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ABSTRACT

A computer algorithm was developed to determine if an acoustic transmitter can

be localized based on estimates of local angles of arrival of acoustic signals incident

upon a receive planar sonar array, knowledge of the deterministic effects of the ocean

on sound propagation, and local sound-speed profiles of the ocean. The algorithm was

designed to determine azimuthal and elevationdepression angles to the transmitter as

well as computing the depth, range, cross range, and line-of-sight range separations

between the transmitter and the receive array. The algorithm utilizes ray acoustics and

model-based phase weights to determine the transmitter's location relative to the
receive array's position. As written, the algorithm is capable of solving localization

problems in which the transmitter and receiver are in the same gradient of the local

sound-speed profile, provided that the range from transmitter to receiver is not so great 1

that the acoustic signal passes through a turning point prior to reaching the receive

array. The results indicate that the method proposed is viable for the class of problems

for which it was designed, and accuracies on the order of 0.1 meters are obtained for

line-of-sight ranges on the order of several kilometers. The angles calculated by the

algorithm are all accurate to within 0.005 degrees.

I.L

1



TABLE OF CONTENTS

1. IN TRO D UCTION .............................................. 9

II. T H EO R Y .................................................... 12

A. PROBLEM OVERVIEW AND GEOMETRY .................. 12

B. TRANSMITTER LOCALIZATION THEORY ................ 14

C. LIMITATIONS OF RAY ACOUSTICS SOLUTION ........... 32

1. Turning Points ........................................ 32

2. Changes in Sound-Speed Profile .......................... 35

3. Validity of Model-Based Phase Weights .................... 35

4. Depth Separation of Zero Meters ......................... 37

III. COMPUTER IMPLEMENTATION OF LOCALIZATION
T H EO R Y .................................................... 38

A. PROGRAM DESCRIPTION ............................... 38

1. Program LOCA TE ..................................... 38

2. Subprogram PLOTER .................................. 44

B. ALGORITHM VALIDATION .............................. 50

1. Generation of Received Signals ........................... 50

2. Test Case Results ................ ..................... 50

IV. CONCLUSIONS AND RECOMMENDATIONS ................... 60

LIST OF REFERENCES ................................................ 62

INITIAL DISTRIBUTION LIST ......................................... 63

5

lip~~ i 46



LIST OF TABLES

1. DEPTH AND RANGE TO TURNING POINTS FOR A POSITIVE
G RA D IEN T ...................................................... 34

2. DEPTH AND RANGE TO TURNING POINTS FOR A NEGATIVE

G RA D IEN T ...................................................... 35

3. LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 1) ............... 52

4. LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 2) ............... 53

5. LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 3) ............... 54

6. LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 4) ............... 55

7. DOUBLE PRECISION VERSUS SINGLE PRECISION RESULTS ........ 59

61.

6

$

I



LIST OF FIGURES

2.1 Sy.stem Geometry ............................................ 13

2.2 Typical Sound-Speed Profile..................................... 16

2.3 Receive Planar Array Geometry.................................. 19

2.4 Topview of Geometry ......................................... 31
2.5 Turning Point Ambiguity....................................... 33
2.6 Changing Sound-Speed Gradient................................. 36

3.1 Elevation, Depression Angle..................................... 39
3.2 Azimuthal Angle............................................. 40

3.3 Program LOCATE Flowchart................................... 41

3.4 Program LOCATE Flowchart................................... 42

3.5 F(x,y) for Geometry 1 ......................................... 45

3.6 F(x,y) for Geometry 2 ......................................... 46

3.7 F(x,y) for Geometry 3 ......................................... 47

3.8 F(x,y) for Geometry 4 ......................................... 48

3.9 Subprogram PLOTER Flowchart................................. 49

3.10 Error in RLOS as a Function of Depth Separation .................... 56

3.11 Error in RLOS as a function of Transmission Angle and/or Depth
Separation.................................................. 57

3.12 Sine and Cosine for 0 to 90 Degrees .............................. 58

7



ACKNOWLEDGEIMENTS

The author would like to thank Professor L. J. Ziomek for his assistance and
patience during the course of this research.

I would also like to thank my wife, Susan, for her encouragement and support
during the many hours that this work required. 'None of this would have been possible
without her.

8-

p

.

80

€,
ACKNO LEDGMENT



1. INTRODUCTION

This thesis constitutes one part of a long range project to develop new sonar
signal processing algorithms capable of rapidly solving sonar localization problems. At
present, the solution of the sonar fife control problem can require a considerahly

longer time than that required for most other types of fire control problems. The long
time required to achieve a solution can cause a significant degradation in a ship's
ability to avoid counterdetection, due to continuously decreasing range to the target
during problem solution. A sonar system capable of rapid target localization without
requiring own ship's maneuvers would greatly enhance the capabilities of our ships,

and allow for weapon firings at longer ranges.
The research question investigated in this thesis is whether or not it is possible

to develop an algorithm which utilizes estimates of the local angles of arrival of

acoustic signals incident upon a planar sonar array, knowledge of the deterministic
effects of the ocean medium on sound propagation, and local sound-speed profiles of
the ocean, to locate an acoustic transmitter, both in azimuthal angle and
elevation.,depression angle. In addition the model-based localization algorithm
(hereafter referred to as the 'localization algorithm') was designed to provide the range,
depth, cross range, and line-of-sight range between the acoustic transmitter and the

receive array.
Ray acoustics provides methods of determining ranges and propagation angles

for transmission of acoustic signals in inhomogeneous media [Ref. 1: sect. 6.21. The
deterministic effects of the inhomogeneous ocean medium on acoustic signals are well
known. From a transmitter in a known position, it is possible to develop ray traces
that illustrate the propagation of acoustic signals through the ocean medium. The
intent here is to use this knowledge of sound propagation to find the transmitter's
location based on the estimated angles of arrival at a receive array. The estimates of
the local angles of arrival are obtained from a frequency domain adaptive beamforming
algorithm developed by Ziomek and Chan [Ref. 21. This algorithm performs frequency.
domain adaptive beamforming for planar sonar arrays using a modified complex LMS
adaptive algorithm. The algorithm generates estimates of the local angles of arrival.

namely, the azimuthal and elevation depression angles, of incoming acoustic signals.

9 'f



However, in a real ocean environment, these local angles of arrival do not reflect the

true line-of-sight angles to the target.

The localization algorithm uses the angle-of-arrival estimates, plus typical

sound-speed profiles that are normally available to ships. In addition, it was found

that one more piece of information is required to localize the target. This information

is a model-based phase weight which is part of a model-based signal processing

algorithm developed by Ziomek and Blount [Ref. 3]. These phase weights are used to
"correct for deterministic, ocean medium, phase effects due to ray bending as a signal

propagates in the inhomogeneous ocean medium whose index of refraction (sound- V

speed profile) is a function of depth." [Ref. 3] The phase weights were originally

developed as part of an underwater acoustic communication problem in which receiver

and transmitter locations were known. The form of the phase weights used will be

presented in Chapter II.

For the problem investigated in this thesis, transmitter location is unknown a

priori and, therefore, the model-based phase weights cannot be determined in exactly

the same manner as was done in the algorithm developed by Ziomek and Blount

[Ref. 3]. The usefulness of the localization algorithm developed in this thesis is based ,'
on the availability of the model-based phase weights. The research done here is a .'

feasibility study of the ability to localize an acoustic transmitter if the phase weights

were available. The development of an algorithm to generate the model-based phase

weights was not the subject of this research.

The localization algorithm is limited to solving a particular class of problems.

