

Approved for public release; distribution is unlimited.

88 3 10 024

EPORT SECURITY CLASSIFICATION 15 RE Inclassified 3 Dis ECURITY CLASSIFICATION AUTHORITY 3 Dis SECLASSIFICATION DOWINGRADING SCHEDULE Di MAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 7a NA Naval Postgraduate School 50 OFFICE SYMBOL (If applicable) 7a NA Naval Postgraduate School 60 OFFICE SYMBOL (If applicable) 7a NA Nonterey, California 93940-5100 Mo NAME OF FLOOR SPONSORING RGANIZATION 8b OFFICE SYMBOL (If applicable) 9 PRO DDRESS (City, State, and ZIP Code) 10 SO 9 PROGR FFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) 10 SO DARESS (City, State, and ZIP Code) 10 SO 10 SO FFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) 14 DATI Aster's Thesis 10 'ME COVERED 14 DATI COSA' CODES 18 SUBJECT TERMS (Continue FELD GROUP SUB-GROUP Tracking accuracy IDPLEMENTARY NOTATION SUBJECT TERMS (Continue Tracking accuracy IDPLEMENTARY NOTATION SUBJECT TERMS (Continue Tracking accuracy	D RESTRICT DISTRIBUT DISTRIBUT DISTRIBUT DISTRIBUT MONITORI NAVAL NAVAL DADRESS MONTER PROCUREN OSOURCE ("OGRAM LEMENT NO CHE TRAC	IVE MARKI	NGS ABILITY OF UNLIMITE IZATION RE UNG ORGAN dua te Sc . and ZIP C ifornia UMENT DE G NUPABERS ECT	REPORT Id FORT NUN IZATION IZATION IZATION Shool 93 VITIFICATIO TASK NO	ABER(S) 394 3-5100 IN NUMBER WORK UNIT ACCESSION
ALCHARSTITIED 3 DIS ECURITY CLASS.F.CAT.ON AUTHORITY 3 DIS ECURITY CLASS.F.CAT.ON DOWNGRADING SCHEDULE DI RECRAING ORGANIZATION REPORT NUMBER(S) 5 MO IAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 7a NA IAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 7a NA IAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 7a NA IAME OF FERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 7a NA IAME OF FUNCTION STOLE SPONSORING RGANIZATION 8b OFFICE SYMBOL (If applicable) 9 PRO DORESS (City, State, and ZIP Code) 10 SO 9 PPOGR ELEME TILE (INCLUDE SECURITY CLASSIFICATION) 10 SO 9 PPOGR ELEME FFECT OF FRICTION AND CONTROL PARAMETERS ON THE 10 SO ERSONAL AUTHOR(S) 13 O'ME COVERED (14 DATI ASTER'S THESIS 14 DATI (150) INTLE (INCLUDE SECURITY CLASSIFICATION) 14 DATI (170) 14 DATI (170) IFFECT OF FRICTION AND CONTROL PARAMETERS ON THE 14 DATI (170) IFFECT OF SECURITY CLASSIFICATION 15 'ME COVERED (18 SUBJECT TERMS (Continue Friction, Model - Tracking accuracy (19 SUBJECT TERMS (Contin	Distribut Distri MONITORI NAVAL NAVAL DADRESS MONTERI PROCUREN O SOURCE OF COGRAM LEMENT NO	ING ORGAN ING ORGAN F MONITOR POSEGRA SIGNY, STAN OF FUNDIN NO KING AC	ABILITY OF UNLIMITE UZATION RE UNG ORGAN duate Sc , and ZIP C ifornia UMENT DE G NUPMBERS ECT	REPORT Id FORT NUM IZATION IDON 1000 93 93 93 93 93 94 1601 000 93 94 1601 1000 100	ABER(S) 394 3-5100 IN NUMBER WORK UNIT ACCESSION
Discrete Discret Discrete Discrete Discre	Distri MONITORI NAVAL DADRESS MONTERI PROCUREN DONTERI DATE OF R 1987	bution NG ORGAN F MONITOR Postgra SICity. Stan ey, Cal Ment INSTR OF FUNDIN NO KING AC HEPORT (M	UNLIMITE	IZATION IZATION IDOI IDOI 93 VITIFICATIO	ABER(S) 3943-5100 IN NUMBER WORK UNIT ACCESSION
RECRASSINCATION SOUNDADING SCHEDULE DI REPORMING ORGANIZATION REPORT NUMBER(S) 5 MO NAME OF PERFORMING ORGANIZATION (If applicable) 5 MO Naval Postgraduate School 60 OFFICE SYMBOL (If applicable) 7a Na Naval Postgraduate School 7b AC DDRESS (City, State, and ZIP Code) 7b AC Nonterey, California 93945-5100 Mo NAME OF FERENCE SYMBOL (If applicable) 9 PRO IANE OF FERENCE SPONSORING 8b OFFICE SYMBOL (If applicable) 9 PRO IANE OF FERENCE OF SPONSORING 8b OFFICE SYMBOL (If applicable) 9 PRO DDRESS (City, State, and ZIP Code) 10 SO 9 PRO IELEME 10 SO 10 SO 10 SO IELEME 10 SO 10 SO 10 SO IELEME 10 SO 10 SO <td>DISCIN MONITORI NAVAL NAVAL D ADDRESS MONTER PROCUREN O SOURCE (OGRAM LEMENT NO CHE TRAC</td> <td>E MONITOR MONITOR POSTORA SIGNY STAT OF FUNDIN NO KING AC</td> <td>UNLIMITE IIZATION RE UNG ORGAN duate Sc . and ZIP C ifornia UMENT DE G NUPMBERS ECT</td> <td>ID CONT NUM</td> <td>ABER(S) 3943-5100 IN NUMBER WORK UNIT ACCESSION</td>	DISCIN MONITORI NAVAL NAVAL D ADDRESS MONTER PROCUREN O SOURCE (OGRAM LEMENT NO CHE TRAC	E MONITOR MONITOR POSTORA SIGNY STAT OF FUNDIN NO KING AC	UNLIMITE IIZATION RE UNG ORGAN duate Sc . and ZIP C ifornia UMENT DE G NUPMBERS ECT	ID CONT NUM	ABER(S) 3943-5100 IN NUMBER WORK UNIT ACCESSION
RFORMING ORGANIZATION REPORT NUMBER(S) 5 MOI SAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 7a Na Naval Postgraduate School Na DDRESS (City, State, and ZIP Code) 7b AC Nonterey, California 93941-5100 Nonterey, California 93941-5100 Nonterey, California 93941-5100 Nonterey, California 93941-5100 Name Of FUCE Symbol 9 PRO IAME Of FUCE Symbol 9 PRO IEFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) 130 * ME COVERED IAME OF REPORT 130 * ME COVERED IVPPLEMENTARY NOTATION 130 * ME COVERED IVPPLEMENTARY NOTATION 14 DATI INTE tracking accuracy of a missile target 14 DATI INDUPLEMENTARY NOTATION 14 DATI INDUPLEMENTARY NOTATION 14 DATI INDUPLEMENTARY NOTATION 14 DATI INDUPLEME	MONITORI NAME OI NAVAL D ADDRESS MONTER PROCUREN O SOURCE OF COGRAM LEMENT NO	F MONITOR POSTORA POSTORA OF FUNDIN OF FUNDIN NO KING AC	UNG ORGAN dua ze Sc and ZIP C ifornia UMENT DE G NUPABERS ECT	PORT NUM IZATION IDOD IDDD 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9:	ABER(S) 3943-5100 IN NUMBER WORK UNIT ACCESSION
AME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL (If applicable) 70 NA Naval Postgraduate School 70 AC (If applicable) 70 AC Nonterey, California 93945-5100 Mo Na NaME OF FUNDING SPONSORING RGANIZATION 80 OFFICE SYMBOL 9 PRO RGANIZATION 9 PRO RGANIZATION 9 PRO RGANIZATION 9 PRO RGANIZATION 9 PRO RELEME THE (Include Security Classification) FFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) han_JOSEDN K. TYPE OF REPORT 130 * ME COVERED 14 DATI SETES COSAT CODES 18 SUBJECT TERMS (Continue FELD GROUP SUBJECT TERMS (CONTINUE	ADDRESS MONTER PROCUREN O SOURCE (OGRAM LEMENT NO CHE TRAC	F MONITOR Postgra 5 (City, Stati ey, Cel MENT INSTR OF FUNDIN PROJ NO KING AC	UNG ORGAN dua te Sc , and ZIP C ifornia NUMENT DE G NUMBERS ECT CURACY C	12AT.ON 1001 000) 9: 101 102 103 103 103 103 103 103 103 103	394 3-5100 IN NUMBER WORK UNIT ACCESSION
