¥
%y
F.l
20 .
I.-Em
mmm
u
"n
5
5
unm
wmm
Bt
35
w3
it

L.
}
m
-
—
&
[
»
8
I~
[
m

“AD-R189 844




e BRI I
o L R L 3
ELALAL 44 \-\ J-._r\ a-.\.n
ll!‘l‘r @-ﬂ- --N-\.P
2= L=
RS
NF hﬂc.'
s
2
]
i
% HN
0
4
J -
+
7
X7
g4
cJ
oS
By
%
A
g4
b
fr 4
X
" ‘
X
L A
n..
* 4
-
- -

(R TN N R = e~ e 4 e 2 o .

EON A

M{\‘v\-\.f -—- v Y

S EEE
EH

A vy R AN Wn.n\..
: W TA Sk
‘xm @ A @ \...,.mt AN
:J«-Jh» -\ .... T\ ~\ .\u R \.‘* ‘

\.\)\f R ....-( iy .M WJ 5
.n----n.uun!*--, » Ay Ay Yy ARSI .\ f-vf..-ﬂ.l}no-{ 2P
P O AT IS @D A @A NS, XA
oy G LIRS O RO I PN YAk T OO

e n

lll

iy
=

Ill

-‘i_'_i_ﬁ

LS

P A A

-
-~
-
-
\
-~
N
Ny
o,
o
»
®
«q 'i.'

v.‘\\\\-l -.\sr\-.\- s, 004

+
.
-
.
hs

3V RV 30 1L 4 L RRE R




n 02t 0a® Rl B et 2,000 8ad SR8 s Y Y

DTG FILE COPY

C

-

AD-A189 844

CEELLEES T

DTIC

ELECTE 3
. MAR 071988 § [
S H —

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

]
Wright- son Air Force Base, Ohio
DISTRIBUTION STA' !
Approved for public releasey B 8 S
Distribution Urlimited \
1,




Mt ua a RS g 2

o AFIT/DS/ENG/87-1

) e S W et
. l \f ‘. ‘. 'A A

i ATSR S
L ‘/l" *

v

\ u:“" l.' n %
TS

’
o4
LR K4

v’\',

A METHODOLOGY, BASED ON ANALYTICAL
MODELING, FOR THE DESIGN OF PARALLEL
AND DISTRIBUTED ARCHITECTURES FOR
RELATIONAL DATABASE QUERY PROCESSORS

AL

CL A

L]

DISSERTATION

Timothy G. Kearns
Captain, USAF

AFIT/DS/ENG/87-1

W g Yy aW T,
‘ :“-.". ',",- - ." S -.l-,/‘ ’,
. 13

R
=,

'
LSRN

PP SO LAT P
s’-,"-,’-.{-. S ‘.

Approved for public release; distribution unlimited

4
(A4

a
Ry
ALY

Y4 %

n'n/-'.!

’ 'I"I '-

P CI aN PCAaN
N > \) .

NNt e At LR LSS
W AS S » %\

. - <& . ‘J- - . ®a ‘.. < ’- _-. ot R - on - -’ :. < v I‘ o
L S L S A VA S LR RN GRS CR A TR LR LA S




Y Ty . ot ata d's £ 8 Bl
C et Al et Bt B Ea® fad fal Ra® Ba¢ (2% Ba® 0t B2t 04" 0t Uit G2 0 ola'gt) gT¢ a'e 470 o ¢ 0" », ) Nag ta) v Iy A

3 AFIT/DS/ENG/87-1
:. A METHODOLOGY, BASED ON ANALYTICAL MODELING.
; FOR THE DESIGN OF PARALLEL AND DISTRIBUTED
;{ ARCHITECTURES FOR RELATIONAL DATABASE QUERY
¢
PROCESSORS
)
' DISSERTATION
; . Presented to the Faculty of the School of Engineering
A o of the Air Force Institute of Technology
’ Air University
\ In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

:. Timothy G. Kearns, B.S., M.S.

Captain, USAF
>

December 1987

Approved for public release: distribution unlimited

¢

A\J

L]
Y N AR IS S 1S MR AT AR D 7S IS L R LR I R A AN AN A AL OSREN
NI NI ML AN N PCAIN N2 N R N SR AR BRI O : VLY

A & oy
55""-# )

-'({

AN

'f;'f ,’ -"-- of

P4

[
“
fa

J!

f‘l".I
»_¥



i.‘\‘. "t ot g tah hab 't TR0 ntha T o%0 aVE A% '8 212 208 a0 aANRY ta" Alat ta’ ta® dat iiat tatadet 1t 00t Rt p it a0 d b g Rl e bt ' VY yers \a Ve S' Sla g%

g AFIT/DS/ENG/87-1

A METHODOLOGY, BASED ON ANALY.'.IICAL MODELING.
FOR THE DESIGN OF PARALLEL AND DISTRIBUTED
ARCHITECTURES FOR RELATIONAL DATABASE QUERY

PROCESSORS

K Timothy G. Kearns. B.S.. M.S.

] Captain. USAF

|
2’

“I .ﬁ .&
l'

Approved:

.. Ol 57

Thomas C. Hartrum. Chairm
14 & T
Ao 11, 1927 .

. Henry B.‘Potoczn

-

"

‘.‘_ W /2 ///s’ 7

NAthaniel 1. dvis, [V, Capt, USA
:-', ////:'ng{//’ /4'&/1’ /// e ! 7

Mark A. Roth, Capt, USAF

e

AR

Accepted:

J. S. Przemieniecki

Al
-,
’-
"-
h
<
o,

Dean. Schcel of Engineering

-----------------
< J

L A W e T P T T ) W o™
NN AL A NN AN M j



T T U T XIS T AR TN Ty TR A R - N R

" SN

Y

I

-
x|

Y

.J'.-J'.; v

* »

Preface

The purpose of the research was to provide the capability to design a database
machine that provides faster data retrievals by utilizing parallel processing. The
limited results show the potential of using the design capabilities presented here to

provide a physical design and implementation of a multiprocessor query processor.

This research would not have been possible without assistance from many
people. To all of these people, I am greatly indebted and express my appreciation.
In particular, I must thank Dr. Thomas C. Hartrum, my advisor. Without the
assistance and guidance of Dr. Hartrum and his occasional boost to the rear-end to

keep working, this project would have never been completed. Thank You!

[ also wish to thank the members of my research committee, Dr. Lamont.
Dr. Potoczny, Captain Davis, and Captain Roth. the dean’s representative. for their
guidance and assistance, especially in the final days of completing this project. Also.
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Abstract
A

The design of faster relational database query processors to improve the data
retrieval capability of a database was the goal of this research. The emphasis was on
evaluating the potential of parallel implementations to allow use of multiprocessing.
First, the theoretical properties of applying relational operations to distributed data
were considered to provide an underlying data distribution and parallel processing
environment model. Next, analytical models were constructed to evaluate various
implementations of the select,project, and join relational operations and the update
operations of addition, deletion, and modification for a range of data structures and
architectural configurations. To simulate the performance of the query processor for
all cases, the individual operator models needed to be extended for complex queries
consisting of several relational operations. A solution to modeling multi-step queries
was the use of a general normal form to express a query. This normal form query
tree used combined operations to express relational algebra equivalent queries in a
standard form. This standard tree form was then used to construct analytical models
for multi-step queries. These models provide the capability to simulate the potential
of different forms of parallelism in solving complex queries. The analysis of results of
the analytical models presents a logical design for a multiprocessor query processor.
This logical query processor using multiple processors and employing parallelism
illustrated the potential for an improved query processor when the analytical model
results of complex queries were compared to a benchmark of some current database

systems. . o o , - R E—
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A METHODOLOGY. BASED ON ANALYTICAL MODELING.

' FOR THE DESIGN OF PARALLEL AND DISTRIBUTED
L
e ARCHITECTURES FOR RELATIONAL DATABASE QUERY
)

. PROCESSORS
¥

o

»

v
o I. Introduction

"' 1.1 Introduction

73 The demand for efficient and timely management of data is growing stronger
I

% every day. The database management systems (DBMS) of the 70s were supposed
.

o o~ to be the solution to the need for better data management facilities [79.19]. The
. DBMS provided a partial solution, however the widespread expansion of affordable
\' computers has caused an increased expectation and demand in non-numeric pro-
N cessing [60]. The expectations of the data management facilities include managing
>

larger data bases, easier manipulation of the data, and faster access to the data. The

size of databases the DBMS needs to manage is growing [60]. Although the DBMS3
,-', solution may provide better data sharing and easier methods of managing data. it
’ still lacks the performance to find and retrieve data as quickly as needed for manyv
applications using these large data bases. A possible near-future solution to the data
:’, management performance problem is the database machine.

.

e Database machines provide the same database management tools as a conven-
o tional DBMS but provide improved performance. The improved performance of the
v

™ database machine is due to severai reasons [20.41]. First. since the database machine
199

'~ is a dedicated hardware system that is a back-end to the conventional host. there
4 o is some inherent parallelism [20]. The dedicated hardware allows the environment
L4 P

‘ .

)] 1

3
&
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B v ..-
y oA of the DBMS to be tailored for the system demands. In the general purpose (share
i the machine with many other applications) computer system. the database manage-
_". ment system must compete in the general environment for resources and services
N, . . e
N and in some cases the DBMS duplicates functions of the operating systems ;76].
B . . . e .
By dedicating the hardware to a single purpose. specialized hardware may be usea.
b Eliminating the operating system of the computer and building a unique database
__ operating system may also increase performance [74]. Further discussion of possible
- performance improvements in database machines follows in a later section. Although
performance is the main advantage of a database machine, there are several other
N attractive features of the database machine.
. -' . . - .
A The database machine has all of the advantages associated with a conventional
DBMS plus the following additional improvements [20,51,32]:
- ) Reliability The conventional software database management system is a large com-
plex software system. Since the conventional system is so large and complex.
. it is difficult to verify and may be prone to failure. The database machine
N provides the capability to implement in hardware some normally software func-
% tions (i.e., sorts and merges) [51] to possibly reduce the size and complexity of
o the software. Thus, the reliability may be improved.
“
N Security The database machine is a back-end machine of the host. Therefore. the
Y . . .
8 host filters the requests that are sent to the database machine creating anotner
Fa
> layer of security [20]. Also, the database may improve security checking since
[ it is dedicated to only data management and not supporting many different
:: applications.
» Host Independence and Modularity The database machine is a standalone sys-
v
- tem that runs separate from the host. A physical channel(s) connection to the
\
. host is all that is required to pass requests and data. This allows more database
: machine modules to be added to the system as nec-.d.
- T
. <.
..
")
v 2
>
S
v .
’ -
4 B
d
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Multiple Hosts and Database Sharing The database machine may be accessed
by several different, dissimilar hosts. This provides the ability for databases to
be shared by many different users and applications. thus reducing the need for

expensive replication of data.

Cost/Performance The database machine reduces the demands on the host I/O
system by providing its own I/O system. This allows the host to provide better
support for its applications. Also, since the database machine supports only a

specific task, its disk and I/O hardware may be more efliciently utilized.

The database machine provides the potential for faster, more secure. and re-
liable data processing than the conventional DBMS [20], but the current database
machines do not present the definitive solution to database management and still
have areas where further advancements may be possible. First, most of the database
machine researchers define an architecture or specific hardware device first. then de-

e velop algorithms or methods to complete the system. causing a less than optimum
solution for the total system. Next, although the relational data model is the data
model of choice at the current time, other data models or storage configurations of
data must not be forgotten. And last, the future seems to require more processing
power, and at this time the only feasible way to do this (due to the high cost and

limited availability of specialized hardware) is with parallel processing.

Multiprocessing or parallel processing is already being explored in research of
database machines [21,30.31,43,56,62,66,70]. However, the architectures using multi-
processing at the current time all have expansion limitations [14]. Ideally. a database
machine could be expanded by just adding modules (processors} and more storage
devices (disks). Modular expansion capability requires a flexible. expandable control
structure, generic processors and some form of processor communication network.

The largest problem of networking is controlling the processors and distributing data

so that all the processors can be efficiently utilized (i.e.. eacli processor handles an

equal amount of data without using excessive time to distribute the data or telling
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the processors what to do). This will require some form of decentralized control of
the processors, effective distribution of the data for processing [14], and algorithms

designed for the environment.

If the processor network can be efficiently controlled, the data still must be
stored on secondary storage to be efficiently retrieved. Magnetic and laser disk
technology have provided disks that can store very large amounts of data. But. in
what format should the data be stored on disk and how should the data be distributed
on the disk drives? These are both questions that have been examined [27] but no

definitive solution has been found for all cases.

The last area of neglected research in database machine theory is “data up-
dating”. The goal of current database machines and database machine research is
optimizing data retrievals [60]. This goal is appropriate since the demand of the
user community has been for faster retrievals. But, in optimizing the retrievals little
consideration is given to how including concurrent data updating affects the perfor-
mance of the data retrievals. For many new applications, efficient updating may be
as important as the retrievals. One example of this is the Strategic Defense Initia-
tive’s need to have inputs from thousands of sensor and detector devices to be used
in making decisions. This data must be shared with many processes and stiil stored
for later decisions. This requires efficient updating of the data as well as providing

immediate retrieval capabilities for numerous users.

1.2 Problem

The focus of this research was to develop a methodology and teols to design
a multiprocessor database machine that could provide improved performance by
decreasing the time required to execute queries. The methodology development
examined the individual components of the problem and integrated the results to
provide the capability to design a multiprocessor database machine. The conclusion

of this development is a logical architecture and set of analytical models o guide
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the development of a database query processor.

The individual relational operators were theoretically examined and analyvzed
to determine the “optimal” method of utilizing parallel processing for relational op-
erators in a multiprccessor system, the most efficient implementation (in terms of
time required to complete the operation) of data retrieval and data update algo-
rithms in a multiprocessor environment, and the effects of the data structure on the
performance of retrieval and updates. The results and analysis of these objectives
was extended to provide the ability to evaluate the performance of complex queries
consisting of several retrieval steps. This provides the basis for a logical database

machine architecture and a methodology for designing a database machine.

1.3  Scope and Assumptions

Theoretical complications and practical limitations necessitate the imposition

of some assumptions and conditions on the problem.

1. This research assumed an environment that consisted of multiple processors.
where each processor can operate independently and each processor may com-
municate with other processors. Each processing unit will be a generic type
processing unit containing a processor, memory, and the ability to execute a

stored program.

. The database machine is assumed to be capable of handling any size database

(to some reasonable maximum size). This removes the restriction that the

database must be small enough to fit in main memory [26].

. The focus of the research was improving the performance of data retrievals and
data updates. Therefore, backup, checkpoints. and recovery were not consid-
ered in the design of the system. These are essential features of a production
system but are peripheral to the design of the database machine for improved

query processing.

»

2
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. The performance improvement strived for by this research concentrated on
improvement through the use of parallel processing and efficient utilization
of resources. Optimization by reordering query steps and other optimizaticn
techniques of this nature [73,32] were not considered as critical elements in this
research. However, any design should be modular enough to allow incorporat-

ing these techniques at a later time.

(w1}

. The performance of any database machine design is assumed to be overwhelmed

by volume of data or transactions at some point. This causes the need for

CeW ...".

modular expansion of the system. Since modular expansion is not always

-
1%

5.

‘ possible, the ability to easily expand the capability was a critical design factor

£ rr

»

in this database machine research.

L g

d

'_ 6. The design of the database machine did not consider possible limitations of .

: currently available multiprocessor systems or the availability of multiprocessor -.f;_."

[ @ systems.

8

! 7. The only non-procedural query languages currently used are relational calculus !:.::

: and relational algebra. Since relational algebra and relational calculus are :

L equivalent [79], the non-procedural retrievals are considered to be relational \,,.
operators. ",,._

.

N

-
X,

1.4 Background

Wy

The term “database machine” does not mean a specific type of hardware sys- ).
tem for implementing a database management system. Instead this term is applied :\:
to a range of ideas and methods to improve the performance of a database manage- S:'_'
ment system. The implementations discussed here are grouped into the following ‘;'-

areas: the conventional back-end system, intelligent disk controllers and data filter- 7
ing, multiprocessor systems, and specialized hardware systems. See Figures 1- 3. on .

the following pages, for simple block diagrams of the various configurations. Other
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Figure 1. Back-End Conventional System y
classifications schemes may separate implementations by software oriented versus 4
hardware oriented or specific types of hardware {11,20.25.33.43.65].
1.4.1 Back-end Conventional System. The conventional back-end system is ‘
the easiest system to implement. It consists of a general purpose computer system .
running only a database management system as a back-end machine to the host pro- g
cessor. The host processor runs the applications that need data from the databases. -
The host sends the request for data to the back-end machine which processes the .
request and returns the response.
The conventional back-end system just duplicates the general purpose type
hardware of the host, but by providing a dedicated environment. better performance .
should be realized. This type of back-end system illustrates an important consider- .
ation when downloading work to another processor to try to get an improvement in >
performance: communication overhead. Every time a task is downloaded it requires :::
at least two messages between the systems. If the overhead of the message traffic is .
-
- o
( A
%
i
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! R more time expensive than processing the task on the host system. then downloading 5
; s
" is not time efficient. Date [20] provides an excellent illustration of this point. This -
y communication is the main reason that all the current investigations of database ma- A
: chines provide support only for nonprocedural query processing, like the relational Yy
' data model. /
. .
. . X v
. 1.4.2 Intelligent Controllers. The intelligent controller category of database iy
' machines consists of architectures that improve the performance of database man- -
LY
agement by improving the data retrieval from secondary storage devices. The idea
>
~ of intelligent controllers is to move some of the processing logic for determining the -
Q . -
data needed from the processor to the memory device or controller of the memory
A .
. device. This improves performance of the processor by providing it with less data .
o to manipulate. This reduces the communication overhead on the bus. reducing the "
- -
N potential for a bottleneck of the system. X
Y g .- | - ¥
vy The concept of intelligent controllers applies to magnetic disk technology. but :
' many of the intelligent controller concepts were developed with the idea that other R
1 .
A storage technologies, such as magnetic bubble memory and CCD. would eventually -
- -
" replace the magnetic disk. The other storage technologies eliminated the read/write ]
v head of disk technologyv, making them more appropriate for the intelligent controller m
f . . . -
‘ concepts. Instead, at the current time, disk technology (magnetic and laser) has <
- made the great advances in reducing the cost per byte of storage and the amount of -
9 .
storage space available on a device. Therefore, software improvements may be more
- important than intelligent controllers. The intelligent controller concepts may be .
- divided into the following groups: associative disks. processor-per- head. and filters. .
The first type of intelligent controller is an associative -k or processor-per- -
D o N
b track device [29]. Figure 4 provides a simple diagram of a processor-per-track system. .fi
. The concept of the processor-per-track device is to process selecticn operations “on N
> '
N - - . ‘e . . ‘4
the flv™ [25]. This concept of providing processing on every cell or track is also
. i
o) Y ?
. N
: B
- C
': 9 :',
{. e
b
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: .
- referred to as cellular-logic [77]. CASSM [50} and RAP [68.69] are examples of s
" - ."{
systems designed using cellular-logic. 1
- -
rl
: Cellular-logic provides the capability to scan the set of data in one revolution -
-~ i
; of the storage device. The processing logic scans the data at each track. selects the p
appropriate data, and places the selected data in an output buffer.
”
" The next tvpe of controller, the processor-per-head. provides the same type of
__ processing as the processor-per-track except on a more limited basis (see Figure 3.
‘ Processor-per-head devices have a moving head that may move from track-to-track.
::" The head reads the data from the disk and places it in an input buffer for the
N processor for the selection logic to be applied. DBC was designed with this type
) device [4.43].
2 Filtering, or a processor-per-disk, is the last type of controller to be examined
2 (see Figure 6). This method utilizes a standard disk drive and processor. All data
’ from the disk is provided to the processor where selection logic selects the desired
T
. o
s
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o
"
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Figure 3. Processor-Per-Head -
data. Therefore, the processor acts as a filter on the data before the data enters into -
the actual database management system. VERSO [3] and SABRE [32] are systems )
that incorporate filtering with other architecture features. With the advent of cheap -
disk technology and VLSI design of the filter. this could become an add-on feature N
for many conventional systems [72]. .
The performance of the intelligent controllers is very good for the tasks they g
are designed to do [25.33]. But, because of the specialized nature of the intelligent '
controller, they may not perform other tasks as well. This illustrates the fact that .
. S
::: most architectures are developed before the complete implementation of the system N
-

is considered. Therefore, the software algorithms to implement many operations

h 30 TR

have to work around the hardware architecture. not work with it.

1.4.3 Multiprocessor Systems. Increasing the throughput of the system by
using some form of parallel processing is the concept of multiprocessor systems.

Multiprocessor systems include many different hardware configurations. Figures 7.
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% and 9 provide some examples of different multiprocessor systems configurations.
Some provide cache between the disk and processors (8] to allow faster data access.

Others use the multiprocessing almost as disk filters [34.421.

The architecture of the multiprocessor systems must provide some means of
providing communication and data transfer among processors. This communication
capability is normally implemented using a bus to connect ali the processors or
using some form of a point-to-point network structure [67]. The different processor
interconnection schemes provide different capabilities and opportunities to distribute
data to the various processors for the best utilization of resources and to provide the
most effective parallel processing. The following descriptions will examine some of

the multiprocessor architectures and the associated features of each.

The Muitibackend Database System (MDBS) [34.42] uses a processor for each
disk of the system plus a single processor to control all of the disk processors i<ee
Figure 7). When a query enters the system. the controller directs the processors on

the disk to retrieve the data. Each disk processor then retrieves its portion of the

12

A

VAL

A N A

. e v N -
K ‘~""_‘ s, N

U

4SSN D '.' '\.".'

. P
F .‘l I- 2, }',/',,‘. ,,




f
NG
AL -
Query >
Processor .
o
Application , <
Programs Query LJ by
Processor N
A
— -
Database  [e—T %acl;—E"nd P
Interface ontrolier o
Operating ' “
System Query
|_Processor|
Host Database :
Machine B
Figure 7. MDBS Architecture
Application Control
Programs
: Back-End Query Query | .. .| Query
- Database 711 Controller Processor| [Processor Prccessor
- Interface
. Data =
‘ Operating N
- System
.- Control
3 7
: Host Database Disk
Machine ..
. -2
: :
~ ‘-:;.
Y Figure 8. AFIT MPOA Architecture b
’ 13 2
; RS
S .~
v e T e N e N e e e RN



‘a.t bddha'te et et J 1, .
T . e At val kap v . ’ A
o . ‘A a'a ab e ata® TR A0 R PRWY A A 3 A . -

N
R
R Control v
o | Query | | HCachef _-’.
Application Processor A
Pr A
ograms CacheR :
Query || | n
rocessor ache
Database | Back-End _ 7
Interface | Controller Disk 3
. nCachen -
' . g,
Operating . . 3
System Query | :
“Processor ache 3
Host Interconnection )
Database Device 1
Machine .
Figure 9. DIRECT Architecture 2
s data from its disk and processes it. This makes this system seem to be a SIND tyvpe :
e . : : . .
architecture. The gain of this type of system as claimed by the developers is almost R
a linear decrease in query processing time when additional disk processors and disks :
are added and the data redistributed. N
A more conventional use of multiprocessors is to employ a MIMD type archi- .
tecture, where each processor may operate independently. There are many different j
configurations of database machines of MIMD type architecture [15.12.23.30.31.56. ’?
62.66.67.70.81] but DIRECT (see Figure 9) is probably the most recognized. DI- 4
-
RECT [15,12.21.23] uses the multiprocessors in a MIMD type architecture with a .
, . R
single control processor. DIRECT also uses cache with an interconnection device to .
~'\
allow sharing of disk data among processors. The combination of the data sharing "
and processor control structure of DIRECT makes it very eflicient for many relational 3
-
query operations [25.33]. L-;i
)
The controlling of the processors and sharing data are two of the main issues in »
~. a MIMD type architecture. Boral and DeWitt nse the concept of data-flow 12 and
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‘:Ef: dvnamic allocation of tasks to processors {13] to provide efficient implementation ,

of query algorithms in DIRECT. Others also address the controlling of processors <

N and how to optimize query execution with multiple processors [31.62.64.66.811. The t
\: combination of dynamic allocation of tasks. load-balancing of the ;rocessing '66]. -
: and data-flow (or process-flow) concepts [15.62] provide areas of potential gain us- :

ing different MIMD type structures such as the hypercube type network computer

structures.

1.4.4 Special Hardware Systems. This category is added to the types of

database machines because the advances in VLSI technology have made it possi-

.‘\li ‘l‘l‘l'l'l

\ ble to build specialized processors. These specialized processors may provide sorting
. functions, special join functions [53], or aggregate functions. By using the special
- hardware in the development of the query algorithms, specialized query processors e

may be constructed [38,37,44.47,48.3&].

The idea of using specialized hardware for more than just intelligent controllers

4

CC

. is not new. The first ideas using specialized hardware centered around using associa-

R tive memory [2,6,46,49]. Associative processors use an associative memory capable of :
% N
::: access by content, not location. This technology (hardware and software of associa- o
i tive memories) has not progressed as quickly as the development of disk technology -
3 and VLSI chip technology. Therefore, the idea of associative processors and memory
v is not being used much in new research.
y N

1.4.5 Commercial Database Machines. The concepts for implementing databaxe

N

-: machines presented to this point all represent hypothetical database machines or ma- \

- chines that have only been prototyped for research. Currently there are only two :

> commercially available database machines [28.39.1]. the Britton-Lee and Teradata -
-

_\ machines. There have been other companies announce database machines. such as E::

3": Intel and their iDBP, [537,71] but the machines have either been withdrawn or never {\

marketed.
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The Britton-Lee IDM-500 series database machine is the most well known and
widelv used database machine. The IDM is basically a uniprocessor machine with
an optimized disk system. An optional database accelerator is available but it is not
known exactly what function the accelerator performs. The Britton-Lee machine
has been implemented in several sites and has been tested with seemingly “good™

results (good compared with conventional DBMS support) [35,52.84].

The other commercially available database machine is the Teradata DBC/1012.
This machine is a multiprocessor system using microprocessors for parallel process-
ing. The microprocessors are connected by Teradata's patented Ynet [1] (see Fig-
ure 10). The Ynet is the network that connects the processors plus provides some
merging capabilities with some selection logic. This allows the DBC/1012 to use
tournament merge operations to implement join operations. Test results of applica-

tions using the DBC/1012 are not readily available at this time.
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. R 1.5 Approach :E
Current approaches to the design of database machines are based primarily e
on intuition and experience. Modeling and simulation of simple queries, to aid in ’-.
the design process, are becoming more popular. However, the modeling of complex S'.
queries/query trees has had very limited exposure, especially modeling query trees f:"
for a general type architecture [16]. The current methods provide “good” designs : "
for their purpose, but often fail to fully evaluate the expected performance of an ‘
entire system for a full range activity. This lack of a complete evaluation of the
performance of the system comes from concentrating on a component or small part 3
of the system rather than designing a complete database machine. Approaching
the design in this manner does not provide for evaluation of alternatives outside of :
the concentration area. Therefore, the design process of a database machine needs ]
to include the modeling of all phases of system activity. The design methodology _::"-:
o developed approaches the problem using a method of engineering analysis. :.ﬁ;f
| Engineering analysis involves model-building and evaluation. The evaluation of i
a database machine compares the performance time to complete a query or update :::
of a database. The first step in this analysis is to develop an understanding of ("
the problem by building a mathematical abstraction (i.e.. a parametric model) of 'FA
the important features to be investigated. This model is then used to evaluate \
alternatives and to show the relationship between components or features of the
system. [10] R
The design of a database machine has fcur phases: requirement analysis. the '{,?
theoretical phase, the analysis phase, and the design. These phases roughly corre- h;
spond with the engineering design steps [38]. The theoretical/modeling phase was ::::
emphasized since previous research only provided limited evaluation and explanation 7
why a particular component or area of a database machine was selected for consid- .1
eration to improve the design. The theoretical model provides the basis for analysis ;:f::"
= of various alternatives of components, algorithms. and relationships in a database :;
o
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system. A model of this type also allows evaluation of the potential of new compo-
nents or methods after a system has been implemented to determine their feasibility.
This tvpe of theoretical model forms the basis of the methodology for desigring a
database machine and eventually it could be to an expert system to aid in the design

of specialized database machines or systems.

The other phases are traditional steps in the design process. The design
methodology and tools presented here were developed using these design principles.
They also illustrate the use of the theoretical model as a tool to speed the design for
a given set of requirements. The following paragraphs provide further explanation

of the approach of each phase:

The requirements phase consisted of developing the workload model and system
constraints to be used in the detailed design. The workload model was based on two

sources of published baseline tests of database machines. The basic workload of a

7

5 database machine is the retrieval of data in response to user queries for data. Using

[£UN

the published workload models [9.83), there were four basic queries that appeared.
These basic query steps were then combined to provide other queries. The four basic

query steps are:

1. Select with the results consisting of one or two tuples

(3]

. Select with the results consisting of a larger group of tuples or percentage of

the size of the relation
3. Project

4. Joining two relations

These steps are combined to form more complex queries. Although the workload
models do not include the other relational operators. the database machine must be
capable of handling any query. Therefore. the concentration of the workload model

and further phases was on the select. project. and join operators. But implemen-

'\Q
hY

tation for the other operators was provided. to insure that the database machine

{s
S
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3 o provides complete support for any relational query. The workload model also in- b
cluded the need for the database to be maintained. This includes the insert. de:ete.
and modification of tuples as required operations of the database machine. -
' The next phase after the requirements analysis was the theoretical phase. The
purpose of the theoretical phase was to develop a general theoretical model of a ]
2 database machine. The abstract model was developed incrementally. First. the t
3 relational operators were examined to determine the feasibility of relational operators
S in a parallel processing environment. This also included the relational operators use o
- of different forms of distributed data and the theoretical feasibility of the operators in :
2 this environment. Next, abstract model representation for the execution of a single '
. basic query step was developed. The models developed in the theoretical phase are ¢
Q abstract mathematical models to provide the basis for the next phase. The next
. phase began the analysis of determining the “best” performance model for each of -
::. ‘;S the basic query operator and update operator.
- The analysis phase used the abstract models to compare the performance of 2
:E various operator implementations under various situations. The purpose of this phase
was to provide comparison of the performance of operators necessary to execute a
user query. The individual operator models were evaluated under various workload
f conditions to provide a set of parameters under which a “best” model of an operator
:-;'_ was determined. These models were then combined with the models for the update
b operations to determine the best set of implementations for a giver user requirement.
~ Then the information gathered during the analysis of the individual operators was -
S "
. combined to form the model of a general multi-step query. .E_
.
y -

The final phase was the design phase. The design phase took the results of the

'’ previous phase and transiated them into a system design for a database machine. The

.
> e
[AAON

, system design considers the user attributes of transaction rate, storage requirement. =
3 ‘
. e . . . ey a
e and predictability of access to data [29]. However. the design incorporates flexibility N
. C . . . "
2 to tailor the system for the individual user requirements by providing modularity of o
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components and expansion capability. Therefore, the final design phase presented a
logical design of a database machine. A final database machine design for implemen-
tation would map the logical architecture (determine exact number of processors and
disks and their placement in the architecture) for the individual user requirements.
This phase would apply the user’s storage requirement and query workload using

the parameters developed to provide the final query processor design.

1.6 Organization

The sequence of presentation parallels the development of the database ma-
chine design process. The design process began by examining the feasibility of ap-
plying parallel processing to executing relational operators. Chapter II presents the
results. Next, Chapter III, IV, and V present the analytical modeling of the individ-
ual operators. Then, the performance models of the update operations are described
in Chapter VI. Chapter VII presents the conclusions of the analytical modeling.
The effect of considering the execution of multi-step queries and how this changes
the analytical model conclusions is presented in Chapter VIII. Finally, Chapter IX
presents a logical database machine architecture and describes how to map the logical

architecture into a physical design.

WS A
"',{l - "

’

-t
%y fu

2
P

O

A4
P



. ‘_ar . \ . 0 < pa At mar gay AN Y Aa? 408 oot + gae Y
A AN R R AR YY) L ala tala™ A A", Sl 9 LN AR A AN Y EalE AR N

-
¢
W
II. The Feastbility of Relational Operators with Partitioned
Ca
" Relations
o
" The relational model is based upon mathematical principles that allow proof of
p.. correctness of its features [18]. This also provides an ad hoc query capability because
E the data is not physically related in storage: instead. relationship of data is done by
; logical connections within the data {17], providing data independence. The following
' sections use the mathematical principles of the relations to prove the ability of the
relational operators to execute with partitioned data.
. The retrieval of data from secondary storage continues to be a bottleneck in
‘: database machines [22|. The purpose of distributing data is to allow concurrent pro-
: cessing (parallel processing) and retrieval of data by multiple processors and data
: ;’ storage units. This ability to concurrentiy retrieve and process the data reduces
- the time to retrieve the data allowing the application needing the data to provide
; better performance. However. relations of a relational database cannot be arbitrar-
2 ily distributed without the potential of losing some of the logical connections that
’ are needed to accurately retrieve data. Therefore, the first step is to examine the
; properties of distributed data.
. 2.1 Data Partitioning
g Relations may be distributed for processing in three ways. The first is storing
or processing complete relations (not distributing the data). The second method
. distributes the relation using horizontal fragments of the relation. The final way dis-
F: tributes the data as vertical fragments. The next section will describe the properties
S of fragments of relations.
N
~ I
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2.2 Horizontal Partitioning -
- A relation may be split into fragments either horizontally or vertically. Split- -
- ~
- ting a relation horizontally results in a subset of the complete set of tuples in each N
: r.; fragment. Thus. horizontally splitting a relation is done with a select tvpe operator. 2
h-split. Figure 11 illustrates horizontal fragmentation with h-split. 3
. .
s The h-split operator produces horizontal fragments of the relation. In Fig- i,
- .
2 ure 11, the relation was partitioned by department. This produces fragments that -
o -
) consist of tuples of the original relation. The smallest fragment possible by horizon- ‘“
tal splitting is a single tuple. Normally. the split is chosen either to provide some -
. logical grouping of the data (i.e., grouping by dept.) or to provide an even aistribu- -
3 tion of data. In the latter case. the split condition could be a number of tuples 1o
v go in each fragment. 1. the even distribution of data (disjoint sets of tuples) is the
-, o L.
-, goal of the partitioning, each fragment would be 1/n (for n fragments) of the origi-
» nal relation. To provide the original relation from the fragments. the fragments are ]
M combined using the union operator. Therefore. for the set of horizontal fragments. _:
5 Ry.Ry.--+ Rao1, R, the complete, original relation is represented as:
N
'v' n LY
R=R, UR, UR;---R,_y UR, or R= UR, i
= o 1=1 5
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o', - \.:

)
to
(&)

»

R A A AR U LN
' . .

) TN,



D X
N
, & The union operator combines all the horizontal fragments (subsets of tuples: N
) to form the original relation. The normal operation of the h- split provides disjoint R
: fragments. But. the fragments produced do not have to be disjoint. If the fragments ::
" are not disjoint sets, the union operator eliminates duplicate tuples “o form the ::
R proper relation. In the case of the fragments being disjoint sets. the union operator >

.

: only has to concatenate the fragments to produce the complete relation. E
. i
: 3
'y 2.3  Vertical Partitioning h
- Vertical fragmentation of a relation splits the relation by attributes. Vertical \
, fragmentation has been widely studied in connection with normalization of relations. :
E, Vertical fragmentation without losing information is impossible to guarantee when o
_ a relation is normalized to at least third normal form {19]. Therefore. vertical frag- "
mentation in an operational environment seems to have limited practical application. :
" S Also. vertical fragmentation does not provide the opportunity for even distribution :
A ’ of data for storage such as the horizontal partitioning. However. the cases of fullv g
3 indexing a relation have not been fully researched and this closely resembles vertical _-
5 fragmentation. It is examined here to insure a complete discussion of possible cases
N and to allow its development for its use in logical applications such as views. -
: Vertical fragmentation splits the relation by using repeated projections of the
original relation. The original relation must be obtainable by joining the fragments
N without losing data due to eliminating some of the logical connections. Therefore. if )
the relation has already been normalized. each fragment must contain an attribute(s|
_&: that provides a key for the relation to provide valid fragments. Therefore, the small-
:, est vertical fragment possible would be a single attribute that was a key for the ;:'
X relation. Figure 12 shows the vertical fragmentation operator. v-split.
i : The vertical fragments may be recombined using natural joins to produce the

: original relation. To recombine several fragments. repeated joins may be necessary.
&
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et tf. e

For the set of vertical fragments, Ry, R;,- -+ Rn_1, R, this is shown by the equation:

“- ll

n
R=Rl MRz NR;;"'R,,_I MRH or R= NIR'.
1=

2.4 Relational Operators

Next, models of the relational operators will explore the processing when the
complete relation(s), vertical fragments, or horizontal fragments are provided for

processing. First, the mathematical properties of relational operators are examined.

The mathematical properties of relational operators depend upon the equiva-
lence of two expressions. Remembering that a relation is a set of mappings of at-
tributes to values, then a relational algebra expression whose operands are relation
variables Ry, R,, ..., Ri defines a mapping from k-tuples of relations (ry,rs..... rit.
The mapping results in a single relation which results when each r, is substitut~d
for R; and the expression evaluated. Two expressions E; and E, are equivalent if
they represent the same mapping. This means when the same relations for \denticai

names are substituted for identical names in equivalent expressions. the results are
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the same [79]. Using this definition of equivalence. properties of relational operators

can be defined.

Ullman provides the following properties of relational operators 79]. These
properties are used by many (i.e., Smith and Chang {73]) for query optimization.
Some additional properties will be shown for distributing operators over relation
fragments. The laws and properties will be used in the individual discussions of

operators to prove their validity for the different tvpes of fragments encountered.

Property 1 Joins and Products are Commutative.

El NEz = L, NE]
E, X E;

E, X F,

Property 2 Joins and Products are Associative.

(E, NEz) XE, = E N(E'z MEs)
(El X Eg) X FE,

Ey X (E; X Ej)

Property 3 Cascade of Projections.

Taydn (7B B (E)) = T4,.4.(E)
where A4, --- A, contalned in B, - B,

Property 4 Cascade of Selections.

or(oR(E)) = or ANorl(E)

Since FiAF; = FyAF), it follows immediately that selections can be commuted.

UFI(UFZ(E)) = UF‘z(UFl{E”
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L)
« A,
] o
. ~
X ’:- Property 5 Commuting Select.on and Projection. -3
If condition F involves only attributes A;.---. A, N
% N
— \
Taydn(OF(E)) = or(7a,..a.(E)) N
~
hg
’ More generally, if F also involves attributes By. - - -, B, that are not among 4;.---. 4.,
9 then -
’ N
¢ Tayedn(OF(E)) = Ty an(OF(Fayyan. Bro - Bt E1)
N Property 6 Commuting Selection with Cartesian Product. -
. If all attributes mentioned in F are attributes of £}. then
A
N or(Ey X E3) = or(Ey) X E;
-
X .‘_:'_'.,- Corollary formed by using rules (1), (4). and (6). When F is of the form
- Fy A F;. where F| involves only attributes of £, and F; involves only attributes of
2 E,
- or(Ey X E:) = of(E)) X op(E)
[ Also, if F| involves only attributes of £, but F, involves attributes of both £
,\
o and E,, we can still assert
w or(Ey X E;) = oplop{Ey X Ey)) -
3, .
o ,
L P
v This can also be extended to joins since a join is a product-selection. Therefore, B
) N \'j
using the attribute involvements of the previous products. we also have: .
~ .
- or(E, R Ey) = op(E)) M E, g
- .'_q
N or(Ey W Ey)) = op(E) Wop by "
S or(Ey W Ey) = op(on(Ey M En 2
T -':-f" K
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Property 7 Commuting selection with a Union.

Given the expression £ = F; U Ej. it may be assumed the attributes of £, and £,
have the same names as those of E. or at least. that there is a given correspondence

that associates each attribute of E with a unique attribute of E; and a umique

attribute of E5. Thus

or(Ey U Ey) = or(E)) Uogr(Es)

If the attribute names for E; and/or F, actually differ from those of E. then the

formulas F" on the right must be modified to use the appropriate names.

Property 8 Commuting Selection with a Set Difference.

UF(El—Ez) = C’F;(El)—O'F_x(Ez)

As in (7). if the attributes names of £y and E, differ, we must replace the

attributes in F on the right by the corresponding names for E;.

Property 9 Commuting a Projection with a Cartesian Product.

Taan(Ey X Ey) = 7w (E1) X 7c...c.(ER)

where B,--- B, and C;---C, are contained in 4, -- 4,

and B, --- B, and C, - C, are attributes of E| and E}. respectively.

Property 10 Commuting a projection with a Unlon.

7-"4\,..44“(E1 U E:) = T4 A..\"[" [‘.‘1\' U T_.huv,gn(ﬁxﬂ
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2.4.1 Additional Properties. The following properties are properties not de-
fined by Ullman [79] because Ullman {79], Smith and Chang [73]. and others who
described the laws and properties of relational operators were mainly concerned with
using them for algebraic manipulations for query optimization. However. these ad-
ditional properties have been proven in classical set and relation theory [73]. These
additional properties are described here because they are used in defining and prov-
ing the correctness of the relational operators for partitioned relations. Pelgatti and
Schriber {61] were concerned with partitioned data but were not concerned with

proving the correctness of all the operators for all partitioned cases.

Property 11 Commuting a product with a Union.

A X(BUC) = (4 XB) U4 xXC)

tSee Stanat and McAllister [75] for proof)
Note: It is not true that

AUB xXCO)=4 UB)x(4A UQO)

Since, here it must be assumed that the definition of A must equal the definition
of B X C. but this does not imply anything about the definitions of B and
C being equal to the definition of A. Therefore. this property is rot valid for

all cases.

Corollary 12 Commuting join with union.

ANXNBUC) =4 XNBui4 XO)

A join is a product-select-project. Therefore. this property can be easily shown using

properties (6), (7). (9). (10). and (11).
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Relational operators are the tools used to retrieve data from a relational :
database. The model of each operator examines its features and capabilities. The re-
lational operators modeled are project. select (restriction). union. difference. Carte-
sian product, and join. Other relational operators, such as intersection. division.
and aggregation. are not examined here because they can be defined in terms of the
other relational operators or are not necessary to provide the retrieval operations of a
relational complete system [79]. Each operator will also be examined for its process-
ing capability of distributed (fragmented) data. Also. the possibility of combining

retrieval operations to make multiple and n-way operations will be explored.

2.5 Select

The selection operator provides a “horizontal™ subset of a given relation. The y

subset consists of tuples within the given relation that satisfy a given condition(s).

I

The subset of the relation is also a relation because no change is made to the at-
tributes, in particular the key field(s) are not disrupted. Thus. the result still con-

tains only unique tuples that are a subset of the original set of unique tuples that

constituted the original relation.

Implementing the select for an unordered relation, the select would scan each
tuple of the relation to determine if the tuple satisfies the select condition. The tuples
that satisfy the select condition(s) are the results of the seiect. Figure 13 shows some
examples of the select operation. The next sections examine the feasibility of using

the select operator with fragments of relations.

2.5.1 Horizontal Fragment Selects. Horizontal fragmentation divides the given
relation into subsets of tuples, similar to the select. The only difference is that the 3
h-split produces subsets that may be recombined with a union operator to form the -
original relation. Therefore, the h-split is a specialized casc of repeated application -

of the select operation. This leads to the proof that perfirr ng a seiect upon all
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Figure 13. Examples of the Select Operation

the horizontal fragments of a relation is equivalent to performing the select on the

relation. The proof follows as:
n
R= UR,
=1
R=R, UR, URs3--- UR,.y UR,
o(R)=c(Ry, UR, UR3--- UR,., UR,)

o(R) =0c(R)) Uo(Ry) Uo(Rs)--- Uoco(Raor) Uo(R,)

The proof uses the laws of relational algebra that were presented previously.
This allows it to be easily shown that the selection over all the horizontal fragments
of a relation is equivalent to performing the selection on the original relation. (For

an alternate proof see [62].) The importance of this property is discussed next .

The time to execute the select over a set of horizontal fragments depends
upon the number of processors available and the I/O time required to distribute
the fragments to processors. The execution of a select by using the h-split operator
to form fragments and then executing the select on each fragment is not feasible
because the time to execute the h-split would be O(n) (assuming the relation is
size n), which is the same amount of time to process the select. Therefore. to use

horizontal fragments it is assumed that the fragments are created as the relation is

L stored and stored on separate storage devices. Then the time to execute the select
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over the fragments is n/p. where p is the number of processors available. Thus. if p
= 1 the time to execute the select would be 1 plus the time required to combine the

results.

The results of the selects of the fragments are combined by the union operator
to form the final results. The union operator eliminates any duplicates but in the
case of the { ~gments being disjoint sets the union operator simply concatenates the

partial < -ulis to provide the complete result.

2.5.2 Vertical Fragment Selects. Vertical fragmentation causes a unique prob-
lem for the selection operator. The problem varies depending upon the conditions
expressed for the selection operator. In some cases, the select conditicn may only
need to examine one of the fragments to select the tuples that satisfy the seiection
condition. But, the results of that selection must then be joined with all the other
vertical fragments to produce the complete results. For other selection conditions.
fragments may have to be joined before the selection condition may be evaluated
(e.g., select where A = B but A and B are contained in separate vertical fragments).

