

materials to operating systems to application software because
'I.. the components are combined in systems of ever increasing

complexity and sophistication. Therefore, at any level of
development and design, it is natural to find the influence of
reliability engineering acting as a discipline devoting special
engineering attention to the unreliability problem. Reliability
engineering has been primarily concerned with the time -
degradation of materials, physical and electronic measurements,
equipment design, processes and system analysis, and synthesis.
This Guidebook extends that discipline to software reliability
engineering. None of these can be isolated from the overall.
electronics context or software development process but must be
carried on in conjunction with many other disciplines.

* -. 4.1.2 The Role of Reliability Prediction and Estimation in
Software Engineering

To be of value, a prediction or estimation must be timely.
However, the earlier it is needed, the more difficulties will be
encountered. It is certainly true that the earlier a prediction
has to be made about the unknown nature of a future event, the
more difficult it is to make a meaningful prediction. As an
example, it can be seen that the reliability of an electronic
equipment is known with certainty after it has been used in the
field and it is worn out and its failure history has been
faithfully recorded. But, for purposes of doing anything about

.4-th."e reliability of this equipment, this knowledge has little
value. Before this point, reliability cannot be known with
certainty; but a great deal of knowledge about reliability can be
accumulated over a short period early in the useful life. Even
though the degree of certainty of knowledge is less, there is
some opportunity to do something to influence the reliability of

4-1.

r%0

e.............*

the remaining life portion.

Similarly, consiu.ering the various stages back through installa- .-

tion, shipment, test, production, test design, development,
procurement, etc., less and less can be known with certainty
about reliability. However, what is known or predicted becomes
more and more valuable as a basis for taking action. After al2,
there is no value in simply knowing that a certain failure will
occur at some specific time in the future. The value comes in
having the opportunity to do something to prevent the failure
from occurring. Once this is done, the future is changed from
what was predicted with certainty. Thus, prediction becomes part /
of a process of "designing the future". ..

An early prediction is made on the basis of preliminary knowledge
in order to evaluate the reliability of alternative software
designs, and to permit selection of an alternate that has a high
likelihood of meeting the reliability objectives. The process, in
order to have any meaning at all, requires predicting, acting,
measuring (or gaining new knowledge), then repredicting, acting
again and remeasuring continually throughout a program of
development.

The two trends in the prediction art are: (1) To gain better
records of class characteristics in more usable and realistic
forms and (2) To develop improved techniques for applying the
consequent knowledge to predictions in appropriate confidence .

settings. The current state-of-the-art in software reliability
predictions rests at the level of development of these data and
techniques. Much room remains for advancing the state-of-the-
art.

4.2 Software Reliability Program

The contractor shall establish and maintain an efficient ~
reliability program to support economical achievement of overall
program objectives. To be considered efficient, a reliability
program shall clearly: (1) improve operational readiness and

* mission success of the major end-item; (2) reduce item demand for
maintenance manpower and logistic support; (3) provide essential
management information; and (4) hold down its own impact on0

* overall program cost and schedule.

4.2.1 Program Requirements -

Each reliability program shall include an appropriate mix of
reliability engineering and accounting tasks depending on the
life cycle phase. These tasks shall be selected and tailored
according to the type of item (system, subsystem or unit) and for
each applicable phase of the acquisition. They shall be planned. 'r % 'r
integrated and accomplished in conjunction with other design,
development and manufacturing functions. The overall acquisition ,z
program shall include the resources, schedule, management,
structure, and controls necessary to ensure that specified

AD

reliability program tasks are satisfactorily accomplished.
Figure 4-1 illustrates the insertion of software reliability
prediction and estimation into the software development process.
Note that the methodology actually spans the software life cycle
including reliability specification and reliability assessment
once the system is operational.

4.2.1.1 Reliability Engineering

Tasrs shall focus on the prevention, detection, and correction of
rellability design deficiencies, unreliable units, and
workmanship defects. Reliability engineering shall be an
integral part of the design process, including design changes.
The means by which reliability engineering contributes to the
design, and the level of authority and contraints on this
engineering discipline, shall be identified in the reliability
program plan. An efficient reliability program shall stress
early investment in reliability engineering tasks to avoid
subsequent costs and schedule delays.

Figure 4-2 illustrates the software reliability prediction and
estimation discipline in context of an overall approach to
improving software reliability. As illustrated, the concerns .
with software reliability must permeate the entire software
development process. In fact, these same disciplines are ,

applicable to post deployment software support, i.e., software .%.N
logistics support. The developers must approach the software ..
development with reliability as a goal. Use of formal approaches
such as MIL-STD 2167A, modern techniques and tools, provide the
foundation for building reliability into the product. The
testing process must also account for reliability demonstration.
RADC TR 84-53, Software Test Handbook, provides a methodology for
planning testing techniques and tools which aid in meeting
testing objectives. The prediction and estimation techniques
advocated in this document provide the oversight role. Companion
documents are the proposed MIl-STD 2168, which states software QA
requirements for DOD software developments; RADC TR 85-37, which .*

establishes a methodology for quality specification and measure-
ment; RADC TR 85-47, Impact of Hardware/Software Faults on Sytem
Reliability which establishes a new modeling approach to software
reliability; and RADC TR 83-176, which is a guidebook on the use
of existing software reliability models.

The incorporation of this approach in software developments "'
promises significant benefit. This general approach could be
viewed as a software reliability discipline. Functions of that .-

discipline are portrayed in Figure 4-2. The activities that
comprise that discipline are indicated in Figure 4-3. .

4.2.1.2 Reliability Accounting

Tasks shall focus on the provision of information essential to
acquisition, development, operation, and support management,
including properly defined inputs for estimates of operational

4-
%

% % -% % % -% - - . . .

-%-

P. 3. W % %
>-.MM

wlo

W2,s

0- 0 6a
5.3 4

,00 U,

2-4

t zw

IL 49

4-,c lag 0 -a

%a' %
4.Z

10 % M

U SOFTWARE RELIABILITY
FUNCTIONS

SOFT WARE

SOFTARERELIABILITY SOFTWARE
SOTAEPREDICTION RELIABJITY

-. ENGINEERING AND TESTING 0%o

ESTIMATION__ ____

*MTL-STD 2167A *MIL-STD-2 168 *RADC TR 84-53
DEFENSE SYSTEM SOFTWARE (DRAFT) SOFTWARE TEST
DEVELOPMENT SOFTWARE QUALITY HANDBOOK

PROGRAM
*MODERN MANAGEMENT -EARLY INVOLVEMENT
APPROACHES TO SOFTWARE *RADC TR 85-37 BY TESTING
DEVELOPMENT SPECIFICATION OF ORGANIZATION

SOFTWARE QUALITY

*MODERN SOFTWARE ATTRIBUTES *USE OF MODERN TEST .p

is-DEVELOPMENT TOOLS AND
ENVIRONMENT * EMPHASIS ON QA, IV&V TECHNIQUES

*MODERN SOFTWARE * SPECIFICATION OF *IDENTIFIED TEST
DEVELOPMENT QUALITY (RELIABILTY) OBJECTIVES
TECHNIQUES GOALS

RADC TR-85-47
IMPACT OF HARD WARE/
SOFTWARE FAULTS ON
SYSTEM RELIABILTY0

*RADCIR 83-176
A GUIDEBOOK FOR

AS SF55 MENT

FIGURE 4-2 SOFTWARE RELIABILITY FUNCTIONS

% %

%.

% %%.
%'5%-%

%4 %%

%..* 'isp% %

%4-m
w. P1 %

LE..
* 6

o to
* N

on 4J ma ? C O i

44 qA I I I ,= . p
I. I U 0U cc (AU

i X,; 1 4

8

0 cc L.j

ca0 we

-~% %

96 LO.

4-6-

%- %

'. r

%.,* .',.

effectiveness and ownership cost An efficient reliability
program shall provide this information while ensuring that cost
and schedule investment in efforts to obtain management data
(such as demonstrations, qualification tests, and acceptance
tests) is clearly visible and carefully controlled.

4.2..2 Reliability Program Interfaces

The contractor shall utilize reliability data and information
resulting from applicable tasks in the reliability program to
satisfy Post Deployment Software Support (PDSS) requirements. -
All reliability data and information used and provided shall be
based upon, and traceable to, the outputs of the reliability W.
program for all maintenance support and engineering activities
involved in all phases of the system acquisition.

4.2.3 Quantitative Requirements -

The software system reliability requirements shall be specified
contractually.

4.2.3.1 Categories of Quantitative Requirements Al

There are three different categories of quantitative reliability
requirements: (1) operational requirements for applicable %

software reliability parameters; (2) basic reliability
requirements for software design and quality; and (3) statistical IN
confidence/decision risk criteria for specific reliability tests. '
These categories must be carefully delineated, and related to
each other by clearly defined audit trails, to establish clear
lines of responsibility and accountability.

4.2.3.2 System Reliability Parameters ..

Software reliability parameters shall be defined in units of
measurement directly related to operational readiness, mission
success, demand for maintenance manpower, and demand for
maintenance support, as applicable to the type of system.
Operational requirements for each of these parameters shall
include the combined effects of design, quality, operation,
maintenance and repair in the operational environment. The basic
measurement used in this guidebook for software reliability is
failure rate. Definitions are provided in Appendix A.

4.2.4 Limitations of Reliability Predictions

The art of predicting the reliability of software has practical
limitations such as those depending on data gathering and
technique complexity. Considerable effort is required to
generate sufficient data to report a statistically valid relia- ,.--
bility figure for a class of software. Casual data gathering
accumulates data more slowly than the advance of technology; ,
ccnsequently, a valid level of data is never attained. In the
case of software, the nurlber of people participating in data .

',. .. ,,,'

.',-?.'

-* ,a, " ", , ,a" . tr : " . ' , - " - . ""%
% %

gathering all over the industry is rather large with consequent
varying methods and conditions which prevent exact coordination
and correlation. Also operational software reliability data is
difficult to examine due to the lack of suitable data being
acquired. Thus, it can be seen that derivation of failure rates
(being mean values) is empirically difficult and obtaining valid
confidence values is practically precluded because of lack of
correlation.

The use of failure rate data, obtained from field use of past
systems, is applicable on future concepts depending on the degree
of similarity existing both ia the software desigii and In the
anticipated environments. Data obtained on a system used in one
environment may not be applicable to use in a different environ-
ment, especially if the new environment substantially exceeds the
design capabilities. Other variants that can affect the stated
failure rate of a given system are: different uses, different
operators, different maintenance practices, different measurement
techniques or definitions of failure. When considering the
comparipon between similar but unlike systems, the possible
variations are obviously even greater.

Thus, a fundamental limitation on reliability prediction is the
ability to accumulate data of known validity for the new applica-
tions. Another fundamental limitation is the complexity of
prediction techniques. Very simple techniques omit a great deal
of distinguishing detail and the prediction suffers inaccuracy.
More detailed techniques can become so bogged down in detail that
the prediction becomes costly and may actually lag the principal ~
development effort. -~

This Guidebook includes two methods: reliability prediction and
reliability estimation. These methods vary in degree of
information needed and timing of their application. References
to other or complementary methods are provided.

The content of this Guidebook has not been approved by the
Military Services and has not been coordinated with appropriate
segments of industry. It provides an initial attempt to document
a methodology that would provide a common basis for reliability
predictions during acquisition programs for military systems. It
also establishes a common basis for comparing and evaluating
reliability predictions of related or competitive designs. The
failure rates and their associated adjustment factors presented
herein are based upon evaluation and analysis of the best
available data at the time of Issue.

4.3 IXPLKMXIITATION

Reliability prediction shall be Initiated early in the definition
stage to aid in the evaluation of the system architecture and I.

design and to provide a basis for system reliability allocation
(apportionment) und establiSInIg (orrective action priorities.

% . %

Reliability estimation shall be initiated early in the test
phases utilizing the observed failure rate during testing as a
basis to estimate how the software will behave in an operational
environment. Reliability predications and estimations shall be
updated when there is significant change in the system design,
availability of design details, environmental requirements,
stress data, failure rate data, or service use profile. A
planned schedule for updates shall be specified by the procuring
activity.

4.4 GROUND RULES AND ASSUMPTIONS

The Government Program Office or contractor shall develop ground
rules and analysis assumptions. The ground rules shall identify
the reliability prediction and estimation approach in terms of
this Guidebook, the lowest indenture level to be analyzed, and
include a definition of mission success in terms of performance V

criteria and allowable limits. The SPO or contractor shall
develop general statements of item mission success in terms of
performance and allowable limits for each specified output.
Ground rules and analysis assumptions are not inflexible and may
be added, modified, or deleted if requirements change. Ground S
rules and analysis assumptions shall be documented and included
in the reliability prediction and estimation report.

.P,,

4.5 INDENTURE LEVEL

The indenture level applies to the software or functional level 4

at which the software configuration is defiLzd. Unless other
wise specified, the contractor shall establish the lowest 'A
indenture level of analysis using the following guidelines: "--

* The level specified for the prediction measurement to
ensure consistency and allow cross referencing.

* The specified or intended maintenance level for the
software.

The methodology described in this guidebook supports reliability
prediction and estimation at the system, CSCI, CSC, and unit
levels.

4.6 CODING SYSTEM

For consistent identification of system functions and software
elements, the contractor shall adhere to a coding system based
upon the software breakdown structure, work unit code numbering .

system of MIL-STD-780, or other similar uniform numbering system. .
The coding system shall be consistent with the functional block
diagram numbering system to provide complete visibility of each
modeled element and its relationship to the item.

4-9

%m% % -. ° .. ". . ".'.. %' . - %m~ ". .m 4..'.-. -. - .'%.'%%- ..'..' %. . ." % %-' "% '' -- ',iT: :7 . , " , r,- - , . -. -

4.7 MISSION RELIABILITY DEFINITION

System reliability for mission is assumed to be represented by a
series arrangement of hardware, software, and possibly other
components as shown in figure 4-4. The mathematical formulation
for the system mission reliability is therefore

R-RH*RS*Rx

Hardware-software interactions, such as software failures induced
by hardware anomalies, or failures of hardware reconfiguration
caused by software faults, must be included in the RX term. bA.'

Other components that may have to be added to the series model
include the personnel subsystem and support equipment (power, .--
airconditioning, etc.). Only the prediction or estimation of the
RS component is covered by this Guidebook.

If the reliability of individual components is high, eg. at least
0.95, a good approximation of the system reliability can be
obtained by

F-FH+FS+FX

where all F terms are mission failure probabilities (R-1-F). The
software mission failure probability is the product of the
software failure rate and the mission duration, expressed in
identical units of time.

Where mission phases differ in hardware or software utilization -.-

or environment, a separate reliability model is required for each .
phase, and the total mission reliability is the series
combination (product) of the individual mission phases.
Differences in software utilization are presented if (a)
functionally distinct software is utilized, such as automatic
approach and landing software in an aircraft flight control •
system, or (b) there is a substantial difference in the mix of...
software functions. Differences in the software environment are
present if there are substantial changes in the computer "-.
workload.

4.8 COORDINATION OF EFFORT

Reliability and other organizational elements shall make coinci-
dent use of the reliability predictions and estimations.
Considerations shall be given to the requirements to perform and ..

use the reliability predictions and estimations in support of a
reliability program in accordance with MIL-STD-785B,
maintainability program in accordance with MIL-STD-470, safety
program in accordance with MIL-STD-882, survivability and
vulnerability program in accordance with MIL-STD-2072, logistics
support analysis in accordance with MIL-STD-1388, maintenance %dN'-0
plan analysis (MPS) in accordance with MIL-STD-2080, fault
diagrams analysis in general accordance with MIL-STD-1591, and
other contractual provisions.

4-10

mo %",a U, % %.,

%~

.u.-.

ICEI

W6

% ~% % %

-4.-..
--.. 4

CC -

o0

00

z cc

oi 0
z 4LL

ul 0
LU~c w.~ t

01 cc .i CL

mL

cc :CO.4

U. 0. % .4

-9%

IL % o % P0

4-1 '.1

%
4, .. , ,- -' . 4 -. .* . . . ~ - . - ~ .4 - ~- ~ ~ 4%4.

4.9 GENERAL PROCEDURE

The steps set forth below define the general procedure for
developing a software reliability model and performing a relia-
bility prediction and estimation. Specific tasks are contained
in the Task Sections in Section 5. Figure 4-5 provides a road
map for use of the procedures and tasks. Effort to develop the:
information for the steps below shall be closely coordinated with
related program activities (such as design engineering, system

*engineering, maintainability, and logistics) to minimize
* duplications and to assure consistency and correctness.

* Define the software component level for prediction (See
paragraph 4.9.2).

a Identify Life Cycle and Prediction and Estimation Mile-

stones (See paragraph 4.9.3).

e Identify Data Collection Procedures (See Appendix B).

* Obtain or Develop System Architecture Diagram to Appro-
priate Component Level (requires allocation of software
component to hardware components) (See Reliability
Prediction Task Section 100).

* Define Software Components (See Task Section 100).

a Define Reliability Model (See Task Section 100).

* Implement data collection procedures (See ;*ippendix C and
D).

*Proceed through Prediction Procedures (See individual
Reliability Prediction Tasks 101 through 104).0

*Preceed through Estimation Procedures (See individual -

Reliability Estimation Tasks - 201 through 202).

4.9.1 Comparison with Iardvare Reliability Prediction

Reliability prediction for hardware is an established technique,
and it is therefore useful to compare the proposed software
reliability procedures with those in use in the hardware field.
The governing document for hardware reliability prediction for
DoD applications is MIL-STD-756B "Reliability Modeling and
Prediction", and MIL-STD-785B, "Reliability Program for Systems
and Equipment Development and Production". The essential steps
for reliability prediction identified in MIL-STD-756B have
parallel equivalent procedures for software with one exception.
That exception is the absence of software equivalents for step e.
Hardware components consist of separate parts, each of which may
be used in many other applications, such as a 1A 250V diode or a
16k dynamic RAM chip. Failure rates can be established for these

4-12

,. i Wr~~~ -7 M -%-~ j~ Y ~,. ~ ~ I~ w - . ~.- %

-PO

DEFINE '6

COMPONENTEEN mo NIREITO
LEVEA COLECRO AN SIM TO
PREDCTIP MILESTONESE

% m

OESTAULI0I
IDNIYDEVIEIOPA ELAILT

AOLETI IGAMTOPEITO

[DEFINE PREINE1LTYN*
ENVIRONENT MORELDdTONf!

TASK~AS 1000OTWR

ESELIAIIL, H

DEFERINE I~.
SOFTWAREPREDICTION

OMNEVE REFINEOSVIOFTWRI N RELIABILITY
ENVRONETS PREDICTION

''

OSERVE ETAULLSIAINITIA

DF I UETE R ATN E RELIASILITY .** '

DUARNGTERSTIG ESIATO
ASK t0 3_ _ __ _

DETERMAAE SOFW-
DETMNE LEVEL REFINE EIaLr

SONTIRON EN RELIABILITY rIAOpCHARCERISTS PETIATION OCD ES
TASK 1 _ _ __4__ _

ESIMATE AILHINTL
FAILURELRATE RELIABILITY

DUARINGTERSTING ESTIMATION
TASK 200

FIGUE 45 S FTWA E R LIA IITY PE DIT ION ESTIMATION P O E UES 4Ar/1

4-13DUR

TASK 20

ISTIMATI~

OPERAION ELIAIL~r
.......................... %%J.

CHARACTIRIS.

parts either from test or from analysis of field data. The
procedures of MIL-STD-756B assume that the reliability of a
component is the product of the reliability of its (series-
connected) parts. The software analog to this would be to test
individual assignment, branching, and 1/O statements and to
declare the reliability of a procedure to be the product of the
reliability of its individual statements. This analog is faulty
because: (a) statements cannot be meaningfully tested in isola-
tion and (b) many software failures arise not from faults in a
single statement, but rather from interactions between multiple
statements (or from interactions between hardware and software).
As reuseable software gains wider acceptance, the assignment cf a
reliability index (equivalent to parts failure rate) to standard dprocedures may become practicable but this is still in the
future.

The application of the other steps to software reliability
prediction is discussed below. a

The following paragraphs describe the application to software ,.

reliability prediction of those steps of the MIL-STD-756B proce- P
dure that were found to be suitable. the steps are numbered
here, but the lower case alphabetical designation from MIL-STD-
756B is indicated in parentheses for ease of reference. Only
asterisked steps are required for the prediction of fault
density. These steps have been taken into account in Figure 4-5.

1. (a)* Define the software components to be covered by the
prdcin This includes an unambiguous identification
of the component, a statement of the performance
requirements and the hardware environment, and a listing
of inputs and outputs by type and range. This informa-
tion may be available initially only at a high level of
abstraction but should be decomposed for permitting
tracing predictions during successive stages of develop-
ment, and comparing predictions with estimates and
measurements during later periods.

2. (b) Define the life cycle stages to be covered by the
prediction and the extent of use during each stage, it
is recognized that the failure rate of software is a
function of the life cycle stage. Particularly, there
are significant differences in the failure rate between
test and operations, and between initial operation and
mature operation. Therefore, the life cycle stage(s)
for which the prediction is to be made must be identi-
fied. The probability of fault removal depends on the
extent to which the software is exercised. Therefore
the use (in CPU-hours) between the time the prediction
is made and the target for the prediction must be known.*.*-

3. (c) Define the execution dependencies within the
software component. This will in general require review

4-14

a ~ ~% N

u%

%. de,.

of a top level flow chart or block diagram of the
software component in order to identify units (a unit in
this context is a software element at or above the
module level) that are executed: -

* Routinely -- during every invocation of the
softwara component, or once during each defined
cycle for iterative programs (e.g., closed loop
control);

* Irregulary -- segments that deal with not-routine
events within the program, including exceptions to
conditions postulated within the program (but not -

exception states of computer or operating system);

* Conditionally -- segments that are executed only pif some other (non-routine) segment had been invoked
(examples are message logging or creations of new
files);

* For exception handling -- response of the program
to exception states identified by the computer or

* ~operating system; .1

* On demand -- segments accessed only by specific ~
operator actions such as initialization, data base
cleanup, or rehosting.0

Discussion of a technique to represent execution
dependencies is found in RADO TR 85-47.

* 4. Since both the probability of execution and the accumu- * *

lated execution time will differ between these classifi-
cations, separate reliability predictions will usually

* 5. (d) Define mathematical models for the software compo- 5.

nents... The mathematical models will represent:

* * The predicted fault density of each segment as0
derived in the next section;

* The execution time of each segment prior to the
prediction interval -- to determine the expected 5

fault removal; and

0 The execution time of each segment during the
prediction interval -- to determine the failure
probability.

Where the prediction interval covers more than one
life cycle phase (such as test and operation) a
separate mathematical model will be required for
each phase.

4-15

IF

1P-v-.

5* *5.Z ~ . ZJ* 4 * . I

'V6. (e) Define and describe the parts oaf the item. Use
application area factor. As discussed in the preceding
section, a major divergence of software from hardware . ,

reliability prediction practices is due to lack of an
equivalent to the hardware part. However, software
reliability prediction is still based on concepts of 4W

quantity, the average number (fraction) of faults per
line of code. The number of faults in a software
component is thus assumed to be proportional to the
number of lines of code. Although we cannot, at the

',present state of knowledge, identify one computer
program as being made up of high failure rate parts and
another one of low failure rate parts, there is evidence
that high and low failure fault densities are associated
with certain application areas. The application area 0
factor captures this experience as a basic predictor of
the fault density.

7. (f) Define the operational environment, The operational
environment determines the rate at which the faults
inherent in the software will be transformed to fail-
ures. Operational environment in this sense means the%
environment in which the software will be operating *

during the interval for which the reliability prediction
% is to be made. It can apply to test, operation in a

prototype enviro~nment, or a full scale operational
environment. The most important characteristics of the
operational environment which affect the reliability

0 Computer performance (throughput),

0 Variability of Data and Control States, and

0 Workload. ~v

The contribution of each of these to the reliability
estimation is discussed in Section 5.

8. (g)* Account for software-development environment and0
software implementation. Differences in the software
development environment and in the software implementa-
tion affect the fault density in a manner similar to
that in which stress levels affect the failure probabil-
ity of parts.

9. (h) Define the failure ditiution in execution time,
Software fails only when it is being executed. There-
fore, the natural normalization factor for software
failures is execution time. The software failure rate
bsaed on Computer Operation hour is analogous to the
hardware failure rate ("lambda") per hour (implying
operating hour of the component).

% %

% -%
"%V%

% % % % %
%. - *

VL W'- ..~- w~~~-~.~-'jWi J Y 1.
)
b

'jW - - - -
- -- - - -J -r -J -J '" - W"A - - - - - -. , .

T '-p I _

10. (i)* Compute the Reliability. The algorithms for
predicting fault density are discussed in Section 5 as V
well as the conversion of fault density into failure
rate. The estimation of reliability based on testing --
experience is also described in Section 5.

4.9.2 Software Component Level %

The initial step in following the prediction and estimation
procedures is the determination of the level at which the
software reliability will be modeled. The levels of software are
defined by MIL-STD 2167A as System, Computer Software Configura- -
tion Item (CSCI), Computer System Component (CSC), and Unit. The
Reliability prediction and estimation procedures on this Guide-
book can be used at any of these levels.

The following procedure is recommended. *6

* During early phases of development (Concept Development,
Mission System/Software Definition, Software Requirements) :,%
model at software system level.

e During design phases, model at CSCI level. .

* During coding model at the CSC level. For critical
software the contracting agency may direct modeling at a
lower level (such as unit). Support software or .
commercial off-the-shelf programs should be modeled at the
CSCI level or system level.

* During testing, model at CSCI level or, if directed, a
lower level.

4.9.3 Identify Life Cycle r.,,,.-,. - ;.

The software life cycle according to MIL-STD 2167A is illustrated
in Figure 4-1. Applicable points during this life cycle when a
reliability prediction or estimation is recommended are:

* During Concept Development to support Feasibility Studies.

* During Mission/System/Software Definition to support high
level architectural studies/tradeoff studies and to
establish development goals/specifications. Results -.
should be reported formally at SDR.

e During proposal preparation by contractors for evaluation ,
purposes. U-. U ,

* During Software Requirements Analysis to support feasibil-
ity analyses. Results should be reported formally at SRR. "-

* During Preliminary Design to support software architecture S
decision and allocation. Results should be reported

4-17 "- I

V%

X %\

formally at PDR.

9 During Detailed Design to support detaiLled design deci-
sions/tradeoff studies/algorithm development. Results
should be reported formally at CDR-

* During coding and unit testing to support developer's
decision to release software to formal testing. Results
can be reported through QA audit reports or problem
reporting process.

* During testing phases to support test and evaluation
process and acceptance. Results can be reported at the
end of each phase of testing or periodically during
testing. Results of any acceptance testing should be
formally reported.

9 During OT&E as formal evaluation process.

e During post deployment support as an assessment of actual
reliability achieved and to support a Reliability0
Improvement Program.

* 4.10 RELIABILITY PROGRAM PLAN AND RELIABILITY MODELING AND)
PREDICTION REPORT .

4.10.1 Software Reliability Program Plan

A Reliability Program Plan shall be prepared and include, but not
limited to the following:

*a. Recognition of the Reliability Program within the
development organization responsible for the development.

b. Description of the software reliability requirements
established for the system and their relationship with the
system reliability requirements.

*c. Description of how the Software Reliability Program will
be conducted to meet the software reliability

requirements.

*d. Establishment of responsible personnel for the conductV o f
the Reliability Program with appropriate authority.

e. A description of the relationship of the Reliability
Program with appropriate authority.

f. A schedule (see previous paragraph 4.9) of the reliability
prediction and estimation activities (milestones).

g. Identification of data collection requirements and
procedures to support the reliability prediction and_

V estimation activities.

0

W%. %% V,

J. P

h. Description of the reliability prediction and estimation
procedures to be used.

i. Identification of potential or known reliability problems.

