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ABSTRkCT
I

Sound fields in wedge-shaped ocean layers, modeling con-

ditions on the continental shelf, have been studied at the

Naval Postgraduate School in the last few years using the

method of imaqes. These studies are carried further in the

present work. The method is implemented in different en-

vironmental conditions. This thesis examines the influence

of several parameters on the sound field for downslope pro-

pagation in a wedge-shaped fluid of speed of sound c2 over-

lying a slow bottom of speed of sound c I . On the basis of

qualitative and semi-quantitative analysis of the behavior

of the pressure-depth profile for various geometrical and

physical parameters, we can conclude that:

1. A defined distance, the "characteristic distance"

X0 = ir/(2k 2 sin 6o tan 8), where cos 00 = Cl/C 2 ,

k2 = w/c2, and 8 is the vertex angle of the wedae,

has physical meanina as a useful scaling distance.

2. The distance of the source from the apex, in terms .
I

of the Xo, plays a major role in determining the

downslope sound field.
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I. INTRODUCTION

A. SOUND PROPAGATION IN SHALLOW WATER CHANNEL

Experimental investigations of sound propagation in

shallow water channels have been done by several investi-

gators. Shallow water propagation is of interest because of

the applications to coastal defense. These investigations

are expensive and time consuming. The use of a computer

model should provide a relatively inexpensive alternative to

observation.

One of the techniques uses normal mode theory. The

normal mode theory, which was introduced and developed by C.

L. Perkeris [Ref. 1], gave the exact solution in water of

constant depth. Further development of normal mode theory

was made by L. Brekovskikh [Ref. 21, who initiated pressure

as an integral involving Bessel functions and solution of

the normal mode equation. Another theoretical approach to

sound propagation in a horizontally stratified ocean of con-

stant depth is given by the method of multiple scattering

[Ref. 11. With this method, all the previous theories can

be simplified by conversion into an asymptotic form which is

valid when the acoustic wavelength is small compared to the -

distance over which the sound speed varies appreciably.

These theories agree with the laboratory experiments.

%



For a water channel with a small bottom slope, the sound

field may be expressed approximately in terms of adiabatic

normal modes. To facilitate prediction, R.D. Groves, Anton

Nagl, h. Uberall, and G. L. Zauer [Ref. 31 modeled a wedge-

shaped isovelocity ocean with a linearly-sloping, perfectly-

rigid ocean floor using adiabatic normal modes. For a pene-

trahle bottom the normal mode description fails when modes

propagating upslope encounter the "critical depth" (Hc),

defined as the depth where the associate mode changes from

fully trapped within the water channel to radiating energy

into the bottom (cut off) [Ref. 4-61. The parabolic equa-

tion can be used to explain the mechanism of sound energy

radiation into the bottom [Ref. 7,8]. Such an eauation was

studied by F. B. Jensen and W. A. Kuperman [Ref. 91, with

predictions that satisfactorily agreed with the experimental

results for small ray angles. With some restrictions,

normal mode theory is applicable for sound propagation in

the wedge-shaped fluid with a fast bottom. The parabolic

equation is good for fast and slow bottom, but with the

restriction that horizontal ray angles must be less than

200.

Another technique introduced to predict the propagation

of sound in the wedge is the method of images. This method

was derived from the simplest case; a monofrequency ooint

source in a homogeneous ocean with parallel boundaries. The

total pressure is the sum of an infinite number of spherical

12



waves from an infinite set of images. The restriction of

this method is that it does not qeneralize to the case of

inhomoqeneous media or non-olanar boundaries. In this work,

this method will be studied.

3. TPF I1ETHOD OF IM!AGLS

In 1978, Corpens, 3anders, Ioannou, and Kawamura [Pef.

1I1], oredicted the oressure amplitude and phase of the sound

field alone the bottor of a wedge-shaped fluid laver of

d ensitv pI' and speed of sound cl, overlyinq a fast fluid

bottor- of density P2' and speed of sound c 2 > cI by applyinq

the method of imanes in a computer program implementation.

In 1984, Paek [Ref. 11] , and LeSesne [Ref. 121, implemented

further imnrovements. Raek's computer proqram, WEDGE, and

reqesne's computer nrocram XSLOPE were validated for several

cases. L:EDGE was developed for two-dimensional unslope pro-

:a(iaticn ( the source and received are in the same vertical

,lane nernendicular to the shore line, and the receiver is

closer to the apex than the source (Figure l.la)) and down- ''

sl-ne nronacation (the source is closer to the apex than the

r ceiver (Figure l.lb)). XSLOPE was develoned for upslope,
--

Jownslope, or cross-slope pronacation (the source, receiver,

Enc; anex, are not necessarilv in the same plane nernendicu-

lar to the shorp line (Ficure l.lc)). In both programs,

0 %ek n-n TaSesne assume that the fluid in the wedge and

fI i in the hottv have constant densities, that -

13
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the speed of sound is constant, and that the interface be-

tween the fluids and the surface is smooth.

In both WEDGE and XSLOPE, all distances are scaled in

units of the "dump distance." A dump distance X, as stated

in Reference 10, is the distance from the apex measured

alona the interface at which the lowest mode attains cutoff.

If the wedge angle is 8 (Figure l.lc), then

kl sin c tan8 (1.1)

ec = arccos(cl/c 2 ) (1.2)

where kI is the wave number in the wedge and 6c is the crit-

ical grazing angle for reflection of sound from the bottom.

For < < 1

X = H tan 8 (1.3)

This scaling distance negates the necessity of specifying

freauency. l

C. COMPUTER PROGRAM DSLOW

At the start of the work reported in this thesis, a com-

outer program was obtained [Ref. 131, which is an extension

of the WEDGE and XSLOPE for downslope configuration with a "-

slow bottom. The computer nodel, DSLOW, developed to run on I

a desktop computer (Wang 2000), uses the method of images to

predict the pressure amplitude and phase anywhere

14
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within the wedge fluid overlying a slow bottom in a cross-

slope configuration. A geometrical picture of this configu-

ration is shown in Figure l.lc.