Figure 14 shows some examples of selects using vertical fragments.
The properties of relational operators prove the correct results can be produced.
This is done as follows:
R= KR,
=1
or(R) = or( K R)
or(R)=cp(Ry W R, MR-~ WNR,_; MR,
or(R) = or(R1) Wop(Ry) Wog(Rs) - Wop  (R.o) Mog,(Ra)
Where the attributes of F, must be present in the corresponding fragment. If a

fragment does not contain an zttribute that is part of the expression F. then F.

contains nothing so all tupies of fragment K, are selected.

The select over vertical fragments does provide the correct results. but it does

not seem to meet the goal of fragmentation which is to allow more opportunity for
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Figure 14. Examples of Selection with Vertical Fragments

parallel processing. This is caused because the select must examine all of one or
more fragments which may or may not be less work than doing the select over the
entire relation. This coupled with the fact that in a database that was normalized
to at least third normal form (normalization is a method of database design and an
explanation can be found in many classical database books. such as, Date {19] and
Ullman {79}) or more there does not exist much opportunity for vertical partitioning
to occur without losing data. Therefore, vertical fragmentation does not provide a

good opportunity for optimization of retrievals using the select operator.

2.6 Projection

The projection operator extracts attributes from the relation vielding a “ver-
tical” subset of the relation. The projection operator (as defined by Codd [18}) also
eliminates duplicate tuples from the results. Duplicate tuples may occur because the

projection may eliminate the kev attribute(s). Figure 15 shows an exampie of the

|
v
v
£
i‘f
A}
h)
)

projection operation. In some instances, the duplicate elimination may be delaved

3
until after other operations (i.e.. select. join. even another project). This does not - 1
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c b 1 a by the projection,
d 2 so duplicates were
2 removed

Project from Sample [A,C]

A C

*This projection
a 1 did not affect
b 3 the key, so no
c 1 duplicates were
d 2 introduced

Figure 15. Examples of the Projection Operation

cause any variation in the final results other than allowing more data to be handled

than necessary.

The implementation of the projection operator scans the relation retaining
only the attributes indicated in the command. For a relation of size n. the time
required to execute a projection is n plus the time required to eliminate duplicates.
This assumes using a single processor. The elimination of duplicates may add O(m
log m), where m is the size of the results. This is derived from the normal method
of removing the duplicates which is sorting. Other methods of duplicate removal
might compare each resultant tuple with each other resultant tuple but this would

be O(m#*m), which is more time consuming.

2.6.1 Horizontal Fragmentation Project. The projection on horizontal frag-
ments of a relation provides the opportunity for greater parallel processing. Like
the select operator, the time to perform the project would be n/p. where p is the
number of processors available. Duplicate removal is an integral part of the union
operator that must be used to recombine the fragments to provide the complete

relation: thus, eliminating the need for duplicate removal at each node. It is shown
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* below that projection over horizontal fragments is valid. A
R = CJ R; o)

=1 <3

° R=R UR, URy--- UR., UR, 72
r(R)=n(Ry UR, URs--- U Rn._; UR,) e

T(R) =m(R) U r(Ry) Un(Rs) -~ U r(Raoy) U r(Ry,) ?f

2.6.2 Vertical Fragmentation Project. Vertical fragmentation distributes the

relation by projecting out attributes for each fragment. Further application of the <

projection operator may cause loss of data because the keys used to recombine the .‘

fragments may be eliminated. Therefore, the fragments may have to be combined *
before the projection is performed. If the attributes eliminated were not needed as '.5:
keys for the recombination of the fragments, the project was successful. Therefore. o~

vertical fragmentation could immediately provide the needed results or the vertical 2::
fragments could provide the correct results without reforming the entire relation ;'- ‘
g and then performing the projection. Thus, the projection with vertical fragments 5:
does guarantee correct results without special consideration which may require pro- ;
viding the complete origina! relation before the projection can occur. Therefore. :‘_5

vertical fragmentation can not be used for possible performance improvement of the .

projection operation without special considerations.

2.7 Cartesian Product \

The Cartesian Product (product) constructs a relation by concatenating tuples -'::",

from two relations (written as, R X S, for relations R and S). The product con-

catenates each tuple from one input relation with each tuple from the other input Z;:E

relation. This is shown in Figure 16. Normally, a product is not used: instead. a -
join operation is performed. The join operation is defined to be a product combined 551
with a select and a project, that yields the desired limited results. The term join .E:i
may be confusing because it implies several different situations of limiting results. ':‘
:1 The first, the natural join is a product, a select (performing a select on common ::‘3
34 %
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Figure 16. The Product Operation :
. 1
2 attributes), and a project to remove any duplicate attributes. The natural join is i
. the join used in the vertical fragmentation. The term join is also used to define o9
.. \"
when select is performed on to find equal attribute values on attributes defined on a -
4 common domain but are not the same attribute name. This is situation is called an N
[ equi-join. And the last join situation is when the select criteria compares for other 4
: e than an equality condition. The equi-join of the join will be examined in a later N
| section. However, it must be remembered that the join used to combine horizontal =
. fragments is the natural join. ;
2 <
- -
" The product requires each tuple of the relations to be combined. This is an <
O(m=n) operation, where m and n are the number of tuples in the relations to 9
be operated on. However, the performance consideration of the operation may be f-
- extended in many cases to consider data access time. The goal of parallel processing
. is to reduce the time required to execute the product from O(mx*n) to O({m=*n)/pi.
N where p is the number of processors employved.
i 2.7.1 Horizontal Fragment Product. The following shows that using horizon- 4
g tal partitions for the Cartesian Product is deterministic:
o n m
>, R= ,Ul R, and S= _Uls,
. 1= 1=
\ R xs = (R UR, U ---R,_;y UR,) X5
NI = (R X $) U --(Ryy x 5) UIR, X 3) g
- 33
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= (Ry X&) U (R X Sn) U(R X S5n)

U (Rn—l X 51) U "'(Rn—l X Sm—l) J (Rn—l X Sm)
U(R, X &) U (R X Snyy) U(R, X Sn)

The problem with doing the product with horizontal fragments is the number of
individual products necessary to complete the operation. This may over complicate
the problem because of the added control necessary to read and move all of the
fragments to the correct place for processing. However, the performance is reduced
from m=*n to (m/p)*n by using p processors. If the problem in this completely
distributed form becomes too complex, one of the intermediate steps in the proof
may be used to complete the problem. Using one complete relation and fragments
of the other relation is an example of this. This may provide a more appropriate

distribution of the problem.

2.7.2 Vertical Fragment Product. The product with vertical fragments is de-
terministic because the product does not eliminate any data from either relation.
This leaves the keys for each fragment and relation in place allowing the recombi-
nation of fragments. The proof of this is shown below. (The proof uses property of

the join that it is defined as a product-select-project or in mathematical notation

R M S==x(c(R X S5)).)
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n
R= _NR, and S = S,
=1 i=1
S N : ‘
I R x5 = (Rl X Rn—l MRn) X (bl - Smoy Mbvﬂ'
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X 'Rn—-l X Rn)) X

Tr(or{ Ry
= 'TRS(URS((RI X "'Rn-l X Rn) X (bl X o 5po1 X 3m)))

= nmps(ors(Ry X -+ Ro_y X Ry X Sy X ---S,_1 X Su))

The grouping of operations could be done in any fashion now since the product is

associative and commutative. If m = n one grouping would be:

—~

KRS(O’RS((Rl X bl) X '”(Rﬂ.-l X Sm—l) X (Rn X Sm)))

Then moving the individual select and project conditions to the grouping they op-

erate on provides the general form:

(Ri X S1) M - (Ray X Smoy) W (R, X Sp)

It should be noted that some of the natural joins, in the general form. do not
have attributes to compare and the join only performs the product portion of the
join. Therefore, the grouping of operations may affect the efficiency of the operations
by reducing the size of the results at intermediate steps,thus utilizing the reduction

of the select and project of the natural join whereever possible.

The performance time of the product with vertical fragments is similar to
the time for a product with horizontal fragments except that the vertical fragments
require that the fragments be combined with a join operation which is a modification
of the product. Therefore, the product of vertical fragments will not always perform

better than doing the product with relations stored in a single entity.

2.8 Join

The join operator is a Cartesian Product combined with a select and in some
situations a project. The join normally selects only the tuples from the product where

two attributes (one attribute from each input relation) have an equal value. This

type of join is called an equi-join but in most of the current literature this is the tvpe 5
»
B
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Figure 17. The Join (Equi-Join) Operation

of join referred to by the join operation. The natural join used to combine horizontal
fragments is a special situation of the equi-join where the attributes compared have
the same attribute names and duplicate attributes are removed by projection in the
results. The join may also indicate unequal conditions for the selection but these
cases are normally ignored because the most efficient implementations of unequal
joins are the same as the implementation of the product operator. Therefore. it is

assumed that join means equi-join for this discussion but not necessarily natural join

(See Figure 17).

The implementation of the join has been widely researched because it is the
most time consuming operation that is used extensively in queries. The various
implementations are done for many different architectures and data storage schemes.
These will be examined later. The purpose now is to provide proof that the join can

operate correctly where the data is fragmented.

2.8.1 Horizontal Fragment Join. The joining of two relations. where the re-
lations have been partitioned horizontally, is possible but as the proof shows. the
number of fragment joins becomes very large. The large number of joins involving
the fragments may cause a large overhead to control the joins. This has caused
some {23] to use the intermediate form, of considering fragments from one relation

but treating the other relation as a single entity. The following shows that joining
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vertical fragments is feasible.
n m
R= UR, and S= Uy,
=1 1=1
R™XWS = (RR UR, U R,y UR,) X5
= (Ry XMS) U - (R,.y WS) U(R, XY

U (Rpct M (S1 U -+ U S U Sk
U(R, M (5 U .- US,_; US,)
= (R WS) U - (R WS,_;) U(R WS,

U(Rn—l NSI) U "'(Rn-l Dqu—l) U (Rn-l X Sm)
U(Rn NSI) U (Rn Dq'sm-l) U(Rn Nsm)

The performance improvement possible using horizontal fragments with the
join operation is difficult to define. However, given p processors, each processor
would compare (z/p) * y blocks versus the r * y comparisons required of a single
processor. The results would have to then be combined by performing the union
operation. If the special consideration of having disjoint partitions is considered. the
union now becomes only a concatenation which reduces the time required to perform
the union. Therefore, the horizontal fragmentation combined with the join operation

may utilize multiple processors to reduce the execution time.

2.8.2 Vertical Fragment Join. Joining vertical fragments of two re:ations in-
volves multiple levels of joins. The first level join would join the fragments of the
different relations. The higher level joins would join the results of the low level joins
to produce the complete results. This requires that the order of join vertical frag-

ments be maintained so the proper join attributes are available. Also. the low level
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N joins may not be possible because the fragments of the two relations mav not share

the join attribute. This makes the joining of vertically partitioned relations a very

R T A A g S O S

demanding operation to insure correct order and positioning the fragments so the
fragments have the correct join attribute. The following shows the derivation of the
mathematical scheme for joining vertical fragmented relations.

R = ‘D%IR' and S = [%S,
1=

1=1

MS = (R, M - R, MR,) M (S X ...5

- (URS(RI X "'Rm—l NR,, NSI M C S me)

GRS > x v x e
<
I

-
~

il

The grouping of operations could be done in any fashion now since the product is

[

associative and commutative. If m = n one grouping would be:

(Ry M S)) W .. (R,_y MS,_,) X (R, M5,

~m

s rxd B EAS

Performance improvement through the use of multiprocessing for the join with
vertical fragments is very difficult to define due to the various groupings of processing
that could be used to complete the operation. Multiple processors could be used
to compare the individual fragments but then the fragment join results must be
joined. This combined with the constraint of some of the joins being prodncts makes
the performance improvement through the use of multiple processor<  .iifficult to

compute for the general case.

2.9 Union

The union operator combines the tuples of two relations. eliminating anyv du-
plicate tuples. The only requirement of the union operator is that the relations are
union compatible. Union compatibility means the relations have an equal definition.
which requires the relations to have the same number of attributes and the same do-

mains for corresponding attributes. Figure 18 illustrates the union of two relations.
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Figure 18. The Union Operation

2.9.1 Horizontal Fragment Union. The union of relations that have been
partitioned into horizontal fragments involves the union of unions. Since the union
operator is both commutative and associative, there exists no constraints to the order

in which the unions are performed. Therefore, the union of horizontal fragments is

unconstrained and feasible.

2.9.2 Vertical Fragment Union. The union of vertically fragmented relations
involves the union of joined fragments. To distribute this for parallel processing
would involve distributing the union over join. This coupled with the fact that the
fragments to be joined do not have to have the same definition causes the distributing
of the union over the join to be infeasible.

R= P’th,- and 5= R,
1=

i=1

R US = (Rl MRg N "'Rn—l MRn) US
# (R, US) M - (Ruy US) M (R, US)

This is not equal because the union requires the same attributes for each input
relation (or fragment). Therefore, only R and S are sure to have the same attribute
definitions and unions of the fragments are not always possible. In the case where the
relations were partitioned exactly the same. unions «f *lie corresponding fragments

would be possible.
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Figure 19. Difference operation

2.10 Difference

The difference operator provides all the tuples of the first relation that are
not duplicated in the second input relation. This requires the input relations to be
defined with the same attributes (union compatible). Since the results are the tuples
of the first relation that did not match a tuple in the second relation. difference is

not commutative. Figure 19 illustrates the action of the difference operator.

2.10.1 Homzontal Fragment Difference. The key to the difference operator is
that it provides all the tuples from the first relation that do not match with a tuple of
the second relation. Because of this, it may be possible to perform a difference with
horizontal fragments. The constraints to successfully completing the difference with
horizontal fragments are the relations must be union compatible and each fragment
of the first relation must be operated on by the entire second relation. This provides
results that may be combined to provide correct complete results. The following

shows this and explains possible further extensions to this.

n m
R= UR and S= US,
1=1 =1

R-S = (R UR, U R,y UR)H =5
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Note: The results in each case have been determined by comparing a fragment with an
entire relation. Since. the second relation is the controlling factor this provides
accurate results. Figure 20 shows an example of this using the data from the
example in Figure 19. The second relation can also be fragmented and still
provide a correct response without first recombining the fragments to form the

whole relation. The following shows how this is possible.

The equation, using the fragmented S is:

R—-S = (Rl—(Sl U "‘Sm—l U 5"1))

Looking at only the line of the equation using R,. you might expect:

(Rl_Sl) U "'(Rl—sm—l) U (Ry — Sm)

but this does not work because combining the results with the union operator rein-
troduces tuples that had matched and been eliminated in one of the fragment differ-
ences. In this case, the tuples desired are the ones that are produced in every resuit.
with the fragment of the first relation being used as the control element. Applyving
the theorem of set theory [753]. A = (B U C) = (A - B) N (4~ C), the correct
operation is the intersection of the results of the fragment differences for a given
fragment of the first relation. Then the results of these differences are combined

with a union to provided the final result (Figure 21 shows an example). The final

equation is in the form:

R=5 = ((Ri=5) O - (Ri=Sn) N(R =5,
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For relation A and B, with A fragmented:

Relation Al Relation Az Relation A3 Relation B

R|s|T R|s|T R|s|T R[S |T

; alblc blcid e f g a d c .
X hl i i b c d o
: c a b :.;-_'
h i ] o
X y z .
N
\ From above: 5
' A- B= (A-B) U(A2-B) U(A3-B)
Ay - B A, - B A3 -B .’
Rs|T RrRls|T R[s|T

alvle 11 elt]e

"_\"‘."\._‘.‘

or

o)

then combining the results with the union operation

. -
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Figure 20. Difference with Horizontal Fragments and 1 Relation .
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2.10.2 Vertical Fragment Difference. The difference of vertical fragments is
not feasible except for one special case. It is not feasible because the fragments
are not necessarily union compatible. For the difference of vertical fragments to
operate, the relations must be partitioned to provide compatible fragments. This
means that the definition of the corresponding fragments must be union compatible
(i.e.. Ry = 81, Ry = S2, -+ ). In this case, the difference may be accomplished using

vertical fragments but only for this limited case.

R= XR and s= %s,
1i=1 i=1
R-§5 = (Rl NR2 X Ry NRH)—S
# (Bp—-5) M ... (R,.y - S) M(R,-5)

This is not equal because the fragments are not union compatible with the entire

relation.

2.11  Multi-way Operations

The purpose of multi-way or n-way operations is to extend binary operations
to handle more than two inputs. Since they are defined as binary operations. this
literally cannot happen; however, by using partial results from one step as an input
to the next step, it is considered a multi-way operation. An example of this type
operation is the addition problem 12 + 23 + 34. When you add these number. vou
might add in this pattern, (2 + 3 + 4) + (10 + 20 + 30). This provides the same
result but allows you to add only single digit numbers since we logically maintain the
tens place. This multi-way operation is more efficient for us to handle than doing
(12 4+ 23) + 34. Such is the purpose of determining if any of the binary relational

operators can be done as a multi-way operator.
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Difference using horizontal fragments v
A- B= ((Al— Bl)n(Ax —Bz) N (A1’Bs)) \
((A:-B)N (A -B:) N (A: - By))
Y.
U ((As-Bi) N (A-B2)N (a5 - B,)) ;
with fragments ';
Ay As B, B, o
rRls|t R|s|T ®R|s|T _&|s|T :
alb c e | f g a [ d] ¢ c | a b
h | i i b c d h| i j
A, B,
R|Ss|T R|S|T
b|lc | d x [y |z -
A, - B, A - B, NN A, -B, = A, -B
R|s | T R|s | T RIs |t RIS | T
a b c alb ¢ a b c a b ¢
U
A, - B, N A, - B, N A, -B, = A, - B
¢ R|S|T R|S|T )
b c d b c d U '
Ay - B, N Ay - B, (1 A; - By = A, - B
R|s | T R|s | T R|s | T R|s | T >
e | f 8 e|f|g e | f g elflg
h | i j h | i J

Therefore, after the union

R|S LT "
b
f

a
€

¢
g

Figure 21. Difference with Horizontal Fragments
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The first properties that a binary operator must have before being considered
in a multi-way environment are the commutative and associative properties. These
properties allow the order of processing to not affect the results. Of the binary rela-
tional operators: product, join, union, and difference. difference is not commutative.
This eliminates the difference operator from consideration. The other operators are

commutative and associative.

The associative and commutative properties provide the opportunity that an
operation may be feasible for multi-way situations but does not guarantee it. First.
it must be remembered that join, union, and product require one relation to be
compared or combined with another relation ( this actually means each tuple must
be compared or combined). The union compares complete tuples and all of the
tuples must have the same definition. Therefore. there is no constraint for the
union process, making it feasible for multi-way operation. The product also has no
restriction on the definition of the relations it operates on. making it feasible. The
join does need the restriction that the inputs share a join attribute. If the inputs do
not contain the join attribute, the join must default to a product and later joins must
join over all the common attributes, to allow the join operation to be feasible. The
actual implementation of a multi-way operation is done by the order of operation. A
simple example is the union of three relations. One method of performing the union
is to sort the inputs and then compare the top value of each ordered relation to see if
they are duplicates. To extend this to a multi-way operation. the comparison would
be of x values where x is the number of input relations. The process is not an actual
multi-way operation because only two values can be compared at a time but like the
mathematical example presented earlier a method of grouping the processing. This
means that even though the nnion. join, and product may be feasible for multi-way
operations, the efficiency of the actual implementation of the operation may be better

suited to a series of binary operations rather than doing a multi-way operation.
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Horizontal Vertical
Fragments | Fragments
Select Yes Yes
Project Yes No~™
Join Yes Yes
Product Yes Yes
Union Yes No*™
Difference No™ No*™

* may be feasible for special cases or
under certain constrained conditions

Ll b B P

pr e 2

Table 1. Feasibility of Operators with Fragments

2,12 Conclusions

VAL YN Y

The discussions of the retrieval operators proved the feasibility of using frag-

ments with the operators. Table 1 summarizes the feasibility of a given relational

operator with fragmented data.

. '.-'-\ & -

o The purpose of exploring fragmentation was to provide the basis for distribut-
ing the storage and processing of the relations of a relational database. This is
important because the time required to retrieve data from secondary storage is the

. major bottleneck of a database system [22]. By partitioning the data to several

9 secondary storage devices (disk), each device needs only to retrieve a portion of the

R data, assuming the data is evenly distributed, providing the opportunity for faster

database operations. If the data has to be recombined into the original relation

before processing, the data would have to be stored back on disk. eliminating the
improvement in performance caused by the distributed data storage. Therefore. it
is important that the fragments may be processed independently to maintain the

speedup gained from the distributed data.

Cases such as the selection with horizontal fragments illustrate the potential

improvements possible by using fragmented relations and multiple storage devices

PR NN

and multiple processors. The first step of the select is to get the tuples from the

disk for processing. If there are n disks. each with an equal portion of the data. the
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data can be retrieved in 1/n the time of a single disk. And if there is a processor
associated with each disk. it can process the data as fast as it is retrieved. However.
for the case of the selection with the vertical fragments. only one fragment contains
the condition to be compared for the select. This causes a smaller amount of data to

be retrieved but any processing gain is reduced and depends upon the specific case.

The potential for improved retrievals by parallel processing depends upon two
factors: distributing the data for storage and the capability to process the frag-
ments independently. When the operation is not feasible with fragments. such as
the difference operation, the fragments must be recombined before processing. This
reduces the efficiency of using distributed data. Table 1 shows that the difference
operator must operate on the original relations to insure the correct response. But.
all the other operations are feasible with horizontal fragments. However. vertical
fragments cause difficulty in processing with several operators. This causes the hori-
zontal partitioning of fragments to better suited for exploring potential performance
improvements through the use of parallel processing. Therefore, this is the start-
ing point for further research into using distributed storage and multiprocessing to

design a database machine for improved database operations.

The results presented indicate that horizontal partitioning provides more op-
portunity for improvements in data retrieval. The vertical partiticning of relations
constrains the relational operations by the lack of union compatibility for some cases
and the constant concern to retain the key so the logical connections for data re-
trievals are not lost. Therefore, only horizontal partitioning is considered in the

further evaluation.
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III. Modeling the Performance of the Select Operator

A database system is very seldom measured by ease of use or lack of or abun-

XS S

dance of features. Instead, the primary method of comparison is performance time.
Performance time consists of the time necessary to compile a user query. retrieve
the necessary data using relational operators, and either store the results for later
user use or send the data to the user’s terminal. Obviously, the major factor in the
performance of a database system is the retrieval operation. Therefore, this chapter
explores the many components of retrieval operations and specifically the select op-
erator. Later chapters discuss the project and join operators and updating the data

in the database.

The retrieval operations consists of reading the data from secondary storage
and evaluating the data to determine if it satisfies the retrieval criteria (the query
conditions). This over-simplifies the retrieval process. There are several factors of
performance time of retrievals: the operator necessary for the retrieval (i.e.. select.
project, join), the structure of the data in secondary storage, the number of secondary
storage units, the number of processors units and the physical capabilities of each
processor, the volume of data that must be retrieved and evaluated. the algorithms
used to control the retrievals, and the number of users trying to use the system.
Obviously, it is impossible to examine all possible combinations of the performance
factors. Therefore, to allow the evaluation of various factors and their interactions
some simplification must be done. The first step taken is to evaluate performance in a
dedicated environment. This means that the system is processing a query consisting

of only one relational operator for only one user.

The relational operators used for the retrievals can be select. project. join.
union. difference, product, division. or intersection. However, the majority of the
retrievals can be completed using only select. project. and join. Therefore. these

._‘J . . . K
are the relational operators that will be used for the evaluation of the performance 1
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cifects of other features. Since performance is a measure of time. the exploration o

performance will consist of the development of equations expressed in parameters o1

hardware performance measures. This will allow improved hardware parameters to
be substituted to evaluate the effect of new and improved hardware. The discussion
will be divided into four sections. These sections will evaluate the operator for
the four different hardware configurations possible. These configurations are: single
processor-single disk (disk here means secondary storage since at this time disk
storage 1s the only viable method of secondary storagej. single processor-multinie

isks. multiple processors-single disk. and multiple processors-multiple disks.

All of the architectures are assumed to have no restrictions. This means that
for the multiple processors-single disk environment that all of the processors can
access the disk and that each processor could communicate with each other proces-
sor (communication may not be direct but can be accomplished through interme-
diate processors). The processor communication is also assumed for the multiple
processors-multiple disks architecture. The multiple disks of this environment are
assumed to support all processors. Thus, no time delay for accessing the disk is

included in the multiple processors-multiple disks models that follow.

The two final features that must be evaluated within each section are the daia
storage structure and the algorithm used for the relational operator. The purpese
of this chapter is to determine the effects and performance of various algoritiims

with different storage structures. First, the different potential data structures wiil

be examined.

3.1 Data Storayge Structures

Data structures for a relational database svstem are based npon the relation

A relation 1s defined as follows:

Definition Given a collection of sets Dy, D;.---. D. inot necessarily distinet . R

i~ a relation on those nosets it it is a set of ordered n-tuples < ay.

>
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such that d; belongs to D;. d, belongs to D,.---.d, belongs to D,. Set~
Dy. Dq,- -, D, are the domains of R. An attribute represents the use ol «

domain within a relation.

The previous chapter showed how relations may be partitioned for processing
and it was concluded that vertical partitioning of data did not provide any advantages
for implementing parallel processing. Therefore. it is assumed that the only parti-
tioning of data done will be horizontal partitioning. Next. the different structures
for a single data store will be discussed and in the following section the structures

of multiple data stores will be examined.

3.1.1 Single Data Storage Structures. The single disk or data store does not
allow any potential for partitioning of data to allow parallel retrieval of the relation.
Thus. data may be stored in an arbitrary manner which will be called unordered
or in a sequential order (sorted order) which will be called ordered. However. one
additional feature may be present. That is an index of the data. It is assumed tha
any index involved here can provide a logarithmic type tree structure for the index
and that the leaves of the index are the only place that the actual index is contained.
The logarithmic type tree models any type of index tree structure by changing the
parameter that depicts the number of keys contained in each block of the index. By
only allowing the leaves to hold the tuple addresses. the leaves can be accessed 10
provide sequential accessing of the key values. Therefore. the combinations to i
examined for single disk cases are: 1) unordered, no index: 2) ordered. no index: 3.

unordered, indexed: and 4) ordered and indexed.

Indexed means that an index exists for the attribute(s) necessary for the rela-
tional operator. If an index exists but not for the proper attribute(s) for the operator,
the corresponding unindexed case provides the appropriate performance time eve!
nation. It is assumed that the index is stored on disk. Therefore. all the pos<it

conditions are covered by the four cases.
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3.1.2  Multiple Data Storage Structures. Nultiple disks provide many oppor-
-" !
. « . . f -
tunities for distributing the data. The first cases are obviously the cases where tiie '
-
relations are not partitioned and are stored on a single disk unit as described above. "
N
. . L. . . . LN
[t is assumed that only horizontal partitioning (see previous chapter) is used for -~
(]
distributing the relation among data stores. The purpose of distributing the data ol
L
among data stores is to reduce the performance time by allowing parallel retrievals
of the data. Therefore, any method of dividing the data must provide approximately
even distribution across the disks. [f the method of partitioning the data does nor
. . . . . y . . )
provide an even distribution, then the retrieval parameters are the same as the singic .
disk case. eliminating the advantage of the parallel retrieval of the multiple disks. Y
w
. e . . - «
There are three primary methods of partitioning a relation across the data _

vom

stores. The first method provides an even distribution by using a round robin assign- ..

ment method. This insures an even distribution but does not provide any grouping -
of the data, so this method is called the unordered distribution. The method called PR
=

the ordered distribution is accomplished by maintaining the relation in sorted order )

, w3

. . . . . N
with the number of blocks evenly distributed among the disks. Maintaining the even o
P
. . . . . . . . - ‘At
Jistribution for new insertions may cause a reorganization of the relation requiring w9
N

the reading and writing of several portions of the relation. Potentially. for the wors "‘
R . . . ye o4 '.-- Y

case condition. the entire relation must be read and then written back to disk 1, e
2

insert a single tuple. N
T

Another method of distributing the data is by hashing each tuple and assigning -

B )

. . . . . . . . A"
certain boundaries to each disk. This inakes each disk similar to a bucket in a hucker -
sort. This method does not require reorganization like the ordered distribution did he
but 1t does provide some grouping of the data by value. unlike the ronnd robin dis B

. . . . B . v - ’
'mibution. However, the bucket distribution does not gnarantee an equal distriburion AN
: W
)
. . v - . Y . . . n\
it the boundaries of the buckets are fixed values. if an even distribntion s neces N
-_‘.n.
. . . . . \--
saty. the bucket boundaries will have to be readjusted, requiring a reorgamizat, N
A )
of the data. The bucket or hashing method also allows the individual buckers '
X
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e be maintained in an ordered or sorted manner if this will provide any performance
S
advantage.
\ . -
N The final storage structure that can be added for multiple data stores is some
»
: form of index. Obviously. each disk may have its own index. But. there may he
3
1 ventralized indices for all of the disks. If an index is centralized. then we have riic
Wy same case as the single data store with index until the actual retrieval of the tuples
g occurs. This and other considerations will be examined during the development ot
N each performance equation.
5.2 Select Performance Models
The select operator restricts the results to only the tuples that satisfy the
1 ]
y selection condition. For this evaluation two different cases will be considered. The
- first. called MT. where MT stands for *many tuples™ in the results. This selectior
- B case results when the selection criteria desires a range of values or the given condition
applies to many tuples. A simple example of this would be a query that desired all the
- names of emplovees of a given department when the department had 1000 employees.
% The other case is the FT case. The FT case is when the results contain a
 ~
. “few tuples” (such as. 10 or fewer tuples and always less than one block of results:.
Y . . . . . S . . .
- The implication of this tvpe of select case is that a very specific piece of information
\
o is desired. The FT selection is a special case of the MT case. [t 1s included as
] a separate case hecause the selectivity factor (a percentage of the mputs lacks tie
N ~ensitivity to evaluate this case accurately. This case is one of the commonly detined
N iqeries of a database. An exampie of this type of select would be when we recded
N
N to retrieve the phone number of an employvee given the emplovee’s name.
: The two different cases of the type of results {or the selecr wili now he e
4 . . N . .
’, te, develop equations to predict the performance of ditfferent hardware contigarar on.
Cad
', . , . - . . . .
", and retrieval algorithms. The performance parameters are listed 1 Table 20 These
S parameters are based upon the parameters given by DeWirt and Hawrhorn 33 5
. e i~
y i
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L - cause these parameters provide a common basis with which to evaluate database
k) . . . .
machine performance. These parameters will be used for the evaluation of all algo-
N rithms and hardware configurations.
N
N
. The different cases to be developed for each hardware configuration are:
-
Case a. Unordered-Unindexed-FT
- Case b. Unordered-Unindexed-MT
S Case c. Unordered-Indexed-FT
'Y
Case d. Unordered-Indexed-MT .
« S
‘ Case e. Ordered-Unindexed-FT N
‘ Case f. Ordered-Unindexed-MT -
. .
o “w
Case g. Ordered-Indexed-FT
N Case h. Ordered-Indexed-MT
.
N
N
& R The first hardware configuration to be examined is the Single Processor- Single
. Disk cases for the select operator.
".
" 3.2.1 Case |. Select - Single Processor-Single Disk.
.
3.2.1.1 Case la. Select - Single Processor-Single Disk - ['nordered-
. {'nindered-FT. The purpose of the select is to provide the tuples that satisfv the
- given condition. When the relation has been stored in a random manner. the pro.
~ . - . .
cessing of the select requires the relation to be read and scanned bv the processor
- [f the relation was stored in sorted order but the conditions of the <elect used an at-
- : , , : : . :
tribute(si other than the attributersi of the sort kev. this unordered condition woel,
) | :
' also exist,
. . . _ - -
. The first component of the performance eqnation s *o compile the query, J
S ; 2
o Next, the first block of the relation minst be found on the disk. This reqrures 4 disi -
> A
. ACTesS, 71 .\'()W. th(' })l()(‘k i.\‘ rt‘atl and tr,insfvrrmi to Y}n' processor, ] [ h.- DS SO *
{ - f. . - 1 \ -‘1
- now scans the block comparing the select conditions with the proper atrembanes o0 N
-
4 .
ll Y
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i. 0.‘
X) \ b
y f - selectivity factor .
< d; - duplicate factor occurring in a project N
- Jss - join selectivity factor o
- p - total number of processors 2
. d - number of disks
. ¥ - number of disk processors .
"’ Dy - blocks of memory per processor .
] h - blocks per track on the disk .
X T. - time to compile query
. I, - time to send a message to/from back-end ’
. Ty - average disk access time -
[ I, - seek time of one track on the disk :
- I, - block read/write time .'
- - I'.« - time to scan block -
’ I, - time to send block to back-end
s I - time to process block with complex operation. like join )
o I..: - time to fetch and examine an index page )
X R, - number of tuples in relation R
. S, - number of tuples in relation S N
. tur - number of tuples selected )
R - number of blocks in relation R (1R, = r1/B. .
S - number of blocks in relation S ({5, = 51/ B) X
B - number of bytes per block Ny
r - attribute size .
r - tuple size )
~ - tuple size )
i - index size in bytes
Table 2. Performance equation parameers
.
X
RS
'_
et p et P S - - ‘- ST e e e -

. e e o e T N e _..A.. o T

- M > - - CaRY .~ 0 - .
POV VR VPR VTV N P PR VR W VR VAL YRR VA Y

I AP AT AT A

G AR .
NN S Ay N

p
:
B, <,
X
3




S

WWWPFW TR T N VRNV W Y YW YA 8T a

-t Nh

:\ L]
I\-l
o
N tuple to determire if the tuple satisfies the select condition. This time to pertorm o
the scan of a block. T,.. is based upon approximateiv 100 tuples per block. The )
-
rime to scan 'he block also includes the time to move any tuple that meets the e
N
select condition to an output buffer. Now the processor is ready for another block ro .
s
process. Since this is the FT case and few tuples are expected in he results. it is not o
)
-
expected that more than one buffer full of results will be collected. This allows the -
13k liead to remain positioned at the position where the relation was found. allowine ’
'he retrieval of the next block to consist of only the [/O. This would continue unti. >
. . L . . )
the head of the disk needs to move to the next track of the disk which will require -
a seek. T,. The number of seeks necessarv is determined by dividing tae number .
of blocks in the relation by the number of blocks contained in a track or evlinder .
depending on if the disk has multiple platters. The finai step of this select operation )
1s to do something with the results If the results are sent back to the user. ther the -
time parameter used is the block transfer time. Th,. If the results are stored on disk.
.\-l -~
the time parameter is the combination of a disk access. T;, and the time 1o write the .
Zata. T,,. The complete equation for Case la using the scanning method o nerfor:,
the select, with R blocks in the relation. when the results are stored ipon disx s K
Model S - 1 )
1. +T, ~ R«T, 0~ 0tiR/bi =1 «T1 = R, =T, ~T
N
or «when the result are <ent to the nser. N
Model S - 2 o
.
-
. . oy , - , : , e
Fi~T, - R«T, .o~ 0Rbhr—1 el - Ko 1. : o
)
: 4 S R
Noter this assumes the transfer 1o some sort of pernberal nrocessar e :
“ermunals can not recerve and display the resiits s e o B
Durpose ol this s to compare algorithms and st e e e e -
J
L cesults on o penpheral devices, :‘.1
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e The equations formed previously did not consider the fact that the processor ..
.
may aliow double buffering of the input. This means that the one buffer could be
.
receiving data from the disk while the data in the other buffer was being processed. :
.
This allows the overlapping of processing and retrieval time. The equation for thix N
.
150 3
Model S -3 :
: 1 y
(R=1)*T,) f
T:*Ti ﬁo*max or +T,C":’T4+T,O (3 )
(R/B) = 1)« T,) + (R—=1)+T) :
wl -
Model S - 4 :
J ((R—1)=T,) :
l
T;+T1fT,o+n)a,v‘i or V= Toe + 13y 4 .
((R/5) = 1) =Ty + (R = 1)+ T} ;
fepending upon the placement of the output. .
The reason no other algorithm was considered was because to use some form of S
index. an index would have to be created which requires at a minimum the scanning N
ot the relation plus time to build the index. This would require more time than the R
<impie scan to com:pare the select conditions. .
3212 Case Ih. Select - Single Processor-Single Disk - Unordered- R
I'nindered-M T The select with larger results is similar to the FT case except that
“he processing of the results may interfere with the reading of the datra from the
CaK oregiiring more costly disk accesses. This is exactly two for each block of resnl .
wrrten to the disk. One disk acceess 13 pecessary to procure the prooer place o .
. Che resnt bloea piis one disk access to retarn the disk head to the proper oeation
-
- X
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N to retrieve the next block of the input relation. The equation for this includes an z
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arbitrary parameter, called the selectivity factor, f. that will determine the volume

of the results. The equation for this using double buffering follows:

Model § - 5

(R=1)*Ti)
or

T. + Ty + T, + max ((R* f)—1)%2Ty) +Toe +Tu+ T (51
+(((R/b) = 1) x T})

+([(R=1)+ ((B* f) = 1] x T,))

This equation may have fewer disk seeks if some of the disk accesses after
writing results overlap with a necessary seek. But this is a small segment of the total
execution time, so it was retained to insure at least the minimum time required. It
should be noted at this time that any performance equation that cannot be truly
expressed for all cases will take the conservative view of expressing the worst case

rather than the best case.

The performance model for sending the results to the back-end reflect the
reduced disk accesses due to no conflict between reading and writing data to the

disk. Therefore, the performance model when the results are sent to a back-end is:

Model S - 6

(R=1)*Ty) + ((R=f) = 1) * Tse)
Tc + Td + Tio + max or
(R/6) = 1)+ T,) + (R = 1) x T,)

+ Tsc + Tbt (63

3.2.1.3 Case lc. Select - Single Processor-Single Disk - [nordered-
Indered-FT. The indexed case indicates that an index exists for the attribute nec-
~~sarv for the evaluation of the selection condition. The indexed case becomes very

+%oalt to model when the selection criteria depends upon multiple attributes being

)
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e compared to determine if they satisfy the selection condition. If multiple attributes
are required tu =valuate the selection criteria, then more than one index may have
to be used. In this case, the normal method is to build a list of tuple identifiers

(TID) for each condition and then combine the TID lists to determine the tuple(s

RASANS A A S Y S Y RS,

that satisfy the selection condition.

The indexed case is ideally suited to the situation where only a few tuples

LAY

must be retrieved. Assuming the index is searched for an equality condition (e.g..
find the name of the person with ID of R2D2), the index reduces the amount of
data to be scanned and only the few blocks containing the tuples satisfving the
condition are retrieved. However, as the number of tuples that satisfy the selection
conditions increase, the effectiveness of the index retrieval decreases because of the
increased number of blocks to be retrieved to get the necessary tuples, assuming the
tuples are randomly distributed. Also, selection conditions other than equality or
- equality comparison of two attributes could require the entire index to be searched

to determine the tuple addresses or require comparison of more than one index which

reduces the advantage of using the indexed retrievai.

In the indexed case it is difficult to predict the performance time because it is

very data dependent. Therefore, for this evaluation it is assumed that the number
of tuples to be retrieved, t,,, is very small (such as 10 or less) and that each tuple
resides in a different block. The performance equation has some fixed parameters
for retrievals plus the cost of accessing the index. The cost of accessing the index is
determined by computing the depth of the logarithmic index. The other option is
to scan all of the leaf nodes of the index but this is not appropriate for finding a few

tuples that satisfy a given very specific condition.

The first step of the performance equation is to determine the number of leaf
nodes in the index and the number of values that can be referenced from an index n

node. This is shown by: o

2 number of values per index or leaf block = B "'~ + in) {

-1
—
R
s alala
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leaf blocks = (R * (B/r))/(B/(v + in)) (R)

The number of values contained in an index block is the number of bytes in a block
divided by the size of the attribute being indexed plus the number of bytes used for
the index value. The number of values contained in an index block is then used to

compute the number of leaf blocks necessary to index the entire relation. The next

step is to determine the number of levels of index necessary to index the number of

leaf blocks. This is determined by the logarithm of the number of leaf blocks using

the number of values indexed by a block as the base of the logarithm.

levels of index (L;) = [log(g/(usin)) (R * (B/7))/(B/(» + in))] (9)

This value then is used to determine the number of blocks that must be read
and scanned to reach the appropriate leaf node. From the leaf node the tuple iden-
tifier list is compiled. Then the tuples are retrieved. Since it is assumed that the
tuples are randomly distributed. it is assumed that each tuple retrieved requires a
disk access plus the time to read and scan the block. The time to complete the query
includes a final disk access and I/O to write the results back to disk (if results are

going to the user substitute T} for T; + T;,). The equation is:
Model S - 7

Tc + ((Ll + 1) * ind) + ((Ti + Tio + Tsc) * tup) + Td + Tio (10)

Since the number of tuples that satisfy the selection condition is assumed to be
a small number of tuples, the results produced are assumed to fit in a single block.

[f the results are to be sent to the back-end, then the model is:

Model S - 8
. Tc+((L1+1)* md)+((Td+Tm+Tsc)*tup)+Tbt (11)
61
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3.2.1.4 Case 1d. Select - Single Processor-Single Disk - Unordered-
Indezed-MT. The indexed case of the selection operation when more than just a few
tuples will be retrieved is very interesting because it is very difficult to accuratelv
predict the performance time. The difficulty arises when determining the number
of blocks of the index that must be accessed and scanned and then determining
the distribution of the identified tuples among the blocks of the relation. Here it
was assumed that the index was of a B-tree tvpe with all actual values and their
asscciated TIDs only contained in the leaf nodes. This allows. for the worst case.
only the leaf nodes to be retrieved and scanned. This provides a better method of
processing than accessing all of the relation. But the index only provides the address
of the tuple, it does not provide the tuple. Since the tuples are stored in an unordered
fashion, it has to be assumed the tuples needed are in random blocks. Thus. if the
tuples are retrieved as identified during the scanning of the leaf nodes. each tuple
retrieval would consist of a disk access + block read + scanning the block. The cost
of retrieving more than just a few tuple may be more costly than just scanning the
entire relation because reading the entire relation utilizes some disk optimization
to reduce the disk access time plus random accesses may re-read blocks multiple
times. Therefore, for the index to operate somewhat better it is assumed that the
tuple identifiers would be gathered and sorted before any tuple retrievals started.
The worst case then requires the leaf blocks to be processed and at most each block
of the relation accessed once. The advantage of the index is that it may require
only a portion of the leaf nodes to be accessed and then after identifving the tuples
require only a few blocks of the relation to be accessed. The performance equation

for case 1d {assuming no restrictions on the number of times a block may be re-read

to retrieve tuples) is
Model S - 9

Tc+(([/[+1)* ind +[Td+Txo+Tsc up]+ Td'{'Txo)*(R*f)) ‘12)
where T, = ({(B/r) + R] = /)
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7 If the results are presented to the user instead of being stored on disk the
equation is: .
Model S - 10
Lo+ ((Ly+ 1) * Tina) + [(Ta+ Tio + Tue) = ([(B/r) * Rl f)] + (Toe = (R = f)) (13}
The previous equations could require some blocks of the relation to be read N
several times. each time retrieving just a single tuple. Therefore. this method would
need to store the addresses and place them in a sorted order to allow an improved -
retrieval environment. This method would allow each block of the relation to be read .
-~
once at most, reducing the number of block reads (especially, reducing the reads as N
4
the selectivity factor increases). The performance equations providing this optimized -
technique are: *
where T,,, = (((B/r) * R) * f) -
A <
-,‘v 2.
Model S - 11
B
B
Tc+((LI+1)* ind) :
' RxT, ’ )
T, + Ty + max or "
(R*T) + ((R/6) x T}) -
+((Tup *in)/B) *min{  or X
Tup * Ty f:
Ty + T4 + max or "
(Tup * Tio) + (Tup/b) = T0) | | 5
+(2T3 + To) * (R x f)) (14) :
If the results are presented to the user instead of being stored on disk the '.l:
equation is where T,, = ({(B/r) * R) * f) -
= -:
63 X
[
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b
S Model S - 12
L
Y T.+ ((L;+1)=Tng!
E ' R«T,
N, T, + T; + max or
p (RxT,) +((R/b) «
+((Typ *in)/B) *min{ or
-_i l T+ T,
‘ T, + T, + max or |
: \ | (Tupx To) + (T /b1 = To
: + (T (R 1)) 15
3.2.1.5 Case le. Select - Single Processor-Single Disk - Ordered-Uninders -
FT. The ordered case means the relation is stored in a sorted order based upon
attribute being used for the selection criteria of the query. Ordering the relation
5 does not mean that it can be determined which of the disk blocks to start with.
{ What this means is that the data is sequential. This means that the only method
, that can be applied for all disk configurations (if blocks on a disk are mapped in
the disk index, a binary search could be used but when blocks are linked together.
, sequential access is necessary) is the simple scanning method described for cases la
] and 1b. But the processing may be terminated before the entire relation is scanned
" with the ordered relation. This early termination occurs because the sorted order
"? insures that once the attribute value exceeds the selection criteria, no smaller values
;: will be discovered in later blocks. On the average this would suggest that the ex-
- pected value of the number of blocks to be scanned would be 1/2 the total number
I of blocks of the relation. The equation for this is the same as case la except the
:, number of blocks to be retrieved and scanned is assumed to be 1/2 = R. realizing
> of course that the worst case would be exactly the same as case la. But this does
" o
’
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provide for comparison purposes that the ordered case on the averace will perform

better and even for the worst case will perform equally well.