The localization algorithm is designed to accommodate vertical variations in sound-

speed profile or, sound-speed profiles that are functions of depth only. Horizontal or

range variations in sound-speed profile were not examined in this initial study because

they constitute only a relatively small portion of ocean areas. Additionally, the

transmitter and receiver are assumed to both be within the same sound-speed gradient.

Finally, all case studies were conducted based on the assumption that the receiver was

in close enough proximity to the transmitter so that the acoustic signal had not passed

through a turning point prior to reaching the receiver. A turning point is defined as

the point along a ray path at which the angle of propagation is 90 degrees with respect

to the positive Y, or depth, axis. These three restrictions were necessary to limit the

scope of the initial study to a size that would allow for a complete verification of the

localization technique proposed, in the time allotted for the study.

10



Chapter II describes the theory used to develop the localization algorith:-i. An
overview of the problem and its geometry is presented, and then the computations
leading to the algorithm are discussed. Finally, the limitations of the algorithm are

presented.

Chapter III consists of the computer simulation results and an explanation of the

implementation of the theory in a computer algorithm. The output from the
localization algorithm is compared to the known geometry, and a comparison of
double precision versus single precision results is included. Additionally, the program
is investigated to determine if errors develop as a function of the transmission angle

and, or depth separation. As will be shown in Chapter II, the roots of a fourth-order
polynomial must be determined to find the angle of transmission at the source. The

roots for the fourth-order polynomial are found through use of an International
Mathematical Subroutine Library (IMSL) subroutine and are verified by comparison

ith graphs of the function. These graphs also assist in determining the correct root to

use during problem solution.

In Chapter IV, conclusions and recommendations are presented.
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II. THEORY

A. PROBLEM OVERVIEW AND GEOMETRY
Traditionally, the localization of acoustic transmitters by ships has been carried

out by obtaining many lines of bearing to the transmitter, and comparing these with

own ship's motion to develop a geographic picture of the transmitter's motion. This

method is time consuming and usually very lacking in terms of accuracy. Due to the
nature of the deterministic effects of the ocean medium, a great deal of information is

contained in the angles at which acoustic energy arrives at the receiver. Extraction of
this information from the local angles of arrival, while not a simple task in of itself,
would greatly simplify the problem of target localization.

As a first step in exploiting the information contained within the local angles of

arrival, a geometry must be assumed for the problem. Figure 2.1 illustrates the general

three-dimensional geometry used in the development of the method of target

localization presented here.
From Figure 2.1 the following definitions are apparent:

* x0, Yo, Zo rectangular coordinates of the transmitter in meters.

* xR, YR, ZR rectangular coordinates of the center of the receive planar
array in meters.

* AX, AY, AZ cross range, depth, and Z coordinate separations, respectively,
in meters between the transmitter and the receive array,
where:

AX = xR-xo -. 5-

AY = YR - YoA Z = z o ,
eAR~~z plr =Z- 70

" AR polar radial distance in meters from the transmitter to the
receive array.
Note: AR2 = AX 2 + AZ 2

* HDLTR polar radial distance in meters that a ray would travel in a
homogeneous medium (constant sound-speed profile) between
depths yO and YR based on an angle of transmission of 0(yo).

* IDLTX, HDLTZ distances in the X and Z directions, respectively, that a ray
would travel in a homogeneous medium between depths y
and YR based on an angle of transmission of o(y 0 ). .. ,

* IIRLOS line-of-sight range that a ray would travel in a homogeneous %
medium between depths y and NA based on an angle of
transmission of 0(y0 ).
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Note: HRLOS 2 = HDLTX2 + Ay2  HDLTZ2 .

" RLOS line-of-sight range between the transmitter and the center of
the receive array.
Note: RLOS 2 = AX 2 + AY2 + AZ 2

* N(y0 ) initial angle of propagation (angle of transmission), measured
with respect to the positive Y axis, of the acoustic signal at
source depth y0 meters.

* (YR) angle of arrival of incident plane wave field at depth YR
meters.

" J3LOS the line-of-sight angle, as measured from the positive Y axis,
between the transmitter and the receive array.

Note that.in. Figure 2..1 the.positive Y axis is defined.in the ditecrioli of increasing
depth, or in the downward direction. The coordinate system shown in Figure 2.1 is
applicable for any relative positioning of the transmitter and receive array, even if AX,

AY, and'or AZ are negative. Thus, the algorithm will work for any direction of arrival
of the incident acoustic plane-wave field.

The receive array is assumed to possess knowledge of its own depth. In addition,
the receive array will have available estimates of arrival direction cosines associated
with the local angles of arrival. These estimates are computed by the frequency

domain adaptive beamforming algorithm. From these known quantities and
information about the local sound-speed profile, the transmitter's location with respect
to the receiver shall be determined.

B. TRANSMITTER LOCALIZATION THEORY

Energy, whether it is acoustic or electromagnetic, will refract as it passes from a
medium with index of refraction n1 into a medium with index of refraction n2, provided
that n n2 . In this study, the ocean volume is characterized by a one-dimensional
index of refraction (sound-speed profile) that is a function of depth. Snell's law is

given by [Ref. 1: p. 2181,

sin P(y) _ sin (yo) (2.1)
c(y) c(yo)

where c(y) is the speed of sound in meters per second at a depth y. From Snell's law a
ray parameter may be defined as

14
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sin J(y 0) = sin P(yR) = sin (yTp) _ 1 (2.2)

c(y0 ) c(YR) c(YTP) c(YTP)

where:

* b is the ray parameter.

I YTP is the depth of a turning point. A turning point is defined as the point
along a ray path at which the angle of propagation, IyTP), is equal to
90 degrees.

At this point P(yR) is known, since the direction cosine

v(y R ) = cos j3(yR) ... (2.3)

is calculated by the frequency domain adaptive beamforming algorithm. The speed of

sound at depth YR, denoted c(yR), is normally known aboard ship as a result of

measurements made by onboard sonar systems.

It is assumed that the sound-speed profile is a linear function of depth with

constant gradient. In most areas of the ocean this is a good approximation if both the

transmitter and the receive array are in the same portion of the sound-speed profile. A

typical sound-speed profile is shown in Figure 2.2. The parameter g is the constant

gradient of the sound-speed profile in seconds-1 . From the surface to about 100 meters

a positive gradient is typically observed with a gradient g ;t +0.016 sec 1

[Ref. 4: p. 30], [Ref. 5: p. 4011. Below 100 meters a negative gradient is present, and in

this example g - -0.02956 sec "1. Finally, at depths between 700 to 1500 meters

[Ref. 4: p. 321 the gradient reverts to a positive value of g :, +0.017 sec-t

[Ref. 5: p. 401]. The value of g in the negative portion of the gradient was computed

by assuming the speed of sound to be 1500 meters per second at the ocean surface and

1475 meters per second at a depth of 1000 meters [Ref. 6: p. 3]. A depth of 1000

meters was chosen as the starting point of the second positive gradient. The negative

gradient was then calculated to fit between the positive gradients. Based on the

assumption that both the transmitter and the receive array are in the same gradient of

the sound-speed profile, the sr--ed of sound at depth y can be found from

c(y) = c(y0 ) + g(y-y 0). (2.4)

15 -ew



Sedof Sound
0

Range

g - 0.016/sec Sound-Speed Profile
100 M

g =-0.0296/sec

1000 M

0 .L

g - 0.01 7/sec

Figure 2.2 Typical Sound-Speed Profile.