Mathematically, the model used in WEDGE and XSLOPE is

applicable in any condition. But consideration must be

given for making it work for a slow bottom. In the case of

a fast bottom, the dump distance has a physical meaning.

The dump distance is expressed as a function of the critical

ancile. The critical angle is equal to arccos (ci/c 2 ). In

the case of slow bottom, cl/C 2  is greater than 1, thus

arccos (Cl/c2 ) is invalid; therefore, so is the dump

distance. To facilitate the scaling factor, a "characteris-

tic distance" or "scaling distance" is introduced. We need

the scaling distance because, with this distance, our model

will be independent of frequency as in the fast bottom case.

There is also the hope that the use of a scaling distance

will allow systematic observation of the pressure field.

This scale distance X. is the distance measured along the

interface from the apex to the point where the lowest mode

would attain cutoff if the fluids in the wedge and in the

bottom were to be interchanned. The characteristic distance

is defined by the following enuation: 'I

Tr/2 .x (1.4)
K2 sino tan3

15
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where 80 = arccos(c 2 /c I ) and K2 
= w/c2  is the wave number

in the bottom.

The following ter's will he used throuqhout (see Figure

1.1):

wed'e ancle

Pl = distance oF the source from the aoex in units of

P2 = listance of the receiver from the anex in unit.- of

0aa
y =anile of elevation of the source above the bottom

6 = anle of elevation of the receiver above the
bottom

Yo = distance between the orojection of the source and
receiver on the shore line, scaled by Xo

Pl/P2 is the ratio between the density of the fluid in
the wedne (P I ) and the density of the fluid in the %
bottom 2

Cl/c 2 is the ratio between the speed of sound in the
wed-e (cI ) and the speed of sound in the bottom
(c2 ). 4 fast bottom occurs when c2 > cl; a slow .
bottom occurs when c2 < c1

The nurnose of this research is the following:

i. To transfer, test, and evaluate DSLOW procra- cn the

IU1M 3300;

2. To obtain nunerical and craDhic~l output f-r az

number of cases; and

3. To attempt to develop plausible exp1anations for :nv

sionificant features observed.
I-N
ISt

V#f WP
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surface

apex

.a. upslope configuration

apex
S Y = 0

b. downslope confIguration

:2 S
su.r.fece-

1.0

R

c. cross-slope configuration

Figure 1.1 Geometry of the wedge

17



I

II. THEORY

A. GENERAL VIEW OF A WEDGE PRESSURE DISTRIBUTION IN THE
DOWNSLOPE CONFIGURATION

A general picture of the sound energy propagation within

the wedge in downslope direction is given in Figure 2.1. If

a sound source is placed at point S, ray 1 will reach the

surface at point P with an incident angle a with respect to

the normal to the surface at this point. This ray is re-

flected by the surface at the same angle but with the phase

1800 different. (On the surface, sound pressure is zero

everywhere.) The reflected ray reaches the bottom with an

incident angle 8 + a . At great enough distance, ray 1

never reaches the bottom again. This ray does not contri-

bute to a sound pressure field at the bottom. The pressure

at the bottom should be very small according to the ray

theory argument.

Using these ray-tracing methods, an estimated profile of

the pressure amplitude versus the receiver depth can be

made. When the source and the receiver are placed near the

apex, the pressure amplitude is zero at the surface, a maxi-

mum somewhere within the wedge, and greater than zero at the

bottom. In the case where the source is at a far distance,

the pressure amplitude is equal to zero at the surface, a

maximum somewhere within the wedge, and zero at the bottom.

18
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Ray tracing will only give a rough approximation, not an

exact solution, but ray tracing may be used as a guide. The

method of images calculates the exact pressure amplitude at

each point within the wedge subject only to the assumption

inherent in using the plane-wave Rayleigh reflection

coefficients.

B. SOUND PRESSURE AT A POINT IN THE WEDGE DOWNSLOPE

PREDICTED BY THE METHOD OF IMAGES N

Let the source be a scaled distance R1 from the apex and

at an angle of y measured from the bottom of the wedge. Let

the receiver be a scaled distance R2 from the apex and at an

angle 6 measured from the bottom.

Usinq Figure 2.2, let the upper half family of images be

n = 1,2,3,4,... and the lower half family be n' =

1,2,3,4 .... Calculating the field resulting from source and

images proceeds along the lines developed in [Ref. 14]. If

n is the angle formed at the apex between the nth image of

the source and the receiver, then

0126-56- y

02 = 28 - 6 + y 
P

3 = 48 - 6 - y

4 48 - 6 + y

19
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or more generally

*n = (n + 1)B - 6 - y for n odd

n = nB - 6 + y for n even

Which can be reduced to:

n= {n+(l/2) [l-(-l) nl] }B + (-i)ny - 6 (2.1)

or

= 2 INT[ 2 i + (-l)ny - 6 (2.2)2 2

where INT[ ] denotes the largest integer which is equal to,

or smaller than the argument. Using the same method for the

member n' of the lower family of images we obtain:

Un- = {n+(l/2)[l-(-l)n] }a + (-.)n, + 6 (2.3)

or

= 2 INT[ n + 8 + (-l)ny + 6 (2.4)
2 .

rsing the qeometry of Fiqures 2.2 and 2.4, the distance

between the nth and n'th images to the receiver is

respectively

rn  / R12 + R2 2 - 2RlR2cos~n (2.5)

and

r n =RI2 + R2Z - 2RiR2cos~n (2.6)