Naval Postgraduate School Na DDRESS (City, State, and ZIP Code) 70 AC Nonterey, California 93942-5100 Mo NaME OF FUNDING SPONSORING 80 OFFICE SYMBOL (IF applicable) 9 PRO RGANIZATION (IF applicable) 9 PRO DDRESS (City, State, and ZIP Code) 10 SO 9 PRO DDRESS (City, State, and ZIP Code) 10 SO 9 PRO TILE (Include Security Classification) 10 SO 9 PRO EFFECT OF FRICTION AND CONTROL PARAMETERS ON THE 10 SO 9 PRO ERSONAL AUTHOR(S) 130 * ME COVERED 14 DATI aster's Thesis 10 SO 10 UPPLEMENTARY NOTATION COSA* CODES 18 SUBJECT TERMS (Continue 11 UPPLEMENTARY NOTATION COSA* CODES 18 SUBJECT TERMS (Continue 11 DATI Implementary NOTATION 14 DATI 11 DATI COSA* CODES 18 SUBJECT TERMS (Continue <td>Naval D ADDRESS Monter PROCUREN PROCUREN O SOURCE ("OGRAM LEMENT NO CHE TRAC</td> <td>POSTORA</td> <td>duate Sc , and ZIP C ifornia NUMENT DE G NUPMBERS ECT CURACY C</td> <td>-hool 9; NTIFICATIO TASK NO</td> <td>3943-5100 IN NUMBER WORK UNIT ACCESSION</td>	Naval D ADDRESS Monter PROCUREN PROCUREN O SOURCE ("OGRAM LEMENT NO CHE TRAC	POSTORA	duate Sc , and ZIP C ifornia NUMENT DE G NUPMBERS ECT CURACY C	-hool 9; NTIFICATIO TASK NO	3943-5100 IN NUMBER WORK UNIT ACCESSION
DDRESS (City, State, and ZIP Code) 70 AC Monterey, California 93943-5100 Mo Make OF FUNDING SPONSORING Bb OFFICE SYMBOL (If applicable) 9 PRO DDRESS (City, State, and ZIP Code) 10 SO State, and State, and ZIP Code) 10 SO DDRESS (City, State, and ZIP Code) 10 SO State, and S	D ADDRESS Monter PROCUREN O SOURCE ("OGRAM LEMENT NO CHE TRAC	SICITY, SEAT	, and ZIP C ifornia NUMENT DE G NUMMBERS ECT CURACY C	9: NTIFICATIO TASK NO	3943-5100 IN NUMBER WORK UNIT ACCESSION
Monterey, California 93942-5100 Mo Monterey, California 93942-5100 Mo Marke Of FUNDING SPONSORING Bb OFFICE SYMBOL (If applicable) 9 PRO MDDRESS (City, State, and ZIP Code) 10 SO PPOGR ELEME TTLE (include Security Classification) PPOGR ELEME TFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) han, JOSEDH K. TYPE OF REPORT Ster's Thesis COSAT CODES 18 SUBJECT TERMS (Continue FELD GPOUP STRACT (Continue on reverse if necessary and identify by block number) The tracking accuracy of a missile target a target seeker using a gimbaled platform, and induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accuracy whether stationary or moving, is difficult. Content	Monter PROCUREN O SOURCE OGRAM LEMENT NO	ey, Cel MENT INSTR	ifornia NUMENT DE G NUPMBERS ECT CURACY C	9: NTIFICATIO TASK NO	WORK UNIT
AME OF FUNDING SPONSORING RGANIZATION Bb OFFICE SYMBOL (If applicable) DDRESS (City, State and ZIP Code) DDRESS (City, State and ZIP Code) FFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) han. JOSEDN K. TYPE OF REPORT aster's Thesis COSAT CODES FELD GPOLP FICTION COSAT CODES FELD GPOLP SUBGROUP Friction, Model =: Tracking accuracy of a missile target a target seeker using a gimbaled platform, a induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accur whether stationary or moving, is difficult. Con	DATE OF R	MENT INSTR	UMENT DE	TASK NO	WORK UNIT
DDRESS (City, State, and ZIP Code) DDRESS (City, State, and ZIP Code) TLE (Include Security Classification) EFFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) han. Joseph K. TYPE OF REPORT aster's Thesis COSAT CODES 18 SUBJECT TERMS (Continue COSAT CODES 19 COSAT CODES 19 COSAT CODES 10 COSAT	O SOURCE	OF FUNDIN PROJI	G NUPPBERS	TASK NO	WORK UNIT
PPOGRELEME ITLE (Include Security Classification) IFFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) han. Joseph K. TYPE OF REPORT ISD * ME COVERED IA DATI aster's Thesis IPPLEMENTARY NOTATION Image: Start Continue Image: Start Continue on reverse if necessary and identify by block number) Image: Start Sta	THE TRAC	EPORT (V	CURACY C	F A TAI	WORK UNIT
ELEME ITLE (Include Security Classification) EFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) TYPE OF REPORT 130 * ME COVERED 14 DATI SCB-CROUP TO IS SUBJECT TERMS (Continue COSA* CODES IS SUBJECT TERMS (Continue Friction, Model - Tracking accuracy Tracking accuracy of a missile target Is starget seeker using a gimbaled platform, a Induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accuracy	THE TRAC	KING AC	CURACY C	••••••••••••••••••••••••••••••••••••••	
TLE (INCLUDE Security Classification) EFFECT OF FRICTION AND CONTROL PARAMETERS ON THE ERSONAL AUTHOR(S) han. JOSEDN K. TYPE OF REPORT '30 * ME COVERED 14 DATI aster's Thesis '0 1 UPPLEMENTARY ACTATION COSA* CODES 18 SUBJECT TERMS (Continue FELD GROUP SUBJECT TERMS (Continue Friction, Model	THE TRAC	KING AC	CURACY C		<u></u>
COSAT CODES 18 SUBJECT TERMS (Continue FELD GROUP SLB-GROUP Friction, Model Friction, Model Tracking accuracy Tracking accuracy IBSTRACT (Continue on reverse if necessary and identify by block number) The tracking accuracy of a missile target a target seeker using a gimbaled platform, at induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accuracy whether stationary or moving, is difficult. Contact of the second sufficient of the second suffici					
The tracking accuracy of a missile target a target seeker using a gimbaled platform, and induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accu whether stationary or moving, is difficult. Con	tinue on re	werse it ne	cessory and	identify of	y block number)
Tracking accuracy IBSTRACT (Continue on reverse if necessary and identify by block number) The tracking accuracy of a missile target a target seeker using a gimbaled platform, and induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accur whether stationary or moving, is difficult. Con-	iel -refei	rence,	P.D. con	trol, F	.I.D. contro
The tracking accuracy of a missile target a target seeker using a gimbaled platform, a induced by the preloaded bearings, and by the detector with the rest of the seeker's electron and sufficiently large enough such that accu whether stationary or moving, is difficult. Con	macy, Ta	arget s	eeker		
control action can not satisfactorily meet t deficiency of these two methods, a model-ref relying on idealized predictor corrector contro the missile seeker. Computer simulations using	et seek , an im the sho tronics. wccurate Convent convention t the -referent ntrol to	er depen mortant it wige This posit ional con nal piu error comprove bynam	nds on s variab s which friction is deriva criteria thod has ve the t ic Simul	any vai le is connec force tking a nethods tive p . To been tracking ation	riables. For the friction it the targe is nonlinear of a target such as P.D lus integral overcome the synthesized g accuracy o Language hav
D STRIBUTION AVAILABILITY OF ABSTRACT DTC USERS U	sing the		thed.		
NAME OF RESPONSIBLE INDIVIDUAL	ABSTRAC	T SECURITY	CLASSIFICA	TION	CE SYMBOL