The radius of curvature that describes the arc of the circle followed by anl

acoustic field propagating through this mecdium is theni [Ref. 1: p. 2371

RC c(Y0) c(, i) (2.5)
Ig ill PNyO)I 19sill P(YR)I

All the terms on the fa r righthand side of Equation 2.5 are known. Equation 2.4 mnay

be rewritten as expressed by Ziomck [Rcf. 1: p. 2381

= + c(%,) - C(yO) (2.6)

'Ilicrcforc.
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AY = YR-Y -c(YR) - IC(yo) (2.7)
g g

and, from equations 2.1 and 2.2,

c(YR) si O(YR) (2.8)
b

and

=(O Sill J(yo) -. - .(2.9) *

b

Combining equations 2.8 and 2.9 with equation 2.7 it is readily observed that,

AY = YR - Yo= 'sin 1( YR)--I- sin P(-)(2.10)

or,

AX' = YR - Yo = a sin PY - a sin jl(y0 ) (.1

where

a=- (2.12)
bg

The only unknowns now in equation 2.11 are P(y0 ) and AXY. Also note that

RC= jal = radius of curvature. (2.13)

The radial distance AR shown in Figure 2.1 can be found by utilizing the

following equation [Ref. 1: p. 2381:

17
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= + C(Y ) [cos P(Yo) - cos P(Y)I (2.14)z -- zo +g sinl (yo)

which is the Z coordinate of a ray propagating in the YZ plane. In this thesis a more

general class of problem is assumed so that the coordinate axes can remain fixed

relative to the platform on which the planar array is mounted. Therefore, in a three-

dimensional system, z and z0 are replaced by the polar coordinates r and r0 to give

r -- ro  + g ( [cos ( s 13(y), (2.15)g sinl] (y0)

and, as a result,

1
AR = rR - ro = - [cos N(Y) " cos P(YR) i  (2.16)

bg

or

AR = rR - r0 = a cos J(y 0 ) - a cos .(yR) (2.17)

The only unknowns in equation 2.17 are 1(y0) and AR. Also, note in Figure 2.1 that if

AX = 0, (2.18)

then

AR= AZ. (2.19)

At this point ray acoustics cannot provide any further information to develop a

solution to the problem. However, a model-based phase weight for a planar sonar

array, similar to that shown in Figure 2.3 , can be used to localize the transmitter. As

dcrived by Ziomek and Blount [Ref. 31

=n(f) -2tf'yndy + D(fn) -(N-I)2....,(N-) 2 (2.20)

18
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where

fy "vB (2.21)
c(yR)'

vB - cos P(YT) , (2.22)

and:

* (n(f) is the phase weight in the Y direction associated with element (m,n)
in the receive array.

" f is the frequency of the transmitted electrical signal.

* DMD(fn) is the model-based phase weight which is related to the deterministic
angle modulation performed by the ocean medium on the transmitted
electrical signal as a function of depth [Ref. 3].

I YT is the depth of the transmit array.

• dy is the interelement spacing in the Y direction associated with the
receive array.

Equation 2.20 describes the phase weights in the Y direction that a planar sonar

array using the three-dimensional FFT beamformer presented by Ziomek and Blount

[Ref. 3] would use to receive an acoustic signal transmitted from a depth YT and

received at a depth YR. This equation can be seen to consist of two parts. The first
portion is the term -2nf yndy which is the phase weight used in traditional beam

steering. The second part, (IMD(fn), is further described by Ziomek and Blount

[Ref. 31 as

VMD(f£n) -- -k(YT) 2V[c(YT)gj[n'D + ndy) - 11 + AY,} (2.23)

where the wave number in radians per meter as a function of depth YT is

k(yT) - 2nf c(YT), (2.24

f f + kf o . k =-K..0.K, (2.25)

20
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n'D(yR + ndy) c(YT) (2.26)

c(YT) + gAY,

and,

AYn - YT + ndy, (2.27)

where:

f is the carrier frequency in hertz,

fo is the fundamental frequency in hertz of the finite Fourier series representation
of the complex envelope of the transmitted electrical signal, and

* K is the highest harmonic used in the finite Fourier series.

The term n'D defines an index of refraction which is corrected for the distance

that the (m,n) element in the receive array is offset in the Y direction from the center

of the array. This compensation is provided by AY n , which computes the depth

separation between the center of the transmit array and the element (m,n).

When using these model-based phase weights it should be noted that YT is

equivalent to y of Figure 2.1. Additionally,

vB - cos 3(YT) = cos J3(yo). (2.2S)

Dividing equation 2.24 by 2vB yields

k(YT) - 27f 1 If (2.29)

2vB c(yT) 2vB c(YT)VB

The term n'D(yR + ndy) - 1 may also be rewritten as

n*D(YR + ndy) - I c(Y (2.30)
c(YT gA\ n

and. as a result,

' 21



n'D(YR + ndy) - I= c:-- c~y)-gY (2.31)
c(yT) + gAYn

n'D(YR +ndy)-= g n (2.32.)
c(YT) + gAyn

Therefore, substituting equations 2.32 and 2.29 into equation 2.23 yields

(DMD~~n) = -7Tf I-c(YT)Ayn + c(YT)Ayn + gAYn 2 12.3

c(YT)vB [cyT) + gAyn]

0DM6(fn) = -irf gAy 2  
.2 ( 2.34)

c(YT)vB lcYT) + gAynJ

Expanding the denominator of the second term on the right side of equation 2.34

results in

c(YT) + gAYn = c(YT) + g(YR - YT + ndy) . (2.35)

From equation 2.4 it can be seen that

c(YT) + g(YR Y T + ndy) = c(YR + ndy). (2.36)

Therefore, /

c(v 1 ) + gAYn c(YR + ndy). (2.37)

Substituting equation 2.37 and equation 2.22 inoequation 2.34 give

OM D~fn) -ir fgA n'(238
'.~M~J~, -c(y-r)c(YR + ndN,) cos N (.38

From equation 2.2, with v-- y

* F~*F F - F- 22



sin J8(y )
c(YT) = (2.39)

b

and, as a result,

"7tfbgAYn2 (2.40)
0 MD(f'n) = c(yR + ndy-) sin P(yT) cos P(YT)

From equation 2.12,

1
a = - . (2.12)

or

1
= bg. (2.41)

a

Using equation 2.41 in equation 2.40 yields

-"nfAY 2

ac(yR + ndy) sin P(YT) COS (yT) (2.42)

where

AYn - T + ndy = AY + ndy. (2.43)
n

If the center element of the receive array is chosen as the element at which the

phase weight 0MD(fn) is calculated, then n = 0, and

AY o = AN= ' YR YT (2.44)

Therefore. at n = 0
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)nfAy2 (
ac(YR) sin fl(yT) cos P(YT)

Now squaring both sides of equation 2.10 will result in

AY 2 = a2sin 2p(yo) - 2a2sin P(YR) sin P(Yo) + a2sin 2p(YR) (2.46)

which can be used in equation 2.45 to replace AY 2. Now let

x = sin P(y 0) (2.47)

and

y - cos P(Y0 )" (2.48)

The x and y defined in equations 2.47 and 2.48 are not the x and y coordinates

related to Figure 2.1. Rather, this x and y are merely dummy variables to be used in

the solution of equation 2.45. Due to the definitions of equations 2.47 and 2.48 a

relationship between the variables x and y is apparent, that is, 'p
+ y2  1 (2.49)

and, therefore,

y ( x2)1 ' 2  (2.50)

Next, replace YT with yo in equation 2.45, substitute equation 2.46 into equation

2.45, and multiply equation 2.45 by ac(YR)xY. This results in

ac(YR)MMD(f,o)xy = -itf[a2 x2 - 2a2sin P(YR)x + a2sin 2P(VR) ] . (2.51)