21
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The angles eno and en' for the nth and n'th imanes

resnectively are

i arc tan S On(2.7)
6no =actn[R2/P1 -O cOsn

ancd

On'o arc tan [ 2P(2.8)
P/1- COS On

Define Onm an 9D,, as the angles of incidence for the

mth bcunces from the bottom Ior the n and n' image

respectively; m = 1,2,3 .... (The 0 th bounce is the last

one before reachinq the receiver.) The geometry of Figures

2.? and 2.3 oive enm as follows:

02 1= 620 - 28 - 6

832 e30 - 48 - 6

841 =604, - 28 - 6

e52 950 - 46 - 6

i

The 2eneral expression is

nm = - 2m6 - 6

Using the same method

en' m :nv o - 2mB + 6

The maximum number of bottom bounces of the nth and n'th

ex= -= IYr fn/23 1  = INT [On,/28]

23
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The maximum number of images is

nmax = N = INT [T/B

The reflection coefficients for the nth and n'th images

for a plane wave are:

i p c1 -nm

P2 2 (2.9)R (enm I

+ nmP2c2

and

iCl - n' m

8n'm) = -2- m (2.10)R ( 8 m

where
q

/ -(c 1/c2 )
20os 2 enm(.!'

nm sin nm (.

and

- /1 -(c 1/C-)2cos4 eQtM (2.12)
SP.. bn'in = n'm

The contribution from the upper family of images is

N M
Pu = 1 exp(_jkr)(l)iNT[n+l)/2I 9 Rnm (2.13)n= i rn ~

25
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and for lower family of images is

N 1  IMM~)2Pu = - exp(-jkr , )(-l) I N T [ n + ) / 2  Rm (2.14)

n= 1rn m= 0

The total complex pressure is

P(x) = Pu + P1 (2.15)

27
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. III. DSLOW PROGRAM IMPLEMENTATION

A. PROGRAMS FEATURES

Since the mainframe graphics computer was available, the

DISSPLA graphical program was used. The only programming

language compatible with DISSPLA is FORTRAN. The numerical

and graphical output is provided by this program. To give

the pressure amplitude versus received angle graphs, two-

dimensional plotting is used.

The program DSLOW is run by placing the point source

anywhere in the wedge and then placing the receiver at a

distance downslope from the source. The receiver position

was varied from zero degrees at the bottom to 6 at the

surface. High resolution plotting was achieved by dividing

the y-axis (received angle) into two regions. The first

region covers the receiver angles from zero to 1/5 of the

wedge angle. In this region A6 is equal to a/100. The

second region covers the remaining wedge angle with 66 equal

to 6/10. This method provides 29 predictions of the pres-

sure amplitude. Another method of plotting carried out was

in the region of 6 > B/2, AS = 8/10, and in the region of 6

< 6/2, A6 = 8/100. This method provides 54 points to be

plotted.

I
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B. NORMALIZATION

The main goal of this research was to investigate the

profile of the pressure amplitude as a function of a number

of variables. An example of the numerical values of the

pressure amplitude, the normalized oressure amplitude, and

the phase at each receiver position is displayed in 2ppendix

C. The sound pressure becomes smaller as the receiver is

moved away from the source. If the pressure amplitude were

olotted directly, it would be difficult to compare the

curves at near distances to the curves at far distances

since at the near distances the pressure amplitude is much

greater than the pressure amplitude in far distance. Thus,

m,.

a normalized oressure amplitude is needed. The normalized

pressure is obtained as follows: (see Figure 3.1)

We know that the sound pressure at the surface is zero

and that the sound pressure is a small number greater than

zero at a point near the surface. The first non-zero value

of pressure P1 is at the receiver angle, 61 = 9a/10. We use

this first calculated non-zero pressure amplitude as the

normalization unit. The normalized pressure is -a

PN = P(6)/(Pl) (3.1)

where P(6) is the pressure at any point within the wedge.

29
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Figure 3.1 Pressure amplitude normalization
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C. PROCEDURE

Figures 3.2 through 3.7 represent the results when the

receiver distance and source angle are fixed and the source

distance and receiver angle are varied. Figures 3.8 through

3.13 renresent the results when the source distance and

angle are fixed and the received distance and angle are

varied. These cases will be the foundation of our

subsequent discussions.

The solid lines indicate the fitted curve and the dots

indicate some values of the normalized pressure amplitude.

In DSLOW, the dot appears at each third datum.

D. PROGRAM IMPROVEMENT

DSLOW was designed to provide three-dimensional graphs.

''or example, the x-axis represents the scaled source

distance, the y-axis represents the scaled received

distance, and z-axis represents the normalized pressure Ni

amplitude. To simplify the presentation, only two-

dimensional graphs were presented with the x-axis the nor-
%

malized oressure amplitude and the y-axis the receiver anale

-. All curves are presented with the data fitted with a

cubic spline.

The DSLOW program was executed to obtain numerical

results of the phase anqle, the pressure amplitude, and the

normalized pressure amplitude at each receiver position. W

The first run used double nrecision for accuracy.

7ifficulties were encountered when the DISSPLA subprogram

31
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was attached for making the graphical output. When double

precision and DISSPLA were not successful, the single pre-

cision was used, resulting in round-off error. (See Figure

3.8 at R2 10.0.)

9..
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Fiqure 3.3 Graphs of receiver angle 6 versus pressure
amplitude with R2 fixed, R1 varied
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Figure 3.6 Graphs of receiver angle 6 versus pressure
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IV. DISCUSSIONS

N. 3RAPHIC2kL OUTPUT

The ranhs of normalized oressure amolitude is a func-

tion or receiver anqle -were investigated for various

source listances R1  and receiver listances R2 (Fip. 3.2 to

3.13) while the other parameters are held contstant. For a

liven wedge angle 3 and sufficiently small source distance

(Fig. 3.8 and 3.12), at all receiver distances, the pressure

increases uniformly towards the bottom. For greater source

distances, (Fig. 3.9 -3.11) the pressure attains a maximum
."

within the wedge for all receiver distance.