J. Procedures for recording the status of actions to resolve
the problems identified. " .. I

4.10.2 Softvare Reliability Modeling and Prediction Report

The reliability models and reliability predictions and
estimations shall be documented in a report that identifies the
level of analysis, summarizes the results, documents the data
sources and techniques used in performing the analysis, and
includes the component definition narrative, resultant analysis
data, worksheets, ground rules and assumptions. Interim reports
shall be available at each design review to provide comparisons
of alternative designs and to highlight high failure rate U
elements of the design, and proposed design corrections or
improvements. The final report shall reflect the final design
and provide identification of potentially high failure rate
software elements and of software elements that are especially J.'. %-%
critical to mission success. When submitting a report
applicable for an Exploratory/Advanced Development Model, a
simplified reliability modeling and prediction report is -
appropriate.

4.10.2.1 Summary

The report shall contain a summary which prvides the con-
tractor's conclusions and recommendations based upon the analy-
s4s. Contractor interpretation and comments concerning the
analysis and the recommended actions for the elimination or
reducticn of failure risks shall be included. A design
evluation summary of major problems detected during the analysis
shE .ll be provided in the final report. A list of software or
fanctional elements of the system omitted from the reliability 0
m o dels and reliability predictions shall be included with
rationale for each element's exclusion.
4.10.2.2 Reliability Critical Element Lists -

Reliability critical software components of the system extracted .
from the reliability modeling and reliability prediction effort
shall be listed and included in the summary. Reliability -"
critical software components include high failure rate components "..\ ,
(experienced during testing), real-time processing components,
and those components performing mission critical functions. *. ..

4- 19

.

%'P .% P~ ,. U ,.y~. p P %

% %':% %"-'%"-;%
%-

[. ..-..-• .."• -,--'_ ..' ...-- ',-',," ', "" ' L'G G ; ' . .,,':" ',t..", ".:,Z-1 :

a . .. - .2 a a a a a -a 'V.

%

4 -.* .. ,,

4.10.2.3 Prediction and Estimation Methods .'na

The data collected and results of the methods and procedures
described in Section 5 of this guideline should be provided as X
appendicies to this report to substantiate the summary
conclusions and the identified critical elements.

4.11 SOFTWARE RELIABILITY PROGRAM TASKS

In addition to developing the Software Reliability Program Plan,
using the procedures in Task Sections 100 and 200 of this
guidebook to do reliabilty predictions and estimations, and
documenting the results in a Reliability Prediction Report. other
tasks to be performed with the Software Reliability Program are: 0

MONITOR/CONTROL OF SUBCONTRACTORS AND SUPPLIERS '

The contractor shall assure that software components obtained
from subcontractors or suppliers meet reliability requirements. %
The contractor shall, as appropriate: •

a. Incorporate quantitative software reliability -
requirements in subcontracted software specifications. .

b. Assure that subcontractors have a Reliability Program

that is compatible with the overall program and includes
provisions to review and evaluate the software to be
delivered. .

"-

c. Attend and participate in subcontractors design reviews.

d. Review subcomtractors predictions and estimations for
accuracy and correctness of approach.

e. Review subcontractor's test plans, procedures, and
reports.

f. Require delivery of appropriate data collected in
accordance with the Reliability Program. .

g. Assure the subcontractors have and are complying with
corrective action reporting procedures and follow-up
corrective actions.

h. Monitor reliability demonstrations tests. S

A reference doucment is MIL-STD 52779A.

PROGRAM REVIEWS

The Reliability Program shall be planned and scheduled to permit
the contractor and the Government to review program status. .

4-0'

d' %-

,a 'a 'a * a ** . a . .%. .. %. % %. a - *..* ... 2a-. .
: i % i I l li-*l I

Formal review and assessment of contract reliability requirements .
shall be conducted at major program points, identified as system
program reviews, as specified by the contract. As the program
develops, reliability progress shall also be assessed by the use -*
of additional reliability program reviews as necessary. The
contractor shall schedule reviews as appropriate with his "%
subcontrators and suppliers and insure that the Government is Nor*
informed in advance of each review.

The reviews shall be identified and discuss all pertinent aspects
of the reliabilty program such as the following, when applicable:

a. At the Software Requirements Review -.

(1) Identify reliability reuirements in terms of fault
density and failure rate (see Table TS1O1-1). ""

(2) Establish allocation of software reliability ,',-

requirements to software components (CSCI).

b. At the Preliminary Design Review (PDR):

(1) Update reliability status including: @

a. Reliability modeling .- *,

b. Reliability apportionment
c. Reliability predictions
d. Failure Modes, Effects and Criticality Analysis

(FMECA)
e. Reliability content of specification
f. Design guideline criteria
g. Other tasks as identified

(2) Other problems affecting reliability

(3) Reliability critical items program.

c. At the Critical Design Review (CDR):
(1) Reliability content of specifications .

(2) Reliability prediction and analyses 7-w

(3) Reliability critical items program

(4) Other problems affecting reliability

(5) FMECA

d. At Interim Reliability Program Reviews:

(1) Discussion of those items reviewed at PDRs and CDRs

(2) Results of failure analyses

4-21

0"e ,I . 4. *.'.
*% %

(3) Test schedule: start dates and completion dates

(4) Component design, reliability, and schedule problems

(5) Status of assigned action items

(6) Contractor assessment of reliability task
effectiveness

(7) Other topics and issues as deemed appropriate by the
contractor and the Government.

e. At the Test Readiness Review: %

(1) Reliability analyses status, primarily prediction

(2) Test schedule

(3) Test profile

(4) Test plan including failure definition S

(5) Test report format

(6) FRACAS implementation

A reference document is MIL-STD 1521A.

FAILURE REPORTING. ANALYSIS. AND CORRECTIVE ACTION SYSTEM
.~ ;,,.-.(FRACAS)

The contractor shall have a closed loop system that collects,analyzes, and records failures that occur for specified levels of
the software prior to acceptance by the procuring activity. The
contractor's existing data collection, analysis and corrective
action system shall be utilized, with modification only as
necessary to meet the requirements specified by the Government.

Procedures for initiating failure reports, the analysis of
failures, feedback of corrective action into the design,
manufacturing and test processes shall be identified. The -
analysis of failures shall establish and categorize the cause of
failure.

The closed loop system shall include provisions to assure that
effective corrective actions are taken on a timely basis by a
follow-up audit that reviews all open failure reports, failure S
analyses, and corrective action suspense dates, and the reporting
of delinquencies to management. The failure cause for each
failure shall be clearly stated.

When applicable, the method of establishing and recording
operating time shall be clearly defined. S

4-22

% % %

:+: 2:

i,'-J, ,."." .-_'-.. J. **
"-

,;'- . - .%J ~ .*- .',': .'-. ,. - *#% ', "." ,,,*.,* f _',, _fC' ~'. -. ' . .4" -.,, -f 'A.

-. F . .-

The contractor's closed loop failure reporting system data shall -
be transcribed to Government's forms only if specifically .
required by the procuring activity. Appendicies B. C, and D-. -.

provide appropriate forms. A reference document is MIL-STD 785B.. -:-

U- % ,.

FAILURE REVIEW BOARD (FRB) % %'-
The FRB shall review functonal/performance failure data from
bertrascie to and testing including subcontractor

qualification, reliability, and acceptance test failures. All .-'.-
failure occurrence information shall be available to the FRB. """'
Data including a description of test conditions at time of
failure, symptoms of failure, failure Isolation procedures, and ,'"

known or suspected causes of failure shall be examined by the _ J..

FRB. Open FRB identified items shall be followed up until '."
failure mechanisms have been satisfactorily identified and , <
corrective action initiated. The FRB shall also maintain and

disseminate the status of corrective action implementation and
effectiveness Minutes of FRB activity shall be recorded and
kept on file for examination by the procuring activity during the •
term of the contracta Contractor FRB members shall include -
anappropriate representitive to the FRB as an observer. If the

contractor can identify and utilize an already existing and
operating function for this task. then he shall describe in his
proposal how that function, e.g a Configuration Control Board
(CCB)k will be employed to meet the procuring activity
requirements This task shall be coordinated with Quality
Assurance organizations to insure there is no duplication of

effort. A reference document is MIL-STD 785B." :[

CRITICAL RELIABILTY COMPONENT IDENTIFICATION.....?
Based on the Software Reliability Program, the predictions and

estimations, and other analyses and tests, the contractor shall dscie.n i
identify these software components which potentially have high

risk to system reliability. Techniques such as Failure Modes, ,. .

Effects and Criticality Analysis (FMECA), Sneak Circuit Analysis :, €..
(SCA), Design and Code Inspections, Walk throughs, etc. are :%--
recommended to assist in this identification process. A
reference doucment is MIL-STD 785B.

TEST PROGRAM"""" "

The Reliability Program shall be closely coordinated with the

Test Programn The Test Program shall Include a Reliability
Qualification Test to demonstrate achievement of the reliability

requirements. The Test Program shall be specified by reference
to appropriate Military Standards. Reference documents are

MiL-ST7D 781C and MI1L-STD 2167A." "'"

TESTPR,.RA,

The,% Reliability .Prgram.shallbe.closely-coordinated-with.theTest Program. TheTest Program shall include a Reliability %

Qualification~~~ ~- TettMeosrt civeeto h eiblt

% %'%,?_

_ S t.

TASK SECTION 100

SOFTWARE RELIABILITY PREDICTION .

100.1 PURPOSE

The purpose of task 100 is to .-.

describe the general procedures for predicting software -.
reliabilty, in terms of FD based on character of the application
Development Environment and Software Implementation.

, @
100.2 DOCUMENTS REFERENCED IN TASK SECTION 100

MIL-STD 2167A

MIL-STD 2168 (proposed) .

RADC TR 85-37 •

RADC TR 85-47

MIL-STD 756B

MIL HDBK 217D @

MIL-STD 785B

100.3 PROCEDURES

Make Reliability Prediction . -"

Use the measurements in Tasks 101, 102, 103 and 104 to predict o.
reliability as follows:

* Project Initiation: Use metric A as prediction: Rp - A. •

9 Requirements and Design Phases: Use metrics A, D, SI:
RP - A'D*S1.

Coding Phase: Use metrics A, D, S1, S2: RP - A*D*S1*S2

100.3. 1 SYSTEM ARCHITECTURE

A system architecture diagram should be obtained or developed.
This diagram should show a high level allocation of software
components (typically at the CSCI level) to hardware components.
If available, control flow and or data flow diagrams prepared by •
the design team are valuable for preparation of the reliability . .
model.

TS-1

.... " %

'S 100.3.2 DEFINITION OF COMPOXNETS .-.

SEach software component to be modeled should be identified and
defined. This information is typically available in a system/
subsystem specification. See Section 4.9.2 of for a description
of suitable component levels.

100.3.3 RELIABILITY MODEL

Based on the system architecture diagram, the software components
allocated to hardware components can be identified. This
allocation should be overlayed on the hardware reliability block
diagram. The reliability block diagram shows interdependencies
among all elements or functional groups of the system. The
purpose of the reliability block diagram is to show by concise
visual shorthand the various series - parallel block combinations
(paths) that result in successful mission performance. A
complete understanding of the system's mission definition and 0
service use profile (operational concept) is required to produce
the reliability diagram.

At this point, two approaches can be taken. The first is to
utilize the prediction techniques described in Tasks 101 through
104 to calculate a Reliability Figure of Merit (RP)for each
component identified in the block diagram. This is typically
done at a CSCI level. The second approach is to model at a lower .',.

level the software processing within each software component.

100.3.3.1 Reliability Model 1

For each software component or component grouping on the block
diagram, follow tasks 101 through 104. These tasks provide the
procedures for calculating a predictive Reliability Figure of
Merit (RP) according to the following equation: ...

RP - A* D * S

where RP is the predicted fault density, A the application type -

metric, D the software development environment metric, and S the
software characteristic metric. A is expressed in (fractional) .
faults per line of code, and examples of actual values are
presented in Task 101. D and S are modification factors, and
each of these can have a value that is less than one (1) if the
environment or implementation tends to reduce the fault density,
or a value of greater than one if it tends to increase fault
density. These factors are equivalent to pi factors in MIL HDBK
217E. The Application Area metric represents an average or
baseline fault density which can be used as a starting
point for the prediction. The Tasks 101 through 104 are
preliminary procedures for prediction. The tables, coefficients,
and algorithms will be updated as a result of data collection and
statistical analyses being performed on more software systems.
Refer to Data Collection Procedures (Appendix B) and Worksheets

Z Z .Z . "."_ .Z

79~-~M~ T 7 7 1 * 7 M.- 777 * .7 - - 7 -. 7 1.777 777

(Appendix C and D) to comply with these prediction procedures.
This is a generic procedure and should be applicable to all
software components. .%-* .

100.3.3.2 Reliability Model 2 %

For specified software components, a detailed model based on a :
functional flow analysis can be developed. A functional decompo-
sition of the software component is required as well as a mission
thread analysis. For each subcomponent as defined, by the
procuring authority, the procedures described in 100.3.3.1 can be
used to devise an RP. The flow between these subcomponents with
individual reliability numbers can be modeled as a Markov
Process. RADC TR 85-47 describes this modeling approach.

100.4 SOFTWARE RELIABILITY PREDICTION

The results of using Reliability Model 1 or 2 is a prediction of
software reliability for each block in the system/hardware block
diagram. A description of the format and documentation required
for a block diagram is in MIL-STD 756B, Task Section 100. The
software reliability prediction numbers should be entered on the
block diagram and incorporated into the mathematical model of
that diagram. The use of these procedures and assumptions made
should be documented under paragraph 2.3.8.1, Software
Reliability Assumptions, in that task section.

When using Model 1, the predicted software reliablity figure of
merit is a fault density as described above. When using Model 2,
the predicted software reliability figure of merit is a A ." ." >
probability that the software will not cause failure of a mission 0
for a specified time under specified conditions. The probability •
of failure for a specified period of time is given by the failure
rate, the expected (average) number of failures per unit time,
usually taken as a computer- or CPU-hour. Because the failure
rate has a direct correspondence to the definition of software
reliability, it is selected as the primary unit of measure for S
software reliability.

The fault density, predicted by Model 1 is used as an early "

indicator of software reliability based on the facts that: (1)
the number of problems being identified and an estimate of size
are relatively easy to determine during the early phases of a
development and (2) most historical data available for software .
systems support the calculation of a fault density, but not
failure rate. Fault density is the number of faults detected (or
expected to be detected) in a program divided by the number of.
executable lines. Fault density was found to range from 0.005 to
0 02 in high quality software, in early research on software '.

reliability. The prediuton of fault density does not require
knowledge of the executlcn envlrcnment, and thus it is suitable .4.4.
for the early stages of software development. As informat ..n
about the intended execution environment becomes available, ':h"
predicted fault density can be translated into a predlo ,-,.!.

-v V. .

.---

failure rate.

The fault density cannot be used directly in the system block
model. Instead it can be used as an indicator for unreliable
components or critical reliability components. The fault density -
derived by the prediction methods can be compared to Table
TS101-1 which contains industry averages or with the specified
fault density requirement, if stated in the RFP. Actions can
then be taken In the early phases of development to remedy
pinpointed unreliable components through redesign,
reimplementation or emphasis and rework during test.

A transformation mechanism between fault density and failure rate
is based on the following. A faulty statement will not result in

- - a failure under any circumstances until it is executed, i.e.,
until it affects either the memory content or the control state
of a computer. Given that a fault exists, the probability of
initiating a failure is dependent on three characteristics of the
execution environment:

e Computer performance (throughput),

e Variaoility of data and control states, and

* Workload.

These characteristics affect both test and operation and the
metrics applied to them are discussed under separate headings
later.

The following three approaches can be used for the
transformation:

* Using established empirical values, such as are included
Z_ in Table TS1O1-1.

e Developing a theoretically based transformation function.

* Using in-house data to derive an empirical relationship.

As a baseline for the transformations discussed here, Table
TS101-1 provides currently available data. Using the Average
row, a transformation ratio of .1/.0094 - 10.6, operational
failure rate to fault density, is a baseline transformation
ratio. Examination of Table TS101-1 shows that for individual
application categories contributing to that average, the
transformation ratio ranges from 1.2 to 23. Table TS100-1 is

* provided as currently available transformation ratios for the
individual application areas.S

The second approach requires the following deviation and data
Mu collection. Practically all software failure rate models

postulate a direct functional relationship between the fault
content of a program and its failure rate. In the simplest case, .*.

_S

TS_.2

A kir

TATABLE TS3.8-

PROTRANSFORMATION FOR

FAULPMNTL DENIT TOFILRVATBE

AVRAE 10.2

TS-.'

TACTICL 13.
% % Z

SI - - "
% %*5

the functional relation is a constant, e.g., the failure (hazard)
rate is proportional to the expected value of the number of
faults remaining.

These relations permit the estimation of fault content, given the
failure rate, or vice versa. Two cases are the estimation of the

% number of faults removed in a give time interval (expressed in
terms of execution time). For the first of these we use:

'p.'L - Lo* exp (-Qt/No)

where L is the failure rate at time t, Lo is the initial failure
rate, Qt is a factor that iS considered constant in a given
environment, and No is the initial fault content. Given the
program size, the fault content can be converted to fault
density.

The number of faults removed during e time interval can be 0
obtained from:

n - Qi (L1 - L2)
% 6.

where n is the fault decrement, Qi a constant in a given environ-
ment and Li and L2 are the failure rates at the beginning and end
of the period over which the fault removal is estimated.

~~.1In spite of the mathematical simplicity of these formulas,
considerable effort is usually required to find values for the
constants Qt and Qi that are applicable to generic environments.

0
The tbird approach requires that failure rate data be collected
during operation of the software and compared with the fault
density recorded during the development. This is possible if
parts of the system are implemented prior to other parts, i.e.,
an incremental development, and those parts that are implemented
early are put through an IOT&E phase of testing. Another
situation where data may be available is in an environment where
a new system or a new generation of an old system is being
developed and existing fault density and failure rate data has
been collected on the existing system and can be compared with
the new development. Data Collection Procedures 5. 6, and 7 in
Appendix B can be used to calculate fault density.

If on~e of the empirical approaches (first and third approach) is
used, the computer throughput must be taken Into account if the
baseline is derived from a different computer than the target for
the intended application. Computer performance determines the
frequency with which statements are executed. All other things
being equal, a program continuously executing on a fast computer
will experience a higher failure rate than the same program
executing on a slower computer.

Failure rates expressed in computer-hours (also referred to as
wall-clock-hours) or CPU-hours are the most useful reliability

lp % %

* I..%
*-Y,

metrics in a given environment, but it must be recognized that:
the failure exposure of a program is dependent on the number of
executions rather than on passage of time. Thus, if one pass ,*.

through a program with a given data set takes 1 second on
computer A and 0.1 second on computer B, then the failure
exposure per unit tima imparted by the latter is ten times that
of the former. Other things being equal, one expects the failure
rate (expressed in common time units) in B to be ten times that 0.
of running the program in A.

The customary measure of computer performance is the instruction
processing rate expressed as MIPS (Million Instructions Per
Second). Although this relates to the native instruction set of
each computer, and is therefore not strictly comparable across
computer types, it can form a working basis for most Of the
transformations required for reliability prediction.

A faulty program executing on a computer, even on a very fast0
computer, will not experience software failures if it constantly 2.y.
operates on a data set that has already been run correctly. On
the other hand, introducing deliberate variability into the input .

data, as In a test environment, will accelerate the occurrence of
failures. Thus, metrics for capturing the variability of the
environment are an important component of the transformation

procedures.
The workload of the computer system affects the software failure
rate even if the execution frequency of a given program is held
constant (e.g., in a multi-tasking environment where the workload
is a composite of several programs). It has been found that at
very high workloads, the failure rate can increase by more than
an order of magnitude over the baseline (low workload) rate. ~ ~ *~

Suitable metrics are discussed in later sections.
%. *,.

The primary use of the transformation mechanism is to permit
reliability prediction using fault density level to be translated
to failure rate prediction.

100.5 DETAIL TO BE SPECIFIED BY THE PROCURING AUTHORITY.

a. Requirement of tasks 101 through 104.

b. Statement of reliability requirements.

c. Define the software component level for prediction
(different levels may be specified for each life cyle
phase).

d. Define life cycle phases to be covered and prediction
milestones.

e. Identify data collection procedures (see Appendix B of
this Guidebook). .

d. Identify fault density/failure rate transf'ormation
procedure to be used.