Divide both sides of equation 2.51 by nrfa2 to get
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* ( MD(f 0 )x~y = -X2 + 2 sin P(YR)x -sin
2 Py) (2.52)

Rewriting equation 2.52 yields

x 2 + c(R MD(fO)xy -2 sin O(YR)x + sin2 (YR) 0(2.53)

or

Ax2 + Bxy + Cx + D =0 (2.54)

where

A =1.0 , (2.55)

iT fa M DUM(2.56)

C =-2 sin IP(YR) (2.57)

and

D sin' P(YR) 2) (.5 8)

Substituting equation 2.50 into equation 2.54 yields

Ax2 ± BX(1 - x2)1'2 + Cx + D = 0 (2.59)

or,

Ax2 -4- Cx + D ±Bx(1 -X
2)1,2 .(2.60)



- - - - --- ' - -

Squaring both sides of equation 2.60 gives

(Ax' + Cx +D) 2 = B2x(I - x2 ) = B2x2 - B 4x 4 . (2.61)

Expanding equation 2.61 yields

A24' + 2ACx3 + (2AD + C2)x2 + 2CDx + D- B2x2 -B 2x 4  (2.62)

or

(A2 + B2)x4 + 2ACx3 + (2AD- B2 +C 2 )x2 + 2CDx + D2 = 0. (2.63)

To find the unknown, x, the roots of equation 2.63 must be computed. These

roots will also be the roots of equation 2.59. In the computer algorithm written to

implement this theory, the value

F(x,y) = Ax 2 ± Bx(l - x2 )1' 2 + Cx + D (2.64)

was also calculated to verify the validity of the roots found for equation 2.63.
Recalling that equation 2.47 defined

x = sin P(y 0 ) (2.47)

and equation 2.48 defined

v = cos oI(Y0 ) , (2.48)

we see that once x and y are known they may be substituted into equations 2.11 and
2.17 to solve for AY and AR (since P(yR ) , the radius of curvature (a), the receive array
depth, and the local sound-speed profile are all known).

At this point AY, AR and P(y0 ) are known. The next values to be found are AX.

AZ, RLOS. and PLOS. Using the definitions of the direction cosines as presented by

Ziomek [Ref 1: p.2261

v co l; (Y), (2.65
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u cos a(y), (2.66)

and

w = cos y(y) (2.67)

where:

* a(y) is the angle at a depth y measured from the positive X axis to the
vector of interest.

y(y) is the angle at a depth y measured from the positive Z axis to the
vector of interest.

Referring to Figure 2.1, the direction cosine v(y) at the transmitter depth can be

written as

AY
vY =Cos Py)= (2.68)

vf!RLOS

and, as a result,

AY
HRLOS = ' (2.69)

Also from Figure 2.1 it can be observed that
K

HRLOS 2 = HDLTR' + AY 2 . (2.70)

In ray acoustics, as presented by Ziomek [Ref. 1: p. 22 31, the propagation vector

is defined as

k = kxx + kyy +kzz (2.71)

where

"V

kx = k u, (2.72)
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y= kov ,(2.73)

kz = kow, (2.74)

and

2itf
ko = -(2.75)

Therefore, at the transmitter,

21rf
kXT = u(YT~), (2.76)

c(% 1 -)

and, at the receive array,

21rf
kXR - .(R (2.77)

c(YR)U(R

Additionally, for an inhomogeneous medium which has a sound-speed profile that is a

function of depth only, it is known that [Ref. 1: p.2231

kXR = kXT = constant . (2.78)

Therefore, from equations 2.76 and 2.77,

2rrf 2irf
- u(YR) - u(YT) (2.79)
c(YR) c(YT)

so that

u( O)= uYT (2.80)
c(YT)



or,

u(yT ) = c(vT) U(R) (2.81)
c(YR) u

In equation 2.81 u(YR) is supplied by the beamformer, c(YR) is known by own

ship, and since equation 2.11 has been solved for AY, it is possible to use equation 2.4

to calculate c(YT). Therefore, u(yT ) becomes a known quantity. An alternate method

of determining c(YT) would be by the use of Snell's law, or equation 2.1, since J(YR)'

J1(YT) and c(YR) are all known.

Similarly [Ref. 1: p. 233],

kZR = kzT (2.82)

and, as a result,

w(YT) - (Y ) (.3
c(YR)

Referring to Figure 2.1 and utilizing equation 2.81 it can be seen that

co s = c) HDLTX (2.84)

u(Y0) = Cos - u(YR) =
c(YR) HRLOS

Therefore, since u(yo) is known from substituting y0 for YT in equation 2.81, the value

of HDLTX is given by

- HDLTX = u(Y0)HRLOS. (2.85)

Now that u(yo) and v(y o ) are known from equation 2.84 and equation 2.68, it is

possible to find w(y.) by use of the fact that [Ref. 1: p. 224]

w2(y o))= 1 -(y o ) - v2( . (2.S6)
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Again utilizing Figure 2.1 and the fact that

w(y o ) = cos Y(yo) , (2.87)

we see that

HDLTZ
w =Y) -IfRLOS (2.88)

Therefore,

HDLTZ = w(y o ) HRLOS. (2.89)

Figure 2.4 shows the geometry of Figure 2.1 as seen by looking down into the

XZ plane from above the transmitter's depth. From Figure 2.4 the relationships

between AZ, AX, and AR may be derived.

The angle 6 in Figure 2.4 can be found from

L

I IDLTX
tan 6 = (2.90)

HDLTZ

Therefore,

6 - tan'(HDLTX,HDLTZ). (2.91)

Substituting equations 2.85 and 2.S9 into equation 2.91 results in

6 - tan-1 ([u(Yo)HRLOS]'[w(Yo)H RLOS]} (2.92)

so that

6 = tan'Eu(y) w(Yo) l . (2.93)
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4- ~HDLTZ

HDLTX

Ax

S

Figure 2.4 Topview of Geometry.

For an inhoinogencous mcdium with a sound-spccd profile that is a function of
depth only, it can be shown that [Ref. 1: p. 2321

w(y)

Therefore,

S = tan'i[u(vR)'W(YR)I (2.95)

where u(YR) and w(yR) are available from the frequency domain adaptive beamfbriner.

From Figure 2.4, AZ and AX are given by

AZ = AR cos 6 (2.9o)

and
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AX - AR cos 6. (2.97)

Referring once again to Figure 2.1, RLOS is given by

RLOS = (AX2 + AY2 + AZ 2 )1, 2  (2.98)

or, since

AR 2 = AX 2 + AZ 2 , (2.99)

RLOS = (AR 2 + Ay 2)1 '2 . (2.100)

Finally, PLOS can be determined by using

PLOS = cos'(AYi'RLOS). (2.101)

The equations presented in this section comprise the theory used to develop the

model-based localization algorithm. By the use of ray acoustics and the assumption

that the model-based phase weight is known, a closed form solution is possible for the

localization problem. Obviously, the solution's accuracy depends on a ship's ability to

correctly measure the sound-speed profile and the effects of any other local sonar

conditions, such as shallow depths and the presence of biologics. However, in the open

ocean, when the transmitter and receiver are located in the same gradient of the sound-

speed profile, a reasonably accurate solution is possible. There are some limitations

involved with the use of ray acoustics and the model-based phase weights. These

limitations will be discussed in the next section.