The performance equations are:

Nodel S - 13
BIR Ty
T.+T;+ T, + max' or 1+T1+T,O 116
S(R/D) <11+ T+ (3R <T)
or
Model S - 14
5(RT,)
T.+T;+ T, + max or + Ty (17

S{((R/6) = 1)« T,] + (3R« Ty,)

depending upon the placement of the output.

3.2.1.6 Case If. Select - Single Processor-Single Disk - Ordered-Uninderc-
MT. This case is the same as the previous case in that it only reduces the number
of blocks that may have to be processed from case 1b. However, here it is assumed
that the expected value to find the starting location of the desired tuples is half of
the remaining blocks after the size of the results is subtracted from the size of the
relation (.5(R — (R * f))). Then, the results must be read and either stored back
on the disk as results or sent to the back-end. The first step in this model then
determines the number of blocks to be read to find the starting point of the results

and retrieve the results. (b).
by =3(R—=(R=f))+(R=*f) (1%

The performance equations using h; are:
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Model S - 15

by = T,e "

or i

T.+ Ty + T, + max ((Rx f)=1)=2Ty) =L, R
(b /b = 1)+ T, | N
+mm—wﬂm*n—w*n)f |

and

Model S - 16

(byx Toe) + [(R* f) = 1)« Ty] |

or

T.+T;+ T, + max + T, (20,
[((b1/b) = 1) = T}]

+((by — 1) * T}o)

3.2.1.7 Case lg. Select - Single Processor-Single Disk - Ordered-Indered-
FT. This case is similar to case 1c except that now it is not necessary to assume the
random distribution of the tuple. Therefore, for the case of retrieving the very few
tuples at most the tuples should be contained within two blocks. Thus. modifving

the equation from case lc by replacing the number of TIDs with the maximum of

two blocks, produces:

Model S - 17

Tet+ (L1 + 1) *Tina) + (Ta+ Tio + Toe) x2) + Ty + T, 21
and -
Model S - 18 ‘
T.+ (L1 +1) * Tia) + ((Tu + T + To) « 2) + T Ay 3
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$.2.1.5%  Case lh. Select - Single Processor-Single Disk - Orvdered-[nde re -
MT. This case 1s similar to case 1d but for case 1d no ecuation was developed be-
cause it was said that for the average case it would perform worse than case la and
it was very query dependent. However, by adding an index the situation changes
greatly. Now. the necessary tuples are grouped and thev may be directly accessed
through the use of the index. Thus, this case requires only the number of blocks of
the relation to be retrieved that are really necessary. This means that its performance

should be overall the best.

The actual performance equation includes three segments. The first shows the
time to use the index to find the address of the starting block for processing. Next.
the time to retrieve and process the blocks of the relation and the last segment shows
the time for storing the results on disk. Again, it must be remembered that time for
storing the result can be replaced by the time to send the results to some front-end
processor for processing to the user. Both equations will be presented to illustrate

the difference.

Model S - 19

T+ ((L;+1) % Tinag) + ((2T4 + 2T + Too) * (R % f)) (23)
or
Model S - 20

To+ (Li+ 1) #Ting) + ((Ta+ Tio + Toe) (B x f)) + (R* f) * Ty, (24)

3.2.2 Case 2. Select - Single Processor-Multiple Disks. The use of multiple
disks allows more options in the storage and retrieval of the relations. There are
now three different ways that data may be stored. The first is to use a round-robin

method of assigning new data to the disks. This method insures an even distribution
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over the disks used. However. this method provides no sequencing or ordering of the

data.

The next method provides some grouping of the data by value but does not
guarantee that the even distribution of the data is maintained without periodic
maintenance. This method, which will be called the hashed method. hashes each
tuple upon some attribute(s) and distributes the data based upon this hash value
and the boundaries established for each disk. This is the same concept used for a
bucket sort. Then within each disk the data may be stored in an unordered manner

or it may be sorted and maintained in ordered fashion.

The final method of storage is the fully ordered method. This method orders
the data across all the disks that store the data. This method provides ordered data
and allows even distribution over the disks. This allows the first block of each disk

to be retrieved and examined to find the disks that contain tuples that meet the

selection condition.

The multiple storage units do not provide significant differences in the methods
for performing the select operator with a single processor. Therefore, the same basic
cases that were examined for the single processor-single disk scenario will be used

for exploring the single processor-multiple disks environment.

3.2.2.1 Case 2a. Select - Single Processor-Multiple Disks - Unordered-
Unindezed FT. The use of multiple storage units does not effect the processing
necessary to perform the select operation. The processor must still scan the entire
relation, selecting the tuples that satisfy the selection condition. The only variance
from the single processor-single disk case la is that the disk operations (seeks and
accesses) may be overlapped. since more than one disk is used. This is caused because
the processor can issue the same command. i.e.. find first block of relation XY to all
the disks. Then after a disk has transferred all the blocks on the cyvlinder. another
Jdisk can transfer data while the other diskis) seek the next track., The result
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Lo the overlapped disk operations. This produces the following performance cquation

{assuming double bufferingj:

Model S - 21

I (R—l)*Tsc ]i
T:+Fi+]:o+max‘ or !+TJC+T4+T29 1250

i
|
|
|

((R - 1)/d) * Tzo

[t must be remembered that this 1s the case where very limited results are
expected. Therefore, the results written back to disk fit in one block and the time
to write that block. (T; + T,,). occurs after the processing is complete. Also. if the

results are sent to a back-end. the equation would be:

Model S - 22
(R—1)xT,.
T. +T; + T,, + max or + Ty + Ti (26)
(R-1)/d) =T,

3.2.2.2 Case 2b. Select - Single Processor-Multiple Disks - Unordered-
Unindezed MT. The more inclusive case provides for more extensive results: how-
ever, this case produces the same modifications of the single disk case - reduction of
disk accesses and seeks - as the just completed FT case. Therefore. the only modi-
fication is to reduce the seek and accesses through overlapping them. It is assumed
that to store the results a disk access is necessary. If one disk was no longer needed
for retrieving the relation, it could be dedicated to storing results and thus reduce
time to access the proper location on the disk. The following equation distributes

the results to free disks to reduce the disk processing time

Model S - 23

(R_ I)*rsc
T.+T;+T,,+max or |+T.=.-+TH'TN (27
|
= LR =+ (R« f) = 1A T,
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If the results were sent directly to the user for processing the results would be: A
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RS
Model S - 24 D
; '
' (((R—l)/d)*Tst ; e
| .
: ‘ ~((R=f)=11=Ty |
F: + T’l + Tuo -+ max ‘ s T5! (2% :'
| or R
lr ‘y L
| R-ueT, N
o
[
o
I..-
.
. - l-I'
3.2.2.3 Case 2c. Select - Single Processor-Multiple Disks - Unordered- s
)
Indezed FT. The definition of indexed lacks some clarity when used in the multiple e
. , : o . . e
disks case. The question becomes what is indexed? Is it an index of the data
f. B
. . . . . .. .. P
e contained on each disk with the index stored on the disk it indexes or is it a central 2
e
index that tells only on which disk a value is contained or is it a centralized complete
R
index that provides a complete reference for each tuple, including disk. track. and s
block? The first tvpe of index, a localized index. causes the processing of the select S
.
T
to be a series of single disk retrievals. This case will not be considered here because '
it can be easily modeled using the equation from case lc in a repeated fashion for -
the number of disks involved. o
o
The second case, a centralized index with limited index. provides no more ]
information than could be determined using the hashing method of storing the data. o
This case will be examined in a later section. Therefore, here it is assumed that -4
the indexed case means a centralized index. providing complete references for the ;“
location of each tuple. Y
]
The concept of a centralized index is that it is located in one place. Therefore, -
it is assumed that a centralized index is located i one place. The effcer of ths -
)
o 15 “hat the processing of the index is not improved by having multiple data stares, o
.- . .’J1
e
A
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- NN But. the processing of an 'ndex 1s alwavs a randoin “vpe Hrocess, that does Dot aiow ‘
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L 7. . - . . . . . -
preseeking of the necessary information. Therefore. *he periormance *his case most
~ closely resembles 1s the previous case for the sinue sk case. "
& <
N .
. The last step in processing the select using an index is retrieving the tupies -
Nl ’l
Yy that satisfy the velection condition. For this case. wiiere the result are assumed 1o be |
J . jeval i mces 1wl "1
oo very few tuples. the retrievals do not consume much time. But. for later cases where -
s "-
\.'j . . . . - . , 3
Y rhe number of tuple increases. this processing time of the random tuples retrievals -3
o - N
can become significant.
- The performance equations for the single processor-multiple disks - unordered-
“u
N . .
o indexed - limited results case are:
.r:‘
o
Model S - 25
—'.
~
:':' Tc+((LI+1)* md)+((Td+Tio'i"Tsc)*tup)"i'Td"' 10 (291
N ]
K '_ "'.
Y e
y and
4
o
o Model S - 26
w
‘%
v ]c+((L1+1)* ind)+((Td+Txo"‘Tsc)*tup)+Tbt (30} .
; g
‘N Q . :1
K, - {See case lc for explanation of Ly). i
.
o "4
3.2.2.4 Case 2d. Select - Single Processor-Multiple Disks - Unordered- F
1 ‘1
. Indered MT. The indexed case for multiple disks as explained in the previous section -3
. Y
\.l . . . ~ !
y does not present any significant performance increase over the performance of the :
" . . . . . '
e single disk case because of the index processing and the random retrieval of the "
o
- v
ie tuples. Therefore, the equation developed for case 1d is also valid for this case. T'he ;‘:
~ one alternative possible with multiple disks is to process the index and <toring 4
..
‘s C e . .. e S . d
N of the TIDs satisfving the selection condition. Tlen. sort the TIDs and rerres o
M sy the necessary blocks as shown in Case 1d. Corstderine that the woens oo :
" )
» g
-‘. -
o
L]
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I'
SN disks mayv be overlapped for improved processing, the models are: where ¢,, = iy
“A
ciBiri s Rx f)
Model S - 27
T+ Ty+ (R=T,) | .
T.+ ((L; +1) % Iag) + ((ty, *in)/B) * min or .
| Do+ Ta+ (L x Tho) | 5
+((Ty+ To) = (R = f)) 31 -

and

Model S - 28
T5+Td+(R*Tm)

T.+{((Ly+ 1) * Ting) + ((typ * in)/B) * min or
Ty + Ty + (ty, = T,

+ Ty = (R* f)

However, even using the optimized technique of ordering the
number of TIDs approaches the number of blocks of the relari - -

appropriate tuples will exceed the simpler scan every rupie oo

3.2.2.5 Case 2e. Select - Single [
{'nendezed FT. The ordered ~ase means -
order based upon the value of the arvo
condition. However. it is assure: o
sequential manner oo
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. .
,":y- . . . Py . : 0
LN This performance equation uses the assumption that the blocks within a disk o4
may have to be processed sequentially but that each disk can be accessed indepen- "
dently. This means that to determine the correct disk to start processing, each disk ™
(W
could be sampled to provide the smallest value contained upon that disk. If the disk
ordering is known (all the values on disk A are smaller than on disk B. etc.), then
the average case would require one-half the disks to retrieve one block to determine ’
the correct disk to start processing. S
‘e
o . . -4
The processing of the data from the disks is done in an ordered manner. This
ot
does require the sequential processing of the data from the disks, not allowing over- o
lapping of the disk seeks and disk accesses as was done in cases 2a and 2b. But, it is oA
g
assumed that any results would be stored on a different disk than the disk currently L
providing the original relation. This does reduce some of the conflicting disk access- -
ing. Therefore, the equation has three significant parts: the sampling of the disks.
N .5d* [Ty + T, + T,.] (assuming on the average only .5 of the disk must be accessed to e
o
find the correct position to begin); the processing of the necessary data + any seeks q
b
and disk accesses necessary including the blocks from the disk necessary to reach the e
\J~
correct block on the disk; and the storing of the results. The finding of the proper ::,'
O
place on the disk could require reading all of the blocks from the disk. However. .
!
again the expect value will be used to approximate the number of blocks to be read Ny
as one-half the blocks stored on the disk plus the number of blocks that contain the N
~
tuples that satisfy the selection condition. For the FT case, the number of tuples is -
so small, it is assumed retrieving the necessary tuples causes one additional block ';_‘
Y,
read and scan. If it is assumed that there is double buffering the processing of the N
Y
data and the retrieval and storing of the results can be overlapped. The resulting E
equation is: 3
L
- 1
Model S - 29 :
o,
o
3d* Ty, or A
T. + T + Ti + max + T+ T -
Y Ty+ T, ~
L ~
z 2

N “v . ™ - -« ™ )
L/
Lol PN N {$

YN P (S v



PR RN " %2 Vg a'e at 80" 80 ol b *, R ‘ol ataral, AlaTail ave Sla hte 4'a R'al’) F ) v > G W]
' - ' h "
?": )
W,
)
7 2
b
, "’
AN K
! et S(R/d) * Ty, A
+ max or + Tsc + Td + :Tio (33) :.';
r
: (:3(R/d) * Tio) + ((:3(R/d)/b) * T,) o
X .
’
: The performance equation first expresses the search of the disk. Then the first i
block from the disk is read, T; + T;,. Next, the double buffering allows the processor ; 3
D Y
: to start scanning the block as more blocks are retrieved. In total there are .5(R/d)+1 ::jf
)
: blocks read and scanned. The final block must be scanned and the results written. Ki
! *
to account for the final segment of the equation. !
xS,
v
; The equation when the results are sent to the back-end is: ;:
\] I'-‘
Model S - 30 -3
’
5d+T. 7]
T.+ T; + T, + max or +T;+ T, o
e
:';'_\: Td + I‘io .\';
5(R/d) + T, =
+ max or + Toe + Tt (34) IE:'
(:5(R/d) * To) + ((-5(R/d)/b) * T.) ™
Y,
& 3.2.2.6 Case 2f. Select - Single Processor-Multiple Disks - Ordered- N
9 Unindezed MT. This case uses the same criteria as the previous case but this time f':
| "
; the number of tuples that satisfy it is more indeterminate. Therefore, after the &"
i proper disk is found, one- half the blocks are assumed to be retrieved before the ; ~
correct location is found. Then, (R* f) blocks are retrieved to provide the tuples that g
satisfy the select condition. Since there are multiple disks available, it is assumed ;"
; that the results are stored on another available disk. This allows no additional ‘
)
disk accesses, only disk seeks when a track or cylinder becomes full. The resulting
equations are (assuming that .3(R/d) + ((R * f) — 1)is less than R):
1)
7
4
~

: ¥ ™ | ") TR RS S I S T R R P R RTRY RPN SR SR R R e SRLNE R NSC NS )
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~ Model S - 31

+ max

and

Model S - 32

Fotg

+ max

3.2.2.7 Case 29. Select - Single Processor-Multiple Disks - Ordered- »

.

((:5(R/d) = 1) + (2 (R* f) = 1)] * To)

KT L PR TGN TR UK LY ML TR PN YO YO0 RO ‘ot e d'e 4% 6" o Y 42 0'n 80 aha g\ gl b aly Ate @ta 0

-

AN
o 7

L

o

."'I LA A

F A
™
X

5d « Ty,
T. + T; + T:, max or + Ty + T
.5d * [Td + T,'o]

e
’ rfl.r'_'- A &'.
P R I

"y

[5(R/d) + ((R*f) — 1)] * T,

or

7’

1."- (oY

N v ¥ ¥

+T3c+Td+T.io (35)

fy
24

i

+((:5(R/d)/b) + (R * f)/b) * T,)

Gy '®
NN

A
[ 4

5d * Ty g/
T. + Ty + T}, max or + T4+ T, "E':
.5d * [Td + T,'o]

. ...l.-.‘. R ;
[

[5(R/d) + (R+ f) = 1)] + T, %
+((R* f) = 1) * Ty, N

or + Toe + T (36) >

([(:5(R/d) = 1) + (R * f) = 1)] * Ts,)
+((-5(R/d)/b) + ((R * f)/b) x T.) -

Indezed FT. The index takes the previous cases, 2e and 2f. and reduces the search

time. Depending upon the level of the index, the index could point to the correct y
disk or it could point to the correct block upon the disk. The more detailed the
index, the more processing time would be required to retrieve and examine the
index. Therefore. there is a trade-off between the complete index that directs the

reference to the correct block versus the partial index that references only the correct

W

disk. In either case, the ordering of the relation in storage means that the index is
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used only to find the initial processing point and all of the tuples to be selected are
grouped together at this point. Remembering that if the ordering of the relation

is not upon the necessary attribute(s) for the selection criteria, the unordered case

must be used.

The performance equation assumes that a complete index is used. This replaces
the disk searching of the previous cases with the index processing and eliminates the
searching within the disk for the proper block of information. The performance

equations reflect this (assuming two blocks contain all the desired tuples). The

equations are:

Model S - 33

T+ ((Li+1)*Tina) + 2% (Tu+ Tio + To.) + Ty + T (37)
and
Model S - 34

Tc+((LI+1)* ind)+2*(Td+Tio+Tsc)+Tbt (38)

(See case 1c for explanation of Ly).

3.2.2.8 Case 2h. Select - Single Processor-Multiple Disks - Ordered-
Indered MT. This case is very similar to the previous case only this time the results
can not be assumed to be all located within a single block. Therefore, the perfor-
mance equation has been modified to reflect the time to read the necessary blocks

from the disk and the writing of the results to a different disk.

Model S - 35
((R*f)=1)]* T,

or
2([((R* ) = 1)]*T)
+(((R* f)/0) * T})

T+ ((L1+1)*Ting) + Ty +T;, + max +T,.+ T4+ T, (39)
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If the results are to be sent directly to the user the processing time must include the

transfer time.

Model S - 36
[((R* f) = 1)l % (Tsc + Toe)
T.+ (L1 +1)* Ting) + Ta + Tio + max o + T+ T (40)
((R*f)=1]*Te) |
+(((R* f)/b) * T)

(See case lc for explanation of Ly).

3.2.8 Case 3. Select - Multiple Processors-Single Disk. The multiple processor-
single disk case is not often referred to because it is normally indicated that the disk
is the slowest part of the system [11]. However, the multiple processors with large
main memories present the opportunity to use more pipelined processing that may
eliminate the repeated writing of temporary results back to the disk. This method
of pipelining, if it proves successful, could possibly be applied to cases when multiple
disks were used in conjunction with multiple processors. Although cost has not been
directly referenced here, it must always be remembered that the ideal system can
probably never be implemented because reality either makes the cost too much or

there is some physical impossibility.

The main question for the processing of the select operator with many proces-
sors and a single data store is “How many processors can be gainful be employed?”
Since the select is a rather simple operator that requires very little processing time

and a lot of data retrieval time, there is not a need to pipeline any processing.

3.2.8.1 Case 3a. Select - Multiple Processors-Single Disk - Unordered-
Unindezed FT. The multiple processors select is done by having each processor scan
a portion of the data. This means that the time to scan the data is 1/p times the

time for one processor to scan the relation to find the tupies that satisfy the seiection
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criteria. The performance equation reflects that the processing time may not be the
dominant factor in the execution of the select operator by several processors that
share a single data store. The disk controller is assumed to be smart enough to
handle requests for the next block of a file even though the request may be coming

from several processors. The resulting performance model is:

Model S - 37
((R/p) * Ts)
Tc+Tm+Td+T‘io+ma‘x or
[(R/b) = 1)« Ti] + (R - 1) * T,) (41)

+Ta + (p* Tio) + ((p/b) * T})

This method shows several blocks (p) of results being stored on disk. However, this
is not the true amount of results. By definition, it was said there would by no more
than one block of results. The problem results from each processor having to transfer
the smallest unit of transfer, a block, to the disk. The disk cannot be expected to be
smart enough to be able to combine the partial blocks of results from each processor
and eliminate the unused portion of each block passed to it. Therefore, this result
needs to be modified to model the time when the results are sent to a single processcr
and this processor combines the results to form the final results which are assumed

for this case to all fit in one block. This performance equation is:

Model S - 38

((R/p) * T,)
T.+ Ty, + Ty + T, + max or
[(R/B) = 1)+ T,)+ ((R—1)* T, (42)

+({(p=1)*(Toe + Tse)) + Ty + Ts
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The results show all the processors sending their blocks to a single processor
and this processor combining the data, ((p — 1) * (T + Ty)), and the final step of
storing the one block of results on the disk, Ty + T},. This method lacks efficiency
because of the chokepoint of retrieving the data from the single disk and then having
to recombine the data at a single point for storage. However, this model may provide
a better performance if the results are to be sent directly to the user. Since sending
the results to the user always requires the results to be collected at a single point.
the combination of the partial block does not present a problem. Therefore, sending

the results to a back-end produces the following performance equation:

Model S - 39

g ((R/p) * T.)
T.+ Tm + Ty + T}, + max| _ or + (p* Toe) (43)
|
|

| [(R/8) = 1) * T, + (R — 1) * To)

3.2.3.2 Case 3b. Select - Multiple Processors-Single Disk - Unordered-
Unindezed MT. This case is very similar to the conditions presented in the previous
case except that it is not known the results will be so limited. This causes the
performance model to have to provide for the results by using the selectivity factor.
The results of doing this is partial blocks of results which will be harder to identify
and combine. Therefore. the problem becomes one of should the results all be passed
to a single processor and be scanned or should partial blocks of results be stored.
In the first situation, there is wasted processor time and in the second, there is
wasted time to store blank data on the disk and wasted space upon the disk. This
problem is magnified when the number of processors is increased. For example. if
6 processors produced 6 blocks of results, with no wasted space, then 12 processors
would produce 12 blocks of results with each block being only half used (assuming
even distribution of the data). This means that there would be twice as many disk
[/Os and half the disk space used would be empty. However. the processing time

for each processor should be reduced by a factor of 2 since there were twice as many
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processors to scan the data. But, as earlier stated, the slowest part of the multiple
processors-single disk system for the select operator is the disk. Therefore, for any
situation it is best to identify the weakest part of the system and attempt to improve
this before improving a stronger part of the system.

The performance equation for this case is presented three ways: the first shows
storing the results on disk without combining - wasting space and disk time: the
second equation shows the results being recombined by a single processor before
being stored on disk; and the third shows the result being transferred to a back-end
to be displayed for the user.

Storing all results:

Model S - 40
(((R/p) - 1) * Tsc)
or
T.+ T + Ty + T, + max [((R* f) — p) * 2T
+[((R/b) = 1) = T}]
+H{(R=1) + ((R=f) —p)] * T)
+ Toe + Ta + (Tio * p) + ((p/0) * T2) (44)
Combining results at end of processing:
Model S - 41
((R/p) * Tyc)
or
Te+Tm+Tu+Tio + max|  [((Rx f) = ((R/p) - 1)/(R/p)) * 2T4]
+((R/6) - 1)+ T,] + ([(R-1)
+(((R* f) = ((R/p) = 1)/(R/p))] * T.o)
+((p~ 1) * (T + Tse)) + T
+{((R* f) = [(R* f) = ((R/p) = 1)/(R/P)]) * T]
+[((Rxf) = [(R* f)=((R/p) — 1)/(R/p)])/b] * T, (45)
80
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Sending results to user:

Model S - 42

(.5(R/p) * Toe)+
[(R* f)*=((R/p) —1)/(R/p) * Th]
Tc+Tm+Td+Tio+ma-x or
[(R/b) = 1) = T.]
+((R - 1) * Tio)

+ (p*Ty) (46)

3.2.3.83 Case 8¢ and 3d. Select - Multiple Processors-Single Disk -
Unordered-Indezed FT and MT. The indexed case for multiple processors is no
different than the indexed case described when only a single processor was available
(case 1c and case 1d). The reason is that the index cannot be evaluated by more
than one processor because the index directs which block is to be retrieved next
(some parallel processing experiments try to process the index at a lower level in
a hit or miss situation but the retrievals from the disk would be greater than the
single processor approach for this environment). Therefore, determining the tuple
to be retrieved is done by one processor. The next step retrieves the tuples, which

can be controlled by a single processor. Therefore, there is no advantage to having

multiple processors available for this case.

3.2.3.4 Case 3e. Select - Multiple Processors-Single Disk - Ordered-
Unindezed FT. The ordered data case without an index is very similar to the un-
ordered case without an index. The only difference is that not all of the data must be
examined because it can be determined from the ordering when no more tuples will
be selected. This on the average says that only half of the data must be processed.
Of course the worst case situation results in the same performance as the unordered
case, case 3a. The advantage of this case over the unordered data case with multiple
processors is that the partial blocks of results are not a problem because the tuples

to be selected are grouped together by the ordering of the data. Therefore, only one
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\‘;:‘ processor would find tuples that satisfied the selection condition (or two processors if :‘;
Ia
a block break occurred). Therefore, the performance model does not have to include .
the potential partial blocks of results but some form of early termination message :_\:"
‘ must be included to allow processors to not request more blocks than necessary. The ‘_"
: performance equation when storing the results is: ;‘\
¥
.:<. 8
Model S - 43 -
; (((5R/p) +1) * Tic) + (p * Tm) o
oS
' [((.:5R/b) —1)*T,] + (.5R = T},) i
%
If the results are sent directly to the user, the performance model is: A\
)
Model S - 44 i
) (((3R/p) +1)* Tuc) + (p* Tm) 3
N T.+ T + T4+ T, + max or +Tpe  (48) ! g
3 [((BR/b) = 1)« T.] + (.5R * T) =
':::
3.2.3.5 Case 3f. Select - Multiple Processors-Single Disk - Ordered- !
Unindered MT. This case is the same as the previous case in that it only reduces tj-‘_
the number of blocks that may have to be processed from case 3b. Therefore the ::::_
equations for this case is: r
' ~
Model S - 45 -
((:5R/p) + (R* f)) * Tuc) + (p+ Tm) R
' or -
I
T. + Tm + Ty + T, + max [((R*f)—1)=2Ty) +Ti+ T, (49) |
! +[((.5R/b) = 1) = T}
+([(SR=-1)+((R=f) - 1)]+ T,)
":“- When the results are sent directly to the user the results are:
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R Model S - 46 :
(5B + (R * £))/p) * Tue] + (p x Tn) ¥
[(Rxf)=1)« Ty |
T, + T + Ta+ Tip + max or + T (50) 2
' (SR +(R*f))/6) 1)« T,] -
H((SR+(R* ) = 1)+ T2 A
.
% Both cases assume that .5R + (R * f) is less than R. If this is not true. it :-
i is constrained to R since R is the number of blocks in the entire relation and the ;{
{ maximum number of blocks to be read. ,f
4 el
E 3.2.8.6 Case 39 and 3h. Select - Multiple Processors-Single Disk - :’
i Ordered-Inde:.d FT and MT. This case provides an index of the data. Therefore. as "._‘
~; explained for case 3c, this case is the same has case 1g and case 1h, respectively. The j;:'.
E - advantage of the index and ordering of the data is that the processing can start at :;S
) the exact block that contains some of the desired data and only continues to process g’ .
until the desired data is completely obtained. This reduces the number of blocks to :\:(_'
be processed significantly, making the problem primarily a disk retrieval exercise. :'
; "
3.2.4 Case 4. Select - Multiple Processors-Multiple Disks. The architecture ’j_
that provides both multiple disks and multiple processors provides both flexibility :"“
in the method that the relations are stored and in the manner that relations are f‘:
processed during retrievals. One difficulty in developing performance equations for ':\
multiple processors and multiple disks is providing a general performance equation
without tying the results to a specific hardware configuration. More specifically. this
involves determining the time it takes for processors to communicate without specif- o
ically stating the type of processor communication environment involved. Another ;‘*:
point of the system architecture is whether it is assumed that each disk is connected ,
to a single processor or the disk can be used by retrievals by any of the processors N
:fa or only a group of processors. ’;:-:

o o e S A A



N The multiple disks provide numerous ways of storing the data on the disks

(see Select - Single Processor-Multiple Disks for complete explanation). Therefore.
unordered means that the data is evenly distributed over all the disks but the distri-
bution of the data was done only by order of input no grouping of the data has been
done by value. The unordered case also applies when the data has been grouped
by the value of an attribute(s) and the selection condition of the query involves a
different attribute(s). Hashed means that the data has been grouped into buckets
by value but within the individual disk the data could be stored in an unordered
or sorted sequence. Ordered means that the complete relation has been stored in

sorted order. The individual blocks of the sorted relation are stored on the various

disks.

3.2.4.1 Case 4a. Select - Multiple Processors-Multiple Disks - Unordered-

T Y T TTTTT T

Unindered - FT. The multiple processors-multiple disks case attempts to use parallel

‘oA
)., A

processing to improve the efficiency of the select operation. If for each there is an

associated processor, this is often referred to as filtering. Filtering the data assumes

that the processor can scan the data as quickly as the disk can retrieve data. This
concept has been proposed for several special hardware database machines, such as

processor per disk head and a processor per track designs [2,33].

The advantage of using data filtering is that the select operation now consists of
d, where d is the number of disk and associated processors, independent operations.
Thus, allowing the select to be completed in 1/d time, assuming equal distribution of
the data. However, data filtering defines that each disk have an associated processor.
Here it is assumed that it would be nice to have as many processors as disks but that
this is not necessary. Therefore, the performance equation recognizes the capability
of having more or less processors than the number of disks that data is stored on.
Advantages of this are that the number of disks necessary to store that data may

increase or decrease without changing the number of processors and that the number

XX

of processors may be less than the number of disk which may be the case in a multi-

.
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gy
X user database system.

The performance equation, assuming the data has not been ordered or indexed.
is evenly distributed across the disks, and remembering this is the few tuples of results
case, Is:

Model S - 47
((R/p) = 1) = T,
or
T.+Tpn+ T4+ T, + max ‘ + T+ Ty + T, (51)
((R/d)/b) — 1) = Tj}+
((R/d) = 1)+ T,)

This shows the results being stored back to disk, Ty + T;,. This assumes that
there is a processor for each disk. To modify this for the case where there may
be more processors than disks, the number of processors is divided by the number

W of disks and the results rounded up to the next integer value. This results in the
equation:
Model S - 48
((R/p) - 1) * Tac
or
T.+Tm + Ty + T;, + max + Ty + (p/d) = (Ty + Ti,) (52)
[((R/d)/b) = 1) = T, ]+
((R/d) —1)=T,)

This accounts for the storing of some results from each processor. Notice that
the results have not been combined or sent to a centralized location. The following
equation accounts for sending the results to the user or a back-end to combine the
results.
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Model S - 49

((R/p)_l)*Tsc
T, + Ty + Ty + T;o + max r (FTet(peTa) (33
[(((R/d)/b) — 1)« T}+ |

((R/d) = 1) * T,)

ARyt Gy W1
YN

A

SEA

Sending the results to the back-end, p * T, implies that a complete block was

\r"v

transferred. This may not be true but the overhead of passing the data requires a

- .

»
-

disproportionate amount of message passing, so rather than try to redefine the time

N

to pass a partial block of data the complete block time was used.

N
’ 1

The equations presented above assume that the data is evenly distributed :l:
among the disks. If the data was not evenly distributed the one disk processing time i&
would dominate the others, reducing the advantage of using multiple processors and -E',',
multiple disks. Ef:

)

3.2.4.2 Case 4b. Select - Multiple Processors-Multiple Disks - Unordered-
Unindezed - M'T. The select case incorporating the concept of more results is very
similar to the previous case. Again the data is unordered and evenly distributed
across all the disks. The even distribution also assumes a uniform distribution of
the values of the attribute(s) used for the selection condition. Then the performance

equation including the selection factor are:

Model S - 50

((R/p) = 1) = T,
or
T.+ Tp + Ty + T, + max [(((R/d)]b) = 1) = T,)+
(((R/d) = 1) = T,,)+
[((R=f)=p)/d)*(2T4 + T.,)]

+Tsc+(p/d)*(Td+Txo) BER :'
5y

f\b

.
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t The equation includes two disk accesses for each block stored since it is assumed :
that the results could not be stored on the same track as the relation being retrieved :,;
for processing. This causes an disk access to store the results and a access to find E:
the correct place to retrieve more of the input relation. Also, each disk receives an ?
equal portion of the results. This fact relies heavily on the fact that the values are !' q
) randomly distributed. In reality, a true random distribution of tuples satisfying the ;. -
! select conditions would not be likely, resulting in more results at one processor than :\
another. However, this equation does have a margin of time included in the storing ?
. of the final results, (p/d) * (Ty + T, ), since the number of blocks of results, (R * f) :'_ :
. is always rounded up to the next integer value. ::
The sending of the results modifies the equation to give: ;'.;:
y Model S - 51
((R/p) = 1) * T.c) =
S +(((R* f) = p)/p) * T
T. + Tn + Ty + T, + max or + T+ (p*The)  (55) e
(((R/d)/8) = 1)« T,
+((R/d) = 1) T)
This shows the results being sent to the back-end. The one area of this equation ’
s that could be inaccurate is the sending of the results to the back-end. However. it ’
( is assumed that the back-end has a buffer to store results so as not to delay other ‘
-‘ messages and data from coming in and that the overhead of sending the block allows .
{ a small portion for procuring the bus (or sending the message on a network without :
. collision or getting the attention of the receiving processor) to send the block. L;:\
":_.ﬂ
3.2.4.3 Case 4c. Select - Multiple Processors-Multiple Disks - U'nordered- “’1:
Indered - FT. The indexed case with the data stored on several disks may imply -i
several different data structures. First. it may be assumed that one centralized index iﬁl
.‘? is maintained that includes not only the tuple identifier of block and location within :
: 87 o
B
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‘. the block but also the disk where the block is located. Second, indexing may mean o
the relation is evenly distributed over several disk and that for each disk there is .
)
an index. And finally, indexing could imply that each tuple has been assigned to Z‘
) a given disk based upon some hash value. This is not true indexing but is a form A
: s
| of finding the tuple based upon value and since in the corresponding previous cases -
there was nothing that corresponds to the hash-placed case, it will be included here. ‘
b The first index type is a centralized complete index. This type of index would :j'.:
s K
have two parts to its processing. The first part of the processing would examine the e
\ index to find the disk and tuple identifiers of the tuples that satisfied the selection :, l
\ '
condition. Then the addresses of the tuple would be used to retrieve the results. :
‘-
The index processing, since it is a single centralized index, would be done by a single g
processor with a connected disk. The tuple retrieval would require several disks to -
retrieve the data and possibly several processors to control the retrieval and remove s
o just the desired tuples from the blocks retrieved. This results in the following two -
P .
part equation. [\
K.
\ f
€
3 Index processing - T, + ((L; + 1) * T,py) 156) :&
Ly = [log(p/(y+in)((R/d) * (B/r))/(B/(v + in))] (57) R
\] .\ .
! Retrieval - ((Tm + Tq + Tio + Tyc) * (tup/d)) (58) .
-
This provides the results at the processor and then the results must be stored i
4 results stored or sent to the back-end. Storing the results produces many partial
: blocks of information but may be useful in some cases. Adding this to the previous \
' parts of the equation, produces: ”~
A
- 3
) Model S - 52 o
' _§:
) -
: T+ ((Li+ 1) *Ting) + (T + Ty + Too + Toe) * (tup/d)) + Ty + Ts (39)
cte e
R
Ki
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» DA The time to store the results is only T; + T}, because all of the disks can store 2
, their results in parallel. However. this equation assumes sending a message for each -
tuple to be retrieved since there are not many tuples in the results of this case. But. ::

it might be more appropriate for the index processor to group the tuple identifiers \:-/E

: by disk and send only one block containing the tuple identifiers (see case 4d below). ;
Either way, it is assumed that there is a processor associated with each disk to receive ,

the message and process the data. r

o

! Next, the condition of sending the results back to the back-end must be consid- ol
Y ered. Again the back-end processes the index and sends messages to the processors :
. to retrieve the tuples that satisfy the conditions and provides the address for the :
j tuples. This changes the time to store the results in the previous equation into the . :
time to transmit the results. Since it was said that there was a processor for each -
disk, the parameter for the number of processors sending results back is actually the .'

number of disks. This produces:

Model S - 53

T+ ((Lr+ 1) *Tig) + (T + Ta + Too + Tiie) * (tup/d)) + (d x Toe)  (60) o

The second index condition, each disk has a separate index. will not be exam-

ined here because this case is the same as case 1¢ with the amount of data at each
disk reduced to reflect the distributed data. The final index condition was the hash

type distribution of the data.

The hashed distribution of the data does insure that the data is evenly dis-

tributed among the disks as was previously described. But for simplification pur-

poses, it will be assumed that the data is evenly distributed over all the disks here.

The hashed distribution means that the selection condition value can be hashed. ;:
A
This produces a value which is used to direct the processing to a specific disk for '::
=
retrieval. However, this does not utilize all the processors and disks during the re-
7_'
e trieval. instead forcing a single disk to be used for the retrieval. Since the data on the e
N
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X disk is assumed to be unordered, the performance equation for this is very similar to £
o the previous case for a single processor - single disk, only with the amount of data to "
, ¥
: be searched reduced. The hashing of the selection value it assumed to be part of the p
o Y,
o query compilation. Then the time to pass a message to a processor provides for the )
instruction for the processor associated with the disk that contains the appropriate <
S ;
tuples. The resulting equation is: :
A .
Model S - 54 >
) (R/d) -1} =T, :
K. or N
s T.4+Tn+ T+ T, + max + T, +Ty+ T, (61) N
[(((R/d)/8) = 1)+ T) R
B +(((R/d)- 1)*Txo) -
when storing the results and :
~ <
Yo z
- Model S - 55
S
((R/d) - 1)« T, X
! T. + T + Ts + T;, + max +Te+ T (62) e
3 (((R/d)/b) — 1) = T}] <
: +(((R/d) = 1)« T,) x
™ -
% when sending the result to the back-end. o
A -
3.2.4.4 Case 4d. Select - Multiple Processors-Multiple Disks - Unordered- -
! Indezed - MT. The conditions are the same when the results are expected to be
: greater. There are still the different index types to be considered. The first. the cen- 3
g tralized index results in the following equations for storing the results and sending -
’ the results to the back-end. respectively: :
- Model S - 56 Y
!' ':
' T+ (L +1) % Tig) + (d = Ty N
1] .~ N
. \:-.‘ . 7
: * +((T4+Tw+Tsc)*((R*f)/‘i))+Ti+7m 1630 ::
N N
» N
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and

Model S - 57
Tc + ((LI + 1) * :R'nd) + (d* Tbt)

+ (Ta+Tio + Tye) * (R f)/d)) + (d * Ti) (64)

The second index condition considers the index to consist of individual indices
for each disk. This condition reduces the retrieval to the concurrent retrieval from
several indexed disks by single processors. This means that the retrieval equations

for the individually indexed disks are:

TV e e T BN

e

e > e

Ly = [logp/(vsin)((R/d) * (B/))[(B/(v + in))] (65) :
}
When results are stored on disk -
Model S - 58 =
Tc+Tm+((LI+1)* ind ) _:l'.
+{(Ta + Tio + Loe) * ([(B/r) = (R/d)] = f)] 2
+ ((Ta + To) * (R/d) * ) (66) 3
when sending the results to the back-end processor '.‘:,
Model S - 59
Tc+Tm+((Ll+l)* md) -
+((Ta + Tio + T,o) = ({(B/7) » { R/d)] * f)] o
+ (Tye* ((R)d) * f (67) T
w
The third condition uses the hashing distribution of the data. This results in ':,;‘
‘.
a single disk containing all of the tuples that satisfy the selection condition. The :‘;
s
portion of the relation stored upon that disk is then scanned to determine the exact ;E
tuple that satisfy the condition. The resulting performance equation for storing the _
results back upon the disk for later use is: ‘:.
]
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Model S - 60

((R/d) - 1) * Tsc

or

[T R L= e

T.+ T, +T;+ T, + max [(((R/d1/b) = 1) =« T,]+
([((R/d) = 1)+ ((R=f) = 1)« T,)
+I((R*f)=1)*(2=Ty,)]

+Tsc+Td+Tlo

and when returnir.; the results to the back-end the performance equation is:

Model S - 61

LN AR

(R/d)=1) =T,
+[((R+f) = 1)+ T,
T.+Tm +T;+ T, + max or
(R/d)/b) = 1) = T,]+

(((R/d) = 1)*T,)

-
o
-
<
-
~
4.
.
~
-~

3.2.4.5 Case 4e. Select - Multiple Processors-Multiple Disks - Ordered-

U'nindezed - FT. The ordering of data for multiple disks means that the relation is

NS
[N N Y

completely ordered and partitioned to be stored on disk. Any insertions must find the

LA
a

correct location and then inserted in the correct location. Since the entire relation

is sorted, it is assumed that a centralized map of the storage structure exists. This

»

LY

map would contain the disks that store portions of the relation and the attributes;
value (that was used to order the relation) of the last tuple of each disk. Using the
map the retrieval could be directed towards the proper disk to start processing. Also.
if the tuples that satisfied the selection condition extended onto another disk this

could be recognized from the map allowing that retrievai to occur concurrently. Tt

e

AN S .'.‘ .

performance equation assumes the worst case that all the desired tuples are stored

on a single disk. Then it is assumed that one-half of the portion of the relation

J. “-"aﬁ ; L L]




AR

stored on the disk must be scanned before the correct starting tuple is found. This

fal

produces the following performance equations. The first stores the results on disk

»

for later processing and the second passes the results to the back-end. Since this is

PASSAS Y

the FT case the results are less than one block of data. The equations are:

Model S - 62

-5

((.5(R/d) + 1)/p) * T
or
S(R/d) * T,o+
[5(R/d)/b] = T,

T LT AN

T:+Tind+Tm+Td+Tto+Tsc+max

. ”
%%

agce w
[

h ]

and

e

Model S - 63

Y

((.5(R/d) +1)/p) * T\
or
5(R/d) * To+
[3(R/d)/b] T,

e s
LN

Tc+de+Tm+Td+Txo+max

3.2.4.6 Case 4f. Select - Multiple Processors-Multiple Disks - Ordered-
Unindezed - MT. The MT czse provides the probability of more than one block
of results, causing the search of the relation to provide parameters to account for
this variable amount of data to handle. The parameter. R * f. provides the total
amount of information selected from the relation. However. in this case it is known

that (R * f) is not evenly distributed among all of the disks because of the ordering

L]

of the relation. The ordering of the data provides all the results sequentially once

£ €
.

the starting position has been found. The performance consideration for this case

LR AN

15 if this sequential retrieval of data crosses disk boundaries. If the retrieval crosses

rrPLLCT

Jisk boundaries. the retrievals may be accomplished conenrrently. Therefore, the

parameter, (R = f). must be evaluated to see if it is greater than SR 0 Tt

A

i~
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compared to .3( B/d) because half of the disk is assumed to be read to find the correct
starting position of the resuits. If the results, (R * f), are greater than .5(R/d), the
results are retrieved on more than one disk and the entire portion stored on one disk
must be retrieved ( .5(R/d) to find starting position and .5(R/d) of results). The

equations then reflect the two conditions:

If (R * f) > .5(R/d)

Model S - 64 and
Model S - 65

((R/d)/p) * T,

or

T, +Ting+ Tn + Ty + T, + max ((R/d) = 1)+ (.5(R/d) * T,,)]
 +(R/b) - 1]+ T,
+[3(R/d)  2T.]