TS-7 ~

% % % %% N.% %0
'44~~~~~ W, .11 .. 44'~'''

~~~~.~~ v* %~ % " : . .
4 

j . . - ~ *~* ~ * . ~
'4444b 

N4 4'% '. 4~4 4 ~ 4 4 4



,5,

TASK SECTION 101
If J ,. #

SOFTWARE RELIABILITY PREDICTION BASED ON APPLICATION ""
-I

101.1 PURPOSE *%
% .

The purpose of task 101 is to provide a method for predicting a
baseline software reliability. *.

101.2 DOCUTS REFERENCED

See Task Section 100.

101.3 GENERAL PROCEDURES

APPLICATION TYPE (A) 0

Using Data Collection Procedure 1 (Appendix B) and the
corresponding Worksheet 0 (Appendix C), identify which
application the subject software represents. Assign the corre-
sponding fault density to A using Table TS101-1. Use the average
fault density column.

An initial RP - A. .'

- Z .
101.4 DETAIL TO BE SPECIFIED BY TEE PROCURING AUTHORITY.

a. Statement of reliability requirements.

b. Define the software component level for prediction C .".
(different levels may be specified for each life cycle
phase).

c. Define life cycle phases to be covered and predictionmilestones. .. ..

d. Identify data collection procedures (see Appendix B of
this Guidebook).

e. Identify fault density/failure rate transformation
procedure to be used. •

w, * o r

'V .

T S -8. ...'.. -

* . .- 5. ,. 5,



-4--.---w--- .p. ,-* ~ -. ' -~ ~ ~ v:~~'.- ~ ~.- w.- ~44 4~~* ~** ~
-. 4-.... -1

4..

4.'.,

a
.. 4.- 4.4

.1 .4.4..
Ut - a - - , - - n - -

'-p
.4....

~J '7 - 44,
_ - ~. .7 - - .4%-,

-4.. .~.

- -I
~ _ - %
~ z 4 I.

____ 3 4.-
4? - - - - - I..,.',
-'4.

A

4-.,,
.44/ ~4 '4-4

a -. 4, 4.
4/ ,-
4.., - -- .4--

.1 4*~. *.p

0..
.J. - ~ ',~ .7 - .7

0
-~

-~

U4.4.4

.4 -. J..> ,~
~ - _

~ ~2 4
a~. ~'. 4. 4.

-~

S
'4.I 4'~

.4
* >4.. ~ eN ~

- eN CN
-~ 

2 :
-~f 0

..1. .~

fa
* ~4~4~

.4.? >4 - *444~ 44

.4

I4~44 ~ 4I4 s -*444 ~ ~ - ~ 0
U. ;a~ .~ -_ eN
*4/ a ~ .7

'.-F'~ o* -~ ~ 0 ~ ~o.

* 4-- - eN

.1.4

4.. -

- eN
r- 4 eN - .7 ~re

44

44

-4

-~ '4 0
4.-,

z z
C

* .1. - 4 444444
- - ~4 >-

~ C ~ 4~4

- . - ~ .4,.

4. - z -, Z CZ >4
- - ~C ~j. ~ C
.1~ < j~ ~.2.J ~ ~ *s~ -

44

S

15-9 L

4%
.4-,

9
'4

~ '4 '4 '4 4 %V\'.%~ 4 ~ ~ ~ 7. 4 .. 7 .4

- 4 4 444~4*4 %'~.4%.% 4.. .4

- . .4. 4 4. . 4 ''4 "4 ~4 444. ~ k~=VA.4% ~ .4



% *%

TASK SECTION 102
SOFTWARE RELIABILITY PREDICTION BASED ON

DEVELOPMENT ENVIRONMENT

102.1 PURPOSE

The purpose of task 102 is to modify the baseline software
reliability prediction calculated in task 101 based on t11hc type
of development environment. . ,,

102.2 DOCUMENTS REFERENCED

* See task Section 100.

102.3 GENERAL PROCEDURES

DEVELOPMENT ENVIRONMENT (D)

Using Data Collection Procedure 2 (Appendix B) and the
corresponding Worksheet 1 (Appendix C), identify which class of
development environment is being used.

Three classes of development environments have been provided:

e Organic -- Software is being developed by a group that is
responsible for the overall application (e.g. , flight
control software being developed by a manufacturer of
flight control systems);

e Semi-detached -- The sof'tware developer has specialized
knowledge of the application area, but is not part of the
sponsoring organization (e.g. , network control software
being developed by a communications organization that does *

not operate the target network); and

*Embedded -- Software that frequently has very tight
performance constraints being developed by a specialist
software organization that is not directly connected with \ ~
the application (e.g., surveillance radar software being
developed by a group within the radar manufacturer, but
not organizationally tied to the user of the surveillance
information).

The baseline is the semi-detached environment. It is expected
that the organic environment will generate software cf lower
fault density and the embedded environment software of greater
fault density. Based on the selection, assign the coriespcrding
value, Do, to D from Table TS102-1.

D -Do

:7-?



TABLE TS102-1. DEVELOPMENT ENVIRONMENT METRICS .-

------------------ --------------------- -

i ENVIRONMENT I METRIC (FAULT DENSITY MULTIPLIER) Do  I
-------------------------------------------ft -------------------------
I Iiiil

ORGANIC .76

I SEMI-DETACHED 1 1.0

EMBEDDED 1.3

.--. .. . .- ;....
=------------------------------------------ --------------

If more specific data about the environment is available,
calculate D using the checklist in Data Collection Procedure 2
(Appendix B) for Development Environment. This modified approach
is based on specific organizational/personnel considerations,
methods used, documentation to be produced, and tools to be used.
Recalculate D as:

D - Dm

where Dm is calculated from the following:

Dm - (.109 Do + -.04)/.014, Embedded

Dm - (.008 DO + .009)/.013, Semi-detached ,- '

*- Dm - (-.018 Do + -. 003)1.008. Organic

where Dc - the ratio of methods and tools checked divided by the
total number of methods and tools in the checklist in worksheet
1. Dc is a ratio of methods + tools checked/38. Dc is a number
between 0 and 1. Dm should never be less than .5 or greater than
2. If the calculations result in a number less than .5, set Dm
.5. If the calculations result in a number greater than 2, set
Dm = 2 . " m ..-. "*b,

D - Dm

V PRgDITiTfl

An updated prediction is calculated by:

RP - A*D

102.4 DETAIL TO BE SPECIFIED BY THE PROCURING AUTHORITY.
01

, a. Identify data collection procedures (see Appendix B of
this Guidebook).

b. Specify whether a generic or detail development
environment factor is to be generated.

-% - --%

lo-I"

.. 0.'..

" / ''," #, " ," ," ' *' m # " , , ,
' .

• , . '. ' ,' -. " .F r,". " ..- ,' . '". - , "" . '" . ' -"j



%

TASK SECTION 103 " -

SOFTWARE RELIABILITY PREDICTION BASED ON SYSTEM/SUBSYSTEM LEVEL A.V
SOFTWARE CHARACTERISTICS ,.

103.1 PURPOSE

The purpose of task 103 is to modify the baseline software
reliability prediction calculated in task 101 based on the
software characteristics as they evolve during the requirements
and design phases of a development.

103.2 DOCUMENTS REFERENCED

See Task Section 100.

103.3 GENERAL PROCEDURES 0

SOFTWARE CHARACTERISTICS (S) *,

The Software Characteristic metric, S, is a product (composite)
of two submetrics;

S - S1*S2

Each one of which is in turn the product of several simple

metrics as shown below:

REQUIREMENTS AND DESIGN REPRESENTATION METRIC S1 - SA*ST*SQ S

Anomaly Management (SA) - optional

Traceability (ST) - optional-

Quality Review Results (SQ) - optional

SOFTWARE IMPLEMENTATION METRIC S2 - SL*SM*SX*SR

Language (SL) - recommended .'

Modularity (SM) - optional .

Complexity (SX) - recommended

Standards Review (SR) - recommended . -

S1 is described in this task. S2 is described in task 104.

Note: These metrics and their corresponding impact on the
reliability prediction are based on data collected from..

z,. ... .,

'- '-i"<""i " ." ": ."-. " ." "' ". . " '."" "" "" "'-" . . .. . " " " " . .. . . . . " " - . .. - .. . -' '- " <.S- ============================ .%:i:I. .:*.:.



several projects. Those identified above as recommeded ,
have exhibited consistency good predictive results. Those -..

listed as optional provide the reliability engineer ,-
additional information upon which to base the prediction
but because either their predictive qualities have been
inconsistent or they are based on a limited sample size,
they are not recommended.

A description of the procedures for calculating these metricsfollows. %%%

Anomaly Management (SA) - optional

* Apply Data Collection Procedure 3 (Appendix B) and the
corresponding Worksheet 2 in Appendix C to the -
Requirements and Design Specifications of the subject -.
project. Answer all questions related to Anomaly -. -.-

Management (AM.l through AM.7).

" Calculate the Anomaly Management Metric using the follow-
ing equation: ..*-. S..

SA - .9 IF AM > .6
-1 IF .6 '> AM ) .4
-1.1 IF AM < .4

where AM equals the score received using the worksheet.

" Note that SA is applicable at SPR, PDR, CDR, and during
coding. The appropriate worksheet should be used
depending on the reliability prediction milestone to
calculate the AM metric.

Traceability (ST) - optional

Apply Data Collection Procedure 4 (Appendix B) and the -
corresponding Worksheet 3 in Appendix C to the
Requirements and Design Specifications and code of the
subject project. Answer the traceability questions. If ..
unable to answer, use following substeps: . 5

- Itemize all specific requirements in Requirements
Specification.

- Count the number of individual requirements (NR). See
Data Collection Procedure 7 in Appendix B.

Review Design Specification and identify specific
design statements that represent the fulfillment of a
specific itemized requirement (a requirements derivi- 0
tive).

Count the number of requirements not addressed by
design that should have been (DR).

%-S %% %

%,,-- - * * * .. , .'..*'* '''....'t'. .i .' ' _.. r.o "' t A J .- - .5.'.* ' .''-.,.. °. " -. -.-- -S .- .- ,,. -,-.-. , .-.- ,5SI . ~.. --..-- S ~- fff:,. .' . % 5,5% , .'.', ,., ... . f.<.',.



* ' - '-. - - - -- -- -. * E. 0

0 Calculate ST as follows:

ST - 1.1 IF XE-m.DR '.9

NR

- 1 IF n-zDR , .9
NR

Quality Review Results (SQ) - optional #.

*Apply Data Collection Procedure 5 (Appendix B) and the
corresponding Worksheet 10, in Appendix D of this report
to the Requirements and Design Specifications of the
subject project. Answer all questions related to Accuracy *~

(AC.1), Completeness (CP.1), Consistency (CS.1, CS.2) and
Autonomy (AtJ.1, AU.2). 0

*Identify discre ancies. Total the number of discrepancies
identified (DR. See Data Collection Procedure 12 in
Appendix B and Worksheet 5 in Appendix C.

* Count the number of individual requirements (NR). See
Data Collection Procedure 6 (Appendix B) and Worksheet 3
in Appendix C.

" Calculate the SR metric using the following equation:

During Requirements
and Preliminary a
Design:

SQ =1.1 IF DR .5
NR

1 I F DL. .5
NR

During Detailed
Design: SQ -1.1 if DR .

NM

-1 if DR-, .5
NM

PRDCTIO

If these optional metrics are applied, then an updated prediction
is calculated by:

% %

% %

*~~ ~~~ %S . % . a ~~ . a . * ' ' a - - . a . -' / a



RP - A*D*S1

103.4 DETAIL TO BE SPECIFIED BY THE PROCURING AGENCY

a. Identify data collection procedures (see Appendix B).

b. Specify that requirements shall be traced throughout
dvelopment.

W..~

N N

% %%.

%

'w

OF

% %

% %~



TASK SECTION 104

SOFTWARE RELIABILITY PREDICTION BASED ON CSC/UNIT
LEVEL CHARACTERISTICS

104.1 PURPOSE

The purpose of task 104 is to modify the baseline software
reliability prediction calculated in task 101 based on the
software characteristics as they evolve during the coding phase J
of a development.

(This task can only be specified if Task 103 is also specified. -.-
See Task 103 for algorithm for nmlbining the sr. \'i .i t' ,s
computed in Task 104.)

104.2 DOCUMENTS RHFERENCED
0

See Task Section 100

104.3 GENERAL PROCEDURES

For each of the following metrics calculate their influence on
software reliability. Note that some metrics are recommended and '.

some are optional. See Task 103 (Note) for an explanation of the
optional metrics.

Language Type (SL) - recommended

9 Identify the total number of executable lines of code
(SLOC) in the system (estimated or actual), the number of 0
assembly language lines (ALOC), and the number of higher -'-
order language lines (HLOC). Use data collection proce-
dure 6 and 8 in Appendix B and Data Collection Worksheet 4
in Appendix C.

* Use the following equations to calculate the language
metric

SL - HLOC/SLOC + 1.4 * ALOC/SLOC

Modularity (SM) - optional

* Count the number of modules in the system (NM) and the
lines of executable code in each module (MLOC(i)). Use
data collection procedure 9 in Appendix B and Data
Collection Worksheet 4 in Appendix C.

0 Table TS104-2 illustrates the impact on the predicted .
reliability by the number of modules in each size -
category.

* Use the following equation to calculate modularity:

-z.

• N '
9 .9*4'

'. -.

,, . .% " ." .* . ... 'o,." .. ... '. ' .. -° " - .. -% .- -.- . . ." . . .. %. .. ' ". ,,. ,, q ."%,- . ,,. ,. ,% , % .% . %, ,% ," •,°

,-" - ,-" --" - ... .. . . . . . . . . . . . ..".".."..v.".. .. . . . . . . . . . . . . . . . . . . . . .'...' ...,.,..-... .'.. . . . . . .. . . . . . .-- ,..,.,.. . . . . . .... .f.. .-... .".. .-.. . . . .- ,%*-,"..'.-...,'



P 0"

SM - (u*.9 + w + x*2)/NM V~-

where NM - u + w + x

TABLE TSIO4-2. MODULE CATEGORIES

--------------------------------------------------- +

I SIZE CATEGORY I NUMBER OF MODULES I MODULARITY I
I IN SIZE CATEGORY I METRIC (SbM) I

+--------------------------------------------------------------------------------------

LOC (200 u I .9 .

1I20<LOC ( 300 1 w 1I

1 3,000OOLOC x 2

------------------------ ---------------------------

Complexity (SI) - recommended

* Apply McCabe's complexity measure to each module in the
system (sx(i)). Use data collection procedure 10 in
Appendix B and Data Collection Worksheet 4 in Appendix C.

* Use the following equation to derive system complexity
multiplier:

SI - (1.5(a) + 1(b) + .8(c))/ NM

where
a - number of modules with a complexity greater

than 20.

b - number of modules with a complexity between
7 and 20.

o - number of Modules with a complexity less
than 7.

NM -the total number of modules -a + b + c.

Standards Review (SR) -recommended

* Apply data collection procedure 11 (Appendix B) and-
corresponding Worksheet (11) in Appendix D to the code.S
Answer all questions related to SI.1, S1.2, SI.4, S1.5,
MO.1, NO.2.

* Identify the number of modules with problems (PR)

TS-17 -

IR .%. .R*

% % % 4 RV,%%



,- - v, ,,

Calculate this metric as follows: **5,'-',%W

SR - 1.5 if PE > .5
NM

1 if .50 PR .25
NM

.75 if ER ( .25

NM

PRDICTIO~

Based on the application of these metrics, an updated prediction
is calculated by:

RP - A * D * S1 S2 S

If optional metrics are not used then assign a value of 1 to
their multiplier.

104.4 DETAIL TO BE SPECIFIED BY THE PROCURING AGENCY

a. Identify Data Collection Procedures (see Appendix B). ...

TS-

- .%- g
r.'- *.*

.' % %,'

-"..,,& % ,T. - l,' r-. .f./

, 0,j,.J,

. . . "° .. . . ,. % % .. . • % . • %, . % % ". . "% . . . . .. . . . . . . . . %. • % % %"



TASK SECTION 200
SOFTWARE RELIABILITY ESTIMATION * .

200.1 PURPOSE

The purpose of task 200 is to describe the general procedures for
estimating software reliability during testing.

200.2 DOCUMJdBTS REFERENCED IN TASK SECTION 200

MIL-STD 2167A *-

RADC TR 83-11
RADO TR 84-53
MIL-STD 756B
MIL-STD 785B

* 200.3 GENEXRAL PROCEDURES

200.3.1 RELIABILITY MODEL

The general block diagrams applicable to software reliability ...

prediction can also be used for software reliability estimation.
For each block In the diagram (at a level where a block is a
processing component like a computer), software reliability
estimaton is going to be based on performance results during
test conditions.

Once software is executing its failure rate can be directly
observed and a transformation is no longer required.

The failure rate of a program during test is expected to be
affected by the amount of testing performed, the methodology
employed, and the thoroughness of the testing. The following
models are applicable to an estimation of the failure rate based
on results from the test environment.

Estimating software reliability for a software component (whether
it Is at a system level where all software operates on one CPU or
at a CSCI level with CSCI's operating on various CPU's) can be
approached in two ways. The two approaches are described in the
following paragraphs. Each requires observing the failure rate
and testing time. Data collection procedures 12, 13, and 14 in
Appendix B are used for measuring the software failure rate.

200.3.1.1 Reliability Estimaation Modeling Approach 1

Several models have been suggested for relating failure
a. experience to execution time (see RADC TR 83-11). The Musa model

as an example, assumes that the failure rate is proportional to
the number of faults in a segment, and that the number of faults
is being reduced every time a failure is encountered (not.. .

necessarily one fault removed for every failure encountered).
This leads to an exponential distribution of faults with

%:



- dy- %V. '%_

execution time, a one parameter distribution in which the scale
parameter can be estimated by established methods. In spite of
substantial evidence that the execution time to encounter a fault
can vary by several orders of magnitude, the Musa model seems to
yield acceptable results for the test and early operational .r
phases. The general prediction and estimation methodology can
be used with any other execution time based model (RADC TR ,83-i1l). , --

The failure rate during test, F, is given by

F - Lo exp(- Li * t)

where the amount of test time, t, is measured in terms of
CPU-time, based on a 32-bit, 10 MIPS execution. L0 and Li are
the scale parameters proportional to the fault density. Any of
the models described in RADC TR 83-11 can be used to model the
failure rate observed during testing. Once modeled, the time - -.

until an acceptable failure rate is achieved can be calculated
and operational performance can be estimated.

le% I r200.3.1.2 Reliability Estimation ModelinJg Approach 2

This approach does not use the models described in 200.3.I.I. It
uses the failure rate observed during testing and modifies that S
rate by parameters estimating the thoroughness of testing and the
extent to which the test environment simulates the operational
environment. This is the approach used in Task Section 201 of
this guidebook. %

The estimated failure rate then is

F -FT1 * T1 or

FT2 * T2

where FTI is the average observed failure rate during
testing.
and FT2 is the observed failure rate at end of test.

T1 -. 02* T

T2 " .I4 * T -

and T - TE * TM * TC

where TE is a measure of test effort, TM is a measure of
test methodology and TC is a measure of test coverage.
Definitions and calculation of these measures is in task...
201.

The most significant aspect of the test environment is that it '.' *..-

represents a deliberate increase in the potential for detecting

r s- 2 o "- L ..'['%

TS-20
%. JA



failure by: * 0

eConstruction of test cases that represent a much higher
variability of the input and control states than is .'

expected in operation;

a Close scrutiny of the computer output so that practically

of~ all failures that do occur are detected; and

eCreating a high workload, particularly for stress tests,
which increases the probability of failure.

Empirical data has shown that the average rate during test is 50
times greater than during operation and the failure rate at end

oftest is approximately 7 times that observed during operation.
The .02 term in the Ti equation and the .14 term in the T2
equation above represent these observations.

The stress the operating environment will have on the software
also must be taken into account. The basic failure rate relation
for the initial operating environment is similar to that devel-
oped for the test environment except that the operating environ-
ment metric, E. replaces the test environment factor.

F - FT2 *ST 2 * E

Here T2 is .14 and the baseline value for E is 1. Modifiers for%
%*"p

the operating environment factor arise from variability of the
data and control states (EV) and from workload (EW) as discussed
in task 202.

200.4 DETAILS TO BE SPECIFIED BY PROCURING ACTIVITY0

a. Requirement of tasks 2," .nd 202. .%

b. Definition of test phases to be used.

c. Definition of qualification test requirements.

d. Statement of requirement for discrepancy reporting.



TASK SECTION 201,

RELI ABILITY ESTIMATION FOR TEST ENVIRONMENT

201.1 PURPOSE

The purpose of task 201 is to describe the procedures for
estimating what the operational reliability will be based on
observed failure rate during testing.

201.2 DOCUMENTS REFERENCED IN TASK 201

See task Section 200.

201.3 GENERAL PROCEDURES

The influence the test environment has on the estimate of failure
rate is described by three parameters described in the following
paragraphs. *

Several characteristics of the test environment are accounted for
in the estimation of reliability. The observed failure rate may ' .

not accurately represent what the operational reliability will be
because:

*The test environment does not accurately represent the
-. operational environment,

*The test data does not thoroughly exercise the system
thereby leaving untested many segments of the code,

9 The testing techniques employed do not thoroughly test the
system, and

e The amount of testing time does not allow for a thorough
test of the system.

These characteristics are taken into account by the metrics to be
discussed in this paragraph. In each case the metrics will be in ,

the form of a multiplier, the product of all of these to be used
to adjust the observed failure rate (FT) up or down depending on
the level of confidence in the representativeness and thorough-
ness of the test environment.

DETERMINATION OF FAILURE RATE DURINGJT~qT

Using Data Collection Procedures 12, 13 and 14 in Appendix B and
Data Collection Worksheets 5 and 6 in Appendix C, calculate the
current average failure rate during testing (FT1). The average
failure rate during testing can be calculated at anytime during
formal testing. It is based on the current total number of
discrepancy reports recorded and the current total amount of test

TS-)2*.

%L %



rj. - -7
Iw 

P- %

,..? ", % -

operation time expended It is expected that the failure rate

will vary widely depending on when it is computed. For more
consistent results, average failure rates should be calculated
for each software test phase: CSC Integration and Testing, CSCI
Testing; and, if required, for each system test phase: Systems
Integration and Testing, and Operational Testing and Evaluation. "-

If the estimation is being made at the end of testing prior to OW
deployment of the system, the estimation can be based on the
failure rate observed at the end of CSCI testing (FT2). The
failure rate calculation in this case is based on the number of
discrepancy reports recorded and amount of computer operation

L time expended during the last three test periods of CSCI testing. -

Data Collection Procedure 14 should be used to calculate FT1 and
FT2.

ESTIMATE SOFTWARE RELIABILITY

Using the currently observed average failure rate during testing,
an estimate of the operational failure rate can be calculated by:

F - FT1 T I

where T,- .02 *TE*TM*TC

The multipliers TE, TM and TC are determined as follows:

Test Effort (TE) - optional 0

e Three alternatives are provided for measuring test effort.
The choice will primarily depend on availability of data.
Data Collection Procedure 15 is in Appendix B and
Worksheet 6 in Appendix C aid in the collection and
calculation of this metric.

The preferred alternative is based on the labor hours -.z
expended on software test. As a baseline, 40% of the
total software development effort should be allocated
to software test. A higher percentage indicates
correspondingly more intensive testing, a lower
percentage less intensive testing.

- The second alternative utilizes funding instead of
labor hours.

- The third alternative is the total calendar time
devoted to test. •

* The metric, TE, will be set based on observing these three
characteristic during the validation phase of the project. ...

Use data collection procedure 15 (Appendix B). The three ..

characteristics impact TE as follows:

% % % % %N%.%

%" %,% % %

.%'% %

% ~'-a 4'%' ,4

! ,Ik £ ! K, I ± | - - " 1I - - o. . . .r -



::...-:*
• .w W. 4 w . i

if 40/AT _1
@

where AT - the percent of the development effort
devoted to testing, then TE - .9

or if 40/AT _ 1 -'*- :'

where AT - the percent of the development schedule
devoted to testing, then set TE - 1.0.

Test Methodology (TM) - Optional -'

* The test methodology factor, TM, represents by the use of
test tools, and test techniques. In most cases the tools,
and techniques are being operated by a staff of special-
ists who are also aware of other advances in software test
technology. 0

9 In the Software Test Handbook, RADC TR 84-57, a technique
to determine what tools and techniques should be applied
to a specific application is provided. That technique is
illustrated in Figure TS201-1 and results in a recommended %,,
set of testing techniques and tools. The approach is to
use that recommendation to evaluate the techniques and
tools applied on a particular development. Use Data
Collection Procedure 16 and Worksheet 7. This evaluation
will result in a score that will be the basis for this ._ -
metric as follows:

TM - .9 for TU/TT ) .75 V~

TM - 1 for .75 TU/TT > .5
TM- 1.1 for TU/TT ( .5 ,.

where TU is the number of tools and techniques used and TT
is the number recommended.

Test Coverage (TC) - Recommended

e This metric assesses how thoroughly the software has been 0
exercised during testing. If all of the code has been
exercised then there is some level of confidence estab-
lished that the code will operate reliably during opera-
tion. Typically however, test programs do not maintain
this type of information and a significant portion (up to
40%) of the software (especially error handling code) may •
never be tested. Use data collection procedure 17 and
Data Collection Worksheet 8.

* This metric can be calculated in three ways depending on

%S %* V -.I
* . . . . . .- . . "-: .* .- ; \- %

. ,'. . . r 4 .,t'. '. . . '. ,r [ _ ,'..w .,' . ," _ ,' _ r, ,,, ', . ,'. _.,'. _ . ,'- .' . . . . . - . . . . - . . • . . ' . . . - ,, -. . , . .- .- -. - . . ,, ., . .- . .



.

.~% w%.%

W-7. " -

. APPROACH I APPROACH 2 APPROACH3

DETERMINE IDENTIFY
TESTING ERROR TYPES

. CONFIDENCE 2 T
LEVEL TO BE AVOIDED

SELECT SELECT

SOFTWARE TEST
CATEGORY 

OBJECTIVES..-.-.
APPROACH

DOCUMEN TED
IN SOF TWA RE

TEST
HANDBOOK

DETERMINE [PRES4],

APPROPRIATE* 

,,,"

TESTING* 

.-

T E C H N IQ U E S 
% e% '

-''-- "
...-..

,% % %

DETERMINE
APPROPRIATE _'.

EST TOOLS -

EVALUATE..

EVELOPERS"" 

'"

APPROACH 

-" "

--- %- '-a

m - .%. m

TEST"

METHODOLOGY . .

EVA L UA TION 0
METRIC

SCORE APPROACH
VERSUS

RECOMMENDED
TECHNIQUES &

TOOLS

FI(;URE TS201-I [[ST ML [1())()( \SSESS\1ENT APPROACH

TS - 2 ."

* - - . . . .. . . . . . . . . . J - -. C C,

. .% * . . . ~. . S. . .. .* - .. •* . ,. ........ ., . ,. . ..... •. .* * * . -. . .. . .. S. . • . S.... . -• , % •. ,



the phase of testing as follows: '..

Tc- /vs
where VS - VS1 during CSC testing -

- VS2 during CSC integration and test . .
- VS during CSCI testing..

, - .

and .. A>W
VST - (PT/TP + IT/TI)/2

where PT - execution paths tested.
TP - total execution paths ,
IT - input testedng 0 tes

TI - total number of inputs %. .
VS2 - (MT/NM + CT/TC)/2

MT - units tested tested 4'

NM - total number of units -

CT - interfaces tested
TC - total number of interfaces

VS3 - RT/NR
RT - Requirements tested
NR - total number of requirements

An updated reliability estimation can be made using these

multipliers at the end of test by using:

F - FT2 * T2 "" "

where T2 - .14 RTE*TMTC

A comparision of the predicted fault density (determined using "" "
Tasks 101 through 104) with the actual fault density realized can-' -.
be made. Using Data Collection procedure 7 in Appendix B. the : -"fault density realized is the number of discrepancy reports
reported during testing divided by the total number of executable . . "

lines of code in the system. A comparison of the predicted
failure rate, transformed from the predicted fault density, canalso be made with the estimated failure rate calculated in this

task. Significant variation in these values suggests that .'"••analyses be conducted to evaluate the differences. Consistent
values suggests accurate predictions and estimations. ...'

201.4 DETAILS TO BE SPECIFIED BY THE PROCURING AUTHORITY. •-.:-.
a. Define the software component level for estimation

(different levels may be specified for each life cyclepd e at n y t

phase ).- •-.'

Tas- Define lfe cycle phases to be covered and estimation ..

milest ones." " ' '

Cb Identify data collection procedures (see Appendix B cf-
this Guodebook) s e A m o ftd e

.. .%,..

%~ %•' %.

. [ failure rate,. transformed from the predicted fault . . density'•.'., can " .",',



~~.%%.*.7'7*0.*.7.P.*777 
.-. F. It %

%

%

TASK SECTION 202

SOFTWARE RELIABILITY ESTIMATION FOR OPERATING ENVIRONMENT .

202.1 PURPOSE.

The purpose of task 202 is to describe the procedures for
estimating what the operational reliability will be based on
estimates of the operational environment and the observed failure 6N 1
rate at the end of test. -14-

202.2 DOCUMENTS REFERENCED IN TASK SECTION 202

See Task Section 200.

202.3 GENERAL PROCEDURES

Two factors are accounted for in estimating the failure rate for
the operational environment: the workload expected and the input
variability. These both represent expected stress on the system.

ESTIMATESOFTWARE RELIABILITY . .

Using the end of test failure rate (see Task 201 and Data
Collection Procedure 14 in Appendix B), FT2, an estimate of the .
operational reliability is calculated as follows:

F - FT2 *T2 *E

where FT2 is the failure rate at end of test

T 2 - .14

E - EVSEW, modifiers representing stress of input .
variability, EV, and workload, EW.

The modifiers are calculated as follows: ... ,.-

VariaIit__0f Data and Control State (EV) - Recommended

Software that is delivered for Air Force use should be
essentially fault free for nominal data and control
states, i.e.. where an input is called for, an input fully
compliant with the specification will be present; when an
output is called for, the channel for receiving the output -.
will be available. A major factor in the occurrence of
failures, and therefore affecting the failure rate, will
be the variability of input and control states. •

a The frequency of exception conditions as a measure of
variability is used here. Exception states include: .*.

- Page faults, input/output operations, waiting for

P ............... .. . ....................



0

completion of a related operation -- the frequency of
all of these is workload dependent and the effect on
software reliability is discussed in the next
paragraph; ,

- Response to software deficiencies such as overflow,
zero denominator, or array index out of range; and

- Response to hardware difficulties such as parity

errors, error correction by means of code, or noisy
channel.

The last two of these are combined in the input variability .- J
modifier f or the operating environment, EV. Data illustrated in
Table TS202-1, indicates that approximately 1,000 exception
conditions of the latter two types were encountered in 5,000
hours of computer operation. A value of 0.2 exception conditions
per computer hour has therefore been adopted as the baseline, to .

be equated to unity. Because failures may arise even if no 'j
*exception conditions at all are encountered, it is desirable to
* bias the modifier to a small positive value. The suggested form

is
EV - 0.1 + 4.5EC

where EC is the number of exception conditions per hour. For EC
- 0.2, EV - 1. Use Data Collection Procedure 18 (Appendix B).

Wnk~a (EW) - Recommended ,o

Significant effects of workload on software failure rate have
been reported. The hazard function, the incremental failure rate -

due to increasing workload, ranges over two orders of magnitude.

For military applications, workload effects can be particularly
important. During time of conflict, the workloads can be
expected to be exceptionally heavy, causing the expected failure
rate to increase, and yet at that same time a failure can have .

the most serious consequences. Hence, predictions of failure
rates that do not take workload effects into account fail io
provide the information that Air Force decision makers need.

The mechanism by which workload increases the failure rate is not
completely known, but it is generally believed to be associated
with a high level of exception states, such as busy 1/0 channels,
long waits for disk access, and possibly increased memory errors
(due to the use of less frequently accessed memory blocks). Data
show that the highest software (and also hardware) failure rates
were experienced during the hours when the highest levels of
exception handling prevailed.

Details of workload effects on software failure rate are still a
research topic, and no specific work in that area has been-.
included in this Guidebook. The estimations will be based on
published work, such as Figure TS202-1. The quantity plotted

F S -0



+ .- ... %l

.%

a 0 %-,

% ? ~

0

C.

% %



along the vertical axis is the inherent load hazard, z(x),

defined as:

Probability of failure in workload interval (x, x+ delta
x)/Probability no failure in interval (O,x). -I

It measures the incremental risk of failure involved in
increasing the workload from x to x+delta x.

The horizontal axis shows three different measures of workload:

- Virtual memory paging activity, number of pages read
per second (PAGEIN); 

oak

- Operating system overhead, fraction of time not
available for user processes (OVERHEAD); and

- Input/output activity, number of non-spooled Input/
m, tput operations started per second (SIC). V

These graphs provide an option of estimating workload effects by v- -
any of the indicators of workload used here. The fraction of
overhead usage is probably the most commonly obtainable quantity.
From a practical point of view, before a computer installation
becomes operational, the fraction of capacity to be used at •
maximum expected workload is probably the only indication of this
factor that will be available early in the development. Data
Collection Procedure 19 in Appendix B and Worksheet 9 in Appendix
D should be referenced.

The workload metric takes the form

EW ET/(ET-OS)

where ET - Executive Time
OS - Operating System Overhead time

S

202.4 DETAIL TO BE SPECIFIED BY THE PROCURIG AUTHORITY.

a. Define the software component level for estimation "-: S.--
(different levels may be specified for each life cycle
phase). CSCI level is recommended.

b. Define life cycle phases to be covered and estimation
milestones. " --

c. Identify data collection procedures (see Appendix B of d "
this Guidebook).

• %'. ..,*"

C t'' '-
S-°':'



.,, .,- . )

APPENDIX A

DEFINITIONS AND TERMINOLOGY .,- '
% %

This appendix presents definitions of the principal terms and Z.
concepts used in this report. Where possible, the definitions .%

are taken from established dictionaries or from the technical
literature. Where a rationale for the selection or formulation
of a definition seems desirable, it is provided in an indented
paragraph following the definition. The sources for the defini-
tions will be found in the list of references at the end of this
Guidebook.

ERROR - A discrepancy between a computed observed, or measured
value or condition and the true, specified, or theoretically % %% %

correct value or condition. [ANSI81]

This definition is listed as (1) in the American National
Dictionary fcr Information Systems. Entry (2) in the same
reference states that error is a "Deprecated term for
mistake'. This is in consonance with [IEEE83] which lists
the adopted definition as (1) and lists as (2) "Human action
that results in software containing a fault. Examples
include omission or misinterpretation of user requirements in
a software specification, incorrect translation or omission
of a requirement in a design specification. This is not a
preferred usage." % N *.

FAILURE - The inability of a system or system component to .

perform a required function with specified limits. A failure may
be produced when a fault is encountered. [IEEE83]

This definition is listed as (2) in the cited reference which
lists as (1) "The termination of the ability of a functional '

unit to perform its required function" and as (3) "A
departure of program operation from program requirements". -"
Definition (1) is not really applicable to software failures
because these may render an incorrect value on one iteration 0
but correct values on subsequent ones. Thus, there is no
termination of the function in case of a failure. Definition . ,

(3) was considered undesirable because it is specific to the -
operation of a computer program and a more system-oriented -':<<
terminology is desired for the purposes of this study.

FAULT - An accidental condition that causes a functional unit to-"
fail to perform its required function. [IEEE83]

This definition is listed as (1) in the cited reference which
lists as (2) "The manifestation of an error (2) in software.
A fault, if encountered, may cause a failure". Error (2) is 9

A-1

%pi, % -% % 1 I A l r I*h***i -. *



identified as synonymous with "mistake". Thus this defini-
tion states that a fault is the manifestation in software of A
a (human) mistak~e. This seems less relevant than the
Identification of a fault as the cause of a failure in the -
primary definition. It is recognized that the presence of a
fault will not always or consistently cause a unit to fail
since the presence of a specific environment and data set may
also be required (see definition of software reliability).

MISTAKE - A human action that produces an unintended result.
[ANS181]

SOFTWARE QUALITY FACTOR - A bioad attribute of software that
indicates its value to the user, in the present context equated
to reliability. Examples of software quality factors are .,, ~.
maintainability, portability, as well as reliability. May also
be referred to simply as factor or quality factor. [Based on
MCCA801

SOFTWARE QUALITY METRIC - A numerical or logical quantity that ®
measures the presence of a given quality factor in a design or
code. An example is the measurement of size in terms of lines of
executable code (a quality metric). May also be referred to
simply as metric or quality metric. A single quality factor may
have more than one metric associated with it. A metric typically
is associated with only a single factor. [Based on MCCA80]

SOFTWARE RELIABILITY - The probability that software will not
cause the failure of a system for a specified time under speci-
fied conditions. The probability is a function of the inputs to
and use of the system as well as a function of the existence of
faults in the software. The inputs to the system determine
whether existing faults, if any, are encountered. [IEEE831

This definition is listed as (1) in the IEEE Standard
Glossary. An alternate definition, listed as (2), is "The
ability of a program to perform a required function under -

stated conditions for a specified period of time." This
definition is not believed to be useful for the current
investigation because (a) i s not expressed as a proba-
bility and therefore cannot be combined with hardware
reliability measures to form a system reliability measure,
and (b) it is difficult to evaluate in an oblective manner. .

The selected definition fits weil with the methodology for
software reliability studies which will be followed in this '-5-

study, particularly in that it emphasizes that the presence
of faults in the software as well as the inputs and condi-
tions of use will affect reliability.

SOFTWARE RELIABILITY MEASUREMENT - The life-cycle process of
establishing quantitative reliability goals, predicting, measur-
ing, and assessing the progress and achievement of those gcals
during the development, testing, and O&M phases of a software
system.

A-2

.-''.:.

0



--- -J %d-'

SOFTWARE RELIABILITY PREDICTION - A numerical statement about the
reliability of a computer program based on characteristics of the
design or code, such as number of statements, source language or
complexity. [HECH77]

Software reliability prediction is possible very early in the y.. ...

development cycle before executable code exists. The numeric
chosen for software reliability prediction should be compat-
ible with that intended to be used in estimation and measure-ment.

SOFTWARE RELIABILITY ESTIMATION - The interpretation of the
reliability measurement on an existing program (in its present -

environment, e.g., test) to represent its reliability in a
different environment (e.g., a later test phase or the operations
phase ). Estimation requires a quantifiable relationship between
the measurement environment and the target environment. [HECH77]

The numeric chosen for estimation must be consistent with
that used in measurement.

SOFTWARE RELIABILITY ASSESSMENT - Generation of a single numeric
for software reliability derived from observations on program -

execution over a specified period of time. Defined sections of -.

the execution will be scored as success or failure. Typically,
the software will not be modified during the period of measure-
ment, and the reliability numeric is applicable to the measure-
ment period and the existing software configuration only. 0

* IHECH77]

The statement about not modifying the software during the
period of measurement is necessary in order to avoid committ-
ing to a specific model of the debugging/reliability
relation. In practice, if the measurement interval is chosen
so that in each interval only a small fraction of the
existing faults are removed, then the occurrence of modifica- *.-

tions will not materially affect the measurement.

PREDICTIVE SOFTWARE RELIABILITY FIGURE-OF-MERIT (RP) - A .'.

reliability number (fault density) based on characteristics of
the application, development environment, and software implemen- .

tatLon. The RP is established as a baseline as early as the
concept of the system is determined. It is then refined based on
how the design and implementation of the system evolves.

RELIABILITY ESTIMATION NUMBER (RE) - A reliability number
(failure rate) based on observed performance during test condi- .,.
tions.

FUNCTION; - A specific purpose of an entity or its characteristic
action. [ANSI81] A subprogram that is invoked during the
evaluation of an expression in which its name appears and that
returns a value to the point of invocation. Contrast with •

A-3

% %

**5~~~~ ~~ %. %%* %-- * . . . . . .. . . . .~ -~5 ~



.% _' %.04 %'. .%
subroutine [IEEE83] .-',%. ,%-,w

MODULE - A program unit that is discrete and identifiable with
respect to compiling, combining with other units, and loading; I
for example, the input to, or output from, an assembler,
compiler, linkage editor, or executive routine. [ANSI81] A
logically separable part of a program. [IEEE83]

%.. .'.

SUBSYSTEM - A group of assemblies or components or both combined ..to perform a single function. [ANS173] In our context, a sub-

system is a group of modules interrelated by a common function or
set of functions. Typically identified as a Computer Program
Configuration Item (CPCI) or Computer Software Configuration Item
(CSCI). A collection of people, machines, and methods organized
to accomplish a set of specific functions. [IEEE83] An inte-
grated whole that is composed of diverse, interacting, special-
ized structures and subfunctions. [IEEE83] A group or subsystem
united by some interaction and interdependence, performing many
duties but functioning as a single unit. [ANS173]

SYSTEM - In our context, a software system is the entire collec-
tion of software modules which make up an application or distinct -":

capability. Along with the computer hardware, other equipment
(such as weapon or radar components), people and methods the
software system comprises an overall system.

..

N'' %

%~% %' % ° A

a " 5"'%

o".' S .

..

0.-.:Q

S ,* .2'

%-% '.-. , .,'*. " ",',,-w%., .,-. w . , " 
"

.' %.% •.', %.% % . _' '."."./ .. " ' ' " ". %.'.-.".. ... %.%jo % . . 5 q.



Pp.

.% . ..% .b

p.

'..%'

APPENDIX B

DATA COLLECTION PROCEDURES

This appendix contains Data Collection Procedures. These
procedures describe what data must be collected to use the
Software Reliability Prediction and Estimation Procedures
described in Section 5 of this report. Complementing these -

V procedures are the actual worksheets contained in Appendix C and
D. The intended process then is for reliability engineers to use .. '. .

the worksheets in conjunction with these data collection S
procedures to collect data. That data will then be used when the
engineer or analyst uses the prediction and estimation algorithms
to determine a reliability number. An index of data collection
procedures is provided in Table B-I. A cross reference to the %

Worksheets in Appendix C and D is in Table B-2. -- <

The utility of the metrics is based on their representation of
the characteristics identified and the correlation or affect of
these characteristics on software reliability. There is,
however, another important aspect to the utility of the metrics,
That is the economy of their use, i.e., the cost of collecting
the data to calculate the metrics is an important consideration. •
Automated collection tools are essential for many of the
measurements. Some measures, such as the ones which simply Z,...&
require classification, are easy to collect.

This appendix contains data collection procedures for all data
required to calculate each metric. The procedures follow the
following format: ,

PROCEDURE OUTLINE

1. Title: Identifies metric or data element this procedure
relates to.

0

2. Prediction or Estimation Parameters Supported:
Identifies the higher level metric this procedure
relates to. "

3. Objectives: Objective of the title metric. .

4. Overview: Provides overview of this metric.

5. Assumptions/Constraints: Describes any assumptions or
constraints related to this metric. e P

6. Limitations: Describes any limitations to using the 0

,~ . .'

.. .- *---....---.....-,-.; .-...-.. --. ,¢-, ....-...--...... ,..- ;,-.,.-.. .- ,. .,.-.... .. ..-.. . . . .-... . p-.v , .. - ..



~%

procedure or metric.
[~ %q

7. Applicability: Describes when the metric can be applied
during the software life cycle. _*

8. Required Inputs: Identifies the required data for
calculating the metric.

%' J- - "

9. Required Tools: Identifies any required tools needed for
data collection.

10. Data Collection Procedures: Provides step by step
guidance on collecting the appropriate data.

11. Outputs: Describes output of procedure.

12. Interpretation of Results: Provides guidance on
interpreting the results.

13. Reporting: Provides any required reporting format.

14. Form: Identifies any applicable forms for data
collection or metric calculation.

15. Potential/Plans for Automation: Describes potential and ,

any known plans for automation of this data collection
procedure. % %

16. Remarks: Allows any remarks/comments about metric.

The data required for these metrics is available during most DOD
software development. Data collection is required. It involves
applying worksheets to the typical documentation produced with
MIL-STD 216TA, MIL-STD 490/483, and MIL-STD 1679 and automated
tools to the code produced. It also involves collecting data
during test.

N 
i