C. LIMITATIONS OF RAY ACOUSTICS SOLUTION

1. Turning Points

A turning point is that position along a ray path propagating through an

inhomogeneous medium at which the angle of propagation measured with respect to

the positive Y axis, P(y), is equal to 90 degrees. At this point the origination of the ray

path becomes ambiguous to a receiver using the localization technique described in this

3'
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thesis, because there is no way of knowing how many turning points the acoustic

signal has passed through. The turning point will cause a transmitter that is below

(above) the receiver to appear to be above (below) the receiver. Figure 2.5 illustrates

these two possibilities. In the case of receiver one in Figure 2.5, a turning point has

occurred between the transmitter's location and the receiver's location. The theory
presented in this section would result in a calculated line-of-sight similar to that shown

in Figure 2.5. The acoustic signal passes through two turning points prior to reaching

receiver two, and the resulting line-of-sight calculation would indicate that the

transmitter is at a depth below receiver two.

Speed of Sound

Range

g = 0.016/sec Sound-Speed ProfilelOOm

g =-0.0296/sec

1000 m Transmitte Calculated LOS

g 0.1/ Receiver One Receiverg 0.01 7/se TWO =

Figure 2.5 Turning Point Ambiguity.

The turning point ambiguity problem is not necessarily very restrictive,

depending on local sonar conditions. Table I lists the location of turning points in

tcrims of AY and AR between the transmitter and receive array. The values in Table I
were calculated by assuming the values for JP(.v), c(y), and g shown in Table I. and
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then using equations 2.11 and 2.17 with (yR) = 900. These results show that for

most angles of transmission the floor of the ocean would be reached prior to the signal

reaching a turning point. Even at angles of transmission greater than 60 degrees the

ranges to a turning point are quite large.

TABLE I

DEPTH AND R.,\NGE TO TURNING POINTS FOR A POSITIVE
G R,,D I ENT

V-0) AY (km) AR (km)

100 412.913 492.043

200 166.935 238.343

300 86.765 150.276

400 48.241 103.424

500 35.921 86.765

600 13.449 50.063

700 5.570 31.582

800 1.336 15.271

850 0.331 7.592

c(y o) = 1475 m'sec g = 0.017 sec 1

If the transmitter and receive array are located in the negative gradient

portion of the sound-speed profile as shown in Figure 2.5, the situation becomes much

more restrictive. Here the transmitter must transmit in the upward direction to reach a

turning point, as opposed to the downward transnission assumed in Table 1. Table 2 'A

contains the results of calculations for the turning points in this region. In this case,

the angles were only varied from 91 degrees to 100.8 degrees in order to place the

turning point within the negative portion of the sound-speed profile of Figure 2.5.

Even with the higher magnitude gradient used in Table 2, ranges of several thousand

meters are achievable prior to the turning point. Note that all distances in Table 2 are

in meters. whereas those listed in Table 1 are in kilometers.
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TABLE 2

DEPTH AND RANGE TO TURNING POINTS FOR A NEGATIVE
GRADIENT

0(yo) A Y (m) AR (m)

91.0' -7.601 870.982

93.0 °  -68.478 2615.070

95.00 -190.604 4365.554

97.0 -374.729 6126.767

99.00 -621.991 7903.148

100.0 °  -769.765 8798.454

100.20 -801.279 8978.159

100.40 -833.451 9158.091

100.60 -866.283 9338.253

100.8 °  -899,777 9518.650

c(y 0 ) = 1475 m sec g = -0.02956 sec-t

2. Changes in Sound-Speed Profile

The transmitter and receiver must be in the same gradient of the sound-speed

profile for the theory presented in this thesis to work. If the transmitter and receiver

were located in different gradients of the sound-speed profile, a false location would be

indicated due to the change in local angle of arrival. This situation is illustrated in

Figure 2.6.

3. Validity of Model-Based Phase Weights

The development of the model-based phase weights is based in part on the

assumption presented by Ziomek [Ref. 1: p.253] that if

[n2(y) - 1] v2(Yo)i < < I (2.102

then

ky(y ky 4- k 1[n(y) - 11 (2ky) (2.103)
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Speed of Sound

Range

Sound-Speed Profile r

Transmitter

.a

Calculated LOS

Receiver

+I

FigUrc 2.6 Changing Sound-Speed Gradient.

ere-

and

ky k(y 0)v(y 0 ) = v(yu) . (2. 105)
c(vU)

For some cases, such as 0(y,)) approaching 90 degrees, vo*v0 ) beconics vecry

snmall, restultingz in tlic criteria of equation 2.102 being violatcd. In thecse Instances the

niodel-based phase wceghts can no longer be considered valid. Computations were

pcrf-ormed prior to running thc test cases presented in this thesis to en1SUrc that test 4
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cases which violate equation 2.102 were identified and not misrepresented as valid test

cases.

In addition, the WKB approximation, which is the basis for the development I

of the model-based phase weights, becomes invalid as ky(y) approaches zero

[Ref. 1: p. 213]. This is the case at a turning point.

4. Depth Separation of Zero Meters

If AY = 0.0, meters the angle of transmission, Jl(y0 ), and the local angle of

arrival, (.R), must both be equal to 90 degrees to permit the receive array to receive

any signal without that signal having to pass through a turning point. The algorithm

fails here due to its invalidity at turning points and, as can be observed in equation

2.17, because AR would always be computed as zero. Obviously, a AY = 0.0 meters

does not necessarily imply that AR = 0.0 meters, since this condition is normally

known as a collision.

I
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Ill. COMPUTER IMPLEMENTATION OF LOCALIZATION THEORY

A. PROGRAM DESCRIPTION

The implementation of the theory described in Chapter II was performed by

writing the FORTRAN computer program LOCATE. LOCATE is designed to operate

as a subroutine in the frequency domain adaptive beamforming algorithm developed by

Ziomek and Chan [Ref. 21. LOCATE contains one subroutine, PLOTER, which

creates plots of the function described by equation 2.64. The description of LOCATE

that follows demonstrates the relationship between the equations of Chapter II and the

flow diagrams, however, the actual FORTRAN statements are not presented. After

LOCATE is explained, there is a short discussion of PLOTER. Section B discusses the

method by which the algorithm was validated. Section C provides the actual results as

compared to known geometries, and gives a comparison of double precision versus

single precision results.

1. Program LOCATE

The program LOCATE uses as inputs the estimated direction cosines for local

angles of arrival, model-based phase weights, and knowledge of the local sound-speed

profile to determine AZ, cross-range (AX), depth separation (AY), and the line-of-sight

range (RLOS) to the transmitter. Also? elevation depression angle and azimuthal angle

to the transmitter are provided by LOCATE.

The elevation depression angle, as shown in Figure 3.1, is defined as the

minimum angle between the receive planar sonar array's XZ plane and the line-of-sight

between the transmitter and the receive array. The elevation depression angle is

defined to be positive (elevation) if the transmitter's depth is less than the receiver's

depth. If the transmitter is at a greater depth than the receive array the

elevationdepression angle is negative (depression). Therefore the elevation depression

angle ranges in value from -90 degrees to + 90 degrees.

The azimuthal angle, a.: shown in Figure 3.2, is defined as the minimum angle

between the receive planar sonar array's Z axis and the line-of-sight between the

transmitter and receive array, in the receive array's XZ plane. The azimuthal angle

then ranges from + 180 degrees to 0 degrees for positive AX and from 0 degrees to "-

-l80) degrees Ior negative AX.

The inputs to the program LOCATE are defined as follows:
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Elevation

angleReceive array's

XZ plane

angle

Y

Flizure 3.1 Elevation, Depression Angle.

o L'YR, VYR, WYR estimates of direction Cosines Lu(y1Q vR, and
respectively, as calculated by the frequcncy donain
adaptive beamnformcr.

*Pil II odel-based phiase weights.

* REQC carrier frequency of the received electrical signal.

