
I*-RIN SIO IETHYNSOY FOR SOFTWUE RtELIMILITY PREICTION YOLUNE in
M() SCIENCE MftICRTIONS INTERURTIONM. CORP SO DIEGO M

CR J NCCALL ET AL. NOV 87 RRMC-TR-87-171-YOL-1

UNCLRISSIFIED FU@M-83-C-ft16 F/B 12/5 M

2-.0

1111,62 1111428IJ.

P22
-4 1oer .

AD-A 190 018
RADC-TR-67-1 71, Vol I (of two)
F" Teelmifta Repor
Nienw INS?

METHODOLOGY FOR SOFTWARE
RELIABILITY PREDICTION

Science Applications international Corporation

J. M*Gdl, W. RIWA C. Bows., N. XMeCeiwGY, R. SOW J. Morris. H. HOOK~ S. FeOw0106
P. Yalls. U. N s s md It Vlv nsK

ODTICELECTEB

ROME AIR DEVELOPMENT CENTER S E2Y
Air Force Syts Command

Grifflas Air FreBae NY 13441-5700

88 2 25 031
* v v v ' p A47

V .. , . U- 11 ' ' V

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE Form Approved

REPORT DOCUMENTATION PAGE o o. 701oved

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A 'pproved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE sin t
N/A distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) J"

N/A RADC-TR-87-171, Vol I (of two) I'ge

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Science Applications Interna- (if applicable)
tional Corporation Rome Air Development Center (COEE)

6. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

10260 Campus Point Drive Griffiss AFB NY 13441-5700
San Diego CA 92121

Ba. NAME OF FUNDING/SPONSORING 18b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COEE F30602-83-C-0118

Fc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO NO ACCESSION NO

62702F 5581 20 43

11. TITLE (include Security Classification)

METHODOLOGY FOR SOFTWARE RELIABILITY PREDICTION

12. ERSONALAUTHOR(S) J. McCall, W. Randall, C. Bowen, N. McKelvey, R. Senn, J. Morris, H. Hecht, -,
S. Fenwick. P. Yates, M. Hecht, R. Vienneau
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT % A

Final FROM Jun 83 TO ay 8 7 November 1987 208
16. SUPPLEMENTARY NOTATION

N/A

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software Reliability

FED GO12 05 Software Reliability Engineering
1 12 08 0oftware Measuement
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes the results of a research and development effort to develop a methodo-
logy for predicting and estimating software reliability. A Software Reliability Measurement
Framework was established which spans the life cycle of a software system and includes the
specification, prediction, estimation, and assessment of software reliability. Data from 59
systems, representing over 5 million lines of code, were analyzed and generally applicable %
cbservations about software reliability were made. A detailed approach to the collection and J.
analysis of reliability data is also presented.--

Participating in the effort were the following: 1) Science Applications International Corpor
ation (J. McCall, W. Randall, S. Fenwick, C. Bowen, P. Yates, N. McKelvey); 2) SoHar, Inc.
(M. Hecht, H. Hecht); and, 3) ITT Research Institute (R. Senn, J. Morris, R. Vienneau).

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
E UNCLASSIFIED/UNLIMITED 03 SAME AS RPT E3 DTIC USERS ICLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Joseph P. Cavano (315) 330-4063 RADC (COEE)

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE %

UNCLASSIFIED

%

-ar_ .r Me

UNCLASSIFIED

o

WYAI

1~

N
UNCLASIFIE

,, : , .,,, , ,,,, ,,,,, . ,, , , ..,,. .. A

The variation in fault density on Air Force programs is enormous: the worst
programs are 390 times more error-prone than the best. Obviously, there are
some critical differences in these programs that cause more errors to be
introduced or left undetected. If we could solve the problem of what these
differences are and how to control them, then we would have learned
something fundamental about the occurrence of errors in software and how to
avoid them. - -

To increase our understanding of what happens during a software project, this
effort sought to discover empirical evidence of development process and
software product variables that affect error occurrence. The starting point was
a set of variables characterizing software quality that were developed in
previous RADC work. RADC used three methods to gather data: reviewing
published reports, examining software error data bases from the NASA
Software Engineering Laboratory and the RADC Data and Analysis Center for
Software, and collecting information directly from three software projects.
RADC analyzed 59 projects, totaling over 5 million lines of code, to refine the
initial set of variables and obtained sufficient evidence to recommend 8
variables for use in controlling software errors.

Using these variables, RADC developed prediction and estimation models to
express software reliability in terms of fault density (the number of faults per
executable lines of code) and failure rate (the number of failures during the
execution time of a program). Through the prediction and estimation
techniques, project personnel can see what variables affect fault density and
failure rate and can determine what variables can be controlled in their
projects to meet requirements. During an experimental application of the
predictive and estimation techniques, there was less than a 20% error
between the values predicted by the techniques and what actually occurred
on a small Production Center-type application. Although the techniques are
by no means validated, this result is encouraging. on

In addition to the predictive techniques, RADC developed checklists that could 4Aii 0
be applied throughout the life cycle to help improve the quality of the software. ,

The checklists are a series of questions to be answered at key milestone iced 0
reviews. Detailed procedures were also produced to show how to measure cation
the variables and apply the checklists and are available in the guidebook
companion to this volume.

Josep P. CvanoDist!ribution/_
Joseph P. Cavano {AvailabilitY Codes

Project Engineer .v
1 and/or

Dist special

-~~ %~~.%VU %*%.

f~r YNN e$. ~U/d~~ V.'U~:~. *

id

VOLUME I
TABLE OF CONTENTS

SECTION PAGE 5

1.0 Introduction ... 1-1

1.1 Purpose ... 1-1
1.2 Scope ... 1-1
1.3 Objectives of Project..............................1-6
1.4 Approach of Project 1-7
1.5 Organization of Report 1-9
1.6 Executive Summary 1-10

2.0 A Framework for Software Reliability Prediction and
Estimation ... 2-1

2.1 The Framework 2-1
2.2 Utility of Reliability Measurement Techniques...... 2-3

2.2.1 Utility During Concept Development/Acquisition
Initiation/Mission and System Requirements
Definition of a Major Project 2-6

2.2.2 Utility During Early Software Development
Phases of Requirements Analysis, Preliminary
Design Detailed Design and Coding 2-8

2.2.3 Utility During Test Phases and Acceptance.. 2-9
2.2.4 Utility During Transition to Operational Use

(Deployment) and Operations and Maintenance. 2-9
2.3 Software Reliability Engineering Management 2-10

3.0 Candidate Reliability Measurements 3-1 0
3.1 Software Quality Measurement Framework 3-1
3.2 A Software Reliability Measurement Model 3-3

3.2.1 A Model of the Software Failure Process 3-3
3.2.2 Organization of Software Reliability

Measurements 3-6
3.2.2.1 Fault Density S

3-6 %
3.2.2.2 Failure Rate 3-7
3.2.2.2.1 Execution Ratio 3-8
3.2.2.2.2 Failures Per Execution 3-9 %
3.2.2.3 A Proposed Structure 3-10

3.3 Relationship of Candidate Metrics to Structure 3-10
3.3.1 Predictive Metrics. 3-12

3.3.1.1 Applioation TypeA) 3-14
3.3.1.2 Development Environment(D) 3-20...............
3.3.1.3 Software Characteristics (S) 3-22
3.3.1.3.1 Requirements and Design 3-22

Representation Metrics (Si) 3-22
3.3.1.3.2 Software Implementation 3-27

Metrics (S2) 3-27
3.3.1.4 Other Metrics 3-33

3.3.2 Estimation Metrics 3-33 37
3.3.2.1 Failure Rate During Test (F) 3-33 h'

V

J

• "' " "e ' ' % e % " % * % '" " ."" , " "'"% ""°" . -. "% %" " °." . , - ." "°"•"%" " '"

VOLUME I
TABLE OF CONTENTS (CONTINUED)

SECTION PAGE

3.3.2.2 Test Environment (T) 3-38
3.3.2.3 Operating Environment (E) 3-43

3.4 Timing of Metric Application During the Life Cycle 3-45

4.0 Data Collection in Support of the Software Reliability
Prediction and Estimation Methodology 4-1
4.1 Data Collection Approach 4-1
4.2 Data Sources .. 4-5
4.3 Example Data 4-11

4.3.1 Application................................. 4-11
4.3.2 Development Environment 4-18
4.3.3 Software Characteristics................... 4-18

4.3.3.1 Anomaly Management (SA), -**-
Traceability (ST), and Quality
Review Results (SQ) Data
Collection 4-24

4.3.3.2 Language (SL) and Size (SS) Data
Collection 4-24

4.3.3.3 Extent of Reuse CSU) Data
Collection 4-24

4.3.3.4 Modularity (M), Complexity (S)X, and
Standards Review (SR) Data
Collection 4-26

4.3.4 Test Measurements Data Collection 4-26
4.3.5 Operational Environment Estimation Measure-

ments Data Collection 4-26
4.3.6 Test and Operational Test Time Data

Collection 4-30
4.4 Data Collection Lessons Learned 4-30

5.0 Demonstration and Validation of Software Reliability S
Measures.. 5-1
5.1 Approach to the Analysis of the Candidate Software

Reliability Prediction and Estimation Measures 5-1
5.2 Analysis of the Data 5-1

5.2.1 Application Type (A).......5-1
5.2.2 Development Environment CD).................5-12
5.2.3 Software Characteristics 5-14

5.2.3.1 Anomaly Management, Traceability and
Quality Review 5-18

5.2.3.2 Software Implementation
Characteristics.................... 5-18

5.2.4 Test Metrics 5-45
5.2.5 Operational Estimation Metrics 5-46
5.2.6 Other Analyses 5-50

5.3 Results of Analysis 5-53

6.0 Experimental Application and Assessment 6-1
6.1 Experiment .. 6-1
6.2 Assessment .. 6-18

Vi

%%%~

.2 As e s e t. 6 1

VOLUME I
TABLE OF CONTENTS (CONTINUED)

SECTION PAGE

7.0 Future Work/Recommended Research 7-1
7.1 General .. 7-1
7.2 Future Research Recommendations 7-2

8.0 References ... 8-1

Appendix A. Definitions and Terminol.ogy A-1

vii

0
VOLUME I

LIST OF TABLES

TABLE PAGE

3-1 Candidate Metrics from Software Quality Measurement
Framework .. 3-4

3-2 Predictive and Estimation Metrics 3-13

3-3 Candidate Application Classification Schemes 3-15

3-4 System Type Categorization 3-16

3-5 Application Classification Scheme 3-18

3-5A Software Function Classification Schemes 3-19

3-6 Distinguishing Features of Software Development
Modes (BOEH81) ... 3-21

3-7 Distinguishing Characteristics of Development
Environment ... 3-23

3-8 Error Classifications 3-32 S

3-9 Software Reliability Models (GOEL83) 3-35

4-1 Data Sources ... 4-6

4-2 Summary of Fault Density/Failure Rate 4-12

4-3 Development Environment, Size, & Language Characteristics
of the Data Sources 4-20

4-4 Application of RADC TR 84-53 4-29 A

4-5 Monthly Totals for Problem Reprots and Test Control
Sheets ... 4-31

5-1 Application Type Averages for Fault Density and Failure
R ate ... 5-4

5-2 Trends in Failure Rates 5-6

5-3 Failure Rate By Application Category 5-8

5-4 Anomaly Management and Quality Review Metric Values for - -

Data Source 10 .. 5-19

5-5 Summarization of Data Collected to Analyze the Software eel

Implementation Characteristics 5-22

5-6 Effect of Language on Recent Programs 5-24

5-7 Prior Use of Code for Selected SEL Programs 5-2L,

Viii1

%

0

VOLUME I
LIST OF TABLES (CONTINUED)

TABLE PAGE

5-8 Prior Use of Code for Selected SEL Programs 5-26

5-9 Reused and Modified Code Impact on Fault Density 5-27

5-10 Effect of Size of Code 5-27

5-11 Effect of Module Size: Data Source 1.................. 5-28
5 11..............

5-13 Effect of Module Size: Data Source 10 17 5-32
5-13 Effect of Module Size: Data Source 11 5-32 _0

5-14 Effect of Complexity for Subclasses of Code 5-34

5-15 Recommended SR Metric 5-45

5-16 Test Effort Versus Fault Density/Failure Rate 5-45

5-17 Test Methodology Metric Versus Falut Density 5-46

5-18 Summary of Exception Conditions for an IBM 3801 5-50 %

5-19 Error Categorization Data 5-51

5-20 Functional Distribution of PR's Data Sources 5-52

5-21 Severity of Problems (Percent) 5-54

5-22 Summary of Analysis 5-55

5-23 Recommended Metrics 5-56

6-1 Sample Software Characteristics 6-2

6-2 Discrepancy Report Data Collected 6-3

6-3 FAMMES Test Results (Development Testing) 6-4

6-4 Methodology Application (Recommended Metrics) 6-

6-5 Methodology Application (Full Metric Set) 6-5

6-6 Types of Errors .. 6-17

6-7 Software Reliability Predictions and Estimation Technology
Benefits ... 6-19

ix]

NaX X%% k

VOLUME I

LIST OF FIGURES

FIGURE PAGE

1-1 Task Definitions 1-8

2-1 Framework for Software Reliability 2-2

2-2 Relationship Between Hardware and Software Reliability.. 2-4

2-3 Air Force Acquisition Relationships Involved in Quality
Metrics Functions 2-5

2-4 Air Force Organizational Involvement in Reliability
Measurement .. 2-7 0

2-5 Software Reliability Engineering Management 2-11

2-6 Questions To Be Answered 2-12

3-1 Software Quality Measurement Framework 3-2

3-2 Basic Software Failure Model 3-5

3-3 Measurement Structure 3-11

3-4 Discrepency Report 3-26

3-5 Example Reliability Model (MUSA75) 3-34

3-6 Failure Rate During Development (VAND83) 3-36

3-7 Failure Experience During Operation (MUSA79) 3-37

3-8 Monthly Error Detection Rate (ANGU79) 3-39

3-9 Test Methodology Assessment Approach................... 3-42

3-10 Timing of Metric Application 3-46

4-1 Data Collection Approach 4-2

4-2 Data Collection Activities 4-4

4-3 SPR History for Data Source 9 4-16

4-4 Training System Discrepancy 4-23

4-5 Sample Base Listing 4-25

4-6 Sample Metrics Information Tracking System Output 4-27 A

%~ M-

VOLUME I
LIST OF FIGURES (CONTINUED)

FIGURE PAGE

4-7 Data Source 17 Code Characteristics 4-26

5-1 The Approach to the Analyses 5-2

5-2A Fault Density by Application 5-9

5-2B Operational Failure Rate by Category 5-10

5-2C Failure Rate by Timing Category 5-11

5-2D Failure Rate During Phases by Application 5-11

5-3 Development Modes Relationship to Fault Density 5-13

5-4 Embedded Mode Analysis 5-15

5-5 Semi-Detached Mode Analysis 5-16 S

5-6 Organic Mode Analysis -17

5-7 Anomaly Management Statistical Analysis 5-20

5-8 Quality Review Statistical Analysis 5-21

5-9 Relationship of Size to FD 5-29

5-10 Modified Analysis of Size vs FD 5-30

5-11 Size Versus Fault Density (Data Source 10) 5-31 0

5-12 Error Rate and Source Instruction Reltionship 5-33

5-13 Regression Analysis Using McCabe Complexity Metric 5-36

5-14 S148C ... s -37 0

5-15 S146C... 5-38 k

5-16 Loops. ... 5-39

5-17 NESTDEPTH ... -40

5-18 DATAMANIP ...
5-41 .3-

5-19 Data Items ... 5-42

5-20 Non-Linear Regression Analysis 5-44

% If

x J ,, ,,.%,S

.14

VOLUME I
LIST OF FIGURES (CONTINUED)

SECTION PAGE

5-21 Effect of Workload on Software Hazard 5-48

6-1 Failure Discovery by Calendar Time 6-11

6-2 Cumulative Number of Problems Found During Development
Testing ... 6-12

6-3 Problem Impact and Fix Effort Distribution 6-16

"-ii"i
-%,

: " ' +,+ h' ''+'+. + +<+ ..,.-" "', ,"A 'W,,N <". +"+0:+.-,+",+ .',,+ ,, + ,," . r .,.,.+,+ : +'IC *+ --

0

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this report is to describe the results of a
research and development effort to develop a methodology for
predicting and estimating software reliability. This report
represents the final report of the project. This effort was
performed under Contract Number P30602-83-C-0118 for the U.S. Air
Force Rome Air Development Center (RADC).

V.. 1.2 SCOPE

The reliability of computer-based Systems (particularly embedded
systems) within the Department of Defense (DoD) has been a
subject of considerable concern for a number of years. For most
DoD systems, the reliability of the system is critical to
effective mission performance. In the past, the approach to
determining or predicting system reliability has been to look at
the hardware components, calculate their combined reliability.
assume software reliability was one, and use the hardware
reliability number as the system reliability.

Experience, however, has shown that software is a significant
contributor to system failures. In fact, the reliability of
hardware components in Air Force computer systems has improved to
a point where software reliability is becoming the major factor
in determining the overall system reliability. Hardware relia-
bility is a well-understood aspect of system engineering, with
measures for Mean-Time-Between-Failures and a model dealing with
the aging of components.

Software reliability is a more complex concept than hardware
reliability and is not understood nearly as well. Attempts to
predict software reliability have met with limited success.
Without an accepted predictive software reliability figure-of-
merit and/or software reliability estimation number, it is
impossible to determine the impact of software reliability on
system reliability. This effort seeks to improve reliability
prediction and estimation.

Since 1976, RADC has been pursuing a program to achieve better .
control of software quality. The thrust has been threefold. One
dimension of the research centers around an RADC and Electronic
Systems Division sponsored effort entitled, "Factors in Software
Quality" [MCCA77], which established a three-level hierarchical
framework of software quality and determined that software
quality can be measured and predicted by the absence, presence,
or degree of some identifiable software product attributes. At
the top level of the framework, user-oriented factors that
contribute to software quality have been defined (including

-

®r-1

reliability, correctness, testability, maintainability, flexibil-
ity, integrity, reusability, etc.). These factors were succeeded ON
by more software-oriented criteria and metrics at the second and
third levels, respectively. Additional research sponsored by
RADC and the U.S. Army Computer Systems Command has: (1) enhanced
this framework, and (2) developed an Automated Quality
Measurement System (AMS). This work is related to those efforts
by seeking to improve and enhance the measurement of software
reliability. The results of the above efforts have been
documented in:

. "Software Reliability Study", RADC-TR-76-238 (THAY76].

9 "Factors in Software Quality", RADC-TR-77-369 (MCCA77). A

* "Software Quality Metrics Enhancement", RADC-TR-80-109
[MCCA80]

* "Software Quality Measurement for Distributed Systems".
RADC-TR-175 (BOWE83J, and

e "Specification of Software Quality Attibutes", 3 Volumes,

RADC-TR-85-37 [BOWE85].

The RADC Quality Measurement Framework identifies four factorsthat impact software and system reliability:

1. Software Reliability (the extent to which a program can be .
expected to perform its intended function with required
precision).

2. Software Correctness (the extent to which a program
satisfies its specifications and fulfills the user's
mission objectives).

3. Software Maintainability (the effort required to locate •
and fix an error in an operational program).

4. Software Testability (the effort required to validate the

specified software operation and performance). *

These factors and their associated criteria and metrics attempt
to predict software performance by measuring various attributes O-t
from software code and documentation such as the software's .
consistency, completeness, simplicity, accuracy, error tolerance. P. %
modularity, etc. The measurements can be taken across the
software development life-cycle so that an early determination of
these qualities can be made.

A second dimension of the research is reliability models. RADC
has been active in developing and validating software reliability
estimation models such as the Imperfect Debugging Model, the
Non-homogeneous Poisson Process Model, the IBM Poisson Model and
the Generalized Poisson Model [GOEL83]. These models analyze

1-2%

failure data from software testing in order to estimate the total
number of software errors present and the rate of occurrence at
which the errors are being exposed. The models generally define
& Mean-Time-Between-Failures (MTBF) based on the failure data
analysis.

An RADC-sponsored survey lists 24 quantitative software reliabil- .

ity models that have been published up to 1979 [DACS79J. Of
those, 19 were primarily useful for estimation and five (5) were
primarily useful for prediction. All except one (1) of the
latter predicted an initial (usually interpreted to mean at start
of formal test) error content, and by the relations discussed
below, this could be translated into a failure rate and thus be
transitioned into an estimation model.

Practically all of these models assume:

" A fixed initial number of faults (bugs);

" A failure rate of probability that is positively corre-
lated with the number of faults; and

" The number of faults will be reduced as failures are
observed (not necessarily on a one-to-one basis).

In the simplest case, the failure rate is proportional to the % % %
number of faults, decreases by one for every failure that is
observed, and no new faults are introduced during the correction.
The failure rate is designated by u(t) and the number of faults
by E(t). Then

u(t) - k E(t),()

where k is the constant of the proportionality. At start of
formal test,

u(o) - k E(O), (2)

and after an arbitrary number of failures, C, have been observed
(by our assumptions exactly C faults have, therefore, been
removed) and the failure ,rate is ' h

u(1) - k [E(O) -C). (3)

Since u(0). u(1), and C are known, k and E(O) can be computed as

k - [u(o) - u(M)]/C (4) "-''

and E(0) - u(O) C/[u(O) - u(1)] (5)

Thus, the initial fault content and the number of remaining
faults can be obtained. Also, because the failure rate corre- '.

sponds to the fault removal rate ,_,

....

1-3- . ' .

5~~~~,~ %5 % % % %K%~ %*'~~K * * * ~~~ *

d- b- W

u - -dE/dt. (6)

which can be combined with eq.(1) to yield

E(t) - B(O) exp (-kt) (7)

In other words, the fault content of a program and the failure
rate both approach zero exponentially. The relations outlined
here can be used primarily for reliability estimation. It is
generally agreed that at the start of formal test about one
percent of all statements contain a fault (MORA76]. This was
also observed in [FISH79]. If the length of a program (and hence
the initial fault content) is known, this can be used to predict
the initial failure rate through use of eq.(2), and the failure
rate at any other time by adding the relation in eq.(7). Estima-
tion can be based simply on eq.(?) which permits translating the S
failure rate at one time into the failure rate at another
(future) time.

Many of the models described in [DACS79] allow for imperfect
debugging (not every failure results in a fault removal, and some
corrections introduce additional faults), and these lead to much1
more complex mathematical relations but still yield an asymptotic
approach to zero failure rate (e.g., [SHfa77l).

Several of the more widely used models also remove the assumption
of a constant proportionality between fault content and failure
rate, thus making k a variable. In particular, it is argued that
easy-to-find faults are removed first, and that the faults that
remain must therefore, be harder to uncover which means that the
value of k decreases as the debugging proceeds (e.g.. [GOEL78.
[LITT80]). There is some experimental evidence that specific
fault types require more runs to be uncovered than other types
[NAGE82] and that would support the hypothesis that k decreases
with time if the environment remains unchanged.

Most of the models described in the literature use data from
software projects that were either in test or were operational.
and the parameters were fitted to the data obtained in those
environments. However, when the models have been applied to data
from other environments, poor results were generally observe. 0
[SUKE77], [CURT79], [ANGUS3)..

Thus, the objectives of the project have not been attained in
past efforts. Yet, prior investigations form a good foundation-,
from which to proceed if the lessons which they represent are
thoroughly studied and integrated. The approach of the present
project holds great promise that significant improvements in
software reliability methodology can be obtained because (a) it
combines prediction and estimation techniques over the entire
development cycle and (b) it integrates the previously separate,
efforts in reliability prediction/estimation and software q,;a2'ity

N.0

metrics.

A third dimension of the research, sponsored by RADC, has been in
the area of data collection. The Data and Analysis Center for
Software (DACS) is a data repository for software developments
with the intent of making that data available for research
efforts such as this (GLOS84].

Software quality metrics and software reliability estimation
models share a common goal. i.e., predicting or estimating
software reliability before the software system is placed into
cperational use. Information concerning the early prediction of
software reliability can be used by software developers in making
software engineering decisions in constructing the software and
by acquisition managers in making acquisition and resource
planning decisions. Part of the motivation for both techniques
stems from the accepted concept that the cost of correcting poor
reliability is far less expensive early in the life-cycle than
during the operational phase.

There are many similarities between metrics and models; both are
relatively new, immature techniques that have relied heavily on
historical data, not only for development, but also for valida-
tion. Despite these similarities, there are also important
differences. Historically metrics and models are applied at
completely different stages of the development life-cycle;
metrics being applicable as early as the requirement phase, and
the models only after testing has begun, while the metrics
currently do not use that data at all. Models address software
reliability alone, while metrics can be used to predict other
qualities. Finally, metrics provide data at both the software 0
system and the module level; models generally portray a system
perspective. The results of this effort change this situation by
combining aspects of metrics and models across the life-cycle.

To adequately address software reliability, both the software
"product" and the software development "process" must be con-
sidered. In addition, both the "time-dependence" and the
"tlme-independence" aspects of reliability must also be con-
sidered. It must also be noted that software reliability can be
realized in different forms, depending on the software life-cycle
stage. During the software development life-cycle, software %

quality metrics could be used to derive a Predictive Software
Reliability Figure-of-Merit Number. a number calculated from 0

software characteristics or attributes which would make a
quantitative statement about future reliability. During Software
Performance Testing, System Integration and Testing. and
Operational Test and Evaluation (OTUE). A Reliability Estimation
Number calculated from test data would represent reliability
during those phases. These numbers would serve as indicators or
guides to software reliability. During Deployment (or Operation
and Maintenance (O&M)), a final reliability assessment would be
made on achieved reliability based on actual field data not test
data. Instead of an indirect measure of reliability, a

1-4%

N. % i 10e .rg

04 . if .,0

-0 % % 40

s0 00 .0 1 "

.. .,. ,

Reliability Assessment Benchmark will involve direct observation
of software failures experienced by the system in performing its
mission.

1.8 OBWJCIVES OF flOJBC

The objective of this research and development project is the
development of a system-oriented methodology that can be used
directly for reliability prediction and reliability estimation:
first for software, and later for the entire system.

The methodology must provide: V.

* Guidance for establishing goals/requirements for software
reliability at the start of a project.

* Useful measurement of reliability during the early phases
of the life-cycle development to permit effective correc-
tion of potential faults.

9 Guidance for how software reliability numbers could be
used for making software engineering decisions across the
software development life-cycle.

0 A system-oriented view of embedded software.

* A transition bridge from the early life cycle phases of

requirements, design, and coding to later phases of
operational testing.

* Metrics that evaluate and correlate the quality factors in
the requirements and design to the quality factors in the
code and test results.,

In order to accomplish this goal, it is critical that the
technical approach to developing this methodology take intc
account certain key considerations. Those considerations are:

* The underlying system reliability characterization and
prediction technique is oriented toward Software AcquisL-
tion Managers, Air Force System Planners. and Program
Offices.

• In order for reliability to be built into a system, the
above key people must have an early active role in
assessing the quality and complexity of system require-
ments and design and comparing the estimated or predicted
reliability with system requirements and goals.

* The methodology is a result of synthesis and filtering of
the many current approaches to reliability prediction and a',"

estimation into a system-oriented procedure with a common %
basis of measurement. A subset of the past research which
lends itself to merging the predictive metric techniques

0, "a

1-6

... ,,...-....... ' * .
V. A ~ % F J. a 'd1 .

*0a .1. .,% . O

t . . . , '.% r./ , , ., * -'-- , ,., - , , -. -. .- - . - - ' -; . . - .- - ,

with the reliability estimation models is used.

Problems which have plagued reliability research in the "pi
past and which should be avoided to the degree possible
are: poor definitions in term of units of measures;
incomplete validation of models; focus on testing/
debugging data rather than system structure; in applica-
bility of techniques to early life cycle phases; and
quality assurance orientation rather than prediction
orientation.

* To reduce data collection and analysis costs, the
potential for automating the collection of the measures 0
and using them to produce the Prediction S/W Reliability
Figure-of-Merit Number and the Reliability Estimation
Number must be considered.

0
1.4 APPROACH OF PROJECT

Figure 1-1 illustrates the tasks performed during the entire "
research and development project. >

The first task involved establishing a framework. Definitions of -..
the Reliability Figure-of-Merit (prediction) and Reliability
Estimation Number (estimation) were also developed. The utility
of this approach to Air Force organizations was considered. An
interim report documented these findings. The results are
described in Section 2 of this report.

The second task involved identifying current measurements that
have potential within the framework developed in task one. The
approach to using these measurements was developed during that
task. The candidate systems for data collection were also
identified and preliminary data collection activities, including
discussions with practitioners within DoD were initiated. A
Phase I final report was documented. The results are documented
in Section 3 of this report.

During task three, new measurements were considered for potential
utility within the framework. The concentration during this task
was in early life-cycle measurements and the development of
procedures for calculating the reliability Fredictors and
estimators. An interim report provided the findings to date.
These results are also provided in Section 3.

During task four, the methodology was refined by settling on the .,

measurements to be used, determining how the predictive and
estimation numbers will be reported and analyzed, and how their
impact on system reliability will be analyzed. These results are
in Section 5 and 6. " 5*5

During task five, the measurements were applied to several
systems in order to validate their utility. The systems chosen

I5** 55 5* 5 .*5*% .. *~~5

oe

all

ata

- VI

CC 0

=
0 "

0 ~ %- a.%W ' e

WU- TW. A1N 9 b -

for data collection in the earlier tasks were used. Statistical
analyses of the data collected and the results of the application
of the prediction and estimation techniques have been performed.
A Phase II Final Report described the results of tasks three,
four, and five, which comprised Phase II o' the project.
Sections 4 and 5 of this report describe the results of these
efforts.

Task six (Phase III) involved an experiment to assess the
developed methodology. The methodology was applied in line with
a software development and its results assessed. Section 6 of
this report describes the findings of this task. An assessment of
changes necessary to the AMS was also made during this task.
That assessment was documented in another report.

1.5 ORGANIZATION OF REPORT

This report is organized in two volumes. Volume I contains the 0

findings of the project. Volume II contains a Methodology for
Predicting and Estimating Software Reliability based on the
findings. The methodology is presented in the form of a guide
book to aid in its application.

This section provides a brief overview of the sections within
this first volume.

Section 1 is the introduction describing the purpose of this 'VA
report, the objectives of the research effort, some background
information, the organization of the report, and an executive
summary.

Section 2 describes the framework established in which software
reliability measurement will be defined. Definitions and
terminology related to this framework are in Appendix A.

Section 3 describes the actual measurements identified during the 0
project. The process we went through to identify the measure-
ments and filter a large initial set to a final set is described.

Section 4 describes the data collected and delivered to RADC as a
result of this effort. Further recommendations for data collec-
tion and retention are offered.

Section 5 describes the process we went through to demonstrate
and validate that these measurements were effective at predicting
and estimating reliability. Those measurements that were .J.
effective have been retained in the methodology described in
Volume II. Those that were not have been either dropped or
retained for further investigation/modification.

Section 6 describes the experiment, results, and identifies how
the methodology can assist users in taking corrective actions
during a software development project.

1-9.
%

% %p -- -. N%**% %'*L' %0S. , -=,y. % W 0,- % .'. 4- .
4 - I - II I I 111[l - IIIN -% --. W 5 N N N .. I • ; , [[.,,,r I, ..4.I

"

0

Section 7 Provides conclusions, recommendations and proposes
further research efforts and data collection activities to
continue refining the Reliability Prediction and Estimation
Methodology. Suggestions for modification of the Sof ware
Quality Measurement Framework are also proposed.

1.6 RXECUTIVE SUMMARY

The important results of this effort can be summarized into four
areas. Each area is briefly highlighted here with reference to
the sections in the report whe-e dettils can be foini

1. Software Reliability Measurements Framework

A framework is established which spans the life
cycle of a software system. The framework 0
acknowledges the inputs of past RADC research in
metrics and models as techniques to aid in the
prediction and estimation of reliability during the
development process. Completing the framework are
the specification and assessment aspects of
reliability measurement. Within the framework, the 0
specific data needed to measure software reliability
and the utility of the measurements to help make %,
sound software engineering decisions is addressed.
The framework is presented in Section 2 of this
report. Future research and data collection should
be focused by this framework.

2. Software Reliability Data

This research effort probably entailed the mostcomprehensive data collectionicompilation effort
attempted to investigate software reliability. Over
thirty-three (33) data sources representing 59 0
systems and over 5 million lines of code were
accessed (including the RADC Data and Analysis
Center for Software and the NASA Software
Engineering Laboratory Data Base). Because of the
diversity of the data collected, more generally
applicable obseivations about software rellabtv
could be made. This extensive data base su .orted
the development of the preliminary guidebcok for
making relie~blility predictions and estimations
Summary data and examples of detailed data coliecte.
are presented In section 4 of this revo"t.

3. Preliminary Guidebook for Softwaie Re1Ia7I .
Prediction aT-,l Fstimation

A guidebook (Volume II of this report _-- Thv-< :ted
to allow softwaie iqliabillty engine- > " : ,,Ice

0

% % %* p

the techniques developed during this research
effort. Utilizing the data collected and the
metrios derived from analysis, procedures are
provided which allow predictions and estimations to -
be made at various milestones during a software 5
development projeot.

4. Experiment Demonstrating Prediction and Estimation
Techniques

Section 6 of this report describes the application
of the Guidebook to an actual project. Comparsions
of the predictions and estimations with actual
results are provided.

-0

- P

.1N.

%%"%

i-III

,% . - ... , . - •. -. -, ..- -.- , , ,

./* ' / A ' ' O. . K P , ' ' ' , ,'' " ,,";-'- - .. , , .. , -• ..

0
2.0 A F ANZWORK FOR SOFT AU RZLIMILXTr

P1EDICION AND ESTIMATIO"

2.1 TIE FRAMEKWORK 'n.

The current technology in software reliability, as a result of
past research efforts, has been, for the most part, not accepted
by the reliability practioners. On one hand, models of software
reliability using metrics related to structural characteristics
of the software provided predictions of the number of faults
expected in a portion of the code. This had little relevance to
reliability engineers because their orientation is time (e.g.,
failure rate or MTBF). On the other hand, models of software
reliability using failure detection rates during testing provides
relevant data, but because of necessary model assumptions, the
lateness in application, and the sensitivity to the testing S
approach, the models also did not meet practioner's needs.

A framework developed during Phase I of this effort attempts to
build upon both approaches and span the entire life-cycle in
applicability. Figure 2-1 illustrates the Reliability Measure-
ment Framework.

The framework illustrates the following important characteris- % *4

tics: 4
e The framework illustrates reliability measurement as a

life cycle activity.

e The framework includes specification of reliability goals,
prediction of reliability during the early phases of
development, estimation of reliability during the later
phases of development, and assessment of the achieved
reliability during operations and maintenance (deploy-
ment).

* The framework combines the measurement techniques of
software quality metrics and reliability models. 6

e The techniques are described in units which are consis-
tent. 0

* The measurement techniques are also described in terms
consistent with actual reliability measurement.

0 The approach taken will lend itself to combination with
traditional hardware reliability concepts so system
reliability can be addressed.

During the concept development phase, a technique to specify the
software reliability goal of the system is needed which will be
compatible with similar hardware reliability goals. The predic-

2-1

VV

W-!. .N
fi _ .;:4, .. ., :. 2;--. : V. -;.; ,, ,;. :. ;," :' %) " * -)-:-.:-- :--':-;- :'----::<'- : :-

(A 0-

'A.

I~ 'a

'AA

L..AJ

W -

It I-
z ~ c

UA.

10.,W

.all

Ii~W

!Sit

P: r

% % % %

0

tion technique (Reliability Figure-of-Merit) is based on metrics
(quantitative measures) that can be taken during early phases of
development. These metrics are predictive or indicative in
nature. They are based on structure, development techniques and
methods, and environment. The estimation technique (Reliability -.
Estimation Number) is based on test results. The Estimation
Number is refined as testing progresses. During operation and
maintenance, reliability assessment is conducted. This assess-
ment consists of observing the actual achieved reliability and
describing it quantitatively.

This last aspect of the framework is very important to the
useability of the methodology. By requiring that the techniques
relate to actual measurement, the likelihood of acceptance with
the practitioner community is much greater. The techniques
become more understandable and relate to goals that are speci-
fied.

To make the approaches compatible, software reliability must be
expressed in terms of failure rate. The time unit of measure of
the failure rate must be in terms of execution time because this
is conceptually equivalent to hardware operating time. Figure
2-2 illustrates this relationship between hardware and software
reliability. Appendix A provides definitions and terminology
related to this framework.