~~~.. ,(. ..

% ..* .

TABLE B-i. DATA COLLECTION PROCEDURE INDEX %

DATA COLLECTION
PROCEDURE NUMBER RELATED METRIC RELATED PROCEDURES

I Application Type - _
2 Development Environment -
3 Anomaly Management
4 Traceability
5 Quality Review 6,12
6 Size Estimation 7 "-
7 Fault Density 1,2,3,4,5,6
8 Language
9 Modularity 8 0
10 Complexity 6,8,9
11 Standards Review 12
12 Discrepancy Reports 5,11 ,1
13 Execution Time 16
14 Failure Rate 14.15,7
15 Test Effort -
16 Test Methodology "
17 Test Coverage
18 Input Variability
19 Workload

- % .'. .. ,
".F r%

-. %_'%

.-, .-'.,

.-° .° .. %

-. ,'- /{

S% .. %

PROCEDURE NO. 1'

' ~. Title: Application Type (A).,---

2. Prediction or Estimation Parameter Supported : Application .. [---

Type (A)+

3. Objectives: At the system level oategcrize the system ...-
application according to the application and time• dependence ,-.'i "' - .
schemes identified in Worksheet 0. At a CSCI level, if possible.",-''

• "*-.',

categorize the software by function..--,--

PROCEDUR NO. 1 t. -°-

4. Overview: Manual inspection of documentation to determine the

type of system according to preceding classifications. This""
determination can be made at the Concept Definition phase. ,..,
5. Assumptions/Constraints: Ambiguities or other difficulties in

applying this scheme should be resolved in favor of the dominant
or most likely c ssification.

4. Limitations : Nonesc n d eti o t i t

7. Applicability : Identify Applicdin clsiiations proj ct
initiation. Metric worksheets require update of information at

each major review. It should not change. i

8. Required Inputs: Statement of Need (SON), Required

Operational Capability (ROC), or system requirements statement
should indicate application type.-

9. Required Tools: Visual inspection of documentation. •

10. Data Collection Procedures: Functional description of system
extracted from documentation and matched with an application
area. .

11. Outputs: A baseline fault density, A, will be assnciated with
each Application Type.

12. interpretation of Results: Application type may be used early
in the development cycle to predict a baseline fault density. ...
These rates are then modified as additional Information
concerning the software becomes available. -

"3. Reporting: Application type, together with projected haseline -
fault density, is reported. The baseline rate should be made
available to the prospective user to ensure that the user is .

aware of failure rates (or fault density) for this applicaticn "'.:"
and has provisions which will affect the characteristlcs cf the"
specific software as they unfold during system devolcpzent. •

f - .. %-

,- .p- :..'

%0 "

.*"' ",''"..- " -.... "..."."--.."....""°"-" '"+''. ."." -.... .".-"-"-.. . . ." ... ""..--.. .-. ."."..- " .' ." .' . .'.J .' +

".* " - .'° . -. **.*J.*.- "-..- ."o ."". °"". .. " "." - . "-' ".+ " •..". + ..".. "-. °+i."° o." - ." . - . .

14. Forms: Use Metric Worksheet 0."-' ''

15. Potential Plans for Automation: None -£

.4 o- F.

.- '..;

° ..

* . .4*

-. ., -. -,

*4 '." >

• 4 "

% " '""" "o' " '°-'-%m- '-'""""" " ' ""
° ""•.' '°"" '-".%."

" ,.. 1_. . ,' ,D %.% ' % , ,.°. ' % %_% .• % % -""0

PROCEDURE NO. 2

1. Title: Development Environment (D)

2. Prediction or Estimation Parameter Supported: Development
Environment (D)

3. Objectives: Categorizes the development environment according
to Boehm's [BOEH81] classification. Additional distinguishing
characteristics derived from RADC TR 85-47 are also used.

4. Overview: In Boehm's classification the system is categorized
according to environment as follows:

I' ~Organic Mode -- The software team is part of -

the organization served by the program.

Semidetached Mode -- The software team is
experienced in the application but not
affiliated with the user.

Embedded Mode -- Personnel operate withinS
tight constraints. The team has much computer
expertise, but is not necessarily very
familiar with the application served by the
program. System operates within strongly
coupled comp2ex of hardware, software,

-up
regulations, and operational procedures.

'P. A survey in RADC TR 85-47 revealed the following factors, were *

felt to have significant impact on the reliability software.
They, therefore, provide a checklist for predicting the quality
of software produced using them:

0 Organizational Considerations

V...- Separate Design and Coding

-- Independent Test Organization

- Independent Quality Assurance

- Independent Configuration Control

- Independent Verification/Validation

- Programming Team Structure

- Educational Level of Team Members

- Experience Level of Team Members

* Methods Used

'P-

'%P

% % r ." d"

~o * r-w~,- efntinEnoceet fStandards °2

- Use of High Order Language (HOL)

-b
- Formal Reviews (PDR, CDR, etc.)

- Frequent Walkthroughs .- '

- Top-Down and Structured Approaches -

Unit Development Folders

Software Development Library

- Formal Change and Error Reporting

- Progress and Status Reporting 0

* Documentation '

- System Requirements Specification

- Software Requirements Specification

- Interface Design Specification -
- Software Design Specification , .-

, -" *.

- Test Plans, Procedures and Reports •

- Software Development Plan

- Software Quality Assurance Plan .- '

- Software Configuration Management Plan

Requirements Traceability Matrix .

- Version Description Document

- Software Discrepancy Reports

0 Tocls Used

- Requirements Specification Language

Program Design Language

- Program Design Graphical Technique
(Flowchart, HIPO, etc.)

Simulation'Emulation

a'. • •2 . . -. -..... 'a% .° .. ,% -%. ~ .~ a a - . .a %'.. . .- % . •.. * . . .• * .a. - .-. *° -% - . - . • o

a.~~~~~~~~~ ~~~~~~ 0 %'- ~ a. '% a ' ~a '-.a 'a '- a -* .*

- Configuration Management

- Code Auditor

- Test Data Generator

- Test Driver

- Automated Verification System

- Data Flow Analyzer

- Automated Measurement Tools

The developmental environment should be described in the Software -
Development Plan. If it is not, it will be necessary to review -"

product reports or to interview the software developers.

5. Assumptions/Constraints: Use of the Boehm metric assumes a .-..-

single dimension along which software projects can be ordered,
ranging from organic to embedded. Care must be taken to ensure
that there is some allowance made for variations from this
single-dimensional model -- e.g. when inexperienced personnel are "-
working in an in-house environment. In such cases, the dominant
or most important characteristic will be used.

The checklist developed from RADC TR 85-47 provides a rating for
the developmental environment and process. Higher scores are
assumed to be associated with more reliable software. However,
this relationship is not likely to be linear (that is, it is not 0
likely that each item on the checklist will increase reliability
by an identical amount). Calibration of the score will be
required during tests of the metrics. Current values are from a
survey.

6. Limitations: The reliability of these metrics will be
affected by the subjective judgments of the person collecting the
data. Data concerning project personnel may not always be
available after project completion, unless it has been
specifically gathered for this purpose.

7. Applicability: The Development Environment will be indicated
during the requirements phase and, combined with expected fault
density/failure rates for the Application Area, can be used to
obtain an early forecast of reliability.

8. Required Inputs: Information is extracted visually from
requirements or specifications documentation.

9. Required Tools: Manual data extraction from existing
documentation. A checklist is provided in the Data Collection
Worksheet I in Appendix C.

-, %Nm

5 .% - '

.".."-' -"-.".°- ."-"... . ."""""". - . "" """", - ,. '.- ." "."'"".-.-.."''''''-''' " ' ' j.,-j' -" f'.j'

7. ~-7 -7

-.? V _

10. Data Collection Procedures: Using the classification scheme
and checklist in Metric Worksheet 1, use Software Development "
Plan to determine the Development Environment metric. Where
appropriate information is not included in available -b
documentation, it may be necessary to interview project
personnel. . ,.,...,

1. Outputs: Classification and completed checklist as indicated
in paragraph 9 above (Metric inputs Do and Dc).

'. Interpretation of Results: As a refinement, regression
.echniques can be used to obtain metric values for each of the
indicated environments in the Boehm classification. These are ..
combined with the score obtained from the Martin Marietta .
checklist to obtain the score for this factor.

13. Reporting: Where the predicted failure rate differs from
specified or expected values, changes in the personnel mix,
project organization, methodology employed, or other
environmental factors may be required to improve predicted - -'

reliability or to reduce costs. Early reporting of this..'e
information will permit such changes to be made in a timely . .
fashion.

14. Forms: Use Metric Worksheet 1

manua) ly.

16. Remarks: None

"... ,,

"--'--ib

Z'

e lf--°j .
e e F -. o

'r. 'e. 4P % %.% %

. . - . * .p - . . - - - -

PROCEDURE NO. 3

1. Title: Anomaly Management (SA)

2. Prediction or Estimation Parameter Supported: Software
Characteristics

3. Objectives: The purpose of this procedure is to determine tZe
degree to which a software system is capable of responding
appropriately to error conditions and other anomalies.

4. Overview: This metric is based on the foOw. .

characteristics:

-- Error Condition Control,

-- Input Data Checking, 0

-- Computational Failure identification and Recovery,

-- Hardware Fault Identification and Recovery,

-- Device Error Identification and Recovery, and 0

-- Communication Failure Identification and Recovery.

In general, it is assumed that the failure rate of a system wil-
decrease as anomaly management, as measured by this met-I..c.
improves.

This metric requires a review of program requirements
specifications, and designs to determine the extent to which t~e --'
software will be capable of responding appropriately too.'J
non-normal conditions, such as faulty data, hardware failures, -
system overloads, and other anomalies. Mission-critical software
should never cause mission failure. This metric determine----
whether error conditions are appropriately handled by the
software, In such a way as to prevent unrecoverable syte..
failures. >.

5. AssumptionsConstraints: Elements of this metric are obtained •
manually in checklist form. This metric assumes that systez-
requirements and specifications contain sufficient Informaticn
support computation of the required values.

6. Limitations: By its very nature, an anomaly is an unfcrest ..- ,
event, which may not be detected by error-protection mechanl>
in time to prevent system failure. The existence of extensv1 0--
error-handling procedures will not guarantee against suc.--
failures, which may be detected during stress testing or initial-
trial implementation. However, the metric will assist la
determining whether appropriate error procedures have been
included in the system specifications and designs.

* -,

"- -- - - -
"

.

7. Applicability: Elements of this metric will be obtained
throughout the software development cycle.

8. Required Inputs: This procedure requires a review of all
system documentation and code.

9. Required Tools: No tools will be used in the collection of

data for this metric. A checklist is provided in the WorksheetsVin Appendix D.- -.

10. Data Collection Procedures: Data to support this metric will ,i-:- -.

be collected during system development, Data must be obtained
manually, through inspection of code and documentation.

1i. Outputs: The measurement, AM, is the primary output of this
procedure. In addition, reports of specific potential trouble
areas, in the form of discrepancy reports, will be desirable for
guidance of the project manager and the program supervisor.

12. Interpretation of Results: Anomaly conditions require special
treatment by a software system. A high score for AM would
indicate that the system will be able to survive error conditions
without system failures. .

13. Reporting: An overall report concerning anomaly management
will be prepared. It should be noted that the cost of extensive
error-handling procedures must he balanced against the potential
damage to be caused by system failure. A proper balance of costs " "
and benefits must be determined by project management; the S

purpose of this metric is to assist the manager in assessing
these costs and benefits.

14. Forms: Metric Worksheet 2 in Appendix C.

15. Potential Plans for Automation: Information for this metric
is obtained manually.

16 Remarks: Proper determination of this metric will require
some imagination and intelligent judgment on the part of the
reviewer. Since error conditions take a wide variety of forms,
the reviewer should be experienced in developing error-resistant
software,

- .6 °

. - * .- - .

., .-

.. ,,'.*%** *~* . % .- ,% .I" ..

PRCEUR NO 4 4~*

.. Tile Traceabil..y (ST)

2. Pedition or stiatio Paametr Sppoted: Sofwar

Charactristic

3. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~. Obetve : Te upse o hi eri stodtrmn h

relationship~~~~ ~ ~~~ bewe oue n eurmns fti

4. Titlve: TrTeailimti (ST)eswehe rosrfeec

2.st Preictio orlte Estition Paramduester SupportedeSotwar

5. Objectie/otans: The purpose of th metric st reeqrmes the
evlationi bteenorrodles orcmpndns h requirements ti
reationshti hassbeen maeth expiittee is gemateri lielihood

sholdiv bec sblpo trlacemduechrctrstcttyhe.

4. Oviewato: T metricvheu indiaeswet af cross referce
ex-pistwich relates ofunctionsmortmodulesfitotthe requirements. b

us.d AInutossiCplstans Theinemo the metric equirhesk an

reauiomnt ofd thesorrectnes o compesotne oferequrmentse.V

matRx.uite ipuassueqthtieexstnesg ofctheation wilhaveld %

aiposite effectsuponerelieabiit.

6. Limqtaions: To achieea tel tre intient othsemeri, as
sof tcae toorm l o requirements specification language must be *.**.

useop tnhis setipetfrtemticcnsml.eacekt

dtrietepeecoraseec if ah crossreference matrixeit. ~~'

toiierequirements and desig plases ofd the i sotwrudvlpment yl.t*

8. Requred iPuts:e Reuirets anoud eswin omeathin shoudnce

9.a Requ re mn Tol: iosecaltoouflsaed reuied howevr, uee
ofeifiatfonlrqieetsseiiainlagae.D o

1eterIneeatprsnc ofResabsnc ofhe cross reference matrixb
tokeitemize requirements sattone leveliy and t their fulillencte
aothe mtricil Workeet moinAppedi Ctan bmpemeusedsfwr

11.ouuts: Probieem freot sholdbewrttnifraacnistnc

13. Reporting: The project engineer should be made aware of the
presence or absence of the stated cross reference, to determine
whether contractual requirements have been met. ,

14. Forms: Discrepancy Reports should be generated for all
instances of lack of traceability. Metric Worksheet 3 in
Appendix C contvain checklist items for this item.

15. Potential/Plans for Automation: Tools such as PSL/PSA, SREM, *

RTT, USE-IT assist in the determination of this metric.___

16. Remarks: None

p

06 k i

: J"o "'.-.0

#. *,*Rj .

PROCEDURE NO. 5.'

1. Title: Quality Review (SQ) -60

2. Prediction or Estimation Parameter Supported: Software
Characteristics '

3. Objectives: This procedure consists of checklists to assess
the following characteristics:

-- Standard design representation;

-- Calling sequence conventions;

-- Input/output conventions; 0

-- Data naming conventions; .,,

-- Error handling conventions; .5

-- Unambiguous references; S
* .5'..,-

-- All data references defined, computed, or
obtained from all external source;

-- All defined functions used;

-- All conditions and processing defined for each
decision point;

-- All defined and referenced calling parameters
agree;

-- All problem reports resolved;

-- Accuracy analysis performed and budgeted to
module;

-- A definitive statement of requirement for accuracy
of inputs, outputs, processing, and constraints; .

-- Sufficiency of math library;

-- Sufficiency of numerical methods;

-- Execution outputs within tolerances; and

-- Accuracy requirements budgeted to functions/-
modules.

These are combined to form a metric, SQ, which represents how
well these characteristics have been designed and implemented in

B- 14

. %. - " % % %

* 0

the software system.

4. Overview: This metric will be determined at the requirements
analysis and design phases of a software development. The metric
itself is the number of problems found during reviews of the
requirements and design of the system. In order to make this
metric relative among systems, this number is divided
(normalized) by the number of functional requirements identified
for the system.

5. Assumptions/Contraints: Formal problem~ reporting during
requirements and design phases of software developments has been
inconsistently performed in the past. Methodologies advocated in
recent years and more disciplined contractual/Government
requirements and standards now encourage this activity. Assumed
in this metric is a significant effort to perform formal reviews.
Techniques such as Design Inspections or walkthroughs are the
mechanism through which problems will be identified. Use of the
worksheets at Appendix D are also an alternative.

6. Limitations: The degree to which the requirements and design
specifications are reviewed will influence the number of problems
found. Consistent application of the worksheets at Appendix C as
a QA technique will alleviate this limitation.

7. Applicability: The primary application of this metric is to
the requirements phase and design phases of the software
development . .-

8. Required Inputs: Requirements Specification, Preliminary
Design Specification, Detailed Design Specification are required.

9. Required Tools: Checklists will be used in determining this
metric.

10. Data Collection Procedures: Documentation will be reviewed at
the end of each phase of the system development to determine the
presence or absence of these characteristics.

Since this procedure assesses the quality at early stages of the
development, it will require a comprehensive review of
documentation. Detailed records must be maintained (Discrepancy
Reports). Reviews will be performed using the worksheet in
Appendix D.

11. Outputs: Reports of the current number of discrepancy reports
(DR), together with detailed information for the project manager,
will be prepared.

12. Interpretation of Results: To some extent, software will be

incomplete throughout most of the development cycle, until the
point at which all variables, operations, and control structures
are completely defined. This metric serves, then, as a measure
of progress. An incomplete software system by definition, is- .

%-1Z

% % % N %'%.

% % % % %

k. 0

unfinished.

13. Reporting: Detailed reports of problems should be furnished
to the project manager and the software supervisor, to assist in
determining the current status of software development.

- 14. Forms: Worksheet 10 at Appendix D will be required.

15. Potential/Plan for Automation: RADO-developed Automated
*Measurement System (AMS) provides checklists for use in reviewing

documents.

16. Remarks: Determination of quality will require extensive
review of documentation, and will thus be expensive. The extra
cost may be justified if the information obtained can be used to
correct faults as they are uncovered.

%~~ .%. % e

%.' %~S

PROCEDURE No. 6

-b

1 Title: Size Estimation (NR and SLOC)
%

2. Prediction or Estimation Parameter Supported: Fault Density

3. Objectives: To determine fault density, some measure of size
must be used as the sample size (denominator). Described here ..
are two alternatives: number of system requirements and number of
source lines of code.

4. Overview: During the early phases of a development, problems
identified are typically at a system or subsystem level. In
order to provide some relative measure of the significance of
these problems, a sizing measure is needed at a system level. A %47"
simple measure of size is the number of functions required in the
System Specification (the number of shall statements may
accurately refle6t this). P.-

Later in the development, an estimate or actual count (during
coding) of the number of lines of code will provide a basis for . ,
judging problems identified at the module level. Program size is
not generated automatically by operating system software, since
the number of printed lines may include comments, declarations.
blank lines, or lines containing multiple statements. Our
accepted definition of source lines of code will be the number of
executable statements.

5. Assumptions/Constraints: It is assumed that the number of
executable statements can be compared among systems. This .
assumption is not likely to hold when systems are written in .
different languages: a comparison of FORTRAN with LISP or APL S
would be misleading because of the greater compactness of LISP
and APL in many applications. However, most of the HOLs to be
considered are similar enough to make this metric sufficiently
reliable for estimates of program size. ".- .. *

6. Limitations: Counting the number of requirements involves
significant discipline. Use of a formal requirements
specification language simplifies the task significantly. Use of
the concept of function points is another alternative. The key
is to be consistent.