Approved for public release; distribution is unlimited.

EFFECT OF FRICTION AND CONTROL PARAMETERS ON THE TRACKING ACCURACY OF A TARGET SEEKER

by

Joseph K. Chan Naval Weapons Center, China Lake, California B.S., University of South Alabama, 1981

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1987

Author: ุ่กุลก Approved by: ealey, Thesis Advisor Anthony J. Healey, Chairman, partment of Mechanical Engineering Gordon Schacher, Dean of Science and Engineering

ABSTRACT

The tracking accuracy of a missile target seeker depends on many variables. For a target seeker using a gimbaled platform, an important variable is the friction induced by the preloaded bearings, and by the short wires which connect the target detector with the rest of the seeker's electronics. This friction force is nonlinear and sufficiently large enough such that accurate position tracking of a target, whether stationary or moving, is difficult. Conventional control methods such as P.D. (proportional plus derivative) or P.I.D. (proportional plus derivative plus integral) control action can not satisfactorily meet the error criteria. To overcome the deficiency of these two methods, a model-reference method has been synthesized, relying on idealized predictor corrector control to improve the tracking accuracy of the missile seeker. Computer simulations using the Dynamic Simulation Language have demonstrated the superior performance expected from this method.

Accession For			
NTIS	CR.4&I	N	
DTIC	TAB	Ĺ	. 1
Unannounced []			
Justification			
By Distribution/			
Availability Codes			
Dist	Avait a Spe	nia/or cial	
A-1			·

TABLE OF CONTENTS

I.	INT		8
	Α.	BACKGROUND	8
	B .	RECENT DEVELOPMENTS IN CONTROL	9
	С.	OBJECTIVE	. 10
	D.	METHOD AND APPROACH	. 10
II.	AN	ALYTICAL MODELING	. 11
	Α.	INTRODUCTION	. 11
	B .	EQUATION OF MOTION	. 11
	С.	FRICTION MODEL	. 12
	D.	BLOCK DIAGRAM OF BASIC CONTROL SYSTEM	. 14
	E.	MODEL-REFERENCE CONTROL	. 16
	F.	INPUT SIGNAL MODEL	. 17
III.	CO	MPUTER SIMULATION METHOD	. 20
	Α.	INTRODUCTION	. 20
	B.	GEOMETRIC DESCRIPTION	. 20
	С.	ACCELERATION SIMULATION	. 20
	D.	DSL CODING	. 20
IV.	SIM	ULATION RESULTS	. 23
	A .	INTRODUCTION	. 23
	B .	EFFECT OF FRICTION ON ACCURACY	. 23
	С.	EFFECT OF THE K ₁	. 33
	D.	EFFECT OF SPRING CONSTANT	. 33
	E.	EFFECT OF INTEGRAL GAIN TIME CONSTANT	. 42
	F.	EFFECT OF G,	. 42
	G.	EFFECT OF # PREDICTION ERROR	. 51
	H.	EFFECT OF UNBALANCED SYSTEM	. 51
	I.	EFFECT OF ACCELERATION	. 60

V .	DIS	CUSSION AND RECOMMENDATION
	Α.	INTRODUCTION
	B.	DISCUSSION
	C.	RECOMMENDATION
APPEN	DIX A	: DSL LISTINGS (PD, PID CONTROL)
APPEN	DIX B	DSL LISTINGS (PC CONTROL)
LIST C)F REF	ERENCES
INITIA	L DIS	TRIBUTION LIST

LIST OF FIGURES

1.1	Typical Seeker Configuration
2.1	Free Body Diagram of the Platform 12
2.2	Friction Model of the Bearings and Wires
2.3	Response of the Friction Model 14
2.4	Block Diagram
2.5	Model-Reference Control Action
3.1	D.S.L. Program Flowchart
4.1	Balanced System, PD Control, No Friction
4.2	$\mu = 0.1, K_1 = 15.0, K_2 = 0.5, A = 0.05$
4.3	$\mu = 0.2, K_1 = 15.0, K_2 = 0.5, \delta = 0.05$
4.4	$\mu = 0.3, K_1 = 15.0, K_2 = 0.5, \delta = 0.05$
4.5	$\mu = 0.1, K_1 = 15.0, K_2 = 0.5, \delta = 0.05, PID Control T_i = 1.0 \dots 29$
4.6	$\mu = 0.2, K_1 = 15.0, K_2 = 0.5, \delta = 0.05, PID Control T_i = 1.0 \dots 30$
1.7	$\mu = 0.3$, $K_1 = 15.0$, $K_2 = 0.5$, $\delta = 0.05$, PID Control $T_1 = 1.0$
4.8	Position Error Vs Gain Constant K ₁ 32
4.9	$\mu = 0.3, K_1 = 2.0, \delta = 0.05$
4.10	$\mu = 0.3, K_1 = 5.0, 5 = 0.05$
4.11	μ=0.3, K ₁ =15.0, δ=0.05
4.12	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, Sin Input
4.13	$\mu = 0.3, K_1 = 30.0, \delta = 0.05$, Sin Input
4.14	$\mu = 0.3$, $K_1 = 1000.0$, $\delta = 0.05$, Sin Input
4.15	$\mu = 0.3, K_1 = 5.0, \delta = 0.00140$
4.16	$\mu = 0.3, K_1 = 5.0, \delta = 0.01$
4.17	$\mu = 0.3, K_1 = 5.0, \delta = 0.1$
4.18	Balanced System, PD Control, No Friction, Sin Input
4.19	$\mu = 0.3, K_1 = 5.0, \delta = 0.01$, Sin Input
4.20	$\mu = 0.3, K_1 = 5.0, \delta = 0.1, Sin Input$
4.21	$\mu = 0.1, K_1 = 15.0, \delta = 0.05, PID Control, T_i = 2 \dots 47$

4.22	$\mu = 0.1, K_1 = 15.0, \delta = 0.05, PID Control, T_i = 3 \dots 48$
4.23	$\mu = 0.3, K_1 = 30.0, \delta = 0.05, \mu_m = 0.3, \delta_m = 0.05, G_1 = 30.0$
4.24	$\mu = 0.3, K_1 = 30.0, \delta = 0.05, \mu_m = 0.3, \delta_m = 0.05, G_1 = 500.0$
4.25	$\mu = 0.3, K_1 = 15.0, \delta = 0.05, \mu_m = 0.3, \delta_m = 0.05, G_1 = 3000.0$
4.26	$\mu = 0.1, K_1 = 15.0, \delta = 0.05, \mu_m = 0.3, \delta_m = 0.05, G_1 = 3000.0$
4.27	$\mu = 0.2, K_1 = 15.0, \delta = 0.05, \mu_m = 0.3, \delta_m = 0.05, G_1 = 3000.0 \dots 54$
4.28	$\mu = 0.4, K_1 = 15.0, \delta = 0.05, \mu_m = 0.3, \delta_m = 0.05, G_1 = 3000.0 \dots 55$
4.29	$\mu = 0.5$, $K_1 = 15.0$, $\delta = 0.05$, $\mu_m = 0.3$, $\delta_m = 0.05$, $G_1 = 3000.0$
4.30	$\mu = 0.3, K_1 = 15.0, \delta = 0.05, PD \text{ Control}, Z_m = 3864.0, Y_o = 0.1, Z_o = 0.2 \dots 57$
4.31	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, PD Control, $Z_m = 3864.0$, $y_o = 0.2$, $Z_o = 0.4$
4.32	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, PD Control, $Z_m = 3864.0$, $y_0 = 0.2$,
	$Z_{o} = 0.6$
4.33	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, PD Control, step response
4.34	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, PD Control, sin response
4.35	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, M-F Control, step response
4.36	$\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, M-F Control, sin response

I. INTRODUCTION

A. BACKGROUND

A typical air-to-air missile seeker might consist of a set of focusing optics, a detector, signal processing electronics, gyros, rate and position sensors, all mounted on a gimbaled platform as illustrated in Figure 1.1. A missile target seeker's function is to detect and to track a target, whether stationary or moving, until the target is neutralized. There are many variables which affect the accuracy of the seeker. Mechanical variables include friction, inertia, location of center of gravity, and vibration. Electrical variables include servos, signal processing limitations, and noise. Other variables such as thermal noise, external disturbances, electro-magnetic interferences, all play an important role in the tracking accuracy of a missile seeker. One of the most important considerations is the effect of friction on the tracking accuracy. For a seeker with a gimbaled platform, the friction primarily comes from the preloaded bearings and from the wires connecting the platform electronics and the seeker electronics located off the platform. This type of friction is nonlinear and its direction changes in relation to the motion of the target. Excessive friction causes "sticking" behavior and impairs accurate tracking.

Control of the position of a massive object in the presence of friction is not an easy task and requires high positional feedback gain with accompanying high drive stiffness for accuracy. Not only does this problem arise in target seekers, but also in eptical tracking telescopes, and robotic manipulators. Classical control techniques for accurate tracking have been based on the provision of a drive torque being proportional to angular position error with dynamic compensation based on integral and or derivative action. Target position is sensed by the optical apparatus as an angular error from the straight line pointing vector. Platform drive torques are then commanded to drive the angular pointing error to zero so that the angular position of the gimbaled platform automatically aligns with the target. In stabilizing dynamic motions, rate feedback from platform is essentially provided by either the gyros or by a resolver mounted opposite the torque motor on the platform. The accuracy of tracking is limited by the sensitivity of the feedback elements and is further impaired by vibration and sensor noise [Ref. 1] Normally, high positional feedback gain results in a

g

high drive stiffness, but, with the presence of vibration and noise, high stiffness increases errors. Modern stabilization techniques are being sought that overcome the need for high feedback gains.