2.2 UTILITY OF RELIABILITY NZASUREJUNT TECIQUES-%

A major goal of this study is to define reliability prediction •
and estimation concepts so they are useful to Air Force users. A
first step in achieving this goal is to identify what needs these ..%

concepts must satisfy, or what utility they can provide to Air
Force users.

The Air Force organizations to be discussed are end-users (e.g.,
SAC and TAC), System Acquisition Managers (SAMs) and System
Program Offices (SPOs) such as ESD and ASD, Air Force Plant
Representatives (AFPRO), Test and Evaluation organizations such
as AFOTEC. Life Cycle Agents such as ALCs (AFLC), research
organizations such as RADC. developers (in most cases contract-
ors), and Independent Verification and Validation contractors.
Figure 2-3 illustrates the relationship of these organizations on
a typical development.

The techniques these organizations will be involved in using
include specifying reliability goals, predicting reliability
during early phases of the development, estimating reliability
during the testing phases, observing actual reliability
performance (assessment) during operations and maintenance, and
assessing what improvements can be initiated to improve the
design and production process to improve software reliability. ,".

2-3

% % %..
,, .•.. ,., •. .% %-_ N - __-g.k . ,- " - • . . , o - '.'.., .' '

* or

.

I-.

*L*1 %

LA-J

I-.J

cc I-
C)S

00
z cc'y'

UU.

oo
WS5 %.w

0%.

>

99% % %

C\J

w %* 0,~S

L6 LLj J

%99

e V % % % %

-~~~~~ 4 . - -. -.

4K

IC

Cr

z

2 Lp -

-C-

Crv
c&

too

2-5-

%
.4'

Their use of the four techniques and their involvement in the I
various phases of a development is illustrated in Figure 2-4.
The following paragraphs describe the involvement in more detail.

2.2.1 Utility During Concept Development/Aoquisition Initia-
tion/Mission and System Requirements Definition Of A Major
Projeot

During the concept development of a major project that is
dependent on software for a critical part of its function, there
is frequently a general concern about the ultimate reliability
that can be attained. The end users and SAMs are involved in
this phase. Reliability may be required in connection with

safety, as in a digital fly-by-wire system for aircraft, or it ..-NW"

may be desired on the basis of general mission goals, as in an
area air defense system. The central question in both circum-
stances is "will the operational reliability meet the minimum
requirements for the intended application?" If this is answered
in the affirmative, the project may proceed. If it is answered
in the negative, alternative approaches will have to be investi-
gated. Thus at concept development, a predicted reliability
number is needed for the concept architecture proposed to compare
it with the required system reliability. Required reliability
must be specified as a goal and incorporated in system require-
ments specifications and acquisition documents.

If the forecasted reliability satisfies the minimum requirements
(and if other conditions are met), the project acquisition will
be initiated. Here tae concern shifts to establishing milestones
at which it can be determined whether adequate progress is being
made toward meeting the reliability goals. Thus, there is at
least an implicit requirement for a model of the process by which
reliability is being attained, such as the elimination of faults
in the design and code. Three related questions sum up the WI

primary objectives for this phase:

* "What milestones can be established to verify the attain-
ment of reliability goals during the course of the
development?",

* "What are the key measures that can be obtained at each
one of the milestones?", and •

9 "What techniques should be required of the developer to -.-..

promote reliable software development?". .. .

These questions demand a detailed understanding of the software
failure process. The answers to these questions result in a 0
software reliability test plan, at least to the level where tests
are identified by name, scope of the system under test, and test
objectives. The System Program Office (SPO), the developer, and
the Test Agent are involved in this process of identifying
definitive reliability goals and test plans. . 'V

2--6 ,

.. " . . .
V. .. r ' V 1 .'1'~~~~~V"~~~~~~ % %% V , % ~ . .* .

- -- %

0

ASO% %

TECHNIQUES LIFE CYCLE PHASE
ACTIVITIES

. .

2 0

3E I
z cc a W

AFOTEC• • • .3 a

w' cu uwJ

-- " --mn a-- 4.2

z qc~

~G4 (z O~a w q uao c 4 A *o4 ou ma CC 0 j

END-USER 0% * **

SAM/SPO 0 0 0 : 0 0

AFPRO * * :

AFOTEC00

LIFE CYCLE ,J

AGENT(ALC) * % 0

RESEARCH "

AGENT(RAnC) -

DEVELOPER
(CONTRACTOR) " 0 0 S e 0

IV&V -- I-
(CONTRACTOR) : * * * * *

FIGURE 2-4. AIR FORCE ORGANIZATIONAL INVOLVEMENT IN

RELIABILITY MEASUREMENT

2-7

1%

% %

% % % %

%~~~~ ". -".w . -Popp %l

I - ,-- - ' - .w~4J~~ . . W ~ ~ ~ W~p* - ~w~~ -*-

.... , *1"

2.2.2 UtliUty During larly Software Development Phases of ON
UmIremmnts Analysis. Preliminary Design Detailed Design

During the phases of system development, the SAM/SPO management
is concerned vith trade-offs of broad scope, e.g., allocation of
functions to hardware, software, and personnel. The principal
reliability concern in these activities is the effect of the
decisions on the global reliability of the system, and a single
measure of forecasted software reliability In the operational
environment is usually sufficient. These objectives are similar
to those described under the planning phase above.

As the development proceeds through the development milestotes, ,
the software reliability goals that were established during the
initiation phase should be evaluated and technical management,
will want to determine that the milestones have been attained. i
This may involve direct measurement of software reliability or,
particularly at the early milestones, evaluation of predictors of
software reliability. At this stage the establishment of ,
objective and accessible measurement criteria is essential. ',

If it is determined that milestone objectives have not been
attained, a recovery plan must be prepared. Typically, this
involves corrective actions modifying the software system
architecture, the design, or the code. W.-% %

Software Development Management is interpreted here as thcc j
organizational activities in a project that are directly charged"-
with oversight of the software development, test, and integra-
tion. The objectives of the higher level managers of .he
software activities within the developing organization are
expected to have similar objectives, particularly where software
development is subcontracted and must be managed as a separate .
activity.

In the context described above, software management has received ,.i

operational reliability goals and requirements to be met at
specified milestones during the development which were generated
as outlined in the preceding paragraphs. These goals must be
allocated to individual software segments, and it is also
generally desired to establish more detailed evaluation criteria
so that the probability of attaining the milestone requirements
can be gauged during the development process. From these respon- :.-
sibilites arise objectives for software reliability forecasting
at a much more detailed level than found in the prior discussion.
At the same time, software management has access to much more A*.
specific information about the structure, content, and develop-
ment environment of the product. 0

.' ,," a..

Where the attainment of milestones or of the ultimate reliability
goals appears in doubt, means of gauging the effects of several
alternatives for reliability improvement are desired. Candidate
alternatives may involve a new design for the program or for the

2-8 %

%.%I % .. % %,
%- N %%.V" . ~ h%, % %/ %"*.. %

data structure, improved test techniques, or the adoption of
softvare fault containment or fault tolerance techniques. These
types of software engineering deoisions vill be driven by the -
reliability predictors. The reliability prediction and estima-
tion techniques should support an objective and accurate evalua-
tion of the effects of these alternatives. During this phase,
the forecasting techniques are used to evaluate progress and
assist in the reliability engineering. A quality assurance or
reliability engineering group within the developer's organization
or an IVMV contractor would most likely be involved in taking
these detailed measures. The software development team within
the developer's organization would use measures to make software
engineering decisions.

2.2.3 Utility During Test Phases and Acceptance

The observed system reliability during the various phases of
testing and eventually during acceptance testing can be the basis
for acceptance/rejection of the system. If a goal is oontractu-
ally stated and the acceptance test procedure specifically
identifies that goal as an acceptance/rejection criterion, then J ,
use of this technique can have significant importance to the 0
developer. The developer is involved in performing system or
testing. An independent Test and Evaluation organization or an
IVVV contractor may be involved in conducting independent tests
to assess reliability. The SPO and SAM are involved in accepting
the system. The Test Agent is involved in operational testing
phases.

2.2.4 Utility During Transition To Operational Use (Deployment) --
and Operations and Malntenanoe

Although the planning and initiation activities had generated a "4 .4

time phased series of milestones that should lead to the desired
software reliability in operational use, there usually arise a S
considerable number of questions about software reliability as
the date for cut-in approaches. The goals established during
planning were of necessity quite general and may no longer be
applicable to the structure of the system and software as they
are being delivered. It is quite typical to observe during the
cut-in period many failures associated with the software that are •
not truly software failures but are the result of procedural
mistakes or of inconsistencies between the specified and the
actual environment. The objectives of software reliability at .
this point relate primarily to reporting and measurement pro-
cedures. with emphasis on distinguishing between events where the
software failed to meet its specification (the frequency of these
can be interpreted as indicative of operational reliability) and
events that are primarily due to the transition process and which %-QA

are therefore not expected to persist during steady state
operation. The life-cycle agent and end user are involved in Ole
this process.

After a system has become operational. a software reliability

2-9 ..
:.-::,:,::I

-

is to ezhibit a pattern of continued decrease of failure
.rqenoy and. concomitant with this. to identify and prevent

causes of Increasing failure frequenoy. The utility of the "

reliability measurements are the ability to assess the reliabil-
ity a otually achieved within the system. Typioal causes of poor
reliability include inadequate software maintenance, instability
of the hardware or software configuration, and lack of oommunica-
tion regarding changes in user requirements or ezpeotations. The
emphasis is on measurements that are efficient in identifying
changes in trends. Again the end user and life-cycle agent play
key roles in maintaining and improving the reliability perform-
ano* of the system.

2.3 SOFTVARK RELIABILITY ENGINrERING MAr ,' -

Figure 2-6 identifies many of the activities sited in the above
paragraphs according to detailed life-oycle phases. The availa-
bility of speoifio measurements and predictive and estimation
techniques will facilitate the performance of these activities
during software developments. These activities represent are
Software Reliability discipline that should be incorporated in
software development. This discipline has aspects that are C
management-related, development-related, quality assurance-

related, and test-related. .A

Figure 2-6 highlights the types of questions that the reliability
measurement techniques will help answer.

2-10

"x,"" d. j..

'+,%..%

.:,..'.. ,:

.-. .1 ,%:.. '.-.,

2-10," .. ,
,3 % ,

+ ,,,.,,, ,', .,. ,r-+,t- ,.,,,,,. , .,,+ , .,, ,,,,. .• .,,. -. . +,,, , , . , , , .. - , ,, ,. , +,, +% ",', ,, +, +.. . , ,-,+', ,,,.,:,. .- i,=,.- \ ,,,+,.

a ,9 k-Z -

660

RE d

al 4t

iiA

IU'1cat .11 a)~'

5", -jZ.

.LA

liec

L.J

wA

eaM
U% %

kbgi~ I%
% 2 %-

~~- ~ ' .. *-*~ ~ .~ .~ -. j.':,. '. .AllY

111II il ,111 1I_________ ____ i 1 -

C2 eiiZ.

'14.11 'il jj lii Ci4

a 0L

2-12-

%ii'4

% % ", '

- W W W V .. V _,,' V
0

3. 0 CANDIDATE RELIABILITY VEAVT5

The Software Reliability Measurement Framework illustrated in
Figure 2-1 in Section 2, identified two measurement objectives
that were the focus of this research effort. They are a Predic- % %*
tive Software Reliability Figure-of-Merit (RP) and a Reliability
Estimation Number (RE). The predictive RP is derived from
measurements taken in the early life cycle phases of a
development, when based on the characteristics of the evolving
software system a prediction can be made of the reliability of
the software. The RE is an estimation of the reliability based
on the observed failure rate of the software during the test
phases of the development. This section describes the candidate
measurements which were identified for each of those numbers.
Also described in this section are the relationship of these
candidate metrics to the RADC Software Quality Measurement Frame-
work, when during the life-cycle these candidate measurements
apply, and Data Collection Procedures for calculating the
metrics. Section 4 of this report describes the data collected
to calculate these metrics. Section 5 describes the process and
results of the validation efforts with these metrics.

3.1i SOFTWARE QUALITY MHSRTFRAMEWORK

A Software Quality Measurement Framework was established in
Factors in Software Quality, RADC-TR-77-369. That framework had
a basic structure illustrated in Figure 3-1. From that initial 9
report, four quality factors are identified that relate and . %.
impact software and system reliability:

Software Reliability: The extent to which a program can be
expected to perform its intended function with required
precision. 0

Software Correctness: The extent to which a program satis-
fles its specifications and fulfills the user's mission
oblectives.

Software Maintainability: The effort required to fix an %

error in an operational program. r e.

Software Testability: The effort required to verify the ., '..
specified software operation and performance. -,.~t. '.

A more recent report, Specification of Software Quality Attri-
butes. RADC-TR-85-37, expands these factors to the following:

Reliability: Extent to which the software will perform Q?

without any failures within a specified time period.
I.. -.

Survivability: Extent to which software will perform and % %

% %
% % %.% % % %

VOW I.
%.00-

L* L

20

FIGUE 31. SFTWRE QALIY MESURMENTFRAEWOR po

lope* .-*UP.,asw t% % ow

cLfrRO %~~R~4 cITR~e ~

support critical functions without failures within a speci-
fied time period when a portion of the system is inoperable.

Correctness: Extent to which the software conforms to its -s
specifications and requirements.

Maintainability: Ease of effort for locating and fixing a p
software failure within a specified time period.

Verifiability: Relative effort to verify the specified
software operation and performance.

Table 3-1 illustrates the criteria and metrics related to these
factors. Each of these metrics were considered in arriving at
the candidate measurements for the RP and RE. Also considered
specifically for applicability to the RE were the reliability
models mentioned in Section 1 and described in [GOEL83]. S

3.2 A SOFTWARE RELIABILITY MAS1ThXT MODEL . -

The framework presented in Section 2 represents a life-cycle view
of software reliability measurement. The heart of the framework
is the ability during the development phases to predict and
estimate software reliability. These predictions and estimations
are comparable to the specified reliability requirements and
eventually to the observed operational reliability. ~
3.2.1 A Model Of The Software Failure Prooess

In order to identify the software measurements to be used to
predict and estimate software reliability we need to understand
how software fails (i.e., what we are predicting and estimating)
and how we can organize the candidate measures according to their
value as predictive or estimation metrics.

Software does not fail in the sense of a permanent physical state
change such as is usually associated with hardware failures.
Nevertheless, it has become customary to refer to software
failures as a shorthand term for failures in the computing
process which are caused by the software. A graphical represen-
tation of that failure process is shown in Figure 3-2. In the •
strictest sense, the failure is an event that causes a binary bit ,
pattern inside the computer to take a wrong value, shown inside
the larger box in the figure.
Typically, this event is not actually observed, but the evidence ""'

that a failure has occurred is found in an incorrect value at the
output of the computer, i.e., an error (as defined in Appendix
A). Not every error is observed, and since the reliability
values produced by the prediction and estimation techniques
should agree with those eventually observed, the predictions and
estimations must be adjusted for the degree to which errors are
expected to be observed. The observation takes place in the

0

3-3

.%I

-,_.--

MR ~ ~ Wn 'L- JLl.-ll VL.' r -W 6R C ~ ~ C ~kwX'.' . %L .TVw W.7 l r2 k -v -_,j TII7 4 , o..

TABLE 3-1. CANDIDATE METRITCS FROM SOFTWARE QUALITY
MEASUREMENT FRAMEWORK

METRIC
FACTOR CRITERION ACRONYM METRIC

R ACCURACY AM. I ACCURACY CHECKLIST

R.S ANOMALY MANAGEMENT AM. I ERROR TOLE RANCE/CONTROL
.2 IMPROPER INPUT DATA
3 COMPUTATIONAL FAILURES%
4 HARDWARE FAULTS
5 DEVICE ERRORS
.6 COMMUNICATIONS ERRORS0
.7 NODE/COMMUNICATIONS FAILURES

RM,V SIMPLICITY S1.1 DESIGN STRUCTURE
2 STRUCTURED LANGUAGE OR PREPROCESSOR
3 DATA AND CONTROL FLOW COMPLEXITY
.4 CODING SIMPLICITY
.5 SPECIFICITY
6 HALSTEAD'S LEVEL OF DIFFICULTY

S AUTONOMY AU.1 INTERFACE COMPLEXITY
2 SELF SUFFICIEN4CY

IS DISTRISUTEDNESS DI.1 DESIGN STRUCTURE

SM.V MODULARITY MO.1 MODULAR IMPLEMENTATION A--.
* MO.2 MODULAR DESIGN .

s RECONFIGURASILITY REAI RESTRUCTURE

C COMPLETENESS CP. I COMPLETENESS CHECKLIST

CM CONSISTENCY CS.1 PROCEDURE CONSISTENCY '

CS.2 DATA CONSISTENCY

C TRACEABILITY TC.lI CROSS REFERENCE *%*-

MNV SELF DESCRIPTIVENESS SD.l QUANTITY OF COMMENTS
2 EFFECTIVENESS OF COMMENTS
3 DESCRIPTIVENESS OF LANGUAGE *m,

M.V VISIBILITY VS.1 UNIT TESTING
.2 INTEGRATION TESTING
3 CSCI TESTING

L EQENO .-. '

R *RELIABILITY M- MAINTAINABILITY

S * SURVIVAUILlry V * VERIFIABILITY ,

C CORRECTNESS

3-4 %%

%%

%*** % i * % % %. - % -*.* - %***' . * * ' : . .%~ *p~~~~~~~~~~~~ ** ale . AP - * -~~----'-s'

EXTERNAL EVENT
TRIGGER

PROGRAM EXECUTING U

CAUSE IN A EFFECT
FAULT COMPUTER OR "R

SIMULATOR FAILURE E

OBSER VA TION

''

DETECTED ERROR 9

FIGURE 3-2. BASIC SOFTWARE FAILURE MODEL

%. %."%=

, ..

1

* ".'..~/

35,. -:

3" 5 ',.... .. .

UV, .,, P %,",o,-
'

W ip " w" r . . - " •. " " - - - - - - ." " " ,, :- . . ." * " ." . . " .

M . "._-. -'

operating environment, and the methodology for accounting for
observation in the estimation is part of an environment factor.

Some faults in the code will produce an error during every
execution. These are normally corrected very early during
checkout by the developer even before the program enters formal -
testing. Failures that are of concern in software reliability
measurement for Air Force projects usually come about when a rare
external event (data set or computer state) causes the execution
of the code to differ in some way from the routine manner. A
software fault that had previously been present, but not resulted
in an error has thereby been revealed. Both the presence of
faults in the code and the occurrence of triggering events will,
therefore, affect software reliability.

3.2.2 Organiztion Of Softvare Reliability Measurements

Two broad classes of software reliability metrics have been
addressed in the literature, based, respectively, on fault
content of the code and on the number of failures encountered
during service. The common normalized forms of these are faultdensity and failure rate. Because the latter measure can be .,'.,..
combined with conventional hardware reliability metrics to yield
a single expression for computer system reliability it is being
given preference. However, there are some situations in which
fault density is either the only measure available or is a more
convenient expression to use. Therefore, it is also covered in
the following discussion.

3.2.2.1 Fault Density

The software user wishes to procure fault-free code, and the
software developer has economic incentives to want to meet theuser's requirements. It is recognized that completely fault-free "@
code for a large project is not within the present capabilities,
and thus a measure for relative freedom from faults is required. ." "
Fault density has been found a useful and meaningful metric. One
of the first to lrovide quantitative data on fault density was
F. Akiyama [AKIY7T . He reported an average fault density of 1%
in programs entering formal test, and this number has been
repeatedly confirmed in other publications. Modern programming
techniques have produced some improvement, and a declining trend
has been noted. For recent HOL programs, an order of magnitude ,
improvement, .1%, appears to be representative (HECH83].

Fault density can be expressed as the number of faults found in
total lines of code or in executable lines of code, and a dis-
tinotion must be made between these. The measure used in this
report is based on executable lines. It is also important to
recognize that a single line of HOL code usually replaces 2 to 8
lines of assembly language code, depending on the higher-order
language.

Fault density has the following advantages as a reliability

3-6

e. Ir NW,.,,-",

. ,..A..

metric:

0 It appears to be a fairly invariant number.

a It can be obtained from commonly available data.

9 It is not directly affected by variables in the environ-
ment (but testing in a stressful environment may produce a .
higher value than testing in a passive environment). 7

* Conversion among fault density metrics is fairly straight-
forward (see above).

e The metric facilitates combination of faults found by
inspection with those found during execution since the
time element of the later is not accounted for.

The major disadvantages are:

* It cannot be combined with hardware reliability metrios.

* It does not relate to observations in the user environ-
ment.

* There is no assurance that all faults have been found.

3.2.2.2 Failure Rate

The incidence of software failures (as distinct from the presence
of faults in the code) is viewed as an undesirable characteristic
by the user. The frequency of failures in a specified time
interval is therefore, a measure of unreliability as seen by the
user, or, conversely, the time between failures is a measure of
reliability. Metrics of this type based on elapsed time (also
referred to as wall clock time) are not meaningful for assessment
of the inherent reliability of the software product because they ".7
are not directly related to the exposure to failure. Thus, for a 0
computer that is not in use during weekends it will be found that
the software failure rate (in wall clock time) during that period
is a very satisfactory zero. Unfortunately, during the week when
it is in use, it has a finite value. This has given rise to some
very erroneous assessments of software reliability because the
elapsed time failure rate tends to increase during periods of
heavy test activity simply because more usage hours are being ,
logged per calendar day. The increasing trend causes concern, .'
reflected in yet higher test activity and higher apparent failure
rates.

To avoid these inconsistencies, failure rates based on execution
time have been proposed, and their use has led to much more 0

satisfactory results [MUSA75, HECH771. Failure rates based on ..
execution time or an alternative, computer operation time, will
be used throughout this project. Execution time is the interval
during which the central processing unit (CPU) of the computer..

3,.-7.'

: ' ., , " , ,.: ., ,".." " ," , .-' ." .'....:,'. V.V '..% . V, '.' '.%' '..',.',''.VV, 'i : .__u _.
X, .;,x,;%-.

0
executes the program. It is only during execution of the program

that failures will be encountered. The ratio of execution time
to wall clock time may, therefore, be thought of as the duty
cycle of the software.

On most mainframes, the operating system reports the execution ..
time for each program or project on a run basis and also computes
daily, weekly, or monthly totals. Where these reports are not
available, execution time may be expressed in computer operation
time, the time during which the computer (as contrasted with the
CPU) executes the program. Computer operation time exceeds CPU _

time (in the range of two to ten times CPU time) because it also
includes time for mass storage access, output functions, etc.
Proper methods of converting computer time to CPU time or
equivalent acceptable measures are discussed later in this
section.

Failure rate measurements based on execution time have the
following advantages: 0

* Observable and meaningful in the operating environment.

* Can be computed over any time interval limited only by
statistical averaging considerations.

* Can with proper procedures be combined with hardware
failure rate to yield a computer system failure rate.

They have the following disadvantages: V..

* Affected by conditions in the environment. 0

0 Do not include faults found by inspection.

* Require measurement or estimation of execution time.

It is intuitive that fault density is a self-normalization '
metric, i.e., it measures a characteristic of the code that is
not directly affected by the length of the program. The
execution-time-based failure rate is self-normalizing in the same
manner because a long program will have a longer running time :--,.,.

than a short one. " , -,

3.2.2.2.1 Exection Ratio 0

There are some environments in which it is possible to obtain the
computer time but not the execution time, e.g., avionics com-
puters and militarized microcomputers. Failure rate measurements
based on computer time can also be used for monitoring the
relative progress of a given software package in the same manner
as the failure ratio discussed in the subsequent paragraph.
These failure rate measurements can also be used for comparisons

between modules as long as all run on the same computer type.
Failure rate estimation baeed on computer time can be implemented

3 -8

V.b
.-r 1. *. *p % %

. - ,-- -. . ."' .- . ._ . - ,,- -j, --. ."% ' .&% % ,' .'.r J %. .% % % %. .' %. 'le." ' " -,." .".. ...'..'., 2-.',,*, .E "L__9 ." ";-_.', e ,'.,.' -.'_'-. . ,' -_- '. _-. .-'-

in this manner.

However, there will be many instances in which it is desirable to
convert computer time to execution time, particularly in the
utilization of software reliability prediction. A number of
methods can be used for this conversion:

e Running a benchmark HOL program on a mainfrme on which
execution time will be reported, and then running the same
test case on the target computer.

* Running a program on the target computer in a manner that
will eliminate or minimize disk access (e.g., by putting
data in memory) and output operations, thus obtaining
essentially an execution time measurement, and then
running the same test case in the normal manner.

e By counting the number of I/O operations involved in a 0
program and computing the nominal time for these from the
computer instruction manual.

e Benohmarking a program with timers and counters during
IOT&E (operational environment).

Depending on the purpose for which the software reliability
measurement is to be used, it may be necessary to modify the
direct execution time based metric that was introduced in the
preceding paragraph. Execution time can be dispensed with
entirely when reliability measurements are being carried out to
track the progress of a given software package during a test or
modification program. Since only a measure of relative improve-
ment is desired, and since the execution time of the program will
be reasonably constant, the failure ratio rather than failure
rate can be used. The failure ratio is computed by dividing the
number of runs that failed by the number of successful runs
during a specified time interval, e.g., one week or one month.
This method can be used as a primitive form of software reliabil- -

ity estimation (the failure ratio rather than the failure rate is
being estimated). The advantage of this variant is that it can
be implemented in practically any computing environment whereas
execution tine based measurements require an operating system
that log@ execution time. The major disadvantage is that the
failure ratio oanot be used for comparison among programs of
different size or running on different computers because it is
not self-normalizing.

3.2.2.2.2 Failures Per Execution

The failure rate based on execution time is a meaningful number
that can be used for global comparisons if applied to computers

*, of a given class, e.g., 32-bit machines in the 5 KIPS range
(million instructions per second). The failure rate is not
suitable for comparisons among computers of different word
formats or performance classes. It is misleading to compare the <

93-9

9%
V

Pl 9
001 . .d "

failure rate on a 16-bit avionios computer that executes at 2
KIPS with that of a 60-bit mainframe executing at 20 KIPS. The
latter machine processes approximately 40 times as much informa-'- -
tion in a given time interval, and if the identical test oases -j
were run on it (only theoretically possible) the observed failure
rate would have been 40 times that on the avionios computer.

For global comparisons involving computers that differ signifi-
oantly in performance, it is necessary to divide the execution
time based failure rate Dy the number of bits executed per second
on each of the computers. A 16-bit computer operating at 2 MIPS
executes 32 megabits per second, and the 60-bit computer operat-
ing at 20 MIPS executes 1200 megabits per second. These factors
transformed the time-based failure rate into a failure rate based
on information processed, i.e. failures per executions. The
latter usually has little meaning in an operational environment
and should be used only for research or global comparisons.
Another form of this same type of measurement is failures per
instructions processed.

Thus many basic units of measurement for reliability have been
considered including fault density, failure rate (both execution goo
time and computer time based), failure ratio (information
processed or instructions processed). Further discussions of
alternative failure rate reliability measures can be found in
(TXIB84].

3.2.2.3 A Proposed Structure

Our choice as a principal unit of measure for expressing software '".
reliability is the failure rate. However, early in the develop- '5
ment phases, the available data is more applicable to predicting
a fault density. Our approach is to predict a fault density
based on measurements taken early in the development phase,
develop a transformation function to interpret that fault density .

as a predicted failure rate, and then during the later phases of
development (testing) use an estimation based on failure rate. A
basic measurement model is illustrated in Figure 3-3, where we
recognize that software fails because it has faults (fault
density represents the number of faults in the software based on
its quality) and because of the environment in which it will be
used (trigger rate represents the variability of inputs, the
severity of the operational environment. ete). The transformation •
function between fault density and failure rate was developed
through empirical analyses and is presented in Section 5.

3.3 RU1ATIOENSIP OF CANDIDATE METRIC8 TO STRUCTURI

With this view of software reliability, the candidate measure- ..
ments (metrics) discussed earlier in this section and new
measurements identified during this research effort can be -
organized as follows.

3-10 ".

%: P

•,,-- % %%'

% 'a*.. . -%' % % *.- . - ' -

%*~~~~~~~~~~~~~~~~~~
'r~'' ~ ~ : K ~ - - ~ ~ a, ~. ~ , , , , - p,

""11

FAILURE RATE ..

I~ "N
FAULT DENSITY TRIGGER RATE,,",_. ,-

A FUNCTION OF: A FUNCTION OF.:
" Development Environment a Test Environment
" Software Characteristics a Test Thoroughness

a Operational Environment

. - 'o

FIGURE 3-3. MEASUREMENT STRUCTURE

3-111

9%,. t

'%
, .,-%'-_

3-11 :.:.:.:.

v. .?
q J(, .w =" "" "'. % % % ". %'%' " % ' % " "'.'" "* % %'%.' "" . d%"-

" di " . % "." 1 "," " *, % .% "e " • % " .".% ." 5,." .% .% % .. ." '

0

Those measurements which can be applied early in the development .-

and represent an assessment of the quality of the software can be .A.
related to a measure of fault density and eventually transformed ",
to a prediotive failure rate.

Those measurements which are applied late in the development and
represent an assessment of the performance of the software during
testing can be related to the trigger rate.

Table 3-2 illustrates the allocation of candidate measurements to
a predictive reliability number and a reliability estimation
number. The measurements showJn are described in the following
paragraphs. Data collection procedures for each metric are in an
Appendix B to Volume II of this report.

In order to maintain consistent terminology, the following
conventior ; will be followed:

* The Predictive Reliability Figure-of-Merit (RP) and the
Reliability Estimation Number (RE) will be called
reliability numbers.

* Metrics or measures are derived values which when multi-
plied together will calculate one of the reliability I
numbers. A metric can be a simple metric (e.g., D,
Development Environment) or a composite metric (e.g., S,
Software Characteristics) which is the product of more C:,,
than one simple metric.

* Data items are specific data elements which must be
collected or measured in order to derive a metric. The
data items associated with each metric are described in
the Data Collection Procedures and worksheets in
Appendices B and C to Volume II.

In all cases, metric values were derived from data collection and
statistical analyses performed on past projects or during latter S
phases of this research project.

3.3.1 Predlotive etrics

In the past, software quality metrics have not met with wide .
acceptance because there are a large number of them, they are
expensive to collect (manually), and they have not all been
validated. In order to avoid these problems the following .
approach was adopted on this study:

* The software quality metrics (see Table 3-1) were reviewed
to determine which metrics were predictive in nature. %-A

Many of the metrics currently defined in the Software
Quality Measurement Framework are in effect standards.
i.e., if the metric or metric worksheet item has a low -
score it should be corrected. These metrics are used in %
just that way by practioners, as QA or IVYV checklists, t'

% %

W. .-- Y" ? ., ,

TABLE 3-2 PRDCTV AND ESIATO METRICS ~ '- .--

PREDITIVE ETRIC

TABLIEM3-.EREISv AND DEINRPESETIATION MTISl

P AEOICTIV METRICST S

APLCTIONTEBLT AT

SOFTWARE CHRCEISTCSUS SQ

SOFTWARE IMPLEMENTATION S2
LANGUAGE TYPE SL%
PROGRAM SIZE SS
MODULARITY SM

EXTENT OF REUSE SU
COMPLEXITY SX
STANDARDS REVIEW RESULTS SR

Rp A D-S WHERE
S =Sl -S2
SI = SA - ST *SQ

S2 = SL - SS *SM - SU * SX - SR

ESTIMA TION METRICS

FAILURE RATE DURING TESTING F

TEST ENVIRONMENT T '.

TEST EFFORT TE
TEST METHODOLOGY TM -

TEST COVERAGE TC

OPERATING ENVIRONMENT E ..

WOR KLOAD EW
INPUT VARIABILITY EV

RE -F * T, DURING TESTING WHERE
T = rE * TM *TC and

RE - F E, DURING OT&E WHERE
E - EW - EV

:.-

3-13

.72e-%

report problems.

0 The metrics which were considered predictive were ... ,
retained.

9 The metrics which were considered to be QA/IV&V checklists got
candidates are advocated as review checklists to be used
during formal reviews such as design reviews and informal
reviews such as walkthroughs. --o

0 The number of problem reports generated as a result of
applying these checklists is a metric to be used. *

Several new metrics were identified also and are discussed in the
following paragraphs. The Predictive Reliability Figure-of-Merit
(Rp) is the product of the identified metrics. The individual
metrics were adjusted during validation to a numeric that can be
used as a multiplier in this product. The final results are
presented in Volume II. The validation process is described in
Section 5 of this Volume.

3.3.1.1 Applioation Type (A) ..

The type of application, i.e., the function to be performed, is
considered a basic characteristic of the software. It is con-
sidered in this study as the basis for establishing a nominal N
prediction number. The type of application typically affects .11
both the manner in which software is developed and how it is
operated. Because of those affects, the application type is not
independent of the other metrics to be discussed. However, since 0
it is perhaps the first characteristic known about the software
it is a valuable initial predictor. Our concept is to use a
classification scheme for the application type. A fault density
(or failure rate) will be associated with each category or
application type. We will develop that metric by looking at a
wide range of systems and taking the average for those that fall
within each application type. The metric will be a fault density
associated with the application type chosen, A. ,...-

Several potential classification schemes were identified. They
are presented in Table 3-3. For the sake of this study, we
decided to evaluate two of these approaches. Hecht's basic

* categorization was real-time, interactive, batch processing and .
support. He further distinguishes each of these categories
depending on access. In [MCCA77], an application scheme that was
Air Force application-related was developed. This scheme was
developed to be oriented toward the AF SAM or SPO. The RCA
PRICE-S model uses the classification scheme in column three for
the parameter PLATFORM recognizing the influence of Military -

Standards on a system. The PRICE-S model also uses an
application mix for the software. The categorization scheme for
this mix plus the relative numerics used in the PRICE-S system
are shown in Table 3-4. The RADC Test Handbook [PRES84] uses the

% - 4 ---
le•re d

Ap.,~ %51

: f.-"--,'"

I -%
_, . 4%

;1 < E 3-3 ... N TE PP . .. EMS

* -,-, r- WCA:E 'S(:A'- CA ,L:S:F'- . 3Z :H'E g , .'

a REAL TIME OPERATING 6 MANNED SPACECRAFT 0 MANNED SPACECRAFT B BATCH
SYSTEM AIRBORNE AVIONICS

0 UNMANNED EVENT C014TROL

a REAL TIME CLOSED 0 UNMANNED SPACECRAFT

LOOP OPERATINS SPACECRAFT MISSI.LtS PROCESS C01TRO.

SYSTEM MIL SPEC AVIONICS a %RCO E

6 OTIHIR REAL TIME WARNIP G COMMERCIAL CONTROL
AVIONICS S

a INTERACTIVE a SENSOR DATA 1 U NAVIGATION

OPERATING SYSTEM PROCESSiNG, MOBILE SYSTEM
INTELLIGENCE * FLIGMT DYNdAMICS

a INTERACTIVE 4 NO% REAL TIME C2

AIPPLICATION U STRATEGIC, I ORBITAL ,

PUBLIC TACTICAL C2
• MIL SPEC DYNAMICS,%t"t

RgOUND SYSTEM

a INTERACTIVE F COMMUNICATIONS S MESSAGE PROCESSING

APPLICATION a SATELLITE .

RESTRICTED a MIS GROUND SYSTEM a OIAGNOSTIC
SOFTWARE ,, ".-.

a SCIENTIFIC BATCH D DEVELOPENT, • PRODUCTION -. ".-

TEST NEO CENTER SOFTWARE a SENSOR , SIGNAL - .

w OTFER BATCH - ZI~NTRACTOR PROCESSING "."

I JEviLOPEO
a SUPPORT PROGRAM 6 SIMULATION

a PRIODUCTION

a HAROWARE ENTE"SOFT'ARE B OBMS

DIAGNOSTIC - uSER DEVELOPED
s DATA ACQUISITION %

a SOFrW ARE TOOLS , A A P. ..A.l
AND DIAGNOSTICS * DATAPRESENTTON

a OTCR a DECISION-
PLANNING AIDS

a PArTERN IMAGE 'IMA
PROCESSING ".-':,.

* COMPUTER SYSTEM

SOFTWARE -

a SOFTWARE
DEVIE LOIENT TO LS

%* %' %%.

% % * % % % %

-ft. ... f. ...j t,, t t, ? . , .A p- . . . , t ..