As the receiver distance is increased (Fig. 3.9), a

Dressure minimum develops between the maximum and the

bottom. An important property of the curves of pressure

:%
versus receiver anqle when there is a maximum and minimum is

that, at a specific receiver distance, the pressure above
-,%

the -inimum can he extrapolated to zero pressure on the

bottom. (See Fig. 3.10 with R2 = 32.) This receiver dis-

tance is called the "transition point." So far, we do not U

kn,)w the properties of the transition point. We use the

transition point for inJicating the behavior of the curves

4hen the oarameter involved is varied. The transition point

aroiea red twice in some cases, but in the following

discussions the first transition point is the only point we

45 5
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will be concerned with. (See Fig. 4.1 for transitions cor-

respond to R2 = 4.6 and 6.4.)

B. GRAPHS CLASSIFICATION "
9%*

The development of curves with the source distance (RI )

and the receiver distance (R2 ) as variables was observed.

As R1 or R2 are varied the curve changes from a linear curve

to a curve with an observable minimum (Fig. 3.9, R2 = 5.0)

and finally to a curve without a minimum (Fig. 3.9, R2 =

9.0). Three different types of curves resulted from the

series of two-dimensional plotting. They are described

below:

1. Type 1 Curves

Type 1 curves (Fig. 4.2) are those where the sound

pressure is equal to zero at the surface and maximum at the

bottom and is almost linearly dependent on depth. These

curves are most pronounced when the source distance is much

smaller than the characteristic distance. The closer the

source is to the characteristic distance, the more nonlinear

the curves (Figs. 3.3 and 3.4).

2. Type 2 Curves

Type 2 curves (Fig. 4.3) are those where the sound

pressure is zero at the surface, maximum somewhere between

the surface and the bottom with no minimum. These types of

curves are generated when the source is placed at a point

much greater than the characteristic distance. Type 2

I
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curves indicate that the sound energy in the wedge is well

l..

collimated and that reflection is negligable.
b

3. Type 3 Curves

Type 3 curves (Fig. 4.4) are those that have a min-

imun pressure. These curves occur when the source is a dis-

tance slightly qreater than, or less than, the charac-

teristic distance. Tables 1, 2, and 3 of Appendix D show

the receiver positions at the first transition ooints.

Three different values of 6, two different values of Pl/P2 ,

and two different values of cl/c 2 were used in making these

tables. The transition point did not occur when a = 150,

Pl/P2= 0.90, cl/c 2 = 1.10. An explanation can be offered ..

usin4 the fact that for these particular sound-speed and

1ensity ratios an angle of intromission exists [Ref. 15] .

Since the anqle of intromission is the grazinq anqle at

Which the sound energy is completely transmitted into the

slow bottom, it is plausible that no transition point

we,
_)ccu rs.

2. TRANSITION POINT

3y varyinq the wedge anole a in small increments AB

u.5' starting with = 50, and ending at 6 = 7', it was

fcind that transition occurs for source distances within the U
-an-e from 1.0 to 1.5.

wor P1 < 1.0, no transition ooint was observed; the

curves are the Type 1. For 1.0 < R1 < 1.5, the evolution of

48
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curves as the receiver distance varied can be explained as

follows: first, the receiver is olaced near the source an!

iradually it is shifted firther from the source. The mini-

mum in the pressure decreases reaching the point where the

curves extranolate to zero (the first transition noint).

jrinher detailed observations were made on thi, particular

F a -e t by varying the source distance and the receiver

iistinces. The results of these observati)is are tabulated

are craphed in Npoendices D and E. When the receiver is

2oved away from the source, the minimum will reach a minimum

-ressure then the oressure increases until it reaches the

cont where the curves again can be extrapolated to zero,

th.is is the second transition noint (See Fiq. 4.1).

Hor p1 > 1.5, there will -e no transition point. The

cu--ves are the Type 2.

T-e transition ooint as a function of source angle can

)e nsorved using the tables in Aonendix D. In most cases

t creater the source angle y, the closer the transition

->:-nt is to the apex. 'ranhs of transition point as a func-

ti n : -i (pDpendix E) indicate that the smaller 3 the more

t-,rc Ir the curves. This is easy to understand because the

*-3! ler 8, the more accurate the observation of transition

:a1nt; the greater 3 the less accurate the data.
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D. P\RAMETEP VARIAIO ;S L
Variation of 'arameteri was done by chanainj one

oarameter of interest while all others were held constant,

for fixed source and receiver distances, and plottinq the
eceier _ I..

er , versus npralzed pressure amplitude.

The parameters 3, Di'=2, and c1 /c2, were hell constant.

and the oressure a-olitude was olotted for various , R,

qnd R). The y's are set at 3/4, 3/2, and 33/4. Variations

in the shore distance (Y.) can ne made because the program

is available, but to simolify the investigation, Y. was set

equal to zero for all plots (Fig 4.2 is included as an .

exa-ple for Y. )

1. Variations of R

Initially, the values of 3 investigated were: 6, 5%'

103, and 150. The riajor effect created by altering the

value of 3 is that, for the sane values of RI , Pl/P2 , and

cl/ 2 ' the smaller 3, the shorter the transition point (see

ins. 3.9 and 3.10, Tables 1, 2, and 3 of Appendix D).

2. Variations of y

The variations of y from Y = 6/4 (the source is

nlaced near the bottom) to y = 38/4 (the source is placed

near the surface) are presented in Tables 1, 2, and 3 indi-

-ated that the greater -f the shorter the transition point.

It is not always true, for instance in Table 1 at 3 = 60, Rl

- 1.50, the qreater y the longer transition noint, for the
-,

%.
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rises. (See Appendix D.)