*FO fundamental frequency of the finite F~ourier series
represenita tion1 of the complex envelope of the receiv ed
electrical sienial.

*G gradient of local sound-speed profile.

*CYR speed of sound at receive array depth ) .

*N TOTA L total number of receive elements along the receive array's Y
axis.

o Q11RIMEI, QTOTAL parameters used to deternine which harmionic Is to he Used
in current calculations.

@ NPRIMEI parameter used to determine whiichi element's phase weiolht
to Ilse.

A\ll the inputs are currently available 1,rom1 thle Frequenc% domain akli pti\ e

bcaniformingz algorithmi described by Zioniek and Chan I Rof. 21, with the exception of -

NPIll. Figures 3. 3 and 3.4 Illustrates the flow of the program LOCATlE.
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negative
azimuthal
angle Receive array's

Z axis
positive
azimuthal
angle

X

Figure 3.2 Azimuthal Angle.

Thc beaniforning algorithm is written in single precision FORITRAN.

lowever, the program LOCATE must operate in double precision to enable it to

develop accurate roots for equation 2.63. Therefore, the values passed to LOCATE

from the adaptive beamforning algorithm must be converted to double precision,

cither in LOCATE, or before they are sent to LOCATE. In this thesis, all values

passed to LOCATE were double precision values. For testing purposes, only the

portions of the adaptive beamforming program which develop valucs required by

LOCATE were used, along with a program entitled SOUNDRIAY, which generates the

true problem geometry. The reasons for the use of double precision and the support

programs used in testing LOCATE are further described in Section 11I.B.1.

Once the program LOCATE is entered, a loop parameter

QIIEP = I, QTOTAL is established. From QTENIP, an index Q for the harnionic

of interest is chosen. This value Q is then used to determine the frequcncy F that will

be uscd for further comtputations.

To calkulate the ray parameter SMB the local angle of arrival, P(v.), is first

found by the arc cosine of VYR. Then S1 13 is calculated by equation 2.2, using CYR

4')
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and NyR). The value of G is passed to LOCATE by the adaptive beanformer, so

SMA, the radius of curvature, is now found by using equation 2.12. At this point,

equations 2.55 through 2.58 are utilized to determine the coefficients A, B, C, and D.

These coefficients are in turn used to find the coefficients of equation 2.63, which are

stored in an array called COEFF.

To determine the roots of equation 2.63, the double precision IMSL

subroutine ZRPOLY is called, using the array COEFF as the input. ZRPOLY returns

complex roots for equation 2.63 in an array called LAMBDA. In all the test cases that

were run, the four roots in LAMBDA always consisted of two real roots and two

complex roots. As a check of the validity of the roots, the value of F(x,y) from

equation 2.64 was calculated. A graph of the function F(x,y), such as that shown in

Figure 3.5, was used to determine whether to use +(I - x2)t 2 or -(I - x2 )1 2 in this

computation of F(x,y).

The graphs indicated that for positive values of VYR the real roots are

associated with the +(I - x)'2 term, while the complex roots are associated with the

-(1- x2)1 2 term. This can be seen in Figure 3.5 where the curve associated with

-(1 - x2)1 2 does not cross the F(x,y) = 0 line. The graph in Figure 3.5 only shows a

small portion of the X axis. Test runs demonstrated that F(x,y) increases as x varies

from the x value corresponding to the minimum value of F(x,y), in both the positive

and negative X directions over the range 0 < x 5 1. Therefore, the graphs were

expanded in the region close to the minimum of F(x,v) to provide better resolution.

To continue with the calculations, one of the four roots must be selected as

the value x of equation 2.47. No logic in the theory section, however, provides any

basis for a decision as to which root is correct. The complex roots were disregarded

because they cannot equate to x in equation 2.47. In order to determine a relationship

which would allow programming logic to select the correct root from the two real roots

found by ZRPOLY, numerous test cases with known transmitter and receive array

locations were run using the four possible geometries allowed by the constraints listed

on page six of this thesis. These geometries are:

I. transmitter above receive array, 0 < J (Yo) < Q0°. G > 0.

2. transmitter below receive array, 90 < 1(Y0) -< 1S 0 , G > 0.

3. transmitter above receive array, 0' P y) < 90, G < 0.

4. transmitter below receive array, 90' < 1(v) - 1800, G < 0.
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Figures 3.5 through 3.8 correspond to each of the four types of geometries

listed above. Analysis of these graphs, along with knowledge of the true geometry for

each case, determined that if the product G * VYR, designated RTSLCT (root

selection) in Figure 3.4, is negative, the largest real root is the correct value of x. If

RTSLCT is positive, then the smallest root is the correct root. All test cases which

were subsequently run using this root selection logic resulted in the correct localization

of the target.

The root selected corresponds to x in equation 2.47 and is next used to

calculate DELTAY (AY) and DELTAR (AR), using equations 2.11 and 2.17,

respectively. From DELTAY and DELTAR, RLOS is computed from equation 2.100.

The azimuthal angle is calculated next by equation 2.95, since UYR and WYR are

known from the adaptive beamforming algorithm. Now DELTAZ (AZ) and DELTAX

(AX) may be computed from equations 2.96 and 2.97, respectively.

The elevation/depression angle is the last value to be computed. This is done

by using equation 2.101, which provides PLOS. The angle PLOS is then converted to

the elevationidepression angle by equation 3.1.

ELEVDEP = 900 - PLOS (3.1)

This elevation,,depression angle is more useful than J3LOS to personnel
onboard ship because it provides a target location that is referenced to own ship's

horizontal plane. Note that computing ELEVDEP in this manner results in a negative

value if PLOS > 90 ° , which indicates that the transmitter is below the receive array,

and a positive value when P LOS < 90', which implies that the transmitter is above the

receive array.

Program LOCATE next calls the subroutine PLOTER, if desired, to generate

a plot of F(x,y) such as that shown in Figure 3.5. Once the graphing subroutine is

completed, LOCATE checks the index Q to determine if the required number of

harmonics have been evaluated, and proceeds to process another harmonic if this has

not been done. Otherwise, the program returns to the adaptive beamforming program.

2. Subprogram PLOTER

The purpose of subprogram PLOTER is to provide a graphic representation

of the roots which the IMSL subroutine ZRPOLY calculates. The inputs to this

subprogram are:

* A, B, C, D coefficients for equation 2.64. ]
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* G gradient of the local sound-speed profile.

9 DELTAX, DELTAY, DELTAZ cross-range, depth, and Z coordinate
separations calculated by the program

LOCATE.

* ILOS the line-of-sight angle as calculated by
LOCATE.

The values of G, DELTAX, DELTAY, and DELTAZ are printed out on the graph as

G, AX, AY, and AZ, respectively, to provide a means of identifying the geometry of

the case corresponding to each graph.

The values A, B, C, D, and G are converted to single precision values prior to

being passed from LOCATE to PILOTER, because PLOTER was written using

DISSPLA which operates only in single precision. Due to the single precision accuracy

of DISSPLA, plots made by PLOTER are not accurate enough to determine the roots

of equation 2.64. lowever the plots do show approximately where the roots occur.

Figure 3.9 illustrates the flow of the subroutine PLOTER.

START ~5 '.
'

',

DETERMINE X COORDINATE FOR p.MINIMUM F(XY) = XMIN !

COMPUTE F(X.Y) FOR IN

XMIN - 0.025 < X < XMIN +0.2"

[ PLoT F(X,Y) VERSUS XII

,i5,

%
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The subroutine PLOTER first computes the minimum value of F(x,y) in the

interval 0 < x < I by incrementing x by 0.1 units. This minimum, XMIN, is then

used as the center of the plot, with XMIN - 0.025 and XMIN + 0.025 as the lower

and upper bounds of the graph. If XMIN + 0.025 > 1.0 the plot is centered at 0.975

to avoid having the computer attempt to calculate the square root of a negative value
of I - x2 in equation 2.64. After the plot is completed, PLOTER returns to the

program LOCATE.