7. Applicability: Estimates of program size should be available
during all development phases. .

8. Required Inputs: The Size Estimates will be based on the
Requirements Specifications and the software.

...........

9. Required Tools: Requirements Specification languages or
analysis tools such as PSL/PSA, SREM, RTT, USE-IT are applicable.
Compilers or code audit routines generally provide lines of code
counts.

10. Data Collection Procedures: To determine the number of
requirements, individual requirements must be itemized by
analysis of the Requirements Specification. Data Collection
Worksheets 3 in Appendix C can be used. "'

To estimate lines of code, use of senior personnel familiar with
V, the specific application or reference to a historical data base

which provides code counts for certain applications are the most
proven techniques. Data Collection Worksheet 4 in Appendix C can ,v
be used.

Use of the compiler output or code auditors provide actual counts
once coding is underway.

11. Outputs: Program size (SLOC) and number of requirements (NR)

are reported.

12. Interpretation of Results: Program size can be used as a ?
* predictor of error rates. However, its primary use in this

research is in combination with Software Discrepancy Reports in
determining fault density.

23. Reporting: Program size is reported to the project manager as
required for estimating resource requirements.

14. Forms: The standard worksheets in Appendix C provide for
reporting Program Size.

15. Potential/Plans for Automation: Moderate revisions of
existing system software should make it possible to obtain more
accurate counts of program size in terms of number of lines of
executable code.

16. Remarks: As noted, the measurement of program size has been
used in the past as a predictor of software quality. Program
size should be correlated with software failure rates, where .
appropriate, to determine the significance of this metric.

a .- .- %

ii -18

'C'. . I ~ _.. . .

PROCEDURE NO. 7 ~
%

J, e

1. Title: Fault Density

2. Prediction or Estimation Parameter Supported: Fault Density %

3. Objectives: Fault Density represents a measure of the number
of faults in a software system.

4. Overview: Fault Density may be used to provide a preliminary
indication of software reliability. Because of the functional
relationship between this metric and the Failure Rate, it
provides an alternative measure of software reliability. Its
major advantages are that it is fairly invariant and that it can S
be obtained from commonly available data.V

5. Assumptions/Constraints: The predicted fault density will
depend in part on the review and test procedures used to detect
software faults. In any case, there is no guarantee that all
faults have been found. Although it can be used to estimate
failure rates, it cannot be directly combined with hardware .
reliability metrics. NJ XN

6. Limitations: As noted, the Fault Density estimates may be
affected by the review and testing procedures. ,

7. Applicability: This number is confirmed during the formal
testing phases where faults are observed and discrepancy reports
formally recorded. During early phases of the development, a
fault density measure can be obtained by using the number of
problem reports documented during reviews or the prediction
methodology. .:...*

8. Required Inputs: Estimates of Fault Density are obtained from
software discrepancy reports. The number of fa.ults reported,
divided by the number of lines of executable Code (or number of
requirements during early phases of development), gives the
required metric. Reference is made to Data Collection procedures
6 and 12.

9. Required Tools: Accurate records of software faluts are
essential for this metric. A data base management system to
prepare summary reports would simplify record keeping and
preparation of calculation of Fault Density.

10. Data Collection Procedures: A counT, of software faults is
obtained through inspection of software discrepancy reports. The
number of lines of executable code will also be required. Use of
a discrepancy report such as that at Worksheet 5 in Appendix C is
recommended.

B- 19 ,

. 2r

'P V .* . * * \ . * % ~ * * * * *

_77 7 7 . .p

.%.% . ,

I 0

S.. , ,,

11. Outputs: The predicted Fault Density (RP) is the primary
output. In addition, estimates of failure rates, based on the
transformations described in Task 100, will also be output.

12. Interpretation of Results: The Fault Density is used as a -,..

predictor for the Failure Rate, and thus should provide an
important indicator of software reliability in advance of
full-scale system tests. It also can be compared with a specified
fault density as a requirement or with industry averages
represented in Table TS101-1. It is also an indicator of
individual components that are potentially high risk elements or
unreliable components.

13. Reporting: This metric is reported, together with the
estimates of failure rates, to support predictions and estimates *.--..,

of software reliability.

14. Forms: Metric Worksheet 5 in Appendix C. P.

15. Potential/Plans for Automation: The software discrepancy
reports may be kept in standard formats for access through a data
base management system. The system should be sufficiently
powerful to provide counts of errors for each module and to ,
calculate fault densities, if the module lengths are available.

16. Remarks: The fault density, because of its functional
relationship to failure rates, will provide an estimate of 0
software reliability during coding and early testing. I

,S ".- .

%.J %

%• %

S.

• . %,. -

% %
-7. . 'S

5'.-.. 5.-,
[.' .%-+'.,' .' .% ,' .- '-.' pI .' .

" .. - . ., ' - '' ' - ' - '

.' .' o'..-." o".. ++ .. '. '- .. '- +- "....,."-. +- '- '. '. '. '-,
+ I% .'

i'_i" , % %" . . " " % - " "- "- %. - - " '+.' " " "- %¢ ", "- '. - . " - '. + " " ". ". ". . " " " "* "- "- . - " ", "- . ..

.% .%

PROCEDURE NO. 8
' _.% .

1. Title: Language Type (SL) r
2. Prediction or Estimation Parameter Supported: Software
Chacteristics

3. Objectives: Categorizes language or languages used in
software unit as assembly or higher order language (HOL).

4. Overview: In the Language Type metric, the system is
categorized according to language. Language Type has been shown
to have an effect on error rates.

5. Assumptions/Constraints: Because of the significant effect
that language can have on software reliability, use of this
metric will provide an early indication of expected failure
rates.

During the requirements phase, language requirements may be
tentatively indicated, particularly when a new system must
interface with existing software or hardware.

During the specifications phase, detailed information concerning
proportions of HOL and assembly code will normally become
available.

Finally, during integration and test, it may become necessary to @
change the specified proportion of assembly code in order to meet
space, time, or performance constraints. .

6. Limitations: Accuracy of this metric will depend on the . ..,
accuracy of estimates of lines of HOL and assembly language code -
during early phases of development. While detailed
specifications will normally include an estimate of program size,
this estimate must be revised during software development.

7. Applicability: This metric is obtained during the preliminary
design phase to provide an early warning of potential effects of ,.
language selection. Because of the higher error rates encountered
when assembly language programming is used, it may indicate a
choice of HOL rather than assembly language.

More importantly, it can provide a measure of the cost, in terms
of higher error rates, to be balanced against projected savings
in time and space, for a proposed design.

8. Required Inputs: Information is extracted manually from
requirements or specifications documentation. During
implementation and test, more accurate measures of the number of -' -p.
lines of code will be available from compilers or automated
program monitors.

B- . .y.%.. .%74

B,.', °.%,|

9. Required Tools: Information is extracted manually from
existing documentation during requirements and specifications
phases. During implementation and test, information will be
available from compiler output or code auditors. -

10. Data Collection Procedures: Initial estimates of lines of
code will be extracted from existing documentation. When this
information is not available, the value of the metric will be set
to 1.0. Counts of the number of lines of source code may be
obtained from compilations of software units. Comments and blank
lines should not be included in this total, and it may be
necessary to exclude them manually.

11. Outputs: The following outputs are required from this
procedure,

ALOC - The number of lines in assembly
language

IiLOC - The number of lines in HOL

SLOC - ALOC + HLOC - total number of
* executable lines of code (see Data

Collection Procedure 6).
These are combined according to the following formula:

SL 1.4 *ALOC/SLOC + ALCO/SLOC

12. Interpretation of Results: When combined with other metrics, ~
SL will indicate the degree to which the predicted or estimated
error rate will be increased because of the use of assembly
language. This information, when compared with the expected
increase in efficiency through the use of assembly language, can
be used as a basis for a decision concerning implementation
language.

13. Reporting: The value of SL will be reported and combined with
other measures in obtaining a predicted failure rate.

14. Forms: Forms for reporting the number of lines of code, the
proportion lines in each stated category, and the composite SL
are in Appendix C, Worksheet 4.

15. Potential/Plans for Automation: Language Type will normally
be specified in requirements and specifications, and must be
obtained manually.

16. Remarks: As research progresses, it may become possible to -

make finer distinctions among languages, and among versions of 7
the same language. For this reason, the specific implementation. -

should be included in this report. That is, the name of the

% %%

01W

ir. A- e-'- d A7 C-'9

language, the version, the operating s:'stem and version, and theprocessor name and type should be reported when this information
is availa.ble.

r~~ W~ 4%p ?
%% .

:o..

- F_ l e. i

.. 7,7 77.wl-o
0

PROCEDURE NO. 9

1. Title: Module Size (SM)

2. Prediction or Estimation Parameter Supported: Software -
Characteristics

3. Objectives: Structured programming studies and Government Ur.'..

procurement documents have frequently prescribed limits on module
size, on the basis of the belief that smaller modules were more
easily understood, and would therefore, be less likely to contain
logical errors. This metric provides an estimate of the effect of
module size, based on the proportions of modules with number of
lines of executable code as follows:

No. of Modules 0

u Less than 200

w 200 to 3,000

x Over 3,000 S

4. Overview: Inspection of compiler reports, editors, or source
code will provide module length. Lines of code are counted on
the same basis as that used in the Program Size metric.

5. Assumptions/Constraints: Lines of code include executable
instructions. Comments and blank lines are excluded.
Declarations, data statements, common statements, and other
non-executable statements are not included in the total line
count. Where single statements extend over more than one printed
line, only one line is counted. If more than one statement is
included on a printed line, the number of statements is counted.

Assembly language lines are converted to HOL line equivalents by
dividing by an appropriate expansion factor, and program size is
reported in source code lines or equivalents.

6. Limitations: The precision of the reported Module Size may be
affected by human factors, if the reporter is required to count -
lines visually, or to revise the figure reported by the compiler
or editor. When the project is large enough to support it, an
automatic line counter, which would produce consistent line
counts, should be supplied.

7. Applicability: This metric will not be available until
detailed program specifications have been written. Estimates of
module size will normally be included in specifications.

8. Required Inputs: Specifications containing module size
estimates may be used for early computation of this metric. As
modules are completed, more accurate figures for size will become

B-2-'4.

-. ,.....,.--..

-.-..- ,.-.... .-.......--'....-..-..-,.-...,-..-:b-..-...:.--......

.,.s 4 . - * * ., .'. - ~ t* -. . * * * W .- ,. ,. 4

. -,. %

available. For existing software, module size is normally
contained in system documentation; otherwise, it may be obtained
through inspection of the code. -

9. Required Tools: The compiler or editor will provide counts of
the total number of lines in each module. Additional software
tools could be provided to count lines of executable code,
excluding comments and blank lines.

10. Data Collection Procedures: Compiler or editor output is
examined to determine sizes for each module. Where counts include
comments or blank lines, these must be eliminated to obtain a net
line count. Modules are then categorized as shown above, and a
count is made of the number of modules in each category.

11. Outputs: Results are reported in terms of the raw counts of
the number of modules in each category, together with the S
resulting metric SM.

12. Interpretation of Results: In general, it has been assumed
that any large modules will increase the potential failure rate
of a software system. Later experiments will test this '

assumption.

13. Reporting: The values of u, w, and x will be reported.

14. Forms: Metiic worksheet 4 in Appendix C includes this metric.

15. Potential/Plans for Automation: Compilers and editors
typically provide enough data to compute this metric. A fully
automated system would give more accurate estimates of the number .

of executable statements.

16. Remarks: More sophisticated measures of modularity should be
explored.

%- P - ,%

I S

I 5

,.'.%, .S

S.J S

" - " " " " , ' " , "" .. . • '" " ." " ." " " " " ' " ' " "" J - "" - " ;' 4 " " • . : " ..." -

. ," . ., .. . ' . . " , . = .. .-, ,. -: --. , .,= , .,

0

PROCEDURE NO. 10

1. Title: Complexity (SX)

2. Prediction or Estimation Parameter Supported: Software
Characteristics

3. Objectives: The logical complexity of a software component
relates the degree of difficulty that a human reader will have in
comprehending the flow of control in the component. Complexity
will, therefore, have an effect on software reliability by -'.
increasing the probability of human error at every phase of the
software cycle, from initial requirements specification to
maintenance of the completed system. This metric provides an
objectively defined measure of the complexity of the software
component for use in predicting and estimating reliability. 0

4. Overview: The metric may be obtained automatically, where
complexity - number of branches in each module + 1. This is
McCabe's cyclomatic complexity metric.

5. Assumptions/Constraints: Some analogue of the complexity
measure might be obtained during early phases -- for example.
through a count of the number of appearances of THEN and ELSE in ..-.... ,-.4
a structured specification or by counting branches in a Progra..
Design Language description of the design - but actual complexiy
can be measi-red only as code is produced, at softwa:-
implementation. 0

6. Limitations: Another limitation may be found in the poss- -.
interaction of this metric with length - longer prograzs .

likely to be more complex than shorter programs
result that this metric simply duplicates measurements .f

7. Applicability: Complexity measures are widely .

across the entire software development cycle. Reliabl1_.
have not yet been defined for the Requirezen- s
probably cannot be applied unless a formal',
language is used. To the extent that speclf'-.
formalized, a complexity metric may be used. §
to be used here, may be extracted automaticI_: -

is produced. A series of measures will be --- :
increases or decreases in complexity wII !,c ,

8. Required Inputs: Coded mod'ules i:,
complexity measurement.

9. Required Tools: An an. .. ." -

and counting program branches

10. Data Collection Pr-oe,!:..
should be possible to '
filename of the o:7e : .

? . ,. -. 7. .

AD-AIM 9i9 METHODOLOGY FOR SOFTNARE RELIMILITY PREDICTION VOUWIE 2/2
2(U) SCIENCE APPLICATIONS INTERNATIONAL CORP SAN DIEGO
CA J NCCALL ET AL. NOV 0? RAC-TR-S-I71-YOL-2

UNCLSSIFIED F30 W -93-C-011S F/O 12/5 NLmhhIIIIIIIIIIIl
"IIIIIIIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIII

La..

Hill 1.011112.0

125 ~Q 4 Bl .

- t -FKU r-w -v-v. -. -37 3 . 3--

I *m

a visual count of the number of edges or paths ir a flowchart .0
representation of the modules. Another approach would be to count '---

the number of appearances of THEN, ELSE, GOTO, WHILE, and UNTIL
together with a count of the number of branches following a CASE,
computed GOTO, or Fortran IF statements.

11. Outputs: An complexity measure (SX) will be output.

12. Interpretation of Results: A large value for SX indicates a
complex logical structure, which will affect the difficulty that
a programmer will have in understanding the structure. This in
turn will affect the reliability and maintainability of the
software, since the probability of human error will be higher.

13. Reporting: Abnormally high values for SX should be reported
to the program managers as an indication that the system is
overly complex, and thus difficult to comprehend and error prone.
Complex individual modules will also be identified by high values
for sx(i).

14. Forms: The report form for each module and for the system as
a whole should indicate the complexity, obtained either from an
automated procedure or by hand. Metric worksheet 4 in Appendix C
can be used.

15. Potential/Plans for Automation: A code auditor should be
obtained or written to provide automated estimates of program
complexity. .-

16. Remarks: Further experimentation with complexity metrics is
desirable, and any automated tools written for this purpose % % %
should include alternative approaches, such as Halstead's
metrics. •0

B-27

V:: "%""%
-- -- -

.,

...-..

.. .. ,.%....

PROCEDURE NO. 11

1. Title: Standards Review (SR)

2. Prediction or Estimation Parameter Supported: Software A
Characteristics

3. Objectives: This metric represents standards compliance by
the implementers. The code is reviewed for the following
characteristics :

DesignN-5
Deig organized in top-down fashion, %

-Independence of module,

-Module processing not dependent on prior processing,

-Each module description includes input, output,
processing, limitations,

-Each module has a single entry and at most one routine
and one exception exit.

U. -- Size of data base,

-Compartmentalization of data base,

-No duplicate functions, and

-Minimum use of global data.

4. Overview: The purpose of this procedure is to obtain a score
indicating the conformance of the software with good software
engineering standards and practices.

5. Assumptions/Constraints: This data will be collected via QA
reviews/walkthroughs Of the code or audits of the Unit
Development Folders or via a code auditor developed specifically
to audit the code for standards enforcement.

6. Limitations: In general, components of this metric must be .

obtained manually and are thus subject to human error. However,
U- the measures have been objectively defined and should produce

reliable results. The cost of obtaining these measures, where r-o
they are not currently available automatically, may be high. -

7. Applicability: This data is collected during the detailed
design and more readily during the coding phase of a software
development.

8. Required Inputs: Code

B- 28

U. ~ ~ . PA J. .4Up* ~p .*

U- U U-~ U--%U%%UU ,,.-U,- .,~%.%U,% -%% ,.

9. Required Tools: A code auditor can help in obtaining some of
the data elements.

10. Data Collection Procedures: Use Metric Worksheet 11 in
Appendix D and review (walkthrough) code.

11. Outputs: The number of modules problems with (PR) is
identified.

12. Interpretation of Results: Noncompliance with standards not
only means the code is probably complex, but it is symptomatic of
an undisciplined development effort which will result in lower '

reliability.

13. Reporting: The modules which do not meet standards are *i

reported via problem reports. A

14. Forms: Metric worksheet 11 in Appendix D may be used.

15. Potential/Plans for Automation: In general, components of
this procedure are inappropriate for automated collection.
Implementation data can be collected automatically.

16. Remarks: Modification of the metric worksheets in Appendix D
may be necessary to reflect different standards due to
environment, application, or language.

e..r. 1.

%% %M

% % % %% % % % %% % %

PROCEDURE NO. 12

1. Title: Discrepancy Reports (DR)

2. Prediction or Estimation Parameter Supported: Fault Density
and Failure Rate

3. Objectives: The basic metric for estimation will be the
observed failure rate during testing. During Operation and
Maintenance, the observed failure rate will also be used. The
failure rate is based on the observed number of failures over
time, which is derived from Discrepancy Reports and Execution
Time measures.

4. Overview: A Software Discrepancy Report is generated at the
time that an error is discovered or a failure occurs, typically
during formal testing. An error is a discrepancy between a
computed, observed, or measured value or condition and the true,
specified, or theoretically correct value or condition. A
failure *occurs when the system or system component is unable to
perform a required function within specified limits. A count of
failures will be obtained from the Discrepancy Reports.

5. Assumptions/Constraints: Reported failure rates will not
accurately reflect actual failure frequencies unless procedures
for preparing and recording software problems are strictly
enforced by project management. It is necessary to assume that
differences in reported failure rates reflect actual differences
between software components. Care must be taken to ensure that
these differences are not merely artifacts of the collection
procedures.

6. Limitations: Software induced failures will differ in
seriousness, ranging from low-priority (easily corrected or
avoided) to high-priority (results in mission failure). This
information should appear on Discrepancy Reports, although it is
not presently used directly in determining failure rates. The
recommended categories of High, Medium and Low are defined in
paragraph 8 below. Further research in the utilization of
severity as a prediction criterion is warranted.

7. Applicability: Discrepancy Reports will be obtained during
any formal reviews, coding and unit testing, CSC integration and
testing, CSCI-level testing, acceptance testing, operational test
and evaluation and O&M. MIL-STD 2167A references Software
Problem Reports as backup to the Software Test Result Report. .:.

The Discrepancy Report described here meets that requirement as
well as provides a mechanism for recording other discrepancies
identified formally.

8. Required Inputs: Discrepancy Reports are documented by the
program development staff, QA, customer testers or by the O&M
staff as problems occur or are identified. Specific procedures

B- 30 44

-V--

AD

are to be included in the Software Quality Assurance Plan and J.-E

Configuration Management Plan for the system. The Discrepancy
Report contains an identification section in which a title and
identification number are entered as well as as the author, date,
and any references that should be included. It also is
recommended that a discrepancy report includes a categorization
scheme that will support trend analyses. The discrepancy report
recommended in this guidebook (see Metric Worksheet 5)
categorizes the discrepancy by type and criticality level. The
criticality levels are:

High causes system to abort or fail to perform mission. %.

Medium incorrect results are obtained but does not >1

necessarily jeopardize mission.

Low typically involves incorrect format, documentation
errors, or miscalculations that does not threaten
mission performance but should be fixed eventually.

Also described by the discrepancy report are the method used to
detect the discrepancy, a description of the problem, the impact
or effects of the problem, the recommended solution, and data on
the test case and execution time, if the discrepancy was found --
during a test run. Discrepancy reports usually are approved
after the appropriate fix has been made and QA releases it to
configuration management for formal update of the current version
of the software.

9. Required Tools: On-line entry of Discrepancy Reports will 0
require storage of appropriate formats for the reports, and
subsequent storage and retrieval facilities. Automatic .' .'

computation of failure rates for system components is desirable.

10. Data Collection Procedures: Discrepancy Reports will be
collected during system tests and operation as one of the
responsibilities of the project manager.

11. Outputs: Discrepancy Reports will be accessible in a
designated file. Their primary relevance will be in
determination of the Failure Rate.

12. Interpretation of Results: Discrepancy Reports play a central
role in the validation of software reliability metrics. The -.j-m-
Failure Rate, based on information obtained from the reports,
provides the baseline against which metrics for prediction and , .
estimation are validated.

13. Reporting: For the purposes of this research the Failure '

Rate will be reported. Since the Disorpanoy Reports contain
additional information of interest to project managers, they will
be available for further reference and analysis.

14. Forms: A standard Discrepancy Report form is recommended (see

B-". -. 31

% %-. -. " . %"%, - %

% ".- " " P. " 0. .'r % %
[- '%-" ' " ' ~i~ wZ . -7"" e' P" NP,' ",%P"' .. e'2 j ~ , ,j "Lu.io . Ij j-.i'id j, . % % . % , .% % -

Data Collection Worksheet 5).

15. Potential/Plans for Automation: Discrepancy Reports are
stored and retrieved through the file management system, but are
prepared manually.

16. Remarks: Because of the importance of accurate and complete
Discrepancy Reports in determination of failure rate, the
collection and maintenance of the reports should be included in
the management plan for any software included in the current
-eliability research project. Comparisons of failure rates
between two systems will be misleading unless the same criteria p_ 4 . e
have been used for both systems.

N % %

,.~ ,.,

m' . '.P l

%% _

0 . . .

., *P J.

-# -m • i : ii i m... . . l + - + + • .

PROCEDURE NO. 13

1. Title: Execution Time (ET)

2. Prediction or Estimation Parameter Supported: Failure Rate "

3. Objectives: Execution times are used in conjunction with
Software Discrepancy Reports to obtain failure rates. The number
of failures per time period is the basic reliability measure used
in this Guidebook.

4. Overview: Execution time is the interval during which the
central processing unit (CPU) of the computer executes the ,..~

program. Two measures are suggeted. One is the actual CPU
execution time. The other is computer operation time. Execution
time will generally refer to each. Computer Operation time will
be the default.

* 5. Assumptions/Constraints: Execution time cannot be directly
compared between machines of different word length. Significant
differences in machine architectures may make it impossible toS
compare execution times accurately. It is assumed, using the
method given in item 10. that comparisons of sufficient accuracy
can be made. The unit of time used in both measures of execution
time is hours.

6. Limitations: The accuracy of execution time estimates will be
affected by the type of timing device available in the system
under test. Since not all operating systems are capable of
sufficiently precise timing, statistical measures derived from
the Execution Time measurements must not assume greater precision
than is actually available.

7. Applicability: Execution time may be obtained during CSC
integration and testing. CSCI-level testing, system integration o
and testing, operational test and evaluation and operations.%
Since it is used in conjunction with Software Discrepancy
Reports, it should be obtained during the relevant reporting
periods.

8. Required Inputs: Execution times are typically obtained from
software operating system reports or test reports. .

9. Required Tools: No special tools, other than those provided
by the operating system, will be required. .P

10. Data Collection Procedures: Execution time is obtained from
operating system records,or tester's logs, which typically report
the execution time for each program or project on a run basis, as
well as daily, weekly, or monthly totals. Where operating system
reports are not available, execution time may be expressed in
computer time, the time during which the computer (as contrasted 0

% .. .~,S % ~ . ,%'p % .. % ',%'%K PJ.
%t~~f% ~ % %~%p,'% *%~ % % P % % .~* ~ p. ~ ~ . .

with the CPU) executes the program. e

I' In cases in which execution time is not available, it may be
estimated from total computer time with one of the following
methods:

-- Running a benchmark HOL program on a mainframe on which
execution time will be reported, and then running the
same test case on the target computer.

-- Running a program on the target computer in a manner
that will eliminate or minimize disk access (e.g., by
putting data in memory) and output operations, thus
obtaining essentially an execution time measurement, and
then running the same test case in the normal manner.

-- Counting the number of I/O operations involved in a
program and computing the nominal time for these from
the computer instruction manual.

When comparisons are made between programs running on differentor4
computers, it is necessary to normalize execution time for word ,

length and execution speed. Raw execution time is divided by the
number of bits executed per second, which is obtained by
multiplying computer word length in bits by the number of
instructions per second. This figure may be modified in the case
of machines which use more than one word for instructions, or
which can have more than one instruction per word.

11. Outputs: Execution times are reported for use in calculation
.1 of failure rates. This guidebook recommends the use of computer

operation time since it is more generally available.

12. Interpretation of Results: As noted in paragraph 10, raw
execution times may be misleading, because of variations in
computer word lengths, speed, and timing mechanisms employed. IX%
Because of the importance of the Failure Rate in validation of
software reliability metrics, it will be essential to obtain
accurate and reliable measures of Execution Time.

13. Reporting: Execution times are reported for use in Failure
Rate measurements.

-,14. Forms: Worksheet 6 in Appendix C is prepared manually from
data obtained from operating system outputs or tester's logs.

15. Potential/Plans for Automation: This metric is generated
automatically by most operating systems.

16. Remarks: As noted, Execution Time cannot be compared directly
between systems running on different machines. This problem can
be expected to increase as specialized machine architectures are
used (e.g.. data base machines).

* g. 3-.

*1%

V'WV~~~~~~~~~~ %~ '- . . Fd*~~* ~~ *d- del

*WfWk VW VW vVb~

PROCEDURE NO. 14

1. Title: Failure Rate (F)
b.' V. V

2. Prediction or Estimation Parameter Supported: Failure Rate

3. Objectives: The Failure Rate is the ultimate measure of
software reliablity used in this guidebook. It represents the
ground truth, which the metrics, in combination, are attempting
to approximate. Failure Rate provides a measure of system -

reliability. Mission software failure probability is the product
of software failure rate and mission duration; mission software
reliability is 1 - mission software failure probability.

4. Overview: This metric is obtained by dividing the number of
failures reported over a standard time period. Time-stamped
software discrepancy reports are used to provide a count of
system failures during the stated time period. The reports also
typically indicate the module or OSCI with which they are
associated.

5. Assumptions/Constraints: it is assumed that software
discrepancy reports will provide an accurate measure of the
failure rate of software over time. Preparation of discrepancy
reports may not follow similar procedures on different projects.
Even on the same project, as a deadline approaches, programmers
may tend to feel that there is not time to prepare reports for
failures that they perceive as minor, even though they might have ..
prepared them at earlier times. The assumption, then, is that
the programming environment is disciplined enough to enforce a
consistent error reporting procedure. Automation of error -
reporting, if feasible, would help to increase consistency.
Nevertheless, since the failure rate is essential for testing and
validating all other metrics, it will be necessary to enforce
consistency in the collection of data for this purpose.

6. Limitations: As noted in the preceding paragraph, consistency
in data collection is assumed. %

7. Applicability: This metric is obtained during operational
tests and later operations and maintenance. It serves to *

validate predictions and estimates obtained during preceding
phases of the software development cycle.