+Td+Tio

((R/d)/p) * T,c)
+(.3(R/d) = Ty,)
I.+Twa+Tm + Ty + T,, + max or
((R/d) » T, )+
[((R/d)/b) — 1}« T,

|
Else (R = f) is less than .5(R/d)

((.5(R/d)/p)+ ((R= f)/p)) =T,

or

T+ Tna+ T + T+ T, + max| [i((5(R/d) =1V +(2«(R*f)—1))«T,]

(5 b d)/b) = 1) = T))]
+ (R« f)=1)x2Ty

-+ T.i + T,Q




XA

and

((((:5(R/d)/p) + ((R* f)/p)) * Ts)
+((R* f) = 1) x Ty

T+ Ting+ T + Ty + T, + max or

[((:5(R/d) + (R = f)) — 1) = T,,]+

[((.5(R/d) + ((R* f) = 1))/b] * T,

3.2.4.7 Case 4g. Select - Multiple Processors-Multiple Disks - Ordered-
Indezed - FT. The indexed ordered case provides the ability to use the index to
directly find the starting retrieval point and provides sequential retrievals from that
point. The effect of this though is that a single processor does the majority of the
work. When only a small number of tuples satisfy the select condition. the effect is

not noticed. But in the next section when the results may be lengthy, the effect can

slow the process.

o
- The performance equations show that the index is accessed to provide the
retrieval point and that one block is retrieved containing the results at that point.
The block is scanned to remove the desired tuples and then the results handled
as appropriate, stored on disk or sent to the back-end. Again. it is assumed that
indexed means a global index of all the partitions of the relation that may be stored
on various disks.
The equation for select when the results are stored on the disk:
L1 = [log(gj(vsiny((R/d) x (B/r))/(B/(v + in})] (76)
Model S - 66
Tc+Tm+((L1+1)* md)+Td+Txo+Tsc+Ti+Tw Y
and when the results are returned to the back-end:
Model S - 67
o T+ T+ ({Li+ 1)+ Tug) + T4 =T, + T + T, TN
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3.2.4.8 Case 4h. Select - Multiple Processors-Multiple Disks - Ordered- N

Indered - MT. The MT case assumes that the results may consist of even several !:'.':

blocks of data. Therefore, the indexing and ordering of the relation provide the :
advantage of a direct starting location but the disk map also needs to be evaluated :.

to see if the selection condition crosses over a disk boundary. If the condition needs .v 5

: data from the successive disk in the sequence, then more than one processor and disk J
may be concurrently retrieving data. However, the performance equation can not
directly model the fact that the results, (R * f), may be on three disks. The result .:
1s an approximation that evaluates the size of the results and if this is greater than EE
the amount of data stored on any one disk, then the retrieval assumes that reading E:

all of the data from one disk is the dominant time factor and that the other disks :::

and processors can process their piece of the retrieval faster. If the total amount of :

the results are smaller than the total amount of the relation stored on any one disk. \

the retrieval assumes that all the results are on the single disk. This provides the :‘;-
following equations, where the first set of equations are when the results are greater ’::\

than the amount of data than can be stored on a disk: S

N

Lt = 1085 (u4imy((R/d) * (B/r))/(B/(v + in))] (79) S

-

' Model S - 68 and A
2

Model S - 69 If (R * f) > (R/d) o

T.+ (L1 +1)# Tong) + T + Tu + T 4

(R/d) * T,. .,

-+ max r +T;+ T, (R0)
[((R/d) = 1) + (R/d) = 1) » T,,]+
[(R/d) » 2T}] | _

— (there are no disk seeks because the writing the results forces a disk access each time N,
< requiring the repositioning of the disk head) ’
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" > and sending the results to the user: '
y (Rfd)T.) | 3
: ~(((R/d) = 1) x T,) &
Tc+((LI+1)*T‘ind)+Tm+Td+]‘io+ma~x or +Tbt (81) ‘L
< ((R/d) * Tio)+
: [((R/d)/b) = 1)+ T, %
': :1
& Else (R= f) < (R/d) -
< T+ (L1 +1) % Tind) = T + Ty + Tt
{ ;
(4 -~
3 ((R*f)—l)*Tsc :;
‘ or ..
k max +T;+ T, (82) =
- 2% ((R*f) = 1) « T, z
Y +H((R = f) — 1)« 2T}] -
) ;‘:' . [ %)
and
5 2
: [(R*f) =Ty 5
4 4
% H(R* f) = 1)« Tyl :
T.+ (L1 +1)* Ting) + Top + Ty + T, + max or + Th (83) i
X [((R*f)=1)= Tl R
~ >
(R =)~ 1)/8]T.) R
: ..
3.2.5 Summary. All the models presented assume some structure to the input
:j relation. If the input relation has no structure (the data is unordered and unindexed).
- -
A the most efficient select algorithm is the scan of the entire relation. Any of the other -
' select algorithms would require the data to be structured before processing. which
) require the entire relation to be read. and sorted or indexed. This means sorting the N
LS
» data or building the index would require more processing than scanning the relation. "
b, ~
' Therefore, no preprocessing of the data was considered to place the relation in sorted e
2 oot order or provide an index strictly to improve the performance of the select. =
: 2
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The indexed performance model has a limited efficiency range. The nature of
this model depends upon the random nature of the data, requiring a linear growth of
disk accesses as the selectivity factor increases. This means that the index algorithm
works very effectively when a single tuple satisfies the query but its performance will
decrease when as the number of tuples that satisfy the selection criteria and must

be_ret rieved increases.

The third data structure model, the sorted or ordered relation input model. has
some potential for improved performance for performing the select. It does not have
the direct path to the results capability of the indexed model. Therefore. it must

scan the relation the same as the unordered-unindexed case. However, the ordering
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of the relation allows the processing to stop after the results have been found. Thus ,'\
scanning only a portion of the input relation. For the worst case, the scanning of :- ;
the ordered input would be the same as scanning the unordered input.
The ordered-indexed model provides the advantage of a direct path to the :‘.:
results and sequential processing of the results. Therefore, this model improves upon 3‘*'
the random retrieval of the indexed case and provides the advantage of the ordered f‘.'
case of being able to determine when no more data satisfies the given condition. oy
allowing the process to terminate. Since the index is used to direct the processing '"::.
only to the first tuple and sequential processing is used there after. the ordered- ‘
indexed case is not affected by the selectivity factor. Therefore. it seems that this E
should be the data structure used for storing all relations. However. it is impossible to L,
maintain this data structure for all possible queries without duplicating the relation ':.
in storage several times to provide the correct sequencing. The final method would F\_’
be to reorganize the relation before processing each query. This method. as stated .”
earlier, is slower than scanning the relation because the sorting or indexing must read
and scan the entire relation before the actual processing of the query ccould begin.
This means that different algorithms will provide the best processing capability in l:'.':‘
different situations. ?
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The discussion to this point has assumed a single disk-single processor environ-
mer.t. In general, the considerations described also hold for the multiple processors-
multiple disks case. When the multiple processor cases are considered. the capability
of parallel processing of the data is assumed. This is true for the unindexed cases.
The indexed cases assume a single centralized index, restricting the processing to
a single processor. This restriction of the processing may mean for given cases the

parallel processing capability may provide faster processing than using the index.

The last consideration of the performance of the select processing is deter-
mining the “optimum” number of processors and disks in the multiple processors-
multiple disks environments. But, there is not a definite answer to the “optimum”
number of resources to be used. The only conclusion that can be drawn is that each
performance model compares the disk and processor times. This means that the
ideal environment would have equal I/O and processing time. This implies that for
the select operation the number of disk and number of processors will be approxi-
mately equal or the number of disks will be larger than the number of processors.
Also, increasing the performance of the processors without some improvement in

accessing the data will not provide overall performance improvement.
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IV. Modeling the Performance of the Project Operator

The projection operator extracts attributes from a relation. This is a vertical
reduction of the relation versus the horizontal reduction of the selection operation.
The projection operator is actually two separate actions - data reduction and du-
plicate removal. The projection operator reduces the data by eliminating unwanted
attributes or columns of the relation. Duplicate removal is necessary because the
reduction of data may have eliminated the attribute that provided the uniqueness

of that tuple. The performance of the projection operator depends upon how these

two actions are implemented.

The data reduction phase of the projection operation can be done by reading
and scanning the entire relation, eliminating the unwanted attributes. Since the
entire relation must be read and processed, no ordering or indexing of the data can
improve the performance of the operation. Therefore, the performance time of the

project operator will be evaluated for four cases:

1. Project - Single Processor-Single Disk

2. Project - Single Processor-Multiple Disks

3. Project - Multiple Processors-Single Disk

4. Project - Multiple Processors-Multiple Disks.

Duplicate removal (required only when the key attribute of the relation is
eliminated) requires the results to either be sorted to allow comparison of neighbors
for duplicates or a process that compares each tuple with every other tuple. If several
different fragments of the relation are produced during the data reduction. a sort-
merge may be used to remove the duplicates. Even with a single relation. a sort-scan
process provides duplicate elimination capability. To provide duplicate elimination

without ordering the relation, a complete comparison algorithm can be used.
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A complete comparison algorithm requires that each tuple is compared to every
other tuple, eliminating a tuple if it matches a previously processed tuple. This
method may be improved slightly by using hashing to group the tuples to eliminate
some of the comparisons. However, for large relations this process is still slow because
it requires so many reads and writes from secondary storage. The problem with
hashing (bucket type sort) is the hashing key. Since duplicates are being removed.
the key(s) of the relation were removed. Therefore, should a single attribute, a group
of attributes, or the entire tuple be used has the hash key? This same consideration
also applies to the sorting method. Although this seems to be a simple decision.
the software must be smart enough not to pick a small field, i.e., the attribute sex.
as the key since it will not discriminate enough to be helpful. The obvious answer
of choosing an attribute that is larger, causes the computer to compare larger fields
which requires more time for each comparison. However, the key issue does not seem

to be as critical for sorting as when using hashing. Therefore, the sort-merge method

is the method of choice for duplicate removal [8].

4.1 Case 1. Project - Single Processor-Single Disk

The projection has two situations - no duplicate removal and duplicate removal.
In terms of performance analysis, the second situation is just an extension of the first.
To perform the first situation and the first phase of any projection operation. the
relation must be read and scanned, removing the unwanted attributes as each tuple
is scanned. The size of the results is based upon the number and size of the attributes
retained. Therefore. the parameter, v, will be used to express the size (in bytes) of the
tuple after the unwanted attributes have been removed. To determine the number of
blocks of results, the number of tuples in the relation is computed. (R « B)/r. Using
this and multiplying by the size of each resulting tuple. ((R* B)/r) * v. provides the
number of bytes in the results. Dividing this by the number of bytes per block. B.

produces the blocks after the projection operation removes the unwanted attributes.
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Thus, the parameter, ps - the projection factor, is the number of blocks of results

from a project operation. Therefore, p; = (v * ((R * B)/r)/B).

The first situation to be modeled is the projection without duplicate removal
being necessary. The first equation shows the results being stored on the disk. The
second equation models the results being sent back to the backend to be used by the
user immediately. Both assume double buffering, to allow overlapping of processing

and data retrieval.

Storing results:

Model P - 1

(R-1)+T,
or

T. + T4 + T, + max ((R-1)/b)*T,]+ + T, +Ta+ T, (84)

((R=1)+(py — 1)) = T}
+{(py — 1) * 2T

Sending results to user:

Model P - 2

(R— 1)*T:c+

[(py — 1) * Ty

T.+ Ty + T, + max or + Toe + Ty

[((R—=1)/b)*T,]+
[(R— 1)*Tio]

The cases presented above presume that the key(s) of the relation were not
disturbed. Therefore, no duplicate tuples could be introduced or the user did not
want the duplicates removed. The situation where duplicates are introduced and
must be removed uses the sort-merge method of duplicate removal. The results will

be sorted when a complete block(s) (depending upon the amount of memory in the

A *‘*"Ja‘.n\"“"* » "f’:‘f—‘ﬂ.-* \-"-‘-',\.‘_ o
L 3 J » L]



processor. py) of results is produced. The sorted partial results then are stored on
disk. When all of the relation has been processed through the initizl data reduction.
the blocks of partial sorted results are then merged with duplicates being removed at
each merge. Bitton fully describes the effects of removing duplicates at each phase
of the merge process {8]. This requires the introduction of another parameter that
estimates the percentage of duplicates. For simplicity purposes. this parameter will

not be introduced here because the time reduced for this consideration is a very

lnaccurate estimation.

The pertormance equation has two separate phases. The first performs the data
reduction and sorts the partial results. The second phase determines the number of
merges necessary and the cost of performing these merges. Then the final results are

eitner stored on disk or sent to the backend.

The sort operation is defined to consist of the same time parameter as a complex
block operation, T,. This is based upon the consideration presented by Hawthorn and
DeWitt that sorting a block requires approximately the same number of comparisons
as comparing each tuple of two blocks during a join {33!. However. the sort may need
to sort more than one block of data. The sort is not a linear order algorithm. so the

time to sort py blocks of data is not (p, * T},). Instead, if the sort is assumed to be of

order nlogn, the ratio
(tb * Pb) log(tb * Pb) _ Tsnrt
tb lOg tb Tb

(R6)
is used to determine the time, T,,,,, necessary to sort p, blocks. with t, tuples per

block. Therefore, Tyore = T, * {(ts * py) log(ts = py)]/(ts log ty). Tyore will be used in all

future equations for the reference to the time necessary to sort a block(x).

The performance equation to perform a project with duplicate removal storing

the results on the disk is:
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b -
N Model P - 3
((R_ 1} * Tsc)+
- [((Pf/Pb) - 1) * Taori]
y or
' T. + Td + T,o + max + Tsc + Tyore + T; + Tto
[((R=1)/6) = T,]+
[((R=1)+(ps—1))*T.,]
+{((ps/ps) — 1) = 2T}
:
(lipslp)/2) =)+ Th || "
2Ty + 2T, + max or : - ::::
+ log(ps/ps) * (X0 -
((ps/ps) = 2) % (2% (Tu + T) ’ x
“~
: +Tb+ (2 (Ta+ To)) | N
- .':
. . &
e This equation stores the final sorted-duplicate removed results back on the disk. ;"‘"
The following equation sends the final results to the back-end for user processing. i‘:
N
)
:
i ;
« 104 :
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Model P - 4 S
[ ]
(R—1) Tyt | N
[((Pj/Pb)— 1)* sort] ::.:1:
or A
Tc + Td + no + max + Tsc + Tsart + Td - Txo L‘
(R =1)/8) T,]+ B2
s
LAY
[(R=1)+(py = 1)) * T 2
. R
+ii(ps/py) — 1) x 2T R
2
e
(tps/p)i2) = 1)< Th | 2
I
+log((ps/ps) — 1) * [2T4 + 2T., + max or +Tb+ (2T, ~ T, 3
.
| ((ps/ps) = 2) + (ATs + T)) »
([(ps/p»)/2] = 1) = T | e
- i SR
. +| 2Ty + 2T, + max or +Tb+ (2xTy) | ®
\ -~
(ps/ps) = 2) » (2 % (Tu + T ;
(881 !
4.2 Case 2. Project - Single Processor-Multiple Disks ?\,_\
The single processor - multiple disk architecture provides the advantage that :Z;:i
each block of results that is written back to disk does not have to cause a disk access j?_:: 1
and allows overlapping seeks and accesses. This provides the possibility for better .
disk performance over the single disk architecture. -\.5:::
The processing of the project with the multiple disk architecture still has two :5:;::
3 -
facets. data reduction and duplicate removal. For the first case where the key of the ?_,;
Cd
relation is not disturbed. there is no duplicate removal necessary. The performance ::_:
\-f\ )
equations for storing the results and sending the results to the back-end. respectively. :-;:
by
-
are: »
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N
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Model P - 5

(R_I)"‘Tac {

or !
I.+T; + T, + max + Ty +T;+ T, 1 RG

(R =1)+ (b= 1)+ T}
Hipy~1)=Td

Sending results to user:

Model P - 6

(R - 1) * Tsc
((pr = 1) * Ty]

or

[(R_ 1) *Tio]

T.+T;+ T,, + max

The advantage of using multiple disks. as mentioned earlier is the overlapping
of disk seeks and accesses. When the results of the data reduction phase require
duplicate removal, the disk accessing becomes more complicated. But it is still
assumed that the results can be placed upon a different disk than where the retrievals
are coming from. This reduces the retrieval time. However, during the merge phase
of the duplicate removal, data can not be written at the same time as it is being sent
to the processor because this architecture assumes a single channel between the disk
and the processor for data transfer. Therefore, the performance equation allowing a

single disk access for storing results is:

Model P - 7

((R=1)*Ty)+

[((Pf/Pb) - l) * Tsort]
Tc + Td + Tl'o + max or + Tsc + Tsort + T+ Tm

(R=1)+(p;y— 1)) *T,]
+(((ps/ps) — 1) = T4

RN

L




0
L)
.
»,
e ]
.
(psips)/2 =11« Th
N -
. Ti+ 2T, + max| or .
> + log(ps/ps) * | I I-
A ((ps/ps) = 2i =Ty =2T,) | :
=, +Tb+ (T3 +2T,,) :
1Y
{ e,
N This equation stores the final sorted-duplicate removed results back on the disk. E
~
v The following equation sends the final results to the back-end for user processing. .
; Model P - 8 :
Lo :
~ (R—=1)*T,+ l\ "
2 - ?
* [((Pf/Pb)“l)* sort) 1
'5,: Tc + Td + Tno + max or + Tsc + Tsort + Ti + Txo -:
- [(R=1)+(py = 1)« T 2
i E +(((ps/ps) = 1) T] &
3 3
\.: ‘\ I '
¥ (p)/2) =11+ Th | 3
:: Td + 2T;o + maX or i l b
\ +log((ps/ps) — 1) *
v (ps) = 2) = (T + 2T, | 3
N +Th+ (Ty + 2T.) 5 )
A
. |
([ps/2] = 1) T
R- :
- + - 2)x T ’ ‘
N + |Ty + 2T, + max ((pr=2=Te | Th+ (2% Ty) (92 \
\ or \
e '
(pr—2)*(Tu+To)) | |
:E 4.3 Case 3. Project - Multiple Processors-Single Disk
Ls
':f The multiple processors provide the capability to concurrently process during .
- = the data reduction phase. The single disk must provide all the data to the processor F
:'_: and store the results. if that is needed. Therefore. the disk provides the focal point -
N .
g
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for the performance if the proiection operation does not eliminate the kev of the

relation. The performance equation when storing the results on the disk is:

Model P - 9
(R-1)xT,.
or 1
T.+Ty+T,<max| [(R=1)/b)s+T)+
|
|

[((R-l) (pf_p))*Txo]
+{(ps = p) = 2T4]

+ Tsc + Td + (Tto "‘P) + ((P/b) * T,)

Sending results to user:

Model P - 10

T.+T;+ T, + max

((R/p) = 1) * Too)+ |
[ (ps/p) = 1) = T] '
or !+T,c+ (p=Th)
[((R—-1)/b)* T,)+ i
(R-1)«T,] |

(93)

The project that removes the key for the relation may introduce duplicate

tuples. When the duplicates must be removed. the results from the data reduction

are sorted. Then, the sorted segments are merged. removing the duplicates during

the merge. With the multiple processors, the purpose is to most gainfully emplovee

all processors. Bitton offers that the best method is to reduce the number of segments

to twice the number of processors available [8]. The segments can then be merged

by using all the processors. forming a binarv tree to complete the merge without

returning the data to the disk. This utilization of pipelining depends upon the

processors being able to process concurrently during the initial phases to reduce

the segments to be merged to twice the number of processors. When there is only
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one disk, there is obviously some point where the disk can not fullv support the
processors. This causes some processors to be idle waiting for disk support. At
this point it would seem to be more efficient to begin a pipeline process to utilize
the processors. But, determining the number of processors to use in the pipeline
is difficult to determine ad hoc. Therefore, it was determined that by reducing the
number of segments to be merged to twice the number of processors. the processors
can be optimally used and then pipelined to complete the merge without rewriting
the data to disk [8]. Until this point is reached the disk will be the determining factor
on the performance operation. However, leaving the extra processors idle ( as bad as
't may seem) may be more efficient than trying to provide the pipeline earlier when
the results would still have to be stored on the disk for further processing. Therefore.
at some point the processors will be idle waiting for data in the pipeline. By waiting
until the final results can be computed in the pipeline. intermediate results will not
have to be stored (and it easy to determine how to allocate the processors within

the pipeline) and performance is improved.

The performance equation for the multiple processors— single disk architecture
when duplicates must be removed is difficult to write in a static format. When
the merge processing is being performed it would be more accurate to compute
the execution time in a loop because the action of the algorithm is a loop and the
results may be reduced at each loop. This was ignored in the previous cases but is a
consideration. especially when multiple processors are trving to be supported by the
single disk. The equation has three distinct parts: the first reduces the data to the
desired attributes and sorts the individual blocks of results. the second part of the
equation merges the sorted segments until the number of segments is equal to twice
the number of processors. and the third part of the equation merges the segments
.nto the final result through the use of a pipelined tree-organization of processors.

The segments to be merged decrease in number as theyv increase in size during the

merge process.,
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by The performance equation when the final results are stored on disk is:
Model P - 11
o
4
Y (((R/p) = 1) = T,.)+
> [((Pf/(P*Pb))_ 1)* sort}
o5
N or
2 T.+T,+T;+T,+ max
) [((R—1)/b) = T,}+
K [((R=1)+(ps — 1))« T,]
. +{((ps/ps) — 1) » 2Ty
N
LY
‘
L
+Toe + Toore + Ta+ (p* Tio) + ((p/b) + T,)
ps/2plog(ps/2p) * T, |
- or ’
+2Ty + 2T,, + max ,
N (p* [ps/2plog(ps/2p)} — 1) = {(2T + 2T.,) ‘
’:_ +(Td + 2T|0)] :
1
> +(Ta+2T0) = p+ Tn
L&
N .this phase reduces the number of segments to 2p]
3 Pr/2+ T+ (logp — 1) » Ty,
".: +2T4 + 2T, + max or
> ps/2 % (2T + 2T,,) + (Ty + 2T,,)]
Y
& +(Ty+2T,) xp+ T
Y R
. = [This phase reduces the number of segments to the number of processors, this rEQUITE S ‘]
5 T 5
3 the entire relation (in fragments) to be read once and written back to disk. During :'.j]
N ;
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the reading, the requirement of the numerous blocks requires a disk access for each

block read. For the output it is assumed that two blocks of data can be written with

each disk access|

’ ps/2 T + (logp 1) = Ty

+2Td+2T':o+ma-x or ’+(Td+2Tio)+Tm (95:‘
ps/2+ (2T + 2T,) + (Ty +2T.,)] |

[This phase forms the processors into a binary tree (using p — 1 processors). This

allows the remaining merges to be done using a pipeline, eliminating intermediate

disk storage. The delay to the top of the tree is (logp — 1) x Ty,./

The same situation occurs when the final results are sent to the backend for
user processing except, the final phase will not write the results to disk. However. all
of the other intermediate data stores are still required. The performance equation

when sending the results to the user and duplicates have to be removed for the single
disk-multiple processors is:

Model P - 12

[((pf/(p * pb)) - 1) * sort]

or
((R=1)/b)« T,)+
[((R=1)4(p; — 1)) = T,,}
+{((ps/py) = 1) = 2T]

Tc+Tm+Td+Tio+max

+Tsc + Taort + Td + (P * Tio) + ((p/b) * Ts)

|
ps/2plog(ps/2p) * T,
or
+27T; + 2T, + max ] !
(p*[ps/2plog(ps/2p)] = 1) - " 2Ty +2T,.1
+(T; + 2T,. \} ‘
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+(Td + 2TLO) * P+ Tm

ps/2p* Tm + ((py — 1) * Tie)
+2T,; + 2T, + max or

pf/2 * [(QTd + QT,'O) + (Td + 2Tio)]

+(Ty+2T;,) *p+ T

[((pf/Q) - 1) * Tm]
+(logp — 1) * Ty
+ 2Ty + 2T, + max L(ps —2)* Ty, + T + T {96)
or

Pf/z* (2Td+ 27‘10)

4.4 Case 4. Project - Multiple Processors-Multiple Disks.

The multiple disk-multiple processor case is very similar to the single disk-
multiple processors situation discussed in the previous section. The difference of
having multiple disks is that it can be assumed that the data is evenly distributed
among the disks and that the disks can equally share the storing and retrieval of data.
This causes the performance equations to be adjusted to provide for the multiple data
stores by primarily reducing the disk time by 1/number of disks. Having multiple
disks also reduces or eliminates the number of disk accesses necessary. However. any
arbitrary number of disks may not provide a performance time reduction because
of the assumed communication hetween the disks and processors. If it is assumed
that only one processor can communicate with a given disk. the performance time

will increase because of the additional communication time to send data to other

Processors.
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\ The following performance equations assume that there is no communication e
., restriction between the disks and processors. The first equation provides the per- y
2 formance model when no duplicates must be removed and the results are stored on
2 :
) disk ( in distributed fragments). The second equation models sending the results to N
[} -
' the user. i3
- Model P - 13 5
X ((R/p) = 1) % ..
or -
<
g T.+Tn + Ty + T, + max [(((R/d) = 1)/b) * T,)+ 7
-,
v ((R/d) = 1) + ((ps ~ p)/d)) * T, -
o»
) +[((ps = p)/d) * 2T4]
; + T+ Ti+ (T xp)/d + ((p/d)/d  T.) (97) :1'
? - :
: e Sending results to user:
%] ‘:
] .
A Y S
N Model P - 14 o
2 ~
v ((R/p) = 1)* Tu)+ | 2
|
; ((ps/p) = 1)+ T} | !
Tc+Tm+Td+Tto+max or '+T3c+{\p*Tbt) (0% .'-_
[((R/d) 1)/, « T,]+ ‘3
- [((R/d) - 1) * Tlo] ".
. 3
5 The following equations reflect having introduced duplicates tuple during the ’
. data reduction phase of the project. The individual blocks are sorted before thev -
2 are stored and the sorted segments merged to eliminate duplic *~<. The following .
, equations provide the performance models for sendinz the results iv the disk to be ‘:-
- stored and providing them to the user. The first storc- *he results on the disks. ~d
. ) i‘v
N 3
v =
3
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" Model P - 15 C
> ((R/p) = 1) = T\e+ | N
o, N,
:: [((Pf/(P*Pb))—l)* sort] ::
i8] '\

N

A T.+ Tw + Ty + T, + max or 3
[(((R/d) — 1)/b) » T,]+ Ny
| “
: [(((R/d)_1)+((pf/d)‘1))*Tto] :
¢ +{((ps/ps)/d — 1) = 2T :
-~ L
:_ +Tsc + Toore + Ta + ((p/d) * Tio) + ((p/d) /b * T,) 5
~ :
» Ps/2plog(ps/2p) + T, ,
+2T, + 2T;, + max or ’.
2 (p*[ps/2plog(ps/2p)] = 1)/d = [(2T4 + 2T,,) 2.
: +(Ty + 2T,)] ’
: he!
2 ’
- :
7 +(Ta+ 2T,) * (p/d) + Trm 2
¥ (ps/2p) * T
‘ +2T,; + 2T, + max or
% (P1/2)/d * [(2T4 + 2Ti0) + (Tu + 2T..)] |
2 P
N 2
. +(Ta + 2T,) * (p/d) + T, y

' ol
' . ]

L

pr/2% T + (logp — 1) * T, j

'.—

+2Ty + 2T, + max| or »

- "

~ (ps/2)/d = [(2T4 + 2T,) + (T + 2T.,)) Z

g A .
y ot +(Ty +2T,) + T, (99
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Sending the results to the user:
Model P - 16

I ((R//p)_l)*Tsc+

PIIP LS

; L L(pe/(pxps)r = 1) % Ty
T.+T, +T;+ T, + max or "
((R/d) = 1)/b) x T,}+ R
: [(((R/d) =1) + ((ps/d) = 1)) = Ty} -

+{((ps/ps)/d — 1) * 2T,

+Toe + Toore + Ta + ((p/d) * Tio) + ((p/d) /b + T,)

Ps/2plog(ps/2p) * T
or
(p=[ps/2plog(ps/2p)] — 1)/d * (2T, + 2T.,)
+(Td + 2Tx’o)]

+2T,; + 2T,, + max

+(Ta + 2T5) * (p/d) + T,

(ps/2p) * T
+2T4 + 2T;, + max or

(Ps/2)/d x [(2T4 + 2T,) + (Ty + 2T.,)]

oA

+(Ta + 2T50) + (p/d) + T

s

R AR

[((ps/2) = 1) * T]
+ 2T, + 2T, + max +(ps —2) * Ty, + T, + 2T, (100

YN

1 4

or

(ps/2)/d * (2T4 4 2T,,) |
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4.5 Summary

The projection operation models presented all are data structure independent.

This means that the data structure does not have an effect on the time required to
execute a project. The projection has two phases to completing its operation - data
reduction and duplicate removal. The models reflect these two phases for each of
the architectures. Therefore. the main performance factors of the project are the
architectures ability to utilize parallelism for retrievals and executing the duplicate
removal function.
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V. Modeling the Performance of the Join Operator

The purpose of the join is to combine two relations, where an attribute(s) of

each relation is defined on the same domain and comparison of the attributes (called
the join attributes) satisfy the criteria of the join. The join then combines the tuples
from each relation to form a tuple of a new relation. The most common join criteria
is equality (i.e., where the join attributes have the same value). If a join condition
other than equality (i.e., greater than, less than, and not equal) applies. a different

situation occurs which forces different processing. Therefore. the cases considered

here are only for the equi-join operator.

The join processing has different types of algorithms to considered. All of the
algorithms must compare tuples that have equal join attributes. The algorithms
either use brute force and compare all tuples or use some form of grouping to reduce
the number of tuples to be compared. The join algorithms to be considered here are:
nested loop

sort-merge
index matching

hash-based (bucket grouping and joining buckets, only considered for
multiple processor or multiple disk situations).

L0

The situation of the join requires that each tuple of relation A is compared with
each tuple of relation B. If ordering or grouping insures that all tuples that meet the
join criteria are examined, then the complete comparison may be relaxed. It would
be nice to have a new improved implementation for the equality join. especially for
the parallel processing environment. That does not seem reasonable to expect since
there are limited ways to group and compare two relations. However. for various
data configurations, different algorithms may provide better performance than an
algorithm that is better for a different situation. One consideration is the fact that

anv database system needs to be able to provide any join condition {other than
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Y equality). This implies that each database system must use the nested-loop algorithm
for some join conditions because it insures that it can successfully perform the join
X for any condition or the product operation.
‘ The different data structures to be considered for the join processing are un-
. ordered relations, ordered relations, and indexed relations. All various combinations
. of the different types of data structures will be considered for each type of architec-
’ ture and for the ditferent type of join algorithms. The different data situations to
be modeled are:
[ Relation R Relation S
Case a. Unordered Unordered
. Case b. Ordered Unordered
‘ Case c¢. Ordered Ordered
- Case d. Indexed-Unordered Unordered
. Case e. Indexed-Unordered Ordered
. e Case f. Indexed-Unordered Indexed-Unordered
Y Case g. Indexed-Ordered Unordered
Case h. Indexed-Ordered Ordered
Case i. Indexed-Ordered Indexed-Unordered
' Case j. Indexed-Ordered Indexed-Ordered.
N
: The cases presented do not reflect all possible combinations. However. the
g two relations may be interchanged, which does provide all possible combinations of
different data organizations for the two relations. For some data structures with some
algorithms, several cases may be modeled with one model. The first architecture to
2‘ be explored for join processing is the single processor-single disk.
N 5.1 Case 1. Join - Single Processor-Single Disk
. The time parameter to be considered for joining two blocks. by comparing eacl
N tuple of the first block with each tuple of the second block, is T,. This is the same
A

time parameter that is considered for the time to sort a block of tuples. The first

algorithm is the nested-loop algorithm.
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5.1.1 Nested-Loop.

5.1.1.1 Nested-Loop. Cases a through j. The nested-loop algorithm is
the brute force algorithm that will handle any join condition including not equal
conditions and the product operation. This algor:thm compares each tuple of the
Arst relation with each tuple of the second relation. Ullman provides the criteria
for optimizing the nested-loop algorithm by using the smaller relation as the control
relation [79]. This means the processors memory will be filled with blocks of the
smaller relation and then single blocks of the larger relation read and compared to
the blocks of the smaller relation loaded in memory. By using the smaller relation
memory to load the processor memory, the number of total disk accesses is reduced.
The nested-loop algorithm does not consider the ordering or indexing of the relation.

Therefore. it spans all the cases.

A new parameter will be used in the following performance model. It is the
join selectivity factor, j,;. It provides an estimate of the volume of data produced
as results of the join. It has been defined by some researchers as a factor of the
product of the number of blocks of the input relations [7]. Since the join is a special
case of the product operation, here the join selectivity factor is defined as a factor
of the product of the number of tuples in the input relations because the Cartesian
product forms a result that is equal to the product of the number of tuples of the
input relations. Therefore, j,; is to be a percentage of the tuples produced by the
product of two relations. To convert this to the number of blocks produced. the
result tuple size (r + s) is divided by the block size. This formulation accounts for
the product of the tuples. An example of the effect of not applyving the selectivity
factor to blocks instead of tuples is when each relation is contained in one block and
the seiectivity factor (j,s) is 20%. If the j,; is multiplied times the product of the
blocks. the result is less than one block. But. the product of the tuples (if each block
contains 10 tuples) produces 100 tuples. Then multiplying by the 20%. there are

20 tuples of double the size of the tuples of an individual relation. Thus. producing
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(o ™ 1 blocks of output. Therefore. the j,; must be applied to the product of tuple not "y
product of blocks. The number of blocks produced as results by the join then is N
j expressed as jg. Where jpg is defined by: :
A
3 o = (s * (B (B/r)) = (S + (BIs))/(B/(r +5)) (101 3
R The performance model for the nested loop algorithm joining relations R and ‘
\" S (where R and S are the number pf blocks in each relation). assuming relation R
X is the smaller relation. 1s: 3
2 Model J - 1
: T, + 2T+ (ps/B) « T + (s + To)] = (R/ps)
% +{(R*S*Ty) + (S (Rlp)] * T (102)
-3 +H{(ss * (R (B/r)) = (S * (B/s))))/(B/(r + 8))} * (Too + 2T4)]
:" When sending the results to the user:
o a
A Model J - 2
ﬁ T+ 2Ty + (ps/b) * Ty + (ps x Too)] * (R/ps)
2 +(R xS« Ty) + (5 « (R/ps)) * T (1031
e, +H{Gog * ((R* (BJr)) = (S = (B/s1)/(B/(r + $))] * Tsr]
:- The model of the nest-loop join does not provide for double buffering of the
' input or output because the parameter. p, — 2, provides one block for input and one
.- block for output. The result of changing this to py — 4 (assuming this many blocks
; 5 are available) is that the disk accesses for writing results to disk could be overlapped
' with processing. But, the number of times that the loop is processed would increase
.'2 because of the decrease of the number of blocks available to hold the smaller relation.
,; The trade-off of buffering input and output or using all the memory for processing
, has cases where each could be best. The buffering of input and output will not be
, included here because many times the disk accesses could not be overlapped with the
i processing because the processors would have finished the processing with a block
hf when it also had output ready. reducing the effect of the buffering.

; 120
4




‘-’.‘\ "‘ "' v,

d S;
: XY _.':
. o 5.1.2 Sort-Merge. The sort-merge algorithm for computing the join orders :,\
. both input relations and then compares the tuples with a merge operation. This "
) type of processing is said to be the most efficient method of performing the equi-join :
X (including the time to sort the relations) [54]. ':
The sorting or ordering of the relations is accomplished upon the attribute(s) v
.'. necessary for the join criteria to be evaluated. This means that for cases where the ':E
: relation is stored in sorted order but sorted on a different attribute than necessary '\i
ior the join, the relation must be treated as an unordered relation. Also. the situ- "
ation where the join uses multiple attributes requires the relation to be treated as
3 unordered relations.
. .
. T
g 5.1.2.1 Sort-VMerge. Cases a. d, f. These cases provide relations that 4
. are unordered. The processing then requires that both relations be sorted and then :
merged. Therefore, there are three phases to the processing: sort relation R. sort _E
Y o relation S, and merge the two relations. The processing of the sorts first loads the i
j memory of the processor, then the blocks in the processor are sorted and the sorted ::
- segment is stored on disk. After all of the blocks are sorted. the sort is completed ?::
f\ by merging the sorted segments to form the sorted relation. The processing of the "
sort is not overlapped with data I/O because the data must all be in memory for ::‘
: processing to begin and the results are not complete until the sort is complete. '
‘ The merge processing does allow overlapping of the disk I/O and the processing ~
of the merge (if there are enough processor blocks to allow data buffering). The result '.;- '
N of this is to reduce the number of disk accesses that would delay the processing of :.:-
: the merge. =
N The first phase of the sort-merge join is to sort the relations. Therefore. the ,
first performance model is for sorting a relation. This model requires the number ':',
‘ of blocks to be input, allowing this module to be used in many of the following :..
; ~a performance models. This model is titled SortSS(X). meaning sort the relation .'::-}
' s <
1 5
: 121 ]
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with X blocks using the single processor-single disk architecture. The equation for

SortSS(X) when storing the results on disk is:

Model J - 3

T; + (py * T,)+ Tsort(pg,,tb) + T+ (py * T:)

((.X/ps) — 1) * Tsort(ps. tb)
or
(((X/b) = 1) = T,) + ((X — ps) = 2T5,)
+(((X/ps) — 1) * 2T3)

+ max

(104)

(X/2=1)*T, |
+(log(X/ps)) * (2T4 + 2T,,) + max or

(X =2)% (2% (Ty + To)) |

+T, + (2% (T3 + T,))

The final performance model includes sorting of the two relations. merging the
two relations. and either sending the results to the user or saving the results on the

disk. The model when saving the results on disk is:
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Model J - 4

T.+ (R/ps) * 2Ty + ((ps/b) x T,) + (py * T;,)] + Tsort)

(R/2)=1)« T,
or
+log(R/ps) * { 2T4 + 2T;, + max
+2710*

(R-?‘) *2(:rd+ Txo)

+(S/ps) * (2[Ta + ((ps/b) * T) + (ps * Ti,,)] + Tsort)

(5/2)-1)+T; |
+log(S/ps) * ¢ 2T4 + 2T;, + max or | +Ty+ T, +2T,

(5-2)*2Ty+ T.,)

(R+S5)/2)-1)=T,
or

+2Ty + 2T, + max + Ty + T4+ 2T,

(R+5)=2)« (T4 + T,)

+p—-2]* (T4 +T,)

(105

If the results are sent directly to the user, the following performance model is nsed:
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, e Model J - 5 R
T.+ (R/ps) = (2[Ty + ((ps/b) * T,) + (ps * T,,3] + Tsort) \
¢ ::
o _:-
: ((R/2)=1)+ T, o
‘ —log' R/ py) * { 2T4 + 2T;, + max or + 1, +T;+2T, )
4 (R=2)x2Ty+T,) | 7
: E
= (5/py) = (2{T4 + ((ps/b) * Ts) + (py = T,p)] + I'sort) .
) L | S/ -1)«T . o
D -rlog(b/p;,; * { 2Ty + 2T, + max | +T,+T;+ 2T, )
' | on(§ = 2) = 2T, + T,) | -
(R+8)/2)-1)*T)
+Us — 2]« I
+2T,; + 27T,, + max L] ] bt +T1,+ 2T,
- or '
; ((R+5)=2)+(Ti+T.) >
., {1060 ::
_‘.
> 5.1.2.2 Sort-Merge. Cases b, e, g, i. All of these cases provide one "
N relation that is already ordered using the attribute(s) necessary for evaluation of the N
; join condition. This allows the sort-merge processing to sort the remaining relation ~
and then execute the merge. Obviously, this will provide better performance than
' the previous cases. The models presented hLere represent relation R as the relation
. that is not sorted. But, this is an arbitrary identifier since R can be replaced by anv

value. Therefore. if S was the relation that was sorted the values of R and ~ wonild

: . . . . 1
. be interchanged for the computation of the execution time.
.

. The sort-merge with one relation aiready sorted has two phases: sort the un- ]
Y ordered relation and merge the sorted results to allow comparison of tuples to Jde- .
s
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termine if they satisfy the join condition. The first equation represents storing the

final results on the disk.

Model J - 6

T. + (R/ps) * (2(Ts + ((ps/b) * Ts) + (py * Tio)] + T'sort)

St

| (R-1-T
"rl()g(R/pb)* 2Td+'2T,o+ma,x or |+T5+T4+2T,o
(R-2)*2(T;+ T.,)

((R+5)/2)-1)«T,
or
+~2T4 + 2T,, + max + Ty + Ty + 2T,
_ (R+5)=2)+ (Ts+To)
- +s =2} *(Ty+ T.,)

1107
If the results are sent directly to the user, the following performance model is usedi:

Model J - 7

T+ (R/py) * (2[Ty + ((ps/b) * T) + (ps * T,,)] + Tsort)

. +log(R/py) * < 2T4 + 2T,, + max or

(R/2) = 1) =T, {
|
(R=2)+2Ty+T.) |

] (R+S)/2)=1)=T, |

+ -2 T ‘
+2T; + 27T,, + max Ug =21+ I 1 + Ty + 27T,

| or |

Xt |

R+b —))*(T4+Tm)
(10N
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5.1.2.3 Sort-Merge. Cases ¢, h, j. These cases all present both tuples

already sorted on the attribute(s) needed for the join processing. This means the
join only needs to merge the two relations to complete the join. Again, it is obvious
that this requires less time to complete than the previous two cases of the sort-merge
operation because there is less processing to do. The model when the results are

stored on the disk is:

Model J - 8

((R+9)2)-1)=«T,
T. + 2T, + 2T, + max or + T+« Ty+2T,  (109]
(R+S5)=-2)*(Ty;+ T,)

+UB - 2]« (Ty+ T.,)

When the results are sent to the user. the model is:

Model J - 9

((R+S5)/2)-1)*T,

+p =2« T,
T. +2T; +2T,, + max I]B ]* bt + T, + 2T, (110
or

(R+S5)=2)«(Ty+ T.)

5.1.3 Indering. Indexing uses the concept of mapping the values of the at-
tribute(s) needed for the comparison of the join condition to an index of the location
of the tuple on the disk. This type of processing compares the indices for matching
values and then retrieves the corresponding tuples to be combined and output. The
processing modeled here considers only comparing one set of attributes. If multiple
conditions were involved in the join. the index processing would have to produce a
separate TID list for each part of the join condition and combine the TID list as
the join condition dictated. After the final TID list was computed. then the tupies

wou'd e retrieved from disk. Also. the index may be constricted over more thau
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:'3.': one attribute to facilitate the processing of the multiple equality conditions in one .»
pass of the index. _.:
This processing works best when the index already exists and the number of s.:\
matching values is small because this means that a small amount of data must be S’_:\
loaded to m-ke ‘ue compariscn and very few values have to be retrieved for the lg:.;
output. This is not true if the attribute(s) needed for the comparison consists of a k:'_:i
majority of the tuples to be processed. .:-
o
The use of an index depends upon the index being present or being able to ° .
rapidly build an index. There are numerous types of indices and different methods
to organize or scan the data to build the index. 'The type of index considered here
is a B-tree type index. This index allows a node of the index to address several ;i-‘-
lower level nodes. This reduces the height of the tree reducing the number of levels “‘
necessary to be processed to retrieve each value. The specific index considered will ::
-:' be a B¥tree. This means that the actual values with references to the tuples that '.:::
contain them are only ccntained in the leave nodes. This means all nodes in the !:"
levels above the ieaf level are used to provide the path to the leaves. The advantage Ef-‘
of keeping all the values in the leaves is that the values can be processed sequentiallyv ::'-'
because the leaves are linked together. This provides the sequential order of the -.}“}-
values. ‘ t
The disadvantage of the index is building 1t. The factors for building the index _/_.
are the size of the blocks to contain the index, the size of the attribute(s) used for !.\
the index, and the number of tuples to be indexed. The problem of building the \\
index is the number of disk accesses necessary to retrieve the data to be indexed. the \
number of disk reads to find the proper location in the index and then rewriting the ,-
block back to the disk plus writing any blocks of the index that had to be changed :
to reflect the new condition of the index. This also presents a problem in accurately _'
predicting the number of disk accesses. Therefore, there are three methods explored ~i
A% for building the index: build the index with random order data. build the index after .';3
:.'_v;.
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blocks of the data have been sorted. and entirely sort the data before building the

index.

The first method of building an index is to scan a relation recording the value
of the attribute that is going to be used to index the relation. As the value is found.
a address for the tuple is determined. This address, called a tuple identifier (TID).
tells what block and the offset within the block where a tuple begins. This can be

used to later retrieve the tuple.

The leaf nodes of the index contain the values and the associated TIDs. There-
fore, to build the index with random data, each value is removed from its tuple, its
TID determined, the existing index searched to determine the leaf node where the
new value and TID should be inserted and the leaf node read, changed, and written.
Also. any of the index nodes above the modified leaf node may have to be modified
if the new value created a new boundary condition. And. a leaf node may become
fuli and have to be split to create two nodes which causes the index nodes in the
tree above to be modified. This means that each insertion must at a minimum read

a leaf node and write a leaf node (assuming any index nodes used were retained in

the processor memory).

Horowitz and Sahni [39] formalize this to include the splitting of index nodes
and the number of accesses necessary for each insertion. The average number of
accesses necessary is equal to the levels of the index plus 2 divided by the sum of
the number of index values that may be contained in a block divided by 2 minus !