0

TABLE 3-4. SYSTEM TYPE CATEGORIZATION

SYSTEM TYPE RELATIVE NUMERIC

PRODUCTION CENTER SOF17WARE 0.8
DEVELOPED BY USER

PRODUCTION CENTER SOFTWARE 1.0
DEVELOPED BY CONTRACTOR 1

SATELLITE GROUND SYSTEM 1.0 0

MIL-SPEC GROUND SYSTEM 1.2

NON-REAL-TIME COMMAND AND CONTROL 1.2

MOBILE SYSTEM (VAN SHIPBOARD) 1.4 0

COMMERCIAL AVIONICS 1.7

MIL-SPEC AVIONICS 1.8

UNMANNED SPACECRAFT 2.0

MANNED SPACECRAFT 2.5

APPLICATION MIX RELATIVE NUMERIC :.- --

DATA STORAGE AND RETRIEVAL 4.5

ON-LINE COMMUNICATIONS 6.8

REAL-TIME COMMAND AND CONTROL 9.4

INTERACTIVE OPERATIONS 12.1

MATHEMATICAL APPLICATIONS 1.0

STRING MANIPULATION 2.5

OPERATING SYSTEMS 12.1

3-16

W,-n a - nZ' , .'.'e , . * , .-. *..'..- . .- ..*- .*-. - .. . - ,. •.. -

-~- -w. I

=~ ~ IS- 1-. .1 TT 3-77 -777 --

classification scheme in column four. This categorization
relates specifically to the functions being performed by the
software. From a system perspective, there are typically a %

number of these functions being performed within a system. The
two approaches chosen for evaluation were the first two. Each
was modified as shown in Table 3-5.

The Air Force application scheme has six major categories: .-r-r
airborne, strategic, tactical, process control, production N.
center, and developmental/support. Airborne applications are
systems which perform real-time closed loop functions such as
navigation, flight control, fire control, and electronic warfare
on-board an aircraft. Systems on-board a satellite performing
orbital control, data acquiition, and power supply control would
also be considered airborne systems. Strategic applications are
systems involved in planning, directing or providing warning of
large-scale military operations. An industry equivalent
application would be a company wide communication system
supporting business management, decision support, and operation.
Indication and warning systems like a ballistic missile defense
system are considered a strategic application. Tactical
applications are systems involved in support of actual enemy
engagements providing such functions as weapon system fire
control, short range communications, and combat decision support.
Process Control applications are systems involved in monitoring .. A
and controling machinery such as numerical control manufacturing
equipment and nuclear power plants. The production center
application category involves Managment Information Systems such
as personnell, finance, payroll, inventory control that typically .
run in a computer center environment primarily in batch mode. •
More modern examples of these types of systems are on-line
interactive transaction processing systems. The Developmental
Support applications category includes those systems which
support the development of systems (eg. software engineering
environments), simulations, testbeds, and analytical packages.
Examples of systems which would fall in such categories is shown
in Table 3-5. These examples serve as definitions of the..
categories. The time dependence scheme has four basic categories
of real-time, on-line interactive or transaction processing, .-*.-.
batch, and support software. We considered subcategorizing
real-time into close-loop (eg. flight control) and other and
on-line into distributed and centralized to evaluate the
differences of those subcategories but postponed that for future
research.

Table 3-5A identifies a categorization scheme based on software "-
function [PRES84] that is recommended for future research. This
more detailed categorization scheme would provide a nominal
(baseline) reliability at a subsystem or CPC level.

Where more detailed information is available, we could further
categorize the application by that set of software functions
being performed and the time dependency of these functions. We . ..

anticipate that we will eventually, based on observed data. -

3-17
o

X %.

% % %

TABLE 3-5 APPLICATION CLASSIFICATION SCHEMES -

APPLICATION TIME DEPENDENCE

" AIRBORN SYTM DRALTrviE
*MAINNED SPACECRAFT
- NMANNED SPACECRAFT - ON-LINE (INTERACT1ViTsTRA.NSACTION
* NILSPEC AVIONICS PROCESSING)
-COMMERCIAL AVIONICS

* STATEIC YSTMS NON-TIME CRITICAL (BATCH)
-. I~ * SUPPORT
*STRATEGIC C2

INDICATIONS AND WARINING
-COMMULNICATIONS

* TACTICAL SYSTM
-TACTICAL C's
-TACTICAL MIS * '

-MOBILE

-EW/ECQA

" PROCESS CONTROL SYSTEMS
INDUSTRIAL PROCESS CONTROL0

" PRODUCTION SYSTEMS
-MIS

-DECISION AIDS
INVENTORY CONTROL
5 SCIENTIFC

" DEVELOPMIENTAL SYSTEMS
SOFTWARE DEVELOPMENT TOOLS

-SIMULATION

-TEST BEDS
-TRAINING

3 -. I'*

6-L.U

sI .. 4

0

SEVENT CONTROL -.

" PROCESS CONTROL .. .

• ,.~ ..I' ,

" MESSAGE PROCESSING "-,'

" SENSOR AND SIGNAL PROCESSING

" PATTERN AND IMAGE PROCESSING i'4'."

TABLE 3-5A. APPICAITIONCLASSFICATION SCE S

• DISPLAY/DATA PRESENTATION

" PROCEDURE CONTROL .-. ,.

J' ." alp.

'% % % "

"RESOURCE MANAGEMENT/CONTROL ••"..• _: ",

" SCIENTIFICIANALYTICAL PROCESSING -,%.

" DECISION AND PLANNING AIDS :. .

" DATA MANAGEMCENT- W
3~ -1

___ ___ ___ ___ ___ ___ ___ ___ ___.pa. %

a,%., a--

* SENSORTAN SIGNLPOCESIN

* DISTRIBUTIOCOMMUNICATION.

-a"*. *,

- ... -.

-. -. - P

S.- .- ,

, .- %_,
"sS... '. d*

-....

3-ia

**a* S / P • * -. - .* **. -.- . . % *F -. % *- - -. -. - . . -. -. a 5aaa* % % . % % % * .. ° % , %

' *. % . . % % ". ". % -. ", -. % . -, . % . % ". -. -. . - -- . - " * * - - ' -, -.% %.., " % "- a. - % % , % 'a
"" " " " " " ' a % Zae% a " " " "" ""-* a" % "" "-.-"" 4 "

° . %
"

%
"

%
" . . a .

%
,_.'."%,', - . . %. * a% - %-.-. % . . . " a ,. ., % % \'aaa%" .'

I0

modify several of the categories. ,,,,.

As the development proceeds the nominal predicted reliability for
the application will be modified based on the development
environment, the characteristics exhibited by the software as it
evolves, and its performance during testing. This is analogous
to the procedure used for hardware reliability prediction where
initially a nominal parts failure rate is assigned which is
modified by quality, derating, and environment factors as the
design is definitized.

3.3.1.2 Development Environment (D).P-

This metric is concerned with effects of the development environ-
ment on the reliability of the software produced within that
environment. In the development of the COCOMO software cost . -
model, Boehm found that there were significant differences
between three classes of environments which he termed organic,
semi-detached, and embedded [BOEH81]. It is expected that these
environment characteristics will also affect software reliabil-
ity.

The following descriptions of each of the environments and the
table of distinguishing features (Table 3-6) are excepted from
the cited reference.

ORGANIC MODE - In the organic mode, relatively small
software teams develop software in highly familiar,
in-house environments. Most people connected with the .

project have extensive experience in working with 0
related systems within the organization, and have a
thorough understanding of how the system under develop-
ment will contribute to the organization's objectives.

SEMIDETACHED MODE - The semidetached mode of software a..

development represents an intermediate stage between the
organic and embedded modes. The team members all have
an intermediate level of experience with related
systems. The team has a wide mixture of experienced and .
inexperienced people, and team members have experience
related to some aspects of the system under development,
but not to others.

6
EMBEDDED MODE - The major distinguishing factor of an
embedded mode software project is a need to operate --

within tight constraints. The product must operate (is .

embedded in) a strongly coupled complex of hardware,
software, regulations, and operational procedures such
as electronic funds transfer system or air traffic e
control system. In general the costs of changing the -
other parts of this complex are so high that their
characteristics are considered essentially unchangeable,
and the software is expected both to conform to theirspecifications and to take up the slack of any unfore-

3-20 , "P

S

TABLE 3-6. DISTINGUISHING FEATURES OF SOFTWARE DEVELOPMENT MODES (BOEH81)

FEA TURE ORGA.d,C SEMIDETACNED EMBEDDED

ORGANIZATIONAL UNDERSTANDING THOROUGH CONSIDERABLE GENERAL
OF PRODUCT OBJECTIVES

EXPERIENCE IN WORKING WITH EXTENSIVE CONSIDERABLE MODERATE
RELATED SOFTWARE SYSTEMS

NEED FOR SOFTWARE CONFORMANCE BASIC CONSIDERABLE FULL

WITH PRE-ESTABLISI4ED REQUIRE-
MENTS

WITH EXTERNAL INTERFACE
SPECIFICATIONS

CONCURRENT DEVELOPMENT OF SOME MODERATE EXTENSIVE
ASSOCIATED NEW HARDWARE AND
OPERATIONAL PROCEDURES

NEED TO INNOVATE DATA MINIMAL SOME CONSIDERABLE
* PROCESSING ARCHITECTURES,

ALGORITHMS

PREMIUM ON EARLY COMPLETION LOW MEDIUM HIGH

PRODUCT SIZE RANGE < 50 KDSI < 300 KOSI ALL SIZES

EXAMPLES BATCH DATA MOST TRANSITION LARGE, COMPLEX

REDUCTION PROCESSING TRANSITION
*SCIENTIFIC SYSTEMS PROCESSING
aMODELS NEW OS. DBMS SYSTEMS

BUSINESS AMBITIOUS AMBITIOUS
MODELS INVENTORY, VERY LARGE
FAMILIAR OS, SIMPLE COMMAND 0
COMPILER CONTROL AVIONICS

a.SIMPLE AMBITIOUS
INVENTORY, COMMAND-
PRODUCTION CONTROL
CONTROL

3-21 a-

%M %

r % 00
'? "N" N11%;

seen difficulties.

A metric, Di , will be associated with each of these three
environments. That metric will be modified based on further
distinguishing characteristics shown in Table 3-7. These -

characteristics further distinguish the level of formality,
discipline, and modern approach to the development effort
[SOIS85]. The characteristics will be in the form of a checklist
which will be used to score the development enviroment. The
score will modify the initial environment metric, Di. resulting
in the metric D. This resulting metric, D, will be a multiplier
of the fault density associated with the Application Type and
affect it positively (the multiplier will be less than one but
greater than zero) or negatively (the multiplier will be greater
than one), thus representing the positive or negative effect the
development environment has on the production of reliable soft-
ware.

3.3.I.3 Software Characteristices (S)

This set of metrics represent those characteristics of the
software which are likely to affect the software reliability.
The characteristics can be measured from the code and the docu-
mentation produced during the software development process. The S
metrics within this Bet are further organized, for recognition
purposes, under Requirements and Design Representation metrics
and Software Implementation metrics. Those metrics in the former
group are applied to the documentation which represents the
software requirements of the system and the software design.
They will typically be applied at the time of formal reviews such 0
as the Software Requirements Review (SRR), the Preliminary Design
Review (PDR) and the Critical Design Review (CDR). Those metrics
in the latter group are applied to the code during the coding
phase of the development. Each metric is described in the
following paragraphs.

3.3.1.3.1 Requirements and Design Representation Ketrics (Si)

Anomaly Management (SA)

This metric represents the degree to which fault tolerance
has been designed and implemented in the system. The ,
ability of the software to accept anomalous input data,
recover from incorrect calculations, gracefully degrade,
and fail in a controlled manner contributes to its
reliability. Various strategies for developing error
tolerance software exist (MYER78]. A checklist approach
to evaluating these features was first proposed by v

(MCCAV?] and expanded by (BOWE83]. The features assessed
include:

- Error Condition Control --%

Input Data Checking s" .

3-22

60--

- - - b~t~ - -. ~ t ..--. N,- S...

TABLE 3-7. DISTINGUISHING CHARACTERISTICS OF
DEVELOPMENT ENVIRONMENT (Modified from (S01585)

ORGANIZATIONAL/PERSONNEL CONSIDERATIONS

Separate Design and Coding %

Independent Test Organization
Independent Quality Assurance
Independent Configuration Mangement
Independent Verification and Validation
Chief Programming Teams
Above Average Educational Level of Team Members
Above Averrage Experience Level of Team Members

METHODS USED

Definition/Enforcement of Standards to
Use of HOL
Formal Reviews (SRR, PDR, CDR, etc.)
Frequent Walkthroughs
Top Down and Structured Approaches S

Unit Development Folders
Software Development Library
Formal Change and Error Reporting .
Progress and Status Reporting

DOCUMENTATION
S R e "c a

System Requirements Specification "

Software Requirements Specification
Interface Design Specification
Software Design Specification
Test Plans, Procedures and Reports
Software Development Plan
Software Quality Asssurance Plan
Software Configuration Management Plan -. N..

Requiremetns Traceability Matrix
Version Description Document
Software Discrepancy Reports

DEVELOPMENT TOOLS

Requirements Specification Language
Program Design Language
Program Design Graphical Technique (Flowchart. " "
HIPO, etc) -

Simulation /Emulation
Configuration Management
Code Auditor
Data Flow Anallyzer '.
Quality Measurement Tools