3. Variations of c!/c 2 and Pl/P2

Variations of the acoustical parameters c1 /c 2 and '
were done, but did not give a significant variation of

the sound pressure profile. S
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V CONCLUSIONS VND RECOMMENDATIONS

A. CONCLUSIONS

The program DSLOW gives good plots representative of the

sound energy distribution within the wedge. The sound energy

can be well collimated by the wedge. This phenomenon is

strongly affected by the source position. At a source

nosition close enouah to the apex, sound energy is distri-

buted linearly with respect to the depth. As the source

moved away from the apex, the distribution of sound energy

becomes more complex. Sometimes a minimum is found; this

minimum may be caused by the presence of sound energy

reflected by the bottom.

The source nosition plays a major role in forming the

nressure distribution orofile. The pressure distribution is

iso very sensitive to the parameter variation at small

-ource distances, but it becomes insensitive at large source

distance. The charicteristic distance must have physical

,eaninns rather than just an arbitrary number, because when

the source distance in proximity to the characteristic

listance, the model is most sensitive.

The model is restricted when the single orecision mode

'enerates round-off error and rough curves which do not

91low for accurate analysis.
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B. RECOMMENDATIONS

1. Sinale precision nroduces qood results, but failed

in some cases. Double nrecision would improve the

procram, hut increase the execution time. This must

e ione by runninq the nrora- in double orecision, J.

and accumulatinq the result in sinale precision

hefore olottinn the data by DISSPLA.

2. it is sunoested that the oroqram be run usinq more

realistic narameters and observinq the effects on ,

the characteristic distance and transition point.

3. Further study validatinq DSLOW in comparison with

exnerimental results is suqqested.

5%~
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APPENDIX A

DSLOWN ALGORITHM

The pressure amplitude calculation

Ni=INT[ISO I](eqn Al )

I 2tanOl tanjarccos~c.) cl] (eqn A.2')

AL =a K, 0.000 1 (constant) (eqn A. 3)

N , 11

0. (eqn AA4)

I = 1 - (eqn A.5)

R 3 =', R, cos[(N-1)P34y-61(enA6

R9 = D-, - R3 cOsU- 1py - 61 (eqn A.11)

S,)=(.1l)NT(NI 2) (q S

W1AL c 2 )2  (eqn A.9)

+ R-) sin[21NT((N-l1), 2)p - 61)! R8

CI =~i lSh)(eqn A.I11)

T= I (eqn A. 12)

( -,- 4 c 1 -,)(eqn A. 13)
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Y,/\ 'AY-W ), (e 5A-7

Z (eqn A. 1) !Z

z IU

2 (eqn A.20)

26 (eqn A.217)

_Z sn(R cosR KI),R(eqn A.23)

IN( T)ZcsR )Z6snRnKIX Y (eqn A.24)
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K.' R' . -'

4=)''' )-Z 5 sin(R 9 nK1 X)-4-Z 6 cos(R 9 nKX R9 n enA.5'

P5 = P1 + P2(eqn A.26)

P6 =P 3 4- P4  (eqn A.2 7)

Lp1.-'S+f (eqn A-28)

Ie
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APPENDIX B

DSLOW PROGRAM

** THIS PROGRAM CALLED DSLOW IS CALCULATING THE SOUND PRESSURE **
** WITHIN THE WEDGE OVERLYING SLOW BOTTOM FLUID AND DOWN-SLOPE *

- INTEGER A,I,IIM N,S S2 JKP ,
-Q RREALwt c B. b, , API.PIP2. .R3 R2 T (

- * ) . o. o.. . . ., ,
- REAL*4 0 TQQ , T Q

C B WEDGE AGLE ( EG "
C G SOURCE ANGLE (DEG)
C D ECEIVER ANGLE iDEG)
C NI OF IMAGE POINTS
C RI = SOURCE DISTANCE (IN CHARACTERISTICDISTANCESJ
C R2 = RECEIVER DISTANCE-(IN CHARACT RISTIC DISTANC
C YO = APEX DISTANCE--(IN HARACTERISTIC DISTANCE S)
C D1 = RHO I/RHO 2~C CC : -/ -
C AL = ALPHAK2

- , ,,C C *=#O

- DO Ill P-1,6
C B 10.0
- B : 0.0
C w 'B/4
C G= l*B/.

- G

C R1 95,
C Ri :.- 1 =0.75
CI
C R

C R

S YO= -"-Di o. 'I** THE P T PR*AND jWE *A ,RA ** a""
** * *WK 7t w"v %'.~m 7 K Kwv

C OOC TA)*TAN (B)

T =,TQ, ,
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C24 2. 'EJ RTHETA(N) ',7X,'IMGE SR R ,X
C WRITE1  : 0
-241 FO T'I

:250FONWR T , Bp~lET6 ,F5.2.1X,l SOURCE ANGLE = ',F5.2)
:251FORAT OU E DItTANCE=' F4: 1X,'RECEIVER DISTANCE= ',F6.2,1X,

P E STIANCE= , F4:
-270 WOMT RHO /RH652=f F5 2,5X,-' Cl/C2=',F5.2,5X.' ALPHA/K2=',F8.4)
-271 FORMAT IK'X D=1.C A.)