This 1s:

accesses = [ + (2/[(z/2) = 1]) (111)

where | = (log, (¢ * tb)/2)
¢t = the number of the block being processed
tb = number of tuples per block {B/r)
= = number of index entries per block (B/(v + in))
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- cessor memory before inserting the values into the index. This reduces the random
. accesses into the index and allows that, at most, each leaf node is accessed at most
once and that the index nodes are at most modified only once. Which reduces the
& number of accesses per value inserted. The formulation of this model must include
X ,,( the time to sort the contents of the processor memory.
Model J - 10
((R/ps) *Ty) + (R=T;,) + (R*(ps/b) x Ty) + (R/py * Tsort) + (total accesses) (114)
where total accesses is:
using I, = ((: — 1) x th* (ps/z))
lybnext = (i *th* (py/2))
; tb = number of tuples per block (B/r)
: z = number of index entries per block (B/(v + in))
L)
"
4
A .
2 129
o
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The total performance of building a index without sorting is:

((R/ps)*Ty)+ (R*T;p)+ (R = (ps/b) * T,) + (R *T,.) + (total accesses * T,.4) (112)

Total accesses is the sum of the accesses for each block. This means that the accesses

for the block being processed depend upon the number of blocks that have already

been processed. Therefore,
R
total accesses = Z[logz((i *th)/zi 4+ (2/((2/2) - 1))] (113)
=1

The next method of building the index is to first sort the contents of the pro-

-t
L)

2 “ oy ey
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!
E

+((tb* py) % (Tina + Tho + T3))

Iy > (tb* py) +{lynext — ] * Ting

log, ip_nezt
R/ps + 2 U(tb*pe)/2) + (((1/(2/2) = 1) = th* ps)] * Tina
R T

j=1 or

+(I,,_ne:tt * Tind) + (lb * (Td + no))

! S th % P log, lpnext )

= () + 3 [@xtbeps) + (((1/(2/2) = 1) * lhnext)]) * Ting)
\ J=1

(113)

where Rr = R x ((v +1n)/r)

((R/ps) * Ta) + (R + Tio) + (R * (po/p) * Tu) + ((Rr/ps) * Ta)

+(Rr+To)+ (Rr*(ps/b)«T,) + ((R/ps) s Tsort) +[(log,, _, (Rr)) = (2+ Rrs(Ty+ )

; log, (R=tb)/z
o +((Rr/2) * Ty) + (R*tb)/2) % Ting) + 3 ((R* tb) * Ting)

i=0

The results show that at times sorting the projection of the relation that will
be used to index the relation may be the most efficient method of building the index.
But, if the index has to be formed for both relations, the time to build the index would
include the time necessary to sort the relations and the time to scan the relations
to build the index. This is equal to the time necessary to complete the sort-merge
processing of the relations. The index processing would still require the processing
of the indices and retrieval of the necessary tuples from the disk. Therefore, the use
of indices will not be considered unless at least one of the relations is indexed on the

attribute(s) necessary for the join processing.

The use of indices for processing the join also vary if the data is grouped
corresponding to the index. If the relation is not ordered corresponding to thc

index, each tuple to be retrieved must be done individually. This means that for

v each tuple a disk access and I/O will be required to retrieve the block that contains
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the tuple needed. Therefore. the number of disk accesses could exceed the number of

RSN SANTACEEN .'-'_‘

I

blocks in the relation. These are some of the disadvantages of using index processing

T

for executing the join. The next step is to model the performance of using indices

s

to process the join.

CA4

i/

The use of indices to complete the join has three phases: build the index.

Rl .‘. l,' I.‘ "' ‘.' \-:l"

compare the values in the indices to identify the location of the tuples to be contained
in the results. and retrieving the tuples and building the results. The first phase of
building the indexes may already be accomplished if the data structure includes a
index. However, some instances will have indexed relations but the index is not on

the correct attribute. This would require a new index to be constructed to complete

PN

the processing. Only one method of building an index will be considered. This
method reads as much of the relation into the memory as possible. the processor
sorts this portion of the relation and then the sorted fragment is used to build the

index. This is repeated until the entire relation has been processed.

The next phase of index processing of the join is the comparison of the indices.
Here the values are sequentially processed from each index. When the values match.
the addresses of the tuples are used to retrieve the tuples for combination. It is
assumed that the index allows sequential processing of the values as was discussed
previously. If sequential processing of the index was not possible, then th~ attribute
values of one relation would be compared with the values in the index .. ‘lie other

relation. This would require a probe into the index for each value. Thi~ - ..1ld mean

several disk accesses for each probe which would eliminate the benefir . having

the index for improved processing. This illustrates the purpose of the | ..x: fast
retrieval of a single tuple of a relation based upon a given attribute value. The value
of the index decreases with every additional tuple that is required to be retrieved

because each additional tuple requires a probe the depth of the index which requires

additional disk accesses.

The final phase was the retrieval of the identified tuples. For ecach tuple an
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address is provided. This address includes the block number and offset within the
block. If the addresses are provided in random order this means that the same
block could be repeatedly retrieved to procure different tuples. This again causes
excess disk accesses. Therefore, the clustering of the data upon the indexing value
provides the capability of ordering the retrievals so that at a maximum each block
of the relation would be accessed once. Next, all of the considerations of building

the indexes, processing the index, and tuple retrievals will be applied to the various

AL AN

data configurations to provide performance models.

sy

5.1.3.1 Index. Case a. Case A provide two relations that have no se-

: quence and no index provided. This requires that an index be constructed for both

A dPard

relations before the index processing can begin. The performance model of building

‘ the indexes the relations R and § is:
: Model J - 11

Construct Indez for R

+ Construct Indez for S

b, The next step is using the index to compare the attribute values to determine

a

which tuples need to be retrieved and combined to complete the join. Since the

v “a e

indexes built provide the ability for sequential processing of the values contained.
" only the leaf blocks of the index must be accessed. Then the leaf blocks from each

index are compared. Since the values are in sequential order this is the same as the

merge process. [ herefore, the segment of the performance model first provides the

disk accesses to read the leaf blocks (a disk access is assumed for each because of the

Vil S S DAL S Y

uncertain nature of the order of retrieval and the disk head may move to retrieve
blocks of the relation in the interim). Next, the leaf blocks are merged to provide

TIDs for the necessary tuples. Since the relations are not stored in sequential order.

PN A RS AR AN

the retrieval using the TIDs requires a disk read for each TID. Finally. the results

s must also be stored or sent to the user to complete the performance model.

LY
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R, and 5; represent the number of leaf nodes in the index for R and S. respec-

tively. R; and S| are computed by the formula:

(Number of Blocks * Tuples per Block) * (Attribute(s) to indexed + Address
Size (TID)) / Block Size.

Therefore, this segment of the model storing results is:

Model J - 12
(Ri+ S)* (Ty+ Tio) + (B + 513/2) + T,
+{Jspx ((R=(B/r))* (S = (B/s)))] *2(Ta+ Tio) + U = Ty + T.o))  (116]

Seniding the results is:

Model J - 13
(Ri+S)*«(Tu+T)+ ((Ri+ 51)/2) * T+
{Jsr * (Rx(B/fr)) * (S*(B/s))] *2(Ts + Tio) + (Jp * Tye) (117)

Thus. the total time required to perform the join with indexes is the sum of the two

segments - index building plus processing of the indexes to complete the join.

5.1.3.2 Indez. Case b. This case provides one sorted relation and the
other in random order. The processing using indexes here has two options: build
indexes for both and process as in the previous case (except the ordered relation
would require fewer disk access to retrieve results) or build an index for the random

order relation and process the index with the sequential relation.

The ordered relation allows the building of the index to proceed more quickly
because the relation because only the last segment of the indexing building is applied.
However. the building of the index for the sorted relation requires reading the entire
relation plus the time required to insert the attribute values into the index. After

the indexes are built. the join processing can begin. During the retrieval of tuples
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that satisfy the join condition, the clustering provided in the ordered relation limits
the accesses to that relation to one access per block. Whereas, the random sequence
of the other relation, may require an access for each tuple retrieved. This means
that building the index and accessing the tuples of the ordered relation requires the
relation to be read twice plus the time required to build and process the index. If
the ordered relation is used without building an index, the relation is read only once
and compared to the index of the second relation. This requires the same processing
for the join part of the processing but eliminates the time to build the index for the
ordered relation. Thus. reducing the overall processing time to complete the join.
Therefore, only the situation of building an index for the unordered relation and
comparing this with the sorted relation will be modeled. This performance model
is:

Model J - 14
i Build indez for S
: +(R+5)) * (Tu+ Tio) + (R+ 51)/2) + Ty
4 + [Gog * (R (B/) + (S« (B/s)))) * (T + Tio) + o * (Tu+ Tio)  (118)

Sending the results is:

Model J - 15

Build indez for S

+(R+S)*«(Ty+Tio) + (R+ 51)/2) * T+
((Jog * (R (B/r)) * (S *(B/s))] * (Ta + Tio) + (js * Tnt) (119)
5.1.3.3 Indez. Case c. The situation where both relations are in sorted

order does not provide a good environment for index processing of the join. If index

processing of the join is to be accomplished. the first step is to build the indexes. The

’
o

S building of the indexes requires the scanning of the relations. which requires reading

134

A e A T - N AT P TR SRS TR
A% aralataraadfn s talal,

N

e APt h
PRI g

[T I ]

LYl RO R
PO

Ly

KA S

.
y RN
P

A

\.:i '\"v Y

AP

‘J’f ]
DN A A A,

ERAN

TSl
5 4 S

}'4"‘; _'il.‘: _\(': !

r



-

v
I

all of the blocks of the relations. This combined with processing time to build the
index is approximately equal to the time to perform a merge of the relation to execute
the join. Therefore, the execution of the join with the indexes would cause excessive
time to be used. Thus, for the case of both relations being ordered and not indexed.

the best method is the sort-merge approach and no index performance model will

be shown.

5.1.8.4 Index. Case d. Case d provides one relation that is indexed
and both relations are unordered. The approach to performing the join here is to
create the necessary second index and proceed with the join processing of the join
(described in case a). The performance model for this is:

Model J - 16

Build indez for S

H R+ S) *x (Ta + Too) + (R + 51)/2) * Ty
+ {(Jog * (R*(B/r)) # (S (B/s)))] *2ATu+Tio) + U * (Ta + Tio))  (120)

Sending the results is:

Model J - 17
Build indez for S
+(Ri+ S) * (Ty + Tio) + (R + 51)/2) « Th+
[(Gar * (R (B/r)) = (S (B/s)))] * 2(Ta + Tio) + (i * Te) (121

5.1.3.5 Indezx. Case e. This case with one indexed relation and one
ordered relation provides a situation similar to case b. However, this case does not
require the building of the index for the unordered relation. Thus, this provides
the opportunity for improved join processing. The performance model then uses

the sorted relation to be compared with the index of the unordered relation. The

performance model is:
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Model J - 18

(Ri+S)*x(Ty+T,)+ ((Ri+5)/2)= T,
+ [(Jog * (R (B/r)) * (S« (B/s))))] * (Ly+ T.o) + (jp * (T + To})  (122)

Sending the results is:

Nodel J - 19
(Ri+S)*(Ty+T,,) + ({Ri+S5)/2)* T,
+ [(Jor ¥ ((R+(B/r)) * (S *(B/s))))] * (Ta + Tio) + (Jp * The) (123)

5.1.3.6 Index. Case f. This case provides indexes for both relations.
providing an optimized environment for executing the join with index processing.
The join processing with the indexes compares the indexes and retrieves the tuples
that satisfy the join conditions. This processing must retrieve the tuples from random
blocks. This may cause numerous disk accesses depending upon the placement and
number of tuples to be retrieved. The performance model is a simplified version of
the performance model of previous cases. Storing the results produces the following

performance model:

Model J - 20
(Ri+S)*(Ty+T.) + (R + 51)/2) * Ty
+ (s * (R * (B[r)) # (S (B[s))]* 2ATa+ Tio) + (b = (Ta + To))  (124)

Sending the results is:

Model J - 21

(Ri+ S+ (Ta+T.) + ((Ri+ S1)/2) = T+

(Jar « (R*(B/r)) = (S =(B/s))] *2Ta+ Too) + (U * Ti) (1.

to
wt
)
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e 5.1.3.7 Index. Cuse g. This case provides one indexed-ordered relation "

and one unindexed-unordered relation. This provides several possible methods 1o
':'. complete the join. The first method would be to sort the unordered relation and ::
. <
. then perform the join. [However. this case is covered under the sort-merge cases. The .
\ Iy

other methods require an index to be constructed for the unindexed relation.

The first index method constructs the index for the unindexed retation and then

Ll v 3 4

-, uses the indexes for both relations to complete the join. This processing does not 5

Ls
*»

require the random accesses for the retrieval of the ordered relation because ordering

and indexing provides a clustering index. The means that at most the entire relation ..

Ry S

s must be read once to complete the retrieve of the necessary tuples. Therefore. the o

14 A

e performance of this situation depends upon the selectivity factor. The fewer tuples K
. that satisfy the join condition, the better the performance. The performance model
-Jr. reflecting this is:

R Model J - 22 R
. Build indez for S 5
v ;
f. R+ S)* (Ta+ T) + (R + 51)/2) + T, -]
-,

. + ey * (R (B/r)) x (S« (B/s)N] *2ATu+Too) = (jp * (Tu+ T,))  (126) .
-~ .
> Sending the results is: .
- -~
N Model J - 23 *
.r Build indez for S
4 :
A +(Ri+S)* (Ty+ Ti) + (R + 51)/2) » T+ )
o
[ [(ag x ((R*(B[r)) = (S« (B/s))] * 2Ti + To) + (jm * Tr) (1271 -

)
The other method to execute the join in this case is to use the ordered relation :

g to be compared with the index of the other relation. This is the same processing as '
:‘.'j e performed in case b. The performance model for this situation is: N
% X
», - :-
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Model J - 24
Build indez for S

+HR+S)«(Ty+To)+ ((R+5)/2) T,

+ [Jay x (R (B/r)) x (S * (B/s))))] * (Ta+ Too) + (U * (Ti + Tio))

Sending the results is:

Model J - 25
Build indezx for S

+(R+8)*(Ta+ Ti,) + (R+ 51)/2) « T+

(g * ((B*(B/r)) % (S *(B/s))] * (Ta + Tio) + (j * i) (129)

Neither of the methods provides the best performance time for all cases. The
first method provides best performance when the results are small because it may
not retrieve the entire ordered-indexed relation, only a few blocks. However. the
second method provides better performance parameters when the results require
all the blocks of the indexed-ordered relation to accesses because it eliminates the
accesses and processing of the index blocks of the ordered relation. Which reduces
the performance time. Therefore, the situation determines which performance model

provides the best performance capability.

5.1.3.8 Indez. Case h. This case like case c provides two ordered re-
lations. Therefore, any method that requires an index to be constructed can not
improve upon the merge processing of the sort-merge type join execution. However.
this case provides the index for one of the relations. This provides the opportunity
for executing the join using the index that may provide better performance than
the sort-merge processing. This method would compare the index of the indexed
relation with the ordered relation. This is the same method used in various previous

cases. The performance model for this is:
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Model J - 26
(Ri+S)* (T3 +T,)+ (R +5)/2)*T,
+ [(Jos * ((R=(B/r))x (S*(B/s))i* (Tu+To) + U * (Ta + T1..)) (1301

Sending the results is:

Model J - 27
(Ri+ S)* (Ta+ Tio) + ((Ri + S)/2) « T, +
((Jog * (R*(B/r)) % (S *(B/s)))] * (Ta + Tio) + (jB * Te) (131)

5.1.3.9 Inder. Case i. This case allows two methods to be used to
execute the join operation. The first method simplv uses the indices of the two
relations for the processing of the join. One feature of this method is that the tuple
retrieval of the ordered relation uses a clustering index. This means that at most each
block of the relation will be retrieved only once, not several times as the case may

be with the non-clustering index (unordered relation). Therefore, the performance

model for this method is:

Model J - 28
(Bi+ S)* (Tu+ Too) + (R + 51)/2) = Th+
((Jsy * (R *(B/r))* (S *(B/s)))] = (Iy4 + T.,)
+miﬂ or

R+ (Td + 1"1'0)

[(.jsf* (B/r) S* B/S) ] Td+Txo)

+ min or

+ (g *(Ty+T,)) (132)
S* (Td + no)

Sending the results is:

139

RAAK:

A ]

Casnnhh

"‘.- ‘l.:'.:’ .

’n'i’f.
e K81y

s 4
RN N

LR

..
I‘l'

‘e
P
bl

e



W e At aN g e Tar N A TE

v,“ oy 'A;

N Yo s

Model J - 29

AT
WY

(Ri+S) (T3 + To) + (R + 5)/2) = T+

o000y

((Jos * (R (B/r)) = (S = (B/s)i)] x (Ta + T)

+ min or

R*(Td+Tlo) i

g("r~f £

W

[(Goy * ((R* (B/r)) * (S (B/s)))} * (T + T
+ min or +(jp*Ty) (133
S*(Ty+ To) -

PATAgH

v

v" L

)

The second method compares the ordered relation with the index of the un-

Y
v s

ordered relation. The comparison of these two methods was previously discussed for t

case g. The performance model for this method is:

Model J - 30 _
(R+S) = (Ty+ Too) + ((R+ S1)/2) = T,
+{Uss * (R*(B/r)) + (S (B} = (Tu+ Tio) + (g = (T + T,)) - (134 o

Sending the results is: )

Model J - 31 -

f\
(R+S) % (Ty+ Tio) + ((R+ 5)/2) x T,+ iy

[(Gay * ((R*(B/r)) * (S (B/s)N} * (Ty + Too) + (i * Toe) (135]

LA S

v
AL

5.1.3.10 Inder. Case j. This case provides indices and sequential or-
dering for both relations. Therefore. one of the methods of performing the join is
merging the two relations. However, this method is part of the sort-merge tyvpe

execution and is discussed under that heading. The methods of performing the

A

Bty gt
ugzﬂ{i

P,

join using the indices are: compare the indices and retrieve the necessary tuples or

compare the index of one of the relations with the index of the other relation.
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The advantage of comparing the indices of the two relations is that the index
may require only a fraction of the blocks as the entire relation. Compounding this
with the selection of only a small number of tuples that satisfy the join condition.
it may have to access many fewer blocks to complete the join. Also. both of the
relations have clustering indices. This means that at most the retrieval of tuples
that satisfv the join condition will only read each block of the relation once. The

performance model for this:

Model J - 32
(Ri+S)*(Ty+To) + (Ri+5)/2)« T,
+ {Uss * ((R*(B/r)) « (S*(B/s))] *2(Tu+ Tio) + (Ja * (Ta + Too)) (136)

Sending the results is:

Model J - 33
(Ri+ ) * (Ta+ Tio) + ((Ri + 51)/2) * T+
[(Jos * ((R*(B/r)) « (S * (B/s)))] * 2(Ta + T.o) + (B * Tit) (137)

The second method would compare one of the entire relations with the index
of the other relation. This method does not seem to provide a better performance
capability except in the case where one of the relations is very small (i.e.. the result
of a select that selects only one or two tuples) and a very large relation. For this
case the processing of the index of the small relation would only increase the number
of blocks to be accessed. Therefore, this method would always compare the entire
small relation with the index of the larger relation. The performance model for this
St

Model J - 34
(R+8)x (T3 +To) + (R+51)/2) x T}

+ [(Jsg * (R (B/r)) = (S*(B/s))] * (T2 + Tio) + (g * (I + T.,)) (138
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Sending the results is:

Model J - 35
(R+ 51) > (Td +T,,) + ((R+ 51)/2) * T+

((Jag * (R*(B[r)) « (S« (B/s))))] * (Ts + Tio) + (jB * Te) (139)

5.2 Case 2. Join - Single Processor-Multiple Disks

The single processor-multiple disk environment does not allow the opportunity
of using parallel processing but does provide for overlapping data access. Therefore.
the following performance models are based upon the models for the single processor-

single disk environment with overlapped disk I/O.

5 2.1 Nested-Loop. The nested-loop algorithm with multiple disk-single pro-
cessor provides a small improvement over the nested-loop algorithm with a single
processor-single disk by reducing the number of disk accesses necessary. [t can be
assumed that one disk is retrieving a portion of the input while another disk is seek-
ing the proper location. The resulting performance equation reflects the reduced
number of disk seeks but not all disk accesses are eliminated. This is caused by the
fact that as much of the processors memory as possible is dedicated to completing
the join operation. Ullman has shown the effect of optimizing by the join by using
more memory and by the selection of the control relation [79]. The equation when

placing the results upon disk is:

Model J - 36

T.+[Ti+ (py = T,,)} « (R/ps)
+(RxS«Tyi+ (S« (R/py)) «T)+ g = (T, = Ty U]

When sending the results to the user:
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v Model J - 37

T. + [Ta+ (ps * Tio)] * (R/ps)

+ (R*S*T)+[(S+(R/ps)) * Tio) + [jp * T {141)

5.2.2  Sort-Merge.

5.2.2.1 Sort-Merge. Cases a, d. f. These cases provide relations that
are unordered. The processing then requires that both relations be sorted and then
merged. Therefore, there are three phases to the processing: sort relation R. sort
relation S, and merge the two relations. The first phase is to sort the unordered
relation. Therefore, the following performance mode] is provided for the sorting of

a relation with X blocks. The equation for the SortSm(X) is:

Model J - 38

7.‘1_

Oy

Ty + (ps * Tio) + Tsort(py, th) + Ty + (ps * Tp)

((X/ps) — 1) * T'sort(ps, tb)

or

((X = ps) % 2T5) + (((X/ps) = 1) « Tr)

+ max

(X/2)-D =Ty
+(Nlog(X/ps)] — 1) = (2T, + 2T, + max or + T+ T;+27,,)

(X =2) = (Ty +2T,)
(1423
This sort algorithm sorts all the blocks of data that can be contained in the
memory of the processor. Then the sorted segments are merged to complete the sort
of the relation. The merge is completed by merging two segments at a time. This

provides larger and larger segments until all of the sorted segments are merged into

the complete sorted relation.
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The merge processing does allow overlapping of the disk I/O. The result of

this is to reduce the number of disk accesses that would delay the processing of the

merge 2
~ 8 ";‘:
ts The final segment of completing the sort merge algorithm is to merge the sorted ;

A )
X relations. The performance model for the merge of the sorted relations storing the &

. results on disk, MergeSMD(R.,S), is: =
-~ ‘-
> .
: Model J - 39 =

(R+5)/2)—1)+T,
or -

Ty + 2T;, + max + T, +T;+ 2T, (143) ~
l(((R'*S)‘?)*Ti)/d‘ Ny

i +[j3 —2] *T,'o '

Il MW AV g

-~

If the results of the merge, MergeSMB(R;S), are sent directly to the user the following

model is used:

Model J - 40

(R+5)/2) - 1)+ T,

N +0B =2« Ti
2T, + 2T;, + max y AL + T, + 27T, (144 .
or

| ((R+8)—-2)xT,)/d B

5.2.2.2 Sort-Merge.

Cases b, e, g. i. All of these cases provide one
relation that is already ordered using the attribute(s) necessary for evaluation of the
join condition. This allows the sort-merge processing to sort the remaining relation
N and then execute the merge. Obviously, this will provide better performance than
the previous cases. The models presented here represent relation R as the relation
that is not sorted. But, this is an arbitrary identifier since R can be replaced by any

value. Therefore. if § was the relation that was sorted the values of R and =~ would

he interchanged for the computation of the execution time.
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The sort-merge with one relation already sorted has two phases: sort the un-
ordered relation and merge the sorted relations to comnplete the join. The nerfor-
mance equation is stated in terms of the separate performance components developed

in the previous section. Thus, the performance model 1s:

Model J - 41
SortSM(S)
+ MergeSMD(R.S)

If the results are sent directly to the user, the following performance model is used:

Model J - 42
SortSM(S)

+ MergeSMB(R,S)

5.2.2.3 Sort-Merge. Cases ¢, h, j. These cases all present both rela-
tions already sorted on the attribute(s) needed for the join processing. This means
the join only needs to merge the two relations to complete the join. The model for the
merge, MergeSMD(R,S), holds for this case and MergeSMB(R.S) is the performance

modei when the results are sent directly to the backend.

5.2.3 Indezing. The first component of using the indices to perform the join
operation is building the index when it does not exist. In the previous section. three
methods of building the index were discussed. But. the first method of inserting
individual tuples in no order creates a very large amount of disk [/O to find the
correct place in the index each time. In fact as the number of tuples grows. the
corresponding number of disk accesses increase by a factor of three or four or more
depending upon the levels of the index. Also. the disk accesses are not cverlapped

with the processing time causing a significant amount of time to build the index.

145

LR

) ' o

1[;1. Lol

PR

T

t""
._2_3




<
MY T

4 2
L] bl . . . . . . ot
. :; Therefore, the first method of inserting each tuple individually to build the index =
o will not be considered. .
.
) The other methods of building an index both involve sorting the relation or N
A >
" portions of the relation. The first method sorts the entire contents of the processor :
-
memory and then inserts this ordered segment. This method is very dependent upon >
- the size of the processor memory and as the size of the memory approaches the size -
"
; of the relation, it becomes the same model as the second index building method
<
b’ of sorting the entire relation first and then sequentiaily building the index. Also.
- both methods performance time is influenced by the size of the attribute(s) since "3
:.T the amount of data to be sorted in the the attribute(s) and a TID. The performance a
. equations for the build index equations. BuildSM(R), are: .
[
. Model J - 43
':: o ((R/py)*Ty)+{(R*T\,)+ (R=(ps/b)*T,) + (R/ps » Tsort) + { total accesses) (145
where total accesses is: -
i -
j: using [, = ((1 = 1) = th* (py/z)) :;
Z lynext = (1 xth*(py/2)) .
| tb = number of tuples per block (B/r) -
e = = number of index entries per block (B/(v + in)) '
';- +((tb % ps) * (Tina + Tio + Ta) -
> ly > (ths py) +[lynext — L] * Tipq 1
- log, Ipnert .\
: R/py + Z [((tb*pb)/:)+ 1/ :/ - *tb*Pb)] tnd
N Z . =1 .
* =t | or
+([‘)—nezt*T1nd)+(15*(T1+Txo)) .
[b S (tb * Pb) log, ly_nert
. + Z [(2*thxpy) + ((1/(z/2)=1) xlynert)) = Tiny
) (116 )
L v T A
..'. - :’ r:'
:-‘ h.:
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and \
o
where Rr = R = ((v +in)/r) ]
Model J - 44 =
((R/py) * Tg) + (R+Tio) + (R * (ps/p) * Ts) + ((Rr/ps) * T4) %
+(Rr*To)+ (Rr*(py/d)*T,) + ((R/ps) * Tsort) +((log,,_, (Rr)) (2% Rr=(T; + T,,))] <
log, (Rstb)/z '_:j:'
(Br/2)*Ty) + (R*tb)/2)* Tina) + D ((R=tb) * Tina) (147) =
=0 .
The building of an index will be referred to as Build(X), where X is the relation :
to be indexed. Next, after both relations are indexed the indices must be compared :E ‘
to identify the tuples that satisfy the join condition. To simplify the performance ';:
models, the comparing of the indexes and retrieval of the necessary tuples will be de- i;_
K4
fined here as IndexSM(R,S). The performance models for IndexSM(R.S) (depending N

upon the placement of the results) are:

Model J - 45

w""-". ..

AR

(Ri+S)*(Ta+To) + (R + S51)/2) « T,

et
.
A

+{(Jas * (R*(B/r)) (S *(B/s))] * (Ta+2T0) + (j * (Ts + To))  (148)

Sending the results 1s:

Model J - 46 -
(Ri+ S) *(Ty+To) + (R + 51)/2) « Ty + N
((Jog * (R (B/r)) » (S* (B/s))N)] * (Ta + Tio) + (5B * Tue) (149

where R; and S; represent the number of leaf nodes in the index for R and S.

respectively. R, and S; are calculated by:

ey o 9
AN P pe

s

(Number of Blocks * Tuples per Block) * (Attributc’-" to indexed + Address
Size (TID)) / Block Size.

)
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“’:“ The other method of using an index to perform the join is to compare the E
index with an ordered relation. This operation OrInSm(R,S).where R is assumed to >4
be unindexed but ordered,is modeled by: "'5-:
>
Model J - 47 .
2.
Ti+ ((R+S)*To) + ((R+5)/2)« T, .
o
+ [(Jsg * (R*(B[r)) * (S * (B/s))] * (Ta+ Tio) + (jB * To0) (150 -
N
Sending the results is:
Model J - 48 lg
Ti+((R+5)*T,) + (R+5)/2) « T,
+[Gor * (R (B/)) * (S« (B/s)] * (Ta+ Tio) + U Toe)  (131) :
These models show a disk access time, Ty, for each tuple retrieval of the in- ‘
pioe dexed relation since they are retrieved in random order. Notice that the multiple )
disk environment eliminates most of the other disk accesses after the initial access.
However, the read time, T},, is not eliminated because the processing of the memory
segment is completed before the next segment is started. Therefore, the read time
is not overlapped. N
o
5.2.3.1 Index. Case a. Case A provide two relations that have no se-
quence and no index provided. This requires that an index be constructed for both
relations before the index processing can begin. Therefore, the perfurmance model 3
N
is: ::
Model J - 49 =
.:,u
BuildSM(R) ~3
o
e
+ BuildSM(S) 33
Pt + IndexSm(R.S) N
148
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N oy 5.2.3.2 Indez. Case b. This case provides one sorted relation and the
" other in random order. The processing using indices here has two options: build
" indices for both and process as in the previous case (except the ordered reiation

would require fewer disk accesses to retrieve results) or build an index for the random
5:. order relation and process the index with the sequential relation.

The ordered relation allows the building of the index to proceed more quickly

g because only the last segment of the indexing building is applied. However, the
& building of the index for the sorted relation requires reading the entire relation plus
A the time required to insert the attribute values into the index. After the indices are
N built, the join processing can begin. During the retrieval of tuples that satisfy the
W join condition, the clustering provided in the ordered relation. limits the accesses to
; that relation to one access per block. Whereas. the random sequence of the other
5 relation, may require an access for each tuple retrieved. This means that building the
L index and accessing the tuples of the ordered relation requires the relation to be read
, twice plus the time required to build and process the index. If the ordered relation
- is used without building an index. the relation is read only once and compared to
: the index of the second relation. This requires the same processing for the join part
. of the processing but eliminates the time to build the index for the ordered relation
- thus. reducing the overall processing time to complete the join. Therefore. only the
E situation of building an index for the unordered relation and comparing this with
N the sorted relation will be modeled. This performance model is:
. Model J - 50
> BuildSM(R)
] + OrInSm(R.S)
j,. 5.2.3.3 Indez. Case c. The situation where both relations are in sorted
:': order does not provide a good environment for index processing of the join. If index
g processing of the join is to be accomplished. the first step is to build the indices. The
119
.
v,
&

g T B T N ) N R R N IO gk
» i A o &

N R N Tt VI VL S P Vi S LN
AN NI NN >

I' -" L .

-

p ’\-.\. n :i‘;-

LSRR

P
« 0



YT ateatle “al »
. N cad . A el el et Bt ol A ., o g¢ Vg Y .
s 8 . 00 ata'ale’ 208 a1a® statakintala’ et 04" abat ot d J " ! LA

3
.
~
LR
o " building of the indices requires the scanning of the relations. which requires reading
) all of the blocks of the relations. This, combined with processing time to build the
..:: index, is approximately equal to the time to perform a merge of the relation to
E,‘. execute the join. Therefore. the execution of the join with the indices would cause
excessive time to be used. Thus. for the case of both relations being ordered and
not indexed, the best method is the sort-merge approach and no index performance
::‘\ model will be shown.
k<3
. 5.2.3.4 Index. Case d. Case d provides one relation that is indexed
'_; and both relations are unordered. Therefore, the first step is to build the index for
: the unindexed relation. Then the processing of the join is completed by comparing
s the indexes. The performance model for this is:
,
' Model J - 51
.;':‘;j BuildSM(R)
o + IndezSM(R.S)
5.2.3.5 Inder. Case e. This case provides one indexed relation and
one ordered relation. This utilizes the OrInSm(R.S) algorithm to complete the join
: without any additional processing or building of indices. Therefore, the performance
:.': model is:
E N
- Model J - 52
Or[nSM(R.S)
& 5.2.3.6 Indezx. Case f. This case provides indices for both relations.
- providing an optimized environment for executing the join with index processing.
‘ Therefore, the performance model is:
Ef Model J - 53
SR IndezSM(R.S)
2 150
.
: A e e A AR PRI AN o




R T A T LR OO oot o ag talitale sty Ry . Ry PR TR v X . TVIRY ‘

.’l'.

- 5.2.3.7 Index. Case g. This case provides one indexed-ordered relation

P SRR R Y
.
¢
> v "

-~

and one unindexed-unordered relation. This provides several possible methods to

: - . 2o
. complete the join. The first method would be to sort the unordered relation and bt
. complete the join by merging the ordered relations (this case is covered in a previous “
. section on the sort-merge algorithm). Using the index methods. the index can be :
N constructed for the unindexed relation and then either the indices compared or the '.'-

o o

- ordered relation compared with index of the unordered relation. The performance 3
: model for comparing the indexes is:
. Model J - 54 i
-
’ ol
‘ BuildSm(S)
2 .
. + IndezSM(R,S) -4
; =
- And when the ordered relation is compared to the index. the model is: N

- \-

Model J - 55
[aY

4 N :!:

(- BuildSm(S) o
. .
. + OrInSM(R.S)

. ':'
N 5.2.3.8 Inder. Case h. This case as case ¢ provides two ordered re- -
N lations. Therefore, any method that requires an index to be constructed can not o
] improve upon the merge processing of the sort-merge tvpe join execution. However. .
:: this case provides the index for one of the relations. Therefore. the performance
. .
o model 1s:
4 ¢

Model J - 56 .
_. 4
:- OrinSM(R.S) N
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5.2.3.9 Index. Case i. This case has two relation that have indices
already constructed. Thus. the first method of completing the join is to compare the

indices. The performance model for this is:

Model J - 57

IndezSM(R,S)

Since one relation is ordered. the tuple retrieval will at most read each tuple once.

Therefore, .

[Gag * ((R*(B/r)) (S (B/s))] * (Ty + 2T,,)
< (1
[Gag % (R % (B/r)) = (S % (B/s))))] * (Tu+ Tio) + (R* T.,)

Ut
o
—

The second method compares the ordered relation with the index of the un-

ordered relation. The model for this is:

Model J - 58

OrInSM(R,S)

5.2.3.10 Index. Case j. This case provides indices and sequential order
for both relations. Therefore, one of the methods of performing the join is merging
the two relations. However, this method is part of the sort-merge type execution
and is discussed under that heading. The methods of performing the join using the
indices are: compare the indices and retrieve the necessary tuples or compare the

index of one of the relations with the index of the other relation.

The advantage of comparing the indices of the two relations is that the index
may require only a fraction of the blocks as the entire relation. Compounding this
with the selection of only a small number of tuples that satisfv the join condition.
1t may have to access many fewer blocks to complete the join. Also. both of the

relations have clustering indexes. This means that at most the retrievai of tuples
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that satisfy the join condition will only read each block of the relation cnce. The ::::
~
. &,
performance model for this:
Model J - 59 :j\
IndezSM(R,S) ::-
s
Where :’
i
(o * ((R*(B/r)) % (S* (B[s)))] * (Ta + 2T} < (R+ 5) « T, (153 ¥
The second method compares one of the entire relations with the index of '::t
the other relation. This method does not seem to provide a better performance -
capability except in the case where one of the relations is very small (i.e.. the result .
of a select that selects only one or two tuples) and a very large relation. For this -
case the processing of the index of the small relation would only increase the number '_-:‘
of blocks to be accessed. Therefore, this method would always compare the entire -
small relation with the index of the larger relation. The performance model for this .74
1s: ::
Model J - 60 N
OrInSM(R.S) o
5.3 Case 3. Join - Multiple Processors-Single Disk T
The multiple processor-single disk environment must assume that each proces- ™
sor can access the disk. Also, it is assumed that all processors can communicate with :}‘:
each of the other processors. Other considerations will be discussed in connection -::'
with the algorithm as it effects the processing.
5.3.1 Nested-Loop. Several assumptions can be made about the processing N
\..
and control structures that may effect the processing of the nested-loop join aleo- A
rithm. It must he remembered that the nested-loop algorithm executes the loin hy
153 i
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compar:ng each tuple of one relation with each tuple of the other relation. This re-
quires some processor to control the processing. If it is assumed that the processors
are synchronized, then a block can be broadcast to each processor requiring these
messages being passed to control the processing. If the blocks cannot be broadcast
to a group of processors, each processor must pass a control message to a controller
requiring numerous message traffic and random disk accesses to provide a block of
data at different times. Therefore, the performance model assumes that the blocks

of data can be broadcast to the processors. Using this the performance model is:

Model J - 61

Tc+ Tm + [‘ZTd"’ ((Pb *p)/b) *Ts+ ((Pb*P) * Tm)] * (R/(PB*P)‘

+ ((R/p)* S+ ) + (S* (R/(ps * p)))] * Tio + [j * (Too + 2T), (1541
When sending the results to the user:
Model J - 62
Te+ T+ 2Ts + ((ps * p)/b) # Ty + ((ps = p) x Tu5)] = (R/(ps * p))
+[((R/p) = S+ T,) + (S + (R/(ps * p)))) # Too + U * Ti] (135,

5.3.2 Sort-Merge. The first element of the sort-merge processing is providing
a sorted relation. Therefore. the performance equation for sorting a relation in the

multiple processor-single disk environment. SortMS(x). is:

5 2l gt ool
.

| ¥
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Model J - 63

T;+ (pyx Tio) + Tsort(py, tb) + Ty + (py * T},)

((X/(p*ps)) — 1) x Tsort(ps, tb)

—-ma‘<l! or +2Td+2Tw
|
CUXTb) = 1) =« Ta) + ((X = py) * 2Too) + (((X/ps) = 1) = 2T4)
|
i ((X/(p*ps))/2) = log(((X/(p* py)2))) * T
-+ max | or
(p* (((X/(p*ps)/2) *log(((X/(p*ps)/2)) = 1)) * (2T4 + 2T, + Ty + 2T,)) -

(X[ (p*ps)/2)* T})
+((Tz + 2T ) * p) + T, + 2Ty + 2T}, + max or

((X/2) = 1) % (2Tu + 2Tip + Ty + 2T0s)

((X/(p*ps)/2)«T) + (log(p— 1) = T'. 1)
+((Ta + 2T5,) * p) + Ty + 2Ty + 2T, + max or

((‘Y/:)') - 1) * (sz + 2:[11'0 + Td + ZTIJ)

+Ty+ 2T, + T
(156)

The second part of the sort-merge processing of the join is the merging of the
two sorted relations. The merge compares the individual tuples to determine if they
satisfy the join conditions. The merge scans each entire relation once during its
process cycle. However. since the sorted relations cannot be divided evenly because
they may have dit'erent value distributions. the merge is considered to be a single
processor task. Therefore, in the multiple processor environment several processors

may be idle during this portion of the processing. It would seem that the proper
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method would be to simultaneously sort the relations passing the results to a single

%

processor. However, in the single disk environment the concurrent sorts would be P
contending for the same disk accesses. Thus. changing the sort equations from two
separate equations to one equation that would have to delay each disk I/O because
of the disk contention problem. Therefore, for this architecture the merge will not
worry about idle processors. In the multiple disk-multiple processor environment

the possibility of concurrent sorting of the two input relations will be explored.

The performance model for the merge in the multiple processor-single disk envi-

ronment becomes the same model as the single processor-single disk model presented g,\
-~
earlier. Therefore, the merge model, MergeMS(R.S), is: e
A
Model J - 64 X
(R+9)/2) ~1) =Ty
or ‘e
N 2T, + 2T, + max + Ty + Ta + 2T, (157) o
S (R+5)=2)*(Ta+To) =
) )
+Us = 2] * (Ta + Tio) T

And when sending the results to the backend the model is:

l'.

Model J - 65 '
(R+5)/2) = 1)+ T, i

+(jp —2]* T 3

2Ty + 2T, + max s =2} i + Ty + 2T, (158) S

or '

(R+5)=2)*(Ta+To)

5.8.2.1 Sort-Merge. Cases a, d, f. The relations in these cases are both
unordered. Therefore, the relations are first sorted and then merged to complete the ’
join operation. The performance model for this is:

Model J - 66

. SortMS(R)

156
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+ SortMS/S)

+ MergeMS(R.S)

5.3.2.2 Sort-Merge. Cases b, e. g, 1. The relations in these cases are
one sorted relation and one unordered relation. Therefore. to complete the sort-
merge. first the unordered relation is sorted and then the ordered relations are merged

to complete the join. The performance model for this is (substituting R or S for X
as appropriate):

Model J - 67
SortMS(S)

+ MergeMS(R,S)

5.3.2.3 Sort-Merge. Cases ¢, h, j. These cases all present both rela-
tions already sorted on the attribute(s) needed for the join processing. This means
the join only needs to merge the two relations to complete the join. Therefore. the

mode] for join for these cases is MergeMS(R.S).

5.3.3 Indering. The use of the index to complete the join to this point has
assumed that each relation had one centralized index. Processing of the join. using
the centralized indices, was one done by a single processor since that was all that was
available. This environment provides more processors to be used in the processing
but it is assumed that a single processor would process the join due to the inability
of the disk to provide the support to more than one processor due to the random
nature of retrievals from the disk. Therefore for the explanation and models for this

case, refer to the single processor-single disk architecture indexing section.

5.4 Case 4. Multiple Processors—Multiple Disks

The multiple processor-multiple disk environment requires several assumptions

about the element of the architecture, such as: processor commn=*-:tion capability,
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disk-processol interconnection, data distribution. processor control. and others. 1o
be made. These assumptions all may impact the performance time of the processing
the query. In particular. the effect is especially apparent for the binary operators

such as the join. The first element to be considered is the data distribution.

A relation may be distributed over several disks in several different wavs. In &
previous chapter, the different ways of partitioning a relation were discussed. How-
ever, partitioning a relation may be different from distributing the data contained
in the relation because even a vertical fragment of a relation could be stored on two
or more different storage devices. Therefore. the only consideration here. whether
it is a vertical fragment or a horizontal fragment. is that each tuple is a complete
entity for storage purposes. This just means that a complete tuple is stored in one
location, no tuples may be split across storage devices ( this considers each vertical

fragment to contain tuples). Therefore, the following distributions will be explored:

1. Even distribution - this places an equal number of blocks of data
on each disk.
2. Bucket distribution - this distribution hashes each tuple to a disk
based upon some hash function applied
to the key attribute of the tuple.
3. Ordered distribution - this distribution maintains the tuples in
order over all the disks.

The first distribution, the even distribution, provides no sequencing by value.
Its only consideration is to try to maintain an equal amount of blocks of the rela-

tion on each disk. Therefore, a round-robin algorithm determines the placement of

additional tuples.

The second distribution groups the tuples by some hashing scheme. This pro-
duces groups or buckets of tuples that are evaluated to be equal using the hashing
method. This method does not necessarily provide an even distribution of data
across all the storage devices. Also, within the disk. the tuples may be maintained

in random order or sorted in some sequential order based upon the ordering attribute.
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\\; The third distribution or the ordered distribution maintains a sequential or- _.
N . dering of the relation. This ordering is maintained within a disk and across all disks >
v based upon some key attribute(s). An equal distribution of data across the disk ;
i . may be maintained depending upon the reorganization techniques used during the "
.
:. insertion of new tuples. N

s

The various data distribution schemes may influence the type of algorithm used

‘l'

to complete the join. Also, the interconnectability of processor and disk may affect

2 the performance models. For the performance models that follow in this chapter it

T YRS

is assumed that each processor can access each disk or that the communication time
to send data from a disk to a specific processor does not increase the processing time
- of an intermediate processor. Also, for this set of performance models the processors
: are modeled as being fully interconnected. Therefore, the performance discussion
models the message or block transfer time as a constant. This time may not be a

constant value in current multiple processor implementations but trying to model

O O

..
"
.

2

each different communication configuration becomes overwhelming. -

Three basic type algorithms for executing the join will be discussed. First. R

‘.v‘.'.‘J

i, the nest-loop algorithm will be modeled. Then, the sort-merge algorithm will be r.

evaluated. And finally, the indexed and bucket sort type join algorithm will be «

explored. NS

5.4.1 Nested-Loop. The nested-loop algorithm compares each tuple of the li

first relation with each tuple of the second relation. This method may not be the

2
uh

. r s
.

most efficient algorithm for executing the equi or natural join. But. this method does

DN
.l
.

i

‘s .
ol A A A &2

allow any join condition, including the Cartesian product. and performs them in the

LW

« .o
.I'l.