In this thesis, the use of a model based predictor corrector control has been demonstrated, including the use of a "stick-slip" friction model for predicting the added torque required to compensate for frictional induced inaccuracies.

Figure 1.1 Typical Seeker Configuration.

B. RECENT DEVELOPMENTS IN CONTROL

A typical method employed to control the position error of a mechanical system is the P.D. (proportional plus derivative) action. This control scheme works well in most control applications but it has one drawback, the presence of steady state error. Integral action is usually added to eliminate the steady state error, but it is useless in the presence of non-linearity elements. Lag lead compensation technique is usually employed to overcome non-linearity effects by increasing the gain in the system and subsequently lead to increase noise in the system and increase error.

The use of model-reference controls increased in recent years. It is found that this technique lends itself to the problem of controlling complex and often non-linear systems. With the advent of modern microprocessor based controls, techniques using model following controls [Ref. 2] offer advantages where a large part of the control

force and effect can be predicted, rather that relying on feedback methods alone for correction of errors. Model Reference Controls have been used as an ideal response generator for comparison with actual system response so that plant parameter changes can be monitored, identified, and control gains adjusted automatically. Additionally, with particular emphasis on nonlinear systems in robotics, the computed torque method and sliding mode control design [Ref. 3] have been proposed for providing improved model following and tracking system performance.

C. OBJECTIVE

The effectiveness of a target tracker depends on its ability to maintain the target within its line of sight regardless of the actions taken by the target. This requires a high degree of accuracy on the part of the seeker to response to the motion of the target. It is demonstrated that friction, among other impedimenta, reduces the ability of the seeker to track a target. It is the purpose of this investigation to compare tracking performance with both classical P.I.D., P.D., and model-reference control actions under the assumption of deterministic signals. The primary disturbance is considered to arise from friction which is modeled here to include coulomb friction and the elastic effects from wiring harnesses.

D. METHOD AND APPROACH

The approach to this problem begins with a study of the friction variables and their effect on the tracking error. Then, the performance of the classical control actions, P.D., P.I.D. is evaluated. Finally, a model-reference method has been synthesized to improve the tracking accuracy of the seeker. All evaluations were done by computer simulation using the Dynamic Simulation Language (D.S.L.) developed for the I.B.M. 3033 computer. The simulation is limited to a single degree of freedom gimbal and it is shown that superior tracking accuracy may be achieved using a modelreference system with nonlinear friction force compensation.

II. ANALYTICAL MODELING

A. INTRODUCTION

This chapter discusses the development of the mathematical model for the target seeker dynamics in one degree of freedom and the reference model used for nonlinear friction compensation. The analytical modeling begins with the derivation of the equations of motion for the platform in the Y-Z plane. The motions in the other planes are neglected at this time to reduce the level of complexity. Even with this simplification, the information obtained in this study should prove useful in gaining an insight to the interaction of friction in a dynamic system. A friction model based on a "stick-slip" concept will be developed to model the combined friction effect of the bearings and wire harness. This is followed by the presentation of the classical control actions. A model-reference method to control the position error will be synthesized to improve the tracking accuracy. A brief discussion of the input signal model will complete this chapter.

B. EQUATION OF MOTION

The platform, together with the optics, detector, gyros, signal processing electronics and sensors can be modeled as a simple cylinder with a small degree of out of balance. The analysis begins with the determination of the forces acting on the system as shown in Figure 2.1. Using Newton's second law of motion and D'Alembert's Principle, the equation of motion of the seeker is derived as,

$$(I_m + mr^2) \theta + F(\theta, \theta) + m\ddot{z}r(\cos\theta\cos\varphi - \sin\theta\sin\varphi) = T_x \qquad (eqn 2.1)$$

where the torque, T_x , required to move the platform through an angular displacement, θ , depends on the position and velocity of the platform and on the motor's characteristics. The friction term in this equation is nonlinear. It is a function of θ and $\dot{\theta}$ The terms in \ddot{z} refer to an axial acceleration induced torque arising from some small out of balance mass m located at a distance r from the geometric center making an angle ϕ from the Y axis. With a typical d.c. motor, the output torque can be expressed for purposes of position control as the sum of proportional error and rate terms, as,

$$T_{x} = K_{1}(\theta_{c} - \theta) - K_{2}\dot{\theta}$$
 (eqn 2.2)

where K_1 is the motor gain constant and K_2 is the velocity gain constant. For an input command, θ_c , the required torque can be calculated by Equation 2.2 if the displacement θ and velocity $\dot{\theta}$ of the platform are known. The damping ratio $\sqrt{2}$ is used to provide proper damping of the system.

Figure 2.1 Free Body Diagram of the Platform.

C. FRICTION MODEL

The main contributors of friction in this platform are the bearings and the electrical wires which connect the platform electronics with that located in the support structure. A proper friction model must begin with the understanding of how these two components behave. The bearing friction is basically rolling friction which is a function of the surface roughness of the races and of the angular speed of the platform. The wires act as a pring which could be quite stiff when they are bundled, or soft when they are lose. Relative motion between wires in a harness causes an additional friction force that is dependent on the stiffness of the harness. The combined friction

from the two components can be modeled as a massless slider with a spring attached to it as shown in Figure 2.2.

Figure 2.2 Friction Model of the Bearings and Wires.

The force pulling on the spring stretches the spring by a distance θ until the spring's potential force is overcome. Then, the slider begins to move to a distance θ_s . The friction force then is equal to the product of the spring constant and the net motion $(\theta - \theta_s)$ of the spring. The spring constant, k, is a function of the coefficient of friction between the slider and the surface, μ , and of the amount of the allowable stretch on the spring. δ . A large value for δ represents a soft spring; and a small value for δ represents a stiff spring. When the direction is reversed, the force pushes on the spring, compressing it until the force is greater than the spring's potential force and the slider moves in the opposite direction. The friction force of this model is given as,

$$F = \frac{\mu \left(\theta - \theta_{s}\right)}{3}$$
 (eqn 2.3)

When the friction force is less then the friction between the two surfaces, the slider does not move until the friction force increases to exceed μ as indicated in 2.4 and 2.5.

$$\theta_{e} = \theta_{e} \qquad F < \mu \qquad (eqn \ 2.4)$$

$$\theta_{a} = \theta_{a} - \delta \frac{F}{ABS(F)}$$
 $F > \mu$ (eqn 2.5)

In reality, a friction force can exists even though there is no relative motion. A closer look at equation 2.3 reveals the ability of this model to support a non-zero friction force. When θ_s is zero, that is, the platform is not rotating, the friction force is equal to the product of the spring constant and θ . A typical coulomb friction model would have a zero friction force when θ_s is zero. It is the ability of this model to handle nonzero friction force which sets it apart from conventional coulomb friction model. Once the force exceeds the friction force, the slider starts to move with its direction determined by the direction of the force as indicated in Equations 2.5. The response of the slider-spring friction model is illustrated in Figure 2.3.

Figure 2.3 Response of the Friction Model.

D. BLOCK DIAGRAM OF BASIC CONTROL SYSTEM

The behavior of the system can now be put in a more convenient form for control analysis and simulation. A block diagram, is constructed from Equations 2.1 and 2.2. Figure 2.4 provides an visual interpretation of the control system which allows more effective analysis of the problem.

The command signal, θ_c , is compared with the position feedback signal, θ , to produce an error ε . This signal is amplified by a feedforward gain K_1 in the P.D. control method. The amplified signal is compared with the velocity feedback signal to produce

¢7

Figure 2.4 Block Diagram

the required torque to drive the platform. However, this torque is reduced by the friction torque caused by the bearings and wires. The torque generated by the out of balance mass reduces the available torque even further. What is left is a greatly reduced torque which is not necessarily high enough to drive the platform dynamics to the desired position and a position error exists. P.D. control action simply would not produce a zero position error. The shortcoming of this scheme is its lack of history of how the error changes with time. The integral action, shown as dotted outlines in Figure 2.4, helps to reduce the error by summing errors accumulated up to the most recent time, then an amplified average of this error is added to produce the required torque. The overall effect is better error reporting and correcting. Ideally, this method would produce zero position error. Both the P.D. and P.I.D. control suffer noise sensitivity problems. When a noise, either internal or external, is introduced to the system it is amplified by the control actions and accurate tracking becomes difficult.