3-23 .

~~~ N V.-' % % % d

% % 5
N~ q



- Computational Failure Identification and Recovery

- Hardware Fault Identification and Recovery

- Device Error Identification and Recovery .N'.

- Communication Failure Identification and Recovery

The metric, SA, is:

SA - ka/AX

where ka is a coefficient to be derived from regression
and AM is the evaluated score from application of the
checklists in [OWE83] (metrics AM.1, AM.2, AM.3, AM.4, 0
AM.5, AM.6, AM.7, RE.1).

The checklists have been modified somewhat during the
process of use/experience during this effort. They are
presented in the Data Collection Procedures. Appendix B of
Volume II of this report. S

e Traceability (ST)

The traceability metric is based on an identically named
criterion in (MCCA80] and [BOWE85]. The metric used
there, the cross reference relating modules to require-
ments, will also be applied to the current study. The
basic concept of this criterion is that if the require--
ments are traceable to the code then there is less of a
chance that a misinterpretation of the requirements can
result in a fault in the code.

The effect on reliability will be represented by the %..IL
traceability metric, ST. as:

ST - kto/TC

where kto represents a coefficient to be determined by
regression and TC is the traceability metric (TC.1) in .,,-,
Table 3-1, which is calculated by identifying the total
number of requirements (NR) and dividing this number by
the total number of traceable requirements (NR-DR) where
DR is the number of requirements not traceable to design
or code. A methodology for itemizing requirements can be -
found in IEBRN83] or use of tools/techniques such as SREMX -,
(BELLT8] or PSL/PSA (TEIC76] also support this type of .
calculation. A further description of how to calculate ,---

the metric is in Volume II of this report.

3-24

A,.4S. '%



0 Quality Review Results (SQ)

During most large system developments various formal
reviews are conducted. Previously mentioned examples such
as SRR, PDR, CDR are typical formal reviews. Informal
reviews, audits, or inspections may also be conducted.
Two such techniques are structured valkthroughs and design
and code inspections [FAGA78]. The quality of the doou-
mentation and the design represented by the documentation
is reviewed during these activities. Any problems
identified are recorded as a problem report or action item
for correction. Studies have shown that the more problems
encountered early in a development the more likely it is
that problems will exist and be found later during test
and operation [LIPO79]. This metric, Quality Review "-"-"
Results (SQ), represents a measure of the number of
problem reports or discrepancies reported during reviews.
The metric takes the following form:

SQ - ka * (NR/NR-NDR)

where kq is a coefficient derived from regression (see
Section 5), NDR is the number of discrepancy reports
identified, and NR is the total number of requirements
identified in the system. %

Use of the worksheets (checklists) in Appendix D of Volume
II is advocated. These worksheets contain data elements
related to the software quality metrics in Table 3-1:

Accuracy (AC.1)
Completeness (CP. 1)
Consistency (CS.1, CS.2)
Autonomy (AU.1, AU.2)

A discrepancy report should be generated for each question
on these vorksheets answered negatively when applicable. -. .%
An example discrepancy report is shown in Figure 3-4.

The vorksheets assess how well the following character-
istios have been addressed in the requirements and design S
of the system.

•o%. .'.

- Aoouraoy - the concept of reliability includes pre-
oision, i.e., algorithms must be accurate within %.-.-. 6.

certain bounds.

- Completeness - the requirements and design should have .

the following characteristics: . .

-- Unambiguous references, --

3-25

,% ,%_ %x 4 J
,,. , -. -.- . . .--. ' ' ' ".'." "a" " ' .,"-";"" " """"" "" ". ./ '- ". '" ''a . '?-w"r "" ' ".:" .''.'e-V V[.." "

,,', ', ,..., . '".-...' ',-... '._'.; ..'' ,..' '.;. '' ' .".'_ % .".', ',J-."..', ..', ..-.- r ..: .',. ,.: ' "l":r. . ,.' v " .." -A,



t~ ~~~~ 1 .-. I - ~ 6- - -t %

%

PROBLEM ~ ~ ~ ~ ROLE TYP______________ RBEM:UBR_______

REQUIREMENTS DESIGN CODING MAINTENANCE

Incorrect Spec Requirements Compliance Requirements or Design Omued Logic Incorrect Fix .4%

*Conflicting Spec Choice of Algorithm Compliance Interface Incompatible Fix
*Incomplete Spec Sequence of Operations Computation Implementation Performance

Data Definitions Sequence of Operation OTHER %4
Interface *Data Definition

Data llandling

CRITICALITY

HIGH _________MEDIUM ________LOW____________

METHOD DETECTION:

DESCRIPTION OF PROBLEM:N"

0

TEST EXECUTION: TEST CASE ID: TEST EXECUTION TIMEF:

EFFECTS OF PROBLEM:

RECOMMENDED SOLUTION:

APPROVED: RLAE Y

DATE: DATE:

FIGURE 3-4 DISCREPENCY REPORT

3-26

%* % -'

% %



All data references defined, computed, or obtained
from an external source,

-- All defined functions used,I--I

-- All referenced functions defined,
..

-- All conditions and processing defined for each
decision point,

-- All defined and referenced calling parameters
agree, and

-- All discrepancy reports resolved.

- Consistency - the requirements and design should have: ...

-- Standard design representation,

Calling sequence conventions,

- Input/output conventions,

-- Data naming conventions, and •

-- Error handling conventions.

- Autonomy - the software components should be indepen-
dent functions and as non-dependent of their interfaces
as possible.

In order for this metric to take on true significance, statisti-
cal studies of projects employing similar review concepts or at
least devoted similar levels of effort to reviewing the require-
ments and design will have to be conducted. Projects employing
IVYV contractors would be applicable subjects. p

0
3.3.1.3.2 Softvare Implementation Metrics (S2)

* Language Type (SL) ",
%S d

The programming language chosen and used to implement a -
system can have an effect on the reliability of the
system. A significant dependency of fault density on
language has been established in [HECH83].

The metric for Language (SL) will be based on the classi-
fication, identified as:

- Assembly level programs, and

- Higher-order language programs.

The HOL category will represent the default (to be

3-27

% . - . -. . ,% . .-. "... .Z-. . s' -' , " . " -"S 5_ , % % %* % *
'. ~ 5 . % ~ ~ '.' ~ - ~*~5 - 4* * *~>t..> X.,.%.



assigned a value of 1). It has been assumed that one HOL
statement will generate machine instructions equivalent of
two to eight assembly statements. Five is a typical
expansion ratio for FORTRAN. Under these circumstances
the metric is:

SL(Assembly) - 1.4

.%.,P -

SL(HOL) - 1

Where programs contai.n a mixture of HOL and assembly
language code, the language criterion is computed as the
sum of the fractions applicable to each category. Thus,
for a mixed language program, the language metric, SL, is .'-
given by

SL - (ROL%) *1 + (Assembly %) '1.4

9 Program Size (SS) '-

This metric represents the effect of total size on reli- '.
ability. We alieady stated that the failure rate measure
of reliability is self-normalizing with respect to size,
however we feel there are secondary effects which should
be taken into account. These secondary effects are
associated with inherent complexity, number of interac-
tions, data base size and the ability of humans to deal '. T
with extremely large systems.

The metric will be a multiplier associated with size cate-
gories (or ranges). Tentatively size categorizations to
be used are:

SS(1)c 10000 lines of code
10000 'SS(2)' 50000 lires of code S
50000 ,SS(3), 100000 lines of code ,.
100000 ,SS(4)

In this case, lines of code are defined as all executable
source statements.

e Modularity (SM) A

It is generally held that small modules can be more
readily reviewed and are, therefore, less likely to
contain faults than larger mcdules (this is implicit in
MIL-STD-1879). It is intended to establish three cate-
gores for module size, based on the number of executable
statements:

SM(1) 200 lines of code
200 ( SM(2) 3000 lines of code

3-28 a

%~. % %

Lh% .a- ,. "a



%%

3000 SM(3".%

For the assessment of software development practices it ..
night be of interest to apply this metric to individual -.
modules and to correlate it with failures due to these
modules. In many cases, available data from historical
projects do not support an analysis at this detailed
level. Regardless of daa quality. it is frequently
impossible to associate a specific module with a software
failure (e.g., for failures due to missing requirements,
faulty interface specifications or implementations). For
cases where detailed rddta Is available, the metric will he
evaluated by the following:

SM - (u*SM(1) + v*SM(2) + w*SM(3)) / (u+v+w)

where SM is the overall module size metric, lower case S

letters are the number of modules in a given category and
upper case letters are the module size coefficients
applicable to each category.

For the purpose of reliability prediction, for this study, ---
it is considered adequate to base the metric for module
size on the average size in a program (i.e., total execut-
able statements divided by the number of modules). The
metric, SM, applicable to each module size classification
was evaluated by regression (see Section 5).

0 Extent of Reuse (SU)
0 

As the application of computers to Air Force projects
matures, there are increasing opportunities for including
portions of operational code in new software developments.
The practice appears desirable for reliability as well as
for economic reasons Code from current operational
programs is expected to contain fewer faults than newly
generated code since through previous test and maintenance
efforts its reliability will have grown to an acceptable
level. The reliability of the current code is assumed to
be known by observation during operation. .1,,

However. it is important to recognize any differences in
environment, application, or interfaces that the existing
software may encounter will have a potential impact on Its
reliability. In the situation where new code is being
added to existing code in the same environment, the
existing code's reliability can be taken as observed. In
the situation where the existing code is being used in a
new environment as part of the development of a new S

application, it cannot be expected, without analysis, t..
perform with its established relibility because of new
requirements and interfaces. In each case, though, the
failure rate for the reused code should be less than 'that

°- J. .- 1
e4'

"% " ; -67;' ' 4 " ' " " " -" '. " " ,' , " , ' " " " ' , " " " " " " '" " " " ' - . . " " ---' " " " ' ' "" '



T0

for the new code. The metric for reused code (SU) in

reliability prediction will be:

SU - SU(i)

where Su (i) is a factor derived from empirical data.

Initially we expect this factor to be determined by
*looking up a factor in a Table with data from a limited

number of projects.
(SI)Io Complexity (SX)%%

Candidate metrics include the SI.3 and SI.4 metrics from
(BOE85] (see Table 3-1). SI.3 is McCabe's cyclomatic NO
complexity metric [MCCA76] and SI.4 is the checklist
assessing the simplicity with which a program is imple- 0
mented. Halstead's metrics (SI.6) should also be
considered [EALS77]. Past experience applying these .- ,
metrics indicates McCabe's metric to be more applicable
because it can be automatically calculated and has demon-
strated better correlation than Halstead's metric.
[MCCA80].

Since this metric is applied when the project is close to .,,
entering the reliability estimation phase, prediction that
accounts for complexity may be helpful in several ways:

- It will identify the role that complexity plays incausing failures (by use of regression techniques).

- It will encourage recording of complexity measures as
part of the project history.

- By virtue of the above it will identify long range
trends of increasing or decreasing complexity which may .
not otherwise be captured in an analysis of software
failures.

Thia metric is applicable at the module level. Again, the
availability of data at this level may hinder the estab-
lishment of a prediction coefficient and use of the metric
during projects. When available the metric (S) will be:-.

n
SX -x ( S sx 1  ) / n - "

where SXi is McCabe's complexity (SI.3 in Table 3-1) for
each module, i, in the system. n equals the total number
of modules in the system, and kx is a coefficient derived.-
from regression. .-

, % ",

..: ., -, ..' .. , .'.. '.. .. .... , .. ... -..- , ...- : ... -. . .. ...- ... .... , . , .. , .. .-. .. .. .. ... ... .-. ., -.5*. . .... s..-, , ,,
< ", , ., : , ., ..... .. .: . ...• .. ...... '. ...,." .. .-." ... ... '., • ... .. ' .. ... .. ..' .'. ..,: .'. .- .. ., ,. ....., ., .',, • .'. ,,0 .

.-- .-- % % ..' .% # . °. -. .- % . % •. • ,. % " % .% •. . % ". .' .'- *. -. % .% ' =%" • % % . ." •. "



Standards Review Results (SR)-.

As during requirements and design, reviews, audits,
inspections and walkthroughs are techniques for identify- -

ing discrepancies or problems to be corrected. This ,. ,.., ,

metric represents the number of problems identified per
module based on reviews or audits of the code.

Worksheets from software quality metrics (SI.1 SI.2,
SI.4. SI.5, MO.1, MO.2) are advocated. Enforcement of
programming standards is another technique when discrepan-
cles would be identified. Worksheets are in Appendix D of
Volume II. The overall metric then will be a composite,
based on the evaluation of the following characteristics:

- Design organized in top-down fashion,

- Independence of module,

- Module processing not dependent on prior processing,

- Each module description includes input, output, pro-
cessing, limitations,

- Each module has a single entrance, single exit,

- Size of data base,

- Compartmentalization of data base,

- No duplicate functions, and .,-.,

- No global data.

The metric will be:
0

SR - kv (n/n-PR) V VU

where n - number of modules
PR - number of problem modules identified with

severe discrepancies
kv - coefficient derived by regression . .

Classification of the types of problems being identified can be
helpful. Three problem classification schemes are shown in Table a"

3-8. The middle column, has been used most widely in the past. "-
The right hand column is the one advocated primarily because of
its development phase orientation. By looking at the types of
errors being identified, standards can be improved, checklists ..*

can be improved, and development techniques can be improved to ..
help avoid making similar errors in the future. ,."'

3-31 P4111

.%..r ,". %.

% .. % %. % -% . - . .. %:>> k% %w7 : % % ° "



.- ,,% V %,

*dI..". ,

-I

•: ]

TABLE 3-8 ERROR CLASSIFICATIONS

:*.. A.

GOEL [GOEL83] TRW [THAY761 JLC [JLC81]

* SYNTAX • COMPUTATIONAL • REQUIREMENT'S
- [NCORRECT SPEC

" SEMANTIC • LOGIC - CONFLICTING SPEC e%
- INCOMPLETE SPEC

- RUN'TIME • DATA DEFLNTION
DESIGN

" DOMAIN * DATA HA-NDLING REQUIREMENTS
COMPLIANCE

" COMPUTATIONAL • DESIGN - CHOICE OF ALGORITHMS ," -,
SEQUENCE OF OPNS

• NON-TERMIN'ATION * INTERFACE - DATA DEFLNITTION 0
INTERFACE 2,-

" SPECIFICATION * COMPOOL ,RF.CE
P CODING

" PERFORaMANCE • PROBLEM REPORT - REQ OR DES COMPLIANCE
REJECTION . COMPUTATIONAL 1.kIP

- SEQUENCE OF OPN
- OTHER - DATA DEFINITION

- DATA HANDLING
- TEST-ONLY CODE - OMITTED LOGIC ~*

- INTERFACE
- OFTWvIIZATION - PE..FORMANCE

TIMING
SIZING • MAINTENANCE -

- INCORRECT FIX
- INTEGRATION OF NEW - INCOMPATIBLE FLX

SOFTWARE
-OTHER. <A

- UNNECESSARY CODE ..OTHER

- NEW REQUIREMENTS

• STANDARDS VIOLATION

3-A3.

% % <
%%%%'.

• ... . .. ,%;, _.v, ', % .... , ...- . "' '..' "." " .''.'." -' -' "3" .' ".' , ',. ," '. ... . . .' ', .' '. .. .. .. -'• °.' ."

, ' "- '-"-',",",.% ".',,' ,'•, ,. .,",,' - ., ,." '. '",- ,,-,""., "" "" "'-,",,'-."".""." , J.i~f',.,'S.'$,$.' ,'.; -'$% ,.''$.,',.' "','" ." ," .''.''.''-.'-,
,, , . o - - --% , % • • ..', % . % , % %, ' ,. ,. , .%, " % "% . . . -- . .. "-. .- . -- ° . ". . ". - ]*.



0 •

Two other quality metrics identified in Table 3-1, Self-Descrip-
tiveness and Distributedness, were not used. Self-Descriptive-
ness seemed particularly applicable to maintainability and not
appropriate for reliability prediction. Distributedness is
appropriate for distributed systems and, therefore, a special -
case not applicable to our generic methodology. . a.

Visibility, a quality metric identified in Table 3-1, is appro-
priate as an estimation metric and discussed in subsequent

3.3.2 Estlination Netries .-
As previously discussed, the use of reliability model technology

has not been widely accepted. The basic approach of this
technology, observing the failure rate of the software during
test, will be used within our methodology. Our approach to
estimation is to observe testing and calculate the observed
failure rate of the software. This basic estimation number will
be adjusted based on one of two environmental metrics, T during
the development test phases and E during the Operational Test and
Evaluation phase The estimation number will be the product of
the observed failure rate and one of those metrics. These
metrics are described in the following paragraphs. Z

3.3.2.1 Failure Rate Dmring Test (F)

The basic metric for estimation will be the observed failure rate
during testing (F). Reliability models have been researched for
a number of years and provide a mechanism for estimation. Thebasic philosophy of the reliability models is illustrated in
Figure 3-5 (using the Musa Model as an example) (MUSA75]. The
observed number of failures over time (and therefore the mean
time between failures) is extrapolated via a curve fitting
exercise (using the basic assumed model) and knowing the amount ,.

of test time expended to date, one oan estimate the amount of '. ',,.
additional test time required to achieve an acceptable (esti-
mated) failure rate. A large number of models exist. Twenty ''
three models described in [GOEL83] are listed in Table 3-9.
Experience using these models has varied ([KUSA79], (RICH83],
[ANGUS3]) and because of that variability, make the models S
suspect as estimation techniques. In lieu of their use, tracking
the observed failure rate during testing provides a basis for
estimation. This is illustrated in Figures 3-6 and 3-7. Figure
3-6 demonstrates the use of execution-time measures during the
pre-operational (test) phase [HECH77]. The data came from thedevelopment of the Metric Integrated Processing System (MIPS) at
Vandenberg Air Force Base during which disciplined programming
techniques were introduced under an RADC sponsored effort. The .
linear regression line exhibits an improvement in reliability
(reliability growth) over time (the downward slope). It also
shows several significant increases in failure rate during

3-33

a~ .%a .. ''.~. % ~ ." i/ % . ..... ,-'.'N..O . '
, " ." ., .-., .' .' ... -/ -'4 ' ., ' , * :, - , , , ., 4 ', ' -" .: -" < ' " : ' . -' -i -" .' '-_ " ' '. ' -" : ' ; # ." m ; : , "%



4. ~ - A - A P ~

-- ~ 0~

,~' .~.

,4

S
-. A. *~

.~. *-.,
- A-.,.*p J*A-.,.

A,.
-- a...

S
-I. ~.

,
'

p *8S

~ A.

uj~I~ ~Iii I
'w,

5z -.111!
A-A-A-

1~

- 0

~A-A-A-
.~ A.

A-A- A-
* A, A-b,

5
* cii

-~ 5..
P.-

t-s 0 -

1~~

- ~. Is..
0 >.i.I

I
I a...

= 0
I-.

* I I..
S

* I ,

0

~h ~ '~*b

L
a. A- -%A- A- .. ,....,p..A-~.'%./. A- A- A- A-~%.'%~ .'



o JEfLYSI AND M3W rE-EUT7PH- o GOEL - CKUMDUION~l-a4GEBUS 1

ICATIN POISS2t PROCESS

* SCHICK AND WC)VRTC LIN~EAR s SCHNEIEWflD

o SCHICK AMD WIVER'IT2 PARABLIC CM QJ 3FIE N 1fl-O3XEEOS ..-

o BCKmiC DE-EUTRPHCATI3N
MUHtSA EMCTICN TIME

* HYRI GEOMETRIC POISS21N
*SHiXC4AN EXPtMIAL

o GOEL AND CKUtX IMPEFECT
EEBtfl~flT * B2'=C POISSON

o LrrrLE~lO0 - VERRAL BAYESIAN * CflIFIED JhLSI - 1'ERAND A.

MODIFIE BCX7MIC B-EURPHCATION

NELSCN

J- .( .2~ A ... . . . . . . .

*.& ? .v'- .pf r .-. . %...e

oN.~~~ % e f4

11- "S WON
If- &- y& zc A .p



0~..

X:: PS

.l J '

CD.,~ S '

-1L

LUJ

%A

LU? A

% %S

L.L.

LO

3-36,
p5 % w'S

V. %t



-I

Mte. of
Fa I hitw

Soo.

700 .

o0, •

300 .

6%.% .

200

//
100

1100 %op%00 0'0'l'oo 00 50 ob

E xecution Tinme (hr),..-'-.

FIGURE 3-7 FAILURE EXPERIENCE DURING OPERATION MUSA79} '-.v

3- 37 ;.<::
VIN, / N"Z"-

/.

iL k r ,- .. . ...m .. % ... "  , .. _. ... .'. . . -- - - */- .
mem -eW: - . -t .-- .,.100 /.,.. ,.,.,->,



- -j ~~~,%-' ,* Vr T'I-v 7

'0

specific months. In each case there was always a specific
reason: In May and August 1976 major new modules were added to
the system under test; in October 1976. the contractor's quality
assurance organization took over responsibility for the test; and
January 1977 marked the start of testing by the Air Force.

Similar consistency in time for this type of metric during
operation is shown in Figure 3-7 [KUSA79]. The failure rate is
indicated by the slope of the data line. Note that the ordinate
scale is nonlinear in order to permit the number of failures
predicted by the MUSA model to be plotted as a straight line. A
last example is provided in Figure 3-8 from [ANGU79]. In this
example, a consistent reliability growth was not observed. A high
failure rate was still being observed at the end of the
illustrated test phase. ,.' -

By tracking this metric during testing, the trend in the observed
failure rate can be monitored and used as the basis for estimat-
ing what the expected operational reliability will be.

3.3.2.2 Test Environment (T) N4

Several characteristics of the test environment should be .

accounted for in the estimation of reliability. The observed
failure rate may not accurately represent what the operational
reliability will be because:

',.. _?',

* The test environment does not accurately represent the . -
operational environment,..,,,

* The test data does not thoroughly exercise the system .
thereby leaving untested many segments of the code,

9 The testing techniques employed do not thoroughly test the :.:......
system, and ,'...

e The amount of testing time does not thoroughly test the S
system.

These characteristics are taken into account by the metrics to be
discussed in this paragraph. In each case the metrics will be in
the form of a multiplier, the product of all of these to be used
to adjust the observed failure rate (F) up or down depending on
the level of confidence in the representativeness and thorough-
ness of the test environment (T - TE'TMTC). .

9 Test Effort (TE)

This metric is intended to represent the amount of effort
applied to testing. Three alternatives are to be eval- -
uated. The first alternative is the test budget (dollars .
or labor hours) which would appear to be a good metric for
the amount of test. Comparison with a guideline of 40% of
total development effort would be the metric. However,

3-38

.1 ~ ~ .IF .P %

% P., N %1



00.0

NOW1

- ~ _ _ _ 3-39



f%

there are considerable difficulties in obtaining credible
figures on this, particularly where parts of the test were -,..'

oonducted by the developer and other parts by the Govern-
ment or a separate contractor. Also, because test is the
project activity most likely to be under budget and
schedule pressure, substantial parts of test are sometimes
conducted as a supplemental project for which data are not
recorded in the main project records. ,6,_ _0

A second alternative is the total calendar time devoted to
test for use as a comparison among projects of approxi-
mately equal size. Normalization by dividing by total
lines of code may be inappropriate because of non- .,
linearities affecting large projects. However, normalized
calendar time will be evaluated as a metric for the amount
of test during this study.

As a third alternative, the number of separate test teams
involved will be evaluated. In a major project, the
following may be responsible for major phases of software
test:

- Software Developer,

- Developer's Software Test or QA Staff,

- System Integrator,

- Independent Validation Contractor.

- Air Force Test Agent (Air Force Operational Test and
Evaluation Command),

- Sponsor (Air Force Systems Command), and

- End User (Air Force Operational Command).

The more teams involved, the more thoroughly the system
will be tested. The metric, TE. will be examined in these .-.
three forms during the validation phase of the project and
the form which exhibits the best results will be chosen.
The three forms are:

(1) TE - 40/AT

where AT - the percent of the development effort devoted
to testing.

(2) - 40/AT

where AT - the percent of the development schedule devoted . .
to testing. 'e

3-40

-'op %* %r %4 . ~
d4 % % 44 -

----- 4 -o--...4.. *-,.



.%% .-- . .

* 0
LVa % If, .0.'_4

(3) - TT(i)

where TT is a factor (to be determined by regression)
associated with each test team mentioned above and n is
the number of test teams applied.

0 Test Methodology (TM) %'

The test methodology used is another element by which to .
assess the thoroughness of testing. One measure, TM, that
suggests itself is the use of test tools and testing .
techniques. In most cases the tools are being operated by -
a staff of specialists who are also aware of other . .'-
advances in software test technology. The primary
emphasis will be on classifying the test environment by
the tools and techniques used. Distinctions based on the S
type of test tools and techniques used will be made.

A technique and handbook for doing this assessment (or
classification) has been developed. In the Software
Test Handbook [PRES84]. a technique to determine what
tools and techniques should be applied to a specific
application is provided. That technique is illustrated in .
Figure 3-9 and results in a recommended set of testing
techniques and tools. Our approach will be to use that.*'*
recommendation to evaluats the techniques and tools
applied on a particular development. This evaluation will
result in a score that will be the basis for this metric
as follows: 0

TM - kt * TR/TU

..." -.

where TU is the number of tools and techniques used and TR
is the number recommended. kt is a constant determined by
regression.

The tool and technique checklist in [PRES84] is
specifically to be used to assess testing. The tool and
technique checklist shown earlier (Table 3-7) was for the
development phases of requirements, design, and coding.

Test Coverage (TC)

This metric assesses how thoroughly the software has been . .
exercised during testing. If all of the code has been .'..
exercised then there is some level of confidence estab- 0
lished that the code will operate reliably during opera-
tion. Typically however, test programs do not maintain
this type of information and a significant portion (up to
40%) of the software (especially error handling code) is
never tested. Tools such as JAVS, FAVS, and CAVS

, .~
3-41

.,,% %=. -. , , . , . • . . .. . ...**==,.'.,. .., .'* ,. ..:...... . .".'. , '.',:, '
% 

%



APPROACH I APPROACH 2 APPROACH3

DETERMINE IDENTIFY
TESTINGERROR TYPES

CONFIDENCETO BE AVOIDED \

LEVEL
--

SELECT SELECT
SOFTWARE TEST '

CATEGORYAPPROACH

EEEIIIII~iDOCUMENTED

TEST7
HANDBOOK

DETERMINE PRES84,1

APPROPRIATE

ESTIzrS

DEEALUAE
APPRORAHTE.

TECNIQE
TETOOLS

FIGURE3-9. PTSTOMEHDLG SESETAPOC
TEST

ME H OL--

EVA2 LLA IC
141*

ME RI % .* -



A. 0

(developed under RADC contracts) provide such information.

This metric could be calculated in three ways depending on %
the phase of testing as follows:

-I
TC - ktC * 1/VS

where kte is a constant determined by regression--

VS - VS1 during unit testing .

- VS2 during integration testing
- VS3 during system testing

and +-.T/T-)/2

VS - (PT/TP IT/TI)/2
where PT - execution branches tested

TP - total execution branches
IT -input tested S
TI - total number of inputs

VS2 - (MT/TM + CT/TC)/2
MT - units tested " .
TM - total number of units
CT - interfaces tested -. aJ.--.'

TC - total number of interfaces 0
VS3 - RT/NR

RT - Requirements tested %
NR - total number of requirements.•..

3.3.2.3 Operating Knviro-nent (N) ././*-'

Several characteristics of the operational environment, experi-
enced during OTSE, should be accounted for in estimating relia-
bility. Again, during OT&E we are trying to extrapolate the
observed failure rate F) into operations. The characteristics
we want to account for are the workload and the variability of
inputs. These two characteristics, for which we have developed
metrics, represent the stress of the operational environment on
the software. The metrics will be multipliers which will raise
or lower the estimated failure rate depending on the degree of .-.-
stress (H - E 0 EV).

e Workload (EW)

The relationship between the workload and software failure
rate has been investigated at Stanford University and a . ,
very significant positive correlation has been reported
(ROSS82]. The basic concept underlying this phenomena is -k.-
that more unusual situations (program swapped in and out
of memory, queued I/O, wait states, eto.) are encountered
in a heavy workload, and the application programmer may
not have anticipated all the situations. In addition. 
system software will tend to fail more often when used
more often.

3-43

F.....-,- ..- ..... ,..., a. .... ... .........
,, . .- ' -''.;.'.'.' :..,'..... .. .......-.... ........ .. :- - .''. --.. .. '. -. . a ... '.'.....:



The measured workload will be transformed into a stress.d
metrio as follows:

EW - kew ' ET/(ET-OS)

where OS is the amount of Operating System overhead used.
ET is the total execution time, key is a constant deter- ,.,%
mined by regression. This form of relationship (linear)
will be developed if applicable. If not a more general
relationship, EW - f (OS), will be developed.
The use of operating system overhead was chosen because it
is usually available. Other alternatives are number of .
system calls per minute, number of paging requests, and -. "
number of I/O operations.

e Variability of Input (EV)

Variability of the input is the primary determinant of ,4
software reliability in some models, such as the ones
proposed by Nelson and Lipow [DACS79] and Roger Cheung
[CHEU81]. The basic concept here is that the greater the
variability of inputs to the program the more like'y an
unanticipated input will be encountered and the program
will fail. Neither one of these models is supported by
sufficient data to permit direct evaluation of the effect
of variability on failure frequency, however. Nelson and
Lipow proposed partitioning of the input data set, and an
index of variability can then be derived from the number
of partitions accessed during one time period or one run.
This appears practical in only a very limited number of .
applications. Cheung uses the calling sequence as an
indicator of variability, a somewhat more easily imple
mented measure, but still targeted primarily to a research
environment. It is proposed to use the frequency of
exception conditions as a practical measure of variability
in the current exiort. The monitoring of exception
conditions is accomplished by hardware provisions which
are incorporated in many current computers. Significant
correlation between the frequency of exception conditions
and failure rate has been demonstrated [IYER8]3.

The metric will be:

EV - .1 + 4.5EC

where SC is the number of exception conditions encountered
per hour.

The constant value of .1 and the coefficient of 4.5 where
derived as a result of the analysis in [IYER8]-.

3-44
.% . . "*

% ,' ,r

3 - 4 4 % ''- .

,,-..., .--..-. -..-.. ...-,;. . ,...,-,.,., ...-.. ,-?. - . ,-, .. -.- , ., - . . , . . , .. . .. . . .*



F 3.4 TIMING OF METRIC APPLICATION DURING THE LIFE CYCLE.-.j

Figure 3-10 indicates when during the development phase each of -+,-

the metrios identified would be applied. This application
requires data collection, described in the next section, and then
use in the prediction or estimation procedures described in
Volume II.

.:... ,->

% %
.o. ,% P

S% %

, r

lop~ P

0

.- NN .~-Sd^.. .*. .0

A "-A % %

3- 4 5 "-'" "

, :'.-" ,,'0

-% . ,% % .% . . .- + % % .+ .. . " +" .'+.+ " . + .. . .- . - ..-.-. . ." + + . ++ . . .. o%.. • . • . , . % -.- . ,. -%

[ %,.+. , .. + + , .,.+ .. .. I..] . +.:.. "- .. ,. + . ,e .. , -.. ',..-v - -, ."-. ."-. " - .- .-+: ,' - ' '0

-- - " ++ .. . r. . t .Jt . '. .. '. . k .. r Z + .j + ,. ,P .l .)t ,k ." I



%. I* %.

%. op

%

yxS

1 b. 'm

-. 0 z

p 0~bCL

C3 
-

ct-

Os... V

21 j

vp..

__________________

~~S 364600



r.'

4.0 DATA COLLECTION IN SUPPORT OF THE SOFTWARE RELIABILITY
PREDICTION AND ESTIMATION METHODOLOGY

4.1 DATA COLLECTION APPROACH

One of the more significant undertakings of this project was the
data collection activities associated with demonstrating and
validating the methodology. The goals during this phase of the
project were:

* Filter the candidate measurements, ie eliminate measure-
ments that had no potential for utility in the methodology
and identify those that appear to have predictive or
estimation potential.

e Establish a data base from which a draft handbook (Volume
II) could be developed.

* Collect a set of data with which preliminary validation
efforts could be performed. These validation efforts are ",,,
preliminary because as a result of them some changes to
the measurements have been made (thus requiring further
iteration) and because a more exhaustive set of data would
be required to perform more extensive validation. %

* Establish data collection procedures for the Reliability
Prediction and Estimation Methodology.

0

The overall approach to the data collection is illustrated in
Figure 4-1.

During Phase I, a number of projects were identified as potential
sources of data for this project. Also during Phase I, a . ,
literature search was conducted. This literature search had
three purposes. One was to identify reliability measures that *'-'- '-
had been established and tried within the industry. A second was -

to further extend the references available to software reliabil-
ity practioners and document terminology (see Appendix A). The
third reason was to collect any documented experiences as part of
the data base to be used in this project. The RADC Data and
Analysis Center for Software (DACS) and the NASA Software .
Engineering Laboratory (SEL) data bases were also utilized. ".

Each software project, data base, and reference were analyzed for
applicability to this effort. The analysis mainly consisted of
identifying whether enough documentation, source code, and
failure history existed and was available for use. If this data
existed and was available, further investigations were conducted "..,.,.
to determine where in the life cycle the data was from, how
reliable the data was, and how current the data was. Some
projects and sources were eliminated from consideration because ..

of these factors. The resulting set comprised the candidate set &.-

0

4-1 - %

%..- .%--d%% N" e ..% %., %



60 W
ze L4

to.P

16 z

VA, -, 1 (.

.4 ZJ

Oww

4 z5

%4f dP

ga law%

i5~al

4-2S



of projects and data sources. As many as possible were included
in the data collection and validation activities. A few were not
because the level of effort of this project prohibited their
inclusion. Those projects have been retained for future analy-
sis. The next paragraph, 4.2, identifies all of the candidate '

projects and data sources. -

The next step in the data collection approach was to sort the
projects and data sources as to their applicability to the
candidate prediction and estimation measurements identified in
the preceding section. This sort was necessary for two reasons.
The first is that the measurements themselves represent different
levels of data spanning system level characterizations down to
module level measures, different time periods in a system life
cycle, and require different levels of problem reporting associa-
tion. Thus the measurements require different levels of detail
and this step provided for the process of aligning projects and
data sources with metrics. A second reason this step was
necessary was that all the projects and data sources were not
compatible in terms of data availability. Some only provided
data at a system level. Some only provided detailed data for
certain measurements and not all. This non-homogeneity is a fact
of life, all data collection efforts are faced with it. Our
approach to dealing with this fact was to gather enough data from
enough sources to be able to fully cover all of the measurements. 0
There is further discussion of this point in paragraph 4.2.

Data collection procedures were established and the data collec-
tion activities proceeded. Periodic data collection team
meetings were held to not only check progress, but to discuss
problems being encountered so that corrective actions could be 0
taken. As a result of these meetings a number of lessons-learned
have been recorded and are discussed in paragraph 4.4. As part .
of the data collection activities, any tools that would aid in
the data collection were identified and used. The tools used are
described in paragraph 4.3.

Figure 4-2 is a more detailed illustration of the data collection
activities. Two RADC Technical Reports (RADC TR 85-37 and RADC
TR 84-53) were key to the data collection activities. RADC TR'
85-37 provided a set of worksheets associated with many of the
Software Characteristics Metric (Anomaly Management, Traceabil-
ity, Quality Review Results, Size, Modularity, Complexity, and
Standards Review Results). RADC TR 84-53 provided a process for S
evaluating the Testing Methodology. The data collection activi-
ties essentially paralleled an actual application of the Relia-
bility Prediction and Estimation Methodology (see Volume II). A
set of data collection tasks was oriented toward collecting the
data associated with the prediction metrics. This set was
generally applied to the documentation and source code. Another
set was oriented toward collecting the data associated with the
estimation metrics. This set was generally applied to the test
(in some cases operational) results. As part of this second set,
failure data was collected which later was used to demonstrate

'. ..F,-...



4c 0

w 01W11A (IV9-3nVWNOJVV.S O

(A (9
U6 w (A

(04 (gO4(A Z0

W- wo
-' w x u ca .-1~ -1c oW.C 4-(

U. 0 wicQ a - C w W

siuainv~ 3ALON0I i I .WOU-~~

- suwnaaod tNoi±oalioo vivo 3SlA3W ONV 4013A3O

%' 5

z , or
41~U '4 4c*~

0 Z Lm ;32 i >

U4 w MO .

IL~ u al 00 4
> u-.

-C~q. 556X 16c1

.C*5 a 2op

16 w .9-1

'14.

%% '



and validate the use of the measurements as predictors and
estimators of software reliability.

In both cases, an initial set of data collection procedures were
produced to aid in the data collection activities and based on
the experience revised. The data collection procedures are
included as Appendix B to Volume II. %

The primary end result of the data collection activities, besides
the data collection procedures, was a data base that could be
used to demonstrate and validate the measurements identified in
Section 3 of this report.

4.2 DATA SOURCES .'

The sources of data for this project fall into three categories: .
existing data bases such as the DACS and SEL data bases; results
and data reported in the literature; and data collected from
projects during this contract effort.

In the following paragraphs, a brief description of each source .
of data used during this effort is described and a reference, if
appropriate, is sited. The type of data available from each of
these projects is also described. In situations where the
project sited was used as a source for detailed data, the various .,.
documents and data available is identified. A summarization of .,.-/

these data sources is in Table 4-1. ".-:..

Radar Control System (1)

This project's error history was documented in [WILL77J and 9
compared with other projects in [FISH79]. It is a real-time " -
control system for a land-based radar complex. It was written in
JOVIAL and assembly language. The data available was primarily
used to distinguish fault densities by application type. The %.- "
failure data represented integration and operational test
results. 0

4..

Avionics Control System (2)

This project's error history was documented in [FRIE77] and
compared with other systems in (FISH79]. It is an avionics
control system that was developed in JOVIAL and assembly lan-
guage. The data available was primarily used to distinguish
fault densities by application type. The failure data repre-
sented module verification, intermodule compatibility.

Satellite Command and Control System (3)

This project's error history was documented in [THAY76] and 0