N

same amount of time (not including time to store or send the results., which vary

M |

2l

with each query). The nested loop algorithm model assumes that the R relation has

DR W N Y

fewer blocks than the S relation. It is also assumed that a disk can broadcast the

[y
o

same block to all the processors in T}, time. Using these assumptions the nested-loop )




P, ':;_ algorithm performance mode] is:
Model J - 68
; T. + T + [Tu+ (((ps * p)/d)/5) * Ts + (((ps * p)/d) * To,)] + (R/(ps * p))
o + ((R/p)* S+ Tp) + [(S* (R/(ps * p))) * Tio] + [(j/d) * (Tio + T1)) (159)
:: When sending the results to the user:
.
g Model J - 69
T. + T + [Ty + (((ps * p)/d)/5) « T, + (((ps * p)/d) x Tio)] * (R/(py * p))

. + ((R/p) xS *Ty) + [(S * (R/(ps * p))) * Tio] + [(jB/d) * Ty (160)

. Since the nested-loop algorithm physically compares all the tuples, there is no E
o difference in processing time for any of the data distributions discussed. Therefore. :
_: -:.; the processing time is the same for all distributions (and for all join conditions). S
>: 5.4.2 Sort-Merge. The first question in using the sort-merge algorithm is
- how to execute the sort in the multiple processor environment. The sort algorithm
-‘ could be concerned with such issues as distributing the sort to all the processors and
N having the processors perform the sort in parallel and how important to keep all
::_ processors busy or is it allowable to let some processors be idle. The sort algorithm
.
> used here is a parallel binary merge sort that sorts the initial blocks and then merges
5 the original sorted segments into larger sorted segments until the last merge merges
- two segments to produce the single sorted relation [8]. The equation for SortMM(X)

A
. is: o
N
- :
- :J;
- e
Cad ‘ﬁ
y s, o
I S S
: &
: 160 ‘_:'_4
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e Model J - 70 i

1
o |
|
i

‘ ((X/(p=ps)) — 1) x Tsort(p,tb)
Ty + (py * Tp) + T'sort(ps, th) + max‘

(((X/d) —py)/b) * T,
+((((X/d) = ps) + ((X/d) = py) * Ti)
+((((X/ps)/d) — 1) = 2T4)

+Tsort(ps,th) + Ty + (((p/d) x ps) * T3p) + (((p/d) = py)/b) = Ty) + 2T, + 2T,

(X/(p*ps))/2) *log(((X/(p*ps)2)) * Ty

+ max or

L [(p* (((X/(p = ps)/2)  [log((X/1p* ps)}/2)] = 1)/d)] * (2T4 + 2Too + Tu + 21

s +((Ty + 2T,) * (p/d)) + Th + 274 + 2T

AAA W e
l.| Al I l‘ll a

(X/(p*pb)/2) * Ty) -
-+ max o + (Ty + 2T0) * (p/d)) P
(4¥/d)/ ) OTd + {)Txo + Td + 27‘;0) ;-j_l‘

(((X/(p=p)/2) + T + (oglp = 1) = To)
+T), + 2T + 2T;, + max or +T;+2T,,~-T: h

((X/d)/2) = (2Ty + 2T., + Ty + 2T,0) ny
(161)

The other phase of the sort-merge join is the merge processing. Even though ‘;“
there are multiple disks and multiple processors, the merge is still best accomplished i

by a single processor because the sorted relations do not have points to divide the
relations that insure that the dividing point is the same for both relations excep:

scanning the relations. And, if the relations are to be scanned. then the join process-

................

......................

.................................
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....................



ing may as well be accomplished. The number of disks involved in the merge depend
upon the distribution of the results of the sorts. However. assuming that each pro-

cessor can access each disk, this does not impact the merge model. Therefore. the

MergeMM(R,S) model] is:

Model J - 71

T, + 2T, + max

and

Model J - 72

iuw+svm—n*n
l +((jB = 2) * Tyy)

| (R+5)=2)+Ty)

Ty + 2T;, + max

storing the results and sending the results to a backend, respectively.

5.4.2.1 Sort-Merge. Cases a, d, f. This model does not reflect the

possibility of pipelining the results of the sorts directly to the merge which would

eliminate the writing of the sorted results to disk and the reading of the sorted

relation from disk for processing by the merge.

The relations in these cases are both unordered. Therefore, the relations are

first sorted and then merged to complete the join operation. The performance model
for this is:

Model J - 73
SortMS(R)

162
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3
7 ;::
DN + SorMS/S)
‘ + MergeMSIR.S)
5.4.2.2 Sort-Merge. Cases b, e. g, i. The relations in these cases are
.: one sorted relation and one unordered relation. Therefore, to complete the sort- ..-.f:
merge, first the unordered relation is sorted and then the ordered relations are merged
! s to complete the join. The performance model for this is (substituting R or S for X
j': as appropriate): :
Model J - 74 N
2
: SortMS(X) R
\* + MergeMS(R,S) i
5.4.2.3 Sort-Merge. Cases ¢, h, j. These cases all present both rela-
tions already sorted on the attribute(s) needed for the join processing. This means
tie join only needs to merge the two relations to complete the join. Therefore, the -
- model for join for these cases is MergeMS(R.S).
The models presented do not reflect the possibility of pipelining the results of :::
- the sort(s) directly to the merge which would eliminate the writing of the sorted
' results to disk and the reading of the sorted relation from disk for processing by the
3 merge. The processing for this would use the sending the results to the backend :
y model for the sort and eliminate appropriate the disk accesses for retrieving the l
' sorted data from the merge. Therefore, if both relations need to be sorted. each sort .
would be allotted a portion of the processors to accomplish the sort. This would
. require more time to accomplish each individual sort. but at the final phases of the -
- sort. processors are released which allows a processor to be free to perform the merge. ::\3
Since the final steps of the sorts are merges and the final step of the sort-merge join :'
is a join. the operations will perform without wait in a pipeline situation. Thus, the (\#
- e merge will be completed in T, + T, time bevond the time to complete the sorts. 1
‘_ 163 ]
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3 :
The indexed case because of its centralized nature does not provide a significant )

y opportunity for parallel processing. Research is being done on parallel processing e
4 -
X of indices [63]. but this research requires unique hardware to perform the parallel :
) processing of the index. However, in this environment the largest potential may arise )
- from the parallel retrieval of the tuples that were identified by the index processing. o
- This does not imply that the building of an index can be done in parallei. Therefore. .
. I
: the index case has very limited potential when both relations are unindexed. -
K The first step using indices to perform a join is to provide the indices. If an "
-, index has to be constructed, the relation can be constructed using the methods de- =
> scribed for previous architectures. However, the index is centralized which constrains o
o the number of processors that can concurrently be updating the index. To utilize

b

N more parallel processing, the concept of projecting out the indexing attribute(s) and

: N sorting these results to build the index. This method allows several processors to

j operate concurrently to perform the projection operation {adding the TID). This

:',j in a pipeline with a processor constructing the index provides an index building

- algorithm that utilizes some parallel processing. The performance model for this

(BuildInMM(X)) is:

T4
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Model J - 75

4y

T.+ T, +Ty+ T, + max

((R/P) - 1) * Tsc
+{((ps/(p * ps)) = 1) = Tsort]

(((R/d)
+H{(((R/d) = 1) + ((py/d) = 1) = T,

+{([(ps/ps)/d] ~ 1) = 2T;] :

or

—l)/b]*Ta) :

+Tsc + Tsort + Ty + ((p/d) * Tio) + (p/d) /b * T)

(ps/2p) log(ps/2p) = T,

+2T, + 2T, + max

(p=[ps/2plog(ps/2p)] — 1)/d * (2Ty + 2T.p) + (Ty + 2T, ‘

+(Ta +2Ty,) * (p/d) + Ty + 2T, + 2T}, + max

+(Ta +2T,,) * (p/d) + T, + 2T; + 2T,

[((ps/2) = 1) * To]
+(Pf = 2)* Ty
max

or
+ max

h

| ((ps/2)/d) * (2T4 + 2T,)
or

- (o] (R.
Ty + Ty + py* (Toe + Tpo) + T198

7'e
4%
)

+2T 5 + 2T + (L % Tipg)
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or

(ps/2p) * T,
or
(ps/2)/d * 2T, + 2T,,)
+(Td + ?.T;o)]

+Tm +2Tbg

((R* tb) * xnd)
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where ps = ((v+1n/ = ((R* B)/r)/B)

This equation uses the blocks from the sort of the projection of the index value 1o

build the index. This allows the cverlapping of the final merge of the sort and the

building of the index.

The next phase of the join using indices is the actual processing of the join.
This requires the leaf nodes of the index to be compared and when matching values
occur. the TIDs are retained to retrieve the tuples that form the results of the join.
Since the leaf nodes of the index provide a sequential order. this is just a merge of
the indices. And as discussed earlier, only one processor can effectively be used to
perform a merge. This means that other processors are idle and could be used to
retrieve the necessary tuples. Therefore. the retrieving of tuple may be overlapped

with the merge processing. The processing of the indices and retrieving the necessary

tuples. InJoin(R.S), is:

Model J - 76

(R +5)/2) = 1) = T,

or
|

max (Ri*xT,) + ((R/b)=T,) |

max or
T+ T,,+ T, + max

(51 * Tza) + ((Sl/b) * Ts) g
or ,

([(Gog * ((R*(B/rY) « (S = (B/s)))]/td =2V = (Ty = T,,1 |
(jg * Ty)/(p = 2) |

(165

These two equations provide the basis for executing the join using the indices.
There is no need to describe all the separate cases as each has been described before

and all the execution requires is to plug in the proper modules discussed immedi-
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o Ny ately above. Therefore, if the case did not provide an index for either reiation. 'l

performance model would be:

Model J - 77
BuiddInVIM(R)

‘ + BuildInMJM(S)

+ InJoin(R.S)

, This model uses the index for processing but an alternative would stop the
building of the index and just use the sorted list of index values and TIDs to be
matched. This method does not provide an index that could possibly be retained for
later use. But. it reduces the processing time by eliminating the building an index
that cannot be used further in processing this query. The processing of the indices

for the join simply retrieves the same sequential list of values and TIDs. The actual

performance model for this would use the project model when the results are stored
; on disk for the time to build the sorted value list and then the same join modecl
E as currently emploved. These methods still depend upon the speed of retrieval an:
Y number of random tuples that need to be retrieved for the results of the oin. If the

number is large. this will be a large time requirement. But if the number of tuples

is small. the time may be less than other methods of performing the join.
Z
| 5.4.3 Bucket Join or Hash Join. The purpose of the join is to compare each
X tuple of the two relations to determine if they meet the join conditions. Since only
. the equi-join is considered. we use some *tricks” to reduce the number of ruples that
: actually have to be compared. The nested-loop algorithm literally compares exch of
- the tuples. The sort-merge algorithm uses one of the “tricks™ by ordering the tiples.
: This insures that the match only has to scan the lists once due to this ordering. The
: index processed join also uses the concept of sequential ordering of the join attributes
: N for processing. But. it seems that there should be some other method to he able 1o
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group tuples so that not all the tuples would have to be physically compared. That

is what the bucket join is.

The bucket or hash join scans each relation. using the join attribute(s) as input
to a hashing algorithm. The hashing algorithm produces a hash value upon which
the tuples are split into groups. The same hashing algorithm is used upon both
relations. This produces groupings of tuples from each relation to be physically
compared. We are sure the groupings provide the correct tuples for comparison
because the same hash function is applied to the same attribute(s) (defined over the
same domain). If different hash functions were used or the hashing occurred over
different attributes. there would be no assurance that the proper tuples were being

grouped for comparison.

The groupings of tuples or buckets provide the name of this method. The actual
implementation of this method would scan the relations applying the hash function.
The tuples of the various groups would be sent to a processor designated for that
particular value. Therefore. a processor would receive tuples from both relations.
Then the processor would join the tuples it received. This could be accomplished
by any of the join algorithms previously described. Since no ordering or index is
retained through the hashing operation. the nested-loop join will be used here to

join the individual buckets.

The critical factor of the bucket join is having a hash function that evenly dis-
tributes the tuples for processing. Assuming an even distribution of the buckets. the
other significant factor is inter-processor communication. The performance model.
that follows, assumes full prucessor interconnectivity. The model does assume that
the data received by a processor during the hashing or splitting into bucket phase i
larger than can be contained in the processor memory causing the data to he <.t
on disk. Also, there can be some variation of the number of processors used * -

the relations and the number of processors used for the second phase of +1.

The performance model assumes thut all processors are e
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N Also, additional time is included for receiving the blocks and storing them during
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the hashing phase. Using these assumptions, the performance model when sending

the results to disk is:

Model J - 78

(Tse * (R/p))
+2(((Rfp) + 1)+ (p— 1)] « Th i
T.+ T+ T3+ T, + max or e
2+ ((R/d) * T;,) + (((R/d)/b) * T,) A

+((R/p) + 1) * (Ty + Tio) oo

v

s

S N

.’.’.'
o

A%,
X

@
3

(Toe * (S/p))
+(2=[((S/p)+ 1) (p—1)] * Ty,) (166)
; o +Td + Tio + max or
2% ((S/d) * Ti) + (((S/d)/b) « Ty

+((S/p) + 1) * (T; + Tio)

4 =

LY

. -t . %, 4
0 :‘.-"z 2l

«

Y XN

oy

H{[Ta + (ps * Tio)] = (((R/p) + 1)/ps)} + ((R/p) + 1) x ((S/p) + 1) x Th)

P Iy

K
2

a s 0

+[(((5/p) + 1) * ((R/p) + 1)/ps)) * Tio] + [(48/P) * (Tic + T2))

e

LY
When sending the results to the user: ;’
-

-éff-lj

169

L T T . TR TR e P R e T B ]

TR O L S K S RS PR IS TR A
t{kn{safh‘fu{\"' AL SR AR IR & L -\{.'n AP




mmmmmmmn 10a 4k g%0 S0 ale gTo gio gis aV. alo gty Vo o aUo g'g Bla S g fio b e Ara b

| oo™

2

-"

&/

Model J - 79

(Tse * (R/p))
+2+[(R/p)+ 1) = (p—1)] * Tit) |
T.+ T, + T+ T, + max or
2% ((R/d)*T:o) + (((R/d)/b) + T,)

+((R/p) +1) * (T4 + Tio)

ool ¢

ot
)
o
o
s
ol

(Toe * (S/p))
+(2*[((S/P)+ 1)+ (p—1)] * T}) (167)
+Ty + T, + max or
2% ((S/d) * Tio) + (((S/d)/b) * Ty)

+((S/p) + 1) * (T + Tio)

e +H{[Ta + (po * To)] = (R/p) + 1)/ps)} + ((R/p) + 1) ((S/p) + 1) * To)

+(((S/p) + 1) = ((R/p) + 1)/m)) * Tl + [(n/p) + T

<

5.5 Summary N
The models presented are for the execution of the equi-join operations. The -‘:
various algorithms perform the join operation by either some form of grouping the %
relations to reduce the processing or by physically comparing each tuple of one »
relation with each tuple of the other relation. Due to the varying methods of grouping ®
the relations for processing, direct comparison of the analytical models is difficult j
because each may provide the best performance for some given combination of size (:
and performance parameters. However, for the join operation for other than equality ;
conditions only one algorithms is considered. ;:
The other than equality condition normally invokes the same processing as the E;

product operator. This involves comparing each tuple of the cne relation with each



Ky
¥

tuple of the second relation. The only algorithms considered here that provides this
is the nested-loop algorithm. The nested-loop algorithm also is the only method of
performing a product operation where each tuple of one reiation is combined with
each tuple of the second relation. Therefore, the models presented here for the nested-

loop algorithm also provide the performance models for the product operation.
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VI. Update Performance Effects

Updating a database has not often been considered in the performance consid-
erations of a database machine. However, in this electronic age many applications
cannot depend upon information that was updated 16 hours earlier during the last
batch update. Therefore, this chapter reflects the performance effects of providing

immediate updates with the various data models.

There are three update operations: inserting new tuples, deleting a tuple, and
modifying a tuple. These operations also have two parts integrity checking and
the actual modification of the relation. By definition, there is is no duplication of
tuple in a relation [17]. The integrity checking assumed here fulfills the check for no
duplicates being introduced by any update action. However, no referential integrity
(17) checking is included. Referential checking involves performing selections on other
relations to insure the references do exist. If referential integrity checking is to be
modeled, it consists of select(s) plus the modeling of the update action (this assumes

that the relations are in at least third normal form).

The first update operation is the inserting of a new tuple. The next operation

discussed will be the deletion. And finally, the modification will be explored.

6.1 Inserting a new tuple.

The insertion of a new tuple has two distinct phases— integrity checking and
updating. The first phase of the insert is to insure the new tuple does not duplicate
an existing tuple. In some special cases, the introduction of a duplicate cannot occur
or the existence of a duplicate tuple does not matter. However, it will be assumed
here that it is necessary to insure the integrity of the database by checking for
duplicates. Further integrity checking for functional dependency type considerations

will not be considered because these could be considered has separate selections from

other relations.
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The integrity check for duplicates is a select with a selection value given for the

attribute(s) that form the key for the relation. If the select finds a matching tuple.
then the insertion operation is terminated. Therefore, the select case where few
tuples are expected matches the situation of checking for a duplicate tuple. Next.
the individual architectures and data structures will be used to fully develop the

performance models for the insertion operation.
6.1.1 Single Processor - Single Disk Insertion.

6.1.1.1 Unordered - Unindezed Insertion. The unorganized data struc-
ture is the easiest and hardest data structure to accomplish an insertion. The hardest
part is determining if the tuple duplicates another tuple. This requires reading and
scanning the entire relation to insure that no duplicate exists. However, the easiest
part is the actual insertion. The insertion simply adds the new tuple to the last block
of the relation (if there is room, otherwise a new block is written) and writes that

block back on disk. Thus, the performance models inserting a tuple into relation R

is:

Model U - 1

(R=1)*T,
Tc + Td + T,‘o + max or + Tsc + Tx’o (168)

((R/6) =)+ T5) + ((R-1)* T,,) |

6.1.1.2 Unordered - Indezed Insertion. The indexed data structure al-
lows the index to be searched to determine if the tuple to be inserted is a duplicate.
However, this assumes that the index is for the key of the relation since in a rela-
tional database the key of the relation cannot be duplicated. If the index was only
for one attribute which was only a portion of the key, then the index would identify

the tuple(s) to be retrieved to be examined to see if the tuple to be inserted is a

duplicate.
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Once the tuple is determined to be a valid tuple for insertion, two things remain

to L done. First, a block with space for the tuple is retrieved or a new block created,

-
b

the tuple is added to the block, and the block is written to disk. Then the index i
must be updated by adding the new value and TID to the index. The updating ?:
of the index should only require adding the value and TID to the last index block ¢
retrieved. Thus, this would just require the tuple to be added to the block and the i

A

‘.‘

Ty

block rewritten. Also, in some instances the block must be split which causes further

T jnd

updates of higher level blocks.

"w

-

The performance model for the indexed case must approximate the additional

processing necessary when the index block is caused to be split into two blocks. Using

the approximation of the average number of splits, 1/([2/2] — 1),the performance

model is:
Model U - 2
Tc + ((LI + 1) * Tind) + Tio + Td + Tio + Tsc + Tio + [(1/( rz/z] - 1)) * 2Tind] (169)

6.1.1.3 Ordered - Unindezed Insertion. The ordered case presents a

unique problem with inserting a new tuple. The first step checks the relation for a

duplicate tuple. Since the relation is stored in sequential order, only a portion of l?.:-'.

X
the relation must be scanned to determine if a duplicate tuple exists. The expected ~
value of finding the correct location in the relation for where the new tuple should >

be inserted and where a duplicate tuple would be located is one-half of the relation.

Finding the correct location for inserting and determining that it is a valid

tuple to insert is the first step. Next, the tuple is inserted. However, inserting a new

,
'

tuple in an ordered relation causes problems. First to maintain the ordering the tuple

PR

has a specific location where the tuple needs to be placed. If the block where the

A .‘ ." ..' :l -

b3

tuple should be placed contains room. the block only needs to be reorganized to move

some of the tuples to make room at the proper location for the new tuple. However,
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s 55? if the block does not have room for another tuple, either the tuples are shifted to f
X X
make room in the block causing tuples to be shifted into another block forcing a .
-
; reorganization of the remainder of the relation. If there is not room to insert the e,
& T . . . . :
= tuple and a reorganization is not desired, the tuple is written in an overflow area and a f
H )
= complete reorganization of the entire relation to include all tuple in the overflow area -
*::: accomplished at some later time. If the overflow area is used, any retrieval algorithm ’ i
E: using the ordering of the relation must also include some unordered portion to the ”
) .
::_ processing to accommodate the overflow area. !
: Using the concept of maintaining the complete ordering of the relation, the :
> performance model, using T, for the time necessary to shift a tuple within a block. N
i ) is: -
Us
l.
o Model U - 3
L -
Y :
:: \.é' (R/2) * Tsc N
. Tc+Td+Tio+ma-x or )
\° K}
N (((R/2)/b) x T,) + ((R/2) * To) .
. (170) :
(R/2) T.. )
4 + or 2
N (((R/2)/b) «T,) + (2(R/2) * T.,) =
Y >
6.1.1.4 Ordered - Indexed Insertion. The ordered and indexed data X9
~
- structure requires two insertion operations. The first insertion adds the index value y
N to the index. The second insertion adds the tuple in the correct location in the ;:
9
- ordered relation. Therefore, this case uses the index to determine if the tuple to R
: be inserted is a duplicate and t'ie location of the insertion. Then, the insertion A
' -
o operation continues as in the previous case, unindexed-ordered relation. -
- )
- &
The model combining the insertion in the index and an ordered relation is:
?.
A a2
[
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Model U - 4
(R/2) % Ts \
Tc+((LI+1)* ind)+Tio+[(1/([z/21_1))*2ﬂnd]+' or
| ((R/2)/5) * T.) + [2(R/2) « T, |

(171)

6.1.2 Single Processor - Multiple Disk Insertion.

6.1.2.1 Unordered - Unindezed Insertion. The first step of the insertion
is the select to insure that the tuple to be inserted is not a duplicate. Then, the new
tuple can be inserted in any block that has space for the tuple. The only difference
from the single processor - single disk unordered - unindexed insertion is that the

disk seeks would be reduced during the duplicate check. Therefore, the performance

model is:

Model U - 5

(R-1)xT,
Tc+Td+no+max or +Tac+T;o (172)
(((R/d)* T;,) — 1)

6.1.2.2 Unordered - Indezed Insertion. The insertion uses the index to
determine if the tuple to be inserted is a duplicate. The only difference using multiple
disks versus the single disk - single processor case is that the index may be stored on
more than one disk. However, retrieving each block of the index still requires a disk
access and and I/O because the next block to be retrieved can not be predetermined.

Thus, the performance model equates to the single disk - single processor unordered

~
[ NI REP

-
- indexed insertion model. ;3
':.'1
.-_':
6.1.2.3 Ordered - Unindezed Insertion. Assuming the relation is stored Py
on more than one disk, the first step is to find the disk that has the proper insertion -
176
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location for the tuple to be inserted. Then the proper location within the disk is
located. The expected value for locating the proper disk is .5 times the number of
disks and .5 times the number of blocks contained on the disk. If the tuple is not a
duplicate, then the blocks within the disk are reorganized to provide room for the
insertion. This method may leave partial blocks on several disks. But, the insertion
time is much less than if the entire relation following the insertion point must be
reorganized. The performance model (using T, for the time to shift tuple within a

block) is:

Model U - 6

5(R/d) * T
(-5(R/d) * T;,)
+{(.5(R/d)/b) * T,]

Tc+Td+Tio+-Sd*Tsc+Td+Tio+maX

+(.5(R/d) * T,c)
+ max or + Ti (173)
(2(.5(R/d) = 1)« T},)

6.1.2.4 Ordered - Indezed Insertion. The ordered - indexed data struc-
ture requires two insertion operations. The first insertion adds the index value to
the index. The second insertion adds the tuple in the correct location in the ordered
relation. Therefore, this case first uses the index to determine if the tuple to be in-
serted is a duplicate and the location for the insertion of the tuple into the relation.
Then the index is updated and the tuple inserted in the relation and the relation
reorganized as necessary. Therefore, the performance model is a combination of the

two previous cases. The performance model is:
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i Model U - 7

T+ (L1 + 1) * Ting) + Tio + [(1/([2/2] = 1)) * 2Tng)

5(R/d) = Ty, l (174)

+ max or

((:5(R/d)/5) * T,) + [2(.5(R/d)) * T}o]

6.1.83 Multiple Processor - Single Disk Insertion.

6.1.3.1 Unordered - Unindezed Insertion. The unorganized data struc-
ture requires the entire relation to be scanned to determine if the tuple to be inserted
is a duplicate. This is actually a selection operation with the writing of a block that
contains the inserted tuple. Therefore, the performance model is a variation of the
select model. The performance model for updating the unordered - unindexed rela-

":;.',4 tion in the multiple processor - single disk architecture is:

Model U - 8

((R/p) - 1) * Tsc

or
T.+Tm+Ts+Tio +max + T+ (p—1)*Tm+Thpe + Ty +Ti, (173)
((R/b) = 1]+ T,)

+(R~1)»T,)

6.1.3.2 Unordered - Indezed Insertion. This case does not present any
variation from the single processor - single disk case. Because the multiple processors
cannot anticipate which index block to retrieve next, only a single processor operates
on the index. Therefore, refer to the single disk - single processor case for the

performance model.

6.1.3.3 Ordered - Unindezed Insertion. This case uses the processors to

L)

scan the relation to find the proper insertion position. The only difference between

]

¢
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this case and the same insertion with the single disk - single processor case is that
the multiple processors can be used to reduce the processing time of scanning the

relation. Therefore, the performance model (using T for the time necessary to shift

tuples within a block) is:

Model U - 9

((R/2)/p) * Tye
T, + T + Ty + Tio + max or
(((R/2)/b) * T,) + (R/2) * T,,)
(176)
((R/2)/p) * Ty

+ max or

(((R/2)/5) * T.) + [2(R/2) * T ]

6.1.3.4 Ordered - Indezed Insertion. The ordered and indexed data
structure requires two insertion operations. The first insertion adds the index value
to the index. The second insertion adds the tuple in the correct location in the
ordered relation. Therefore, this case first uses the index to determine if the tuple
to be inserted is a duplicate. Then, the insertion operations can begin. The model

combining the insertion in the index and an ordered relation is:

Model U - 10
To +[(1/([2/2] = 1)) * (2% (T35 + T4))]
+((.5(R)/b) * Ts) + [2(.5(R)) = T,
T.+ (L +1) # Ting) + max °’" (177)
S(R) « Ty,
+ max or

6.1.4 Multiple Processor - Multiple Disk Insertion.
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Y o 6.1.4.1 Unordered - Unindezed Insertion. The main portion of the un- o
4 o
ordered - unindexed insertion is scanning the entire relation to determine if the tuple )

to be inserted is a duplicate. After the insertion is determined to be valid. a single

block must be written with the new tuple. The performance model is:

Rl RN SR
!',.r"g’."'a X

Model U - 11 FG
.:.J.
((R/p) - l) * Tac :;:'J
or S

Tc+Tm+Td+Tio+max +Tsc+(p—1)*Tm+Tbt+Td+Tio (178) ..
((R/4)D) = 1] < T,) 2

+(((R/d) - 1)+ T;,) '

PRI

6.1.4.2 Unordered - Indezed Insertion. The index controls the process-

ing since it is used to determine if the tuple is a duplicate. Therefore, only the

FIg A
F '- 'y

updating of the index and reading and insertivn of the tuple in a block can be over- '-j;.
NS . . :-{‘ [
}:;'- lapped. Thus, the performance model portrays one processor checking the index for ."i::
)
duplicates and then a processor inserting the value in the index and one processor n
Y
o
inserting the tuple in the appropriate block. The performance model is: ':,':.'
“w
Y
o
Model U - 12 \
| =
Tio +[(1/([2/2] = 1)) * 2Tond =
T. 4+ ((L; + 1) * Ting) + max or (179) ::i:
s
T,4T,+Te+Tu | .
W
6.1.4.8 Ordered - Unindezed Insertion. The ordered insertion requires EJ‘:
N
the correct location for the insertion to be found. This also determines if tlie tuple to I-‘_::
be inserted is a duplicate. Then the blocks on the disks where the insertion " . ation [‘1
N
is located are reorganized to make room for the insertion. The mnltinle processors Dy
concurrently scan for the insertion location. The reorganization inv s only one :::';j
o~
A
disk and one processor. Therefore, the performance model (using 7. - the time ,'
: N
N necessary to shift tuple within a block) is: e
-
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Model U - 13
(-5(R/d)/p) * T
Tc+Tm+Td+ﬂo+(-5d/p*Tac)+ma-x or
((:5(R/d)/b) x T,) + (.5(R/d) * T.,)

(-5(R/d)[p) * T
+ max or + T (180)

((:5(R/d)/b) * T,) + (:5(R/d) * T,)

6.1.4.4 Ordered - Indezed Insertion. This case combines the previous
two cases of inserting using an index and inserting the tuple into an ordered relation.
The index is used to determine the insertion location and if the tuple is a duplicate.
The relation is then reorganized as necessary to make room for the insertion of the

tuple. The model combining the two previous cases is:

Model U - 14

Tio +{(1/([2/2] — 1)) * 2Tind]
T.+ ((L;+1) % Tjng) + max 5(R/d) * T, (181)
max or

((:5(R/d)[b) « T,) + [2(.5(R/d)) * T,

6.2 Deleting a tuple.

The deletion of a tuple from a relation requires the appropriate tuple(s) to be

found and removed. The deletion criteria could be a range for an attribute or a single
key value. For this discussion, it is assumed thac only a single tuple will be deleted.
The deletion of additional tuples does not alter the processing except that it may
require additional block writes depending upon the data structure. Therefore, the

models developed here assume only deleting a single tuple per deletion operation.

oty
N

The deletion is basically a select operation. This is similar to a insert: except. the

181
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: - delete never has to worry about overflowing a block causing a reorgznization of ::
i the relation. Therefore, all of the following performance models closely resembie the ::
) corresponding select performance models and also are similar to the insert operaions 2‘;
s modeled above. :N

) A
! 6.2.1 Single Processor - Single Disk Deletion. ‘i
e
! 6.2.1.1 Unordered - Unindezed Deletion. The deletion of a tuple from j':;

i a unordered - unindexed relation first requires the proper tuple to be found (a select ;:
operation). After a tuple is found, the tuple is removed from the block where it was :: x

E found and the block written back on the disk. However, the remaining portion of :-5_-‘-
& the relation must be scanned because there is no guarantee this was the only tuple ;"'
! to be deleted.
] The performance models for deleting a tuple from the relation R is:

) Model U - 15 X
(R=1)+T. B

T. + Ty + T, + max or 4T +To  (182) ,\\

((R/B) = 1) *T.) + (R—=1) = T) 3

A

6.2.1.2 Unordered - Indexed Deletion. The indexed - unordered dele- }\

tion is basically a select with a rewrite of the block where the tuple was deleted and }"
an update of the index. Therefore, the performance model is: "R :
Model U - 16 =

AL
Tot (L +1) % Tind) + To+ Ta+ To+ T + T (183) '5;

:

6.2.1.3 Ordered - Unindered Deletion. The . iction of a tuple from an ::

ordered relation is controlled by where the tuple is locai- -1 in the sequential order. ::\

,C", <

S Since the tuple location is not known, the expected valuc ..¥ finding a single tuple is
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used (.5R). After the block with the proper tuple is found, the tuple is deleted and
the block rewritten. This process leaves some extra space in the block where the
. tuple was removed. However, it does not alter the sequential order of the relation.
The following model reflect the time necessary to execute a deletion of a tuple from

E a ordered relation.

Model U - 17

(R/2) * T
T.+T;+ T, + max or +T; (184)
(((R/2)/b) * Ty) + ((R/2) * T})

6.2.1.4 Ordered - Indezed Deletion. The deletion of a tuple from an

ordered - indexed relation requires two separate deletions—deleting the tuple and

deleting the index entry for the tuple. First, the index is used to retrieve a TID.

e This TID is then used to retrieve the block that contains the tuple and the tuple is
deleted. Also, the TID must be deleted from the index. Since the block where the

tuple is deleted is not reorganized, this is equal to the performance model for deleting

a tuple from an indexed - unordered relation. Therefore, refer to the previous section

for the indexed deletion for the performance model.
6.2.2 Single Processor - Multiple Disk Deletion.

6.2.2.1 Unordered - Unindexed Deletion. The deletion of a tuple first
finds the appropriate tuple(s). Then the tuple is removed and the block is written

back to the disk. Therefore, the performance model is:

[

-

Model U - 18

‘J‘
A
(R=1)+T. ¥
<~
T.+ T4+ T + max or + T, + T (185) N
w (((R/d) * Tp) = 1)
: 5
NS
183 X
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6.2.2.2 Unordered - Indezed Deletion. This case may utilize more than
one disk to store the index. However, each block of the index still requires a disk
access and I/O because the next block to be processed is not predetermined. Thus.
this deletion still requires the same time to execute as the single processor - single

disk case.

6.2.2.3 Ordered - Unindezed Deletion. The deletion is a select followed
by processing the disk where the tuple to be deleted is located. After the block with
the proper tuple is found, the tuple is deleted and the block rewritten. This process
leaves some extra space in the block where the tuple was removed. However, it does

not alter the sequential order of the relation. The performance model is:

Model U - 19
5(R/d) + T,

or
T.+Ty+Tio+ .5d*Tye + Ty + T, + max + T, (186)
(.5(R/d) * T,)

+[(-5(R/d);b) = T,]

6.2.2.4 Ordered - Indezed Deletion. The deletion of a tuple from an
ordered - indexed relation requires two separate deletions. First, the index is used
to retrieve the TID. This TID is then used to retrieve the block that contains the
tuple and the tuple is deleted. Also, the TID must be deleted from the index. Since
the block where the tuple is deleted is not reorganized, this is the same performance
model as the performance model for deleting a tuple from an indexed - unordered
relation. Therefore, refer to the previous case for the indexed deletion for the per-

formance model.
6.2.3 Multiple Processor - Single Disk Deletion.

6.2.3.1 Unordered - Unindered Deletion. The dcletion of a tuple from

a unordered - unindexed relation with multiple processors ar.. - single disk is es-

184
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k N
E‘ o sentially the same as the single processor - single disk processing for the same case
except the processing may be done concurrently by the processors. Therefore. the ‘
~
performance model is: N
Model U - 20
((R/p)— 1) * T ;
or -
I.+T,+T,;+T;, +max +T,.+(p—1)*T + Ty, +Ty;+T,, (187) ke
((R/6) = 1] % T,) J
+((R— 1)*Tio) :.
N
6.2.3.2 Unordered - Indezed Deletion. This case does not present any N
“~
variation from the single processor - single disk case because the multiple processors :
cannot anticipate which index block to retrieve next. This means that only a single E.,
Y
processor can operate on the index. Therefore, refer to the single disk - single E.‘
4 processor case for the performance model. R
‘\.
6.2.3.3 Ordered - Unindezed Deletion. The deletion of a tuple from an \:
ordered relation is controlled by where the tuple is located in the sequential order. -;'E
i
Since the tuple location is not known, the expected value of finding a single tuple is _
used (.5R). After the block with the proper tuple is found, the tuple is deleted and o
the block rewritten. The performance model using multiple processors is: ,
o
Model U - 21 KA
((R/?.)/p) *Tsc :
T.+ T + T4+ Ti, + max or +T, (188 5
(((R/2)/b) = T,) + ((R/2) * T,)
6.2.3.4 Ordered - Indered Deletion. This deletion requires two deletion
- deleting the value from the index and deleting the tuple. However. the deletion
7 of the tuple from the ordered relation does not alter the ordering of the relation.
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o Therefore. the deletion of the tuple is no different than deleting the tuple from the N
e
unordered relation. Therefore, the performance model equates to the performance »
N
model for the unordered - indexed deletion case. ',‘.E
‘&
6.2.4 Multiple Processor - Multiple Disk Deletion.
6.2.4.1 Unordered - Unindexed Deletion. The deletion in the multiple
processor - multiple disk environment allows the processors to concurrently scan
for the tuple to be deleted. When the tuple to be deleted is found the tuple is
removed and the block written back on disk. However, the remaining portion of the R
relation must be scanned because there is no guarantee this was the only tuple that ..
Na
satisfied the selection condition of the deletion. Therefore, the performance model .‘
is a selection plus a block write. '::
Y
A
; Model U - 22 \f'.:
. ..'.":'
(Rfp)=1)=T.. .
IR
or o
Tc+Tm+Td+no+m&X +Tsc+(p—1)*Tm+Tbt+Td+ﬂo (189) I':-
({((R/d)b) — 1] x Ty) R
+(((R/d) — 1) * Tio) '..\
6.2.4.2 Unordered - Indezed Deletion. Since the index controls the pro- ',
cessing, only the updating of the index and reading and insertion of the tuple in a
block can be overlapped. Thus, the performance model portrays one processor pro- R
» .
cessing the index. Then one processor can retrieve and delete the tuple from the o
block where it is located and the processor processing the index can update the
index. ,_A
»
Model U - 23 ';_'ﬁ
.\
To+To | A
A
T.+ (L ' i N
¢ 1+ 1) * Ting) + max or (190) AW,
)
‘:E‘ Td + T:o + Tsc + Tno -{::
S e
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This model shows the overlapping updates. The deletion of the tuple requires
more time than the deletion of the index entry because the block with the tuple has
to be retrieved and then written. Whereas, the index block has already been read for

processing, so it only requires the update to be made and the index block written.

Therefore, the model actually is:
Model U - 24
T+ ((Li+1)*Tind) + Ta+ Tio + Toe + Tio (191)

6.2.4.3 Ordered - Unindezed Deletion. This deletion uses the concept
of scanning the first block of each disk to more quickly find the tuple to be deleted.
The deletion then continues in the same manner as the unordered case. Therefore.

the performance model is:

Model U - 25

5(R/d)/p) *
T.4+Tm+Ty+ T+ (.5d/p * Ty ) + max or

|
S(R/d)/b) + T,) + (:5(R/d) « T)

6.2.4.4 Ordered - Indezed Deletion. The deletion of a tuple from an
ordered - indexed relation requires two separate deletions. First, the index is used
to retrieve a TID. This is used to retrieve the block that contains the tuple and the
tuple is deleted. Also, the TID must be deleted from the index. Since the block
where the tuple is deleted is not reorganized, this is the same performance model
as the performance model for deleting a tuple from an indexed - unordered relation.

Therefore. refer to the previous case for the indexed deletion for the performance

model.
187
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R 6.3 Modifying a tuple

The modification of a tuple can be thought of as a deletion of an old tuple and
an insertion of a new tuple. However, this is not totally true. For the case where
the deletion changes the key attribute(s) of the tuple, this is true but if the key
attribute(s) are unchanged in the modification, not all the integrity checking of the

insertion is necessary.

For the case of the key attribute not being changed, the performance is closely

modeled by the deletion models of the previous section. Therefore, the models

PR,

SN

presented in this section deal with the more general case of a modification that

.l '.

might include the key attribute(s). Since the key attribute may be changed. integrity

&

I

checking will be necessary. Therefore, there will three operations occurring: the

s 2L 0t CR S, T s 0 RN X RN N e e 4 47 T 0" o TN B A AW R R TS

integrity check for introduction of a duplicate tuple, the insertion of the new tuple. ::

o

and deletion of the old tuple. .

™ -
> <
6.3.1 Single Processor - Multiple Disk Modification. Q

n

RS

6.3.1.1 Unordered - Unindezed Modification. The modification of a tu- A

x_¥
L .

ple in the unordered - unindexed data structure may require scanning the relation

twice. The unordered - unindexed data structure provides no means of integrity

. .l.'

checking other than scanning the entire relation. The integrity check must be com- -'
plete before inserting or deleting the tuple can safely be accomplished. Therefore. .
the entire relation must first be scanned, then the deletion and insertion can be exe- g
cuted. However, this process is improved by identifying the block where the tuple to R

-z

be deleted is located. Then only this block must be read to accomplish the deletion.

b i

And the tuple to be inserted can be placed in the place where the tuple was deleted.
Thus, by scanning the entire unordered - unindexed relation once the location of the

deletion and the integrity checking is accomplished. The performance model is:

et
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i Model U - 26

(R—-1)*T,

or
Tc+Td+]}o+max +Tsc+Tio+Td+Tio+Tsc+no (193)

(((R/6) = 1)+ T,)
+((R—-1)*To)

fal ARty S s. L

6.3.1.2 Unordered - Indezed Modification. The indexed data structure :E:
allows the index to be searched to determine if the tuple to be inserted is a duplicate. o
This assumes that the index was constructed for the attribute(s) that form the key
for the relation. If the index is constructed with an attribute(s) that form only a
portion of the key, then the index would identify the tuple(s) to be retrieved to be
examined to determine if they are duplicates of the tuple being inserted. Then the
tuples are retrieved and compared to the tuple to be inserted to insure they are not

duplicates.

s

\"\
The next step after the new tuple is determined not to be a duplicate is delete .
the old tuple and insert the new tuple. Since the relation is not ordered, the insertion E:j:
.Y
can occur in the same location as the deletion. The index then must be updated. g
b
Updating the index includes adding the new value and deleting the old value. This B
requires the index to be processed twice and may include a split when adding the
new value. The performance model is:
Model U - 27
Tc+((LI+l)* ind)+no+Td+Tio+Tac+1:o+((Li+l)* ind+Tio+[(1/( [://2] —1))*2Tind )‘
(194) .
LY
6.8.1.3 Ordered - Unindered Modification. The moudification of the or- .
dered relation requires two phases: the integrity check phase and the modification :_
phase. The first phase must determine if the new tuple would duplicate an existing Y
&
7‘ tuple. The relation is scanned until the appropriate location in the relation for the ":‘1
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insertion is located. If no duplicate exists the insertion can be accomplished. How-

ever, to make room for the insertion all the following data must be shifted until a

ity
block contains extra space. \':
The modification also requires a deletion. The deletion cannot occur until it is E ‘
confirmed that the insertion will not violate the integrity of the database. Therefore. ‘
two situations could occur involving the location of the deletion and the insertion. =
The first would be that the location of the deletion was before the location of the
insertion. This case would require the location of deletion to be noted during the s
scan insuring the data integrity. The scan of the relation then continue to find the ';
insertion location for the new tuple. When the scan finds the insertion location and ;‘\
confirms that the new tuple is not a duplicate, the deletion can be completed and :\
tupies shifted up to the insertion point to make room for the insertion. o
The other case is where the insertion location occurs before the deletion :o- .»
:.' cation. This would require the insertion to be accomplished and the data shifted :f{
to make room for the insertion until the location of the deletion is found. At this -
point, the deletion would create the space necessary for the shifted data, stopping ;“;
the shifting of data to maintain the proper ordering. This obviously assumes that the g'_:
blocks are all full and an overflow area is not used. If an overflow area was utilized.
the shifting would not occur but both the blocks that contained the insertion and :
deletion locations would be modified to reflect the modifications. E
N
The performance models for modifying an ordered relation require several as- .
sumptions. The first is that relation will be reorganized at the time of the action.
The next assumption states that the expected value of finding the insertion location \
Y

for integrity checking requires scanning one half the relation. It is also assumed that

deletion point is .5 of one of the halves of the relation away from the insertion point.

This assumption allows the approximation of the number of blocks necessary to

~ % v
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be reorganized during the modification. Using these assumptions. the performance

models are (using T,. for the time necessary to shift tuples within a block):
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: ~at Model U - 28 Y
¢ 3.4
(R/2) * Ty s
: T. + Ty + Tip + max or "
! | ((R/2)/b) + T,) + ((R/2) * T,)
. (195)
k. (R/4) * T, -
b + max or ‘,::
\ o,
) (((R/4)/5) = T,) + [2(R/4) * T,]
3 :\
: 6.3.1.4 Ordered - Indezed Modification. The ordered and indexed data ":
X structure requires two modification operations. The first modification changes the 3
\ eq P g ;
> index. The second modification alters the tuple in the ordered relation. Therefore, _
p &
. this case first uses the index to determine if the new tuple is a duplicate. Then the g
oY P
e .~ modification operations can begin. The model combining the modification of the -9
., [ % ‘o
a? index and an ordered relation is:
-
j Model U - 29
: To+ (L1 +1) % Tona) + Tio + [(1/([2/2] = 1)) % 2Tind] ¢
o 2
: (R/4)* T, ;
o * (196)
M or .
? +((Lr + 1) * Ting) + T, + max
,. ((R/4)/b) + T.)
; +[2(R/4) + T :
& y
3 6.3.2 Single Processor - Multiple Disk Modification. -
_\ 6.3.2.1 Unordered - Unindezed Modification. The multiple disk envi-
b
: ronment takes the performance model for the single proces<or - single disk environ-
3 ment and reduces the performance by eliminating the diss .ccesses time. Therefore.

.~ "3— the performance model is: -
: 191 :
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Model U - 30

(R-1)*T,
TC+T4+T,-o+ma.x or +T,C+I}O+Td+no+Tsc+]}o (197)
((R/d) * Tp) — 1)

6.3.2.2 Unordered - Indered Modification. This case may utilize more
than one disk to store the index. However, the disk can not be positioned in advance.
to read the next block because the next block is determined by processing the current
block. Therefore, the advantage of using multiple disks to reduce the number of disk
accesses is eliminated. Thus, this equates to the model for the single processor -

single disk indexed - unordered modification case.

6.3.2.8 Ordered - Unindezed Modification. This case requires the cor-
rect disk to be located and then the conditions processing described previously ap-
plies. The one exception to the reorganization stated above, for the ordered - indexed
modification with a single processor - single disk case, is that only the blocks con-
tained within the disk would have to be reorganized. For the modification. it is
assumed that the insertion and deletion are different disks requiring the reorganiza-
tion of the data on two disks. Also, it is assumed that half of the remaining disks
must be searched to find the location of either the insertion or deletion. Using this

criteria the performance model is:

Model U - 31

B(R/d) * Ty,
or
(.5(R/d) = T,)
+((.5(R/d)/b) » T}

Tc+Td+no+-5d*Tsc+Td+T’io+max
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25(R/d) * T,
+(5(R/d) * T,c) /D

+ max or + T, + max

(2(-53(R/d) = 1) » T,

-t

(:25(R/d) * T,)
| +[(:25(R/d)/b) * T))

.
/4

)

)

~

+(.25(R/d) * T..)