E. MODEL-REFERENCE CONTROL

Consider an ideal system which has the same basic inertial characteristics as the platform. This is referred to as a model. Assuming the model is perfectly balanced and neglecting the effect of friction, the ideal model dynamics is expressed by Equation 2.6.

$$X = \frac{U}{I_m + mr^2}$$
 (eqn 2.6)

If this model is rotated by a motor with the output torque expressed as the sum of a positional error and rate feedback, the torque equation is given as,

$$U = G_1(\theta_c - X) - G_2 X \qquad (eqn 2.7)$$

where U is the ideal motor output torque, θ_c is the command signal as defined before. X and \dot{X} denotes the position and velocity of the model, respectively. G_1 is the positional error gain and G_2 is the velocity feedback gain. The value of G_1 is limited only by the deliverable torque from the torque motor and G_2 follows the same damping rule as K_2 but without the problem of signal noise generation. The model friction due to the bearings and wires can be modeled as before. Using the notation X in place of θ , \dot{X} in place of $\dot{\theta}$, μ_m and δ_m replace μ and δ , the model friction is expressed by Equation 2.8.

$$F_{m} = \frac{\mu_{m}(X - X_{1})}{\delta_{m}} \qquad (eqn 2.8)$$

$$X_s = X_s$$
 $F_m < \mu_m$ (eqn 2.9)

$$X_s = X_s - \delta_m \frac{F_m}{ABS(F_m)}$$
 $F_m > \mu_m$ (eqn 2.10)

In order to overcome the friction torque and drive the model to θ_c , the torque needed must be the sum of the two torques described above. The predicted torque is given below,

$$T_{\text{xored}} = U + F_{\text{m}} \tag{eqn 2.11}$$

To correct for any positional and velocity errors that might exist between the model and the platform, an additional correction torque based on the amplified error signals are added to the predicted torque to yield the total required torque, expressed in Equation 2.12 as,

$$T_{x} = T_{xpred} + K_{1}(X - \theta) + K_{2}(X - \theta)$$
 (eqn 2.12)

where the second term corrects the positional error and the third term corrects the velocity error.

This software based model is described in Figure 2.5. It is assumed that the torque to drive the platform in following command signals can be expressed as the sum of the torque to drive an ideal platform with no friction plus the torque required to overcome friction as established by the ideal platform model. Since the actual platform motion may differ slightly from that of the ideal, a correction torque is added based on a proportional and derivative action applied to motion errors.

F. INPUT SIGNAL MODEL

The response of the system to a step input and a sine input is simulated using the D.S.L. simulation program. An input command is 0.2 radians for all simulations. This is equivalent to commanding the seeker to move 11.459 degrees. The step input is roughly equal to an initial target acquisition phase which the seeker is required to lock

A.

Figure 2.5 Model-Reference Control Action

on to the target or when the target is stationary. The sinuscidal input simulates the maneuvering of the target to avoid lock on. The target is assumed to be moving at 2.5 Hz. This type of maneuver is extreme because most targets are not able to evade this quickly. However, most missiles flex and rotate while moving through the air, which makes this assumption more realistic.

III. COMPUTER SIMULATION METHOD

A. INTRODUCTION

Dynamic Simulation Language (D.S.L.) is a FORTRAN-based simulation language for simulation of continuous systems. It's strength lies in its built in functions which allow the composition and simulation of any physical systems. Some of the built in functions include integrators, function generators, non-linear functions, probability distribution functions, and linear transfer functions; allow easy construction and simulation of the system without heavy programing. A more comprehensive look at the capabilities of D.S.L. can be found in References 4 and 5.

B. GEOMETRIC DESCRIPTION

The platform was modeled as an cylinder two inches in diameter and three and a half inches in height. The total mass of the cylinder was 0.0029 slugs plus a 10% out of balance mass (0.0003 slugs). The inertia of the cylinder was 0.0037 lb-in-s² The initial distance of the out of balance mass from the geometric center was taken to be 0.1 inches in the positive Y direction and 0.2 inches in the positive Z direction. This distance as well as the friction and control parameters were varied to determine their effects on the performance of the seeker.

C. ACCELERATION SIMULATION

The effect of acceleration is simulated under an assumed flight profile. The maximum acceleration subjected to the platform is assumed to be an exponential function describes by Equation 3.1 and 3.2.

$$Z = Z_m(1-EXP\{-t/\tau_1\})$$
 $t < \tau_1$ (eqn 3.1)

$$Z = Z_m EXP\{-t, \tau_2\}$$
 $t > 4\tau_1$ (eqn 3.2)

where τ_1 and τ_2 are some arbitrary constants.

D. DSL CODING

The flow chart shown in Figure 3.1 illustrates the basic structure of the D.S.L. program used in the simulation of the seeker. The program is divided into segments:

TITLE, CONSTANT, PARAMETER, INITIAL, DYNAMIC, DERIVATIVE, AND TERMINAL. The TITLE segment named the program. The CONST segment defines the constants in the program which include the mass properties of the seeker and the maximum acceleration. PARAM segment defines the constants which will be changed from one simulation run to the next. It defines the friction characteristics of the seeker model, input signals, time constants, gain constants, and the geometry of the out of Lalance mass. The INITIAL segment initializes the variables and calculates the values of the out of balance geometry and velocity feedback constant. The DYNAMIC segment calculates the acceleration profile of the seeker and the input signals. This segment is computed at each time steps. The DERIVATIVE segment is the main body of the program. It consists of the description of the seeker dynamics as well as the control actions being used. Finally, the last segment, TERMINAL, contains the commands with regard to the total simulation time desired as well as the printing and plotting information.

Appendix A presents the DSL programming codes for the simulation of the classical P.D. and P.I.D. control actions and Appendix B presents the DSL programming codes for the model-reference control method. The symbol "#" means the line is not used for current simulation.

•

Figure 3.1 D.S.L. Program Flowchart

IV. SIMULATION RESULTS

A. INTRODUCTION

This chapter presents the results of the simulation. The effect of friction, control parameters, and control schemes on the tracking accuracy are illustrated by accompanying figures. Except as indicated, all figures shown the command signal, θ_c , as a series of short dashes and the actual response, θ (TH), as a solid line. The actual torque, T_x (TX) was indicated as medium length dash lines. Most of the figures reflect the response to the sinusoidal input, and z'so contain the system error (THE) as indicated by long dash lines. Other information in the figures include the error between the response and the slider (THERR). This piece of information indicates how the slider from the friction model relates to the response. The pound(lb), inch(in), second(sec) system was used through out the simulation process. The unit of torque was lb-in. The unit of angular displacement was in radians (rad). The velocity and acceleration were in rad sec and rad sec², respectively. Mass was expressed in lb-sec² in. The command signal amplitude was 0.2 radians (11.459 •) and the simulation time lasted one second.

B. EFFECT OF FRICTION ON ACCURACY

This section discusses the effect of friction on the system. The system with no friction was simulated and its result was compared with the same system with various friction level. In order to provide a meaningful result, all the simulation variables except μ must remain constant. The control variables K_1 and δ were set at 15 lb-in rad and 0.05 in, respectively. The value of K_2 was set at 0.5 lb-in-sec/rad. Figures 4.1 through 4.8 are related to this subject. The response of an ideal, balanced, system with no friction, to a step input is shown in Figure 4.1 The rise time¹ of the ideal response was 0.12 seconds with no steady state error. Using the P.D. control scheme with μ equals to 0.1, 0.2, and 0.3; the steady state error increased from 0.00667 to 0.01333 and to 0.02 radians, respectively. The performance of the P.I.D. control action was better. The worst steady state error occured when μ equal to 0.3 lb-in was only

¹The rise time was taken as the time required for the system to achieve 95% of the steady state value.

0.00424 radians. However, this better accuracy was at the expense of rise time which was 0.24 second. This was twice as slow as in the ideal case. A comparison of position error for different friction level at different gain K_1 was shown in Figure 4.8. This figure also shown some interesting information. It was expected the position error would increase with increase friction at any given set of circumstances. However, the figure indicated that although it was true in general there were cases when an increased μ did not produce a higher error. For example, when K_1 equal to 10 lb-in rad the position error for μ equal to 0.2 lb-in had a higher position error (2.5 milliradians) compared to 0.84 milli-radians for μ equal to 0.3 lb-in. This was due to the nonlinearity of the system. A particular K_2 combined with a suitable K_1 and δ would produce a better error.

l

Figure 4.1 Balanced System, PD Control. No Friction

Figure 4.2 $\mu = 0.1$, $K_1 = 15.0$, $K_2 = 0.5$, $\delta = 0.05$

Figure 4.3 $\mu = 0.2$, $K_1 = 15.0$, $K_2 = 0.5$, $\delta = 0.05$

Figure 4.4 $\mu = 0.3$, $K_1 = 15.0$, $K_2 = 0.5$, $\hat{o} = 0.05$

Figure 4.5 $\mu = 0.1$, $K_1 = 15.0$, $K_2 = 0.5$, $\delta = 0.05$, PID Control $T_i = 1.0$

Figure 4.6 $\mu = 0.2$, $K_1 = 15.0$, $K_2 = 0.5$, $\delta = 0.05$, PID Control $T_i = 1.9$

Figure 4.7 $\mu = 0.3$, $K_1 = 15.0$, $K_2 = 0.5$, $\delta = 0.05$, PID Control $T_i = 1.0$

Figure 4.8 Position Error Vs Gain Constant K₁

Ľ,

, e` . t_

C. EFFECT OF THE K,

The usual method of minimizing the influence of disturbance forces such as the frictional load is to increase the feedback gain, K_1 , so that system "stiffness" is increased. However, while this works with clean signals, the effects of sensor noise provides a limit on the useful range of K_1 . The deliverable torque by the motor also limits the values of K_1 . Figures 4.9 through 4.14 provide graphical results to different K_1 s. A high K_1 value drastically reduces the position error of the system as shown in Figure 4.8. The steady state error decreased from 73.88% to 10% when K_1 increased from 2 lb-in/rad to 15 lb-in rad. Like wise, the positional error to a sinusoidal input decreased from 0.12559 radians to 0.01764 radians when K_1 increased from 15 lb-in rad to 1000 lb-in/rad. The reponse followed the command signal rather well at the higher K_1 value with a phase shift of less than 0.01 seconds. The torque delivered to the system was also higher, an increase of 65%, compared with the lower K_1 value of 15 lb-in rad.