- WRITE 6 2 T
-272 FORMAT 2 4
:- WRITE 16 2711-0 FORMAT 1 ,R 1RC.POs1 2X IREC.ANGf. ',2X,'PRES.AMPLITUDE 3X

- 'P SEAN LE 'qR.RS ,X

-01 FORMAT I'0

- WRITEI 6 I8
- DO 10 M=,

- IF(D.LI.V) GOTO 110
IF(D.GE.V GOTO 120

-110 DX = D
- DO 15 J,0

- D = D? +(J-1 *B/ (10*A)
-DD fB/(IO*A) 

h-120 S1 = 1 .0
D2 N=1NI NN~ *+- ~~ ~ IF -l GT 0 Sif = N~j *

Si ( R- = (D2-R3*COS (Ti(N) -0)N SORT
A C310 FORMAT 3X 2 5x i*COAgflq~k (N2+P 4)C RIE56,110) 9,j 8 9N-20CONI E

DO si = INT(N/2))

- Il= INT (N- 112)-DO 40 j IPi
- s(I =ASRl*IIN(TI(N *I*B-*+R2 IN2*,W- 8(N)

C(I) 5= QRT 1- S(I )WS~) 
it

Z=AB Wi

Yl=Ql*S RT Y+W

Y2 = 4 1*QR (Y-
CI = T-4I

611
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II'~~Z Z3-Z*4 .,
_ %.%'Z *Z1

C 1=-M.( RZ1



C420 FORMAT 21if X, 12, JXFltj+ 1 J6 X 614,3X, F6.4, 1OX, F7.4)
WRONIE StE Ij Ei~ + F 1) JA AN(F(I)/E(I))

6-

IFIN LE.2.0) OO 5

DO4

il"Z3-Z*j
- CONTINUiE Z*4Z*

T T4" R8(N)
Z3 C 1 .

C500 FORMAT( NO + QF / N. 'X'E(REFL)= ',3X,'IM(REFL)= '
C WIE6506)
C510 FORMA i I 6x6XF4
C WRITET65HMISz
C600 F 1PVST ARSitS('i)*6'3,EI'5,FI-5,E'

C WRITE (6 6 0 1
DO 60 1=,I

- * S(Ii = ABS(R1*S~iN(T ( BQ ( *~ N 1)D /R(N
C(I) = $RT 1- 1I~ I)

Y SQRT *()
-Z A AS 4 6wFiiw

IF(Y.LE Z Y =Z
Y1
Y2 T-QY2 RY-

ZZ L(Zj *Z1+Z2*j2
Z4 - I ~/ ZZ 12)

E~ Z*4+Z- Z3

F SQT(z II~I*()
AN2= ASAN t(E1

C610 FORMAT ;N- ?X A~ X~ FA F4 5XF6-j,5XFS3.4,5X,F7.4)C WRITE o ,6103) IAhi~t3,F I ,Et,AN~
-60 CONTIN E

DO 080 1=

ZI = Z1zl*4 Z *Z36
-80 CONTINUE

Zi= Z5
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2 = Z6
= T4*R9 (N)

Cos (
-SIT

=Zl*Z4t *Z

C700 FORMAT(' L3WE~ PAT 0 'RE(REFL)= ',3X,'IM(REFL)= '
C WRITE 61 700
C710 FORMAT 2x 1X

30 WRITE , t~N, 1S ~2'
30 CCNTIN E

K =K+1
?- r=D*T6 IJP+2P)R

C R T 8t)K Z K :PJkK )ATAN(P2/Pl),PN(K)
C 8 0 FORM T k,3 l , . 1 , .4,12X, 7 4 10X,F7

-10 CONXINUE

- PN(L -PZ L/P
- R WTE( 1 L,DZ(L)PIZ(L)ATL)PN(L)

-811 FORMATT2I,117XjF52, X, .SXF.6, J,9.6)

311 CONTINUE

C CALL MEDBg
.1.C CALL TEK61

C CALL COMPRS
C CALL NOR

C CALL AREA D~1,.
C CALLI. H .9
C CALL XNAN3E ( O MALIZED PRE SUR5$AMPLITUDE$',9
C CALL YNAME RCEERAGEDE)S19

C CALL YTICK S(5) IVRAGL E
C CA LL YTICKS
C CALL GRAF (0. 0.0 0.50 0. 5 0 15
C CALL GRAF (0.40., S0:0,6.,$.6,to.O
C CALL GRAF(0.,3.0,15.0,0., .0,15.0)
C CALL DOT
C CA LL GID (2 2C CLLHEtI. EC ANGLE VS. PRESSURES',-100,1.8,1)

SC ~ .CAL ME G W G A14GLE: S' 10087
C CALL MAESSAG '1 .C ' 100, ABUt-,'AB~t'3
C CALL IESSAG 'RNQ /R 02:'$' 100 8. 6.5
C CALL MESS;G '0.1H ' 100 'ABUT', A BUT
C CALL MESSAG 'C tC: 1060)
C CAL 'L MESSAG '1. 505-,100 'A~t~ ',A B T'C CALL MESSAG 'SOURJE ANtE: 00 5. 5)

* C CALL MESSAG 'l ~SU0'BtABUt
*C CALL MESSAG ' 01O', 0,AUT','ABUT'

C CALL MESSAG '3. 75 1 8,0' AUT' ,'ABUT' )
C CALL MESS AG '7.50 ' 00,'ABUT' ' A UT')

C CAL, MESSAG 'S0URCJ.bIS S, 10 . 5)
C CALL, MESSAG '0. ~5 S',18Q,'ABUt ' ABut:J
C CALL MESSAG '11 ''0 ABUT'''ABUT'

C CALL ESSAG ' Q ~$ 8o ABUT''AU
U.C CALLMSSAG'0.5 S 0 AB T' 'A BU

C CALL M -SSAG 'RE AD St 16Nt . .5)
C CALL M SSAG '0 8,ABUT ,'AtUTf
C CALL HSAG '* '10~ '"BT',' T'
C C AL M SAG ''100,'ABUT','ABUT'
C C AL MSSAG '..0 S 00 'ABUT 'ABUT-
C CALL MESSAG 'REC.D I t.INtRMT T, 10 4.0)
C CALL MESS AG TICS H t:BUT

-C CALL MESSAG W , 1 0 1ABUT'I A~C CALL MESSAG 'H.ITIT 5' 100,t.5
C CALL MESSAG '1.00 100,6 'ABUT%
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C CALmESSAG('SQ8 DIST:08S 1008 :3b5~
.1 C CA . lS H ~ 10ABUt',A U4T

C CA ; 4
C

CA CURVVPN.DZ,29,0)
C CA. ENDPL(0)IC CAO ONEP
C STO
C END

For Plotting the cacu ation~ result op TEK618 or Sherp4, erase *
**the srooerLA 1 tir ra boe Put C's i.n tfront of

,tIIJ~s~rja abve
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APPENDIX C
NUMERICAL RESULTS OF DSLOW- V.-.