compared with other systems in [FISH79]. It is a large command .. ,..,
and control system written in JOVIAL and assembly language. The
data available was primarily used to distinguish fault densities
by application type. The failure data represented development

4-5

% %'



%0

w o

GVOI"lI I_ _ __ _ _ __ _ _ _

%UMAZU SONW414VIS. ~ -. ~ 4-.

-,---v------

_ _ _l. IZ L ' _ _ _ _ _ _ _ _ _ _

v.A a 'i.. 'a-

.LO3 vll~a.. I.. 1- 7 .

L%3&IMdou 3A1 a

__ _ _ _ _ L '.L1I'.- -

LVV vurnvA 1AAA . ~ _ _ _ _ _

- - I -V~

_______!i __ _ _ __ a

a47

~~Oil

___________ ~ ______________ _________________%

a:_ -0 A la_ -/ lo ol e a;1

%,!N.

N~~- L 
a.S28 001. If



* ..

testing, validation testing, acceptance testing, integration
testing and operational testing results.

ABM Command and Control System (4)

This project's error history was documented in [BAKE77] and
[MOTL76]. It was compared with other systems in (FISH79]. It is
a ground-based command and control system for an anti-ballistic
missile system. It was written in the CENTRAN programming
language and the failure data collected represented unit testing.
functional testing and system integration testing results. The
data available was used primarily to distinguish fault densities
among applications.

CI System (5)

This project is a classified Command, Control, Communications and
Intelligence system. Due to the classification, the system is
not identified nor is documentation available. The failure SWAP
history, collected during an operational window of four months
was provided in an unclassified form for use in this effort. The /
data available consists of failure rate data.

Interactive System (6)

This project is an interactive system developed by a Government
fiscal agency for use internally. The data represents opera- .
tional failures during a six month period during 1981. The data
available was used primarily to distinguish failure rates by
application type.

Scientific System (7)

This project is the Launch Support Data Base (LSDB) program at :%
Vandenberg AFB. The failure data was derived and reported in M%
[HECH77]. The data represents failure rate data collected during
development and integration testing prior to acceptance. It was ,
used primarily to distinguish failure rates by application type.

Flight Control System (8)

This project is the digital flight control system of the Advanced
Fighter Technology Integration (AFTI) F-16 program. The failure S
rate observed during flight testing over a 13 month period was
reported in (MACK83a,b].

Command and Control operating System (9)

This project is a classified ground-based command and control
system. The software problem reports reported over a 25 month
period were collected. The average amount of testing done per
month was 200 hours.

4-- . '%

--. --.. "

Z.I



Training System (10)

This project is a large complex training system built to support
the U.S. Army. The system is comprised of a real-time message
handling subsystem, interactive graphics workstations, and
post-operations play back. The system provides real-time display
of instrumented exercises to observers. This project was used as V-V
a source of most of the detailed data required. A complete set
of development documentation as well as source code, test results
and operational performance data was available or collected for 0'.
analysis.

Mission Planning System (11) ,

The mission planning system for the Air Launch Cruise Missile was
a source of Independent Verification and Validation problem -

reports. Development problem report statistics were available "-
for an initial version of the system. This system contains
planning software and report generation software. 0

Flight Control System (12) "

This data set contains data from four flight control and related
rogram applications. The data is reported in [PRES81J and
[ROCK81] and analyzed in [HECH83]. The data reported is fault
density and was used primarily for establishing the application
type. ,,v%"

Interactive System (13)

This data set represents four interactive s--tems, one a commer-
cial system and three military systems. rhese data sets are - .
reported in [MUSA79] (as systems 5, 17, 27, and 40). Each system
is a large interactive system and the fault density data provided
is from system test.

Electronic Switching System (14) """"

The source for this data set is (DAVI81]. It is an electronic
switching system developed by Bell Laboratories. The data
presented is from installation and operations, for the system and
represents a very high reliability. .

Scientific System (15) 0

This data set is from the Viking project at the Jet Propulsion
Laboratory (MAXW78]. Failure rate data is provided from a four
month period during operations. ",

Ground-Based Command & Control (16) '

This data set is from a classified command and control system.
The data available are fault density and source code characteris-
tics. The failure data is from development and integration '- '

, . 5 ,,,",

4-8
V.% Z %

%-...,.,:,'., .- ,

s;.': ? .. . : . :. - ; s> / '-'-. .' ".--,-., -,.._.. .-..-.-"..'...-'..:..'-..-:...-,:.,:..:'

• r ..-.. F f. , '- " .,,': _..1
-

% - -. '.,- . -. _ _,_55- . '- ', . _ . ' S. . ..- ..- ,'. - .- s ,." . ., .' . o-'. -- . -, ". -- ".." - . . _.% '



0
testing.

Process Monitoring System (17)." "'

This data set is from an Emergency Response Information System 'P " .

developed to monitor a Nuclear Power Plant. Data available
includes fault density, development documentation, source code,
and code characteristics. The failure data available represents
problems recorded during acceptance testing and operational use.

Support System (18) .
This data set is a data reduction system developed for in-house
use on the F-lID project (WAGO731]. Failure rate data is avail-
able. The data was used primarily to determine Application Type f 

-

baselines.

Command and Control Systems (19) - "

This data set is comprised of four real-time display management
and command execution systems, all command and control applica-
tions. The data, consisting of fault density and failure rate
data, is recorded in [MUSA79] as systems 1, 2, 3 and 4. This Noe
data was used primarily to establish Application Type baselines.

Interactive Operating System (20)
4",

This data set represents failure rates for two computer installa- -
tions at Stanford University [IYER81]. The data spans three
years of operational use. This data was used primarily to .

establish Application Type baselines.

Image Processing System (21) . ,

This data set was reported in [GRAS82] for an Image Processing . .,.
System development. During the development, a committment to
collect software quality metrics was made. The results of this
application are reported in the above reference. Failure data ,P.
was collected during two incremental builds of a system and
during acceptance testing.

Flidht Control (22)

This data set is for the ALCM Operational Flight System reported
in [HECHB3]. Fault density data is available and was used
primarily to establish an Application Type baseline. ,-

Flight Control (23)

This data is also in [HECH83] and represents several projects or
generations of the same system. Fault Density was available. -. S

'J.

%~~~ .%., '
*~~~ % %/ %, %,g ,J~~ ~ .4~ ~ . V y : ~ %'/



Sulnnort Progratms (24) h"'.
" .1',, .".

This data represents support software and a simulator supporting
flight control software development and testing. It is summar- ,*55 'p

ized in (HECH83]. This study used the summarization of the fault
density experience data to help establish an Application Type
baseline.

Satellite caLz

This data is a subset of data available from the SEL data base.
It is reported in [HECH83], (BASI77], [CARD82] and [TURN81]. The
fault densities recorded for 11 different projects or software
systems were used to help establish an Application Type baseline.
All of the systems were related to the Satellite C2 /Telemetry
processing systems developed and operated at NASA/Goddard.

This data was reported in (HIER86J. It is from four projects
involving small business systems. An analysis of the inpact and
benefit software quality metrics can have was reported in the
reference. The development environment and test effort was
available as well as fault density for these four projects
ranging in size between 10,000 and 30,000 lines of code.

This data was reported in (TROY86] as a study of software failure
reporting within a large data processing center. The data
processing center is for the purpose of acquiring, processing and
distributing telemetry data. Failure rate information is
provided.

Interactive System (28)

This project involved a dual CPU processing system able to handle S
500 on-line users [MIYA-]. Software as well as hardware
reliability goals were set for project and progress toward the
achievement of these goals was monitored. An evaluation of
reliability models (GOEL83] was made. Failure rate data was
provided.

Signal Processing (29) .

Failure rate and failure density data is provided in [MEND79] for -
two signal processing applications. Additionally an evaluation
of error types and validity of reliability models are presented.

Fault density data is provided based on an evaluation of an Army
Logistics Support MIS system (LEHM82]. Over 1.6 million lines of
code are represented in the study.

4-10 . .

% %

- - -.. "" - .. ..... .. - -. - - ..l.e I. -....



• ~. F,

%%
* *% -* **

Simulation (31) *-

Fault density and error categorization data is presented in
[WEIS78] for a computer architecture simulation facility.

C2 System (32) ,

This data source is project 2 reported in [THAY76]. Fault
Density and software and error characteristics are provided for
this command and control system written in JOVIAL.

Simulation (33)

This data source is project 5 reported in [THAY76]. It is a
simulator developed in FORTRAN and Assembly language. Fault
Density and software and error characteristics are provided.

Thirty-three (33) data sources are identified representing 59
different projects. Most of these data sets were used during
this project to establish some baseline reliability numbers for
different types of applications. Several were used to evaluate
the candidate predictive and estimation measures identified in V .
the preceeding section. Data Sources 10 and 17 specifically were
projects from which detailed data were collected for the purpose
of demonstrating and validating. The DACS and SEL data bases
were utilized to the extent possible. Data Sources 1, 2, 3, 4,
13, 19, 25 are in either the DACS or SEL. This data was
typically analyzed and reported elsewhere (references are noted).

4.3 EXAMPLE DATA •
0

The data collected for this study basically is that set of data
required to calculate the metrics described in Section 3. A .

complete set was delivered to RADC as part of this contract. To .

illustrate the data collected, examples are provided in this
section. The data is presented by metric here to facilitate ,'..
reference and correlation to the validation results presented in 0
the next section. --.

4.3.1 Application

Table 4-1 provided a brief description of each data source with

respect to the type of system (application type) represented by
the data source. Table 4-2 presents a summary of the fault
density or failure rate data collected for each of these data
sources.

The fault density depicted is the number of failures (software
problems reported) divided by the number of executable source
lines of code which make up the software system. S

In most cases, collecting this data was straight forward. Data
bases examined or articles referenced typically identified the

4-11

a'~ ~~~~~~~~ ~~~~~~~ ** *P%*. .I~J a '. d '~* V ~ ''* *.4. % % ,, %
%*

16 %~ % % * . . .a ~ * ,' ~ *~~~~.:
'r e.,, e a



%F7 _ w w - v -~ 'r , -- .~ -V -1 _,W 1 r

P J

% d

_b-

(a cm 40 P

ulVS wu huI

4-12-

A~ %1

0 e f. e
00,

% .- Cu. r



- - - - . " - - S-

. A 4 #% d1

% %

0 CR W.- .

%

. ., . ," ,."1

t,- -

.cc a20 M4

0 000

> ,~'.9-;- -?

" - .- . .

44I

,.,,,,. oo > > > ;:'"
0L I- CL C, IL IL IL -a..%,

4- 13 €,

.; k



number of failures recorded against a system and also the size of ,.'

the system. In some cases, the failures (problem reports) and
size data were provided by module or subsystem and had to be
totalled.

The failure rates depicted are the average failure rate experi-
enced during testing of the system, i.e., the number of failures
observed divided by the total time spent testing, the failure
rate observed at the end of the test phase, and the failure rate ,:

observed during operation of the system. The failure rate at end
of test is calculated by taking the average failure rate observed
during the last three test periods. Computer operational time is
used. This table has been organized by Application Type. An
analysis of this data is presented in Section 5. CPU execution
time could be used but since it was rarely available, computer
operation time is used as a close approximation of CPU execution
time. Where available, a conversion factor is used to translate
CPU execution time to computer operational time.

Software failure rate data is typically more difficult to find
reported or to have collected. The missing element is usually
the time. At a minimum problem reports should be dated or
operator's logs annotated when problems are encountered. Figure
4-3 is an example where the problem report history (data source •
9) is time stamped only by month. In this case (data source 9 is
a classified real time system), this is the only data available
from this project except an estimate that on the average 200
hours of computer time was spent testing the software each month.
This data is enough to calculate the failure rate shown in Table
4-2. 0

Although Table 4-2 is at present only partially populated, the .0.e

trends within the columns are about as expected. This is
particularly true for the end of test and operational failure %
rates, the key measures for this project. We find in all cases i

where data exists for two or more of these columns that the
failure rate decreases. A few of the entries in Table 4-2 are
described in a little more detail in the following paragraphs for
illustration of the data calculations.

The Data Sources 8 and 12 are examples of airborne applications.
Failure data for testing was reported on the Advanced Fighter
Technology Integration (AFTI) F-16 Program [MACK83] (data source
8). The failure rate represents 15 incidents during the flight r
test program which involved approximately 180 flight hours. No ..-.

record of failures observed during the ground operation or ground
operating time is available. Most of the failures related to
synchronization provisions between the triple redundant computers
installed in the aircraft. Software changes were used to correct •
the problems. It is not clear whether the cause of the failures
was due to software deficiencies or to system deficiencies that ...-.

were overcome by program changes. Thus, the failure rate may be
overestimated...,

4-14

Y1'
, 0 ..-



0

The fault density for data source 12 is derived from two flight
control programs, consisting of approximately 40,000 lines of AED wo
code each [HECH83]. The individual fault densities are 0.0018 -
and 0.0086 respectively.

Data Sources 5, 9, and 14 are examples of strategic applications.
The fault density for a real-time C31 system (data source 5) is
shown in the table and is the overall fault density (.0085) of
four subsystems, with individual measures of 0.004, 0.01, 0.01,
and 0.02. The operational software failure rate is the six-month _

average for the command and control computer associated with the
large surveillance radar system.

One real-time operating system application is represented as data
source 9 in Table 4-2. It was tested over a 25 month period for
an average of 200 hours per month (Figure 4-3), and a total of
270 failures were logged during that interval, equating to the
.054 failure rate shown. During the last two months of test (400 •
hours), eight failures were observed (.02 failure rate). The
real-time operating system is part of a classified military
software project.

-The data for the electronic switching system software (data
source 14) pertains to No. 4 ESS as reported in [DAVI81]. An
average of 1.6 service-affecting incidents were reported per
installation-month during the first quarter of 1980, and 25% of
these were attributed to software (an additional 13% were
unresolved). The entry in Table 4-2 assumes that there were 0.5
software failures during a 720 hour interval (the system operates
24 hours per day), which includes an allowance for the unresolved
incidents. The program involves over 2 million object words, but
little is known about other characteristics. The electronic
switching systems designed by Bell Laboratories are recognized as
representing unusually high hardware and software reliability,
and hence it is not surprising that this system has the lowest
operational failure rate.

The entries associated with data source 19 under the Tactical
Application category are four Real-time C2 Systems, each 31
involving approximately 20,000 ROL instructions that involved
display management and command execution (Projects 1-4 in
[MUSA79]). In computing the fault density for these systems
which were described in [MUSA79] in lines of object code, it has
been assumed that two object instructions are equivalent to one
HOL statement. This expansion ratio was used due to the language
and computer used for these systems. These four projects were
carried out within a single organization and hence it is not too
surprising to find a fairly narrow spread of the reliability
indicators. The failure rate at the end of test shows a very
small range. This characteristic can be controlled in effect by S
the developing organization (by holding up the release until an
acceptably low failure rate is reached).

Data Sets 17 and 21 are the two examples of the Process C:-z'r

k 4-15

N 1_. L



AD-819 01 M ETHOOLOGY FOR SOFTAE RELIRSILITY PREDICTION VOLUME 2/3
ICU) SCIENCE RPLCRTIONS INTERNRTIONRL CORP SRI DIEGO

UNMSSIIEDCR J CCM.L ET IN.. NOV 67 RRDC-TR-97-171-YOL-1

SiE F3U62-3-C-11U F/G 12/5 M

A6,hhhmh



f 0LI

Ql

s"']II 8
1.fjj25lfL 1K

S

%. ., .' .
*' . . ''

N_ !P



If

CC

LL..

Z. ~~A b.F f

I -

6114

a WE

o

0 el



Application Category. Data Set 17 is an emergency response
information system for a power plant. The fault density
represents the number of problems found in the 19,000 lines of
code developed for that system. Data Set 21 is an image
processing system of over 120,000 lines of code.

Data Sources 6, 7, 13, 15, and 20 are examples of the Production
Application category. The in-house interactive program in data
source 6 supports a major fiscal agency of the U.S. Government.
The data were taken during the last half of 1981 when software
outages totaled 3,219 minutes. From related reports, the average
software outage lasted 10 minutes, and thus it was assumed that
322 failures occurred. The .total operating time during this
period was approximately 3,000 hours.

The fault density and test failure rates for a scientific batch
program from the Launch Support Data Base (LSDB) program at
Vandenberg APB [RECH77] is in data source 7. The failure rates
were originally provided in execution-time seconds which have an
expansion factor of approximately 10 to wall-clock seconds. When
this factor is applied and the seconds converted to hours, the
failure rates amount to 68 per hour (average) and nine (9) per
hour (end of test). This is very much higher than any other data
recorded in these columns. Possible reasons for this discrepancy
are:

e The early date of these programs (coding took place in
1974 and 1975).

* The test period included unit test which is usually run
outside of configuration management and hence excluded
from most reported data. This affects primarily the
average test failure rate.

* The testing reported here was followed by an acceptance
test, the results of which are not included in the data.
The end of test failure rate for the acceptance test can
be expected to be lower.

The failure rates for data source 13 are derived from System 5,
System 17, System 27, and System 40 in [MUSA79]. All of these
programs are display oriented and implement math-intensive
functions. The fault densities range from 0.0013 to 0.0025. The
failure rates range from 0.0044 to 0.13. One of three systems S
involves over 2 million object instructions, but no other
software characteristics are described.

Data Set 15 contains the operational failure rate of a scientific
system based on a four month observation of the Viking telemetry
data reduction program at the Jet Propulsion Laboratory (MAXW78].

The data for an interactive operating systems (data source 20)
were derived from two large computer installations at Standford

4-17 .

%N N



University, SLAC and CIT during 1978 - 1980 [IYER81]. There is
very little year-to-year variability, and failure rates for the
two installations are also quite close (0.024 for SLAC and 0.017
for CIT in 1980). Only unique (new) problems were counted as
failures.

One of the Developmental Category data sets (data source 18) is
derived from the F-lID data reduction program reported in
[WAGO73J. These failure rates were also collected in CPU-seconds
and have much higher values in wall-clock hours. This is in even
older program than LSDB, and this may help to account for the
high failure rate. The program was developed in-house for a data
reduction task that was initially assumed to be of very limited
scope and then expanded. As is typical under those circum-
stances, there are very few formal requirements, and the extent
of test is largely left up to developer. Thus, a higher failure
rate must be expected for support programs under these condi-
tions.

In Section 5 the consolidation of the fault densities and failure
rates by application category is presented.

Eventually we hope that enough data may be collected to bypass
the use of fault density as a reliability predictor altogether.
In that case baseline failure rates achieved (typical) on actual
applications would be used. The subsequent prediction metrics
would modify this baseline failure rate up or down much like they
are intended to do for fault density. The other benefits of
collecting the failure rate data shown in the Table 4-2 are:

* The failure rates can be used to track observed results 0
during a development effort. Reliability growth can be
tracked according to typical experiences. Lack of
progress can be reported to management for their action.

* The empirical relationship between fault density and

failure rate can be derived (see Section 5).

4.3.2 Development Environment

This metric is concerned with the effects of the development
process which are manifest in the reliability of the software
product. Table 4-3 contains a very brief description of the
development environments for the projects being used in this
study as data sources. Not all development environments are
described. For those that are described, they were characterized
as an embedded (E), semi-detached (S) or organic (0) environment
according to the metric described in Section 3.

4.3.3 Softvare Maoteriatios

The software characteristics measurements identified in Section 3
posed a much more significant data collection challenge. To
fully satisfy the data collection requirements of many of these

4-18?'.>

% %r_



a

measurements, detailed data had to be collected. Examples of
data collected for each measurement are provided in the following
paragraphs.

The two data sources used primarily for the detailed data
collection were the Training System (data source 10) and the
Emergency Response Information System (data source 17). These
two systems were recently delivered and are being maintained.
Key personnel involved in the developments were available for
discussions and information if necessary. Documentation and
source code were available. The following paragraphs indicate
the available sources of data for each of these two systems and a
brief description of the system.

DATA SOURCE 10

This system is a large complex tactical training system. The &

system involved instrumented military exercises where the units
participating in the exercise utilized instrumented laser weapons
and key players and weapon systems carry transponders so that
their location and movement can be tracked via a communications
network by computer. Additionally video and communication data
is captured. All this data is sent in real time to a computer
complex where observers are sitting at workstations observing the
exercise. These workstations have graphics displays where the
exercise is shown on a terrain map background generated from the
Defence Mapping Agency digital terrain data base. The software
system that accepts this data, displays it at observer
workstations, allows the observers to control displays and stores
the data from the complete exercise to facilitate playback for
the purposes of debriefing the participants is the data source.
The major subsystems of this system are the system software, the
display subsystem and the computational component subsystem. The
system is a distributed system in that portions of the software
run on four VAX 11/780's and 38 workstations with LSI 11/23
processors.
The primary documentation utilized to collect data was:

* Requirements Design Specification - Vol I.

* Requirements Design Specification - Vol II. Part A
e Requirements Design Specification - Vol II, Part A

Requirements Design Specification - Vol II, Part B

These documents represented a statement of the requirements,
preliminary design and detailed design of the system. Addition-
ally, test documentation, user documentation, and test result
documentation were available.

Software Discrepancy Reports were reported throughout the formal
testing and operation of the system. Several major enhancements
have been made over the last three years. With each enhancement,
a formal test and evaluation process was performed. Figure 4-4

4-19

%4% ~~~ IV%".0,N

%Wp



TABLE 4.3. DEVELOPMEN4T ENVIRONMENT. SIZE, AND LANGUAGE
CHARACTERISTICS OF THE DATA SOURCES

Data Deivelopment Environmentre
Source A001,cation Description Size Language 4l g

1 Radar C2  Build Process 136.707 JOVIAL 64%)' E
Host - Target Cross Compiler Assembly (36%)
Debuggiong Package
Simulator
MIL-STO Development
Librarian. Source Reformetter
Data Set/Used Crosn Reference
Unit, Integration, Acceptance Testing

2 Avionics Na Standard 120,000 Fortran 133%) E
3 Debug Tools Assembly (67%)
Most - Target Cross Compiler
Simulator
Optimization Tool
Module Verification. Integration.

I System Validation Testing

3 Ground good C2  M 115,346 JOVIAL E

4 C2  Phased Approach sa/Dos not Followed 181.2409 Cantran S
Top Down, Structured Programming
Unit, Integration. Acceptance Testing

C2  No Build Approach 115,346 JOVIAL S
Formal Tooting Through Development
Validation, Acceptance, Intertion,

I and Operational Testing

5 C21 Embedded Duvelopment Env. 3.827 HOL E

6 MIS (interactive) M NI NMR 0

7 Scientific (Batch)l MR 0.000 Fortran NA

S Flight Control AdvancedMW Fault Tolerant MR MR E0
Architecture
Top Down Desig
Bottom Up Testing
MIL-STO 1670 Like Development

9 Retal-Time OS M N A MR NR

10 Training System Not MIL-STO 45. 702 Fortran S
Structured Approach
Interactive Guilds
Programmer Workbench .. ~

11 Mission Planning M 4,703 S.Fortran NP

12 Flight Control Semni-Doeched Development "'400 AID S
-Environment 43.500 AED

LEGiNO %III- Not Asco-asi a - E-bodded 5 - S*-' 04TIChed 0 - O gb' c

4-20

%'
*~~ %i %~ %



TABLE 4-3. DEVELOPMENT ENVIRONMENT, SIZE, AND LANGUAGE
CHARACTERISTICS OF THE DATA SOURCES (CONT.)

foars Developmnent Environmenr e
Source .Aolication Oescrioe~on Sit Lan guage mov e

13 Interactive NA 2.445,000* NMA NR
61.900 NA

12061100* NMR
190.0000 NA

I *Object

14 Electronic NM NM NA NM
Switching

15Scientific NM NR NMI NA

16 CZ MIL-STD Document 183,330 JOVIAL S
Batch Card Oriented
Campedl

17 FRIS Commercial Development 19,690 Fortran E
Modern Tools '.

Extenose Acceptance Test

18 Support NM NM NM NA

19 Ca NR 21,700* NM NR

23.400 0
33,S009 *Object

20 Interactive NR NM NM NR
OS & Batch

21 Image Phased Approach 120,400 Fortran S
processing Too Down Design

POL
Standards Used

22 Flight Control NM 243,883 Fortran (92%) NR
Mission Assembly (8%)

Preparation

Z3 Flight Control NR 46,0W Assembly (57%) NR
21,022 JOVIAL (39%)
21,726 Fortran 14%)

24 Support NM 20,618 Assembly (94%) NM
Prgrms38,213 Fortran 16%1

25 Satellite C2 NM 811.630 Fortran NA

21 Small Business First Project involved 10.000 C 0 .%f
MIS Structured Development 11,000

Methodology - Other Three were 30,000
Informal 30.000

4-21

%.ii

1211 1

0 %% Z R

~ ~~ ~ p j;8



TABLE 43. DEVELOPMENT ENVIRONMENT. SIZE, AND LANGUAGE
CHARACTERISTICS OF THE DATA SOURCES (CONT.)

Doa Development Environment Dev
Sou.rce Ao/carion Descrlion size Languavge Move .J6

27 Ground Based NR NRNR NR

26 Comm. System NR N Assembly 0

29 Signal NR 29.000 NR S
Processing 36.762 N

30 Logistics MIS NR 1,697,177 Cobol 0

31 Simulation incremental Development 10,038 Fortran 0
Modern Design
Coding Standards
Programming Team"

32 C2  Formal Test Approach 96,931 JOVIAL S -

Formal Development Environment

33 Simulator Formal MIL-STO Development 26,564 Fortran (39%) E
Incrementtal Development Assembly (61%)

oAL

.P

04. .-.-

4 %2 & a'



~ 30

AO N

dig

onv
,nr W)
Nnr

*AWN

idv

Nvt

1130

onv
Inr~ -

AWVJ

idV

Aom

dig
on, -.

WN

NVP

-330

AON

0'73/d W3A V7d ON I=0

AO#E

onv

or %

4-23

%1 %41

% % % %

% ~ ~ ~ ~ ~ -P % e%9-



illustrates the discrepancy report frequency over the past five
years. The annotated spikes in the frequency correspond to the A
delivery of new functional capabilities. All discrepancy reports
were maintained in a data base. Figure 4-5 illustrates a sample
listing from that data base. Test time utilization was recorded
during typical periods and this data was used to calculate
failure rates experienced.

Source Code was available for collection of code level measure-

ments.

DATA SOURCE 17

This system is an emergency response information system developed
to monitor a nuclear power plant. The system monitors various
meteorological and radiological information sources, calculates
and displays near real-time predictions of atmospheric effluent
transport, diffusion and radiological dose estimates, and
provided various reports and displays.

The primary document used for data collection was a detailed
Technical Specification. This document specified the require-
ments of the system in significant detail. This project was for
a commercial customer and the system was specified to a much
greater detail than typical DoD systems.

Discrepancy reports were recorded during formal testing warranty
period during which the customer used the system in an opera-
tional environment.

Source code was available to collect measurement data also.

4.3.3.1 Anomaly Management (SA), Tracability (ST), and Quality
Review Results (SQ) Data Collection

These three measurements required the application of the work-
sheets contained in RADC TR 85-37. The specific worksheets for
the set of three measurements have been incorporated in the
Volume II handbook (at Appendioies C and D of Volume II).

4.3.3.2 Language (SL) and Size (SS) Data Collection

These two measurements were more readily available from most data
sources. Indications of the languages and sizes for the data 0
sources are in Table 4-3.

4.3.3.3 Extent of Reuse (SU) Data Collection

The M data base was used primarily as the data source for this
measurement. Nine Programs in that data base have the percentage
of reused code indicated. That data is summarized in [HECH83].

4-24

, .0

%. %. '

...



wj~w1U~1IJ-XAWMR A=AUWJRPM~~nPAP4PW OIII PIPI JV 0

0

0. hiIN - * N N N C4 10

ujN N N N. N

0 C a a Q

~U64f 6J 4" 6A N6 4 4 4

cc cc cc cc cc It cc orV V

0

in 4 4 400 4 4 4 4

It -0 0 0to0 0pn Nn N1 Nf N1 NW1,NN N

C NN 0 0 0 0 to 0 0 0 0

e4 N Nf NNt N N N fN

Z ). Z) 2 Z).. Z) Z) Z) 2) 2)- Z) >

W 64 -j W -

LA 1z
CL0

02 3 0, 0,0
0.U.

2 -

%.

h I 
-

In 0 4 !2 hi I
)N~ ~ ,. 2 In iA

0- h- flo 0 -A. w 0 -21). j
An cc - 44 a N4

p SN iU h hi h~lAW

2 1w

2o W; .2 !

01- 0L 0 a 010 11 0 20 - 0 S CL a A C

5 4 4 41 4 V. 40 0

4-25

V V VL

ze~

%~~ ~ ~ s %.



4.3.3.4 Modularity (M), Complexity (SX), and Standards Review
(SR) Data Collection

These measurements required access to the source code or a " -5
description of the software at a detailed level. A tool called
the Metric Informatin Tracking System (MITS) which is similar in
function to the Automated Measurement Tool (AMT) or Automated
Measurement Systems (AMS) developed for RADC was used. Figure
4-6 is an example of the output from KITS for elements used to
compute the Modularity, Complexity, and Standards Review metrics.
Additional source code inspection was required in some cases.
Figure 4-7 contains a composite of this data for data source 17.
This composite is provided at a CSC level. The number of units
contained in each CSC (which was called a process in the system),
the number of executable lines of code (for modularity), the
number of branches (for McCabe's Complexity), was well as other
metric elements for the Standards Review Measurement are shown.
The diagonal lines provide separation between the raw metric
score (upper left) and the calculated metric element (lower
right). Also, indicated is the number of discrepancy reports
generated against each CSC.

4.3.4 Test Measurements Data Collection 0

The three test measurements, Test Effort (TE), Test Methodology
(TM), and Test Coverage (TC) require different types of data.
The Test Effort measurement requires access to labor hour data
for the projects and a work breakdown structure accounting system
that delineates labor expended testing. The data utilized in
this study came from data sources 10 and 17 and represented data :7.
collected from project management and test and evaluation
management personnel via interviews.

The Test Methodology measurement requires application of RADC TR
84-53. The handbook (Volume II) of that report contained a
methodology which when applied recommends testing techniques and
tools for particular applications or test objectives. The
methodology was applied to data sources 10 and 17. Table 4-4
presents the results of the application of the methodology (path .1
1).

Test Coverage data was not collected on either of the two
detailed data source projects.

4.3.5 Operational Environment Estimation Measurements Data
Collection

The two metrics which are used to describe the influence of the
operational environment on the reliability estimation, Workload
(EW) and Input variability (EV), were also not collected on
either of the two detailed data source projects. Data was
availablle from [IYER83].

4-26

%'. %. %. .-



0

Date: 1-JUL-85 L_

METRIC INFORMATION TRACKING SYSTEM

STATISTICS REPORT ,.

module: SIC Of Otabase: RELSOG Poge 1 of I

69. NUNSER OF PROCESSING LINES 44

49. NUMBER OF EXECUTABLE STATEMENTS
0. INITIALIZATION STATEMENTS

6. CONTINUATION LINES
73. COMMENT LINES S

33. DATA MANIPULATION STATEMENTS (a)
0. MODULE MODIPICATION (ASSIGN) STATEMENTS
0. VARIABLE REOEFINITION (EQUIVALENCE) STATEMENTS

0. INPUT STATEMENTS
0. OUTPUT STATEMENTS
2. CALL STATEMENTS
1. EXIT (RETURNS STOP) STATEMENTS

it

17. UNIQUE OPERATORS
177. OPERATOR USAGE COUNT

3. WEST-DEPTH MAXIMUM

45. UNIQU COPNDSOP00WIE

2. PRIMARY DECISION POINTS (NEST DEPTH 0)
4. SUB DECISION POINTS (NEST DEPTH > 0)

173. STATEMENT LAEL COUNT (LESS FORMATS)
6. CONDITIONED GOTOS (WITHIN A NEST)
Z. UNCONDITIONE OTOs

3. NES-DEPTHMAXIMU

FIURE 4-6 SAMPIE METRICS INFORMATION TRACKING

SY STE'M O UTPUT ,.. .,

4-27

... O D OT .r eS r

FIGUE 46 SAPLEMETRCS NFOMATIN TlACKNG 2.4



;! .- .-

46-

wr- ,

fnS

0 twr0N

*~~r 006 - -a
9d

- N - SOr

.7.

IL
crS

61

4-2

9

% %,
______~q ____ ____ t

Jl



TABLE 4-4 APPLICATION OF RADC TR 84-53

DATA SOURCE 10 DATA SOURCE 17

v _o
PATH 1
STEP 1 TEST CONFIDENCE LEVEL TEST CONFIDENCE LEVEL

COST 1 0
CRITICALITY 2 3
SCHEDULE 2 1
COMPLEXITY 2 2
DEV. FORMALITY I
S/W CAT. 1 3
ERROR DET. 1 2
TEST COMP. 1 2

11+8=1.375 (1) 14+8=1.75 (2)

STEP 2
SOFTWARE CATEGORY SELECTION SAME
SENSOR + SIGNAL PROCESSING (10) DATA
PRESENTATION (14) ___Lk

STEP 3 CANDIDATE TECHNIQUE SELECTION

* CODE REVIEWS * CODE REVIEWS
* ERROR DETECTION * ERROR DETECTION %

STRUCTURE ANALYSIS STRUCTURE ANALYSIS
* PROGRAM QUALITY ANALYSIS * PROGRAM QUALITY ANALYSIS

PATH ANALYSIS PATH ANALYSIS
* DOMAIN TESTING * DOMAIN TESTING .

DYNAMIC PATH ANALYSIS DYNAMIC PATH ANALYSIS
* PERFORMANCE MEASUREMENT * PERFORMANCE MEASUREMENT
* REAL TIME TESTING * REAL TIME TESTING ,'ul,1

PARTICIPATION ANALYSIS
DATA FLOW GUIDED TESTING
ASSERTION CHECKING
RANDOM TESTING
MUTATION TESTING

SELECT TOOLS
TEST RESULT ANALYZER TEST RESULT ANALYZER

* TEST DOC. WRITER * TEST DOC. WRITER
* TEST MANAGEMENT SYSTEM * TEST MANAGEMENT SYSTEM 0
* TEST DRIVER * TEST DRIVER

AUTOMATED VERIFICATION SYSTEM ALTOMATED VERIFICATION SYS
* PERFORMANCE MONITOR * PERFORMANCE MONITOR

ASSERTION CHECKER -
DATA FLOW ANALYZER
RANDOM TEST GENERATOR
MUTATION ANALYSIS SYSTEM 0

RATIO OF TECHNIQLES/TOOLS USED TO
RECOMMENDED: 10 1'.

TECHNIQUES OR TOOLS USED ON PROJECT •

4-29

0 e 4.



4.3.6 Test and Operational Test Time Data Collection

Data was collected to facilitate calculation of failure rate.
Table 4-5 provides data from data source 10 identifying CPU hours
spent testing and corresponding discrepancy reports recorded.
Data Source 17 did not have this type of data recorded, however
the system has been running for over a year at the customer site
24 hours a day and only 41 software discrepancy reports have been
reported over that time period.

4.4 DATA COLLECTION LESSONS LIiNK

As in all data collection activities, lessons were learned that
would have enhanced the efficiency with which the data collection
was performed and the quality of the data collected. Some of the
specific lessons learned during this effort were:

In a research effort such as this, there is a tendency to
want to continue to refine the metrics and identify new
ones - even after data collection activities have pro-
ceeded. At some point in any project, even a research
effort, a data definition document should be developed
which specifically identifies the data elements to be
collected. This document should be driven by the data
collection objectives or goals and each data element
identified should be related to a specific objective. In
a research effort, other elements, not specifically
related to an objective, can be identified for collection
in support of future analyses that might change a metric
or create a new one.

A companion document to the data definition document
should also be prepared. This document should be a data 1collection guide. This guide should at a minimum:

- Identify the sources for data collection.

- Provide all forms and reports for data collectors.

- Identify any data base management systems to be used
for storage of the data collected.

- Provide a case study or example to illustrate data .\

collection approach.

In addition, the guide might provide any implementation
specifics for this project, for example:

- Programming language-specific examples, and

- Documentation-specific examples.

4-30

.r 4. . ..
%1 Ir %



TABLE 4-S MONTHLY TOTALS FOR DISCREPANCY REPORTS
AND TEST CONTROL SHEETS

MOINT! YEAR TOTAL # PRs EASDTS
____ ___ ____ ___ TIME (HOURS)

JUNE 1981 0 01.00
JUILY 7 08.32
AUGUST 9 02.25
SEPTEMERt 3 13.12
OCTOBER 0 46.08
NOVEMBER 0 67.50
DECEMBER 7 04.67

OCTOBER 1982 55 NR
NOVEMBER 16 NR
DECEMBER 4 NR

JANUARY 1983 1 NR
APRIL 10 NR
JUNE 21 NR

SEPTEMBER 8 NRt
OCTOBER 5 NR
NOVEMBER 0 17.18 r

JANUARY 1984 41 39.23
FEBRUARY 20 N

MARCH 12 12.37
APRIL 18 61.07

MAY 12 24.42

JULY 14 34.90
JUYS NR

AUGUST 11 NR

SEPTEMBER 29 20.08

OCTOBER 11 15.33

NOVEIMER 13 28.87

332 __________ _

LEGEND: NR. NOT RLECORLDED

4-31 1..-ydo



J N .

Retrieval of data from existing data bases such as the
DACS or SEL data bases are usually more time consuming
than antioipated. The data available is usually not as
well organized, cross-referenoed, or defined as well as
expeoted. Therefore, this data should be depended upon
only as support data or complementary data, to support
analyses of more detailed data collected.

a All data collected should be stored in a centralized,
controlled data base. The data should be placed in
eleotronio format to facilitate later analyses and