D. EFFECT OF SPRING CONSTANT

Figures 4.15 through 4.20 shown the effect of spring stiffness to position error. The spring constant, δ , appeared to have little effect on the steady state error but it did affect the torque delivery to the platform. A very stiff spring, small δ , required more torque than a softer spring as expected. Indeed, it was shown in Figures 4.15 and 4.16 However, this logic did not work in Figure 4.17. The torque delivery in this case was higher. The effect on a sinusoidal input was a little different. The stiffer spring performed poorer than the softer spring. The maximum error was 0.18527 radians for the stiff spring and 0.14129 radians for the softer spring. However, the softer spring i lowed the signal a little better than the stiff spring. The time lag was 0.07 second for ⁻¹ e stiff spring and 0.04 second for the soft spring. Compares with the ideal case where there was no friction, the maximum error was 0.12092 radians with a time lag of 0.04 seconds as shown in Figure 4.18.

Figure 4.9 $\mu = 0.3$, $K_1 = 2.0$, $\delta = 0.05$

Figure 4.10 $\mu = 0.3$, $K_1 = 5.0$, $\delta = 0.05$

Figure 4.11 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$

a. 1978

Figure 4.13 $\mu = 0.3$, $K_1 = 30.0$, $\delta = 0.05$, Sin Input

Figure 4.14 $\mu = 0.3$, $K_1 = 1000.0$, $\delta = 0.05$, Sin Input

Figure 4.15 $\mu = 0.3$, $K_1 = 5.0$, $\delta = 0.001$

Figure 4.16 $\mu = 0.3$, $K_1 = -5.0$, $\delta = 0.01$

E. EFFECT OF INTEGRAL GAIN TIME CONSTANT

The benefit of an integral action was demonstrated in Section B. This section studied the effect of the integral time constant. When the time constant v_{38} set to unity (Figure 4.5), the response overshot by 0.00188 radians (0.94%) and then settled back to 0.20104 radians at the end of one second. With the time constant increases to 2 and 3 seconds, the response did not exhibit any overshoot as shown in Figures 4.21 and 4.22. It did indicate that as the time constant increases, the steady state error also increases, even though the increase was small.

F. EFFECT OF G_1

This section as well as the next section focuses on the control variables G_1 and μ prediction on the accuracy of the seeker using the model-reference technique. It was shown in previous sections that the sinusoidal input produced an error due to the inability of the seeker to track accurately, even in the case where friction was not present. This was mainly due to the inability of the P.D. or P.I.D. control action's failure to correct the inertia effect of the platform in a timely manner. The effect of G_1 was illustrated in Figures 4.23 through 4.25. In Figure 4.23, the maximum error was 0.09086 radians and a time lag of 0.03 seconds with K_1 and G_1 both equal to 30. It is interesting to observe that the performance did not degrade even though the value of K_1 was reduced by half provided the value of G_1 was high. In fact, the performance can be improved by increasing G_1 As shown in Figure 4.24 and 4.25, both the maximum error and time lag were drastically reduced to 0.02417 rad and 0.01 rad as G_1 increases to 500 and 3000, respectively. The amount of time lag also cut by a third to less than 0.01 second. Although the value of G_1 was arbitrary, it was not without bound. The maximum usable value depends on the size of the torque motor.

Figure 4.17 $\mu = 0.3$, $K_1 = 5.0$, $\delta = 0.1$

Figure 4.18 Balanced System, PD Control, No Friction, Sin Input

Figure 4.20 $\mu = 0.3$, $K_1 = 5.0$, $\delta = 0.1$. Sin Input

Figure 4.21 $(1, K_1 = 15.0, \delta = 0.05, PID Control, T_i = 2$

RINE CONTRACTOR OF THE OWNER AND A CONTRACTOR OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER

Figure 4.22 $\mu = 0.1$, $K_1 = 15.0$, $\delta = 0.05$, PID Control, $T_i = 3$

Figure 4.23 $\mu = 0.3$, $K_1 = 30.0$, $\hat{\sigma} = 0.05$, $\mu_m = 0.3$, $\bar{\sigma}_m = 0.05$, $G_1 = 30.0$

Figure 4.24 $\mu = 0.3$, $K_1 = 30.0$, $\delta = 0.05$, $\mu_m = 0.3$, $\delta_m = 0.05$, $G_1 = 500.0$

G. EFFECT OF **p** PREDICTION ERROR

The main advantage of the model-reference control scheme is its ability to predict the response of the system using an ideal model. Figures 4.26 through 4.29 study the sensitivity to an erroneous prediction of the friction level in the system. Friction levels of μ equal to 0.1 to 0.5 with an increment of 0.1 were simulated. The results indicated that a wrong prediction did make a difference. The maximum errors in order of increasing μ were 0.01692, 0.01862, 0.01, 0.01368, and 0.01845. A smaller system friction than predicted tends to cause overshoot while a larger system friction causes the response to be a little short. In the sinusoidal input response, the corrective torque was trying to correct the overshoot but it's effectiveness was quite limited. This problem can be corrected by adaptive control action. Very often, the model-reference action was used with adaptive control.

H. EFFECT OF UNBALANCED SYSTEM

The effect of the out-of-balance appeared to be quite minimal as shown in Figures 4.30 through 4.32. The response typically reached a maximum values early on, usually within the first 0.12 seconds, then it droped slowly as the acceleration reached maximum acceleration. After the platform reached the maximum acceleration and started to decelerate, the response rose again. As the distance between the center of gravity and the out of balance mass increased, the accuracy decreased. Therefore, It is important to consider the effect of out-of-balance mass in platform design.

Figure 4.25 $\mu = 0.3$, $K_1 = 15.0$, $\hat{o} = 0.05$, $\mu_m = 0.3$, $\delta_m = 0.05$, $G_1 = 3000.0$

Figure 4.26 $\mu = 0.1$, $K_1 = 15.0$, $\delta = 0.05$, $\mu_{in} = 0.3$, $\delta_{in} = 0.05$, $G_1 = 3000.0$

Figure 4.27 $\mu = 0.2$, $K_1 = 15.0$, $\delta = 0.05$, $\mu_m = 0.3$, $\delta_m = 0.05$, $G_1 = 3000.0$

Figure 4.28 $\mu = 0.4$, $K_1 = 15.0$, $\delta = 0.05$, $\mu_m = 0.3$, $\hat{o}_m = 0.05$, $G_1 = 3000.0$

Figure 4.29 $\mu = 0.5$, $K_1 = 15.0$, $\delta = 0.05$, $\mu_m = 0.3$, $\delta_m = 0.05$, $G_1 = 3000.0$

Figure 4.30 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, PD Control. $Z_m = 3864.0$, $Y_0 = 0.1$, $Z_0 = 0.2$

Figure 4.31 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, PD Control, $Z_m = 3864.0$, $y_0 = 0.2$, $Z_0 = 0.4$

Figure 4.32 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, PD Control, $Z_m = 3864.0$, $y_0 = 0.2$, $Z_0 = 0.6$

I. EFFECT OF ACCELERATION

The effect of acceleration was similar to that of the C.G. location. The response began to drop as the acceleration approached maximum and recovered when the platform started to decelerate. This phenomenon was true for both the P.D. and model-reference control schemes shown in Figures 4.33 through 4.36 with either step input or sinusoidal input. However, the model-reference action allowed a much quicker recovery than the P.D. action. This was due to the correction torque provided by the model. Furthermore, the P.D. action had a much greater positional error while responsed to a step input and a slower response to a sinusoidal input.