WEDGE AN =C=000 SOR ANGLE 2.50
SER .E AN E =  9.00 SHORE DISTANCE= 0.00
RHO A R ECEIVER DISTANCE ALPHA/K = 0.0001K 1X = 19.44 '
REC.POS REC.ANGLE PRES.AMPLITUDE PHASE ANGLE NORM.PRESS

S:!.08  8:8071! 1 -1.108071 2: ""

0 O800 1- 1,J54 6 15o:8 .00676- .0 5
.188:006563 - 01 ,64 5.85746-

8.006374 . 8823

C.80 0.00014 -0.928 .36 38
0.90 0.00 8 -0.8 0 93

11.00 0 33O84 :9969 7483
1.10 0:80 -0.83520 4.3

000 94 448-0.87M 89i?4 4:F 4
1 .t 0 00405 -0.73;669 4.55

0 000475 -0.6956 4.044

.00 0 00448 -0.;0530 . 99773.00 0.00400 -0.113330 .5722723 .00 0 .003919 0.20197 474"
2t- . 00 0 00384 0.413 3 M349;7 75t"

:00 8:00j556 0.5473 ;98519
00981 0.63201 2.66o608

8.08  0.002149 0:68 0 1.917873:
9c0.00112' 0.6 0:000

10.00 0.000000 -0.048596 0.000029

op
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WEDG ANG = 1000 S .50SOUR EDISAE0.75 RECIE DITNE .5 H/2 0000,
RHO/ 0.o 0 CI/C2 =  4.50 SHORE DISTANCE=0.00-

Pix = 19.44"0
REC.POS REC.ANGLE PRES.AMPLITUDE PHASE ANGLE NORM.PRESS

1. 7560311 8:8 -. 74

0. ' 0.069174

0.0 0§46 -1. 7 49

0,90.0 0 -1. 7:9

0Q .46-1.

. 8: 8 o..

0..0 0 -0. 76 1

1.-.

116642 1A8 131oo -1. 6. 6 0 "
2 0 I-i6 019 !.035670 "

i~oo8:00 i461833

.009828 -0.68756;
10.00 0.000000 0273944 0.000001 .

66.
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"' WEDGE ANGLE = i
SOURE AN STA SOURCE ANGLE = 2.50
HSOURCE DISTANCE= RECEIVER DISTANCE= 2.25 SHORE DISTANCE= 0.00RHOI = H .0 Cl C = I.I ALPHA/K 0.0001KIX = 19.44
REC.POS REC.ANGLE PRES.AMPLITUDE PHASE ANGLE NORM.PRESS

O. J61 841 6. ~9
6. 9 9.

0. 0: 43 1.09 1716.491581. 1.106111 6.476104
08 0. , 1 1891 6 5 0
0.60 0.2211 1.1 6.420.70 0. 080 1A 6.4 3 -

9 0.80 0. 2009E101 0 90;. 19 3J8

ii 1: 8: 1017313.20 0.2 168; 1.1/01446 901130 0.10 .7949 43
19 1.0 0.214095 1.1 9 6.109000

180 1 0.213090 9 1.03 4 1. 970 6.179815 -1.3o. 1204 {.:oo 6.14956
0 1.90 8: 028 1.21644 6:165°21 2.00 0.20897 1.22280 ".0516882 3.00 014 1.28198.648450

000.157 6 1 67 5.1263762t too 0114 H44,fi4.486838
2:83 0.1 89 1.4J329 o'260.09070 4 1.446 70 o"

27 8.00 0.068024 1.41364 1.727628 9.00 0.034481 1.473173 1.00000029 10.00 0.000000 -1.243151 0.000001

.k
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WEDGE ANG = 10.00 SOURCE ANGLE = 2.50SOURCE DA= .5 RECEIVER DISTANCE= 1.13 SHORE DISTANCE= 0.00RHOI /RHO Cl/C= 1. 1 0 ALPHA/K2= 0.0001
KIX = 19.4

REC.POS REC.ANGLE PRES.AMPLITUDE PHASE ANGLE NORM.PRESS

92 -0.102I5 190
-.0 I0 0 .0 0 68: _o4.0. .:8. +4 4

08 • -8:0949
20 4-0.09 8 :11: -00 6 89 5.0

0.-00780434
10 0:8 0099 .04 78,2o

1 : 75 --.074; 94:1 1 .10 .87001 -0.0647 .

7 1.45913 9
281 8:lof 0081 88888'.29 1.0 2 .119694 0.:18255000

18170.010900 5 - .53890.0000 ".-

I.4
,

.,w

44

".

..