(2(-25(R/d) = 1) * T,)

+ T, (198)
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6.3.2.4 Ordered - Indezed Modification. The ordered and indexed data
structure requires two modification operations. The first modification changes the

index. The second modification alters the tuple in the ordered relation. Therefore.
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this case first uses the index to determine if the new tuple is a duplicate. Then. the

S

modification operations can begin. The model combining the modification of the ~.

sio'n

index and an ordered relation is:

Model U - 32 o~

Te + ((Lr + 1) * Tina) + Tio + {(1/([2/2] = 1)) * 2Tip4]

5(R/d)* T, i

+((Lr +1) * Tina) + Too + °r =
((.5(R/d)/b) * T,) (199) =
+[2(.5(R/d)) * T) 3

5(R/d) * T, | o

+ max or

((:3(R/d)/b) x T,) + [2(.5(R/d)) » T.,]

NESA

".’
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6.3.3 Multiple Processor - Single Disk Modification.
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« v 6.3.3.1 Unordered - Unindezed Modification. The multiple processor -
.
environment allows concurrent scanning of the relation. However, the single disk -
. <
. may constrain the processing. Therefore, the following performance model modifies N
» . “
3 the single processor modification by including the multiple processor capability. With N
Y this the performance model is: >
" Model U - 33
‘. ((R/p) - 1) * Tye
T.+ T, +T;+ T;, + max or X
_ (200)
((R/O) =1]*T) + (R-1) = Ty,) 5
.
+Tsc+(p_1)*Tm+Tbt+Td+no+Tsc+ﬂo :
N 6.3.3.2 Unordered - Indezed Modification. This case does not present
.“: any variation from the single processor - single disk indexed - unordered case. Be-
:ﬁ:;' cause the multiple processors cannot anticipate which index block to retrieve next.
only a single processor operates on the index. Therefore, refer to the single disk - ‘
b single unordered - indexed processor case for the performance model. :
\ ?- ;ﬁ
6.3.3.3 Ordered - Unindezed Modification. This case is the same as the .
j:Z previous unordered - unindexed case except that now the expected search space will 1
N be reduced by the ordering of the relation. But, this also causes the insertion place of ::jj
~ o
) a new tuple to be reorganized to make room for the tuple (assuming the modification -
! changes the key of the relation). This performance model is also very similar to the ;S
N,
» single processor - single disk case except the processing capacity is increased with }:
s LY
. . . . N
’ the multiple processors. Using this the performance model is: "N
~r X
,.c .‘\- ‘}.1
. -
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: i Model U - 34
! | ((R/2)/p) * Tic
. |
v T, + T + Ty + T, + max| or
' | ((R/2)/8) * T) + (R/2) + T
(201)
4
" (R/4)/p) * T.c
» + max or
i ((R/4)/5) x T.) + (2(R/4) * T.) )
3
5 6.3.3.4 Ordered - Indezed Modification. This model combines the us- ;
J -
i:'. ing of the index to find the proper location of the previous indexed case and the :E-
\
é reorganization of the relation in inserting the tuple. Therefore, the combination of
N these two models that modify the ordered - indexed relation is:
3
» T
o Model U - 35

Tio + [(1/([2/2] = 1)) % (2% (Tio + Tu)))
+((Lr+ 1)« (Ta + T)) + Too
+(.25(R/b) * T,) + [2(.25(R)) * T;,)

Te + ((L1 +1) * Ting) + max or
25(R) * Ty ||
-+ max or

+(1/(T2/2] = 1)) * Toe] + (L1 + 1) + T,

)
(202)

6.3.4 Multiple Processor - Multiple Disk Modification.

¥

6.3.4.1 Unordered - Unindezed Modification. The multiple processor - o
*

b))
. N . . iy . R )
multiple disk environment provides the capability to handle the modification (as- Y
vy

suming a deletion and an insertion) two ways. The first method would devote a

.-

. . . . L
portion of the processors to each action. However, this could be a problem if the -
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! Y insertion was a duplicate, invalidating the insertion then the deletion would have to ::"
4 s
be unaccompiished if it had been completed. .
.
N
The second method and the method modeled here uses all of the processors .
W\ [t
3 for the operation being performed at that time. This also reduces the contention E
‘ for retrieving from a specific disk. Therefore, the performance model reflects the .
b -
combination of inserting and deleting a tuple. In this case, that means scanning the =
1 . . . . o
! entire relation to find the tuple to be deleted and to insure the insertion is not a .
) g
: duplicate. Using this, the performance model is: y
Model U - 36 \'
((R/p) = 1) * T | %
J- T.+ T + Ty + T, + max or ‘ :
4 ((R/d)B) = 1] « T,) + (((B/d) = 1) = T | 3
o
: : 4T+ (=1 T+ Ty + T+ Lo+ Toe + T (203) %
. e D
< 6.3.4.2 Unordered - Indezed Modification. Since the index controls the
- =)
‘o processing, only the updating of the index and reading and insertion of the tuple ¥
. in a block can be overlapped. Thus, the performance model portrays one processor i
. checking the index for duplicates and then a processor inserting the value in the
- index and one processor inserting the tuple in the appropriate block. ::‘_
: :
- Model U - 37 ]
y T‘l0+[(1/(|'z/2] _1))*2Tind]+((LI+1)*de)+Tto ‘:.
T+ ((L1+1)*Ting) + max or S
: Td + Tio + Tsc + Tio
(204)
L4
!
& 6.3.4.3 Ordered - Unindexed Modification. The ordered relation allows
b less of the relation to be searched to find the insertion and deletion location. The
;‘:.:,'- multiple processors are used to scan the initial block of each disk to determine the
o
4 196
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disks that contain the action location. Then the insertion or deletion can continue.

Using the assumptions about the ordered relation structure contained in the single

processor - single disk ordered - unindexed case, the performance model is:

Model U - 38

T.+Tm+Ty+ T+ (.5d/p*T,.) + max

(.5(R/d)/p) * Ty
or
((:5(R/d)/b) = T})
+(.5(R/d) * Tj,)

(.5(R/d)/p) * Ty (:25(R/d)/p) * T\ |
or or !
+ max + T;, max
((.5(R/d)/b) x Ts) ((:25(R/d)/b) * T)
+(-5(R/d) * Ti,) +(.25(R/d) = T:)
(:25(R/d)/p) * Ty
+ max 7 +T, (203)
((:25(R/d)/b) * T,)
+(.25(R/d) * T},)
6.3.4.4 Ordered - Indexed Modification. This case uses the index for

identifying the deletion and insertion location. The index processing is restrictive.

Therefore, only the index and relation updating is overlapped. Thus. the perfor-

mance model is:

Model U - 39

Te+((L1+1)*Tina)+max

‘-('ﬂ ‘IJ,“’

s )
»

o

+ max

Tfo + [(1/(1’:/2" - 1)) * 2Tind] + +((LI + 1) * de) + Txo 1

1

or
S(R/d) * Ty
or

((3(R/d)/b) « T,) + [2(.5(R/d)) = T,,]

(206)
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6.4 Summary e
4 ]

All of the models presented for the update actions closely resemble the select w3

"~

performance models due to the demand of not introducing duplicate tuples and/or

'.I

finding the proper location or tuple for processing. However, the more complex or e
optimized data structures now require maintenance to maintain the proper struc- '

ture. For the case of the indexed structures, this may include maintaining additional

indexes on non-key attributes. The models then must be extended to add the ad- -2
ditional index updates. In each model there is a segment that provides the index ,'.
"
update, this would just be repeated for the number of indexes maintained for the :“'_
A
A
given relation. For the ordered data structures, the structure maintenance required :\
l.\
physically moving tuples to maintain the ordering. Therefore. the performance mod- i
)
els for updates presented two aspects — the update action of relation and maintaining -
the data structure as necessary. -
o=
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5
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i VII. Single Query Step Model Results

N

'\'

N The analytical models provided in the previous chapters do not prove that
~ one algorithm or data structure is the “best”. However. the models provide the
g opportunity to predict the results of various workload parameters. The first step
\,

t: in using the models for performance evaluation is determining the validity of the
Nﬂ‘

models. To prove the validity for each of the approximately 200 models would

LN

require each model to be actually implemented and the results compared. This is
infeasible because of the volume of models and the lack of appropriate hardware.
Therefore, the remaining method for determining the validity of the models is to
compare the results of the models with accepted results. This method was used
to validate the concept of the models by comparing the results with the models

presented by Hawthorn and DeWitt [33] (where the models portrayed the same

N operation and same method of completing the operation). The results presented
by Hawthorn and DeWitt have been validated by experimental benchmarking [9].
The results of Hawthorn and DeWitt have also become a “standard” referenced bv
many [5,7,36,64,67,84]. Therefore, the models have been compared to an accepted
reference as appropriate to provide validation.
The analytical models presented are tools to assist in the design of a query
processor. Since, the models contain so many variables, it is very difficult to analvt-
ically compare all models to determine the best model for a given application. And
in designing a database machine, some of the parameters will vary for different appli-
cations of the same type processing causing the outcome to be different. Therefore.
the results presented in this chapter are to be used as a guideline for developing the 5
similar relationships for their performance parameters. This assumes that some of :1
the performance parameters, such as. time to read or write a block from disk. the Z:
time seek a track. time to scan a block by the processor. etc., would be fixed and the :
o E‘:
199 5
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e Ps - blocks of memory per processor (30) -;:
b - blocks per track on the disk (20)
T, - time to compile query (60ms) -
T, - time to send a message to/from back-end (2ms) .
T, - average disk access time (39ms) N
T, - seek time of one track on the disk (10ms) N
T., - block read/write time (17ms)
T,, - time to scan block (10ms) 3
T,, - time to send block to back-end (7ms) N
T, - time to process block with complex operation. like join (95ms) N
T.na - time to fetch and examine an index page (66ms) ::
R - number of blocks in relation R
S - number of blocks in relation S N
B - number of bytes per block (13030) -
v - attribute size (10) F:
r - tuple size (100 bytes) [N
s - tuple size (100 bytes) .
in - index size in bytes (6 bytes)
P -
Table 3. Performance Model Workload Parameters -
- ‘.‘ '.
e . . C :
- relationship to be studied in the number of resources could best be used to solve a
»
range of problems.
The following sections describe the performance patterns of the various data
structures and algorithms for various workload environments. The presentation il- J'
lustrates the various conditions graphically. The results presented were computed by
programming each model as a separate function. This allows an individual or group
of models to be compared for a given workload condition. Table 3 provides the
values used for evaluating the performance time of the operators. The time parame- o
ters (fixed performance parameters described above) are based upon the parameters :
-~
presented by Hawthorn and DeWitt {33]. N
7.1 Select ::j:}
A
The select models were broken into categories. FT and MT. The FT cases ::-i
o«
are special cases of the MT cases. They present cases that are very difficult to .
~s ‘.
.‘-':.' :':1
a0
9 :\:
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nortray in the course environment of the MT cases. The queries that are looking
for a single tuple as a response are the main concern of many databases. A bank
database containing account balances or retrieving a person’s name from a personai
database given the person’s ID number are examples of this type of query require-
ment. Therefore, the FT case presents a special situation that is normally overlooked

in the interest of simplicity, resulting in a lack of completeness in evaluating all cases.

The focus of this investigation is to use multiple processors and paralle] process-
ing to improve the performance of database retrieval operations. The select operator
has been shown to adapt easily to parallel processing (see Chapter II). The use of
parallel processing does provide performance improvement to perform the select but
the performance of the select may be hampered by the speed that data is provided
to the processors for processing. Therefore, the secondary storage retrieval of the
relations becomes the controlling factor. Several techniques have been suggested
for improving the select operator [2.3,4,7,8,15,21,23,25,30,32,33,34,40,43.50,56.60,62]
and no significant improvement seems feasible over the many specialized techniques
and hardware presented. However, the effects of the data structure on the perfor-
mance of the single item retrievals of the FT type transaction have been ignored.
Therefore, Figure 22 presents the results of various select models for the muitipie
processor-multiple disk environment. The number of processors and disk selected
for presentation in Figure 22 was arbitrary because the purpose of this evaluation
and presentation was to illustrate the trend of the performance time as the input

relation size increases but the expected output is limited to a few tuples.

Figure 22 shows the effect of increasing the input relation size on the completion
of the selection operation. Figure 23 illustrates the same situation for the MT case.
using a selectivity factor to compute the size of the resnlts. This graph portrays that
under different conditions, different data structures pro: ‘e the best performance in
performing the selection operation. Thus, it can be seen © .t varying the workload

of the system may effect the performance of the system. |- i< places a demand on
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Figure 22. Multiple Processor-Disk Performance for the FT Select Operation A
Y the database designer to define the requirements of the system. If the majority of the -
]
retrievals required can be predefined, the best data structure for that type of retrieval e
S
may be used in building the system. However, further investigations involving tiw -
T
performance of other operations are necessary to determine the impact of using the :;
data structure most favorable for the selection operation. ' ..
=
7.2 Project 'I'
The projection operation models presented in Chapter IV reflect that data ’ o
L
~
structure does not have an impact on the projection operation. Therefore. the per- N
formance results shown in Figure 24 for the multiple processor-multiple disk case l'i"
" . o : : D
show only two cases: projection-no duplicate removal and projection-with duplicate ,
N
removal. It is obvious that if no duplicates are introduced or no concern about Ju- ::1
. . o . : e
plicates is given, the performance of the project is much better. Extending this. A
’\ -
. - .. . . oy
Figure 25 shows the effects of further distributing the storage and processing of the ‘-
]
7 relation to complete the projection operation. Note that the disk and processors are o
el
N
-\‘l‘
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Figure 23. Multiple Processor-Multiple Disk Performance for the MT Select Opera- N
tion N
increased together because having a much greater number of one or the other <ig- -
nificantly increases the performance capability of the operation. Therefore. the best
storage-processor ratio is to provide at a minimum one disk for each processor. Since v
any less storage capability includes contention time with the already slow [/O time. -
a maximum number of disk units that can be efficiently used is difficult to determine
without comparing the time requirement for the processor operation and the ik N
'
parameters. By using two disks per processor there is no contention for the disk to
be writing at the same time it is reading data. Using any more disks per processor 0
increases the data bandwidth, but may not produce significant performance time -
increases. -
The project operation performance is data structure independent in a hon- N
o~
zontally partitioned database. Therefore, the projection operation has no impact i N

determining which data structure is "best™. In fact. the data structure independence

of the projection operation implies that the projection and selection operations conlu
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be combined into a single operation for applications that require both operations in

performing the user query.

7.2 Join

The join (equi-join) performance models, like the selection operation. are sen-
sitive to the data structure of the input relation. The obvious example of the data
structure effecting the performance of the join is when both relations are aiready
ordered. In this case, the two relations are joined in a merge-type join that requires
each relation to only be read once. However, if the relations are not sorted, the rela-
tions must first be read, sorted, stored, and then joined. The one data structure that
does not improve the join operation is the indexed data structure. This structure,
due to the random nature of the retrievals. increases the time to perform the join

versus the join using an algorithm that uses unordered-unindexed data.

The key to the join is to either compare each tuple of one relation with each
tuple of the other relation or to use some method of sorting or grouping to reduce the
comparison range. The reduction of the volume to be compared is critical because
this operation is an NP-complete operation, and by reducing the volume of the
input significant decreases in performance time can be achieved. However. to fully
use grouping to improve the performance of the join, multiple processors are required
to facilitate the joining of the groups of tuples from the relations. Figure 26 presents
the performance graph using a single processor with multiple disks to reduce the
I/O time. Compare this with the performance shown in Figure 27 that uses multiple
processors and the same join algorithms. The performance of the multiple processors
case is improved but the times are still very slow. Therefore. Figure 28 uses a
hashing technique to create disjoint groups of tuples from each relation. where the
corresponding groups or buckets of tuples have the same hash value for the join
attributes and potentially have the same actual value for the join attribute(s). This

changes the join from joining relation R with relation S to joining Ry with S, R;
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Figure 26. Join Performance using a Single Processor and Multiple Disk.

with Sz, and so forth. If there are p processors available to perform the join. then
joining the entire relations requires each processor to compare (RxS)/p blocks to
complete the join. Using the bucket method, each processor compares (R/p)x(S/p]
blocks or combining terms, (RxS)/p? blocks to complete the join. This shows that
creating the series of buckets to be joined significantly reduces the workload of each

join processor.

Figure 28 shows the significant performance increase that may be achieved by
grouping the appropriate tuples to be joined. Figure 28 presents one situation ot
the join using the improved techniques of using a bucket join. However. the result
presented have used some assumptions that may impact the performance. The first
and most significant assumption of the bucket join is that the buckets formed by
the hashing function are all approximately equal. If the hash function does not
provide the ability to provide equal size buckets. the time required for the bucket
join may significantly increase. Therefore. the next section describes the limitations

and features of the bucket join.
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7.4 Bucket Join "3
The join environment is critical to the performance of the operation. The S
n
environment includes the number of processors: the amount, speed. and availabilitv "
of secondary storage: the amount of memory available in each processor; and the
performance of the communication between processors. The environment affects the :.:
performance of all join algorithms. However, the bucket join is more sensitive to .
some of the environment factors than the more traditional join algorithms. sort- !
merge and nested-loop. Figure 29 illustrates the performance gain of increasing the 2
number of processors available for the processing of the join. o
W
The bucket type join [22.24,26,48,80] utilizes a two phase algorithm. The first =
phase is the hashing of the tuples to form the buckets and transmitting the buckets ;-_
of each relation to the appropriate processors. The second phase of the bucket join ';-:
i~ the application of one of the join algorithms to the buckets of each relation at
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each processor. Therefore, the bucket join still uses the same algorithms as the

traditional join techniques except that the amount of input is reduced. The results.

D

shown in Figures 29 and 30, indicate the significant decrease in performance time
by the corresponding increase in processors (assuming a corresponding increase in
secondary storage capability). But, the performance improvement by adding more

processors has to be limited by some bound of efficient usage of the processors

. n' . ' "p -')‘.-l "':l

and also bounded by the effectiveness of the hash functions in equally dividing the

buckets.

. fl:ﬁ-
1
T da

The efficiency of the bucket join depends upon the ability to form equal buckets :\:i
of data to be joined. Therefore, the best case for this Join operation is when each
bucket formed is equal in size. The worst case is when one of the buckets woull ot
contain the entire relation. If the worst case condition existed for one relation but the ﬁ§
other relation formed equally distributed buckets, the operation would approximate )y

the number of blocks to be compared using more traditional join techniques such "'~'

209 :,‘34

“_ -* -f' - L -'_ - -
o . e .
aoaTdarlo s Al s Al

R ."'." o W -'_-' FOIP .--;.-' . ..-‘ ..‘_' -
. - S . M - - L -
ARSI N O

T e L

. -
R A L L ,
.« .- . . . N -
N A e S T A alalaln ool




Sl Y

- [l G W R B

i - 4

>
s

(I.

v

as the nest loop (Rx(S/p) or (RxS)/p blocks to be compared). To improve this
situation, the hashing can be applied recursively to more equally distribute the
tuples of each relation. This provides the capability of even the worst case to be

handled in a reasonable manner.

The second phase of the bucket join actually performs the join. The methods
modeled here to perform the join are nested-loop and sort-merge. If the bucket sizes
are much smaller than the processor memory, then a hash join, based upon a hash of
the tuples within a bucket to a memory location, can be used which may provide very
good performance [26]. However, the concern here is how to handle all cases which
includes cases that exceed the capacity of the processor memory. In these cases. the
processors that exceed their memory capability could hash the buckets thev receive
passing buckets onto further processors. This recursive application of the hashing
allows the size of the buckets to be regulated if there are enough processors to allow
this. Obviously, there are cases when the total size of the relations exceeds the total
processor memory size. This requires the processors to use some form of secondary
storage to store tuples and to allow intermediate data to be stored during the join
processing. Therefore, the speed of access of secondary storage could influence the
performance of the join operation. Figure 31 shows that even when secondary storage
is used, fast secondary storage versus slower disk secondary storage does not provide

a significant performance increase.

The next element of the environment is the communication capability of the
processors. It is assumed that the processors have the ability to pass data from
one processor to any other processor. This does not mean that there needs to be
a direct path from each processor to each other processor. but that there exists a
capability for data to be routed through intermediate processors to reach the desired
destination processor. One advantage of the bucket join is that only at the beginning
of the process when the relations are being hashed does information have to be shared

among the processors. After the individual processor receives all of its data. it does
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Figure 31. Join Performance Effects of Decreasing Access Speed of Secondary Stor-

age.

not have to communicate with any other processors to complete its portion of the
join. This is different from the nested-loop algorithm that must continually pass
additional data to be joined and the sort-merge algorithm which requires several
transfers of portions of the relations to complete the sorting of the relations. Since
all of the join algorithms require some inter-processor communication, Figure 32
shows the effect of improving the speed of inter-processor communication. Included
in the effect of inter-processor communication time is the time required to pass the
results to some form of back-end. Currently. the back-end is modeled to be a data
sink that does not create any contention within the inter-processor communication.
Therefore, the volume (as determined by the join selectivity factor) of the results
directly effects the time to complete the join. Figure 33 illustrates the effect of join

selectivity factor in the performance time of the join.

The last factor of the performance time of the join is the number of processors

available to perform the join. The number of processors and the amount of memory
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of each processor are combined to describe the capability of the processors in this

discussion. The goal when processing the join is to have enough processor capability
to contain all of both relations in processor memory. If the processor capability is
generated by very large processor memory, the processing times are slower, due to
the larger workload for each processor. Therefore, the ideal goal for the number of
processors would be to have RxS processors if using the nested loop algorithm. This
allows each processor to compare the smallest portion of each relation that is feasible.
It using the sort-merge algorithm, 2R+2S processors would be the optimal number
of processors. This would allow R+S processors to each sort one block of tuples and
leave R+S processors to form binary trees to merge the sorted blocks plus merge the
final sorted relations. The bucket join, due to the grouping of tuples by value. would
need R processors, assuming R>S. This allows each processor to process one block
of the largest relation and a portion of a block of the smaller relation. Thus. the
block join requires the least number of processors to provide the optimal processing

environment.

The bucket join achieves a more optimal processor environment than any of the
other algorithms. Even this environment may not be a realistic number of processors
to have in the system. Figure 30 showed the effect of increasing the processors but it
does not show what the effect of increasing the processor memory size, to increase the
processor capability, will have on the performance of the operation. Since increasing
the memory size would reduce the amount of information that would have to be
stored in secondary storage, the performance time should improve. However. by
increasing the memory size, the processing time increases because the amount of
processing to be done by the processor, sorting or comparison of blocks. increases.
Therefore, the increasing of processor memory improves the performance but not as
significantly as might be expected. Figure 34 shows the effect of varying the memory

size of each processor performing the bucket join.

The bucket join is the best join for all equi-join retrievals. This was shown
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'I' above. The sort-merge algorithm within the bucket join provides the best perfor-
mance results except when each processor contains one or two blocks of each relation.
Then the nested-loop algorithm performs better. However, one more consideration
in selecting an algorithm is whether the time to produce the first results or the time .
to produce the entire set of results being more important. If the time to first resuit ?,_v.
is the desired performance element, the nested-loop algorithm will produce results
{ much sooner than the sort-merge aigorithm because it starts act' . i comparison of :*:‘
the two blocks of tuples immediately. The sort-merge algoritlii. has to sort the D“
blocks of each relation before actual comparison of the relations begins. However, \‘3
the sort-merge will complete the entire operation sooner than the nested-loop algo- :S
rithm. The focus of the investigation here has been on the performance time of the L:i'!
’ complete operation. So, the bucket join using the sort-merge operation is the best :J
algorithm, no matter what the input data structure of the relations, for performing E:
the equi-join. t
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s 7.5 Update s
A
. : : . '
The update operation is the only operation considered that does not retrieve o
o
data in response to a query. The update operations add, modify, or delete tuples :‘_’.
. : )¢
from existing relations in the database. All of the update operations require two N
h
phases: a determination phase as to the correctness of the update and the actual ',
modification of data within the database. Due to the determination of correctness .
phase, what seems to be the best data structure for updates may not be as efficient as
other data structures. The following sections compare the performance time. which -
is dominated by disk accessing, necessary to perform updates using the various data "
. o
structures. ’_
oy
-,
7.5.1 Insertion The insertion operation adds new information into an exist- .
ing database. The first element of the performance time of the insertion is the level :
of integrity checking enforced within the system. If no integrity checking is done. =
i o
) such as for a history type database that allows duplicate entries, the fastest insertion .
’.
would be one that could place the data at any available space. This type insertion -
would require one block to be read, the tuple added to the block, and the block ,
written back to disk. This provides the best possible performance to complete the 3
'
insertion. However, the performance models developed previously require a mini- :
mum level of integrity checking. The result of this is that the insertion, with the -
unstructured environment described above, requires the entire relation to be read \11
and scanned to perform the integrity check. Thus, the insertion time is increased A
from two disk accesses to R + 2 disk accesses (where R is the number of blocks in -\
the relation). The above example illustrates the major element in completing the =
insertion operation—disk accesses. Next, the performance of inserting a tuple given '.,,
the different data structures in the multiple processor-multiple disk environment will :f:::
l-'-‘
be examined. o
N
. The multiple disk environment allows the overlapping disk accesses. This im- e
7 &
o
£
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4

proves the performance of an operation that requires reading several blocks of a

relation. Using this concept. the time to perform an insertion with the unordered-
unindexed data structure, with R blocks in the relation and d disks, requires R/d
+ 1 disk reads/writes. However, the indexed data structure requires the index to
be updated and the insert can occur in any block with extra space. By updating

the index, the integrity checking is also accomplished. Thus. the insertion requires

ekt A
A

approximately L + 2 disk I/Os, where L is the number of levels in the index. Since

LR A

the fanout ratio of the index is user controlled, the maximum number of levels in

the index should not exceed 5 or 6. This means the insertion with the indexed data

Yy ‘camwaaec < eeasiRariige et e ) aadkdd

o 0,
.l.l .

structure requires approximately 7 or 8 disk reads or writes. The contrast in data

¢

structures illustrates that the indexed insertion requires a constant number of disk

L

I/Os to perform the insertion, while the disk 1/Os using the unordered-unindexed

(¢

data structure increases with the relation size.

3

S %Y
 x

o The insertion of a tuple in the ordered data structure is similar to the unordered

2
[l
"

case described above. The difference with the ordered data structure is that the entire
relation does not have to be read in each case. The expected value of disk reads to
find the insertion point for the new tuple is half of the relation. The insertion in the
ordered relation also requires the ordering of the relation to be maintained. though.
This means the tuples within blocks may have to be moved to make room for the
insertion. Therefore, the ordered insertion depends heavily upon the expected values
of finding the appropriate insertion location and number of blocks that need to be
reorganized. The implication of this is that the entire relation will be read to find
the proper location or will be read and written during the reorganization. However.
using multiple disks, the number of disk reads or writes is reduced to the portion
of the relation stored on a single disk. This, like the unordered-unindexed data .

structure, varies with the size of the relation.

: . N ~
The final data structure is the ordered-indexed data structure. An insertion iy

- with this data structure requires the constant number of disk 1/Os to update the i
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z Figure 35. The Performance of Inserting a Tuple ’
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4 - . . . . . » .
y i index and to find the proper insertion location. Then the remainder of the portion R
of the relation stored on the disk following the insertion point would be reorganized ~
(" to make room for the insertion. This may require several disk accesses or just a few .
. accesses but it is assumed for modeling purposes half of the blocks contained on the
disk will be reorganized. <
. -
N The resuits presented above show that the indexed case presents the best struc- .‘_:'1
. . . . . . . ™
- ture for completing an insertion in an on-line situation. The one effect not discussed j
- is the time required to maintained multiple indices. However. each index will require .
another L + 2 disk [/Os to be updated. If the indices are contained on separate disks =
. . . =
» and several processors and disks can be used to update the indices the performance .~
time would be the same as updating a single disk. Figure 35 illustrates the various v
N insertions with the different data structures, showing the excellent performance of ¢
<
. . . &
the indexed data structure. The performance times presented al<~ show an indexed ‘\T'
case that requires one processor to update two additional ind: - - and its effect upon Q.':
. - the performance time.
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Figure 36. The Performance of Deleting a Tuple
_’,, 7.5.2 Deletion The deletion of a tuple is similar to the insertion except no

blocks will need to be reorganized to maintain the proper ordering. Therefore all the
data structures provide performance similar to the insertion performance. However.
the ordered case provides an improvement over the unordered case for all situations.
The indexed cases still provide a constant time to perform the operation no matter
what the size of the relation, thus providing the best performance. Figure 36 shows

the performance times of the different data structures to complete a deletion of a

tuple.

7.5.3 Modification The final update action is a modification of a tuple. Ac-
tually the modification is considered to be a deletion and an insertion combined.
Therefore, the performance results are similar to the insertion and deletion. Fig-

ure 37 shows the performance results of performing a tuple modification.

The results presented for the update actions show that the best data structure

for updates is the unordered-indexed data structure. This says that if the user
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Figure 37. The Performance of Modifving a Tuple

L requires many on-line time-critical updates, the best way to store the relation is in

an unordered manner with an index for the key of the relation.

7.6 Performance Conclustons

The performance results presented in this chapter do not provide a “best data
structure” for storing relations; however, some conclusions about the “better data

structure” for given situations can be drawn. The data structure has no impact

on the performance of the project. Also. the join processing that provides the best
results (bucket join) does not depend upon a data structure because the first step
scans the relation and redistributes the relation. Therefore. anv of the data structures

. will provide the best environment for performing the project or join operations. Thus.

30 BV SV AR AV N

the only operations that depend upon the data structure are the select and apdate.

The select operation performance results presented two conflicting views. The

first view shows that if the main retrievals from the database consist of queries *ha:

{

produce results consisting of a single tuple or a few tuples. the best data structon.
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is indexed, either unordered-indexed or ordered-indexed. However. when the results
produced in response to a query consist of a group of tuples. the unordered-indexed
case provides the poorest performance because it requires random retrievals of tu-
ples. The best performance is provided by the ordered-indexed data structure. with
the ordered-unindexed and unordered-unindexed providing similar results. The ad-
vantage of ordered-indexed data structure is the direct pointer to the beginning of
the tuples that satisfv the query. Thus. the select performance presents conflicting
views of the “best data structure”. Therefore, the results of the select data structure

must be balanced with the results of the update operations.

The update operation performances presented all assume the update must be
dene immediately. If the update does not need to be done immediately and the
updates can be accumulated and done together in a batch. the update operation
then becomes more of a select-type operation which favors the ordered structures
or unordered-unindexed structure. Therefore, the individual database user require-
ments must be defined to allow the best data structure. However. if the requirements
of the database are mixed or are not definable. the probable data structure mix is the
unordered-unindexed data structure, because the unordered-unindexed data striue-
ture provides middle of the road performance for all situations and the performance
of the unordered-unindexed data structures can be linearly increased by increasing
the number of processors and disks until each disk contains a single block of the
relation. In this optimum case. the select or update operations would require eaclh

disk to retrieve its one block, thus requiring the time for only one disk access.

The final operations are the binary operations. The results presented showed
that the join operation is best performed by a distributed environment that groups
the information independent of the stored data structure.- The product operation
ignores any data structure in its processing. Therefore. the data striucture does not
itnpact the binary operation processing in a multiple processor environment. The

consideration of the performance of the binary operations is the ability to access
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the relations in parallel, to provide the multiple processors with data as quickly as
possible. This implies that the data structure consideration of these operations is
that the relations are stored in the round-robin fashion on the disks to allow paralle]

access to the relations.

The conclusion is that the main requirement for all processes is parallel access
to the relations for over all best performance in all cases. When the data structure
is being optimized for single retrieval or update operation. the relation should still
be stored distributed on the disks to provide the parallel access of the relation when
the optimized case does not fit the retrieval. Table 4 summarizes the effects of the
environment parameters on the performance of the various operators. Therefore, for
the case of select-FT case the table indicates that indexing is desired. However. if
the relation data structure is indexed, the tuples should still be stored on several
disks. This will not improve the select of a single tuple from the relation but provides

better performance when the relation is needed for a different operation.

Table 4 summarizes the best performance for the given set of time parameters
used for this evaluation (e.g., Tio, T, Th, ...), assuming a multiprocessor environ-
ment. This does not mean that the performance of the “best” column will alwa.s

provide the “best” performance for all combinations of performance parameters and

architectural constraints. The performance summary presented shows how the query
processor designer would use the models to produce a set of similar “best” results L:i;.
for their actual case to guide the design process. The general column of the sum- a
mary table provides an overview of what data structure is “always” optimal if no

data structure currently exists. This means that for the select it is not feasible to

LT I

have to sort the relation first to provide better performance for a single retrieval.
Thus. Table 4 illustrates the use of the analytical models as a building block in the

structured approach to designing a database query processor.
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Data Structure or Algorithm
for Best Performance

Best
Case

General
Case

Select - Single Tuple Result

Indexed-Unordered

Unindexed-Unordered

Select - Multiple Tuple Result

Indexed-Ordered

Unindexed-Unordered

Project N/A N/A

Insert Indexed-Unordered | Unindexed-Unordered
Delete Indexed-Unordered | Unindexed-Unordered
Modify Indexed-Unordered | Unindexed-Unordered
Join Bucket-Join Undetermined
Product Nested-Loop Nested-Loop

Table 4. Summary of Performance Results
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i VIII. Multi-Step Query Performance
!
3_ The typical retrieval from a database requires more than one relational opera-
3 tion to complete. All of the focus on performance to this point has been on individual
l retrieval operations. Next, the effects of combining the individual retrieval opera-
. tions are explored. First a general form of expressing a multi-step query— a query
. tree, is explored. Then the individual query steps are examined to determine how
‘ they fit the general form of the query and how multi-step queries may be executed.
d
E'- 3.1 Query Tree
i,': The relational database exists to provide data in response to user queries for
E data. The queries may require several steps to provide the response in the user-
E defined format. The series of steps necessary to complete the query correspond to the
f: relational operators and are often expressed in a tree form. This tree representation
of the query steps is called a query tree [19]. Figure 38 illustrates a query tree.
The query tree is an operator tree that shows an internal representation of the
steps necessary to complete a query. By using a query tree, any relational algebra
equivalent query may be represented since the query tree shows the relational algebra
operators necessary to complete the query. The internal nodes of the query trees
describe the relational operators necessary to answer the query. The leaves of the tree
describe the relations used by the relational operators. The query tree also shows -
the execution order of the relational operators. It is assumed that any optimization »-,
done by manipulating the execution order of the operators [73.79] has already been ."_"
completed. ~
%
The query tree is actually a parse tree showing the relational operators and 5/"
their execution order [79]. By definition. a tree is a finite set of one or more nodes such ﬁ:
that: (1) there is a specially designated node called the root: (2) the remaining nodes :Q
:'4;-'.' are partitioned into n disjoint sets, Ty, T, -+ -, T,,. where each of these sets is a tree. E\"‘j
0
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Figure 38. A Simple Query Tree

T, Ts, -+, T, are called subtrees of the root [39]. Also, the query tree is a directed
graph in which the nodes represent precedence relations between tasks. Figure 38
shows a typical query tree and Figure 39 shows the expanded directed graph form of
the query tree. These properties make the query tree cornpatible with a computation
graph [45,53]. Cesarini uses the compatibility with a computation graph to construct
query execution graphs to explicitly show the independent parallelism possible for a

given query tree [16].

Parailelism is the use of multiple processors to effectively work on a prob-
lem concurrently. Independent parallelism, intranode parallelism, and pipelining are
three forms of parallelism. In independent parallelism, the tasks do not share data
or depend on the results of a task that is currently executing, allowing the tasks to
be processed concurrently or in parallel. Intranode parallelism. as seen in previous
chapters, is parallelism allowed by the specific algorithm and data structure used to
complete a task. In intranode parallelism, the algorithm must effectively allow differ-

ent processors to work on the same or shared portion of the task without corrupting
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Figure 39. Directed Graph in the Query Tree

the data (this type of parallelism is not possible in all cases). Pipelining implements
multiprocessing by having data-dependent processes cooperate in creating a data
pipeline. The pipeline passes partial data from a process to the next process allow-
ing several dependent processes to be active concurrently by using partial results
from the previous process. Therefore, parallelism improves performance by the use

of processor allocation.

Parallelism is one method of improving the performance of completing the
processing to satisfy a query. The query tree provides other opportunities for possible
performance improvements. One method of performance improvement. using the
query tree, is query optimization. Query optimization uses the mathematical basis
of the relational operators [18] to reconfigure the order of the operators in the query
tree [79]. This manipulation of the order of the operators to make the query structure
more efficient bases its manipulation on the amount of data being passed from node
to node in the query tree and tries to reduce the data as soon as possible [73.79].

Since the performance of the query depends upon the amount of data to be processed.
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it is useful to annotate the query tree to describe the amount of data used at each

step of the processing.

Each of the operations in the query tree produces a relation as its results. The
arcs of the query tree represent the passing of relations from node to node. Therefore.
there is a size or amount of data associated with each arc, which is dependent on the
previous operation. Using the query tree of Figure 40, assume the sizes of relations
R, and R, are n; and nj, respectively. Then arcs a; and a; would have sizes n;
and n,. The size associated with arc a3 is a function of operation z; and its input
a;. Thus, the size of a3 is fin;. Correspondingly, the size of the relation associated
with a4 is fang. Arc as is the result of binary operation z3. Therefore, the size of as
depends upon the the size of both inputs a3 and a4, and the operation z3. The size of
the results of 3, arc as, is represented by f3( fin; X fan,) (the product combination of
inputs is normally considered for the join and product operations and f3( fyn;+ fan,)
for other binary operations, although by reducing the selectivity factor the product
representation can be applied). The range of f; is 0 to 1, providing a range for the
output from 0 to ( fin; X fang). Since fi, fa, and f3 control the volume of the output.

they are called selectivity factors.

The selectivity factor is a critical element because it determines the size of the
resulting relation which may be the input into another operation. The effect of the
selectivity factor is greater than it may seem. A simple example will be presented
that illustrates the binary operation information explosion possible. Suppose there
is binary operation, z,, that has inputs, R, and R.., which each have 150 blocks. If
the selectivity factor is 1, the results would consist of 22,500 blocks of information
(1x(150x150)). Previously, it was noted that this method of computing results may
not be valid for some binary operations, such as the product or join, because it lacks
sensitivity of the combination of the individual tuples within the blocks. Using this
concern, further examination of the example shows that each block of the relations

contains 100 tuples. The product now actually becomes. (100 x 130) x (100 x 130).
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- & plus the result for the product or join is a combination of the two input tuples. &
s meaning that only 50 tuples will fit in a block for the results. Therefore. with -
N selectivity factor of 1, the operation produces 225,000,000 tuples. With 30 tuples -
~ -.
T fitting in a block, there are 4,500,000 blocks produced. This illustrates the dramatic A
information explosion possible with binary operations. N
P 2
- :
‘ The concept of the query tree is that the operations take many inputs and ~
‘{ . . . \.
‘ reduce them to a single solution. This is true, but the shape of the query tree seems “a
to imply that the data volume also is reduced as it proceeds up the tree. However. -1
l.‘ ‘nJ
.._‘ as illustrated above this may not be true; instead. the resulting relation may be :::
) . . . . . . . -3
W much larger than the sum of the inputs. This has serious implications in the time 3
Y tA_:
& to complete the query because the size of the input is the main element in the time ;‘
a . . . . . -
> to perform an operation and one of the main time requirements of the operation -;:
- is the time to store and retrieve the intermediate results from secondary storage. :,;'
< Therefore, reducing the amount of intermediate relation storage is a critical element "
- . . . . =)
ol G in optimizing the performance of executing the query. The next section looks at how ]
- : -
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- to reduce the intermediate storage of relations.

8.2 Combined Operators

The purpose of combining operators is to reduce the need for passing and
storing intermediate relations by performing as many operations as possible while
the data is contained in the processor memory. There are two types of relational
operators: unary and binary operations. The unary operators, select and project.
are data reduction operations. Select and project reduce the input by either selecting
horizontal or vertical portions of the relation. Thus, if the query requires a select
followed by a project, there is no reason that these operations cannot be combined
to be performed together. The operation performs the select, producing tuples that
satisfy the selection criteria, and then the results can be reduced by only producing

the attributes that are necessary to satisfy the projection.

. 8.2.1 The Sel-Proj Operation. The sel-proj operation selects the tuples that
satisfy the selection criteria and the projection is applied to these tuples. The effect is
that the projection operation is applied only to that portion of the relation already
in memory, reducing the I/O time required. If the sel-proj operation is required
for a retrieval that requires only a project, the sel-proj operates as a projection
operation, selecting all tuples, while if only a selection operation is needed. the results
of the select are not altered. The combination of the two operations reduces the
intermediate reading and writing of temporary relations, improving the performance

of multi-step queries.

Figure 41 shows the performance of the sel-proj operation (using the unindexed-
unordered data structure) versus the sum of the time to perform the separate select
and projection operations in sequence. This shows that the reduction of I/O by elim-
inating the intermediate storage of results in the combined operation does improve

the performance compared to performing the two operations separately. Next, the
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- N
2 possibility for combining other operators is explored.
'
.
N 8.2.2 Other Combined Operations. The concept of combining operators is
really a simple form of pipelining. Pipelining requires that the operation can operate
"
A on a portion of the input without corrupting the final results. Corrupting the results
.
o also means not providing the complete set of results. Therefore the only relational
o
: operators that satisfy this condition are the unary operators (without special data
_',;; structures or special constraints). The only unary operators are select and project
) 7.
- and it has previously been shown that they can be combined into a single operator.
'l
s There is however one more possibility for combining relational operators.
o The final operator combination combines the sel-proj operator with any binarv N
o, ~
- operator. The sel-proj is an unary operator. It takes a single input relation and pro- -
w N
o duces a single output. The sel-proj can be combined with any binary operator. The
i R binary operations have two input relations and produce a single resultant relation. 3
e, ’ K
e, :
‘3'1 229 N
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Therefore the binary operation can be combined with the sel-proj operation. where
the results of the binary operation are reduced by selection and projection before
they leave the processor that performed the binary operation. Performing a select
and project (with no duplicate removal) on fragments (horizontal fragments) was

shown to be valid in Chapter II.

The combination of a binary operator and the sel-proj produces valid results.
Next, the performance improvement of combining operators and the limitations of
combining operators are discussed to determine the value of combining operators.
An example best illustrates the opportunity of improved performance by combining
operators. Suppose there is a binary operation that produces 1000 blocks of output
followed by a selection and the results of the selection are further reduced by a
projection. If the operations are done individually, the intermediate results must be
passed from one processor to another or the results must be stored on some form of
secondary storage. If the operations are performed as three separate operations. the
1000 blocks of results must be passed to the select operation. The results of the select
must be passed to the project. If the select produces 500 blocks of output, then it is
necessary to pass 500 more blocks and finally, the project must scan the 500 blocks
to produce its results. The “cost” of using three operators instead of combining the
three operations is the time to pass 1500 blocks and the time to scan 300 blocks.
The consideration is that the scanning of the results of the binary operation does
not take any more time in the processor that produced the results as in a separate
processor and by performing the operations together, the time required to pass data

is reduced to only the final results of three operations instead of one operation.

8.3 General Query Tree Form

The combination of the binary operators with the select and project operators
provides the opportunity to restructure the query tree to a normal query tree form.

The normal query tree form reduces the operations required to complete a query
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Figure 42. General Normal Form Query Tree

and this reduces the volume of data being transmitted. Figure 42 shows the general
normal form query tree. Figure 43 illustrates the query shown previously in Figure 10

in the normal form query.

The normal form query has two types of nodes—the initial nodes and the
binary nodes. The initial nodes are the operations that first retrieve the input or
base relations. The initial nodes also reduce the hase relations as much as possible.
The binary nodes consist of a binary operation combined with a select and project
that prepares the results of the binary operation for the next binary node, or provides

the final formatting of the data for presentation to the user.

8.3.1 Initial Nodes in Normal Form Query. The initial nodes retrieve and
provide the input to the base level binary nodes. The primary task of the initial
node is to retrieve the base relations for further processing. The initial nodes also

perform any data reduction that is possible.

The data reduction with a single relation is either a select. project. or both a
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Figure 43. Example Query

select and project, using the sel-proj operator. The initial nodes perform as data
filters to reduce the data as it is retrieved from secondary storage. If the project
performed by the initial nodes does not remove duplicates, the operations of the
initial nodes can be completed by a single scan of the relation as it is retrieved.
Therefore, these relations passed to the lowest level binary nodes are ready for the
first binary operation. However, these relations may have duplicate tuples. But. the

duplicates will be removed by the operation of the binary nodes.

The initial nodes may provide the capability to completely satisfy some queries.
If the query calls only for a select and/or a project that does not introduce duplicates.

the initial nodes can complete the query.

8.3.2 Binary Nodes in Normal Form Query. FEach binary node takes two
input relations and produces a single output relation. The binary node inputs have
been reduced by sel-proj operation of the initial nodes or lower level binary nodes.