8. Required Inputs: Software discrepancy reports are used to
measure the number of failures over time. The operating system
is used to track the operation time.
9. Required Tools: None.

10. Data Collection Procedures: The software discrepancy reports
are counted. In many cases, reports are maintained on disk, so
that counts will be immediately available. Time stamps and
modules are used to permit identification of reports with

B-35

x %. '%,.

T*. U% .~

designated time periods and software segments. The required

metric is obtained by dividing the number of discrepancy reports
by the number of hours of computer operation time to obtain the
failure rate for any designated unit, CSCI,or system. The
average failure rate during testing, FTI, is calculated by taking
the number of discrepancy reports recorded and dividing by the
total amount of test time recorded. This average can be
calculated anytime during testing and represents the current
average failure rate. When calcualted, it is based on the
current total number of discrepancy reports recorded and the
current total amount of test operation time expended. It is
expected that the failure rate will vary widely depending on when Ar ..- ,
it is computed. For more consistent results, average failure .
rates should be calculated for each software test phase: CSC
Integration and Testing, CSCI Testing; and, if required, for each
system test phase: Systems Integration and Testing, and
Operational Testing and Evaluation.

The failure rate at end of test, FT2, is calculated by taking the
number of discrepancy reports recorded during the last three test " "A
periods of CSCI Testing and dividing by the amount of test time
recorded during these last three periods. This failure rate can
be updated at the end of System Integration and test and at the
end of Operational Test and Evaluation. A test period is defined
as a test interval or session with specific test objectives. A .

test period could be a test run, a day or a month. .

11. Outputs: The basic statistic output by this procedure is the
failure rate. Since all metrics have been stated in terms of 0
this rate, no further transformation should be required.

12. Interpretation of Results: The failure rate is interpreted as
the primary measure of software reliability.

13. Reporting: Failure Rate is a basic measure of software
quality and may be specified by the sponsoring agency or user.
It is, therefore, essential to report failure rates to the
project manager, to provide evidence that contractual . 'V
requirements are being fulfilled.

14. Forms: Failure rates are to be reported for each module,
CSCI, and system as part of the normal reporting procedure. -

15. Potential/Plans for Automation: An automated procedure will
provide an objective record of unit failures, although it is not
likely that it will be able to provide complete information
concerning the reasons for errors. In addition, it may not be .. .
able to detect failures in which outputs are not within required
tolerances. In short, not all software failures are detectable !
by an automated system. Automation will be most valuable in
maintaining error reports on-line, in an accessible form, for
review by the project manager and quality control personnel.

%%

... . ,. ..,....

,,.., .', .'..', .' . .<.v , .-. _ ..., .,.-.:.% '... ..< ?. ?.'. .?/..'. ..<'.[- ,.. ,.... <.....'<

LW1W~W1M.~F~.N'JvV. J~W J~2~ ~'. J~ .'~ ~r~Jv ~rW '~- J1. ~ ~JW ~ ~ i.-. ~1! ~Vg~ ~ ~ -. * ~ -~ -~ '~ ~.M -* ~ -~ ~ ~N '~j~ ~\A

I ~

,.~. .'

16. Remarks: An accurate measure of failure rate is essential to
the success of efforts to obtain appropriate metrics.

-'a

* *-*

~. A

~

S
*a~ .~

-. -

S

'.1~
d

p.~~ *p"~

S

* -~*

S

'a
S

S

'a..-.,- *p ,.
~-37

.~? ~

.

-- a.- 'a *a 'a *a -. , *. - 'a *'a'~~~~ *. 'a *a *. *.~ *-~'. 'a~ *- -. -- 'a~~'-a~ *-,*'a *'.~ *. -* ***~ **~ ~ pa
a. *P* Pt - - -. -~ P.~

'a aa a ~ a'a'a'a ~ 'a 'a ~ ~
a ' * -- 'a

~ a'a/a- -a%*. ~ a' ** -- ** a

PROCEDURE NO. 15

1. Title: Test Effort (TE)

2.Prediction or Estimation Parameter Supported: Test
Environment

3. Objectives: Test Effort is a measure of the quantity of
testing to be performed. Three alternative measures are
available. One is determined by the number of calendar days
expended during each phase of testing, normalized by the total
number of days (or hours) for the development effort. One is
determined by the number of person days expended. One is lt
determined by the amount of funds allocated to testing.

4. Overview: Estimates of the number of hours to be expended in
testing are used during the early phases of the project. As
actual numbers of hours become available, they are used to
correct the early estimates.

5. Assumptions/Constraints: The Test Effort measurement requires
access to labor hour data for a project and a work breakdown
structure accounting system that delineates labor expended during
testing. It is assumed that accurate figures for the hours of
testing and total hours for the project are available. Because
reported hours are not always accurate (e.g., because of unpaid
overtime), some inaccuracy may appear in the reported hours.Il

6. Limitations: A measure of formal program testing may not
include all testing performed. Typically, informal tests are
performed at all levels throughout the development cycle. If
these informal tests are frequent, and are not reported as such,
the metric may be somewhat distorted, since the time for formal
testing may be reduced without reducing the reliability of the .
software.

7. Applicability: Estimates of the amount of testing to be :

performed may be obtained throughout the software development -,~
cycle.

8. Required Inputs: For measurement of the amount of testing,
job records from the software development project may be used. At
earlier phases of the project, estimates of time to be spent in
testing will be employed.

9. Required Tools: This factor will obtained manually from

mana.gement reports.

10. Data Collection Procedures: Periodic project reports will be ' ,.

reviewed to obtain data concerning hours expended on software
tests.%%

B- 38

N~ % % %.

4-.

1 V.-. - .

-%

11. Outputs: The number of hours (or days) of testing, divided by
the total number of hours (or days) in the development, will be
used in computing this metric (AT). The value of the metric AT --

is used to determine the multiplier, TE.
.V

12. Interpretation of Results: The amount of testing should
provide an indication of software reliability, in that morethoroughly tested software is likely to contain fewer remaining

errors. The effect of this measure could be balanced against the
difficulty or complexity of the application, but no effective
measure of the difficulty is available.

13. Reporting: A monthly report of the amount of testing would be
appropriate, and would provide the project manager with a
continuing record of effort expended on tests.

@
14. Forms: The metric worksheet 6 in Appendix C can be used.

15. Potential/Plans for Automation: This metric will be extracted
manually from management reports.

16. Remarks: The project manager should keep accurate records of
the time spent in software testing. In some instances, testing is %
not clearly broken out as a separate project task. Alternative
methods for collecting this measure are by using funding instead .of time.

S

" .-

r1

,:, V

*'p

-' - % . % , + .". -w . p . - - .~ -. p . . . + "p .". " +p

PROCEDURE NO. 16

1. Title: Test Methodology (TM)

2. Prediction or Estimation Parameter Supported: Test
Environment

3. Objectives: This metric is a measure or assessment of the
test methodology. It is based on the techniques and tools
employed.

4. Overview: The RADC Software Test Handbook, RADC TR 84-53. "-
provides an approach for identifying what test tools and
techniques should be employed based on the type and criticality
of the software being developed. This simply uses that technique
(or list of tools and techniques) as a score sheet to assess the 0
test methodology actually employed.
5. Assumption/Constraints: Determination of this metric requires

that the number of test tools be counted. This assumes that it is
possible to count different tools and techniques meaningfully.
although in some instances a tool may have several functions, o7 S
a number of tools may be integrated into a comprehensive testing

Wi environment. It also assumes that the distinction between
software test tools and other support software (such as editors)
is clear-cut.
6. Limitations: As noted, the use to test tools and techniques

relies on several elements that may not be well-defined in . -

particular applications.

7. Applicability: Information concerning projected use of test
tools and techniques will be available at the requirements phase,
as part of the Test Plan. The projected use of tools and "0. L
techniques will be included in the Software Development Plan
also. Reports on actual use of tools will become available during
test and evaluation.

8. Required Inputs: Test Plans, Test Procedures, Software
Development Plan. %

•0

9. Required Tools: Information concerning the use of tools and
techniques will be obtained manually from project reports, as
noted.

10. Data Collection Procedures: The Software Test Handbook, RADC .'
TR 84-53, should be used to develop a list of tools and
techniques that should be used. Each one used, confirmed by
observing testing or reviewing documents, would be checked off.

11. Outputs: Output from this procedure will be the reported
number of test tools and techniques were used (TU) and the total
recommended (TT).

0"0 .
- ..L% -

-% ".,,,%

12. Interpretation of Results: The use of test tools and
techniques is expected to produce a more effective and objective
testing methodology, which should be reflected in greater system
reliability.

13. Reporting: Information concerning the use of test tools and
techniques should be reported back to the project monitor, as
well as the project manager, to ensure that there is
understanding of the role of tools in the software development
effort.

14. Forms: Forms are available in the Software Test Handbook and
in Data Collection Worksheet 7 in Appendix C.

15. Potential/Plans for Automation: This metric is essentially a
description of test management, which is extracted manually from
project documentation, rather than through the use of automated
tools.

16. Remarks: Proper calibration of this metric, and procedures to
avoid the effects of extreme values (such as zero), will be
required.

k. %S •

% e"

?. ." o'

'@~ % %,,

'4-,'"e"-

..-...

-"Sw~

f {L [li l I/ #% il ./lil i _l i i I" I l
•

i" , ,/ i l / " ll w Wl"1-- " i""il ! % % II %0t

.5w ,,.,-.~..'..jle e,,. '." " ,.' %';.'o.'.'-..-. ,. .. ,.j- .e .. '_
. .4 *' -. ,-.'.; -, ?...7?-::., . .•. .. *-. ,v.-_;'....-",,,'.'v,.;:..".;

PROCEDURE NO. 17

1.- Title: Test Coverage (TC)

2. Prediction or Estimation Parameter Supported: Test Enviroment

* 3. Objectives: Test Coverage is a measure of the thoroughness of
testing in terms of how thoroughly the code was executed during
dynamic testing of the system.

*4. Overview: Using available test tools, a count is taken whichi
assesses coverage (VS). This coverage can be assessed during unit
testing looking at paths executed, at integration testing looking
at units and interfaces tested, or at system testing looking at

* requirements tested.

The following data will be obtained during the indicated test
phases:

10

-- Unit Test

--Percent of executable lines of code exercised
during all unit tests

--Percent of branches exercised during all unit
tests

-Integration and test

--Percent of modules exercised during
implementation and test

-- Percent of all interfaces exercised during
implementation and test

-- Demonstration/Operational Test and Evaluation

--Percent of functions exercised

--Percent of user scenarios exercised

--Percent of I/0 options exercised

5. Assumptions/Constraints: Not all branches and calls are
actually equal in determining software reliability. For example,
a well-designed system may include a large number of error
procedures which are never called during normal system operation.
Some portions of code may be used only when hardware or software
failures are encountered. It may be difficult to exercise these
portions of code during system tests.

6. Limitations: It should be noted that the exercise of a

2'

k a

portion of code does not, in itself, provide any guarantee that
the code will perform correctly over the full range of program
variables. At best, it provides evidence that the code is capable ~ .-
of functioning for some value of the variables that it uses.

7. Applicability: This metric may be obtained during unit tests,
integration and testing, and demonstration and operational test
and evaluation.

8. Required Inputs: Test programs normally provide data N
concerning the extent of testing, as noted above. The following
data elements will be required:

TP - Total number execution paths
PT - Number of execution paths tested
TI - Total number of inputs .

IT - Number of inputs tested
NM - Total number of units
MT - Number of units tested
TC - Total number of interfaces
CT- Number of interfaces tested
NR - Total number of requirements
R- Number of requirements tested

9. Required Tools: Appropriate test tools are available for
exercising software systems and for obtaining required inputs. It \
will be necessary to identify appropriate test tools for specific
systems to be tested.

10. Data Collection Procedures: The inputs described in paragraph
8 above are to be extracted during the project phases in
paragraph 4. These are combined using the formula in Task 201 to
obtain the Test Coverage metric, TC.

11. Outputs: The Test Coverage metric will be used in the
computation of the Test Environment metric. V4N

12. Interpretation of Results: A complete testing procedure would
exercise all possible combinations of paths through the software
system, using data for the full range of permissible and
inpermissible (erroneous) values. Such tests of any reasonably
complex system become expensive, because of the enormous number
of combinations of values and paths to be exercised. The Test
Coverage metric must therefore be interpreted in terms of the
ultimate user of the system, the cost of failures, and mechanisms
for recovery. From the point of view of cost-effectiveness, full
tests of a system may not be preferable to less expensive partial
tests, providing that the cost of failure is not excessive.

13. Reporting: Reports should indicate serious failures in the ~ '

testing process, where tests have failed to cover significant
portions of the software system. For the project manager, such
reports are valuable.

14. Forms: Worksheet 8 in Appendix C is for each of the three

Nip.

%3: 'k 4 a

,.:.

metrics. . .

15. Potential/Plans for Automation: Test Coverage can be computed
automatically through the use of software test tools.

16. Remarks: Test Coverage is an important metric for evaluating
the quality of testing that has been applied to the software
system. It provides a measure of the degree of confidence that
the manager can have in the results of testing.

*. S ,A ,.%

S.5-., .'.

• . ,

"% %

%~~~ % % '"%

% % % % % -%% % 0 * -1

% ." % ,

:--'. .;:5
5- 5- i,

: ..5 ~.:.:
B-44 5- 5

,% s- .%.

, -q-%-

,.- - .. , . ,- .- -,-.-.- - -, .,_, ,- -.-.- ,_- .-.- - .- ,-%-,",-...,..-." . ., % .'... ..- - .- "... , .,.
+- ., .. - . ." ." . ." ." . - " , _'.v._.'_. .". _. _,,.. . -,,-..-.' ,r' - -. ' -,.-.. ,. .. ,..-•.+. ..- "' " "- " " " " . ..,.-,S v.+".

. . " . .° + . . w- o" . ,, m - • ,,, - ,, , • - + .,r • - - - %.% .- ,, • %- • • ." . ." , , . -, %

a. r

%.a %'

PROCEDURE NO. 18

1. Title: Exception Frequency (EV)

2. Prediction or Estimation Parameter Supported: Operating
* Environment V

3. Objectives: This metric represents the view that the greater
the variability of inputs to the program, the more likely an
unanticipated input will be encountered and the program will

4. Overview: A measure of program variability (EV) will be - :

obtained through a count of exception conditions that occur over*: . -

a period of time. Hardware monitors will provide the required
data. The value of EV may be represented as: 0

EV - .1 + 4.5EC

where EC is a count of the number of exceptions encountered in an
hour. j'.

5. Assumptions/Constraints: There has not been sufficient
testing of variability as a possible factor in software system ~ 4
failures. In the form described here, however, it is plausible to
suppose that the number of minor and recoverable problems, as
measured by the number of exception conditions, is proportional
to the number of major failures, and may be used during system

* implementation and test to estimate failure rate.

*6. Limitations: This metric is derived from hardware and

software exception reports, which are normally generated by the
operating system. It will, therefore, provide the basis for
estimating failure rates to be expected during operation of the
system. It will not be available until initial system test.% '"F

7. Applicability: Exception Frequency is determined during the
coding phase, testing, and O&M.

* 8. Required Inputs: Exception reporting is obtained from system
monitors which generate records of hardware and software .

failures.

9. Required Tools: The appropriate system capabilities for %
monitoring, reporting, and summarizing exceptions must be
available for use. .

10. Data Collection Procedures: Records of hardware and software
exceptions are obtained, from which a count of exceptions over a
series of time periods will be prepared and averaged.

A

% %~

1 N s

* . .. ~ - PP A . S --. •. -,,

11. Outputs: The results are reported as EV. as defined above.
This represents a normalized figure for the number of exceptions %

per time period. The normalization permits the value of EV to
represent the degree of increase in expected failures, reflecting
the frequency of exceptions.

12. Interpretation of Results: Hardware failures are likely to
account for a substantial number of exceptions. A faulty disk or
tape, or faulty components in the drive mechanisms for their
supporting equipment, can generate large numbers of exceptions
over a period of time. For this reason, it will be important to
provide some explanation of the causes of the exceptions, to
permit a proper interpretation of abnormally high exception
rates. ,,

13. Reporting: Ixeoption frequencies should be reported back to
the project monitor in oases in which exoessive or anomalous
values are encountered. This metric is valuable in estimating
potential failure rates, by identifying specific modules or -46N
functions for which the anomaly rate is high.

14. Forms: Ixoeption rates are based on data collected by
hardware and software monitors and reported by operating system •
functions. This information can be entered into report forms to
obtain the required value for EV.

15. Potential/Plans for Automation: A system for the collection
of software metrios could include required functions for 41

obtaining exception rates and for transforming them into the
specified outputs.

16. Remarks: The exception rate appears to provide the basis for
a highly accurate estimate of the failure rate to be expectedduring later system operations.

.• . ;. "."W%

".' ~B-46 " "

.V

5** .

S. % .% - . - - - - -. ..-. . . .- -. • -. .. '..-., ., A ..-.-. . '

. # , .. " . _ . . - . .-e, " .-, . "

A., M

PROCEDURE NO. 19

1.Title: Workload (EW)

2. Pediction or Estimation Parameter Supported: Operating
Environment

3. Objectives: The Workload metric represents an estimate of theM
workload of the system. It i~s thought to be more likely that a
specific task will fail in a heavily loaded system than in a -
lightly loaded system.

4. Overview: One measure of workload is the amount of overhead
being utilized. It represents how much I/O, system calls,..
swapping/paging,etc is going on. In most mainframes this measure
is reported by the operating system. The 3W is obtained by
calculating the ratio of execution time to execution time minus
overhead.

5. Assumptions/Constraints: To obtain a metric which will
predict reliability, it will be necessary to obtain a figure for
overhead which is typical of the times when there is significant-
activity. Overall averages for workload will have little
predictive value if they include long periods when the computer
system is completely idle. For that reason, the average should
be computed during peak usage.

6. Limitations: Estimates of workload should accurately reflect
conditions in the operating environment. The possiblity of rapid
system degradation under conditions of heavy overload should be
considered. Another point for consideration is possibility that
system reliability will degrade -- i.e., the failure rate will M

increase -- in a non-linear fashion as the workload increases.
There may be no failures attributable to system overload while
the workload is less than, say, 95 percent; at this point, the
failure rate begins to increase dramatically. The manner in
which this metric is calculated assumes a linear relationship
between workload and failure rate. e

7. Applicability: A measure of workload can be determined during
the coding phase, testing, and O&M. We are attempting to
estimate what the workload will be like in operation. Stress
tests, during which workload is deliberately kept at a high
level, can be used to measure the effect.

8. Required Inputs: Computation of this metric will require data
concerning total run time and overhead time.

9. Required Tools: Information required f or this metric is
normally available through the system monitor.

10. Data Collection Procedures: As data concerning overhead and
total run time become available, the ratio is computed and

-4%

'MM~4 %%% % %* .*

- . . - -, , t . a. . . - " - b' " . - . I . -, -w .- " r .

% ,%

reported. --..

Often, the ratio appears in accounting information produced by
the system monitor. -
11. Outputs: The ratio (EW) is reported as an output to the
computation of the Operating Environment metric.

12. Interpretation of Results: In general, it may be expected
that system performance will degrade rapidly as the CPU
approaches saturation. The problem for consideration will be the
extent to which software degrales in a nondestructive manner,
maintaining as many mission-critical functions as possible.
Outputs from this metric should be useful in identifying a point "
at which degraded performance begins. Typically, Government
specifications required that no more than 75 percent of system -

capacity be used, i.e., that there is a 25 percent margin for
error, for mission-critical systems.

13. Reporting: Busy time or workload should be reported with I
other management data concerning resources use.

14. Forms: Workload is obtained from system management records, 0
which are normally generated automatically by the operating
system.

15. Potential/Plans for Automation: Information concerning
workload and overhead is routinely gathered in automated computer .
management systems. •

16. Remarks: It should be noted that this metric could also be
the difference between idle time and total time. In a time-shared
system, a significant portion of the busy time may be occupied by '- .'
system overhead. In addition, in some applications, time that
would otherwise be idle is absorbed by low-priority tasks (such
as checking data bases for consistency) that would otherwise be.. .?
idle. If a low-priority task is used to soak up idle time, it may
produce a misleading estimate of the actually busy time -- i.e., .,
the time used by higher-priority tasks.

%- %

0~~ %~ P -.
Sa .. 2!

a-T. -)

• . t, • -#J " . . " " ," ... • '.• . ,"" . . # .' . '. .. ,,.,. '- .# ., , ..9

,L,' " % "' . . " ." -# " "."- " - • "¢ .'/""" -.% ".- .' "" '.. "'.". ".' " " " - " "".. . . .

',..M .' -,.",'- -- ;_ v :."." -.- -".'.",: ", ./..:."','' .a.:,-- ' ,..".- -. : -...:- .-... .. .:. '

..

APPENDIX C ' -3.
METRIC DATA COLLECTION WORKSHEETS "

iI

Appendix C contains metric worksheets used to collect metric data
during development phases. Nine different worksheets are applied
to development products in different phases and at different
levels of abstraction. These worksheets are modeled after those A.-
documented in RADC TR 85-37 listed here:

1. Metric Worksheet 0, system level, system/software .,
requirements analysis. " A.

2. Metric Worksheet 1, CSCI level, software requirements

analysis.

3. Metric Worksheet 2, CSCI level, preliminary design.

4. Metric Worksheet 3A, CSCI level, detailed design.

5. Metric Worksheet 3B, unit level, detailed design. 0

6. Metric Worksheet 4A, CSCI level, code and unit testing.

7. Metric Worksheet 4B, unit level, code and unit testing. .

One difference is that only those worksheet items pertinent to. -
reliability prediction and estimation are included in this , :
appendix. Any questions relating to definition, explanation, or
application of these worksheets should be referred to RADC TR
85-37. Another difference is that the worksheets related to the
Quality Review (SQ) metric and the Standard Review (SR) have been
separated and reorganized in Appendix D.

Terminology used in the worksheets generally is consistent with
DoD-STD-2167A (e.g., CSCI, unit). The term "software" is used in -
a broad sense and refers both to the end product (code, data and
documentation) and to the product in its current stage of
evolutionary development. A glossary is in [BOWE85]. An index I S
of the worksheets showing the phases of development when they are
applicable is provided in Table C-1. Multiple occurences of
worksheets in Table C-i represent either the application of a
subset of the worksheet applicable to that phase or the fact that
the worksheet could be updated at that phase if required.

..

.' 3t.%

J.~~~~~~~ .,. 40

%. %s.~ %

% %~ % % % %* S%* %~ %4 %~ % % ~5

k, k- V

*%

m L.

TABLE C-I
METRIC WORKSHEET INDEX

APPLICABLE WORKSHEET -. e

PHASE LEVEL METRIC WORKSH,-E

.CONCEPT INITIATION SYSTEM APPLICATION TYPE 0

SYSTEM SOFTWARE SYSTEM APPLICATION TYPE 0 ". .
DEFINrTION

SOFTWARE REQUIREMENT5 SYSTEM APPLICATION TYPE 0
ANALYSIS DEVELOPMENT ENVIRNOMENT I

SOFTWARE REQU"IREMENT. CSCI ANOMALY MGMT 2
ANALYSIS TRACEABILITY 3

QUALITY REVIEW RESULTS 10 (Appendix D)
5 •

PRELLMINARY DESIGN SYSTEM APPLICATION TYPE 0 F.

DEVELOPMENT ENVIRONMENT I

DETAILED DESIGN CSCI ANOMALY MGMT 2
TRACEABILrY 3
QUALITY REVIEW RESULTS 10 (Appendix D,

5? 5
ANOMALY MGMT 2

CSCI TRACEABILITY 3
QUALITY REVIEW RESULTS 10 (Appendix D)

5
UNIT ANOMALY MGMT -.". X%

TRACEABILITY 3 %
QUALITY REVIEW RESULTS 10 (Appendix D)

5o

CODEING AND UNIT SYSTEM APPLICATION TYPE 0 •
TESTING DEVELOPMENT ENVIRONMENT I ..

CODING AND UNIT CSCI ANOMALY MGMT "
TESTING CONT) TRACEABILITY 3 %

SOFTWARE IMPLEMENTATION 4 -
LANGUAGE TYPE 4 -
MODUL-ARITY 4-
COMPLEXIT'Y I I (Appendix D)
STANDARDS REVIEW RESULTS 5 ,'.

UNIT ANOMALY MGMT
TRACEABILITY 3
LANGUAGE TYPE 4
COMPLEXITY 4
STANDARDS REVIEW RESULTS I I Appendix D,

5
SC :NTEGRATION SYSTEM TEST EFFORT 6 ," "

\ND TESTING TEST METHODOLOGY
TEST COVERAGE 8-

5 ".
OPERATIONAL TEST SYSTEM WORKLOAD 9 .

AND EVALUATION VARIABILITY OF IN'PUT 9

C-2
,4%. '..

-. .~~ / % '. ~ _%..PS,_!

- **~s .S -, % S • -

--. .- -- -.. -. - - - -

... *d % p

%5 .. %

METT!::::WORKSHEET 0.

SYSTE SOFTWARE DEFINITION
SYSTEM LEVEL A

1.- PROJECT

2. DATE
.

3. ANALYST

4. PRODUCT

5.SOURCE DOCUMENTATION

%%

C-3,

% % % .%

.7-5.

METRIC WORKSHEET 0 a

APPLICATION TYPE (A)

Categorize software application according to application area as
follows (Circle one category in each scheme):

SYSTEM NAME: CSCI NAME(if Applicable)

APPLICATION (for System Level) FUNCTION (for CSCI Level)

i AIRBORNE SYSTEMS I EVENT CONTROL
- MANNED SPACECRAFT "

I - UNMANNED SPACECRAFT o PROCESS CONTROL
- MIL-SPEC AVIONICS
- COMMERICAL AVIONICS e PROCEDURE CONTROL

is STRATEGIC SYSTEMS s MESSAGE PROCESSING
C3 1

- STRATEGIC C
2

1PROCESSING s SENSOR AND SIGNAL % l-I
- INDICATIONS AND WARNING I
- COMMUNICATIONS :Z

PROCESSING I PATTERN AND IMAGE

is TACTICAL SYSTEMS I o EXECUTIVE/OPERATING SYSTEM "
- STRATEGIC C2 PROCESSING ,,-
- COMMUNICATION PROCESSING :;:.
-TACTICAL C2

- TACTICAL MIS o SUPPORT SOFTWARE/UTILITIES -
- MOBILE
EW/ECCM

I o RESOURCE MANAGEMENT/CONTROL-

ig PROCESS CONTROL SYSTEMS I SCIENTIFIC/ANALYTICAL
- INDUSTRIAL PROCESS CONTROLI PROCESSING S

I o DECISION AND PLANNING AIDS
• PRODUCTION SYSTEMS

-MIS I o DATA MANAGEMENT
DECISION AIDS I

- INVENTORY CONTROL I DISTRIBUTION/COMMUNICATION
SCIENTIFIC

. I I DISPLAY/DATA PRESENTATION
* DEVELOPMENTAL SYSTEMS "

- SOFTWARE DEVELOPMENT TOOLSI o DIAGNOSTICS
- SIMULATION
- TEST BEDS

::- TRAINING

.i TIMING CATEGORY

o REAL TIMF o BATCH

is ON-LINE I o SUPPORT

C-4

_% % % %% % % % Z '" % % %

.1..3A

METRIC WORKSHEET 1
DEVELOPMENT ENVIRONMENT (D)

Categorize development environment according to the following: -

DEVELOPMENT ENVIRONMENT

organization srebyteprogram.

Semi-detached Mode: The software team is experienced in
teapplication but not affiliated with the user.

Emedd Mode: Personnel operate within tight
constraints. The team has much computer expertise, but.

is nt neessaily eryfamiliar with the application

servd b th proram Sytemoperates within strongly
coprational e of hrwesoftware, regulations, and

Inaditon i dta is avialcomplete the following %

* . .