retrieval. This format should be compatible with the
DACS.

It is recommended that future data collection activities include
these above specifio requirements. 0

0
1;-. V

S

4- 32 "

-. P %~!~

.n 

.

0.%. 

%

-/ .,'. '.-'.. .. , •.- .. '.. % '.-' '' ', ' '..' .. i' ,,,.'' -',= w -,*" " i." . ",=.--= -- -- €- . . - .-. •, . - ..-... .. ,,- .--.. .-i",,.>? ? , : .. ,:, -, .'- ,-.. ,-.,' "'-. -,. .- . .,.-, "..' '..' : - ->_ X-'.-.'..".., .'-.'-..''. " i. . ;', ,, t - .';.' "'. ",.' *... - .'.-,- . " -" , " " .,",."., . . w W ' , , ' ." W ' , R , R" "'_. " J . l . . . "
.1." . ',", v ' . ,,u .. _.,"",''.\' .,.,.._. .'. ,." ...... ,,i n .- .



5.0 DEMONSTRATION AND VALIDATION OF
SOFTWARE RELIABILITY MEASURES

5.1 APPROACK TO THE ANALYSIS OF THE CANDIDATE SOFTWARE
RELIABILITY PREDICTION AND ESTIMATION MEASURES

The overall approach taken to analyzing the data collected is
shown in Figure 5-1. Each measurement was individually analyzed
to determine its relationship to the reliability numbers
calculated for the various data sources. An attempt was made in
most cases to hold as many other variables constant while
analyzing the apparent relationship one measurement had.
The objectives of our analyses were to:

* Determine or establish the relationship each measurement
has with the reliability numbers.

* Demonstrate that relationship via the data sources
available during this project.

* Statistically validate the relationship if the data sample
is sufficient.-&

e Document additional data collection requirements, metrics
or analyses that should be done.'0

In investigating the relationships, as many past studies that
were appropriate were used. Simple straightforward relationships
were investigated first prior to more complicated relationships. ,\'% "w

Thus in some cases, recognizing that the use of the measurement
was to provide a sample or first cut reliability prediction
(e.g., Application Type which is identified via a table look up),
the simple average and variance of the fault density experienced
with each application category was calculated. In other cases,
linear regression analysis was used to statistically determine
the relationship of the metric to the reliability numbers. In a
few cases, non-linear regression analysis was used.

5.2 ANALYSIS OF THE DATA

The analyses performed are described in the following paragraphs.
The analyses are presented organized by measurement. Results and
findings for each metric are presented in these paragraphs.
Overall results are described in paragraph 5.3.

5.2.1 Application Type (A)

All of the data sources were used in analyzing the Application
Type. The goals of this analysis were to establish baselines and
provide an initial reliability prediction number. This initial

5-1



9p1e

6W W5

'A ccs

C6 w-
Iw

wIA 14O 66

x CL 66

> UA

> *>

zz
I-t, z 's

> > Z w > AJ

2-a
I--A>

*~~~~~ Zt' I ,~~5

-jW w
wi 0- u*ft



prediction number could be viewed as an industry average or
baseline for the particular application. Table 5-1 provides
averages for each sample by Application Type. This table is a
summarization of Table 4-2. Indicated in the table is the number
of systems for which data was collected for that Application
Type. The total number of systems in the data base was 59. Of
these 59, the number of source lines of code were reported for 49
amounting to over 5 million lines of code. The average fault
density indicated is a weighted average, i.e. it is the total
number of errors found divided by the total number of lines of
code for all systems in that application category. The fault
density by system indicated is an average of the fault densities
reported for each system, i.e. the system size is not taken into
account. A standard deviation for the average fault density by
system is given in parentheses. The failure rates shown are the
average failure rate during formal testing, the failure rate at
the end of the test period and operations failure rate. The
failure rate is in units of failure per computer operation hour. 0

The airborne applications consisted of eight different data
sources (systems). One large system written primarily in
assembly language in the early 19705 (data source 2 - [FISH79])
had a fault density reported of .017. Two others written in AED
(both approximately 40,000 lines of code each) were real-time
closed-loop flight control systems and reported fault densities
of .0086 and .0018 [HECH83]. Four others were flight control
programs on-board the ALCM or B-lB [HECH831 and had fault
densities reported as .0029, .011, .021, and .027. A last
system, the digital flight control system on the Advanced Fighter
Technology Integration (AFTI) F-16 program, reported a .08
failure rate (.08 failures per operational flight hour) during
flight testing.

The strategic systems data consists of 25 different systems. Most
of these systems are military C31 systems, ground-based C2

systems, NASA ground stations, or communication switching
systems. The range in fault densities reported was .054 to .0001
and in failure rates, .C28 to .0007. The later failure rate
(.0007) was the most reliable system reported in the data base
(data source 14). Many of the systems in this application
category were of significant size, over 100,000 lines of code.

The tactical systems data consists of 5 systems. These ranged
from four command and control applications (data source 19) to a
tactical training system (data source 10). The four C2 projects
each involved between 10,000 to 20,000 HOL instructions
performing display management and command execution in a command
and control system (Projects 1 - 4 in (MUSA79). Individual data
for these projects are presented in Table 4-2. The fault density
entry in Table 5-1 is an average of these four plus the other •
tactical system. These four projects were carried out within a
single organization and hence it is not too surprising to find a
fairly narrow spread of the reliability indicators. The training
system (data source 10) was described in Section 4. It has all

5- 3 ,

N N~ N N % % N %



00 3

Dz4

> 9z

44

000

0ccm

45-4

zv



of the ingredients of an operational tactical system. Its
reported fault density was .0016. Failure rate data was also
captured for this system. It was a 1.04 average during testing,
.63 at end of test and .18 during operation.

The Process Control Application Type was only represented by two
data sources. This Application Type was created to distinguish A
between the critical nature of the airborne, strategic and
tactical applications and the production center and developmental
applications. It represents some aspects of each of the above
two groups. The two systems used were an Emergency Response
Information System (data source 17), described in Section 4, and
an Image Processing System (data source 21). Fault densities
reported for these two were .002 and .0016 respectively. ,Z

The Production Systems category was represented by fourteen data
sources. These ranged from an interactive operating system at a
university (data source 20) to interactive commercial and 0
military systems (data source 13) to an in-house system running
financial management systems (data source 6) to a 'Launch Support
Data Base program at Vandenberg AFB (data source 7) and telemetry
processing for the Viking Project at JPL (data source 15). These
systems ranged in size between 10,000 lines of code to one system
that was 1,697,177 lines of code. About half of these systems
were interactive, transaction processing type systems while the
other half were simply batch processing systems. •
The Developmental Systems are represented by five systems. One
is data source 18 which is a data reduction system and two are
the support programs described in [HECH83] (data source 24). The
two other systems (data sources 31 and 33) are simulators. The
failure rates reported on data source 18 were very high (170 for
test average and 21 for end of test). mhis is the only failure
rate data reported for this category, so the average may be
biased high.

Table 5-1 illustrates the improvement in reliability expected
from failure rate average test, end of test, and operational.
The data collected exhibits, on the average, a ratio of a.

approximately 9 to 1 between the average failure rate during test
to the failure rate observed at the end of test and a ratio of
approximately 7 to 1 between the failure rate at the end of test
and the operational failure rate (see Table 5-2). The averages
are calculated from Table 4-2 for these data sources where
failure rates are reported for each of these pairwise
comparisons. The range in the ratios of average failure rate J
during test to end of test failure rate is 1.7:1 to 41.2:1. If
the one system that exhibited the 41.2:1 ratio is eliminated then
the average ratio is 5:1 with a range between 1.7:1 and 8.9:1.
The range in the ratios of end of test failure rate to
operational failure rate 2.5:1 to 11:1 with the calculated
average of 7:1. These ratios are potentially valuable estimation
parameters to allow rule of thumb estimates of failure rates to
be expected at end of test or during operation based on the

5-5

a,Z

%, % %-.. %M - / - . . . l - I .
I

i i " ! • , . , . . % % - .



A %'

U.1S

0

-L 
e I

%4 00

IN.~. IV N .0



%- .% -J

observed average failure rate during testing. Data is needed for
the Airborne and Process Control Categories to complete this
table.

Another relationship which we had hoped to observe was specific
differences in either fault density or failure rate exhibited by
the Application Categories. In Table 5-1 it can be seen that the
Airborne and Strategic Application categories exhibited the same
average fault density (.009), the developmental category
exhibited the highest average fault densities (.011), the process
control category exhibited the lowest average fault density
(.0017), and the production system and tactical categories
exhibited fault densities of .0036 and .0027 respectively. , .-

Additional data sources in the process control category needed to .p-.,
confirm it as having the lowest fault density. Our expectations "," -''
that the highly critical systems (exhibited by airborne,
strategic, and to some degree tactical systems) would exhibit
lower fault densities than other categories were not met. Where
our expectations were consistent with the findings was in
observed failure rates. The strategic system category had an
average failure rate of .0108 during operation. The airborne
category only had failure rate data available from one data
source and it was an average during test. It was .08 which was
significantly lower than the .34 average test failure rate
exhibited by the strategic systems. Thus we could expect a
better operational failure rate for the airborne systems. The
tactical system operational failure rate (.108) was next in the
expected hierarchy of failure rates. The production systems
category with a failure rate .198 was next with the developmental
systems (a failure rate of 21) last using the end of test failure
rate reported for one data source. These differences are further
illustrated if failure rates are calculated for each data source
in Table 4-2 for which failure rates for end of test or . .,p
operations were reported. Using these, averages for each
application category are shown in Table 5-3. In this table, the
categorization scheme recommended by Hecht is also shown based on
the processing time constraints of the systems. Using this
scheme, clear differences in the failure rates observed are
exhibited. The real time applications had an average failure
rate of .0048, the on-line (interactive, transaction processing)
applications had an average of .016, the batch process
applications had an average of .02 and the one developmental -

support application had an average of 21. This categorization
scheme seems most promising. •

Figures 5-2a, b, o, and d presents the data in Tables 5-1, 5-2.
and 5-3 graphically. Two general phenomena are observed. One is ' -

that the reliability of the more time critical systems is higher
than less time critical systems (Figure 5-20). This same concept '
potentially holds for the more functionally critical
systems having the higher reliability (Figure 5-2b) but more data
is required.

The other phenomenon is the reliability growth illustrated

3-7

w , . ,.%.- %;.- . .- . .. %-m .- - .. ...- °.-... " .'. '. .. ?,J ',j ' .'.',~j ,:,' f,.' ~jz. J(IL

: ' . v.'' ',I - -' .'<v ". " . .. ':".".:_;,_';",..",,",' <'''' -:?;,::% % .''. ':'



U-I W.I9uwv--j~ -J -r -. ~ us w -w

0 - 0 
IA-

0000>

0CA

0 n-

00 
* 0

0 L0C6 CA 0 >

C6 .

5- 5-i:

N V:

- N

0 -



a.L

0-4

E- " -, -D
LZ<

C44

0*0

"CL

5-9-
'C ~'Ilo



* - ----- ~. -- ~.- - - ---. ~- -

0

vIIi.-I-
4'

a.o

a. 0

4 ~02: 0

4.

0 ~, -~

k-4 - -~ S
~

..- ' 4.'~~

z
.4.

0 0 C., 9
0 ~.EJ ___

14 I

.r -. i

..

S

o -~

.~..- ~.
* dr.

S

4..
I I I ., '4 J.

_________________________________________________________________________ * ~

i:'. ~
..... , d

-~ *J. ., J*

-f

- * .*

.- .%

-"I. S

4.

4.4. *t \~*.*V~'-~V~',.4.'-* %.*~**-*~.*4.* ~~&.r-' * -
.ct WEt., C. b --~ ~ - - :- *%,~% ~



"p

0% %

020

p-
A%.%

.0

ca.

E5-1

% % % % % % % % %or %% - % %
aI



through the test phase into operations (Figure 5-2d). All
failure rates are in Computer Operation Hour (COH).

An expected relationship not illustrated by the data was related
to fault density and application type (Figure 5-4a). It appears
that the more critical systems which are developed typically with
more formality still exhibit approximately the same fault -

densities as the non-critical systems. This probably happens
because they are subjected to more formal testing. The
differences show up once the system is fielded when the critical
systems exhibit the lower failure rate since most of their faults
have been removed. The non-critical systems still contain many:
faults and have higher failure rates.

The basic purpose of these analyses was to develop an initial set
of baselines, which are in Table 5-1 and Table 5-2.

5.2.2 Development Environment (D)

As previously discussed, the development environment as well as
the software implementation are viewed as contributors to the V
fault density and are evaluated primarily against that measure.
To establish the prediction factors for the developmen"
environment, two approaches are available:

* Gross statistics -- determine the fault density of many
software projects in each class; and

* Selective comparison -- determine the fault density of
comparable projects in each class.

Figure 5-3 illustrates the data available from the data sources 0
relating the Development Mode metric to fault density. Note
within each category of Development Mode there is a scale. This
scale represents the rating derived from the checklist described
in Section 3 (Table 3-7). Tbit checklist identifies what I Fe
techniques and tools were employed during the development. The
rating is derived from a ratio of the items checked divided by 0
the total numbers of items, is. if 19 items are checked of the
total 30 the rating is .5. From the limited data available.
there appears to be a relationship which is intuitively
supported; the more formal tools and techniques employed, the %
more faults found during the development phase. The
relationships exhibited by the data in Figure 5-3 are: -

FD - . 109d - .04 for Embed.ed %%
FD - -.008d + .009 for Semi-detached
FD - -.018d - .003 for Organic

where d is the rating of the development approach using the •
checklist (Table 3-7).

These relationships represent taking a gross statistical
technique. To have confidence in these relationships, data from

5-12

v ,-*4 %' , . '•. i % -• ' ... ". lt% " . . ".% " % %*- '. -• o\

'P . . % ,+- V , -'-.V V V V ' P ' '. •



anN
> >

, -

-. -'.S -'-

0z

" ~ ~~~-' - ," 'l

> > 
%* %

I'll Poll

• -0 V.'

U

%

e % ... ..-..
5-13.

V%-- MR.%-e.

S,,,. ,/ ,,

,4-]
',-" e_ "

'. " '*'- '
','., .", *# _'



% If
I I

a significant number of projects (approximately 30 in e.ch 5-

category) would have to be gathered. The current correlations
are not statistically significant but do exhibit an intuitive
relationship. Figures 5-4, 5-5, and 5-6 illustrate the
relationships.

Selective comparisons were also made to assess if more insight
could be provided of the affect of the development mode on
software reliability.

One such comparable observation will be used as an example. An
organic environment is represented by the real-time flight
control program listed as data source 12 in Table 4-2. The
flight control software represented by this data was produced by
a group within the flight control equipment manufacturer's
organization having a considerable familiarity with the
application. The real-time command and control software
represented by data source 5 in Table 4-2, in comparison, was
produced in an embedded environment. Both software products
involved approximately 40,000 lines of code, run under tight
timing constraints, and incorporate modern programming practices.

The fault densities for these two examples are:

* Organic environment -- 0.005

e Embedded environment 0.0085

If the observations reported here carry through for a larger
sample, the embedded environment will then be assigned a fault
density multiplier that is 0.0085/0.005 - 1.7 greater than that
of the organic environment. Since it is desired to have the
unity value of the parameter for a neutral environment, the
organic development environment will be assigned a value of 0.76
and the embedded environment a value of 1.3, the ratio of these
being 1.7. As a check, the average fault density for the
embedded data sources used in Figure 5-3 is .014 and for the
organic data sources .0082 which is consistent with the 1.7 ratio
(.014/.0082) calculated above. These summary relationships
between the development modes will be used to establish a basic
multiplier for the development environment metric. This -
multiplier will be modified if information is available to
complete the checklist. In this case, the equation presented
earlier are used. 0

5.2.3 Softvare Characteristics

Each of the metrics described in Section 4 were analyzed against
the fault density data collected. Some of these metrics were
analyzed at the system or subsystem level, others at the CSC or
unit level. Where the analyses were performed at the CSC or unit ra --
level, data sources 10 and 17 were used.

5-14

%%. % ,

- .. -O



y = .109x + -.04 R-squared: .407

.08-

.07,

.06-

.05

f .04

.03

.02-

.01 .. - .

0 -

-. 01

3 .4 .5 .6 7 8 9

TOOL USAGE

Simple - Y fd X TOOL USAGE S
* - . ==.

DF: R-squared: Std. Err.: Coef. Var.:

71.407 0 126 92 4.77

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value:

INTERCEPT -. 04 .035 ,001 1.142,

SLOPE 1.109 1.054 1003 12.029

Analysis of Variance Table
Source DF: Sum Squares: Mean Square: F-test: .

FEGJESSION 1 .003 .003 4.118 %-"--'.-

RESIDUAL 004 001 05< p 10

TOTAL 7 007

Residual Information Table e

SSfe(i)-e(i-1 )l: e a o e < 0. OW test:

.012 13 15 T2.966 -"

FIGURE 5-4 EMBEDDED MODE ANALYSIS

1- n

5-15 
% %

a -~. z - *v ' ?-

aIf od It -1 ~** N N N N o*

%-1. 01 Z. ,

%', %,,,''
%' ." ,



%
V - .OSX .00g R-squared: .015

.04-

St

.035-

,03-

.025

f .02
dS

.015. J

.01.0

.005 ' a.
01 •

.25 .3 .35 .4 .45 .5 .55 .8 .65 .7 .75
TOOL USAGE

Simple - Y td X : TOOL USAGE

OF: R-squared: Std. Err.: Coef. Var.: ,.

10 [.015 .011 185.81 .*.".,

Beta Coefficient Table
Parameter: Value: Std. Err., Variance: T-Value:

ITERCEPT .009 1.012 0001474 .723

SLOPE .008 .022 .0004873 .369

Analysis of Variance Table , 

Source DF: Sum Squares: an Square: F-test:

FEGFSSION 1 100001722 1.00001722 1.136
RESIDUAL 9 1.001 1.0001262 p >..25 •
TOTAL 10 I,001 , -

Residual Information Table '-.-'
SS[eOiW-e(i-1)]: *a 0: a < 0: OW test: '-".*

.001 8s _ 5 1.735

• , ,. *

FIGURE 5-5 SEMI-DETACHED MODE ANALYSIS .,,,

5-16 .:, -



Y .018~x *-.003 R-squared: .8610
.016-

01

d

.2 .3 . .5 .8.68 .
TOOLLUSAGE

Simple-Y fd X TOOL USAGE -

DF: R-squared Std. Err.: Coot. Var.:
Is 1.861 1.002 121 .628

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value:L NTERCEPT 1-.003 1.002 1.000005518 1-1-175

1.018E 1.004 1.00001308 14.97

DF: Analysis of Variance Table
Source D:Sum Squares: Man Square: F-test:[REGRSSION 1 1.00008034 1.00008034 124.733

RSIDUAL 4 1.00001299 1.000003248 1.005~ p 5010
TOTAL ~ 5 1.00009333 1______ _______

Residual Information Table
sSWe-i)-e~.1 ): 0a 0: e < 0: DW test:
.00002316 12 14 1.782

FIGURE 5-6 ORGANIC MODE ANALYSIS

5-17

% %~~~ % .~~/ S 4 S. N 5 * * *** * '~



- *% , ,

5.2.3.1 Anomaly Management, Traoeability and Quality Review

The Anomaly Management metric and Quality Review metric scores as
applied to data source 10 are in Table 5-4. These metrics were tv
applied at a CSC (process) level since the design documentation
was written with that orientation. The results of the
statistical analysis of these scores versus the fault density
recorded are in Figure. 5-7 and 5-8. As can be seen, neither
analysis provided significant results, i.e., results that could
be used for prediction. Both metrics demonstrated a correlation,-
with fault density, i.e. as the metric score went up, the fault
density went down, but the relationship was not significant
statistically. The Quality Review results were disappointing.
The results expected should have supported Lipow's findings in
[LIP079] where units which had many design problems also were
ones that had the most implementation problems.

Further investigation revealed the following:

0 Processes with an AM score greater than .6 had a fault
density of .0008.

* Processes with an AM score between .4 and .6 had a
fault density of .001.

* Processes with an AX score less than .4 had a fault
density of .004. -

This analysis lends itself to developing a metric with a
multiplier based on the above findings. A conservative approach
will be taken assigning a multiplier of .9 for an AM score .
greater than .6, 1 for an AM score between .4 and .6, and 1.1 for
a score less than .4. A similar relationship was found with the
Quality Review metric. Utilizing a QR score .5 as a divider, QR
scores higher had an average fault density of .0007 and QR scores
lower had an average fault density of .0016. Again utilizing a
conservative approach, a multiplier of 1.1 was assigned to SQ if
the metric score was lower than .5.

An attempt was made to assess traceability. Without the use of a
formal requirements specification language such as PSL/PSA or
SREM or a significant expenditure of labor to establish a
traceability matrix utilizing a tool such as RTT, this was very
difficult to do within the scope of this project for systems as
large as data source 10 and 17.

Additional analyses are needed to establish whether these metrics
can be used as predictors. See Section 7 for recommendations and
plans.

5.2.3.2 Software Implementation Cb acteristics

Table 5-5 contains a summarization of the data collected from
data sources 10 and 17 to analyze the software implementation

5-18

% F\ %% -,%



- - . - 4 t 4 - S

0

TABLE S.4 ANOMALY MGMT AND QUALITY
REVIEW METRIC VALUES FOR DATA SOURCE 10

PROCESS ANOMALY QUALITY #PR FD
PROCESS_ MGMT REVIEW #PR FD

101 .63 0 0
102 .24 .32 0 0
103 .52 .40 9 0044
104 .70 .86 5 .0044
105 .37 .36 8 .012
105 377106 .70 .87 0 0 N,
107: .108" 1." J ,109 .3.81....,
110 .53 .81 9 .0028
110 .53 .90 0111 .53 .81 0 0
112 .70 .42 0 0
113 .53
114 .70 .47 0 0
115 " .. "" .
116"
117*118 -- "" .
119* .38 0 0 p

11".48 0 0120**.44
120" .62 .30 0 0
121" .3030
122"* .30 .3 0 0
201 .58 .43 0 0
202 .70 .86 0 0

.64 0 0204 .53 .30 0 0

205 58

2067 .634 .89 3 .0012%.
208 .48 .44 0
209 61 8 3 .001
210 .48 84 25 .0031
211 .64 .88 0 0
212"* .64 .89 1 .0012 0
301" "" " .-

302 63 .88 ,0
303 .64 .88 0 0
304 .89 2 .001
305 64 89 2 .0014 .4 " " "

306 .64 .69 0 0 . ,
307 .48 .94 0
308** .74 0 0
3**.78 0 0310 .42 76 0 031!** .42 0 0312"* 42.
313 .75 0 0
314* .4200

313** .94

31!4** .42 0 0 " -- ""

* Process not available at design.. .,_ p4

"Process either deleted or combined with other
processes in unplementauon

5-19
.,

=- " . ,. , % , .. %

- - A ,a.. -a .h.,.*4* slmlb~ d~ : - , - ,'' . - a
-

'". "' y: :'e"'"% %r%:=. .



I
oP

f v..'i .J

y -.. 002x + .002 R-squared: .022 -
.014

,012 ,

.01

.008 
1.N.6

d ..
.006

.004 6 -

.002-S

0
.2 .3 .4 .5 .6 .7 .8

am
0

SImple -Y :fd X :am r

OF: R-squared: Std. Err.: Coef. Var.:

140 1.022 1.002 1277.443i,

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value:

INTERCEPT .002 1.001 1.000002232 11.429

1-.002 .003 .000006682 -. 946
Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-Test:

REGFESSON 1 [000003941 .000003941 .896 .;.

RESIDUAL 39 0001716 .000004401 p>25 .

TOTAL 40 1.0001756 -. '.'.

Residual Information Table

SS[e(.i)-ei-l: e _ 0: e <0: DW test:

10002441 110 131 11.423

.'b . %.

FIGURE 5-7 ANOMALY MANAGEMENT
STATISTICAL ANALYSIS U

5-20

% Of-

1*1%

Vr.~Jris.. .,is.:'.isp_%

• " ," r ,r -. ". ' . . ., , ' . .' .- . . " " " " " " ", - -',. .. .. - . . .. ""*". . . - . . " . .
.,-,. V,'..,I '....'.'. .' -,:. , , , , , _ _ _%,_..' ..'...' . , ; '. '. ' .% . ... .. . ., .,. ,,--',,'-.,. ' -.



It S
- v-. p,. td

.% p t,,

- I" "t

y = -. O01x + .001 R-squared: .015 A

.014-

.012 %

d%
.008

.006 S-S'.'. .,

0 S

.002 S

0 ,,- a a . ,- , -
2 .3 .4 .5 .6 .7 .8 9

qr

SImpl- Y :fd X :qr

DF: R-squared: Std. Err.: Coef. Var.: ,

40 1.015 1.002 T278.56 -'-"-"-• . - -A..

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value:

[INTERCEPT 1.001 .00 8.48- 11.511
SLOPE -001 .001 .000001916 1-.759

Analysis of Variance Table -
Source DF: Sum Squares: Mean Square: F-test.
REGRESSION 1 .000002556 .000002556 .576 '

RESIDUAL 39 •000173 ,000004436 p > .25 ". A
,TOTAL 40 .0001756 , -A

Residual Information Table -. %%,
SSfe(i)-e(i-1 )]: e 0 0: e < 0: DW test: " .' A.,

.0002498 110 131 11.444 A ' "

FIGURE 5-8 QUALITY REVIEW -'-

STATISTICAL ANALYSIS "'-o'

% %%

5d21 A A. rA.

% A A. % %* %

A ' *SjA A .1 ' d, 00 V~ . s. S --A,.-. %A P * %. * % "R % %" %" Ad % % % % % A w

1 E 'Se--% .o A'.. % J I", % /. .'\ " . '- /" A f. % * *- ~k° -,,.,"...%j jI/='.]Lj'xJ ."l ,p, "e.. ,= .=. ,p' _,' '"= -- '#'I _ __. .. I..e ,. '. '. ,j % .% ¢L'=" ".'~'..%V V. % ' '%%%:-*q



% %~
"' ". " t*

0

TABLE 5-5 SUMMARIZATION OF DATA COLLECTED
TO ANALYZE THE SOFTWARE IMPLEMENTATION

CHARACTERISTICS ___-

DATA- DATA I
PROCESSMANIP ITEMS 131C S146C S147B S148C S1411C #PR NPR/ELOC

101 38 87 9.142 7.953 7.700 9.684 .804 0 0

102 30 87 6.250 7.158 6.400 7.531 .958 0 0

103 1129 1352 44.872 53.695 45.340 S7 6 9 .0044w

104 1045 4034 59.294 26.345 78.953 77.437 -863.419 5 .0044

105 2353 474 10.950 16.158 11.410 16.685 -4.183 8 .0120

106 1882 1471 38.110 40.600 37.910 44.670 23.654 0 0

107 1166 2036 52.420 56.825 21.654 56.711 5.699 3 .0013

108 6 16 .490 1.670 1.500 1.709 1.287 0 0

109 1235 1970 47.531 63.503 44 200 66.072 9 233 9 0028

110 36 112 4.571 5.352 5.000 5.714 2.946 0 0

111 154 299 14.090 15.810 13.490 17.357 -.676 0 0 •

112 61 144 6.010 10.710 9660 10,177 .878 0 0

113 17 64 7.410 7.323 7 830 8.550 4.253 0 0

114 29 79 1.955 3.284 2666 1626 -.1 547 0 0

115 696 1130 89432 92636 50.086 92_57A -7 021 3 .0012 ^ %

116 34 49 .111 977 .2 0 0  911 455 0 0

117 7 28 .200 508 Rill -o 0 0

118 6 22 250 .903 500 901 190 0 0
201 54 216 4223 10.308 10.030 9 0 0

202 501 1117 16434 41.113 36180 40_ *L R 726 0 0
203 304 489 12.300 25.232 20882 )5 444 8501 0 0

204 30 80 4.130 5907 5330 6_401 1_39 0 0

205 102 172 4.730 5676 5.830 6 - 0 0
206 12 53 2.767 3.604 4000 4_547 ! 63 0 0
207 1087 2176 87.735 98.164 73.312 10_o -66 46 3 .0012

209 209 420 15.440 16995 8.350 17_601 2*R04 0 0

209 866 1'95 65.817 84.313 79.000 Q2_6 21 45 3 .0010

210 3046 4735 114.100 182.781 116.507 i .7A 21_135 25 .0031

2"1 107 282 7.469 15.554 14.820 15 .45 z2 0 0

301 1113 2539 86.629 121.980 125.320 177_744 -30260 0 0

302 572 1268 18.688 44.157 54.000 45 .1517 0 0 , , -

303 459 877 11.587 21.773 28.000 ?7 .21 0 0

304 515 1255 22.973 47.885 61.000 49_329 .6495 2 .0014
305 876 1631 23.212 44.388 52.330 d,; sA 12_1.1 2 .0010

306 276 680 7.501 23.853 31000 2 6 ?24 0 0

307 461 936 22.898 53.226 45.310 57'26A 1 417 0 0 %

401 52 344 6.160 1.000 6.200 6_375 -12011 0 0 ;-0,,

402 t638 1023 24 190 38.406 ,8,087 41 22 1.1 .0007 .0007

40 842 1495 40.163 55 360 806 R-271 _419 0040 .0040

404 61 149 6096 9.109 000 9.155 1901 0 0

405 166 387 3.838 9 432 10 130 920" 1 091 0 0

406 ' 7 3787 93223 104.703 ' 968 11027 44 016 22 .0029

40Y7 '700 700 16877 30476 1) r 10--17 6 194 1 .0009 ,

408 1120 1120 22.940 38 615 31.300 40-74 "4 2 2 .0015 ,

409 2453 2453 49.444 99.115 ()71 ). 103.29N 407341 7 0013
- %

, 0 ._,

-. '. .... ... . . .
:-. ..--':. -''."'-' -""'-' ."".:-" --''" '" "--"' " " .- " "" . --- - -- - .. , - -". •' -.. . . . .5- --2.-2.

/ r j " '-9% __ " ¢,."..= __' ".% % ".% " % ","%* % -. % % -o , ". %"% % %" " %" .*%• % ." " % %"%" " " " "" -" % . %" " % , a %



TABLE 5-5 SUMMARIZATION OF DATA COLLECTED TO
ANALYZE THE SOFTWARE IMPLEMENTATION CHARACTERISTICS (Cond'd)

PROCESS S SUBR ELOC EXITS LT100. LOOPS LABELS BRANCHES NEST-
__o___s _s _ ELOCELOC __s__,o. DEPTH

101 10 111 9 10 7 16 6 14

102 8 115 7 8 4 11 5 6
103 60 2030 58 56 65 80 61 79

104 87 1141 3 86 65 565 157 72

105 18 665 17 16 17 34 36 32

106 46 3235 44 38 169 64 47 38

107 57 2385 56 54 190 11 18 209
i08 2 47 1 2 2 6 7 3

i (19 318' 68 62 140 125 143 144

110 6 108 4 6 1 13 15 5

111 399 17 18 15 26 19 27

112 12 197 11 12 5 25 34 13

113 9 100 7 9 3 11 8 8
1 4 102 3 4 7 7 10 9

5 3 2428 93 92 139 36 52 232

1: 6 1 90 0 1 1 2 8 5
117 1 27 0 1 0 3 4 2

118 1 31 1 1 1 3 3 2

201 13 247 11 13 9 33 40 12

202 48 1490 46 47 23 123 215 61 % %

203 29 10I2 25 28 26 65 65 50

204 145 6 7 2 '1 16 .

2,35 7 6 7 9 8 0

20)7 f)6 25'70 100k 105 112 166 139 IQ90

208 1 541 17 18 6 25 12 46

29 1 3106 98 99 78 355 346 137 .

2:0 203 -061 196 145 470 515 45Q 479

2111 19 3)9 18 19 11 51 54 26

301 145 2854 150 140 78 403 4N 135 -'.% .

n2' 54 1470 53 53 28 277 324 17 .

301 28 1066 24 25 6 235 232 1

304 61 1470 60 60 25 272 343 1"

305 4 1953 53 49 35 340 330 19

3(-6 31 744 30 30 13 163 203 12 %
307 60 1978 57 57 23 j,6 161 88

44)1 68 0 7 1 69 5 6 *%.*\** ,

4o2 45 1368 36 44 72 33 84 94

40 61 1999 59 60 106 137 114 137

, 1 1 19 9o 11 5 27 26 12

13 6 2 11 11 59 134 10 16 -

112 70()4 108 81 147 234 133 2171

40' 33 1141 31 32 16 43 49 "7

4s 1343 38 44 47 172 143 73

I113 5205 105 100 249 543 336 215 .

3-23

%c %-_ % %"_% %

" %- %

%~
% ".• -.



I . ... ..

0

characteristics. Data Source 10 CSC's are identified by
Processes 101-307. Data Source 17 CSC's are identified by
Processes 401-409. The following paragraphs describe our
analyses for each metric.

The Language metric was evaluated in [HECH83] for a significant
sample of programs. Typical data from that study are shown in."
Table 5-6. For post-1977 programs, the average fault density of
assembly programs was found to be .0203 and that of HOL programs
was found to be .0075 (both are here expressed as a ratio of -
faults to the source statements whereas in the reference they are
given as percentages of equivalent assembly statements). If HOL
is used as the baseline (metric - 1), assembly language code
therefore carries a multiplier of .0103/.0075 - 1.4.

TABLE 5-6.
EFFECT OF LANGUAGE ON RECENT PROGRAMS

------------------------- +-------------------------+-------------------------

Program Attribute I Assembly i HOL ,'
--------------------------- +----------------------------------------------------

1 Number of Programs I 6 I 15 "
I Program Size I lOOK i 1,124k i
I Average Fault Density" I .0103 I .0015 i
I Range of Fault Density I .0015 - .0521 I .0001 - .0086 1

+-----------------------------------------------------+------------------------

* Equivalent executable assembly statements
** Fault density - No. of faults per line of exectuable code

Most of the High Order Language (HOL) programs included in this
sample were written in FORTRAN. Two programs were written in the
AED programming language, generally considered to represent a
more primitive type of HOL, and these had an average fault .
density of .0052. Because of the small size of that sample it ..
may be premature to establish a differentiation based on the type ""'
of HOL in which the program is implemented. None of the programs
in that sample were written in a block-structured HOL. PASCAL
and Ada programs should be examined and their reliability
attributes examined to determine whether they differ 0
significantly from those of FORTRAN programs.

For earlier programs, the following fault densities in percent , "
are reported in [NELS78]:

FORTRAN (18) .0151
COBOL (9) .0129 -_

PL/1 (2) .0333
CENTRAN (3) .0194
Assembly (24) .0266 -AW-_,.

5-24%

%, --I .. . . . 4'""* ' ll"

P2 + I 
I

II"I
@

' ' + +I #r # l+i 
.

", % % ''l@
I 8 I]

I
" i'+ % +# '

' +' "+" $ +" "I '+" I~l' l";" 'qJ'' + e "1



C-4

LL -A r--

-,e to ei-*o , t

CL O

-~
.1 P

-- 'L .P

oo4.



w'J VVVWd-Al ywwv 41 - - r. -~ __ ~~I"~ . 7 . X ~ A~..*~ ~ ~

The number of programs involved is indicated in parentheses after
each language. The unweighted average fault density of the four
high order languages is .0202; the average weighted by the number
of programs involved is .016. The ratio of assembly to HOL fault
densities is 1.3 and 1.6, depending on the method of averaging.

Using fifteen more projects from the current data base that were
implemented in a single language each, the following additional
fault densities are reported:

FORTRAN (6) .017
JOVIAL (2) .001
COBOL (1) .0012
C (4) .0085 '
AED (2) .005
ASSEMBLY (4) .0148

Again, calculating the average HOL fault density to be .0114 and
dividing this into the Assembly language fault density (.0148), a
ratio of 1.3 is derived. This is in very good agreement with the
findings reported above and indicates that the multiplier for
assembly language is reasonably firm.

Reuse

The extent of prior use is documented for many programs in the
Goddard-SEL data base. Table 5-7 lists the percentage of re-used
and modified lines of code of programs for which the fault
density had been computed in [HECH83]. These programs were
developed in a reasonably uniform environment between 1977 and
1980. They comprise from 14,000 to 200,000 executable
statements. The primary language is FORTRAN with assembly
segments that range from 13% to 28% of the code.

Two analysis were conducted on this data sample. The first one
considered only the percentage of re-used code and resulted in
the following findings (Table 5-8): -

TABLE 5-8
PRIOR USE OF CODE FOR SELECTED SEL PROGRAMS

------------------------------------------------------------ +-----------------------4

I Percent I No. of I Avg. Fault I Weighted I
I Re-used I Systems I Density I Avg. FD .

II by System I I
------------------------------------------------------------ +----------------------- .,

I 1 10 1 2 i 0.00215 1 .00058 1
I 10 - 20 I 3 I 0.0012 I .00125 1 .,*
I > 20 i 4 I 0.0011 i .00068 1
----------------------------------------------------------- +------------------------ N*,.

The second analysis considered re-used code and 50% of the
modified code (together termed Re/Mod Code) and yielded the

%A.0

5-2 %

•. . 1

'. • . . . " % .e



W- -4- WU -F. -r- WN a

I 0

following results (Table 5-9):

TABLE 5-9 .
REUSED AND MODIFIED CODE IMPACT ON FAULT DENSITY "2-

---------------------------------------------- 1
I Percent I No. of I Avg. Fault I Weighted I
I Re-used I Systems I Density I Avg. FD I

I by System I
+- - - -.------ ------- -- - -- - - --- +

I'15 1 1 1 0.0042 1 .0042 1
15 - 30 I 2 1 0.0003 1 .0003 1
) 30 1 6 1 0.00125 I .0012 1

-- - -------- +----------4-------------------------------------------- .p *%%.+ .,% * %

Both analyses did not find a conclusive relationship between
fault density and re-used code. From the limited data currently
available, no predictive relationship could be developed. Other
programming environments need to be explored in order to assess
if representative and accurate predictor can be developed.

ize of Code

Comparisons of fault density for programs of different size are
currently available from three sources, [HECH83], [NELS78]. and
this study. The former includes 16 programs (at least 75% of .
each coded in HOL), all of which were developed between 1978 and
1980 in a disciplined programming environment; [NELS78] comprises
52 programs developed prior to 1977 in a variety of languages
(including many assembly programs) and programming practices. %
This study includes most of the systems in [HECH83) plus
additional ones. The effect of size on fault density is shown in
Table 5-10. The data collected during this study is portrayed
graphically in Figure 5-9.

' .. * .- '.

TABLE 5-10.
EFFECT OF SIZE OF CODE

-------------------------------------------------

I Fault Density, Percent I .
Source: -,

I Program Size (DSLOC) I RECH83 NELS78 I This Study f
---------------- ------------ . -

10K .001' 1 .034 1 .054" .
10 - 49.9K 1 .0038 1 .0084 1 .0074
50K - 99.9K 1 .0021" 1 .0087"" 1 .0195 I

100oK .001 1 .0124 1 .0088 .

4-----------------------------4------------------4----------------------------- 5

" Class comprises a single program N.'#
" Excluding one program at .14. %

%, ,
.. , .. .., -, ,. ,: : , .. .. .,, , --/ ,- .-/ .. ..- -.- .- .-:, .,..-/ ..-.., .., ....... ,.. .. , ..; -..:. .: , ., ...v ,-; .-...I.V
-- --@-'. '. " ,-#, 'e -€- " ,t_' '' " -" "-% " ,, ,- -" -' - " '" ""," '"- - -- " 

% -% 
"--" - " " " " 

%  
," "" - -" % " " " , % ' " " ."%" -%

% , .. % % % . ,, . .% ,%, .. . - % . ..% % . . " . . ,. , . ' , . - ' ,, '. . ,= -" V " ,. . ". " ." " ." ,"5- 2 7. , " . " 4



0
-.. - ' %

The overall trend seems to indicate that large programs have a
lower fault density than small ones which is counter-intuitive.
Possible explanations are a greater amount of re-used code in
large programs and a more disciplined programming environment
In the NELS78 data set, it is quite likely that the large -s
programs made more use of HOLs.

Figure 5-9 could be misleading because of the two extremely large
systems. Figure 5-10 is a regression using the same data except
those two large systems. This figure shows even less correlation
and highlights the fact that size does not appear to be related
to the fault density.

At a CSC level within a system, the relationship is more
consistent with expectations. Figure 5-11 illustrates the
correlation found between size and fault density in data source
10 where size of CSCs are plotted. *'

The effect of module size on fault density has been evaluated on
the basis of data from data sources 1, 4, 10, 11, 17, 21, and 2 %
Data source 1 is predominantly written in JOVIAL/J3 and was
tested over a three year period that ended prior to mid-1977.
Thus, program development is presumed to have started prior to
1974. No structured design was involved. The average fault
density for module size classes is shown in Table 5-11. Size is
expressed in source code statements.

TABLE 5-11. ,
EFFECT OF MODULE SIZE: "-/

DATA SOURCE 1 v

a +----------------------------+--------------------- --------------- .

i Statements/Module I No. of Modules i Fault Density

200 1 24 1 .085
I 200 - 3,000 1 73 .025 -.. "

> 3,000 1 10 I .004

* +-------------------- ---------------------------- +-------------------------

This shows a consistent trend of lower fault density with
increasing module size. This is somewhat surprising in view of
the emphasis in many recent software development specifications
on small module size. Small modules are preferred for ease of
maintenance and re-use. This data indicate that modules
comprising less than 200 statements will carry a reliability •
prediction multiplier approximately 3 compared to "average'
modules (this term here meaning between 200 and 3.000
statements), and that very large modules may carry a multiplier
of 0.3 or less. ,

. . . . .. .. .... . ... '- . ;

5-28

a.% -.<...... .........-........~~~~~~~~~~~~~~~._ ._. . 4.. .. -. .. . . .. . .. ...'." ....- ',". ".........r... . . . '.. . .. .a.. * ... a " ". , ,.. . v ' ' '



- - --- ,# . j,

". %

y 000006036x 01 R-squared: .018 ,.1

.06.I

.05.

0v4.

03

.0 %F 03

SIZ

*" % 
*-

10..1 1." -17."

0LP 2000003 6.00 801000 100 14 004E 1600 180

OF R-squared: Std. Err.: Cost. Vat.u: ..-

F 48 .018N .011 0011.0 1878
RESIDUAL 47 .00

Beta Coefficient Table ". .V ' - -

Parmeter: Value: Std. Err.: Variance: T-Value: ,J '

INTERCEPT 01 00 2)  .000003051 5.834 I. ..L

SL.OPE 1. 0 0 6 3 0 0 0 4 1 4,148E.11 -. 937

Source OF: Surn Squares: Mean Square: F-test: , " .'