4'
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WEDGE ANGLE 1000 SOURCE ANGLE = 2.50
SOURCE DISTANCE=0.75 RECEIVER DISTANCE= 0.56 SHORE DISTANCE= 0.00
RHOI/RH02= 0-0 CC2 = I.I SH A CE 0. 00
KIX = 19.44

REC.POS REC.ANGLE PRES.AMPLITUDE PHASE ANGLE NORM.PRESS

0oQ 3.99262 0.1064 579541N 4.8 8 8:,6,19
. 0 4.8;3?480 8 8

1.0 4.038 0.39 .9 7
0. 4.0oo
. 4.10 470

10 0.90 4:1398p 0.H 6 .70
4: .1561 H ,06

18 1.70 4 .14979 0: 2:912

19 1.80 03869 1 7

.o:8 4.13602 3o.319 .i:O08 4953791 03 "68S l8

3.00 0.4899:
0.62464 0 .945J 4.42561

6.00 .0326t 0519791 3.71000
7O 21007 :,3952J3058:00 1.4357 0.538 1 970616

289.00 0.728641 08569 800008
29 10.00 0.000000 -0.8476 0000
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WEDGE AN 10 SOURCE ANGLE 2.50
SOURC DsANCE=O.1?5 RE EiVER.DISTANCE= 0.28 SHORE DI STANCE= 0.00RHOI /RO0.0 /l 1.1 ALPHA/K = 0.0001KIX 19C.C4

REC.POS REC.ANGLE PRESAMPLITUDE PHASE ANGLE NOR.PRESS

8:1iM -8:361
0O11 0:6 iEi A0: 3/K2 110440
0. 0.15:8: 99; H450.80 0. 9 -0.90:8 :911i °000000 1007

o0: 8 ": 01:88 : i j001.00 J -0. 441 8 610 1 0 6 9 6 1 8, 487
10 i.0i0000 -0 8.00

13 1:20 0. 7 91 -:: 8" l7

.:1:9 :8: ,167 4

0" 1 -8-4
3,6 :0.5o71o

"0 0.1641 -8 0 2.993931

1000.000001 -0:161 L000009
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APPENDIX D
-4

TABLES *4

TABLE I

RECEIVER DISTANCE AT THE FIRST TRANSITION POINT.
FOR CONSTANT Pl P2= 0.80, cl c2= 1.10

-=6o, K1X=32.61
R = 1.10 R =1.20 R - 10 1 .40 R= 1.50.

.= -4 1 5.2 5.0 5.9 7.3 9.8_..,

y=0 2 1 5.2 4.7 5.7 6.8 9.9

4.0 .5 5.4 7.0 10.5

13 =1lc° K X= 19.-44 ,"

R 1 = .80 R 1 =0.90 R, -100 R1 =1.10 R =1.20 *,

= 3 4 17.5 24.0 33.0 52.0 72.0

y=I
3 2 12.5 17.0 2-4.0 4 42.0 60.0 %

"= 31 4 10.6 17.0 22.0 1 40.0 ,1 58.0

=I150 KIX= 12.79

-R." 1.30 R=. 140 R 1.50 RI= 1.60 RI = 1,0

v, s.1 8.2 8.7 i 9.8 11.4

2 6.9 7.0 7.8 8.9 10.9

I=-,, 4  9.8 12.0 1 15.0 [ 19.0 29.0

4/

Z-e

7.
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TABLE 2

RECEIVER DISTANCE AT THE FIRST TRANSITION POINT.
FOR CONSTANT p1 P, = 0.80. cl c2 = 1.20

0= 0 I = 22.53__ _ _ _ __ _ _ _ __ _ _ _

_R i = 1.30 R1 = 1.40 R I= 1.50 R 1= 1.60 R !  1.70

y = 1- 3.37 3.6 3.92 ,4.6- T 4.96
y = 132 3.155 3.,.2 3.78 4.36 -1.96

2= 31 - 07 3.34.] 3.74 4.2 5.1

01= 10 KIX= 13.43 _"__ ,, _ _ _

_ RI=0.80 R 1 =0.90 RI=1.00 R='1.10 R 1=l.20

y= 4 6.1 11.3 18.0 -10.0 60.0 ,

'=-- 2 6.5 S.2 1.4.5 25.0 40.0

Y= 4 5-4 12. 18.0 30.0

3=150 " K X = 884 ,

R1=0.80) R --0.90 i  R, 1.00 RL 1.10 R, 1.20
y= 4- 36.0 40.0 52.0 60.0 (-.0-

y = 23 " 2.4.0 26.0 32-.0 -46.o 5-1.0

I .4

" 3-S I 19.50 23.0 28.0 38.0 S."

72
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TABLE 3

RECEIVER DISTANCE AT THE FIRST TRANSITION POINT,
FOR CONSTANT pI p2= 0. 9 0 . c c2= 1. 1o

63= K1 X=32.61

_ R,=1.10 R,=1.20 R==. R=.- R,=1.50

y=04 1 3.66 4.1 I 4.9 6.2 11.0

y=3 2 1 3.35 3.9 4.7 7.0 I no

Y=304 3.24 3.76 -. 75 7.3 9.8

0=100, KIX=19.44

9 1. 30  R =1 - R 1=1.50 R 1.6 0  0 =I.70

4 9.8 11.0 14.0 -40.0 c __ .0___,

'=3 2 7.6 i 8.6 11.0 19.0 .40.0

.4 y= 3 - 6.7 7.6 10.0 21.0 45.0

,.47..j,
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I.
*"*0

0.S

P4

- 73

- ., - . . . . ... * l
I  

t " a 
"i i  

.I d0 .--7 4
t 

I' l ll 0 ¢ l

.v v. ' -^% *,-S **, . _..',eS,, I. . 4., *- ,,? ' ,. . 2. - "* '', , .'' .,, e... ,-,,-., , . . '. " *, . .. "--' .6



APPENDIX E

GRAPHS OF RI VERSUS R2 AT THE FIRST TRANSITION POINT

1 1
00

EnT

got PT

Figure E.1 R 1 vs R, at the first trans.points, for j"s60, 1 p'm0. 80, c1 c- 1. 10.
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Figure E. 1 v - tteFirst trans, points, ror I = 150, p1  P2=0.80. cI c2= 1.10. i-.
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Figure [.A R, s R, at the first trans. points, for I= 60, p1 p,=0.80, c1 c,= 1.20.
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