C-5.

N0

-~~~
AP a a

SUPPLEMENTARY CHECKLIST FOR DEVELOPMENT ENVIRONMENT

Identify all characteristics that are applicable to "be U-,-

development environment to be used on subject project: -

ORGANIZATIONAL CONSIDERATIONS

C) Separate design and coding -p.,.

() Independent test organization
C) Independent quality assurance
C) Independent configuration management
C) Independent verification and validation
() Programming team structure
(C) Educatioual level of team members above average(C) Experience level of team members above average

METHODS USED

() Definition/Enforcement of standards
I () Use of higher order language (ROL)

C() Formal reviews (PDR, CDR, etc.)
C) Frequent valkthroughs

.I () Top-down and structured approaches
() Urit development folders
() Software development library
C) Formal change and error reporting

I ()Progress and status reporting

DOCUMENTATION

C) System Requirements Specification 0
C) Software Requirements Specification
4 () Interface Design Specification
() Software Design Specification
S () Test Plans, Procedures and Reports
C) Software Development Plan
C) Software Quality Assurance Plan
() Software Configuration Management Plan •
() Requirements Traceability Matrix V i".

() Version Description Document :_< .-
4C) Software Discrepancy Reports

TOOLS USED '-

(Requirements Specification Language
Program Design Language

() Program Design Graphical Technique (flowchart,
HIPO, etc.)

() Simulation/Emulation .
4 () Configuration Management
4 () Code Auditor

() Data Flow Analyzer
C() Programmer Workbench

p. () Measurement Tools
,1 () Others

iCount the number checked. Assign that number divided by
138 to Dc.IDC - No. checked/38 = /38 - 0

C-6

I P°IJ.
sP w ,, , ** *. ., - .- - -- - - . s° • %. -

METRIC WORKSHEET 2
ANOMALY MANAGEMENT

GENERAL INFORMATION

1. PROJECT

2. DATE

3. ANALYST

4. PRODUCT

5. SOURCE DOCUMENTATION U~'

J-

6. PHASE: SRR ___

PDR ___

CDR ___

CODING ___-.--

(Checkc applicable one)

7. LEVEL: System ____

OSCI ____ NAME _______

CSC ____ NAME
UNIT _ __ NAME ______,

(complete applicable level)

1. % *P %

r g % %

I p t
4

|

METRIC QUESTIONS, ' "

ANOMALY MANAGEMENT :

%

The following checklists are used to assess the degree to which % '
anomaly management (error tolerance) is b~eing built into a
software system. The checklists should be applied as follows: ,, %

CHECMETRIC QUESTIONSQ

2B1 At Software Requirements Review %

2B2 At Preliminary Design Review

2B3 At Detailed Design Review C.
2B4 At Unit level during coding

Note: Complete the worksheets as follows. Enter a value if
required on the line next to the question in the value column.
Check Yes or No on the line if question requires a yes or no
resonse: Check NA to a question that is not applicable and these
do not count in calculation of metric.

%.P. '-. " J : /

p ., ",j - o

C-8 'z. " a-' a/

a

- .- , .. . ,

%% °

,.. %

HEIISKLIST IBI -SRR ,,-.-,

N,. -..%

"ALUE YES No \ .'',

AM 1) ,How many instances are there of '
different processes (or functions, -,..
subfunctions) which are required to '--
be executed at the same time
(i.e., concurrent processing)?""- .- :.

b. How many Instances of concurrent---,
processing are required to be cetrally -..-
controlled?.- - "

a. If b/a 1 , Circle N.•

N.

If b/a- i, Crcle Y *£*

A.l(2)a. How many error conditions are _"-
required to be recognized (identified)? -,_",,

b. How many recognized error conitions•
require recovery or repair?-..-,

c~E.:KL•s IB• - SR

c, if b/a ,1 circle N,"'':
If b-a ccle Y..-

AX i(3) Is there a standard for handling -.-
recognized errors such that all error
conditions are passed to the calling
function or software element?...L:.T'' '

AMX.(4) a. How many instances of the same process
(or function, sufuncton) being required
to execute more than once for comparison

purposes (e.g., polling of parallel or 0redundant processing results)?

b. How many instances of parallel/redundant
processing are required to be centrally
controlled?

c. If b/a ' 1. Circle N. 0
If b/a - 1 , Circle N,

AM 2(1) Are error tolerances specified or all

applicable external input data (e g.,'"
range of numerical values legal,,
combinations of alphanumerioal values)? " "

A.M.3(1) Areuire requirements for dentiion of

and/or recovery frod all om cotional .-

failures?veryor rpair

%% %' %% %

.fb% % %,cre,

..f.b/a. .. c.- .

% 5 'i

VAULE iYES N

AX3)Are thiere requirements t ringe -Pst
all critical (e.g., supporting a %

mission-critical function) loop and
multiple transfer index parameters
before use?

..-.,,. *,

AM.3(3) Are there requirements to range test '

all critical (e.g.,. supporting a
mission-critical function) subscript
values before use?

A14.3(4) Are there requirements to check all
critical output data (e.g.. data
supporting a mission critical. system

funtio) bfor fialoutputting?

t %I

AM.4(J.) Are there requirements for recovery
from all detected hardware faults9
(e.g.. arithematic faults, power
failure2 clock interrupt)? %' '

AX.5(1) Are there requirements for recovery
from all 1/0 device errors?

AM.8(1) Are there requirements for recovery ir0
from all communication transmission
errors?

AM.7(1) Are there requirements for recovery

**m," JI"~

from all failures to communicate with
other nodes or other systems?

AM.7(2) Are there requirements to periodicallyi %..

check adj)acent nodes or interoperating I
systems for operational status?' -

AM.7(3) Are there requirements to provide a
strategy for alternate routing of messages?,-

P.EJ(1) Are there requirements to ensure
communication paths to all remaining Ih
nodes/communication links in the ,
event of a failure of one node/link?

R,.1(2) Are there requirements for maintaining
the integrity of all data values
following the occurrence of anomalous
ccondi t ions? *

% 10

, .' ,

(e. g. %r -o a% -faul-s, .po e ...,..",...',.?,-'o.P.

% % % %,% %,% %,

fro a / e

m @$

.- . *@ .'a'd '

" :/'.-J . -

\LLE INES \OC _-

RE (3) Are there requirements to enable all
disconnected nodes to rejoin the network

after recovery, such that the processing
functions of the system are not interrupted?

RE 1'4 A.re there requirements to replicate all

critical data in the CSCI at two or
more distinct nodes?

AM .-'-''Ecun henmbrof- hckd

% ,

count the number of N's checked. <
Calculate the number of N's divided by the, .. 4, ,
number of N's and Y's. Assignment that valuei '
to AM. ',, ,.TOTALS

AM:*C-11

%.""-.
%.' .- '

% %

%- %I

t 1

% eo ° 6P

AX 3 (1) Are there provisios for reovery from all N- ,_$
computational failures? % %-

AN 4 (1) Are there provisions for reco very from all .-:--

I . o~- .p .

detected hardware faults (eEg., arithematic• -..-
faults, power failure, clock interrupt)?_.:-..-.

*- .- -%

AM35(1) Are there provisions for recovery from all " -.
, device errors?".

AM .(1) Are there provisions for recovery from all
ouncaton tran checkln information (e.g.
cheakum, parity bit) computed andntrr
transmitted with all messages? '-.. .

AX-6(3) Is error checking information computed -"-
and compared with all message receptions? ""'I

AM-6(4) Are transmission retries limited for all
dransmeions?

AM.7(1) Are there provisions for recovery from all
failures to communicate with other node (e g.o .
or other systems? a

all adjacent nodes or interoperat edg systems
for operational status? esg.eetos

AX.7(1) Are there provisions for alternate routl g

of messages? -.- '
RE f(a) Do communicaths exist to all n%'"'

remaining nodes/links the event of

a failure of one node/link? ... "-"

AE-1(2) Is the interity of all data values c
maintained following the occurance of-. :
anomalous conditions?.-%..-

R3.1(3) Can all dsconneced nodes rejoin the y stm
network after recovery, such that the
processing functions of the system are "' .,
not interrupted?RM.i(,) Are ae critica data in the system (or

RECI replo omuicaton ath etis tro allinca failureofone noe/link?-.

nodes, in accordance with specified of
requrement s ?dit

% % % '-°

ICn d n d .se n
newrkate.ecvr,..h ht.h,

procesing fnctios of.te sysem ar

,.......o, . ,. ,, ,.not .. interrupted? , .,.,,. , . , ,. ,.,,.,, ,,., :. 9,,

1%%

N%

7. -. z e s a
n A-7gn t: at al'N

*% %

I JoS

-V JA % %

. .. *

%

% .%

'Z'HEK ST 183 - 'NOMALY M~ANAGEMEN' (1XN___ _ _ _ ___ _ _ __ _ _ _.

V ALUEESNO P. %

AHXi(3) a. Nov many units in CSCI? 14

F.7cr h-w mnry -anits, wtQen an errcr
condition is detected, -I reG,:)'it1.)rn of
the error determined by the calling unit?

% , % 5*

c. Calculate b,,& and enter score.

d. If b1NM 0 check N, otherwise check Y.

AX.2(2) Are values of all applicable external
inputs with range specifications checked %.*
with respect to specified range prior P?'Xj .
to use?

AM.2(3) Are all applicable external inputs checked
with respect to specified conflicting
requests prior to use?

AM.2(4) Are all applicable external inputs checked 8-

with respect to specified illegal
combinations prior to use? *5..

AM 2(5) Are all applicable external inputs checked
for reasonableness before processing
begins?

AM.2(8) Are all detected errors, with respect to
applicable external Inputs, reported
before processing begins?

AM 2(7) a. Nov many units, do not perform a check
to determine that all data is available
before processing begins.

b. Calculate a/NM and enter score.

c. If aNX 0 check N, otherwise check Y.

AM 3(2) Are critical loop and multiple transfer
Index parameters (e.g., supporting a *

mission-critical function) cliecked .

for out-of-range values before use?

AM 3(3/1 Are all critical subscripts (e.g.. F
supporting a mission-critical function)
checked for out-of-range values before use?

% %5

W - 4----..._f .

%" " -

\,A LE E ,

.X 2. , Are &I! criical output data (e.g. ,_

" ' -- -. -~

.: 9" - : .,- b e ,;a -.as prior to
fln~l $"- zed"-' -?"-'

*-. J..

a. P -1 A

-b

% %

e"

AM 24, the ar riiatotputN dto (e t,

:,ter
,-f..* .t.

.- , .

.--- --

%o'% %

%- %
.- A- V

- .:*-

A " ,-..1 =-

0
'-V, p-.. .. " --... """ . ',': " " : :::: : : :: :.'.5 :

%._%. -%

....%., .

% S..'.°

% . ,.

%

CHECKLIST IB4 ANOMALY MANAGEMENT (SA) CODING

V,'ALUE YE-S N(

k. 1,3) Chen an error condition is detected, is
resolution of the error determined by the
calling unit?

.. 2(7) is check performed before processing begins
to determine that all data is available? B

•, .*'- .V

5. *1

,.5.'..w. .

I I 0

," .- ;e

TOTALLS
SCORE: Count the number of N's and divide by 2. ___I-

.. -: %'%

* .% , ,*

ANII

%S A.. Z*, ,.. ,5,_5.,."%

* * .5 .% ,5

..A ,.

-,,.• .. ,&

-% ~

k

METRIC WORKSHEET 3

TRACEABLITITY ANALYSIS

TRACEABILITY

The following questions are used to assess the traceabilty of the
system. Metric Worksheet 3 can be used to comply with these
7-.estions. The questions should be applied as follows:

QUESTIONS APPLICATION Pb

3A At software Requirements
Review

- J .. '

3B At Preliminary Design
Review - - "

-

S
3C At Detailed Design Review

and During Coding

QUESTIONS 3A e

C.1(1) Is there a table(s) tracing all of the CSCI's •
allocated requirements to the parent system
or the subsystem specification(s)?

ST SCORE: 1 if Y, 0 if N. SR - .__'.__

-C.7_1) Is there a table(s) tracing all the top-level
CSC allocated requirements to the parent CSCI'-
specification? .

/ %
ST SCORE: 1 if Y, 0 if N. ST - _"_"_"

vilt ION S 3C .,:>,, :._

:C.1(1) Does the description of each software unit . *.

identify all the specified requirements (at
the top-level CSC or CSCI level) that the
unit helps satisfy? -

-C.1(2) Is the decomposition of top-level CSC's into
lower-level CSC's and software units graphically
depicted?

3T SCORE: 1 if both questions answered with Y.
0 if either or both answered with N. ST - _...-

c-17

.. e .- . .v.,-

%% %., %"

ws),-1-0v

METRIC WORKSHEET 3

TRACEABILITY

Itemize individual requirements and trace their flowdcwn thro':ih
design to code. Worksheet 3 is available to trace r,:-S
requirements flowdovn. Contractor specified form-at .
acceptable.

I SYSTEM I DESIGN I SOF'TWARE
IREQUIREMENTS I DERIVATIVE I COMPONEITT

I ExgmpleISSS Para 2.4.1.1 IPDS Para 3.10.1.1.1
ISRS Para 2.4.1 ISSS Para 2.4.1.2 IPDS Para 3.10.1.2!

IPDS Para 3.10.1.3

I--- -

N. *-*.-

r-.

C-1-

S-o

%4 %'l*.%.%

* •.-*- a

%

METRIC WORKSHEET 4
SIZE/COMPLEXITY/LANGUAGE DATA

Several of the measures used in the prediction methodology -
require sizing data about the software at various levels of ...
detail. Such information as the overall size of the system and
how it is decomposed into CSCI's, CSC's, and units, is required.
Initially during a development, these data are estimates, then as
the code is implemented, the actual size can be determined.
Worksheet 4 can be used to record the data required by Data
Collection Procedures 6, 8, 9 and 10. A worksheet should be
filled out for each CSCI. Each unit's (MLOC) size and complexity
(Sx(i)) is recorded in the right hand columns. An indication of
the number of lines of higher order language (H) and assembly
language (A) for each unit should be provided. The size data
should be summed for all units in a CSC and for all CSC's in a
CSCI. The totals are recorded at the bottom of the worksheet.

Complexity (SX(i)) is calculated as follows:

(1) Count the number of conditioned branch statements in a
unit (eg. If, While, Repeat, DO/FOR LOOP, CASE).

(2) Count the number of conditioned branch statements in a .. %
unit (eg. GO TO, CALL, RETURN).

(3) Add (1) and (2) 0

% % % % ",

% %' %P

... ,

-.- ''V..-

I.-. -" .

%.. .. ".

C - 1 9-V.. *,-'.*
'. • " o."

% .' .% .' ,. . -. ,, ".,'. , ,, ,',. % '. % % '. •-.. , " " % % - " , % -. . . . , ,• . •. ,, .. .- .- ".

%. %
% ?

%
-

ZetA

P'~ %

OFC NAME DATE:C O.O NIS<2U O

CSC~~NO NAM UNITS UNI NAM 0 LO OC X=PEX

-- 20

* j Ira

% P

WORKSHEET 5

During the Quality Review, Standards Review, or equivalent Z
reviews such as Design and Code Inspections or Walkthroughs;
during formal reviews such as SRR, PDR, CDR; and during testing,
problems should be formally documented. The Discrepancy Report mm

(Worksheet 5) or an equivalent problem report form should be
used. The discrepancy report records the following information:

* Problem title and ID
* Analyst who uncovered problem
* Data it was found and phase of development
* Type of Problem '
e Criticlity of Problem
e How it was detected
* Description of Problem '- "
* What test run and how much test time was expended if it

was found during testing 0
9 Impact of Problem
0 Solution
e Acknowledgement that it is a problem and date
* Acknowledgement that it has been fixed and dated

C-2. *

C-2 1 *.-,

,. .S -

0, ,.;,

%- .f'.*.%-. '.:

%*- %
-* i.%"* %*

WORKSHEET 5 DISCREPANCY REPORT

-s

* PROBLEM TITLE______________ PROBLEM NUMBER________
DATE:

PROGRAM ID: ANALYST"-- __________ I

REFERENCES:

PROBLEM TYPE:
REQUIREMENTS DESIGN CODING MAINTENANCE

Incorrect Spec . Requirements Compliance Requirements or Design Omitted Logic * Incorrect Fix
* Conflicting Spec - Choice of Algorithm Compliance Interface Incompauble Fix -"-

* Incomplete Spec • Sequence of Operations Computation Implementation Performance
- Data Definitions Sequence of Operation OTHER
- Interface • Data Definition

R Data Handling
CRITICALITY '

HIGH MEDIUM LOW Is________-

METHOD DETECTION.

DESCRIPTION OF PROBLEM: "..

0
¢%-.6 'q*.". S...',

,--..:-...

Z S.
TEST EXECUTION: TEST CASE ID: TEST EXECUTION TIME:

EFFECTS OF PROBLEM:

RECOMMENDED SOLUTION:

APPROVED: RELEASED BY:

DATE: DATE:

%%

,..,-. . .,
S.... ,,

. % . .,, -....* ,.. .-... .-. -. - - "+ 5 . . -•..". * '. *S *S. . * , '* . .* % ." . S. S. % ,+ ,, "° * *. .% . . *.. % - . . -

- .'.. .%~~~~~~~~~~~~~~~~."-'- ..." -.- " . ..- • . -•.....-.'*,,-. S.".'. % N_%h". ,%.%.% '..".% \% S'._" %.S % ** *',,. S . %•- '.

D

WORKSHEET 6 *- -

TEST RECORD 16

During formal testing, it is important to record not only the
problems encountered (see Worksheet 5) but also the amount of
testing performed. This data allows calculation of the failure
rate being experienced during testing. Worksheet 6 is provided
to facilitate the required record keeping. Each individual
Tester should complete these worksheets. Each individual test
run 3hould be recorded, the date it was run, a reference to a
test plan or procedure if appropriate, reference to a descrepency
report if there was a problem encountered during the test run,
and the execution time of the test run. Note, successful test
rlnli As well as unsuccessful test runs should be recorded with
execxin time. Reference to a discrepancy report is only made
if a problem is encountered.

Execution time should be recorded in computer operation hours
wall clock time of run) and/or in CPU hours if CPU executiontime is available. The measure of time should be indicated. kT

w1):,-'kshe,-t 6A can be used to track testing progress. The units of
tize n the horizontal axis should be chosen to represent the
test pase of the project. The number of problems recorded each
test period should be plotted to facilitate observation of the
trend in failure rate. -

Worksheet 6A also supports calculation of the average failure
rate during test test (FT1) and the failure rate at end of test .
(FT2).

Worksheet 6B is provided to support calculation of the Test
Effort metric. The three alternative calculations are described
in that worksheet. Inputs to these calculations come from
management reports which track resource and budget expenditures
and schedule. '

C2-.
. l IF

S..
. SI,>..

S.% - ,. -. 1

,' - ,, " - m, W '-,_ " ' " " .". " 2 .". " " . " ". " " Z "• " " """ "C """ " - -2""3" -". -" -" . , .,I .'°. € .'." '_ z . " ,- ,. # . # ..-... e # . ."." " . .".. . .- , .. - , ..

.4 .J. F

WORKSHEET 6A
FAILURE RATE TREND

NO. 0 %

PROBLEMS

16.. .

TEST TIM

FAILUR RATECALCUATION

AVRG ALUERT URN ET

F Toal nmbe of isceparcv epors dringTes

TI. --
Toa Ts Tm

Faiur Raea ndoPet

F o fDsceacOeprsdrnglsOFes eid
PROBLEMS T

Tota Tes Tie duinglast3 tst pno'

%%

v~~*

% % % % %

I0r -. " 4"

5" S

WORKSHEET 6B
TEST EFFORT|A?-

TEST EFFORT (TE)

Test effort represents the amount of effort applied to software
testing. Three alternatives are available for evaluation of test
effort. Each evaluates the percentage of effort, budget or
schedule devoted to testing and compares that with a guideline of
40%. The recommended alternative, if data is available, is
alternative 2. The second choice would be alternative 1, the
last choice would be alternative 3.

ALTERNATIVE 1

DOLLARS

a. Budget in terms of dollars for the
software testing effort.

b. Budget for the entire software development
effort in terms of dollars _____

c. Calculate a/b and enter score
'a

d Calculate .40/c and enter score TM -

ALTERNATIVES S

LABOR HOURS

a. Budget in terms of labor hours for the software %'".

testing effort -__ 'a

b. Budget for the entire scftware development
effort in terms of labor hours .-..------

c. Calculate a/b and enter score -__.._

a. Calculate .40/c and enter score TM -

\LTERNATIVE R3

SCHEDULE

a. Schedule for software testing in terms of
work days -

b. Schedule for entire software development . .a

in terms of work days _ _-.-'-----

c. Calculate a/b and enter score. ----- -,'a
d. Calculate .40/c and enter score. TM - ------

%.,] . "'aI

%.. %.%. N, --- "a " " " "-

1* ~ p~ .- - .. -

METRIC WORKSHEET 7 %

TEST METHODOLOGY

RADC TR 84-53 provides procedures for identifying the appropriate I -]
test techniques and tools to use during a software development
project. Worksheet 7A is reproduced from that report. It is the "
Selection Worksheet used in the report to identify the testing
techniques recommended. The procedures in RADC TR 84-53 should
be followed and the recommended techniques and tools should be __
documented in Worksheet 7B. Then, during testing, Worksheet 7B
can be used as a checklist to assess which techniques and tools
are actually used to test the software. The Test Plan,
Specifications and Procedures as well as the Software Development
Plan should be reviewed also.

The Test Methodology Metric, TM, then is based on the ratio of
the applied techniques and tools, (TU) to the recommended 0

techniques and tools (TT).

-. 4

.-. "., .

. % ,

%4. % %

C-26 .d4 .-

L *. . * .- - -;. *c*- *-;- *. "..*,,..*.'v.,",",. ", * ",. ,/,"' ./-', .," .- '''J .'d'',

-- %

e.~*~s*-

%~4.,

WORKHEE 7A

SELECTION'~~~ NVRSETFRPT

SOFIAVAREI TO E TSTE

SOFWARTSLCTO WORKHEEPTH O PATH 3OE

TECHNIQUES COMMNENTs

S Code Reviews

A Error/Anomaly Detection J

I Structure Analysis/Documentation
C'

Program Quality Analysise."
A %/ % //, / /. - ..-

N Input Space Partitioning ,,~/ // , / /
A

L A. Path Analysis -N..

S B. Domain Testing

S C. Partition Analysis-

Data-Flow Guided Testing

D Instrumentation Based Testing ______ //A/ /'

y~
N A. Path/Suructural Analysis______

NI B. Performance Measurement

C C. Assertion Checking

A D. Debug Aids
N.
A Random Testing
L
Y Functional Testing
S ~
1 Mutation Testing
S

Real-Time Testing______ ______ ______ _ ______'i

SYMBOLIC TESTING______________

FORMAL ANALYSTS _____ ____ ____ _____

C- 27 '

%

y

%5~ %N % I %

WORKSHEET 7 .

TEST METHODOLOGY CHECKLIST

*LIST TECHNIQUES CHECK THOSE
AND TOOLS RECOMMENDED TA RACTUALLYIN RADC TR 84-53 USED

TOTA NUMER TTAL UMBE

RECOMENDE: TT USE: T0

C-28

NL.k N

-i-i -YJF. -A07 7 r - p.

V NP.

0
1.Wp

V. METRIC WORKSHEET 8
TEST COVERAGE IZ

Collecting data to assess how thoroughly a software system is_-
tested is difficult unless: .

(1) A Requirements/Test Matrix has been developed

(2) A tool is used during testing which instruments the code
and reports coverage data based on test case execution.

This worksheet assumes one or both these data sources are
available in which case the following data can be collected:

DURING UNIT TEST (FOR EACH CSC OR UNIT):

TOTAL NUMBER OF EXECUTION PATHS: TP-__
TOTAL NUMBER OF EXECUTION PATHS TESTED: PI-
TOTAL NUMBER OF INPUTS: TI-____
TOTAL NUMBER OF INPUTS TESTED: IT-______

DURING INTEGRATION TESTING (FOR EACH CSCI): --%'-
%

TOTAL NUMBER OF UNITS: NM - -----
TOTAL NUMBER OF UNITS TESTED: TM- -

TOTAL NUMBER OF INTERFACES: TC-------
TOTAL NUMBER OF INTERFACES TESTED: CT-_-- --.- _

DURING SYSTEM TESTING:

TOTAL NUMBER OF REQUIREMENTS: NR-.--.
TOTAL NUMBER OF REQUIREMENTS TESTED: RT-

U. Values for NM and NR were collected on other worksheets. Data

Collected during unit testing can also be collected during
integration testing and system testing. The unit and CSC level
data should be accummulated and averaged at the CSCI level. Data N-.

collected at the Integration Test level can be collected during -

System Test also. """

C- i

N * N' •

,,. '-:' ...0

C-29 -

V.. , .. -: ::-.
V.- - " -'-% .' - . . - - *"' z " . " - " " - " -. ' -. ' - . " .• -'. . . '""'. - . " - " - ".- " "

k~k . "% W 777 7 - .4

WORKSHEET 9
OPERATING ENVIRONMENT DATA

Three data items are required to derive the two metrics used to
estimate the impact the operational environment will have on the
failure rate. These data items; the amount of system overhead,
the amount of execution time, and the number of execption

'C conditions encountered during an hour of operating time, can be
* derived from the test environment, estimated, or calculated from

a benchmark. In the first case, the data can be collected from
* the test environment and, based on the assumption that the test
* environment is representative of the operational environment,

used for the metric calculation. In the second case, sample data
can be collected from t6he test environment and based on an
experienced analyst's judgement, that data can be adjusted to
represent the relative workload and stress differences expected
between the test environment and operational environment. In the
third case, a benchmark can be run in the operational environment
to provide the data. The data required is typically available

* from mainframe vendor operating system utilities. It is more 4
difficult to collect in an embedded computer application where
the target computer may be a special processor without a
significant operating system capability.

To collect the data, monitor the processing during a specified%
time period (test period). This time period should be %
representative, or as close as possible, of the operational
environment. During that time period collect the following:

Total Execution Time ET-___

Amount of Operating System Overhead -

time: OS--

Number of exception conditions
encountered: NEC-_ _

Number of exception conditions encountered
per hour of execution then is

EC =NEC/ET-___ --

C- 10 V

,%

i - .. *, ,1,

v".". "V

7 . . % .

APPENDIX D -
QUALITY REVIEW AND STANDARDS REVIEW WORKSHEETS,

Appendix D contains worksheets used to conduct design and code 't

reviews. These worksheets are recommended for use in conjunction
with the software reliability prediction and estimation
methodology. Alternative techniques that can be used are design
and code inspections or design and code walkthroughs. The intent
of these worksheets and these alternative techniques are to -'-
uncover discrepancies that should be corrected.

The worksheets contained in this Appendix relate to the metric
worksheets in RADC TR 85-37 for metrics completeness,
consistency, accuracy, autonomy, modular design and code
simplicity.

The following checklists are used to assess the quality of the !,0 ,Z.
requirements and design representation of the software. Check
the answer, yes, no or not applicable, or fill in the value
requested in the appropriate column. The checklists should be
applied as follows:

APPLICATION AP- I

10A At Software Requirements Review

10B At Preliminary Design Review

10C At Detailed Design Review
(CSCI Level) ,,,.

10D At Detailed Design Review
(Unit Level) .. %..

D-1v

-.d .o .

0 -

*'~.- -

I-, v..- ",-.-..-~v'.-:.-...:..-,-b:.-...................................,.......-.,--.--.-....--..--....-..-..-......-.-...-.-.......<,:,

METRIC WORKSHEET 10 - -

QUTALITY REVIEW

GENERAL INFORMATION

I. Project___

2. Date "S.

3. Analyst --_

4. Product

5. Source Documentation

i "*

"€ .* . .