Figure 4.33 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, PD Control, step response

Figure 4.34 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3364.0$, PD Control, sin response

Figure 4.35 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, M-F Control, step response

Figure 4.36 $\mu = 0.3$, $K_1 = 15.0$, $\delta = 0.05$, $Z_m = 3864.0$, M-F Control, sin response

V. DISCUSSION AND RECOMMENDATION

A. INTRODUCTION

This chapter summaries the results obtained from the D.S.L. simulation and make recommendations for future work in this area.

B. DISCUSSION

The model-reference control method described here offered better tracking accuracy than either the P.D. or P.I.D. actions. It also minimized the problem of noisy feedback signals. This software based model utilizes an idealized model as a reference to predict the torque needed to overcome friction and gimbal dynamics and produce zero position error. First, the amount of torque needed to drive an idealized platform with no friction is predicted. Then, the torque required to overcome friction is determined from the friction model described in Chapter II. The sum of these two produced a predicted torque T_{xpred} . In addition, the idealized platform velocity \dot{X} is compared with the actual velocity $\dot{\theta}$ and the error is amplified. Similarly, the ideal position X is compared with the actual position θ and the error is amplified also. A corrective action occurs when these amplified error signals are added to T_{xpred} to yield the total required torque T_x . The result is a highly tuned, high accuracy, control action. Since the reference model is ideal, it does not have the draw back of large noise amplification as the other two control schemes do. Therefore, it is reasonable to expect better target tracking, even if the noise level is high.

The simulation results clearly shown the superior tracking accuracy provided by the model-reference method. The level of accuracy achieved is adequate for most target tracking seekers. Although this study was limited to the Y-Z plane only, this exercise did provide a better and clearer understanding of how friction and control variables affect the performance of the seeker. Of course, the performance of a missile seeker is affected by many other variables, not discussed here. The effect of vibration as the missile moves through the air, or the effect of air blast in the vicinity of the missile are examples of disturbance which will play an important role in the tracking accuracy of the missile. The friction model presented here is more realistic than simple coulomb friction model which produces an underfined friction force when θ_s is equal to zero. The model presented here does allow non-zero friction force under stationary conditions. Improvements can be made on the model-reference method to have adaptive capability to take into consideration the external disturbances, and variabilities in actual friction.

C. RECOMMENDATION

It is recommended that an experimental follow up be made to compare with the results obtained by analytical means. Frictional effect is not the only element affect seeker performance. There are other problem areas which also deserve the attention given here; among them vibration, shock, and random noise effects. It will be interesting to subject the model-reference control method described here to these external disturbances to see how well or how poor the current method handles these problem. These disturbances can be incorporated into the model-reference algorithm so their effects will be minimal. There are also an abundance of research in adaptive control. This type of control action enables a control system such as the one described here the ability to "learn and adjust" the model to different signal input. This latest technique is most versatile and would definitely contribute to the tracking accuracy of the seeker.

APPENDIX A DSL LISTINGS (PD, PID CONTROL)

TITLE GIMBAL DYNAMICS **** × **AUTHOR**: JOSEPH CHAN ABSTRACT: THIS PROGRAM SIMULATES THE MOTION OF A SINGLE GIMBAL SYSTEM WHILE SUBJECTS TO STEP AND SINUSOIDAL 5XCITATIONS. PD AND PID CONTROL ACTION. * * * * * * * SYMBOLS: * MASS OF THE CYLINDER. CHAR. DISP FOR COULOME FRICTION MODEL. BEARING FRICTION FORCE. MASS MOMENT OF INERTIA OF CYLINDER. TORQUE GAIN CONSTANT. VELOCITY FEEDBACK CONSTANT. COEFFICIENT OF FRICTION. PERIOD OF THE SINE INPUT. ANGLE BETWEEN THE Y-AXIS AND R. DISTANCE TO THE OFF-CENTER MASS FROM THE ORIGIN. OUT OF BALANCE MASS. ACCELERATION TIME CONSTANT (INITIAL PHASE). ACCELERATION TIME CONSTANT (FINAL PHASE). ACCELERATION TIME CONSTANT (FINAL PHASE). ANGULAR DISPLACEMENT OF THE CYLINDER. INITIAL ANGLE ROTATION. ANGULAR ACCELERATION. × BM * DELTA × F * ĪM Ř1 K2 × × * MU * PERIOD * PH * R SM ÷ TAU1 × TAU2 × TH * **THO** : INITIAL ANGLE ROTATION. : ANGULAR ACCELERATION. : COMMAND ANGLE INPUT. : INITIAL ANGULAR VELOCITY. : ANGULAR VELOCITY. : ANGULAR DISPLACEMENT OF THE CYLINDER. : POSITION OF THE SLIDER. (FRICTION MODEL) : SIMULATION TIME. : MOTOR TORQUE. : DISTANCE TO OFF CENTER-MASS IN THE Y DIRECTION. : DISTANCE TO OFF CENTER-MASS IN THE Y DIRECTION. : LINEAR ACCELERATION. : MAXIMUM LINEAR ACCELERATION. * TH2DOT * THCOM * THDO * THDOT × THE * THS * TIME * TX * ŶO Z0 ŽŽDOT * × ZM + * CONST BM=0.00290, * LB-S**2/IN SM=0.00030, LB-S**2/IN ZM=0.0000, IM=0.00370 LB-IN-S**2 IN/S**2 PARAM K1=15.000, * LB-IN/RAD PERIOD=0.4 MU=0.3, DELTA=0.05. IN SEC/CYC **Z0=0.2**, **TAU1=0.5**, **TAU2=0.5**, PARAM YO=0.1, THMAX=0.2 IN IN SEC SEC RAD INITIAL = SORT(Y0**2+Z0**2) = ACOS(Y0/R) = SORT(8*IM*K1) R PH K2 = 0.0 = 0.0 F ΤH = 0.0 TH0

67

```
THD0
            0.0
           프
     THDOT
            0.0
           -
           = 0.0
     THE
            0.0
     THE0
           z
     THERR
           Ξ
           z.
            0.0
     THS
*
DYNAMIC
***********
×
     T1 = TIME-4.0*TAU1

Z2DOT = ZM*(1.0-EXP(-TIME/TAU1))

IF (TIME.GT.(4.0*TAU1)) THEN

Z2DOT = ZM*EXP(-T1/TAU2)
     ENDIF
*
 SINUSOIDAL EXCITATION
*
×
#
*
    THCOM=THMAX*SIN(2*PI*TIME/PERIOD)
* STEP INPUT
×
      THCOM=THMAX
*
DERIVATIVE
NOSORT
*
     THERR = TH-THS
     F = MU*(THERR)/DELTA
IF ((ABS(F)).LT.MU) THS = THS
IF ((ABS(F)).GT.MU) THS = TH-DELTA*F/ABS(F)
×
     THE
           = THCOM-TH
* PD FEEDBACK
*
          = K1*(THE)-K2*(THDOT)
     TX
*
 PID FEEDBACK
     TX = K1*(THE)-K2*THDOT+(K1/TI)*Y
TH2DOT = (TX-F-SM*Z2DOT*R*(COS(TH)*COS(PH)-SIN(TH) ...
*SIN(PH)))/(IM+SM*R**2)
THDOT = INTGRL(TH00, TH2DOT)
TH = INTGRL(TH0, THDOT)
TH = INTGRL(TH0, THDOT)
    Y
          = INTGRL(THE0, THE)
METHOD RK5
CONTRL FINTIM=1.00, DELT=0.001
SAVE 0.001, TX, F, THCOM, TH, THE, THERR
PRINT 0.010, TX, F, THCOM, TH, THE, THERR
* THETA VS TIME
*
#GRAPH (A,DE=TEK618) TIME(LE=8,UNIT='SEC') TH(LO=-.3,SC=.1,NI=6, ...
```

STOP

COAVER AND

APPENDIX B

DSL LISTINGS (PC CONTROL)