B. ALGORITHM VALIDATION -

1. Generation of Received Signals

The inputs listed in Section A of this chapter for the program LOCATE were
generated through the use of two programs. The first program is titled SOUNDRAY

and was written by Professor L. J. Ziomek at the U. S. Naval Postgraduate School,

Monterey, California, in 1987. The second program is the subroutine PI-ISWGT

developed by Ziomek and Blount [Ref. 7]. SOUNDR-AY utilizes ray acoustics and

geometry to develop feasible geometries for calculations of local angles of arrival of

acoustic signals. The inputs to SOUNDRAY are the X, Y, and Z coordinates of the
transmitter, the X and Y coordinates of the receive array, the initial angle of

propagation, 3(YT), and information describing the local sound-speed profile.

SOUNDRAY then uses equation 2.1 to determine J(yR) and equation 2.15 to calculate

AR. From this point, geometry alone allows calculation of the RLOS and JILOS, from

equations 2.98 and 2.101, respectively, and

AZ = (RLOS 2 - AX 2 - Ay 2) '2 . (3.2)

In addition, SOUNDRAY calculates the inputs for the subroutine PHSWGT

and the estimates (in this case exact values) of direction cosines for the acoustic signal

arriving at the receive array. SOUNDRAY determines the exact problem geometry,

independent of the model-based phase weights. thereby providing the standard by

which to judge the solutions generated by the program LOCATE.

2. Test Case Results

a. Double Precision LOCA TE versus True Geometry

As stated previously, there are four basic geometries that the programi.

LOCATE is designed to handle, These four geometries may be sunmiarized as:
1. N-, 0 ](yj}} < 90", G > 0.
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2. -AY, 900 < 1(y 0) < ISO0 , G > 0.

3. +AY, 00 S 13(y 0 ) < 90 ° , G < 0.

4. -AY, 90 ° < 13(Y 0) < 1800, G < 0.

Other variations on these geometries are possible by using -AX and -AZ,

but, because the sound-speed profile is assumed to be a function of depth only, the

plane-wave field will propagate in a plane which is normal to the XZ plane [Ref' 1: p.
234]. The result is that variations using -AX and -AZ merely change the sign of the

solutions and not the magnitude. LOCATE was written to accommodate -AX and

-AZ. However, for this discussion, it is sufficient to deal with + AX and + AZ and

realize that only the sign of the answer is different when negative quantities are used.

Tables 3, 4, 5, and 6 represent results from the four geometries mentioned

above. The sound-speed profile of Figure 2.2 was used in these computations. The

value of AY for each table was maintained constant and this necessitated the altering

of AX depending on the angle 0(y 0) used. If 1(y0) was close to 0 degrees or

ISO degrees, a smaller AX was required than for angles near 90 degrees. This is due to

the fact that at angles near 0 degrees or 180 degrees, the plane-wave field reaches depth

YR in a much shorter AR than when 13(y 0 ) is near 90 degrees. Since from equation

2.99

AR2 = AX 2 + AZ 2 , (2.99)

AX had to be kept sufficiently small to maintain AZ > 0, because we are working with

cases of positive AX and AZ.

As can be seen in Tables 3 through 6, the program LOCATE provides

excellent results. The slight errors that are present are due mainly to roundoff error

occurring in the root finding subroutine ZRPOLY. Note that the constraints

concerning turning points have all been observed in these results. The maximum error

for any range calculated by LOCATE in these cases was 0.345 meters. The angles

calculated by LOCATE are not presented in tabular form because they were all

accurate to four significant digits when compared to the true solutions.

Some of the results in Tables 3 through 6 appear to be exact. This is not

actually the case because the values in these tables were all rounded to the third

decimal place. In no instance were the results of LOCAIE exactly equal to the true

solution, however, in many instances, the difference was in the fourth or filth decimal

place.
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TABLE 3 
%

LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 1)

1(yo) AX (m) AY (m) AZ (m)

T L T L T L

100 50.000 50.037 300.000 300.000 17.434 17.449

150 50.000 50.017 300.000 299.999 63.096 63.118 

200 100.000 100.033 300.000 299.999 44.287 44.303

250 100.000 100.017 300.000 299.999 98.212 98.229

300 100.000 100.015 300.000 300.000 141.879 141.900

350 100.000 100.017 300000 300.000 185.308 185.340

400 100.000 100.010 300.000 299.999 231.794 231.619

450 300.000 300.037 300.000 300.000 24.554 24.559

500 300.000 300.020 300.000 300.000 197.192 197.206
55°  300.000 300.029 300.000 300.000 308.993 309.023 -1

600 500.000 500.131 300.000 300.001 153.761 153.801

650 500.000 500.121 300.000 300.001 414.580 414.680

700 500.000 500.049 300.000 299.976 670.746 670.811

750 500.000 500.064 300.000 300.001 1035.436 1035.569

800 500.000 500.038 300.000 300.001 1741.051 1741.185

85' 500.000 500.019 300.000 300.000 5226.883 5227.089

T = true solution L = LOCATE calculation

G = +0.017 sec 1

P%

b. Errors as a Function of Angle of Transmission and/or Depth Separation

(1) Depth Separation. Figure 3.10 shows the error in RLOS as the depth

separation between the transmitter and the receive array increases, with P(Y0 ) constant.

There does not seem to be any relation between the error and the depth separation.

The error appears to be mainly caused by roundoff.

(2) Transmission Angle and or Depth Separation. Figure 3.11 shows the

error in RLOS as the angle of transmission changes for four different depth

separations. Again, it is readily observed that the depth separation has little effect on

the size of the error. %
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TABLE 4

LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 2),.

0(Yo) AX (m) AY (in) AZ (i)

T L T L T L

950 500.000 500.060 -300.000 -299.993 2907.664 2908.009

1000 500.000 500.056 -300.000 -299.985 1536.780 1536.952

1050 500.000 500.013 -300.000 -299.976 971.804 971.831

110 °  500.000 500.037 -300.000 -300.000 640.734 640.7S2

1150 500.000 500.052 -300.000 -'00.000 395.290 395.332

1200 500.000 500.062 -300.000 -300.000 128.008 128.024

1250 400.000 400.027 -300.000 -300.000 147.308 147.318

1300 300.000 300.129 -300.000 -300.000 191.553 191.637

1350 200.000 200.065 -300.000 -300.000 222,138 111.211

1400 200.000 200.022 -300.000 -300.000 151.643 151.660

1450 200.000 200.051 -300.000 -300.000 62.335 62.353

1500 100.000 100.072 -300.000 -300.000 140.799 140.901

155" 100.000 100.062 -300.000 -300.000 97.297 97.35S

160" 100.000 100.066 -300.000 -300.000 43.151 43.182

1650 50.000 50.047 -300.000 -300.000 62.552 62.722
1700 50.000 50.063 -300.000 -300.000 16.779 16.804

T = true solution L = LOCATE calculation

G = +0.017 sec 1

The error does increase as the angle P(y0) is increased above about

60 degrees. This increase can be attributed to the behavior of the sine and cosine

functions. Figure 3.12 shows how the sine and cosine functions behave between () and

90 degrees. Above about 60 degrees, the slope of the sine function is less than

0.01 degrees 4I so that small changes in the sine cause large differences in the angle 0(y.