D-2

-* -%7 " .- - ".

%

-i

CHECKLIST IOA - SRR QUALITY REVIEW
...... VALU.:_ :::P.,?_._ ;: . : -:! . !:: , LLE 'E . \) .. d,,...

AC :73) Are there quantitative accuracy
requirements for all applicable inputs
associated with each applicable function
(e.g., mission-critical functions)?

AC.1J4) Are there quantitative accuracy %
requirements for all applicable outputs
associated with each applicable function 0
(e.g., mission-critical functions)?

AC.1(5) Are there quantitative accuracy
requirements for all applicable constants l.,
associated with each applicable function
(e.g., mission-critical functions)? %

AC.1(6) Do the existing math library routines which I
are planned for use provide enough precision
to suppcrt accuracy objectives?

AU 1(1) Are all processes and functions partitioned ','.
to be logically complete and self contained
so as to minimize interface complexity?

A .2(l) Are there requirements for each operational
CPU/System to have a separate power source?

AU 2(2) Are there requirements for the executive
software to perform testing of its own .
operation and of the communication links,
memory devices, and peripheral devices?

:-?. 1') Are all inputs, processing, and outputs
clearly and precisely defined?

:? ,(2) a. How many data references are C
identified?

b. How many identified data references are
/ documented with regard to source. meaning,

and format? ,- ,-,

c. Calculate b/a and enter score. .
d. If bia . 1 check N, otherwise check Y.

r 3 a. How many data Items are defined (i.e., %. z
documented with regard to source, meaning, -

and format)? "

b How many data items are referenced? .''

1.. ,%

5 ' " " "" '

*' , 4 ...: -...;.:-

p%

%-. ,,..- ..

'P 1 d" '

A-LL E YES " " '.."..

C. If b/a - i circle N , 'Y- • -.
if b/a - I circle Y .

CP.1(5) Have all defined functions (i.e.,
documented with regard to source, meaning.
and format) been referenced?

CP.1(6) Have all system functions allocated to
this CSCI been allocated to software
functions within this CSCI?

CP.-(7) Have all referenced functions been defined
(i.e.. documented with precise inputs.
processing, and output requirements)?

% S.CP.1(8) Is the flow of processing (algorithme) % -%
and all decision points (conditions and
alternate paths) in the flow described
for all functions?

CS.1(1) Have specific standards been established
for design representations (e.g.. HIPO', p

charts, program design lanjuage, flow ,. 1
charts, data flow diagrams)? J- ",

CS.1(2) Have specific standards been established
for calling sequence protocol between ,.

software units? % ,

CS.1(3) Have specific standards been established ".,
for external I/O protocol and format q* ,
for all software units?

CS.1(i) Have specific standards been established
for error handling for all software units?

- .. -p

CS.1(5) Do all references to the same CSCI
function use a single, unique name?

CS.2(1) Have specific standards been established
for all data representation in the design?

CS.2(2) Have specific standards been established
for the naming of all data?

CS.2(3) Have specific standards been established
for the definition and use of global
variables?

CS.2(4) Are there procedures for establishing
consistency and concurrency of multiple
copies (e.g.. copies at different nodes)
of the same software or data base version? TOTA.C. I.,

DR=

%- %

J r' , - - - - v - -*... : - " : -" .? ' ,, V ' ''? /v v ; / : "..,-.'.-,'." "-'"--v-I

% - %

* S

-f. u. ,% *,

.-f...ftf>,.ff.

VALUE YES copie .ad.f ne

CS.2(5) Are th~ere procedures for verifying
*1consistency and concurrency of multiple .-. :copies (e.g.. copies at different nodes) ,.-.-...

of the same software or data base
version?

CS.2(6) Do all references to the same data use
a single, unique name? I S

b:S

.. _..
."' .Pf,-f f. -f

-....P,;..J

K *

.,.-. .,f'.

* S
I "" f.m ft . .

$ I PUT Co nt ll 'n ~ sig nu ber to R . OTA . ."," ," .

ftR-ft..'
'- f. .-•.-. -

%,

CHECKLISTUB~~~~., PD ULT EVE
4%

VALUEYES N %*

Q-,A:,:TY~~d REIE RE-LS(Q

CSCI SAE:4

AC.1(7) Zo the numerical techniques used In .

implementing applicable functions (e.g..
mission-critical functions) provide
enough precision to support accuracy
obj ectives?

AU.1(1) Are all processes and functions partitioned
to be logically complete and self-contained
so as to minimize interface complexity?%

AU.1(4) a. Hov much estimated process time
is typically spent executing the
entire CSCI?

b. Now much estimated processing time
is typically spent in execution of
hardware and device interface protocol?

c. if b/(b+a) .3, circle N....
if b/(b'.a) '.3, circle Y

AU.2(2) Does the executive software perform
tsigof iton operation and of the

communication links, memory devices,
and peripheral devices?

CP.1(1) Are all inputs, processing, and outputs-
clearly and precisely defined? ,~

CP.1(21 a. How many data references are defined? y\

b. How many identified data references
are documented with regard to source.
meaning, and format? ''

c. if , 1, circle N
if b/a - 1, circle Y..

C?.1(3) a. How many data items are defined -
(i.e., documented with regard to
source, meaning, and format)?

b. How many data items are referenced?

c. Calculate b/a and enter score.

d. if b/a I check N. otherwise check Y -.-

%.%

A% e. e. - --- 'p

VALUE Y'ES NO, "N % _

CP (4)a. How data references are identified?

b. Nov mazy identified data references
are computed or obtained from an external
source (e.g.. referencing global data
with preassigned values. input parameters

with preassigned values)?.' i I:

C. if b 1. circle - -.

if b a. - 1., circle Y - 0

,,1() ave all functions for this cscI been
allo cat ed to t:op-level CSC's of th is CSCI? __

r. %

CP. 1(9) Are all conditions and alternative ".Z-
processing options defined for each .k-

decision point?

CP.1(11) a. Row many software discrepancy reportsi-"-'-
have been recorded. to date?

b. Now'many recorded software problem :'
reports have been closed (resolved), i.
to date? w, %,,

o. Calculate bla and enter score. -C.

d. If bla , .75 circle N. otherwise circle Y ",-,..

CS.1(1) Are the design representations in the "
formats of the established standard? '- .

CS 1(5) Do all references to the same top-level....'--CSC use a single. unique name?

CS 2(1) Does all data representation comply with " ..-
the established isandard? -,-

I-.e

CS.2(2) Does the naming of all daa comply wih

are cosptled rotandroatra

CS.2(3) Is he definition and use of all global data

variales in accordance wih the .raeter
esalshed sianderd?dval

CS.2(4) Are here procedures for establishing
consllency and concurrency of muliple

copls (eg.,copies at different nodes) ..

cpoessing. opin-eindfrec

of the same sofr are or data base version?

S e'-.

%,. .5, a

* _- . -. -. -. %".." .CS. -i..Are the desig represetation in' the,-.. '*-" -%."%%% "%"% "-" "- % . . %."

"- . -" " " " " " fo.rmats" .of " th estblihe standard? --. ". ". " "w' ". .

- *~ F~.P .'. *. , .- *'* * - - - - - - -V-.,.

% Z

, - AOT.

VALUE YES NO

CS.2(5) Are there procedures for verifying
cc=sistency and concurrency of multiple

copies (e.g., copies at different nodes)
of the same softvare or data base version?

CS 2(6) Do all references to the same data use a S
single, unique name?

% .-- \" .. '. .

.*.% , 'M

SQ INPUT: Count all N'S. Assign to DR. TOTALS

DR= S

-%8

-'. ' *\ •

S
" •" ".", "a - - .°-" " " " . "".. ." ","-

°
a.. . . . ""

J
° """"" v.,. , S . -~ ** - ..

-. P

o°.p ,P

I %

"HE'KLIST IOC CDR QUALITY REVIEW (CSCI) -_

VALE YES NO ..

QUALITY REVIEW RESULTS (SQ) .b,.
7SCI NAME: __,___.__

A7 "2, a. How many estimated executabe lines of
source code? (total from all units) LOC - .?-.

b. Nov many estimated executable lines of
source code necessary to handle hardware
and device interface protocol?

c. if b/LOC , .3. circle N.
if b/LOC .3, circle Y.

AU.J.(3) a. Nov many units in CSCI? NM.

b. Nov many units perform processing of
hardware and/or device interface
protocol?

c. If b/(NM) .3. circle
If bl/(NX) ._ .3, circle

AC.1(4) a. Now much estimated processing time is
typically spent executing the entire
CSCI?.

b. Nov much estimated processing time is
typically spent in execution of hardware
and device interface protocol units?

c. If b/(a) ' .3, circle N 0
if b/(a) .3, circle Y

,?. .) a. How many units clearly and precisely -,.

define all Inputs, processing. and
OUtpUtp ? . - -.

b. If bi(NN) .3, circle N 0
if bl(Nm) , .3, circle Y

: 2) a. Ho many data references are
dentified? (tctal from all units)

b. How many identified data references

are documented with regard to source,
meaning, and format? ('total from all

- Calculate c/b and enter
value (total from all units)

%p

. : '~. .. d.

p,A ,

,?..v- ' ' '' -' '- ,,'-,l'r- '-' > Vy L 7 > .. ,'...,".-'". ;...-;'.,''..''.-.-4.;

.4.67-47 7

! ,>,,

-"".

VALUE YES No N-\.

I. Calculate cb and enz.er score..

e. If d , 0 check N, otherwise check Y.

CP.1'3) a. How many data Items are defined
(i.e.. documented with regard to source, .
meaning, and format)?

b. How many data items are referenced?

c. Calculate b/a and enter

d. How many data references are computed
or obtained from an external source
(e.g., referencing global data with ,
preassigned values, input parameters with
preassigned values)? (total from all units) ..

e. Calculate d/b and enter score.
;f. if c ,0 check N, otherwise checkY

g. if d 0 check N, otherwise check Y d,

CP.1(9) a. How many units define all conditions
and alternative processing options
for each decision point? (total from
all units)

b. Calculate a/NM and enter score.

c. If a/NM , 1 check N. otherwise

CP.1(10) a. For how many units, are all parameters
in the argument list used?

D. Calculate a/NM and enter score.

c. If b 1 check N, otherwise check Y ...

C.1 11) a. How many software problem reports S
* have been recorded, to date?

b. How many recorded software problem
reports have been closed (resolved),
to date? ,

c. Calculate b/a and enter score.

d. If c .75 check N, otherwise check Y

- , .4 .-.*

- .- *%.* .4.

r 'e

Z
./ o " " . " . % % - . % % . - . . - . % % - % % - . . " . % " . . - . ", - ' . . ,

% %--. = . ". % % ". o. ".'. % " .%,'%. % % % - ,. ,.. ',..".°'.,..%__ . ,,

%5

VALUE~U. YE OI

?or tw may unis ar all esig

representations in heforat o

-Ia~~~~~U asaisdsadrs

t. clculte aNM ad ener sore

_______ c.__if_________1_check__N,_otherwise__check IY.

CS. 12 a. For how many units dres all desig
sequeeneprtosoi (bten unts)o

compl wihth~se establdard adrd

b. Calculate a/NM and enter score.%

c. If a/NM , 1 check N. otherwise check Y.

CS.1(2) a. For how many units does the calin
seueprotocol (bermten uplnits)th
oml whteestablished standard?

b. Calculate a/NM and enter score. %N.~ %-:

c. if a/NM 1 check N, otherwise check Y %
* %

C-S !(A) a. For how many units does the handling
pfrooorns fa comply with thelhd
stabldshd? sadad

b. Calculate a/NM and enter score.

c. If a/NM ' check N, otherwise check Y

CS.1(5) a. For how many units doe three nlin
to terr compl wih theae qe esabise?

b. Calculate a/NM and enter score.%%

c. If a/NM 1 check N, otherwise check Y

7S. 2(l) a. For how many units doe all refrece 41

eosthebite sethesaenuiqeaard?5

b. Calculate a/NX and enter score.

c. If a/iNX (1, check N, otherwise check Y

.,-,2"2) a. For how many units does all daan

ofpreledtao comply with the
established standard?

b., Calculate a/NM and enter score.

c. if &'NX 1, check N, otherwse check Y

of~~~~l alaacmpywt h

41-.

estblihe standa.rd?
%U

0

4e

'%%

b.~~~~~% Cacuat &N an nersoe

CS 2\!6) a. Fo ho ayuis doe aeferences to.

tccorsane d t use stale.shedu tname?

b. Calculate a/NM and enter score. % 9..-

c. If a/NM 1 check N, otherwise check Y .

-SIN ~ b CCR oalcule a'N a ener LfN scoret. C

TOTALS

DR.9

114 6

4It

e r %r 9.r4. .. d

% %,r% %

% % % % % %

% % % p Ip

CHECKLIS' 100 - 111R QLALITY REVIEFW "-N- b

VALUE YESJ NO1

V-4AU7:Y ~~WRESULTS

7N:T SAME.__________

C?. 1-) Are all inputs, processing. and '~pusI
ciearly and precisely defined?

CP.7.(2) a. How many data references are identified?

b. How many Identified data references are

documented with regard to source, meaning.
and format? .

c. if bia 1, circle N, otherwise circle
Y?

CPJ1(I) a . How many identified data references are
computed are computed or obtained from an

external soruce (e.g.. referencing global

data with preassigned values, Input

parameters with preassigned values)?%

b. If b DP.I ,1. circle N, otherwise
circle Y

CP.(9) Are all conditions and alternative
Processing options defined for each *

decision point?

C..P(10) Are all conditions and alternative

processing options defined for each

decision point?

CP,1(l Are all design representaton in the

formats of the established standards?

CS. :.) Are all design representations in the
formats of the established standard?

C1S.1(2) :ces the calling sequence protocol (between

units) comply with established standard?

CS 7113) Coes the 1/0 protocol and format comply
with the established standard?

05.1'<4) Does the handling of errors comply with the
established standard?

-S .,5) Co all references to this unit use the
same. unique name?

'P.*F.:'--' -A A- , 7:1

* - .-. ~~ ~- ~~a% 2.... 7 T..* . .-. .,*. ,. -

F. %~

%..tJ

CS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 2A-.e henmn fal aaCmpywt h

estabishe stadard
-S~~~~~~ ~ ~ ~~ 213 is te dfnto n s falgoa

%J%

all. Nsoe stanardsig D

14~~be in acodne'ih te-

%s~lse sta% ard
~~~SW -P6 Zoal'frne o h aedt s

siogl. un~.ienam%



% •

METRIC WORKSHEET 11
STANDARDS REVIEW

GENERAL INFORMATION ... -
. %

1 . PROJECT

2. DATE _ _ _ _ _," "- _

3. ANALYST -__ _ _ _ _ __ _

4. PRODUCT _ _ _ _.__ _._

5. SOURCE DOCUMENTATION

% %%%3-

*% %

3. 6!

o° p. -" -".

o- " .°' .J.

.v . .,-,., , .-. _, .. .-.. °v ... , -... ,.. . . . . - .,[ :.. ..:.-



,, ~~.. ,-

-IThe standards Review worksheet can be applied at the OSCI. CSC.,'' "
or Unit level. Workshieet IIA applies to CSCI or CSC levels , -'
Worksheet lis applies to Unit level. . ,

p.

. ,, 5.

.55*. .j

0-:--..:

.'...::-:;;:

5.*:. *-. *:.:

. o . ~ .. o • . . . . . . . . o . ° . . . . ° . o " . , -,Z-... : ?< . .<: .. :... ...- ',',: .-",.-,-'.-" -.'.'--', '-. -.;,..--.;-.-.-.-..-, ..- .-.. ;- --..-.--...-.--.- ,-.--..-..-.,..-,. . .. .-- :-::,
.-. _", ,, ,._ -%. ".o %,," .' ,r ".,.'-. -, -. -' . " ,.'. '. '. '. -'. '... - '. " . -' - , '.. '.. . . ".- - " -.- '.- -.-. .5 - - -.-



.. . :

I0RKSHEET MIA ST4NDARDS REVIEW RESULTS (SR) -@

VALUE YES NO NA
""i .~ ,.-,P ,.

-SC: -R CSC NAME__________

MO '2) Are all units coded and tested according to
structural techniques?

, MC " a. How many units in CSCI or CSC?

b. How many units with estimated
executable lines of soruce code less than
!C lizes? %

c. Calculate b/NM and enter score.

MO (4) a. How many parameters are there in the
calling sequence? (total from all units) .. '

b. How many calling sequence parameters
are control variables (e.g.. select an
operating mode or eubmode, direct the
sequential flow, directly influence the
function of the software)? (total from all
unlts) S"-%

c. Calculate b/a and enter score. % %

d. Calculate c/NM and enter score.

*MO i5) a. For how many units is all input data
passed into the unit through calling
sequence parameters (i.e., no data is input '.
through global areas or input statements?

b. Calculate a/NM and enter score S

1 "6) a. For how many units is output data
passed back to the calling unit (e.g.,
through calling sequence parameters of
global areas)?

b Calculate a/NX and enter score 0

,MO 17) a. Fur how many units is control always
returned to the calling unit when execution
is completed?

b Calculate a/NM and enter score

- - - '., ...

D-17 ,

o.,..... ,. . . . ...... ,. ..... ••..*....*~* ... ...... *. . . . -

,. ~ *.* *** .. .. . . .~ *- *- 1 - * - - - .. -. %

- . -S -~ v%



7V :V

4%

IVALUE IYES1 NO \ .

M(O 1 (8) a. For how many anits i.s temporary storager
(i.e., workspace reserved for immediate or

-~~~ partial results) used only by the unit J 4 %
during execution (i.e. . is not stored with
other units)?

b. Calculate a/'NM and enter score -

* MO.2(2) a. How many interfaces among software I-**.

units?f

b. How many unit Interfaces Include: ~7

bi. content coupling
O' * .

b2. common coupling

.4 b3. external coupling

c. Calciulate 1-(bl+b2+b3)(3*&) and enter '.

score.

* M(.2(3) a. How many unit Interfaces include:

al. control coupling

a2. samp cuplin

a3. sta coupling

a3. daalucoling(l~2/2*1 a3T

and enter score

.AO.2(5) What is the cohesion value?.? ?

31.1(2) a. How many units are independent of the 4.4

%. source of the input and the destination of
the output?

b. Calculate a/NM and enter score.

31.1(3) a. How many units are independent of
knowledge of prior processing?

b. Calculate a/NM and enter score

SI.1(4) a. For how many units does the unit
description/prologue include input~ output
processing. and limitations?

b. Calculate a/NX and enter score .~

D-18

4.-.

% % % % % % %.%..
A4.4



%. .~ %

- .1 -% s.

" or

VALUE YESI NO t4..\.X---
a Row man, entra.nces? (total from allA.LE .S-NO '

b How many exits? (total from all
'I-it S )

Calculate (.,'a.l/'b),1/2 and enter
score -

d. Calculate c1NM and enter score

S1 !(6) a. How many unique data items are in
common block?

b. Calculate c/NM and enter score

S:. (7, a. How many unique data items are in '.
common blocks? .*-2.%

b. How many unique common blocks?

c. Calculate b/a and enter score -

S3 $C) O the descriptions of all units '
identify all interfacing units and all
interfacing hardware?

S: 2 " a. How many units are implemented in a
structural language or using a
preprocessor? % ' %

b Calculate a/NM and enter score " *

S: 4,1) a. For how many units is the flow of
control from top to bottom (i.e. flow of /
control does not jump erratically)?

b. Calculate a/NM and enter score

S: 4(2 a. How many ezeutable lines of code in
this CSCI? •

b. How many negative boolean and compound
btoolen expressions are used? (total from
all units)

C. Calculate "-(b/SLOC) ad enter score '

d. Calculate c/NM and enter score

3: 4 "') a. How many loops (e.g., WHILE. DO/FOR, .

REPEAT)? (total from all units)

e.... hQ

-- - -- - - --* .-



% .

b How Many 10Cps Wi~tt ..atural exits \\LUE IYES1 V( NA
e~ , UAP S *: -, I.Cop.. eXI

statement)? (total from all units)%
c. Clcuate -(ba) ad eter cor

d. Calculate 1-(b/a and enter score

S! A(4) a. Now many iteration loops (i.e. DO/FOR
loops)? (total from all units)

b. low many iteration loops are indices 0
modified to alter fundamental processing
of the loop? (total from all units) ?~

c. Calculate 1-(b/a) and enter score .

d. Calculate c/NI4 and enter score %F

SI.4(5) a. How many units are free from all self-
modification of code (i.e.. does not alter
instructions, overlays of code, ect.)?

b. Calculate a/NMX and enter score$o

SI.4(6) a . Now many statement labels, excluding
labels for format statements? (total from *-
all units)

b. Calculate 1-(a/SLOC) and enter
score

c. Calculate b/NX and enter score

SI.4(17) a . what is the maximum nesting level?
(total from all units) -

b.~~~~~~~. Caclt -n ne cr

c. Calculate bI/a and enter score

SI.4(8) a. How many branches. conditional and
unconditional? (total from all units)

b. Calculate b/NX and enter score

SI-4(9) a. How many declaration statements?
(total from all units) .'.-

b. How many manipulation statements? *.e

(total from all units)

c. Calculte 1((a+b)/SLO)C) and enter%
score .

d. Calculate c ITM and enter score

9-20 
p'

% 
- %



'.- '.4"4

VA~~.~ 1 1 .:

Sg l(o10) a. H ew many total data items, local and

b. How many data items are used locally .---.

(e.g., variables declared locally and
value parameters? (total from all units)

c. Calculate b a and enter score.

d. Calculate ciNM and enter score.

S1.4(11) a. Calculate DD/SLOC and enter score. P

b. Calculate A/NM and enter score.

SI.4(12) a. How many units, does each data item -A
have a single use (e.g., each array '
serves only one purpose)?

b. Calculate a/NM and enter score.

SI.4(13) a. How many units, are coded according -.
t- the -equired programming standard?

b. Calculate a/NM and enter score.

SI 4(14) is repeated and redundant code avoided .. ...

(e g. through utilizing macros.
procedures and functions)?

SI.5(1) a. How many data items are used as input?
(total from all units)

b. Calculate 1/(I+a) and enter score. .

c. Calculate b/NM and enter score. .-. .

S:.5(2) a. How many data items are used as output
(total from all units)? S

b. How many parameters in the units calling
secraence return output values (total from
all units)?

c. Calculate b/a and enter score. '.

d. Calculate o/NM and enter score. -

Si.5(3) a. How many units perform a single,
non-divisible function? -.

b Calculate a/NM and enter score.

D21 '

N %. . . . . .. . . . . . ..-,. ... ,- ,.- .- ,.--,- -- ..,.,-.,.- - ,'--' ',' .' -' .''-. ". '- '-k -' ." '" '/ -'",'> P '"<P.
• % % . ' " % " %, '% " - " ' ,e" -,h t ,,, , , . .- .. ,- ,. 'D, -, 2% 1



NS. Nk '

I % N

.. %

A s -Ig n I to all Y's ans ers nd to N 1

C 7,u z al ansers the tha No

Applcabl (NA, Ad allvalus an

divie b thenumer o anwers(ZS

NA s) Assi n to CR. OTAL

DR'

A A~

IF .

-, 16,*S



NT 1- F P . Le . t -

WORKSHEE- 11B STANDARDS REVIEW RESULTS (SR) ____________

NAME: _ _ _ _ _ _**~

C3' -, t =,zber of executable lines of Code. ?

Set eq'..a.. to M'C
,. *- .

MO 1(3) Are the estimated lines of source code \.

for this unit 100 lines or less, *-A
excluding comments?

MO.1(4) a. How many parameters are there in
the calling sequence?

b. How many calling sequence parameters 7"

are control variables (e.g.. select an

operating mode or submode, direct the

sequential flow, directly influence the
function of the software)?

c. Calculate b/a and enter score.

NO.1(5) Is all input data passed into the unit
through calling sequence parameters *

(i.e.. no data is input through global ,,*~

area or input statements)?

NO.1(6) Is output data passed back to the
calling unit (e.g., through calling
sequence parameters or global areas)?y.:,

NO. 1(7) Is control always returned to the
calling unit when execution is completed? 1'

NO.1(8) Is temporary storage (i.e., workspace
reserved for Intermediate or partial
results) used only by this unit during
execution (i.e. , is not shared with
other units)?

MO. 1(9) Does this unit have a single
processing objective (i.e., all
processing within this unit is related ,
to the same objective)? .%%

MO.2(5) What is the cohesion value of this unit?

s:.1(2) Is the unit independent of the source
of the input and the destination of
the output?

SI'.! '3) :s the unit independent of the knowledge./
of prior processing? -

D-23

% W%



0
%

S.~~ -^a-.-

%A1p YF 1. INA

SI.14) Zes he uit dS~rptio/proogI

SI.( b. ow aysxsfo the unitdsrpinprlge//.

incttde (input, fotputonproessing, o
junp limiatically?

SI.4(2) a. How many nentanes inote nit
compouny boeit exresson are unit?

b. Calculate 1(/ LC an enter sc2)ran

SI.4(3) as Hew floy loontro frog. topLE to/

bottom jime. ,fout of oontudesno
stutperticll)

SI.4(4) a. How many nteatie loopsa ande.

compond ooan ieresionlos areusd

c. Calculate 1-(b/&4) and enter score.

SI.4(6) a. How many loopseeng. label, exO/FOin

statement)? rmtstteens

b. Calculate 1-(a/MLOC) and enter score.

SI.4(7) a. han istermaxiu etig op lie,l

b. InahowlaniterXCaionte oscare.

%5



- - - - ~ -A7.

%p
%--

c)-

S~~ ~~~ ~ ~ ~ ~ 4 a.- Hz ay-.ce odtoa n

unconditional?

b.~~~~~~ ~ ~ ~ Caclt0-aMO)adetrsoe

score % on.

S:.4(10) ~~~~~~ ~* a -owmnVttldaaiemlca n

b . Hw many drataiems condtsonaloall

b. Calculate 1-(a andC nd serscr

S'..4(1) a. Calcuay dat declarCaindetr co .
SI4(2)Dseacetntshveasige s

purpowsayea)maiulto

Ss5t)a ewmns daaiesar sda

c. Calculate 1-((b+c)W) and enter oe

SI.4(1O) a. How many tldata items localdand

b. How many datamiters ar te uenlcalys

vDaluen paaetuercs)?rotutvlus

c. Calculate b/a and enter score.

SI.4(12) Does te daita iefhare a singleus

SR~e~. eNU:Asina aray servestonaly o nwr n

34(lue3o 0s tho unit coe accordisg toun the

bsCaculat ofanswer and entie scre nube o

ansHwes many g prmtr in tDRuit

alling~~~~L seuec reur ouptvaus

c. Caclt b/ andRNEN enterIN score.

.5(3 Dos te unt prfom a inge.%
nodil function

% %%~

SR~~~~~~~~~~ %NUT Asinavleo% o l nwr n



:Z;% '~~~~ Bl %J.11 1111

MISSION

OfP

Rome~~ ~ AirDeelpmntCete

RADCpean andexeute64e~eichdevtopmnt, e9s

and seJcte acuiito ptg si spoto

Commnd, ont'Lot Comuniatios an Inetfienc

(C51) ~~~~~~ ~ ~ ~ .azcct- T.9* ,a n~ iinet

W.<.f44- aLea~ u6 comp ten e ks P~tJV kdeI

to pe* 6 L t' qusit% eM
The~~~~~~~.*% ata 6tchia optec ntd

comnctos command and cotobt

maagmet inomto (be6snsuv4tac
seaor,,i t t ig n e d t o t c io n a d ''g
s i tt ceca, ectmgeis n

r-Lo agaion, and etecton c, mint inab ~ t0

Rome AoptiPir eelpen ene

% % d. 4
.7%a,~RV pa~ n e~ct~ t~athdu~pmnt%



.,.. . . . . . . . .

'.

.,

o .

.S,

I.°''