TITLE GIMBAL DYNAMICS2

*****	****	******
* * * * *	AUTHOR: JOSEF ABSTRACT: THIS GIMBAL SYSTEM SU USING PREDICTION	* * PROGRAM SIMULATES THE MOTION OF A SINGLE * UBJECTS TO STEP AND SINUSOIDAL EXCITATIONS * N CORRECTION CONTROL ACTION. * * *
* * *	SYMBOLS :	* *
*******************	BM: MASS ODELTA: CHAR.DELTAM: CHAR.F: BEARINFM: BEARING1: REFEREG2: REFEREIM: MASS NK1: TORQUEK2: VELOCIMU: COEFFIMU: COEFFIMU: COEFFIPH: ANGLER: DISTANSM: OUT OFTAU1: ACCELETH0: INITINTH2DOT: ANGULATHCOM: CONTROTHDOT: ANGULATHCOM: CONTROTHS: POSITITIME: SIMULATX: MOTORX: DISTANX0: INITIAX1: DISTANX0: INITIAX1: DISTANX2DOT: ACCELIXDOTO: INITIAX2DOT: ACCELIX00: INITIAX1: DISTANX2DOT: ACCELIXDOTO: INITIAX200T: ACCELIX00: INITIAX1: DISTANX200T: ACCELIX00: INITIAX1: DISTANX200T: ACCELIX00: INITIAX5: POSITY0: DISTAN	OF THE CYLINDER. DISP FOR COULOMB FRICTION MODEL. DISP FOR COULOMB FRICTION (REFERENCE MODEL). NG FRICTION FORCE. NG FRICTION FORCE (REFERENCE MODEL). ENCE MODEL TRANSFER FUNCTION. ENCE MODEL TRANSFER FUNCTION. ENCE MODEL TRANSFER FUNCTION. HOMENT OF INERTIA OF CYLINDER. E GAIN CONSTANT. ITY FEEDBACK CONSTANT. ICIENT OF FRICTION. MCE TO THE OFF-CENTER MASS FROM THE ORIGIN. F BALANCE MASS. ERATION TIME CONSTANT (INITIAL PHASE). ERATION TIME CONSTANT (FINAL PHASE). AR DISPLACEMENT OF THE CYLINDER. AL ANGLE ROTATION. AL ANGLE ROTATION. AR ACCELERATION. AL ANGLE NIPUT. AL ANGLE
* * *	ZO : DISTA Z2DOT : LINEA ZM : MAXIM	NCE TO OFF CENTER-MASS IN THE Z DIRECTION. * R ACCELERATION. * UM LINEAR ACCELERATION. *
* ************************************		
*		
CONST	BM=0.00290, SM LB-S**2/IN LB	=0.00030, ZM=0.0000, IM=0.00370 -S**2/IN IN/S**2 LB-IN-S **2
PARAM	K1=150000 MU	=0.3. DELTA=0.05. PERTOD=0.4

۴₂ : ۲

```
*
     LB-IN/RAD
                             IN
                                      SEC/CYC
*
PARAM G1=500.00, MUM=0.3, DELTAM=0.05, THMAX=0.2
                                        RAD
                             IN
*
PARAM Y0=0.1, Z0=0.2, TAU1=0.5, TAU2=0.5
              IN
                       SEC
      IN
                                SEC
*
INITIAL
            = SQRT(Y0**2+Z0**2)
= ACOS(Y0/R)
= SQRT(8*IM*K1)
= SQRT(8*IM*G1)
= 0.0
= 0.0
      R
      ΡH
      K2
G2
      F
      TH
            = 0.0
      THO
      THD0
            = 0.0
      THDOT
            = 0.0
            = 0.0
      THE
            = 0.0
      THE0
      THERR
      THS
            = 0.0
      X
XO
            = 0.0
            = C.O
      XDOT
            = 0.0
      XDOTO
            = 0.0
      X2DOT
            = 0.0
            = 0.0
      XS
*
DYNAMIC
*
      T1 = TIME-4.0*TAU1

Z2DOT = ZM*(1.0-EXP(-TIME/TAU1))

IF (TIME.GT.(4.0*TAU1)) THEN

Z2DOT = ZM*EXP(-T1/TAU2)
      ENDIT
*
×
 SINUSOIDAL EXCITATION
*
#×
     THCOM=THMAX*SIN(2*PI*TIME/PERIOD)
* STEP INPUT
*
       THCOM=THMAX
*
DERIVATIVE
NOSORT
×
      U = (THCOM-X)*G1-G2*XDOT
X2DOT = U/(IM+SM*R**2)
FM = MUM/DELTAM*(X-XS)
IF ((ABS(FM)).LT.MUM) XS = XS
IF ((ABS(FM)).GT.MUM) XS = X-DELTAM*FM/ABS(FM)
TXPRED = U+FM
*
**********
*
      THERR = TH-THS
F = MU*(THERR)/DELTA
      IF ((ABS(F)).LT.MU) THS = THS
```

```
71
```
```
IF ((ABS(F)).GT.MU) THS = TH-DELTA*F/ABS(F)
****
* MOTOR TORQUE MODEL * * (PREDICTOR CORRECTOR METHOD) * *
*
            THE
                       = THCOM-TH
           THE = THCOM-TH

TX = TXPRED+K1*(X-TH)+K2*(XDOT-THDOT)

IF (TX.GT.55.0) TX=55.0

TH2DOT = (TX-F-SM*Z2DOT*R*(COS(TH)*COS(PH)-SIN(TH) ...

*SIN(PH)))/(IM+SM*R**2)

THDOT = INTGRL(THD0,TH2DOT)

TH = INTGRL(TH0,TH2DOT)

TH = INTGRL(X0,XDOT)

X = INTGRL(X0,XDOT)

XDOT = INTGRL(XDOT0,X2DOT)

PF5
METHOD RK5
CONTRL FINTIM=1.00, DELT=0.0001
*****
SAVE 0.001, TX, TXPRED, F, THCOM, TH, THE, THERR
PRINT 0.010, TX, TXPRED, F, THCOM, TH, THE, THERR
* THETA VS TIME
#GRAPH (A,DE=TEK618) TIME(LE=8,UNIT='SEC') TH(LO=-.3,SC=.1,NI=6, ...
# UN='RAD') THCOM(AX=OMIT,LO=-.3,SC=0.1,NI=6,LI=4,UN='RAD') ...
# THERR(LO=-.3,SC=.1,NI=6,LI=2), TX(LI=3)
GRAPH (A,DE=TEK618) TIME(LE=8,UNIT='SEC') TH(LO=0.0,SC=.04,NI=8, ...
UN='RAD') THCOM(AX=OMIT,LO=0.0,SC=0.04,NI=8,LI=4,UN='RAD') ...
"UN='RAD') THCOM(AX=OMIT,LO=0.0,SC=0.04,NI=8,LI=4,UN='RAD') ...
            TX(LI=3)
LABEL (A) MU=0.3, K1=1000, DELTA=0.05, MUM=0.3, DELTAM=0.05, G1=1000
* THETA VS TIME WITH THETA COMMAND AS REFERENCE (SINE INPUT)
#GRAPH (A,DE=TEK618) TIME(LE=8,UNIT='SEC') TH(LO=-0.3,SC=0.1,NI=6, ...
# UN='RAD') THCOM(LO=-0.3,SC=0.1,NI=6,LI=4,UN='RAD')
* HYSTERISIS
#GRAPH (B,DE=TEK618) TH(LE=8,PO=2,4,AX=LIN,DRAW,UN=RAD) F(UN='LB')
#LABEL (A,B) MU=0.25, K1=2.00, K2=0.05, DELTA=0.050
* TIME HISTORY
#GRAPH (C,DE=TEK618) TIME(LE=8,UN='SEC') TH(LO=-.3,SC=.1,NI=6, ...
# LI=1,UN='RAD') THS(LO=-.3,SC=.1,NI=6,LI=2,UN='RAD') ...
# F(LO=-.3,SC=.1,NI=6,LI=4,UN='LB')
#LABEL (C) TIME HISTORY
END
STOP
```

LIST OF REFERENCES

- 1. Walrath, C.D., "Adaptive Bearing Friction Compensation Based on Recent Knowledge of Dynamic Friction," Automatica, v. 10, n.6, pp. 717-727, 1984.
- 2. Landau, I.D., "A Survey of Model Reference Adaptive Techniques-Theory and Applications" Automatica, v. 10, pp. 353-379, 1974.
- 3. Slotine, J.J.E. "The Robust Control of Robot Manipulators" International Journal of Robotic Research, v. 4, n. 2, 1985.
- 4. Dynamic Simulation Language/VS, Language Reference Manual, Program Number 5798-PXJ (SH20-6288-0), First Edition, IBM Corporation, June 1984.
- 5. Dynamic Simulation Language/VS, Program Description Operation Manual, Program Number 5798-PXJ (SH20-6287-0), First Edition, IBM Corporation, June 1984.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Naval Weapons Center Head, Code 394 China Lake, CA 93555-6001	1
4.	Naval Weapons Center Head, Code 3941 China Lake, CA 93555-6001	1
5.	Chairman, Mechanical Engineering Naval Postgraduate School Code 69 Monterey, CA 93943-5002	4
6.	Prof. L. W. Chang, Prof. Code 69CK Naval Postgraduate School Monterey, CA 93943-5002	1
7.	Mr. Joseph Chan Naval Weapons Center Code 3941 China Lake, CA 93555-6001	5
8.	Mr. R. Werneth N.S.W.C. Code U25 White Oak, MD 20910	l