~G~ SSCN 1 0001 09 .0001109 87

TOTAL 148 00 p I2H ESIDUAL 47 .006 0001262 p > 25 I S

TOTAL 48 .~~006 
.'.;.. '

Residual Information Table
SS[e()-e(i-1 ): e a 0: a < 0: OW test:

C07 117 132 1.157

FIGURE 5-9 RELATIONSHIP OF 
,...

SIZE TO FD ".-..

5-29

. ,s % .

~'*~' V ~ V . ,' "._ _



y - .000001736x ,.01 R-squared: .00008536

05.

04-

F 03
D

.02 Nu.

01 O ' :

0 M •

0 25 50 75 100 125 150 175 200 225 2 '

Sim

Simple- Y FO X SIZE .

OF: R-sguared: Std. Err.: Cost. Var

4, 00008538 1.011 1 15.469

Beta Coefficient Table
Parameter: Value: Sid. Err.: Variance: T-Value!

INTERCEPT 1.01 1002 000005848 4 053

SLOP 1.000001736 1.00002801 17.846E-10 062

Analysis of Variance Table
Source OF: Sum Squares: Mean Square: F-test:

RRSSION 1 5.029E-7 5.029E.7 004

RESIDUAL 45 006 0001309 p > 25

TOTAL 46 .006

Residual Information Table

SS[e().e(i-1)1: e>_ 0: e < 0: DW test:

1 004 18 129 753

%= %

FIGURE 5-10 MODIFIED ANALYSIS %

OF SIZE VS FAULT DENSITY P... .

5-30 r

%, 
%_



a002x. 1 099 R-squared: 716

25-6

20-

100

0 1000 2000 3000 4000 500 6=0 7000 8000
ELOC

0

Simple.-Y OPW X:ELOC

DF. R-squared: Std. Err.: Coef. Var.
44716 26113 906

Beta Coefficient Table
Pararner value: Std. Err - Variance: T-Value

iNERCIPT I -1 009 I549 1301 1-1 9e4

ISLOPf 1002 10002379 1 581-8 110.4151 C**.

-C. Malybsis of Variance Tab)#

Source SFun Squires *eon Square: F-test:

REGRESIM 11 807.446 1807,446 100.472

RESIDUA 13 35f179 181 p0001
TOTAL 144 1239244 _____ _____~

Resix.al Information Table
* SSfe00-e0t-lj 020 e0 D'Vtest:~C~~

676165 125 20 1922

FIGURE 5-11 SIZE VERSUS FAULT DENSITY
(DATA SOURCE 10)

5-31

% .1

% % % % %



%

Data collected during this effort is more intuitively supportive. -r
Data collected from data sources 10 and 17 is in Table 5-12. %.-
Here units which were under 200 lines of code performed extremely
well. -S

TABLE 5-12.
EFFECT OF MODULE SIZE:
DATA SOURCE 10, 17

------------ +---------------------------------------+-----------------------------

I No. of I I I
I Processes I Executable Statements/Unit I Fault Density I
------------ +--------------------------------------- -+----------------------------

I 3 I ' 50 I 0 , '.
I 3 I 0< ' 100 I 0 I

9 1 101 < 200 I 0 I
-------------------------------------------------- +-------------------------
1 15 I TOTAL ' 200 1 0-
+----------------------------+-------------------------+
I 7 I 201 ' ( 999 I .0017 I
I 10 I 1000 < ' 1999 I .0014
I 12 I 2000 , I .0015 1
------------ +---------------------------------------+-----------------------------

I 29 I TOTAL 2000 I .0015 I
------------- +--------------------------------------------------------------------4

Data available from data source 11 is shown in Table 5-13.

TABLE 5-13.
EFFECT OF MODULE SIZE:

DATA SOURCE 11

+-----------------------------------------------+----------------------------- .

Statements/Module I No. of Modules i Faul Density

1 100 1 23 .094 ,
100 - 1,000 1 4 1 .044 1

I 1,000 1 1 1 .047 1

+-----------------------------------------------+-----------------------------

In [GRAS82 , a relationship between module size and number of
problem reports was found to be:

PR's - .012 S - 9.3

where PR's - Number of Problem Reports
and S - Number of Lines of Code

In (MOTL76], the relationships shown in Figure 5-12 were
developed.

The obvious conclusion is that no consistent relationship could

5-32 .
a..-..-..

,-.-% ,.%
0



ERROR *i
RATE -

PROJECT B 22,0753.5

3.0:... :::
,dq',?.

2.
25 .,...'

PROJECT M = 136,358

2.0

15PROJECTP 22,816

,.

1.0

-'.-.." i

200 400 600 800 1000

SOURCE INSTRUCTIONS PER PROGRAM

FIGURE 5-12 ERROR RATE AND SOURCE INSTRUCTION
RELATIONSHIP FOR [MOTL 76]

5-33 5 - 3 3 ".'.' -V"
% .p..o-

" " -- '-'- - :- -
' , 

e. . % Z. . . . . . . .p.Z' '
S % - .. 1 .. . . ..p - , - .'p. - * o'p..% % ,- • . % ° % '



JV U, J" % " %

be derived. Within an organization or a project team it appears U

there may be some consistency which would lead to analyses of the A._

impact of standards and methodologies on module size and fault
density. This type of analysis was not done.

In spite of this finding, a metric which reinforces the standards
typically found in software development organizations was ... .
developed. That metric recognizes benefits of small modules
(shown in analyses of data sources 10 and 17) by assigning a
multiplier of .9 to modules less than 200 LOC and recognizes
inherent difficulties with extremely large modules ( '3,000 LOC)
by assigning a multiplier of 2 to these large modules. All other
modules are assigned a multiplier of 1. The overall multiplier
recommended is a weighted average based on the number of modules "-.'

in each category.

For data source, [WILL7?), a classification of modules into 7V
"simple", "medium", and "complex" was available. It is stated ..Z'
that the assignment of these attributes was made without firm
criteria, but that "no difficulty was encountered in assigning
complex or simple to a module".

The overall fault densities for each of the complexity categories
are shown below:

Simple .026
Medium .013 .
Complex .029

Because of the inconsistency in this effect, and possible
compounding the affect of language and size with complexity, more
detailed analyses were performed as indicated in Table 5-14.

TABLE 5-14.
EFFECT OF COMPLEXITY FOR SUBCLASSES OF CODE , _

4..----------------------------------------------------------------------

I Fault Density, Percent
-------------------------------------------------

I Complexity I Subclass: Size:
Designation I Assembly I Mixed I JOVIAL 1 200-999 1 .., ..

S------------------- ------------------- - - -.-

Simple 1 0.1 1 0.5 1 3.4 1 3.5 1 -. "
Medium I 0.3 I 3.4 i 1.9 3.8 i
Complex I 2.2 I 0.8 I 4.1 1 2.5 1

4----------------------------+----------- -4-------------- ----------------- .IP

Only for pure assembly code, a subclass that includes relatively

5-34 '-'N"--'

, % Si ; ,a,- ..; ,-: ., -, *,+., :,' : ., %... A. A % , %



few modules, does the fault density exhibit the expected relation
to complexity. In all other subclasses, the effect of complexity
(as assessed here) on fault density seems to be random.

A subjective evaluation of complexity as "easy", "medium", and
"hard" is also provided in the SEL Component Summary Form, but no
analysis of that information relative to fault density was
performed since it was assumed it would not provide conclusive
data.

Use of the data collected in Table 5-4 for Data Sources 10 and
17 to quantitatively calculate a complexity metric based cn the
McCabe cyclomatic complexity metric and relate that to fault*

" density exhibited better results. Figure 5-13 illustrates the
results of the regression analysis using the McCabe complexity ,

metric for data source 10 and 17. The relationship illustrated .
here is:

FD - -.009 C + .001

The negative slope is consistent with the way we have defined the
complexity metric, i.e. as the metric approaches zero complexity
increases. The correlation coefficient is not supportive of
using the above relationship generally. What is apparent from S
the plot of data, however, is that the processes with a McCabe's
metric greater than .05 (which is a cyclomatic complexity of 20)
are more likely to be these procoesses with a higher fault
density. Based on this observation, a multiplier of 1.5 is
recommended for nsoc'nules with a complexity greater than 20, 1 for
modules with a complexity between 7 and 20, and .8 for those
modules with a complexity less than 7. The overall multiplier
will be a weighted average of those scoores by the number of'-
modules in each category. *.

Standards Review

The Standards Review represents code inspections, walkthroughs 9
or standard enforcement results. In Table 5-4 there are a number
of data elements which make up the Standards Review Checklist
described in Volume II. Figures 5-14 through 5-19 illustrate the
correlations found between various measurements/elements and the
number of problems found in a process. The ones illustrated In
these figures are: 0

Figure 5-14: S148C - a function of the nu.;ber 2: -

Branches / ELOC)
Figure 5-15: S146C - a function of the number c*-

Statement Labels/ELOC)
Figure 5-16: LOOPS - number of Loops
Figure 5-17: NESTDEPTH - Maximum Nesting Depth Level
Figure 5-18: DATA MAEIP - number of Data Man Ip,-; .---

Statements
Figure 5-19: DATA ITEMS -number of Data Items

%% % %.%-
- O. e. '-e'-.

J ," P , ,, .,, ,# ., . o '. . ,, ,','.- .- -. .- .. .- , , . . .. .. .. .. .. .- . , . .. .. .++ ..- . , ,, .. '."% "" "- " "- % .' " " % - %. " " " '" "' '' " ''+ % '' ' ' '' '' +' " • +' % ' " +" "- "' - " " d'%1
"% % ,,% . " . % . % % " ," .. . "%- .- .- -.. .. . . -. . .. .. .- .-.- , .- .' +' . ." +- - . " . . . ,. +%0

; ," " ,+', ,", +'. ,', ,' .'. ". ,,. ". ". . . • ". . .. " .. , . .. , . ,.. . % . .. . . . . . .-.

' i I I A+ l i ' 1 I 1 I .".,.II '1 . . . 1 '



Y .125x + -.779 R-squared: .492

25- 0.,-e '.1P

20'

15

P 10 ,,
R

S-.. -P0.

0 20 40 60 80 100 120
S131 C

-A -. w

IP

Simple - Y #PR X S131C
DF: R-squared: Std. Err.: Coef. Var.:

492 3827 1152.383

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value:

INECP -791765 1585 1.1.0181
SLOPE . 125 1.019 1.0003747 6.453

Analysis of Variance Table
Source DF: Sum Squares: Mean Square: F-test:

:EGRESSON 1 609.63 609.63 41.635

RESIDUAL 43 629.614 14.642 p !5 .0001

TOTAL 44 1239.244
Residual Information Table

SS[e(i)-e(i-1)]: e 0: e < 0: DW test:
11402.291 121 124 12.227 0

:-j -U--'-
= U,%

FIGURE 5-13 REGRESSION ANALYSIS USING
'- MCCABE COMPLEXITY METRIC

5-3 6.

• .. :I



Y 093x* -1 122 R-squwtd 517

25 I

20 % 'N

15 -
S

R .

.• 4 .-.-. ,-0 1@ 4W ........ . .... .......

,0 .,,- , 0%

0 20 40 60 80 100 120 140 160 80 200 %%-'* %
S148C

% %

p 0

Simple Y :PR X S146C

DF: R-squared: Std. Err,: Coef. Var.:

44 1506 3.774 150.308

Beta Coefficient Table
Parameter: Value: Sid. Err.: Variance: T-Value. O

I _INTERCEPT 1-!.001 1.773 597 -1.296

SLOPE .096 1.014 [0002099 6.632
Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-test: ,, - .-

FGRESSON 1 626.659 626.659 43.988 3

RESIDUAL 43 612.586 14.246 p< 0001

TOTAL 44 1239.244 "-___"__"_,"__._

Residual Information Table
SS[e(,)-e(i-1 ): e> 0: e < 0: DW test:
116-.484 123 22 1.909 e .

% %

FIGURE 5-14 S148C

5-37

%

%~~~~~5 % ....%
4 ' ~' "5 / . ~ . 4 -. " % . .4.r. . 4.- %. .- - -~ . . - .F % % % %"" "' ev'.'.'. - '-S - "* "' " "" .. -" ... '. " ,v%,, , .- ..-. - .

,%~l %'*1'': . ,-. .. a/'* Ss*4.....-.5~ % ,,' ** \~ ,~



.- -. %

y ~ ~ ~ ~ ~ ~ ~ f .096x -101Rsurd 56A
25-j

200
. %4 .M%

,P ,to..

5.9

01%

y = .0g6x + -1.001 R-squared: .506 ._. ¢a
25.-

20 2 40 618

s)46c ..'5;l

r ,.,,V

o° %" ."~ .

Simple Y ORS S146

4 ...- -
OF: R-squared: Std. Err.: Coef. Var.: K'-r.
144 -. 506 13.774 150,308 I,- ?.

Beta Coefficient Table .r..V '
Parameter: Value: Std. Err.: Variance: T-Value:

I NTERCEPT 1-1.001 1.773 1.597 -. 9 .
I I S. ':"

SLOPE 1.096 .014 1.0002099 16.632 ,...,

Analysis of Variance Table
Source DF: Sum Squares: Mean Square: F-test:

f-GFESSON 1 626.659 626.659 43.988

RESIDUAL 43 612.586 14.246 p< 0001

TOTAL 44 1239.244 '_____-__-_-"

Residual Information Table
SSfe(i)-e(i-1)]: e 0: e < 0: DW test:
1t169484 123 122 1.909

U... >,

FIGURE 5-15 S146C

~- U'- ,%,r

5-38 .

.. . . . ..%:.*~.:.. %. ..-



0

y =.047x + -,072 R-squared: .584 -

20-

15 J

#
*P 10 %

0 *

0 50 100 150 200 250 300 350 400 450 500
LOOPS

% *

Simple Y V PR X LOOPS

DF: R-sguared: Std. Err.: Coef. Var.: %, W"*~

44 .584 11463 113782* ,

Beta Coefficient TableN
Parameter: Value: Std. Err.: Variance: T-Value:
INTERCEPT 1-.072 1.614 1.377-17
SLOPE 1.047 1.006 1.00003615 17,769[ F:Analysis of Variance Table

Souce _________ Sqare: ean Square: F-test:-

PEGFESSZ*J 1 723.687 723.687 60.359 1
RESIDUAL 143 515.558 111.99 p 5.0001
TOTAL j44 1239,244 %_____ e_____

Residual Information Table
SS[e(i)-e(i 1)1: e 0: a < 0: OW test: a, "
1052.445 116 129 12,041

IGHURE 5-16 LOOPS -

5-39

% % %.

% %~

%- A -- -% % % -.-- * .

d:%



0

y = .045x + -.627 R-squared: .66

25 6

20

15-

P 10
R P 1 0 ~.. ,.."

5 '

.. . . . . . . . . . . . :::.0
IW.

-5 N
0 50 100 150 200 250 300 350 400 450 5 00

NEST DEPTH -A_.

_ _,,* .' w v_

Simple- Y #PR X NESTDEPTH -

DF: R-squared: Std. Err.: Coef. Var.: .

I4 4 1.66 13.132 124.714

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value: 0

INTERCEPT -.627 .58 1.336 1-1.081

SLOPE 1.045 1.005 .00002465 9.13." d

Analysis of Variance Table
Source DF: Sum Squares: Mean Square: F-test:

REGRESSON 1 817.517 817.517 83.355
RESIDUAL 43 421.727 9.808 p s .0001 -

I I~ _____________I 0 %

TOTAL 44 1239.244 , .-

Residual Information Table
SS[e(i)-e(i-1)1: e> 0: e < 0: DW test: P

1820.906 126 119 11.947

%

FIGURE 5-17 NEST-DEPTH

5-40

. .-.. .. . . ,- ., , *:.:., ,-, . . " % %.. . . .-... m. .
'w~w--'w.%'. '." of. .-, % I' W eJ J '. ',.,..' . ,'



25-• -
.,

15

-. %

25

20

15t

0 500 1000 1500 2000 2500 3000 3500 "

- ,.. ,." ,

Simple - Y O #R X : DATA MANIP .,,_

DF: R-squared: Std. Err.: Coef. Var.: , .-
144 1.654 13.157 1125.726 ;.

/, .- , * ,

Beta Coefficient Table ,. ,

Parameter: ValuA: Std. Err.: Variance: T-Value:,- "

I °d

INTERCEPT -_1 .0 46 1.614 1.377 -1.703 @ _,,-
SLOPE 5.006 1.001 24,7210E-7 39018 35

Analysis of Variance TableUA

Source DF: Sum Squares: Mean Square: F-test:

REG,-aWN 181.4 810.649 81.33 ' ..,,
RESIDUAL 43 428•.596 9.967 ip _< .0001
TOTAL 44 1239.244 25.

Residual Information Table
sse(i)-e(i-1): e d Er: . < a: DW test:-. .ue-
920r24 125 120 T2.147

FIGURE 5-13 DATA MANIP
[ 2~~j44 113924

Residual I.ormaion.able-:,,-,

FIGURE5-1DT.AI

. 0..,
.,-,, V % ,

"-. SF , r .

J' " " . . W ."." *"*" " *" . * . • -"* ",*-* ."J* -" .",r , o .. * *.-% .% .-. ,r . .%, , . .*- ".. " " , ,

. .% o. % % % % % . . .**' .. % % ** % . . . % . ,. ' . ... , , . .,. ' ..



- - - - - --^... .,.....

y .004x + .1.134 R-squared: .585
25-

20-

15-

P 10

R S

0

-5,,
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

DATA ITEMS

Simple - #PR X DATA ITEMS 0

DF: R-squared: Std. Err.: Coef. Var.: ,.0-,
144 1.585 13.46 1137.788

Beta Coefficient Table
Parameter: Value: Std. Err.: Variance: T-Value:
I INTERCEPT 1.134 1.9 1.486 1-1627 1

SLOPE .004 .0004618 2.133E-7 7.779 i -.

Analysis of Variance Table
Source DF: Sum Squares: Mean Square: F-test:

RE:' KIN 1 724.46 724.46 60.514
RESIDUAL 43 514.785 111.972 p S0001 S
TOTAL 44 1239.244 "

Residual Information Table
SS[e(i)'eli-l)]: e >0: e < 0: DW test:
11218.992 T24 121 '2.368

FIGURE 5-19 DATA ITEMS

5-42 a

, %

, ..-...- .: .'..-..-.- ...,.,: ; ;.,,i-z,'.' 4...- ;.<¢,. ...-. .. , .p-t.......p -...- ,t;;'...."....'.... .;.;.... ..

14
P
. " o . .- .. .- -. *,-- • % - .° , . % .• .• . " l * ' " °" • " " '



Figure 5-20 illustrates a non-linear regression analysis. This
is the same metric and data as shown in Figure 5-19. The
non-linear regression analysis resulted in a slightly better fit.

The regressions were calculated using number of problem reports
and fault density. Better correlations were found with number of
problem reports as the independent variable and those analyses
are presented here. We found in data sources 10 and 17 that over.% '0
60 percent of the processes (CSC's) had no problems reported
against them. Only 15 percent had more than 3 problems written
against them which based on the average size of a process equated
to a fault density greater than .0015.- '

A key use then of these metrics for improving S/W reliability is
to pinpoint these problem modules for predictive purposes but
primarily for identification and correction. As an illustration
of this concept, using the metric, number of data items, to
identify the potential problem modules, we flagged all processes
that have more than the average number of data items (997). In
retrospect, this technique would have identified 86 percent of 0
the problem modules. The identification is not perfect, i.e.
other modules were also identified by the metric that were not
problem modules by our definition. But the predictive
performance seems excellent. The results were:9

* 42% of all processes flagged

* 84% of processes flagged had problems

0 Identified 88% of all process with problems

* Identified 86% of all problem processes (those with
fault densities higher than the average for the
overall system).

For purposes of prediction, the metric recommended is based on
the percentage of problem modules identified by the metrics. If
over half of the modules are flagged as potential problem modules
by the metrics applied as a standards review then the predicted *

reliability should be raised since the expected problems seem ..'.
manageable. In data sources 10 and 17, the problem processes had
a fault density of .0035, twice the average fault density of the
system, .0017. These problem processes accounted for 15 percent
of the processes. Thirty-eight (38) percent of the processes had
problems with an average fault density of .0024, 1.4 times the 0
average. For prediction purposes then, the following multipliers %
are recommended (Table 5-15):

to %I o .

o Or or

5*" .5 J-..

N . %

Ow - 3..

or.. . .. . . . . .. .



.%N I. .'i
%

y = 241 + .0002615x * 8804E-7x2

25-

22.5-

20-

17.5

15

P 12.5
R

10.

. ,
7.5 0"

5 -11 1111111 41 0 ------ .

", @0 %

2.5 "o ' -

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
DATA ITEMS

Polynomial - Y #PR X DATA ITEMS S

DF: R-sauared: Std. Err.: Coef. Var.:

44 .661 13.163 1 25.946

Analysis of Variance Table

Source OF: Sum Squares: Mean Square: F-test:

RGRESSION 2 819.148 1409.574 40,948 •

RESIDUAL 42 1420.096 110.002 p < 000-

TOTAL 44 1239.244 .

',, .- .*

....?

Beta Coefficient Table .- .

Parameter: Value: Std. Err.: T-Value: Partial F:

INTERCEPT .241 .778 .31 At.

.0002615 .001 .225 051 S.
x 2  8.804E-7 2.861 E-7 3.077 9 467 _

A.
, ;#zNP'-

FIGURE 5-20 NON-LINEAR REGRESSION
ANALYSIS

3-44

* ,,,55' *_"=' '," " == %"%' '= '' ',.'h. '." " .' ,. "" -"" '%" % -"% ,% "- - - - - % % " '" - ",,', " ,,"'
u  

• # '" .P . i , 
'  

%,'. '.=.'.'. --'.'.-'.' .,-"- .,-," ,:, , ,,', ..'.'.. . , " "',".',.,',.,, =- --. - ",., '.:':



% . •% 7

-.-. . -•_ . ,

I) 0

TABLE 5-15
RECOMMENDED SR METRIC -

---------------------------------------------------------------------- -
i Standards Review I Percent of Modules Flagged "
I Metrio (SR) I as Potential Problems I
----------------------------------------------------------------------

I 1.5 I 50
I 1 I50 to 25
I .75 I 25

+------------------+---------------------------------------------------4

This approach is recommended based on the data observed in data
sources 10 and 17. A larger sample is required to derive an
actual prediction equation as described in Section 3.

5.2.4 Test Metrics
d.J

Three data sources, 10 , 17 and 26, were used for demonstrating
the Test Effort metric. Table 5-16 presents the data available
from the three data sources. ,

TABLE 5-16.
TEST EFFORT VERSUS FAULT DENSITY/FAILURE RATE ,.P, ,

---------------- +-----------------------------------------+--------------------------- .
i Data Source I Test Effort I Fault Density I Failure Rate i

---------------- +-----------------------------------------+---------------------------+%

1 10 1 8% of Dev 1 .0016 1 .18
---------------- +-----------------------------------------+---------------------------

I 17 10% of Dev 1 .002 1 .007 1
-------------------------------------------------------------------------------------

1 26 1
I SYSTEMS A 1 12 MONTHS 1 .0075 1 not availablel * . -.T

B 4 MONTHS 1 .007 1 -

C 8 MONTHS 1 .01 I •

D 1 6 MONTHS 1 .0095 v
---------------- +----------------------------------------- -+--------------------------

Additional data is needed to derive a generally useful

relationship. -

TEST METHODOLOGY

The Test Methodology metrics were calculated for data sources 10

5-45

P** 'r 44.' P e ,L r
S ~N 1



and 17 (shown in Table 4-4). As shown in Table 5-17, the higher
scoring test methodology is related to the lower fault density
which is intuitive.

TABLE 5-17.
TEST METHODOLOGY METRIC VERSUS FAULT DENSITY

+------------------------------------

I Data Source I Test Methodology I Fault Density i

1 10 1 .67 i .0016 1

1 17I . 0 2 1

+-------------------------------------vv

TEST COVERAGE

No analysis was performed on Test Coverage.

FAILURE RATE TRENDS DURING TEST

Using the findings presented in Table 5-2 and Figure 5-2d, a ..

multiplier of .2 can be used to estimate the failure rate at end
of test based on the average failure rate observed. A multiplier
of .14 can be used to estimate operational failure rate based on
end of test failure rate. --

5.2.5 Operational Estimation Metrics .

Workload

Significant effects of workload on software failure rates have
been reported by investigators at Stanford University [ROSS82].
The hazard function, the incremental failure rate due to
increasing workload, ranges over two orders of magnitude. This
indicates that the workload must be taken into account in
arriving at software reliability predictions.

For military applications, workload effects can be particularly
important. During time cf conflict, the workloads can be .

expected to be exceptionally heavy, causing the expected failure
rate to increase, and yet at that same time a failure can have
the most serious consequences. Hence, predictions of failure
rates that do not take workload effects into account fail to .' 7
provide the information that Air Force decision makers need. ...

The mechanism by which workload increases the failure rate is not .-.

completely known, but it is generally believed to be associated .'.
with a high level of exception states, such as busy I/O channels,
long waits for disk access, and possibly increased memory errors
(due to the use of less frequently accessed memory blocks). Data
presented in (IYER81] show that the highest software (and also
hardware) failure rates were experienced during the hours when
the highest levels of exception handling prevailed.

5-46 .

% " %*



. 11 - . j ,

Details of workload effects on software failure rate are still a
research topic, and no specific work on a prediction function was
performed as part of the present effort. Data from data source
10 substantiates the range of failure rates during operation. -.
Table 4-5 and Figure 4-14 illustrated the fluctuation
encountered. Discounting the spikes in Figure 4-14 (these
represented installation of enhanced versions of the system) the
range in problem reporting was 20 to 1 during operations. ¢.9I

The prediction function advocated is based on published work (see
Figure 5-21 which is reproduced from [ROSS82]). The quantity
plotted along the vertical axis is the inherent load hazard
z(x), defined as: '...-

Prob. of failure in load interval (x, x+8x)/Prob. of failure
in interval (O.x).

It measures the incremental risk of failure involved in
increasing the workload from x to x+6x.

The horizontal axis shows three different measures of workload:

" Virtual memory paging activity, number of pages read per
second (PAGEIN);

" Operating system overhead, fraction of time not available
for user processes (OVERHEAD); and

" Input/output activity, number of non-spooled input/output
operations started per second (SIO).

These graphs provide an option of predicting workload effects by
any of the indicators of workload used here. The fraction of
overhead usage is probably the most commonly obtainable quantity.
From a practical point of view, before a computer installation
becomes operational, the fraction of capacity to be used at
maximum expected workload is probably the only indication of this
factor that will be available early in the development. .,.

In [TROY86], data sousrce 27, a function was developed relating %
software failures to user logins. That function: %

y - 7.39 + 4.72 * 1 0 - 3 x

where y - number of software failures * -
and x - number of user logins "

had a correlation coefficient of .44. The user logins could be
viewed as an expression of workload. ' 0

Variability of Data and Control States

Software that is delivered for Air Force use is essentially fault .. %.

- p7,5.%

47 '. .

.* j .. .. . ,-~ 5 ' .
''....' ." " . ", . ," " '. ' ; , '- 5,_ ' S ' - ",_ -- . P " " 5",'".". "% ,, ".",",- .,".". " .. "." .'.". ,• .. '''.-.'....



- J ~, - - ~ .p -. -. -. *-. ,-. -,-..**

. . .. 
...

g. 

•Q

- g 
-

...

- @ 0S -
- ---.'X : }

%"I.' -.-

-S **% v'5.~

5 - 4 8 

- -

0_ 4j.

;,j m..,J';e ' . .; .,.m .. , .,, 4. _ '. " .' ' .... . ' ' .' J " ' . .I 
0.,'% . ,., ' ,.,...,. % . ... . y -, , ,. .



d s

free for nominal data and control states. i.e., where an input i
called for, an input fully compliant with the specification will
be present. when an output is called for, the channel for
receiving the output will be available. A major factor in the
occurrence of failures, and therefore affecting the failure rate.
is the variability of input and control states and the abnormaldata encountered. A.

Variability of the input data is the primary determinant of
software reliability in some models, such as the ones proposed by
Nelson and Lipow CDACS79] and Roger Cheung (CREU81). Neither one
of these models is supported by sufficient data to permit direct
evaluation of the effect of variability on failure frequency.
Nelson and Lipow propose partitioning of the input data set, and
an index of variability can then be derived from the number of
partitions accessed during one time period or one run. This
appears practical in only a very limited number of applications.
Cheung uses the calling sequence as an indicator of variability,
a somewhat more easily implemented measure, but still targeted
primarily to a research environment. A major difficulty with
these approaches is that guidelines for their implementation can
be provided only for a narrow spectrum of software applications.
The partitioning of input states differ vastly between an
operational flight control program, a message forwarding
protocol, or a scientific computation. I .

"- '. L.. '-

It is proposed to use the frequency of exception conditions as a
practical measure of variability in the current effort.
Exception states include:

a Page faults, Input/output operations, waiting for
completion of a related operation -- the frequency of all .
of these is workload-dependent and the effect on software
reliability is discussed in the next section;

e Response to software deficiencies such as overflow, zero "
denominator, or array index out of range; and

e Response to hardware difficulties such as parity errors,
error correction by means of code, or noisy channel.

The last two of these combined in the input variability modifier
for the operating environment, EV. Data presented in [IYER81],
illustrated in Table 5-18, indicates that approximately 1,000 I 0
exception conditions of the latter two types were encountered in
5,000 hours of computer operation. A value of 0.2 exception
conditions per computer-hour has therefore been adopted as the .--.
baseline, to be equated to unity. Because failures may arise
even if no exception conditions at all are encountered, it is
desirable to bias the modifier to a small positive value. A . -

suggested form is

EV - 0.1 + 4.5E

%

%~ ~ ~ % %% W

5 -V9 " . \

-' -"'-":'p



a "• - - '... * "*.

where E is the number of exception conditions per hour. For E -
0.2, EV -1.

*' , %. . ,

In (TROY86]. a function was derived relating software failures to
hardware failures. That function: W W , ,.

y - 2.943 + .7189 x

where y - number of software failures
and x - number of hardware failures

had a fairly good correlation cogeficient of .7. The hardware
failures are obviously a form of exception conditions which "
[IYER83] related to software failures. "'.

TABLE 5-18. SUMMARY OF EXCEPTION CONDITIONS
FOR AN IBM 3801 [IYER83] 0

'_.,,A_%. '

-------------------------------------------------------------------------------------------

HARDWARE SOFTWARE I, .. .
ERRORTYPEDETECTED DETECTED ALL "

I ERROR TYPE Freq. % Freq. % % I
----------------------------- +----------+------------ -4---------+------------ --------------

STORAGE MANAGEMENT I11I 1.9 1 395 1 44.2 1 26.2 1

I STORAGE EXCEPTIONS 382 1 67.0 1 0 1 0.0 1 24.7 .

DEADLOCKS 0 1 0.0 1 310 34.6 20.2

I/O & DATA MANAGEMENT 1 45 1 7.9 116 13.0 1 10.5 '

PROGRAMMING EXCEPTIONS I114 1 19.9 1 0 1 0.0 7.4 1-..-

CONTROL 181 3.2 1 501 5.6 1 4.4 1

INVALID I 1 0.1 1 23 1 2.6 1 6.6 1

.9----------------------------+----------+------------ ----------- +------------ --------------

I ALL 1 57 I 100.0 I 894 I 100.0 I 100.0 1
---------------------------- +----------+------------ ----------- +------------ --------------

5.2.6 Other Analyses

The data collected afforded additional analyses opportunities. % %
For example, data about the types of problems reported were _
available from data sources 1, 2, 3. 4, 5, 16, 27, 28, 29, and a -
31. The fault categorization scheme used was originally S
presented in [THAY76] and is the most widely used scheme in the
industry. Table 5-19 presents the data by data source and in
summary form.

Table 5-20 provides a breakdown by functional category for four
5

s - s o~

0 ".v
-5","2"2- --" ",>." '."-'-.",",-'-" '-" -v -, -. -..,, ..-',-.'.'- '- ,....' .'.. ..', "".'.-'",-.'- ".""-""e .'-, "'---.-".'--- .'- - )-'
"- . _> '_ e" " " "e • "" " €;" "" " ' .- ". ." '-' .,".'2 e.-.e.'... . _ 2 _.- . j~g . ... .-- -



- -- -. ,,- -.
; " ., .. . - , .- .U%

- .- -° -N . I le

am - - -- - - - - -

6 6

0 0 0 0a0

E E

z z

N-. --

,, - -,,C, 4 .

- - - - - -6-,-. .-<- - t 4-'

. lea a

%"

- - I- m ''S '

Sii Z c

46 %

U 62

U -. "% -. % - -%, 
* .

,, , "" " ''*"= " ' 'j r',-,",-"- e % 0',,°. ,, /"#" " "- - -"-. ".*- .," " ". ,",'r",". -"- .'e ,". . ,"' .". .- ']" '" *' <" -- o * " "-' l ' " - 4'' ' ' ' ' . . " . . .



- A - N. .. .- - -**.,*

o 'A

r4.

fn~

, r- - *' *. S , t-,oA

e, z 0 '0

•0 - -.,-,.S

z Z z .-

- *

L-

a. Lf V) C4 CA

0% .. 1
,,

,. oK . , --

IV ""e

2S

, ,..,..... ,:.. -. .. .. ..v .- . --, ,._, - . . . . - -- -. . . . .,,.-. .. ., .... . . . ... . . . . . . . ".".',.

_. ......,, .. ..,,, ..., .',' ., .'.','..,-,-,. .'.'. -.... .'. . .', .. .,.-.-.,,,.-. ,,. ,-,- ,',0....,,,.,.,-. ',



data sources. Eventually failure rates for these functional
categories of software should be sought to assess differences in %
failure rate at this level of detail. 'A

Table 5-21 illustrates the fact that a small percentage (6) of -
the problems found are of a highly critical nature. Five systems
were used to collect these data. Almost half of the problems
reported are low criticality.

These additional analyses provide data to which future projects
can be compared.
5.3 RESULTS OF ANALYSIS

The analyses performed using the 59 systems provided significant
insight into software reliability. The data base created will t
provide an excellent basis from which to expand and further S
refine the relationships developed during this study. The
immediate results were somewhat mixed. Tables 5-22 and 5-23
summarize the results. Table 5-22 illustrates our expectations
(documented in Section 3) for each metric and what was realized
(described in Section 5). The fact that specific statistically
valid relationships were not derived for many of the metrics 0
suggests one of the following:

(1) There isn't a relationship and the metric should
not be used

(2) Our sample size was too small

(3) Some refinement in the metric is needed

The use of multipliers based on a table look up is dissappointing
from a theoretical viewpoint because specific relationships were
the goal of the research. Yet the table look up approach is
based on observed relationships from data collected therefore
represents the perceived impact on reliability.

The metrics recommended for use based on this analysis are
indicated in Table 5-23. In all cases, further data collection
and analysis would be beneficial. The available metrics are
documented in a Guidebook (Volume II) to facilitate their •
application as software reliability predictors and estimators.

:.-a:.'.

5-53

% % • .' . - .. .- , % % % % % '/ - - . % . % - ° % % ' . , % .. - . . - % . % . % .

"" .- % %

ar'-

% %-



$, %

vi & 6F

?r.. ,A .

. ~~f-,:--.:

e4- ;w--%'

°.. ", "..

. < -...- ?

- -- . ,%

000

- 54

..::.....,..

, - t- .

"% %,

0 e

, -- ..1.*

.:,.,: ;>.,,..,,:,,:.,.,,°- ,.., , ,..- .°..,,...... .. ... .. .. .. -: C:::
= - --,-,.,,",."-."-" ,., ,, .,,...,.:''.Z Z' , .'-Z'o '. ... ,'' ''' ',''' ... " .'.' ' ," .. " .,,,.,-,,

*,. ; '; _,,.-.-".., ,",.".,."- " ""'" m .; -.-- I', -',; -v r",.. "-'. , , , ,' " ... ,,' ... -. '-'''-' "' .. ,..



TABLE 5-22 SUMMARY OF ANALYSIS

METRIC EXPECTED FORM CURRENT RECOMMENDEDOF RELATIONSHIP APPROACH BASED ON DATA(SIcrlON 3) (SECTJON 51

Apphcano (A) Table of A f age Table of Average I -
Fau'i Densities Fault Densites
by Category b, Category %.P

Development DL.D D=I %" 
%  %

Fnv ironmentiD) C D),here Do = 1 3 (I
,

6 (O .

or DM 
:

(.109 DC 4/014 (E)

008 DC 003)/ 013 (S) ,-. .. ,

(018 D ()3) 8 0 (0)

where DC  :Checkhst Score

be ween 0 and I restct " ' ,
range of RIt to.5 zo 2

Anomaly ka.rn SA = .9 if AM > 6
Management (SA) if 4< AM <-

1I IFAM<.4

Traceability kt.,'TC ST =1.1 if (NR-ARiiNR< 9 .
ST' TC.NR,.\R DR) I if (NR-AR)NR, 9

Qua., Reviev, kq ,\ R-N1R N DR SQ = 1.1 if DR,'NR > .5 %

SQ) I if DRNR.5 

Language 114)l - '. AL SL = I (%IIOL)+ 1.4 (%AL)
(SI.) - %. %, € /

Size Ss( I if LOC _ ()K No Relatonship found % %
(s S 2 if !!)K LOC < 50K,

Ss(li if 5()K .OC IW-1K
Sitilf %K < I.)C 0

Modulanty S() if M__2(0 SM = 9 u + ws -2x /-.
(SM) Sm2) if 2r%) < M <3000 ( here u is no. of mods < 200 .

Smi 3) if 31X') < kv is no. of mods between,,
200) and 300
x is no. of mods > 3(WO % ,,

Reuse SU(i) for % of revised No Relationship Found '
iSL') oc e ,. ,,

Complexity kx 1 Sxs,)/n S = Ia + b + c-
(SX) %s here

a is no. of mods with CZ20
b is no. of mods 20 > C >
c is no. of mods C < 7

Standards k 1n,'cn t)R SR = 1 5 f PR/iNM> 5
Review I if 5>PRNM > 25
(SIR) ,5 fPr.m < 25 -.

Test Effort 4O/AT TE = 9 if 40 AT < I
CE) or other ,ise = I , .

lTl" (0

Test MeiLhodology ktc * T-lTM: 9 for T-TTU. 7'
TM) I for 75 > I-FTTU 5

I I for TT/TU < -5

Test Coverage kic,,S TC 1,N'S ..".
(TC)

Workload ke . IT F T .[5T VW :.Ti(ET.OS)
(E:W)

Input .14 5..C ["V=.1 -4 51C

N.6N.'N ., .." F %.. . e . -P% , %,% ,- ,. %f,.

,, ._ - ,

..:. .~.<,,

%' ,--. %"%--.%"," "-%- -%%
% %,%', %,%"%. % "% NI --

" 3,"3.".'3,"€'- . ',€." '-,.'.".'-:'.": ¢,,:':" ": X"%%%'-",.-
€
, .' "w.', "•" -", "" "",.% -"-" "'"-*..% " ' - I':% .'-L'',.-, 5>,5',).



TABLE S-23 RECOMMENDED METRICS

ANALYSIS PERFORMED RELATIONSHIP "'
METRIC SYSTEM DETAILED AVAILABLE RECOMMENDED- .

LEVEL LEVEL AVAILABL _-.,.-.-.___.

Applicaton f

Development •
Envuoriment

.Anornaly • ', -. %.,
Management

Traceabilirv ( (See Secton 6) ,

Quality ""..
Review -

Language % • *

Size w*

Modularty • .e%• %..

Complexity 0

Standards •
Review "

~.'. ..

Test Effort ••. .,.

Test Methodology

Test Coverage * (See Section 6) ,

Workload •

Input
Variability S

.1!

5-56

%**~ %* %* %P %*

e.,-.-..-1
%%, %. %. d%*P./

. . . - . , .- ,



*I S

6.0 EXPER10TAL APPLICATION AND ASSES ST

6.1 Experiment

In order to assess the approach that vas derived during this
project, an experiment was conducted. That experiment involved
the application of the prediction and estimation techniques1%
identified in the preceeding Sections of this report and %
described in Guidebook format in Volume II. Those techhniques
were applied to a development effort. In order not to bias the
results, the application of the techniques was performed in line
with the development effort but feedback was not given to the -

project team. -

The development effort was to develop the Facilities Automated --
Maintenance Management/Engineering System (FAMMES) which performs S
work order processing (WO), Preventive Maintenance Scheduling
(PM), Inventory Control (IC). and provides a maintenance history
(MB) data base. The users of this system are Air Force
maintenance personnel including supervisors, schedulers,
analysts, and maintainers. The hardware architecture involved a
DEC MicroVAX II, Rainbow Intelligent workstations, and VT100
terminals. System software utilized included a relational data
base management system, a forms management system, an on-line
query capability, and a code management system. The application
software was written in FORTRAN.

The development of an initial operating capability was performed
by a small team over a 3 month period and then incremental
enhancements were made over 3 more months. Development testing
was performed over a two month period, IOTVE/Acceptance testing
was performed at the customer site, and the customer used the
system over a 6 month period, reporting any problems encountered.

Table 6-1 provides summary statistics of the application code. - 0
The system was 16K lines of executable source code. The metrics
provided in this table, eg. %I/0 and complexity, are average
values for the modules in each of the subsystems.

The problem report data collected is shown in Table 6-2. ." -

The significant data collection performed for this study was in
the area of test data. Table 6-3 provides a time series listing
of all testing performed on the system. It includes . ."
developmental testing, on-site installation and training,
preparation for the acceptance test, and acceptance testing and
IOT&E by the customer and operational experience. The columns in
this table show each test run, a users manual reference if the .
test was demonstrating a user function, problem reports generated
per test run, what subsystem the problem was reported against, .
the cause of the failure according to the scheme in the legend, a
classification of the impact of the failure and the time to fix,
as well as the CPU time and wall clock time recorded for each

* •

e%, % %%% %.,

-, . 4,- -.

%~~~% % % %%%

.0.~~~~~. -'. -,P rXP.

,_ %v % - -V .'V% .. 411~~~~~~~~ i 'e 
I

- - .- 't rz eMiIl )I J1; lli i lilI1illi ~ -- l-III 
I

% I- - -ll_= l



- -. - - - - S A '.~... .~

4......,
U,

i*O ~ u~ 4 ~ -

00 '~O ~ - - .?. j~V'~

____________________________________ 
-.- ~

~a1
~ ~ 0% PS

- 0% - -

c-i ~

Q Z
~ *6.

-
'.9'.

H 00 '~o 0% 00Q - - -

0

0 * ~*- -p -
_______ 

-

-- - .t. h.p.

~-.p *,.

U, -.- -S.

~ r- U, *~?
e4 e~

* S

* -pS.
-P %*~PS
-P

'--p..
~ ~ e*'~ -

'*5%* -P
PS%. *..

.~ U ~

c-i
e~ 0

* .. *1~.~**

- .*'*J.
.%* P.
.5-.-...

________________ 
.5-

-p.

~ *. .h 6

~ ~~OU,0CU,

c-i -- 5-u -

________________ 
* -- p

0% e4 I- -
U, U, eN 00 r-00 U, 00 U,

0~aJ 4. 4.
.( PP'-p

U, C

U, 
0

__ - m
5-P.4.-p.

6-2 *6 4.-p
.5-...,,* PS

4. -I. *.~.s4.4.*.4.4..Jp p. ~,. *~. ~ *S*S4.PS.~. ~ .P& '.P.5-%VP...

-. . . . ... .5. P. -P *~ S. - S. *
-P *- P.. ** *. * ~

P. -P P. P. ~ -~ p ~ ~ ,P.%'.P.% ..



I % _'

% %

No

-b

..,*J ',v "€ ,

N %

SLL ,-

.~ ~~ ~ l qz° o.-...

6-3~

%,e . % .%%

iu A

t ,p".. ,p"pZ . " ",r.." .".''",P "r r , " rZ, +' r.. £, o ,,r. . , .,, ,-,,-.. ,.-.--". ,. .".. + ,.,'.-. +- '+..' " "r", ".",..0+."' .



t", "F al.,. P

(.1; c+ i -+ m P. M m -m m a + M+ f"c

" " -- . "-, "-- "

ja*

040

'% "% .

on N m m

~~flN ~ M ~ M 0 N~ N e,4JO N -

N~u, # IMN -r-IqNor-- -

-- r -eN.. - --

o I.- % -Z- ode

Iv %

0
- .,-,.,,,"

-- : .",.",

.'..,

4.. - 0 ,. ,, .. ,,-
I P.' .% % . * A .+% % . + , ,? ,., u+-,m A.,,. ,.,. + . .U ... A... . , -. - - .- + -. . _ . . -.
yl~ 'r;';. . -' N'.'.. . 'e,.+,+. +,'.,.'....+ 5% %.. .. ".. ' - p "._e'-'-,N . N...''; ' .. "-'. .. p

- lp. -".+r 2" .. + ' '. . - . ,,. ,
.

_,.€ 5 * .-.-4- - 4, 4 - . 44 ' ' - ' - - -. 2 ' ' +...2.-+ +. . .• -. .



1 0

N C..

' 4N'.I

it a. x t - i

.

jP M NdS"vqoF cal-: C4C N N 'N 1~%

N~ M N

V~ Jr - f

%? %



-**

% I

. -, " .-"-_- - 0 . :

-0 -o 2

' -' 0 2

Z 5Z

m,,p.

LZ - -__".___'"__-__.

_- --

r- AL---- 
-. 

-. "

S-C-

- - . . -p '

.4. 0. a. Q. A^A . a. I. a

- C

zc
ad --- r

. S -. ~J , 5



.5-.,
.(*

-5, .~.
5. %

* 0
p. w It

0
. 4~.

SIt 5.
- iS

~. ~
.5 II.

~* 115.5

.5.5.5%

% V/V'-t
I ~I

-~ -

-~

11

-- a- 0
~ ~ 0
o ~

- '- - Z

"-S I S

.5%

-~ ~-~ -~
-'--S ~

- S

~ ~
.55 ./%. .'

-5

.5.5%
.5 -5 ~

5...-...

~- ~ ~

is
.5....

I,. IP
.5%
.5.'.- - ~

-S- .. %% '
__..~ --

5.5 *55.5- ~
.5'

(* '.~. ~*%
5, *I.*~5 ~

0
55 ~
5~*~~*5~

..- S.5....5
-S- 55.5

5-..

- 55

- Cl Cl (N (N (N

__________________________________________ 0
r- W-~

.155-

5-

~I5~5

5.S

* 555
-'--5' *5~55~.5 .5 .5.5

.5
55. SW-~% .5 \% .5.5% ~ ~ 7. .



A 0

. .... .

LL.. L

%> %

41 CCZ C 4- -xO x x x- c

z~ __

%~. % %%

Jh F.



Id~W~ V~pd~ ~r-~-~mw 4 j ~ ~ ~A\

~~pq

~

* 0
-"--u

., ~,~a--