Also, in this region the magnitude of the slope of the cosine Function is near its

maximum. Small changes in the angle 0(y) create large differences in the cosine.
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TABLE 5

LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 3)

0(Yo) AX (m) AY (m) AZ (m)

T L T L T L

100 50.000 49.995 500.000 500.000 72.077 72.071

150 100.000 99.994 500.000 500.000 88.099 88.094

200 100.000 99.995 500.000 500.000 150.837 150.830

250 100.000 100.000 500.000 500.000 209.070 209.067

300 100.000 99.997 500.000 500.000 268.783 268.777

350 300.000 300.004 500.000 500.000 175.431 175.434

400 300.000 300.001 500.000 500.000 288.241 288.243

450 300.000 300.009 500.000 500.000 393.838 393.850

500 500.000 500.008 500.000 499.999 310.993 310.999
550 500.000 500.006 500.000 499.999 494.933 494.940

600 500.000 499.979 500.000 500.000 686.650 686.620

650 500.000 499.976 500.000 500.001 916.323 916.279

700 500.000 499.997 500.000 500.000 1221.188 1221.181

750 500.000 499.995 500.000 500.000 1671.182 1671.169

800 500.000 500.002 500.000 499.999 2426.104 2426.112

850 500.000 500.004 500.000 499.998 3902.854 3902.891
T = true solution L = LOCATE calculation

G = -0.02956 sec l

To find AY, equation 2.11 uses the roots of equation 2.63 as

determined by ZRPOLY. These roots correspond to sin 0(y.). The root contains

some small errors due to roundoff which is borne out by the fact that the values of AN'
in Tables 3 through 6 contain errors on the order of 10-3 meters. To find AR by using

equation 2.17, the arc sine of the root must first be calculated. This amplifies any error

in the root, especially when the angle is greater then 60 degrees as discussed previously.

Next. the cosine of the arc sine of the root is computed, which further amplifies the

error.
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TABLE 6

LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 4)

0(Yo) AX (m) AY (mi) AZ (m)

T L T L T L

10o °  500.000 499.998 -500.000 -500.000 3539.164 3539.153

1050 500.000 500.000 500.000 -500.000 1966.455 1966.417

1100 500.000 499.983 -500.000 -500.000 1347.650 1347.606 ,

1150 500.000 500.000 -500.000 -500.000 983.983 983.992

1200 500.000 499.986 -500.000 -500.000 728.904 728.884

1250 500.000 499.961 -500.000 -500.000 525.292 525.252

1300 500.000 499.965 -500.000 -500.000 337.478 337.455

1350 500.000 499.980 -500.000 -500.000 71.388 71.389

1400 300.000 299.990 -500.000 -500.000 298.440 298.432

145 °  300.000 299.979 -500.000 -500.000 185.560 185.548

1500 100.000 99.991 -500.000 -500.000 272.886 272.863

1550 100.000 99.987 -500.000 -500.000 212.229 212.201

1600 100.000 99.990 -500.000 -500.000 153.303 153.288

165 °  100.000 99.974 -500.000 -500.000 90.286 90.264

1700 50.000 49.978 -500.000 -500.000 73.210 73.181

T = true solution L = LOCATE calculation

G = -0.02956 sec "

Therefore, above about 60 degrees, we see these increased errors

maniflest themselves in the AR, AX, AZ, and RLOS calculations. Still, the errors seen

in Figure 3.11 and in Tables 3 through 6 are insignificant when compared with the

ranges in question. The angles are still accurate to four significant digits, and

consequently, the range errors remain small.

c. Double Precision Versus Single Precision Results

It was found that the single precision version of ZRPOLY was not accurate

enough to calculate the correct answers. The reason for this can be seen in Table 7

which contains some single precision results for comparison to double precision results.

ZRPOLY calculates the roots shown in the two right hand columns of Table 7. lIven
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TABLE 7

DOUBLE PRECISION VERSUS SINGLE PRECISION RESULTS

DP SP DP SP DP SP

0(Y0) I0(y0) RLOS (m) RLOS (m) Root Root

60.170 60.410 603.147 9.264 0.8660 0.8689

65.210 65.440 715.599 48.291 0.9063 0.9092

70.280 70.580 888.832 28.699 0.9397 0.9428

75.380 75.750 1188.473 30.835 0.9659 0.9693

80.600 81.180 1836.237 57.808 0.9912 0.9881

86.730 88.340 5259.514 350.602 0.9961 0.9997

G = +0.017 sec 1

though the roots appear accurate to the second significant digit in the single precision

results, when dealing with sines and cosines, an error in the third significant digit can

create a fairly large error in calculating the angle J(yo). Also, these roots are multiplied

by the radius of curvature, a, in equation 2.11. This radius of curvature is on the order

of 105 meters, so small errors in the roots will create large errors in the ranges

calculated. The single precision results in Table 7 are so poor that they seem to have

no relation to the actual answer. The double precision results for RLOS in Table 7 are

accurate to within 0. 1 meters of the true solution.

p:
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this thesis was to determine if an underwater acoustic transmitter can

be localized using ray acoustics, model-based phase weights, estimates of the local

angles of arrival, and knowledge of the local sound-speed profile. As demonstrated in
Chapter III, this goal is achievable and to a high degree of accuracy depending on the

accuracy of the inputs to LOCATE. There are restrictions on the use of this

procedure. It appears that the restrictions do not impose severe limitations on the use

of the algorithm, and in some cases it may be possible to overcome them altogether.
All the restrictions basiclly result in a limitation on the effective range of the

algorithm. Even though acoustic signals may not reach their initial turning points for

theoretical ranges in the tens or even hundreds of kilometers, the ocean is only about
11.5 kilometers deep at its greatest depth. Therefore, the ranges shown in Table I are

not realizable in some cases because the signal will reach the ocean floor in less range

than it would take to reach the turning point. Additionally, underwater acoustic
transmitters are usually limited in the depth to which they may be deployed, so that the

angles of transmission that are associated with the greatest ranges will pass well below

the receive array at any significant range. Still, the algorithm appears to be quite
useable in ranges of less than 10 kilometers. This would be of a great advantage in the

case of a transmitter whose signal is of low power, resulting in a short detection range.
In fact, the need for an algorithm of this sort is most critical when the transmitter is at

short range and its exact location and direction of motion must be resolved rapidly.
In some instances, the limitations due to turning points may not be of much

concern. For example, the algorithm might be used for an array located on the ocean
floor. In this case, much longer ranges would be achievable, provided that the

transmitter is in the same portion of the sound-speed profile as the receive array. The

algorithm might also be of use in active sonar systems to provide more accurate range

and depth information than is currently available.

Implementation of the algorithm must include a very accurate root finding

technique as has bcen discussed. Due to the sensitivity of the problem in regard to the
sine and cosine functions, the roots need to be accurate to at least three significant

figures. It was found that this is only possible through use of a double precision root

finding subroutine. This, of course, causes the program to run more slowly but,
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because the remainder of the program can still be written in single precision, it is not a

great hinderance.

In the future some areas requiring more study are:

Develop a method for obtaining the model-based phase weights from the
received signals. At present, phase weights are computed based on received

signals, however, the phase weights in the Y direction need to be separated into
traditional phase weights and model-based phase weights.

* Determine a method to account for the acoustic signal passing through a
turning point prior to reaching the receive array. This would greatly extend the
range capability of the algorithm.

* Develop methods to identify signals that are transmitted from portions of the
sound-speed profile other than the gradient in which the receive array is located.

" Investigate the practical applications of the algorithm in varying acoustic
conditions, particularly in regions such as near the Gulf Stream where the
sound-speed profile is a function of depth and range.
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