.*. *8

I -.

,~*

-i
~

j ~ j E

B B Z - E

1 %* .'** %

~
~

2 -
-~ 2 "~ *~%

S ~
~ -*.

- ,.~ -- S
~ -~ C
S --

LL~

- .4~ B -~-~

a CL~IC i~. ~ ~ ~ ~. . S..-

~.S<>~ ~- ~ B I 0

C~~
~.\ NA.

5' *5S' ~
a .- .P

*.\h.

I 0
I~ S

U r
i

5'.'..
'.5

B....

- ~. *5%*

S-S

- ~S . S.'.'

- E
r ~

3 ~. EB -~ - ~ii ~
~i~~*iJ-~ _ i~. ~ I

-~ I ~

~ - ~ .~ U

S

'S

5~5*~

0

F--,

5-- - . - . V - W I - - .~ .~
S * . . . - * - S * S S - . . ---. 5.-,

-. .. - . - . ..
* . .5. . S **~S ~-.....S ~



n . .. , ., , .,, .-. , . , , . 4 - * . . . - ' - .. , . . . . . . . . .... .,

0

test run. Specific CPU execution time and computer operation

time was collected during development testing. Figures 6-1 and
6-2 illustrate graphically the occurrence of failures over
calender time and CPU time respectively.

In summary, seventy-one (71) problem reports were reported during
the testing of the system. Sixty-four (64) specific test
runs/sessions were conducted to uncover these 71 problems. This
data is provided in the first three pages of Table 6-3. A total
of 16.34 computer operation hours were utilized during these
testing sessions. Thus, since the system was 18,096 lines of
executable code, the fault density at the end of the tesing was
.0044. The average failure rate, using the computer operations ,e.'
hours expended to expose the 71 problems, was 4.34. Using the
last three testing sessions, two problems were found duing 2.15
hours of testing. This calculates to a failure rate at the end
of testing of .93.

After installation, during operation of the system by the users,
35 problems were reported. This number does not include
additional problems reported by the user that, after analyses,
were found not to be problems or were out of scope of the
specification. An estimated 480 computer operation hours were
utilized during the period of time these 35 problems were
reported. The failure rate exhibited during user operation then.
was .073. Adding these additional problems to the 71 found
during testing meant that a total of 106 problems had been found
in the 16,096 lines of code (a fault density of .0066).

Without knowledge of this actual performance, the prediction and
estimation methodology developed during this research effort was
followed (see the Guidebook in Volume II). Table 6-4 summarizes
the results of the application of the rethodology utilizing only %?
these prediction and estimation relationships recommended in
Table 5-23. 0

The results were encouraging. The predicted fault density was
.0063 faults per line of executable code, which was within 43% of
the actual fault density using the problem reports found during
testing and within 4.5% of the actual fault density using both .-....
the test problem reports and the operational problem reports.
The estizhated failure rate was .087 failures per operations hour,
within 19% of the obeerved actual failure rate.

The predicted fault density was expected to be closer to the
fault density calculated using only the problem reports
identified during testing since the fault densities collected
from the 31 data sources and used to calculate the average fault - -
densities related to the application type, A, were nrimarily from
formal test programs. Little data, as observed in eotion 4, was
available from operational systems The results shown, however,
demonstrated the predicted value to .e very close to the overall
fault density recorded through operation. Data collection - -'

efforts in operational environments will help correct any bias in

6-10 ' " .

... .. ... .. .. .-.. .......-........ /. ;..'.'.,.,:.-.,.-.'.-....-?,...L. .'" , _""

,',-."

* INOON



U.t

44

JS.&



1000

90- - a-r

80-

• a_.-. * -j

-

110

500-
30--., : 80 .

20-

10

12 4 6 8 10 12 14 16 18 . ,

COMPUTER OPERATION HOURS DURING TEST,.-,.

600

FIGURE 6-2 . .-
CUMULATIVE NUMBER OF PROBLEMS "--

FOUND DURING DEVELOPMENT TESTING ""'"

a" %" % ,,

." " ,. , .

,,, ".t , .

- # W # " '# '' "-" ,', -,. . ,. ' 1 ' ' -. "... ." ' -. ," #." ."'" " " ". ,' # g .",." -",- ." %' - - .-3,- " "
i-,€'/..-,,r.'/ ,- / "--r . . .. .";... .-. : . ., .-. " -,-.'---. .'..'.,.:........<'- -.- '.--2 ''-<



TABLE 6-4 -- ,-_- - - .- ,.

METHODOLOGY APPLICATION (RECOMMENDED METRICS) "''''',_-,

PREDICTION ,. ,

RP=A*D*S- .-

BASE LINE FAULT DENSITY = 0085

* 0

D DM = (.008 DC --04)/.013 
X

D C 2 5 13 .64
DM= (.008 " .64 - .04)/.013 ,"""

TABLE 6-4 " .'

DR 1.09PA S

S =SOFTWARE CARACTERISTICS CENTE

S= SL" SX * SR ,.-.u .

SL= FORTRAN = I 108 .

SX = 1.5 (25) + 1(140) + .8(246)/411

A .9.01

SR = PRNMrZ %,

=.2 <.25 SR =.75
S 1'.91".75=68 ;

S .68 -

.r

PR .005 1.09 .68 .0063 -"-0,)..'13

- ,a'-

Actual Fault Density at end of Test .0044)11,

Prediction Error =RP - Actual FD Q

I~

FD 1043% %

Actual Fault Density at end of 3 months operation =.0066 '_ '''-
Prediction error = 4.5%

ESTIMATION " ,.. ,

REFTI= "''

FTObserved Average Failure Rate during Test =4.34 . ,,. ..

T, .02 *TC"".-". ""

TC = VS=T/ N

Ti 1(02 ( = .08)7

Actual Failure rate during operations =.073

= .91. d

Estimation Error = RE - Actual FR = 19% " ", "
Actua t- ,"" ,-

5=1• .9i''.75=68

6-13 .

Z.....

R, .5* .-'--8 .0! % % %

%.'

AcuZFutDniya n fTs 04

Prediction ~ ~ ~ ~ - EroX E culF



the methodology over time.

Utilizing all of the predicted and estimation relationships
developed, including these not recommended because further data
or analyses are required, the results are almost as good (see d
Table 6-5).

Taking into account the additional influences represented by
these additional predictors should result in a more accurate
prediction, but in this case, the prediction was less accurate
(22% and 19% errors for the predicted fault density and 30% error
for the estimated failure rate) in two of the three cases.

A possible rationale for the predicted fault density being high
compared to the fault density at end of test is that the problems
found during the design review (used as input to the Quality '-
Review metric) are not counted as problems in the fault density
calculation and these problems, identified early, were corrected
then. The estimated failure rate was high probably because the
metrics (in the expanded methodology) indicated that the system
wasn't tested as extensively as preferred. The estimation
methodology, then, modifies the estimated failure rate up because
there is less confidence that the observed failure rate during
test is a true representation of the system.

As stated earlier in this report, eventually we feel the
prediction techniques should be predicting failure rate, like the .'

estimation techniques, rather than fault density. The prediction
techniques have been derived using fault density data from the
data sources. Ignoring that fact, and simply using the
prediction metrics shown in Figure 6-4 and the baseline failure
rate instead of fault density, our predicted failure rate would
be:

RP - .108 * 1.09 .68 - .08

which represents only a 9.8% prediction error. ,.J,, .

Additional data collected during this experiment are presented in
Figure 6-3 and Table 6-6. In Figure 6-3, the Impact column
describes the criticality of the fault to the system operation, a
high impact meant the system would not function, a medium impact
meant the system would operate but not satisfactorily, and a low
impact meant the system would function satisfactorily with minor 0
irregularities. Note 20% of the faults were reported during
testing were Judged to have a high impact on the system. The Fix "."
column records the impact on fault repair. A high rating meant
the combined analysis and correction effort took between 12 and
36 person hours to correct, a medium rating meant the repair .
action took between 1.5 and 12 person hours, and a low meant less
than 1.5. Using average times of 24, 8, and 1, the average time
to repair a fault was approximately 4 hours. Only 3 faults
during testing were considered to require longer than 12 person
hours. In Table 6-6, 41% of the faults found involved logic

6-14 f



-. 110 95 -_ r

TABLE 6-5
METHODOLOGY APPLICATION iFULL METRIC SET)

PREDICTION*

RP =A *D *S

A = Apphication Type = Production Center

Baseline Fault Density = 085
Baseline Fail ure Rate = .108 A = 085

D = Development Mode = Serii- Detached W

D=(~v =(008tC- 04)[013

DIM =009 64 - 04)[.013 D= 109-\ .
-109%

S. Software Characteristics

S= SA *ST - SQ - SL - S M - SR S SX

SA =Error Tolerance Checklist
Not applied SA I 1

ST = Traceability ~~
=,%'R DRINR =95
if~a9 ST=I

SQ - Quality Review
= DR/NR = 33/68

48 if< .5 SQ =1

SL =FORTRAN SL = I '

SM = (9(406)- (5) = .(0))/411 41

=.9 S%4=.9

SR = PR/NM = 2
ift<.25 SR = 75 46~

SX = (1.5 (25) +(140) + 8(246))/411
= 91 SX =.91

S = 1 .9S01 *1 09 .75 91 =S =.58

RP= 005 *1.09 *.58 = 0053 *~..-

Prediction Error with Actual FD after test = 2217
Pindiction Ernor with Actual FD Duwing Ops = 19%

ESTIMATION

RE= FT, =TI

FT, = .3

T1=.02 TETM TC

TE = 40/AT 0
= 40/33 =1. 2 Th =1

TM = rrrru N

. 3115 =.2 TM 1l1

TC =1/IVS .f
III = TC=I

T = 0201 1.1 01 022

RE 4.34 *022 = .095 ~
ESTIMATION ERROR =30%

6-15

*I~ % % % % %~ =.% %%:**

%' %~ %S* *S*



% 0%

1 % 
J

11 
-6

I% 
%

~1 74

fl~fl J-4 I- w 1111r

ilii
6-16

%J %- % % % %%

% % %,% % % % %
:2 ' : . 2- z. 2- 2 ' : -



Z -e

z r

0 
-. c

.I

.. NI

F Jq p 0
% % % Z

- -CnC % 

-. 

A 
- -- -



-IW_% -J -J -y -. - - -, . . *- . ,-

o @

errors which is consistent with other data presented earlier in
this report.

6.2 Assessment

The experiment confirmed two vital goals of this overall research
effort:

(1) Software reliability prediction and estimation
appears to be feasible. The accuracy experienced
during the experiment (- 30% error) was k A

encouraging. Further refinement of the metrics
based on future data collection should improve the
techniques (see Section 7 for suggested future
research).

(2) The reliability prediction and estimation
technology appears to have significant potential
for aiding in the development of more reliable
systems. Table 6-7 highlights how the predictions
and estimations provide support to the development "-'

of more reliable systems.

A key idea generated or supported during the experiment was that
the prediction techniques and the metrics that support them aid
in identification of the parts of the system which eventually ' '
exhibit the highest fault density or failure rates. In analyzing
data source 10 and 17, the metrics were generally accurate in
identifying those subsystems or CSC's that contained the most -< ->
faults. During the experiment, the metrics accurately predicted
that Work Order Processing and the System Utilities subsystems '
were the most error prone (highest fault density). Further -.. . .

evaluation is needed to assess their prediction effectiveness at
a module level. The information provided by the metrics and
predictions then can be used to support software engineering
decisions which typically include:

(1) Redesign of module (replacement)

(2) Decomposition of module .- ,

(3) Allocation of most experience programmer or tester -',."

(4) Reassessment of algorithms to simplify

(5) Rework to comply with Standards

(6) Further analysis

(7) Further testing

It is in the support of these activies that the real payoff of
the technology is realized, since the reliability of the software

6-18

% %.'

, t,



1" 

X7 
- -- - - - -

:%

A z

4 d~29 z = A ~
- 4 'P -C6 A:

WZZ < --
0 go 0 96 -

z Z Z. Z d

A a z z <

9 00 U -z 
Z 00 w

96~c 06 o0 A

I;!; - a.0j
96 A.0c

W Z Z =4 '~

A.z < . a*ot a 0 c C

0' c A c 6- w 'AA 0 6' .0' C6 CA .0 A

0~ 0
A. 

%Af.A

z4

. p :

w C6

z' '

> ~ ~ ~ 6 C~g %9%N



vill be improved during the development process as a result of ,
these activities. %;. "-.

%

~ %

6-20

% %%

,-..'. ,v .'

, W, WR ,1

A" ,. 4

'.... ,5%

,- ,.

S

;.. '.. ,.<

• -..-*. '

-.



*" S

. -. -...

7.0 0ONCLUSIONS/RECOMENDED FUTURE RESEARCH

7.1 General%

The primary goal of this research effort was to develop a
methodology for predicting software reliability. The Guidebook r -

in Volume II of this report provides all of the procedures for i
data collection, calculating the metrics, using the models and.-
reporting to effectively apply the methodology. The methodology
is based on a framework for measuring software reliability that
spans the life cycle of a software system. The methodology is
preliminary in nature. It provides the basis for evolution of
the prediction and estimation techniques as a result of future
data collection and analysis. b S

A key result of this effort was the data collected. A % .
significant portion of the effort expended during the project
was devoted to collecting general reliability data from a wide
range of systems, detailed data from two systems, and detailed
data from another system during the experimental application of S
the methodology.

The experiment results were promising. Accurate predictions and .
estimations (within 30% of actuals) were made. However, more .'
detailed evaluations of the results are needed and more
applications of the methodology are needed before practical
application is recommended. This section of the report is
devoted primarily to recommending what future research should be
conducted.

The utility of metrics as problem indicators was further-
supported. Specific analyses were conducted that demonstrated
the accuracy of some metrics in pinpointing problem areas in asystem..'.-.

The high level reliability indicators, such as fault density and -
failure rate by Application Type appear to be consistent and
supported intuitively. The decision to base the methodology on
a baseline prediction using Application Type probably was key to
results aohieved. Many of the more detailed multipliers
(metrics) in the methodology, however, did not perform as well
as expected. The relationships derived from regression analysis
were not statistically significant for many of the metrics and a
more simplified table look-up approach was taken in the
methodology based on the observed trends in the data. The
utility of metrics to pinpoint problem modules was deomonstrated
and is a promising finding. Some metrics were dropped from...
consideration. The theoretical foundation of the methodology,
therefore, needs significant reinforcement. Many additional
ideas about software reltabii.ity were generated during the

I S

6IC %%

J_ J .' * % % * "  "  
- . . -e, .0.' % ,, , , ,. .., - . . . - -. - . - ... ... . '-



* 0

project. In the following paragraphs, recommendations for -- . '-

future research are made. They include both efforts that will
enhance and refine the methodology developed during this project
and the related ideas about reliability.

7.2 Future RLsearch RecomeMdations

The following research ideas are offered for consideration. .
They are organized as follows: -

DATA COLLECTION4-.--

• Data Collection is the keystone to the evolution .,.

and refinement of the prediction and estimation
methodology. Use of the data collection procedures .,..
in Appendix C of the Guidebook are recommended for
use on any software developments. This is
especially true for fielded systems since failure * S
rate data is especially needed. Collection of this
data by the RADC sponsored DACS and analysis of the
accuracy of the methodology could follow. 'P

* As more data is collected, the older data sources
should be purged from the data base and the
baseline values and metric multipliers updated. -,

* Additional data sources are needed in the Tactical,
Process Control and Developmental application
categories.

0 Data from Ada projects are needed. No data wasA
analysed from systems implemented in Ada in the -

current data base.

* During projects where data collection is to be
performed, the data collection procedures should be
contractually required and a Data Definition
Document and Data Collection Guide should be
required CDRL's.

PREDICTION/ESTIMATION TECHNIQUES

• As more data is collected, further analyses of the
prediction and estimation techniques should be -
sponsored. A goal would be to have formal,
statistically supported functions embedded in the -' ",-,.
methodology.

* The analyses should be done not only at a system
level using the Application and Timing 9
categorization schema but also at a function level
as suggested in Section 3. ,,,'.-

• The analyses should also be done at the unit level.

..,

.*.,. ,% ....

u% ' % % ', ", " ". , ,% . "- ". % '.=. "- - ". "- % % "- "- "- ". " % % ,' % "- "• " "-.-.. .".".". ."-.. . . . . . . . . ."-.-.. . . .".. ..



Statistical techniques valid when dealing with data
where the independent variable (fault density) is
often zero should be explored. Data from Data
Sources 10 and 17 are available for this level of
analyses. %-4

0 Other metrics should be considered. Function
Points, for example. have been mentioned in the
literature but were not investigated during this
effort.

* Further investigation into the relationship between
fault density and failure rate (called the
transformation function) is recommended.

0 Addition of a Section in the Guidebook that
describes how to combine the Software Reliability
Prediction and estimations with hardware
predictions is recommended.

SOFTW[ARE JIATLITT CONCEPTS

6 Revisions to the Software Quality Measurement
framework should be made. Those revisions should
include changing the Quality factors to the
following: .''

Reliability
Integrity
Efficiency
Usability
Supportability
Reusability

The combination of correctness, verifiability and@
survivability into Reliability is recommended
Also recommended is the oombination f
Maintainability, Flexibility and Expandabilltv
Support ability; and Portabllit I
Interoperability into Reusability. This r "'.
in factors should effect a r. :
combination of criteria and metrics t.' #
contained in the methodology s9hu v

p metrics corresponding to .
framework.

o 0 A corresponding rev:s:. "
Measurement System 1s re m -- :.'.'

" An overall m:de. P, - -

role in a svst . --
would en: f -,

and n- : m .



A0-RIM9 61 METHODOLOGY FOR SOFTWARE RELIABILITY PREDICTION VOLUME 3/3
1(U) SCIENCE RPLICRTIONS INTERNATIONAL. CORP SAN DIEGO
CA J MCCR.L ET A. NOV 6? RADC-TR-87-171-VOL-1

w UCLASIFED 3@ -G3C-fl9 

/C12/5 ML

EAhhhhhhh



ti

S
- 3 . -_

.o- 30I uu2.l.

11l1li L IImII :
" im

1111 ~**1111.8

w.N

-V, .

_0

r , 0
. ... ,W- ,- W , w - .v ' , , ,* ' , ,- - ",. ", " ,, , "m " "t • , •



.,M

schema, and environmental influences such as
workload, input variability, mobility
considerations, power, etc. This model would be of
use to discuss the combination of software " -

reliability concepts with these other aspects of a
system so that it is taken into account in system
reliability. Consideration should be given to the
terms availability or dependability for software to
avoid controversy with using reliability since
stftware reliability is not a function of aging or
wearout. The terms availability or dependability
are more consistent with the concepts of error
tolerance, robustness, reooverability,
survivability and the fact that software failure is
a function of latent defects and unanticipated
usage. In either case, software exhibits a failure
rate which must be considered in a system
reliability program.

MILTARY &TMABDM

0 Revisions to MIL-STD 785C are recommended to
include software reliability concepts. The
Guidebook in Volume II is the software equivalent
to MIL-STD 756B and in part MIL-STD 785C but
conceptually and practically, recognition of
software in MIL-STD 756B is advised with reference
to the Guidebook as a preliminary implementation
guide.

OTHER

0 The Guidebook should be expanded to cover software
life cycle support (or Post Deployment Software
Support). The equivalent hardware concepts are
called logistics support. Maintainability (the 0
time to repair) is a key issue in hardware
availability concepts and should be considered in
software reliability prediction and estimation as
well.

0 The Guidebook should be coordinated with the draft
DOD Data Collection Guidebook, the DACS Software
Data Collection Guidebook, and the Software
Management Indicators Pamphlet and Software Quality
Indicators Pamphlet being developed by AFSC.

This extensive list of recommendations is based on the promise
this research provides. It acknowledges the deficiencies in the
current technology but recognizes the key to improvement is
through data collection and analysis.

7-4



8.0 REFEMINWES

ADAM84 Edv. N. Adams, "Optimizing Preventive Service of
Software Products", IBM Joal DI Researh U Deveome.,
pp. 2-14, Jan. 1984.

AIRT83 Air Tunnel Control System (project performed by SAI
Huntsville at the Arnold Engineering Development Center) unpub-
lished data.

AKIY71 F. Akiyama, "An Example of Software System Debugging".
IFIPS Proe., 1971, p. 37.

ANGU79 J. Angus, et al, "Validation of Software Reliability 0
Models", RADC TR-79-147, June 1979.

ANGU83 J. E. Angus, et al, "Reliability Model Demonstration
Study", RADC TR-83-207, August 1983.

ANSISI American National Standards Institute (ANSI), "American
National Dictionary for Information Processing", Report ,-
13/TR-1-81.

BAKE?7 Baker, W., "Software Data Collection and Analysis: A
Real-Time System Project History", RADC TR-77-192, June 1977.

BASI?? Basili, V., et al, "The Software Engineering
Laboratory", University of Maryland TR-535, May 1977. ,.,

BASI81 Basili, V., et al, "A Controlled Experiment Comparing
Software Development Approached", I= Transations 2 Software
Enineering, Vol. SE-7, No. 3, May 1981.

BEAU8I M. Manielle Beaudry, "A Statistical Analysis of Failures
in the SLAC Computing Center", Digest- COMPCON99 pp. 49-52.
IEEE Catalog No. 79CH1393-8C, February 1979. ">

BELL76 T. Bell, et al, "An Extendable Approach to Computer- i
Aided Software Requirements Engineering". 1976 (SEC). S

BOEH81 Barry W. Boehm, Software R.ginapriU VnAnmin.n Pren-
tice-Hall Inc., 1981.

BOWE83 T. Boven, "Software Quality Measurement For Distributed
Systems," RADC TR-83-175.

BOWE85 T. Bowen, et al., "Specifioatiion of Software Quality
Attributes", RADC TR-85-37 (3 Vols), February 1985.

8-1

0%S
Its



CARD82 Card, D. and MoGarry, F., "The Software Engineering
Laboratory", NASA Goddard Space Flight Center, SEL-81-104,
February 1982.

CHEU81 R.C. Cheung. "A User-Oriented Software Reliability
Model", I=U Transactions on Software Rnginnaaing. Vol. SE-7,
No. 1, January, 1981.

CURT79 B. Curtis, "In Search of Software Complexity". Presenta-
tion at Workshop on Quantitative Models of Software Reliability.
Complexity, and Cost", IEEE, NY 1979.

DACS79 Data and Analysis Center for Software (DACS) "Quantita-
tive Software Models", (DACS) SRR-1, March 1979.

DAVI81 E. A. Davis and P. K. Giloth, "No. 4 ESS: Performance
Objectives and Service Experience". Bell Systems T
Iau ., Vol. 60 No. 6, pp. 1203-1224, August, 1981.

FAGA76 M. Fagan, "Design and Code Inspections and Process
Control in the Development of Programs", IBM TR 00.2763, June
1976.

FISH79 D. Fish, M. Matsumoto, "Software Data Baseline Analy-
sis",,RADC TR-79-67, March 1979.

FRIE?7 M. Fries, "Software Error Data Acquisition". RADC
TR-11-130, April 1977.

GLOS84 Gloss-Soler, S., et al, "The DACS Software Engineering
Data Collection Package". March 1984.

GOEL78 A.L. Goel, K. Okumoto, "Bayesian Software Prediction
Models - An Imperfect Debugging Model for Reliability and Other
Quantitative Measures of Software Systems", Ro Aix Develoment
CAMn=r Ro, RADC-TR-78-155, vol I. August 1979.

GOEL79 A. L. Goel, "Summary of Progress on Bayesian Software
Reliability Prediction Models", RADC TR-78-155, 1978.

GOEL83 A. Gael, "A Guidebook for Software Reliability Assess-
ment", Syracuse TR 83-11. April 1983.
GRAS82 J. Gras and I. Hamburg, "Collection and Analysis of Data

From Various Software Metrics and Reliability Estimation".
Dynaflow Software Systems, Amsterdam, Netherlands, 1982.

HALS77 M. Halstead, Elents of £ftyjare Snienn. Elsevier
Computer Science Library, NY 1977.

HECH?7 H. Hecht, W.A. Sturm and S. Trattner. "Reliability
Measurement During Software Development", NASA Langley CR-145205.
Sep. 1977

8-2



HECH79 H. Hecht. "Fault Tolerant Software". UE Transactions
2A Reliabil.y, Vol. R-28, No. 3, August 1979.

HECH83 H. Hecht and X. Heoht, "Trends in Software Reliability
for Digital Flight Control", NASA Ames Research Center, April
1983.

HERN83 N. Herndon, et al, "The Requirements Management Methodo-
logy: A Measurement Framework for Total System Reliability
Conference. December 1983.

HIER86 V. Hiering and D. Bennett, "A Developer's Perspective on
Software Quality Metrics'. I=EE Communications d Vol. 24.
No. 9, pp 66-11, September 1986.

IEEE82 IEEE Standard Glossary of Software Engineering Termino-
logy, IEEE Std. 729-1982, The Institute of Electrical and
Electronics Engineers, New York. NY.

IEEE83 IEEE Computer Society, "Digest of Papers, Spring
COMPCON'. 83", IEEE Cat No. 83CH1856-4. particularly Session 1.
"Practical Approaches to Highly Available Systems", pp. 1-18.
March 1983.

IYER81 R.I. Iyer, Steven E. Butner, Edw. J. McCluskey. "An
Exponential Failure/Load Relationship: Results of a Multi-
Computer Statistical Study" Computer Systems Laboratory, Stanford
University Center for Reliable Computing, July 1981.

IYER83 RI. Iyer and Paola Velardi, "A Statistical Study of
Hardware Related Software Errors in MVS", Stanford University
Center for Reliable Computing, October 1983.

JCL81 Joint Logistics Commanders' Orlando I Conference; 1981.

LEHM82 M. Lehman, "Report on Professor Lehman's Visit to St. Z%• . • :.. . --.
Louis", documents by Col. Hogan. USA Material Development and ,.
Readiness Command, ALMSA, April 1982. ON.I S

LIP079 M. Lipow, Ed, Z Trannactiong gn selibil . Volume

R-28. No. 3, August 1979. , 0

LIP083 Failure data taken from a classified/proprietary
computer supplied by Myron Lipow.

LITT74 B. Littlewood W J.L. Verrall, "A Bayesian Reliability
Model with a Stochastically Monotone Failure Rate". IEE TraAsa 0 1

iosn B gZ RP1ib±i.V, Vol. R-23, pp. 108-114, June 1974.

LITT80 B. Littlewood, "What Makes a Reliable Program - Few Bugs
or a Small Failure Rate?", P. la N=z, p. 707-715, May 1980.

8-3

Z~



MACK83a D. A. KacKall, V. A. Regenie, and M. Gordo&, "Qualifi-
cation of AFTI/F-16 Digital Flight Control System". NAECON Paper
324, May 1983.

MACK83b D.A. Mackall, "AFTI/F-16 Digital Flight Control System
Experience". First Annual NASA Aircraft Controls Workshop,
Langley Research Center. October 1983.

MAXV78 F.D. Maxwell "The Determination of Measures of Software
Reliability" NASA-CR-158960 Final Report, NASA Langley Research
Center, Hampton, Virginia. 1978. ~

MCCA76 T. J. McCabe. "A Complexity Measure", IT.rV Transactions
QUo iQtY&ar Engineerting. 1976.

MCCA77 J. McCall, et al. "Factors in Software Quality", RADC
TR-77-369, November 1977.

MCCA80 J. McCall. et al, "Software Quality Measurement Manual".
RAflC TR-80-109, April 1980.

MCCA84 J.A. McCall et al. "Methodology for Software and System *
Reliability Prediction" Phase I Final Report. Prepared for RADC. w '

Science Applications Inc., July 1984.

MEND79 K. Mendis and M. Gollis, "Categorizing and Predicting
Errors in Software Programs". AIAA Conference Proceedings, 1979.

MIYA- I. Miyamoto, "Software Reliability in On-line Real Time
Environment", Nippon Electric Co., Tokyo. Japan. (date unknown). .h

MOTL76 R. Motley, "Statistical Prediction of Programming
Errors", RADC TR-77-175. May 1977.

MORA76 P. Morands, "Quantitative Methods for Software Reliabil-
ity Measurements", Defense Communications Center, December 1976.te,%

MUSA75 J. Musa, "A Theory of Software Reliability and its
Applications", IM TrAn&aotior 2a Sotwr EndgejU~.
Vol. DE-1, No. 3, pp. 212-327, September 1975.

MUSA7?9 John Musa. "Validity Of The Execution Time Theory of
Software Reliability", .1 ranmotions gZ Rei ab±2iit , Vol. R-
28. No. 3. pp. 181-191, August 1979.

MUSA80 John Musa. "The Measurement and Management of Software '.

Reliability", Pro LM,. Vol. 68, September 1980. pp. 1031-1043.

MYER76 G. J. Myers. Software Rn2j.Abiurt.y..L Prnipe an-4
£cA.Iloas John Wiley 6 Sons, NY 1976. 5'5%

8-4

1 6



NAGE82 Phyllis K . Nagel and James A. Skrivan, "Software
Reliability: Repetitive Run Experimentation and Modeling*. NASA
CR-165836. February 1982.

NELS78 Richard Nelson, "Software Data Collection and Analysis".
Draft, RADC, September 1978.

PRES80 Jacques Press, " Computer Utilization at Several Enroute
Air Traffic Control Centers", Report ARD-140-1-81. Federal
Aviation Administration, December 1980.

PRES.O( E . Presson, "Software Test Handbook". RADC TR-84-53,
March 1984. .C~'
PRIC77 Reference Manual - PRICE Software Model, RCA PRICE
Systems, Cherry Hill, NJ. December 1977.

RICH83 G. Richeson, "Reliability of Shuttle Mission Control
Center Software", Johnson Space Center TR, 1983.

ROCK81 Rockwell-Collins, "Software Error Study", Contract
NASZ-27495, Collins Avionics Division. 1981.

ROSS82 D.J. Rossetti and R.K. Iyer, *Software Related Failures
in the IBM 3081: A Relationship with System Utilization",
Stanford University, Center for Reliable Computing. CRC Technical
Report 82-8. July 1982

SANA82 Sau Antonio, R., et al, "Application of Software Metrics
During Early Program Phases", COMPSAC 82.

SDS83 DoD-STD-SDS, Defense System Software Developzient.
Proposed MIL-STD, 12/5/83. Z

SEL83 Software Engineering Laboratory. SofLtware Engijaeerl"g
L.Rhnrntny (SEL) DA& BAAA Qrdan1za1U And User's Clip h
Rpininn 1, NASA Goddard Space Flight Center, Greenbelt MD. SEL ~ ~
81-102, March 1983 (describes data base containing data on many
NASA support systems).

SHOO77 M. Shooman, S. Natarajan, "Effect of Manpower Deployment
and Bug Generation on Software Error Models", RADC TR-76-400.
January 1977. 'A

SH0083 Martin L. Shooman, George Richeson, "Reliability of
Shuttle Mission Control Center Software", NASA paper. 1983.

SOIS85 E. Soistman, et al. "Combined Hardware/Software Relia-
bility Prediction Methodology, RADC 1F-5.8 985.%

SQAM83 MIL-STD-SQAM, Software Quality Assessment and Measure-%%
ment, Proposed MIL-STD. 101/82.

%~~ %0 %%%

8-5 %%%%

-n~~~~~~~~~~~~~~ Js . .-9 a * * R . s .~ a . ." . % .. .



SSCS83 Social Security Computing System, (TBD).

STAR83 Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy, DoD, 4/1/83.

SUKE74 A. Sukert, "A Software Reliability Modeling Study". RADC
TR-76247. August 1976.

SUKE77 A. Sukert, "An Investigation of Software Reliability
Models." 1977 RAM kr, January 1977.

TEIC76 D. Teichroev. "PSL/PSA A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing
Systems," 1976 (SEC).

THAY76 T. Thayer, et al. "Software Reliability Study". RADC
TR-76-238, August 1976.

THIB84 R. Thibodean, "Software Reliability Benchwork, RADC TR,
1984.

TROY86 R. Troy and Y. Romain, "A Statistoca; Methodology for
the Study of the Software Failure Process and its Application to
the ARGOS Center". I=EE 2n Software Engineering. Vol.
SE-12, No. 9, pp 968-978, September 1986.

TURN81 C. Turner, et al, "The NASA/SEL Data Compendium". DACS,
April 1981.

WAGO73 W.L. Wagoner "Final Report on a Software Reliability
Measurement Study" Distribution Statement B, Technology Division.
The Aerospace Corporation, August 15, 1973.',

WEIS78 D. Weiss, "Evaluating Software Development by Error
Analysis: The Data from the Architecture Research Laboratory,
NTIS AD/A-062 922. December 1978. S

WILL77 H.E. Willman, et al. "Software Systems Reliability: A -v
Raytheon Project History". RADC-TR-77-188. June 1977.

% %

8-6 "

%~ ~~%*%'"- % %' %% .
h~~~ <, Wa



APPENDIX A

DEFINITIONS AND TERNINOLOGY

This appendix presents definitions of the principal terms and
concepts used in this report. Where possible, the definitions
are taken from established dictionaries or from the technical
literature. Where a rationale for the selection or formulation
of a definition seems desirable, it is provided in an indented
paragraph following the definition. The sources for the defini-
tions will be found in the list of references at the end of this
Guidebook. .

ERROR - A discrepancy between a computed observed, or measured
value or condition and the true, specified, or theoretically
correct value or condition. [ANSI81]

This definition is listed as (1) in the American National
Dictionary for Information Systems. Entry (2) in the same
reference states that error is a "Deprecated term for
mistake". This is in consonance with CIEEE83] which lists '

the adopted definition as (1) and lists as (2) "Human action
that results in software containing a fault. Examples
include omission or misinterpretation of user requirements in
a software specification, incorrect translation or omission
of a requirement in a design specification. This is not a
preferred usage."

FAILURE - The inability of a system or system component to S

perform a required function with specified limits. A failure may .y,
be produced when a fault is encountered. [IEEE83]

This definition is listed as (2) in the cited reference which 0
lists as (1) "The termination of the ability of a functional
unit to perform its required function" and as (3) "A
departure of program operation from program requirements".
Definition (1) is not really applicable to software failures
because these may render an incorrect value on one iteration
but correct values on subsequent ones. Thus, there is nc
termination of the function in case of a failure. Definition
(3) was considered undesirable because it is specific to the h
operation of a computer program and a more system-oriented

is desired for the purposes of this study.

FAULT - An accidental condition that causes a functional urit to
fail to perform its required function. [IEEE83]

This definition is listed as (1) in the cited reference which
lists as (2) "The manifestation of an error (2) in software.
A fault, if encountered, may cause a failure". Er~or (2) is

A-i

N 1. 0 %e'V i~ N".



identified as synonymous with "mistake". Thus this defini-
tion states that a fault is the manifestation in software of
a (human) mistake. This seems less relevant than the
identification of a fault as the cause of a failure in the
primary definition. It is recognized that the presence of a
fault will not always or consistently cause a unit to fail
since the presence of a specific environment and data set may
also be required (see definition of software reliability).

MISTAKE - A human action that produces an unintended result.
[ANSI81]

SOFTWARE QUALITY FACTOR - A broad attribute of software that
indicates its value to the user, in the present context equated
to reliability. Examples of software quality factors are
maintainability, portability, as well as reliability. May also
be referred to simply as factor or quality factor. [Based on 7-.-
MCCA80]

SOFTWARE QUALITY METRIC - A numerical or logical quantity that
measures the presence of a given quality factor in a design or
code. An example is the measurement of size in terms of lines of
executable code (a quality metric). May also be referred to
simply as metric or quality metric. A single quality factor may
have more than one metric associated with it. A metric typically S
is associated with only a single factor. [Based on MCCA80]

SOFTWARE RELIABILITY - The probability that software will not
cause the failure of a system for a specified time under speci-
fied conditions. The probability is a function of the inputs to
and use of the system as well as a function of the existence of
faults in the software. The inputs to the system determine
whether existing faults, if any, are encountered. [IEEE83]

This definition is listed as (1) in the IEEE Standard
Glossary. An alternate definition, listed as (2), is "The
ability of a program to perform a required function under
stated conditions for a specified period of time." This
definition is not believed to be useful for the current
investigation because (a) it is not expressed as a proba-
bility and therefore cannot be combined with hardware
reliability measures to form a system reliability measure.
and (b) it is difficult to evaluate in an objective manner.
The selected definition fits well with the methodology for -
software reliability studies which will be followed in this
study, particularly in that it emphasizes that the presence
of faults in the software as well as the inputs and condi-
tions of use will affect reliability.

SOFTWARE RELIABILITY MEASUREMENT - The life-cycle process of
establishing quantitative reliability goals, predicting, measur-
ing, and assessing the progress and achievement of those goals" '-.- ..\

during the development, testing, and O&M phases of a software
system.

A-2

'N NA %;p,%,.. N. % %A" '.~:
%S %



SOFTWARE RELIABILITY PREDICTION - A numerical statement about the
reliability of a computer program based on characteristics of the
design or code, such as number of statements, source language or
complexity. [HECE77] I

Software reliability prediction is possible very early in the
development cycle before executable code exists. The numeric -
chosen for software reliability prediction should be compat-
ible with that intended to be used in estimation and measure- "'i
ment.

SOFTWARE RELIABILITY ESTIMATION - The interpretation of the ..

reliability measurement on an existing program (in its present
environment, e.g., test) to represent its reliability in a
different environment (e.g., a later test phase or the operations
phase ) Estimation requires a quantifiable relationship between
the measurement environment and the target environment. [HECH77]

The numeric chosen for estimation must be consistent with
that used in measurement.

SOFTWARE RELIABILITY ASSESSMENT - Generation of a single numeric
for software reliability derived from observations on program *

execution over a specified period of time. Defined sections of
the execution will be scored as success or failure. Typically,
the software will not be modified during the period of measure-
ment, and the reliability numeric is applicable to the measure- -.

ment period and the existing software configuration only.
CHECH??

The statement about not modifying the software during the
period of measurement is necessary in order to avoid committ-
Ing to a specific model of the debugging/reliability .. . -.
relation. In practice, if the measurement interval is chosen
so that in each interval only a small fraction of the
existing faults are removed, then the occurrence of modifica- I
tions will not materially affect the measurement.

PREDICTIVE SOFTWARE RELIABILITY FIGURE-OF-MERIT (RP) - A
reliability number (fault density) based on characteristics of
the application, development environment, and software implemen- ' %*

tation. The RFOM is established as a baseline as early as the
concept of the system is determined. It is then refined based on
how the design and implementation of the system evolves.

RELIABILITY ESTIMATION NUMBER (RE) - A reliability number
(failure rate) based on observed performance during test condi-
tions. , ]

FUNCTION A specific purpose of an entity or its characteristic
action. (ANSI81] A subprogram that is invoked during the
evaluation of an expression in which its name appears and that
returns a value to the point of invocation. Contrast with

A-3

" IN



subroutine. [IEEE83]

MODULE - A program unit that is discrete and identifiable with
respect to compiling, combining with other units, and loading:
for example, the input to, or output from, an assembler, - -,
compiler, linkage editor, or executive routine. [ANSI81] A
logically separable part of a program. [IEER83]

SUBSYSTEM - A group of assemblies or components or both'combined
to perform a single function. [ANSI73] In our context, a sub-
system is a group of modules interrelated by a common function or
set of functions. Typically identified as a Computer Program
Configuration Item (CPCI) or Computer Software Configuration Item
(CSCI). A collection of people, machines, and methods organized
to accomplish a set of specific functions. [IEEE83] An inte-
grated whole that is composed of diverse, interacting, special-
ized structures and subfunotions. [IEEE83] A group or subsystem
united by some interaction and interdependene, performing many
duties but functioning as a single unit. [ANSI7]

SYSTEM - In our context, a software system is the entire collec-
tion of software modules which make up an application or distinct
capability. Along with the computer hardware, other equipment
(such as weapon or radar components), people and methods the
software system comprises an overall system.

0

lie

p

V %

* .,. "- 5"?
P , w-'' .

-~ ._- P,

N L

A-4 .-.,w ,.v.

., , . ,'' ='"-""-"-"- .-..-....-.. ......... ...... ,, -5-5.



0 6

% % %% % %

tx. Z Z