Also. although the base relations may have been stored as ordered or indexed data.
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As described previously, the binary node s a combined operator. It first performs
the binary operation. then the sel-proj operator is used 1o reduce the results to the

normal form for the next binarv node.

The purpose of the binary nodes is to complete the necessary operations to
complete a query. The binary relational operators are product. join. difference.
union. intersection. and division. The binary nodes will also be used to remove
duplicates (the means of duplicate removal will be discussed latery. Next. how the

binary nodes implement the binary operations will be discussed.

The operations the binary nodes have to implement fall into two classes - equal
comparison operators and compare-all operators. The equal comparison operators
are operators that only need to find the tuples that have equal values for specified
attribute (or equal tuples where the keys are equal). Thus. if all the tuples with
equal attributes can be grouped together. the operator only has to examine each
group at a time to complete the operation. The equal comparison operators use
groups of tuples of the relations where corresponding groups are formed under the
same criteria. For relations R and S. this means that R and S are grouped so R;
corresponds to Sy, R, corresponds to S,, -+, and R, corresponds to S,. Besides
the equi-join, the other operators that fit this condition are union. difference. and
intersection. The most familiar example of the equal comparison class operators
is the equi-join. The equi-join may be implemented by sorting each input relation

on the join attribute and then performing a merge tvpe comparison. The merge

C e . P
Tetea, 8,0,

L e .
bttt lh

operation works because it needs only the tuples that have equal join attribute(s).
Thus, the name equal comparison operator is a descriptive name for the equi-join

operator.

fer
RAAALAALN

he union operator combines two relations that have the <ame tuple definition.

This means that the tuples of both relations have the came attributes defined on the j
A
.
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same domains. The union operator then combines the two relations. eliminating
any tuple that may be duplicated. The grouping of the tuples by value insures that
duplicate tuples will be in the same bucket or group and the comparison wiil discover
and eliminate the duplicates. The results of the union consists of the combination
of the results from each bucket and the results from each bucket consists of all the
tuples remaining after the buckets of each relation are sorted and compared by a
merge type operation and duplicates eliminated (see description of bucket-join in a

previous chapter for complete description of sort-merge processing).

The intersection operator compares two relations and selects only the tuples
that appear in both relations. This operation is the opposite of the union. This
means that during the comparison phase of the operation only the tuples that are
in both relations are selected. By providing groups of tuples formed by the same
criteria, the tuples that are equal are guaranteed to be in the same group providing
the ability to compare only small groups of tuples instead of the entire relation.
Therefore, the intersection is a member of the equal comparison class of operators

that may be implemented by the bucket comparison operation.

The final binary operator that may be completed using the equal comparison of
the bucket comparison operation is the difference operation. The difference operator
compares a first relation with a second relation and removes from the first relation
any tuples that are duplicated in the second relation. Again, the operator operates
only on tuples that are equal in both relations and the correct results can be provided
as long as all the equal tuples are compared. If no duplicate tuples were found the
results would then be the entire first relation. Since only the equal tuples need to be
found, the bucket-join type processing of grouping the relations into buckets. sorting
the buckets, and merging or comparing the ordered buckets. provides the capability

to perform the difference.

One requirement of the binary nodes. duplicate removal. does not fit the eqia.

comparison class of operators because it is not a binary operation. However. dn-
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Figure 44. Normal Form Query Tree with Duplicate Removal

plicate removal is a part of the combined operator of the binary nodes when the
bucket process with sort-merge is used. Duplicate removal is easily completed by
the bucket processing technique because the grouping of tuples and further sorting
places duplicate tuples together in the input relations where the duplication is eas-
ilv identified and duplicates removed. Therefore duplicate removal from the input

relations is incorporated in each operation that uses the bucket type processing.

Since the bucket processing eliminates duplicates from the input relations. any
duplicates introduced by the projection on the output stage of a binary node wiil be
deleted by the next binary node encountered. If no more binary nodes are required.
then a special duplicate removal node needs to be added as the last node of the
normal form query tree. Figure 44 shows the modified normal form query tree with
duplicate removal. With this extra node to remove duplicates as required and the
combined operators. all queries can be mapped into the normal form query rree.

However, the binary nodes also may be required to perform compare-all operations.
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i The binary nodes must also be capable of performing the other binary rela- :3
tional operators—product and non-equality joins. The compare-all operations are 3

operations that must compare each tuple of one input relation with each tuple of ."j

the other input relation because just finding the equal tuples will not insure the }

complete or correct results. These operations require all or parts of the relations :

to be compared or combined with all or part of the second relation. The product 4

requires each tuple of the first relation to be combined with each tuple of the second :

relation. The only algorithm that can accomplish this is the nested-loop algorithm. "

The nested-loop algorithm compares tuples of each relation block by block Sﬁ

to complete the operation. The nested-loop algorithm was discussed as a solution -E:

for the equi-join operator in an earlier chapter. The problem of the nested-loop ~

algorithm is the lack of problem reduction capability such as the bucket-join process 4

nad. Therefore for two relations with n and m blocks. respectively, nxm blocks must '

E be compared in the nested-loop algorithm versus the (n/b)x(m/b) block comparisons 4,
when the processing may be grouped by blocks. However, the nested-loop processing F

is necessary to complete the product operation. f

The join, including the equi-join, is a special case of the product wnich consists ;.

of a product followed by a selection, where the criteria for the selection is referred -\

to as the join condition. The equi-join has a join condition that selects tuples where f

the join attribute(s) are equal. However, the join condition may also contain a less }.

than or greater than condition. Although the bucket-join does provide a means to :

group the necessary tuples together, the hash function does not reflect true ordering

of tuples by value. Therefore, the nested-loop process is used to perform the join

where the join conditions are other than equal conditions. ’

8.4 Performance of Normal Form Queries \

The individual components of the normal form query tree are the initial nodes g

o and the binary nodes. The characteristics of the nodes of the query tree have been E
;:
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> discussed and the performance characteristics of the individual operations consid-
ered in the implementation of the individual nodes. However, the execution of the
entire query and its total performance and the use of parallelism in the normal form
query tree have not been directly addressed. The following discussion provides this

information.

The time to execute a query expressed in the normal query tree form is the
time to complete execution of the root binary node plus the time to complete the
largest subtree (largest in terms of execution time, where execution time is the
time from the first processing of the query until the time of completion the last
subtree process, and not necessarily the total time spent executing the subtree).
This definition is recursive since each subtree is also a tree. Therefore. the time
to execute a subtree is the time to complete the root node of the subtree plus the

greater time of its subtrees. By this definition, the time to execute a query in a

AN YL

- single processor environment would be the sum of the node execution times. In
a multiple processor environment, the possibility of using parallelism may improve
the execution time. Therefore, further exploration of the parallelism possible in the

normal form of the query tree will be explored.

- el il b A

The three forms of parallelism—independent parallelism, intranode parallelism.

and pipelining—all have opportunity for use in the solution of the query. First, in-

el

tranode parallelism is the use of multiple processors in the execution of a single node.

Intranode parallelism has already been addressed and shown to be effective for the

. !
2ot

sel-proj, bucket-join, and nested-loop processing, which are the only types of opera-

1

T .,

tions necessary to solve any query (bucket-join encompasses all bucket processing).

A-‘J); LAS I
5 %

P g L

v

Thus, the performance of the execution of a query tree may be improved by using

5

multiple processors in the execution of each node. However, the storing of the inter-

mediate results between nodes is normally considered to be the biggest time drain

lll"}.‘].

due to the time discrepancy between processor speed and the disk [/O time.

. el Pipelining is theoretically impossible for the binary operations. It is impossible
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because the binary operations require all of the first relation to be compared with the
second relation (or bucket of the relation). This means that one binary node has to
be complete before the next node can finish. However, some of the initial processing
in a binary node can be accomplished as pieces of the inputs are provided as results
from a previous binary node. If the binary node uses the bucket type processing. the
initial input blocks are hashed and blocks distributed to the processors where they
will be processed. The processors take their initial hashed blocks and sort them to
prepare for completely ordering the buckets of each of their inputs. The nested-loop
processing does not sort or hash the tuples of the blocks it receives. But the nested-
loop process can begin the comparison of blocks as long as the blocks are retained

: for comparison with all other blocks.

Pipelining is the type of parallelism that could most reduce the amount of

secondary storage accesses in solving a query. However, pipelining does require

S processors to be committed to receiving results which removes a processor(s) from
the current process, which may increase the time to perform the current process.

The other consideration of parallelism is independent parallelism. The normal form

of the query tree provides this opportunity because each subtree of a binary node

can be performed independently. The ideal situation would have both subtrees

of a binary node being processed concurrently and both finishing at exactly the

same time, since the binary node cannot begin processing (see above for complete
description) until both subtrees are complete. Therefore, independent parallelism

is an important possibility in solving a query. Ideally, all forms of parallelism are

used while processing the binary nodes of the query tree. However, the binary nodes

] require input and the initial nodes are required to first retrieve the base relations

from secondary storage to begin the processing.

The initial nodes are data filters that retrieve the base relations from secondary

storage. The processing of the initial nodes is not concerned about pipelining since

7 this is the base level operation. This leaves only independent and intranode paral-
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~ lelism. Intranode parallelism is easily and effectively implemented by using several ::
processors. However, the retrieval of data from secondary storage has been the em- ':’

phasis of research because the disk retrieval is time consuming. Intranode parallelism :'E
improves the performance of the retrieval only if the data has been distributed over .

the disks available. Distributing the relation to several disks allows the disks to ;:
simultaneously provide data to the processors performing the data filtering. j
The initial nodes provide the opportunity for independent parallelism. How-

ever, for independent parallelism to be effective there must be available resources. :’b{

If intranode parallelism is implemented to retrieve a portion of a relation from the :
secondary storage devices, then the storage devices are busy and are not available '
for independent parallelism. Therefore, if intranode parallelism is implemented. in- ":."-“
dependent parallelism opportunities are reduced and vice versa. The next section f'j

examines some of the performance trade-offs of implementing parallelism. -
oy -
8.5 Modeling a Multi-Step Query L

A multiple step query provides the opportunity for implementing parallelism.

Therefore, the analytical modeling of individual operators is extended to a multi- :
step query. Modeling a query consisting of multiple steps requires some assumptions ':\._

about resource allocation, interconnection of processor communication. and data :
placement in support of the query. I[deally. the query could apply parallelism to \
utilize the multiprocessor capability to decrease the execution time of the query. .i-

One method of executing the multi-step query is to execute each step separately and ‘

: store the results for the next step. This method requires some method of storing the :
intermediate results, but allows all processors to concentrate on each step. One form Y

of parallelism is pipelining. Pipelining allocates resources so the results of one step
are passed directly to the next step. Previously. the theoretical consideration of the

binary operations was discussed and it was said that the binary operations needed all

complete inputs to accomplish the binary operation. This reduces the advantage of

3
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pipelining but does not eliminate the use of pipelining in solving a multi-step query.

The modeling of a multi-step query combines effects of the control of resources.
data distribution, individual operations, and the ability to communicate and pass
information among the processors. Development of a multi-step model provides a
basis for developing processor allocation. data distribution, and sequencing of events
to provide the “best” performance. The first multi-step query to be modeled is an
equi-join of two relations that have been reduced by prior selection and projection
on the base relations. This query retrieves the two base relations. performs a sel-
proj on each relation and then performs a join. The environment assumes multiple
processors, fully interconnected processor communication, multiple disks for storage
of base relations, and temporary storage at processors when needed. This model is

then extended to cover the more general query tree.

The utilization of parallelism to solve the defined multi-step query begins with
parallel retrieval of the base relations. It is assumed that the base relations are
distributed over several disks. It is also assumed that each processor used to retrieve
the base relation has a corresponding disk. Thus, there is no contention for the
disk resources. The model also assumes that the results are being sent to some
outside data sink. The next consideration is how to allocate tasks to processors to
accommodate pipelining and how much should tasks be separated. This leads to
four different schemes for solving the multi-step query that joins two relations that

have been reduced by selection and projection.

The schemes or models developed for the query use pipelining to provide over-
lapping processing of tasks where possible. Although previous models showed opti-
mized retrieval performance when the relations are stored using indexed and ordered
structures, the models developed here assume unordered-unindexed relations ithe
unordered-unindexed structure is the general retrieval case. other data structures
may provide {aster retrievals but the unordered-unindexed retricval works for all

cases). This means that the entire relation is retrieved and scanned to perform the
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sel-proj operation. This method has shown that a linear time reduction is provided
by providing more disk-processors for the selection operation. Therefore. it is known
that the sel-proj operator is sensitive to the number of processors applied to the

task.

The next step of the multi-step query is the joining of the two relations. The
bucket join was shown to be the best algorithm to solve a equi-join. The first step of
the bucket join is to distribute or hash the buckets to be joined. Therefore. the join
is a two-step process, hashing and joining of buckets. This provides the allocation of
two tasks to processors to perform the hashing and joining. This means that some
processors could be used exclusively for hashing and some processors used for joining
buckets. Another method of allocating tasks could have each processor hashing
part of the input and when the hashing is complete and the buckets distributed.
each processor would join its buckets. If the buckets for the join are to large for
the processor memory, some of the tuples must be stored on secondary storage or
the bucket can be hashed again to form smaller buckets with additional processors
receiving the smaller buckets for processing. In the models presented here all of
the tuples are considered to be stored on secondary storage available at each join

processor.

The situations described above provide four different cases to be examined for
performing the example multi-step query. The four cases are: consecutive base rela-
tion retrieval with combined hash/join processors. concurrent base relation retrieval
with hash/join processors, consecutive base relations with dedicated hash and join
processors, and concurrent base relation retrieval and dedicated hash and join pro-
cessors. The different cases apply the overlapping of processing in different manners.
Figure 45 shows not overlapping the base relation retrievals and Figure 46 uses the
overlapping retrieval of base relations. The overlap models show the assumption
that the each operation may be processed by several processors but at several points

in the overlap model synchronization points. These points require all processors 1o
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complete the current process before the next process can start. This means that
the models of the individual steps presented in the following cases assume that the

model is worst case time for a processor. These synchronization points also allow the

R "SR YY Y YV _ ERw s aT
/‘ﬁ‘;
o

assumed architecture to not impose some matching of hash processors to retrieval
processors. An example of this is if there are 10 retrieval processors but only 2
hash processors, the retrieval processors may have to wait for the hash processors.
The model accounts for this by using the time of the longest process up to the svn-

chronization point. Therefore, if the hash takes longer than the retrieval/sel-proj.

l‘l.
v "a

then the time of the hash is the dominating factor that is used to compute the total

¢ 7«
PP
LN

execution time. The parameters to be varied in the cases are the number of proces-

sors allocated to each task. the separation of the join tasks, and the overlapping of o

relation retrievals.
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8.5.1 Multi-Step Query Processing using Consecutive Relation Retrieval.

N %
‘o

The base relation retrieval in Case 1 first retrieves the entire first relation, performs

. . . .. .
the sel-proj operation and hashes the relation to the join processors. The second ~
hY
[]
relation is then retrieved, operated on, and hashed. The join can then be performed. 1
=
Figure 45 shows the potential overlapping of actions when the relations are retrieved v

consecutively. This configuration assumes that the base relations are distributed

across all the disks (assuming the blocks of the relation are greater than the number

T S I
s

of disks). Therefore, all of the retrieval processors are used to retrieve the relations.

The processing in Case 1 continues by using all of the processors allocated for

“
.
[ RPN

the hash/join processing to hash the inputs. This implies that there are separate R
. . . . .. o
processors for retrieving and joining the relations. The processors assigned to join r\j
the relations implement the join by grouping the relations into disjoint sets of tuplex ..
=N
and then performing the join on the disjoint set of tuples. With multiprocessors. each =
LR |
processor can then either hash the input into buckets, hash buckets or both hash t;:
[ ]
. . . . . . . *‘

and join. This case assigns the join processors to both hash part of the inputs and
then join a group of tuples. If the buckets for the join are to large for the processor ,'.‘_:j
4::1
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o 10 -Time to hash results of SEL-PROJ of Relation 2 -- Ty
: 11 - Time to join individual buckets to complete Join -- T; -
A 12 - Total execution time ;
- Figure 43. Process Overlapping of Multi-Step Query '
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memory, some of the tuples must be stored on secondary storage or the bucket can
be hashed again to form smaller buckets with additional processors receiving the
smaller buckets for processing. In the models presented here all of the tuples are

considered to be stored on secondary storage available at each join processor.

The multi-step query model is based upon the individual operator models
developed in previous chapters. But the overlapping of process requires some inter-
mediate time parameters of operators to be computed. The first intermediate time
parameter needed is the the time of the retrieval/sel-proj operation to produce the
first block of results. The time to produce the first block of results depends upon
the number of blocks that must be scanned to produce a block of results. Therefore.
it must be determined how many blocks of the base relation must be scanned by
the sel-proj to produce one block of results. The formula for determining the total
number of blocks of results that are produced by the retrieval/sel-proj operation

(using the parameters of Table 2) is:

(v*(Rxf)=(B/r)*(1/B)) (:

o
o
~1

The value needed, however, is the number of blocks. x, to produce one block of

results. Using the formula of above. the equation for finding the number of blocks
to be scanned is:

(v +(Rxf)+(B/r)<(1/B)) 1

R Tz

120N

This reduces to

IZ(v*(R*f)*(B/r)*(l/B)) (09

R

which further reduces to
r=r/(v=f) (0.

Thus. the time required by the retrieval/sel-proj operation at each retrieval processor

to produce and send the first block of results to the hash processors is:
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‘ (Th,p is 1 and 3 in Figure 45 and 1 and 7 in Figure 46) -4
a
| !
/ \ f:’
' ((r/vv= f1)=Ty) -
: >
) .-ﬁ
: or :‘-.
: Ty =Tp + T; + T, + max + T, (211 o
' ((r/(v* f))/0) = 1) = T, b

+(r/(v=f))* T,

T

The total time for the sel-proj/retrieval operation (using p processors with p

disks) is: T

(Typ is 3 and 7 in Figure 45 and 3 and 9 in Figure 46)

((R/p) - 1) * Tsc)

+({(v*((R/p)x f1*=(B/r)*«(1/B)) = 1) % T, y

Tsp = T,,,+T4-o-Tm+max or + T+ T, ‘

| (R/p)/b) = 1)+ T, :
+(R/p) .
(212 '_.

The blocks of the results produced, ((v* (R = f}« (B/r)«(1/B). will be referred to
as R, and the results produced from the sel-proj of the second relation. S. will be
called Sy equals ((v = (5 f)*(B/s)=*(1/B). The inputs into the hash processors ix '
then equal to the number of blocks divided by the number of processors performing

the hash (ps which is 4 and 10 in Figure43 ).

The hash process consists of receiving the input from the sei-proj operation. v
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scanning the blocks to hash the tuples. and distributing the hashed buckets. The o
hash processors for Case 1 must also receive buckets from other hash processors
- : \ b
for later join processing. Therefore. the hash processors hashes. sends blocks of oY
L |
information, and receives blocks of hashed information. The hashing function I
assumed to produce approximately evenly distributed buckets. The functions 1., Y
CA
. N LAY
determine the number of blocks to be sent to each other processor for this case i~ g
Ll
t‘ - LS |
Ry =(R,/(py — 1)) + 1 for the first relation and 2213 N
<N
R
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Sy = (5,/(pn = 1)) + 1 for the second relation v

The time to process the hash. send the buckets. and receive the buckets to be pro-

cessed for the input R, is:

Th=Tn+ (R = (T +T,))+ ((2%(py = 1) = Ry) x Ty) (.

to
—
it

Another consideration is that the blocks retained or received by the processor might
exceed the memory capacity of the processor. Then some of the blocks must be
sent to secondary storage. During the hashing of the first relation. if R, > py. the

additional segment added to the performance model is:
+T3+ ((Ry = (py—2)) = T
During the hashing of the second relation the additional segment is:

if  (Ry>py)
+T;+ (5« T.,)
else

+ Ty +((Ry— py— 5, =20 «T,,

Also. the time used in the hash until the final block i1s received must be modeled.
['he actions required after the last block is received are hash the hiock and disrribure
the final block of each bucket to each join processor. Using this. the time to the poins

of receiving the last block to be hashed is:

L

N %Y Y

L A A gk a s
g
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1Ty, 1s 9 in Figure 15 B
A

i

N

Tar =T~ (1R, = ia(Tay s Tyt w0 2wipy = e e =0 w Ty s -
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[he final operation is the joining of the distnbured bhuckers The pertorman o 3
o | _ . o ~y

model where each processor joins mput relations of oo/ and ~2and rape s N
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- iT, - the time to perform the join is 11 in Figure 43 and 13 in Figure 451
?.
o if ({ Ry + 92) < py)
N
oa I, = T, + Tsort(Th Ry, B/ry.e) + Tsort(Th. Sy, B/ sy,.e ) 207
.
F +(((Ry+ 52)/2) « Ty) + (jB « Tyo)
- else if (Ry < py)
R
::‘ I = T +T>0rt(Tb RZ B/ snize) Td+(RQ*Txo)
N
(S < (py — 2))
2 + Ta+ ((S2 = (P = Ry = 2)) x Tio) + Tsort(Ty. Sy, B/ sese
o
’ (R + 52)/2)x T) + Ty + (Ry « Tp) + (j B+ Toy) 20
d
’ else
+Ti+((pp~(Sa=(pp =R =2)))xTp) + Tsort(Ts.ipy — 2V, ta
o ~ (52 =(py = 2))/ps) * (T + (py * T.,) + Tsort(Ty. py.ts ) ~ Ty ~ ipy« T
+ Ti+ (S2 = ((Sa = (py = 2))/py) = Ty -
+ Tsort(T, (52— (Sy = (py — 2))/ps ). ts
(152 =(py = (S2 = (S2 = (py = 2))/pst)) x (T, ~ T, 11 \
+(S‘2*(Td+T;o)) -
~+ max \1
l or .:_.
| (S2=(py=2))/py)+ 1 3
| > (((py/2) % 1)« Th) 3]
“ ll‘(Rv*bﬂ /..)—l « Ty ‘l
. ; |
- | . iy
- \ ~ (B = 1)+ Ty -
- +2« Ty +2« [, + max. J " D
- : or ‘.:
. Ry~ Sy =2 e T = T
’ ~L~Ti~1.,~1, AR
: olse /{_. > .:
; .
' o= Lo~ Teortiloope =200 B v e I m i =0 ] e
RER -'-;'
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' Ry =(ps = 2))/py x (Ty + (py « To) + Tsort(Ty. py (B/ryze)) + T N
TPy x L))+ Ta+ (R~ (Ry ~ (py = 2))/py * Tyo) o
5 -+-TSOT‘t(Tb.(Rz—(Rz“(Pb‘z))/pb:'-(B/rst:e)) ::‘
: (Ra* (Ty+ To)) + (Ry+ (T1 + T.,))
+ max or 9
' ({R2=(ps—2))/ps)+1 g
’ S ((p/2si) Ty %
o 1=2 ,
v if (52 < (py ~ 2))
.- + Td + (52 * Tto) + TSOTt(Tb, 52' B/Satze)
- +(((Re+52)/2)« )+ Ty + (R« Tp) + (3 B+ Tyy) 1220
y else
- +(S2/ps) * (Tu+ (py * o) + Tsort(Ty, py. B/sy.e) + T b
A . +(pb*Tm))+Td+((52—(Sg/pb)*ﬂo)-v'-Tsort(Tb.(Sg—|53/‘p5|.B“.s”:_ .-'_'.
< ‘:\f. :-s
;v (524 (Ty+ To)) + (3= (T4 + Top)) | g
+ max or J y
. (S2/ps) ‘ -
. Yo (Upp/2)*i) = Ty ! -
» =2 :.
- J ‘ -
‘ (R + S22 =1« 1) -
y ‘ .
. . \ -
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. +2«T;+2+«T,, + max »
. or %
) | (((Ry+ Sy =20« Ty = T B
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The time to complete the multi-step query can now be modeled by combin-
ing the individual components providing for the overlapping actions as shown in
Figure 45. The performance model for Case 1 when the relations are retrieved indi-

vidually and the hash processors also perform the join is:

¥.5.2  Multi-Step Query Processing using Concurrent Relation Retrieval. Tl

second case assumes a different data distribution. This case assumes that the reia-
rions are distributed so they can be retrieved concurrently. This illustrates a ditferen:
Jata placement of alternating disks to allow concurrent retrievals of different rela-
tions. This concurrent retrieval also forces the hashing processors to be split so tha:
one half of the processors hash the first relation and the others hash the seconu
relation. The relations are hashed to all of the processors for the join. Figure 16

illustrates the overlapping of actions for this case.

The performance models for this case require the hashing process model to
be altered slightly to reflect the hashing the first relation while receiving buckets of
both relations for the later join. Therefore. the hashing process model for input R,

assuming concurreni hashing of 5, and py. processors performing the hash of the
other relation) is:

[ st and 12 in Figure {6

I = To =R« Ty
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+ Tsc)) +(((ph +phr - 1) * ((Rl/((ph +th) - 1) T l) * Tﬁt)
+ ((pr = 1) * ((R1/((pa + prz) — 1) + 1) * Tyt)

+ (prz * ((R2/((pn + prz) = 1) + 1) x Tiy)
and (Thep 1s 4 and 10 in Figure 46)

Thee = Tm+((B1—=1)*(Th (226
+ Te)) + (((pr + Prz — 1)« (B /((pr 4+ prz) = 1) = Tyy)
+ ((pn = 1) * ((Ry/(pr + prz) — 1) * Tie)

+ (prz * ((R2/(ph + paz) — 1) * Tie)

The additional segment to account for the time to store information on secondary

storage for the processors hashing relation R is:

L
S
Y T )

if  (R2>m)
+((R2—pb—2)*(T(0+Td))+(S2*(Td+]‘io)) _‘_J
else J
+Ti+ (R = (= 52~ 2)) = Ty ]
and for the processors hashing the the relation, S, it is: 'j

if (52> ps)

+ +((52 — Dy — 2) * (Tzo + Td)) + (R2 * (Td + Tlo))

N

else

+ T+ (52— (py— B2 = 2)) + T, =

A

The equation expressing the performance of the multi-step query when the o

relations are on alternate disks providing concurrent relation retrieval (remembering
ialf of the retrieval processors and half of the hash processors are dedicatec to each

relation) is: >

. B L e Rt et e T S e o
S TR P . Sy N 0./ UL, W, SU P W, S, Y




M- 2
(T(R) = Ti(R)) ‘
T1sp( R) + max or L (The(Ra) = Theal By))
Tia(R) |
Case2 = max| or +T,(R,. 5

(Top(R) — T14p(R))

+Tlsp(5) + max or + (Thc(Sl) - Thc2(51))

The2(S1) j

(227) -

.'jl

8.5.3 Multi-Step Query Processing using Consecutive Relation Retrieval with _-:
Dedicated Join Processors. The third method of assigning tasks to processors to %3
e

complete the multi-step query is to divide the tasks of hashing and processing. This :J:'
-_":1
scheme dedicates processors to only hashing and other processors to only performing ey
"

the join. The significance of this method is that the hashing processors do not have

to be interrupted to receive buckets for later joining. Figure 47 shows a logical

Lo,
S

view of this processing environment and Figure 45 shows the overlap of processing

A

P
-

possible. This case repeats the view of data distribution of Case 1. First. all the
retrieval processors retrieve and perform the sel-proj on the first relation. Then the

second relation is retrieved and processed. This is the same processing as Case 1

I XARAAAS
L S W BT

and uses the same model of the retrieval/sel-proj operation.

]
A .

L
P
. b P

The hash processors first concentrate on the first relation, hashing buckets

to the join processors. The hash processors only hash and send buckets to the

e
join processors since there are separate processors assigned for each portion of the Ny
join processing - hashing inputs into buckets and joining buckets. Therefore. the -3
performance model of hashing that does not have to account for receiving buckets. j?:.‘_
A

where there are p; join processors, is: ]
. ~s

Tho = T+ (Ry % (T T)) + (((pa = 1) « Ry) = Tho) (228 a
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Figure 47. Logical View of Case 3 Multi-Step Query Processing *

where the output sizes going to each join processor are: *
"

Ry =(R/(p; - 1) +1 (229) ‘

R

S2=(51/(p; 1)) +1 (230) N

and the time of the hash to the point of receiving the last block is: }_::1:
Thoz =Tn + ((R1 — 1) # (T + Toe)) + (({(pa = 1) * (R2) = 1) « Ty, (231) -_:

o

kgl

The join processors receive the buckets from the hash processors and if neces-

sary store data on secondary storage. One concept the following performance model

[
LM} .

does not reflect is initial processing of buckets received while still receiving other

buckets. This situation could allow the join processor to do the sorting of the buck-

ets of the first relation while the second relation is being hashed and processed. This

BA8De

initial processing to prepare the relation for the join is not inclu. . in the models :‘;,‘
N
because any estimates of the time required do not adequately mod:«. +he interaction -
=y

of receiving the blocks and performing the initial processing. Also. for comparison
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purposes it is considered to be more sound to evaluate the worst case of this situa-
tion. Therefore, the performance model of the join is the same as the join processing .

model described previously. T,, with the following addition to the beginning of the

join model.
Tio = ((Ry + S2) * Toe) + T, (232) )

The model is also extended with the following segment when R, + 53 > p, fj:::_

+ (R + S = po) « (Tu + To) .

)
~
The complete model for consecutive relation retrievals using dedicated join
AL
processors {using the overlap model of Figure 45) is: A
)
M- 3 e
. (Top(R) = T1sp(R)) + Tisp(S) 5:-
- Case3 = Ti,(R)+ max or (233} \
Tho(F1)
(TSP(S) - Tlsp(S))
+ max or + (Tho(S1) — Tho2(51)) + T,(R;. S2) ,
Tho2(S1) ‘_.-.::
8.5.4 Multi-Step Query Processing using Concurrent Relation Retrieval with e
>
Dedicated Join Processors. The final case uses the same processing and data dis- '
tribution scheme as Case 2 with dedicated hash and join processors. Figure 46 S
tllustrates the overlapping of processes for this case. Assuming that each relation ‘
is processed by half of the retrieval and hash processors. the following performance "‘.
mode] is developed: '..-';
Y
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M- 4
(T5p(R) — Thsp(R)) |
T14p(R) + max or + (Thol By) = Tho2( Ry)) |
Tho2(Ry)
Cased = max| or +T 000~

(Tsp(R) - Tisp(R))
+T14p(S) + max or + (Tho(S1) = Tho2(51))

Tho2(51)

(234)

8.5.5 Multi-Step Modeling Results. The multi-step query provides the oppor-
tunity for intranode parallelisin and pipelining. The four cases developed use the
parallelism concepts in different manners. Two main points are evaluated by the

multi-step models: relation storage distribution and process allocation.

The first point — the distribution of relations on secondary storage for retrieval
- addresses whether concurrent retrieval of relations is better than separate retrievals
of the relations. If a relation is distributed on all disks, all the retrieval processors
can retrieve the relation. If only half the disks and processors are used to retrieve the
relation, each processor must do twice the work. It seems that either method should
be approximately equal in performance; however, when one relation is much larger
than the other (such as 10 times as large), the workload is not evenly distributed
because one half of the processors retrieve a small number blocks (such as 1/10 the
blocks). This means that one set of processors finishes before the other group of

processors.

The second evaluation point is dedicating processors to tasks. The models
portray processors working on two tasks at different points of the processing and
dedicating the tasks to a processor for the entire processing cycle. The implication
of dedicated tasks is that the processor may perform some initial processing of the

data while still needing data before the process can begin {See Case 3 above). This
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illustrates the theoretical consideration that the binary operations cannot begin the
actual processing of the operation until the entire two inputs are present. But this
does not stop initial processing of one relation to place the relation in a preferred

structure while waiting for the entire input to become avaiiable.

The performance of the four models using the performance parameters used
in the performance modeling of the individual operations is reflected in Figures 43
through 79. The performance values presented were computed using the same per-
formance parameters as the individual operator’s performance models. The results
assume that processors are connected by a fully interconnected network to provide

processor communication.

The focus of the multi-step query is to determine the best method of task al-
location. Therefore, all of the performance models were computed with a processor
allocation that assumes the number of join and hash processors totals 20 and the
number of retrieval processors can be adjusted without affecting the number of hash
and join processors. This evaluates the processor allocation strategy. Figures 48 and
19 (also see Appendix A) show the comparison between consecutive and concurrent
relation retrieval. The result of these models is that the consecutive relation pro-
cessing performs better than the concurrent relation retrieval. The following section

discusses concurrent versus consecutive retrieval.

Figures 50 and 51 and the graphs presented in Appendix A compare the differ-
ent cases that use consecutive retrievals. The notation in the charts is “Case 1 x-v”
or “Case 3 x-y-z". This means that for Model M-1 or Case 1, x is the number of pro-
cessor/disk pairs used to store and retrieve the relations and y processors hash/join
the results of the sel-proj. Model M-3 or Case 3 x-y-z means consecutive retrieval
of the relations for processing, retrieving the relation with x processors. hashing the

relation with y processors, and joining the relations with z processors.

The results presented do not provide a clear cut best method of task alloca-

tion. However, the results do illustrate the important element of control - balance.
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Figure 48. Multi-Step Performance using Hash/Join

The results showed that for the large input sizes the hash/join processing performs

o r 1 9 e \‘\v
h)
IS

better because it balances the workload over all available processors. Therefore for

each retrieval processor size two cases are presented, showing a smaller size and

larger size for the fixed input relation size. When the input sizes into the hash/join
processing are decreased by the selectivity and projection factors, the separation of
- tasks provid.s slightly better results because the hashing and join are balanced to

v . e
s the resources available.

8.6 Ertension of Model to Multi-Binary Node Queries 3

The previous multi-step query models only considered a single join operation.
This model needs to be extended to consider modeling queries with multiple binary
operations. This model extension is based on the normal form query tree. The query

tree provides the key to developing this model - a recursive definition. The query

("’..f‘.’/.'t;."_". ./ . '-:-’:. e,

tree is a binary tree. Therefore, the performance model starts at the root of the tree.

~ The root of the tree is a binary node (assuming no duplicate removal) that joins two
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relations that are produced the child nodes of the root. Figure 52 shows the overlap
of processing at the root node. A child node may be the root of a subtree that also
joins two relations produced by child nodes. The child node then is the root node
of a tree. Therefore, the performance model recursively finds the time to execute
each subtree. Figure 52 shows how the processing of the root node depends upon

the processing of the child nodes.

The lowest level subtree of the multi-join query is the multi-step query modeled
in the previous section. Therefore, if a multi-join query consisted of joining four base
relations, the query tree would have two subtrees to the root join and the subtrees
would be the multi-step query model of the previous section that retrieves the inputs
from secondary storage. The root join receives the inputs from the subtrees. hashes
the inputs to form the buckets, and then joins the buckets. The hash processing
begins as soon as the first block of input is received and is overlapped with the

processing of the subtrees.
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The previous multi-step query model considered two possibie data distribunions
- a telation stored on all disks or relations stored on half o!f the disks. When tie
multi-step query model 1s extended to include multi-joins. the data distribution could
force the start of a subtree processing to be delaved until the retrieval processors
and disks become available. This may constrain the join processing because of the
delay of receiving the input from one of the subtrees. Figure 33 shows the effects o1

this delaved processing.

The multi-join model also may be affected by the task allocation of the pro-
cessors. The performance results of the previous sections need to be extended to
account for the multi-join model where the root node depends upon the processing
of the subtrees. The multi-step query of the previous section is used as the subtree
models that provide the inputs for another binary node that joins the two inputs.
The root node that provides the last join does not have the ability to predict the
sequencing of events like the nodes that join the base level relations. Therefore. the
join here assumes that hash processors are divided to hash the two inputs simulta-
neously. The model parameters to be varied are the data distribution ( a relation is
assumed to be stored on each disk or on 1/4 of the disks for the results presented

and the allocation of tasks in the binary node.

The binary node is a combination of operators that join the inputs and then
perform a sel-proj on the join results. The allocation of tasks assumes that the
processors performing the join of the buckets also perform the sel-proj operations.
Thus. the allocation of tasks refers to the use of using the same processors for both
hashing and joining buckets or using separate processors for hashing the inputs and

other processors to join the buckets.

The results (see Appendix B) show that the performance may vary greatly
with the size of the inputs of each node. This emphasis the concept of balancing the
process to the inputs provides the best performance. The performance of some of

the instances are better when the base relations are not distributed on all the disks.
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Figure 33. Processing Overlap Model with Retrieval Processor Constraint
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However. Case 1 and Case 3. which use complete distribution of the sase reiation..

provides either the “best™ performance or veryv close to the “best” performance & v

the given set of performance parameters used.

.7 Control of Resources and Task Allocation

The multi-step query models presented use data-flow to control the processing
of the querv. Data-flow assumes that when the data becomes available. a process
can start. This implies a fixed allocation of processors to tasks in the performance
models. But this may leave some processors idle for lengthy periods of time. There-
fore. the following section discusses how the performance models developed can be

used to support control strategies.

The assignment of resources and the allocation of tasks to the resources con-
stitutes the control structure of the system. The results presented for the multi-step
query illustrate the problems the controlling the environment to provide the best
possible performance. First, the main elements of the control structure are defined.
Then these elements are used to define the considerations of control and how thev

might be applied to the multi-step query processing.

The main elements of the control structure for executing a query are:
e Resources available

- number of processors with some memory capability
- interprocessor communication capability

- secondary data storage capability

e Steps required to solve query

e Size of relations used in processing

The goal of the control structure is to perform each query as quickiv as oo
sible. This means when multiple processors are available it wonld he desirabe
263
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\ i incorporate parallelism to improve performance. The first consideration in using the
resources available is the size of the problem or. put another way. the size of the
N imput relation(s) into a relational operator in a database query. The goal of the
~
N processing is to use all processors and to have each processor share equally in the
workload by doing 1/p of the total process (assuming p processors). However, using
this concept requires prior knowledge of the size of the input relations in order to
match the resources available to the processing required. For a single step query. this
prior knowledge is available. In a multi-step query, the only knowledge of input sizes
is for the first retrieval processes. The input sizes for later steps can only be related
to the worst or expected case size of input. This stresses the control ability te allo-
cate adequate resources without wasting resources that could be used for a different
task. (Dynamic control based on real-time reporting of intermediate relation sizes is

not considered here, but may be worth investigating.)

",3’ The multi-step model results presented above illustrate the problem of balar:
ing resources to the probiem size. The worst case scenario presented in our
requires the entire relations to be passed through the sel-proj operatiorn

ation provides the best performance when the available resonroes 4o

each phase of the hash/join operation.

However. at some point adding more process -
improve the performance because the comn
will exceed the performance mproves .

the ideal si-nation i~ wher o oo

workload Crequinn e et
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each processor.

Oure solution to the control problem is to have each processor communicate with
a central controller at the completion of a task for instructions on what operation
and data to operate on next. Some form of distributed control must be considered.
since the the single controller would become a bottleneck in the system, processing
all the messages for instructions. Therefore, a more definitive control structure for
the multi-step query is considered. Any workload adjustment must then be done

within the processing environment instead of by a controller.

The first step in task allocation of the multi-step query is the retrieval of
the base relations from secondary storage. The options available here are limited
by the storage distribution of the relations and the resources that can access the
secondary storage. The only situations that seemed feasible were having each relation
distributed across all secondary storage devices or storing each relation across one-
half of the secondary storage devices (where the minimum amount of a relation
stored on a device is one block). The former case provides faster retrievals by using
more resources. However, the second case provides the ability to use independent
parallelism if the input relations are stored on different devices. If the relations
stored on half the disks happen to be stored on the same set of disks, then some of
the resources are unused. The results of the multi-step model show that the parallel
retrieval of the relations is effective if the inputs are approximately the same size
to balance the workload. The complete distribution of the tuples over all storage
devices is least affected by varying sizes of inputs and can best accommodate all
cases. An example illustrating this uses two relations X and Y, with sizes x and v.
respectively. Assuming there are p processors that retrieve relations from p disks.
if all p processors are used to retrieve each relation, then each processor retrieves
(x+y)/p blocks. If x and y are stored on different devices. then the workload model
is x/(p/2) for one set of processors and y/(p/2) for the other processors. When x

=y, this workload is equal to (x+y)/p. However, if x is twice as large as v. then
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SON
‘E‘ the processors retrieving Y have twice as large a workload, destroying the balance
of the allocation. Thus, for all cases the complete distribution of relations provides

the best capability for retrievals.

The easiest method of data placement to distribute a relation across several
disks (using horizontal partitioning of the relation) is a round-robin algorithm [43,42].
The round-robin places equal parts (block level granularity) of the relation on each
disk and each additional block added in disk sequence to insure that any one disk has
at most one block more than the other disks. This method insures that each disk-
processor pair has to retrieve and scan 1/d or (1/d)+1 (where d is the number of disk-
processor pairs available) blocks of the relation. If hardware expansion occurs adding
r disk-processor pairs, then data can be redistributed and the blocks retrieved from
each disk is reduced to 1/(d + z) blocks. The round-robin data placement algorithm
provides the capability for a linear decrease in performance for a corresponding

AN _hardware addition.

The round-robin data placement does not consider the contents or value of
data when it is placed. This invalidates the placement of data in ordered format.
Therefore to provide the user capability to have the data structures described in the
Chapter VII, the round-robin data placement has to be the underlying placement
scheme for the data structure. This means that if the data designer determines that a
clustering index (indexed-ordered) is necessary to meet the performance requirement
for the queries of that relation, then the relation would be ordered and indexed but
the data, in ordered form, would be distributed to the disk with equal number of
blocks to each disk-processor pair. However, further updates of the indexed-ordered
structure may cause one disk to contain an unequal portion of the relation. Then if a
query requires a retrieval that does not provide the attribute used for the index. the

retrieval would have decreased performance due to the overload of one processor-disk.

The parallelism involved in the retrieval phase of the multi-step query was

v N
g

intranode parallelism versus independent parallelism. For this case, the intranode
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::-:5 parallelism provided the preferred solution because of its ability to adjust for all cases. E:
The next phase of the multi-step query hashes the results of the retrieval phase. The l_'
inputs of this phase are not predetermined since the retrieval also performs selection .':'é
and projection operations. The projection of the attributes can be predetermined :"
since the data dictionary provides the attribute’s size. Thus, the compilation of the =
query could provide this information to allow the controller to partially predict the
E size after the sel-proj/retrieval phase. The result size cannot be predicted unless
| distribution information about the attributes used in the selection is maintained and
! then only approximate predictions could be developed. However, if the controller can ?'-_:
i identify that the selection criteria uses only the key of the attribute of the relation, E-:
i then knowing that the key cannot be duplicated and the range of the key provides E:
i a prediction of the size of the results. !_,‘-
L The purpose of predicting the size of the results of the sel-proj/retrieval opera- :,,
f x:j:’.: tion is to provide the ability to better allocate processors for the next operation. The :':.
size of the results of the join and product operations have been previously discussed '
in relation to the selectivity factor. This showed that the size of the results of these C_f-:
" operations could be larger than the sum of the size of the inputs. Therefore, the E-;
binary operations, join and product, do not provide enough information to provide !;'
, a good estimate of the size of the results from the size of the inputs. \i
. The other binary operations do provide a more accurate estimate of the size of E
the results because the largest size of the results cannot exceed the sum of the sizes ;\
| of the inputs for union, difference, intersection or division. Further examination of ‘3
E these binary relational operators shows that the difference, intersection, and division i
E operations compare the two input relations and only provide tuples from one relation f.(;"j
] when the operator condition is met. Therefore, the size of the results from these 'vj
E operations cannot exceed the size of the largest input relation. :j
' The estimation of the size of the results provides the capability to more closely :.'7.:1
’ :\-.,-_v allocate resources to the task using the results as input. Examining the multi-step ' g
¢
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query model presented previously, the inputs of the hash/join operation can be es-
timated. The allocation of processors should match the resources to the problem.
For the join, the ideal environment would have each processor joining one block of
each relation. However, this causes much of each processor memory to be unused
and causes many blocks to be passed from the hashing processors to the join pro-
cessors. The extra communication is caused because each hash processor must send
at least one block to each join processor, even if no tuples are passed to the join
processor. Therefore, the immediate goal of resource allocation is to not overload
processors, thus avoiding the requirement for data to be stored on secondary storage

by individual processors.

The estimate of input size of the input relations of the join processing is deter-
mined from the base relation’s sizes and the projection factor. Then the processors
are allocated so that each processor would receive enough blocks from each relation
so that the total number of blocks at each processor is less than the memory size of
the processor. If resources are available to allow each processor to process less blocks
than this. a minimum number of blocks per processor should be determined. The
first consideration must be that the smaller relation has at least one full block at each
processor assigned to perform the join. Since the estimation is not precise and the
hashing functions will not evenly distribute the buckets, the number of buckets at
each processor of the smaller input relation should be 2 or 3. If this forces the sum of
input blocks estimated for each processor to be larger than memory available at the
processor, the first rule of not overfilling the processor applies and more processors
need to be assigned. The purpose of assigning 2 or 3 blocks of the smallest relation
to each processor is to eliminate the communication of partial or empty blocks of
information. When more processors are added to the join environment. each hashing
processor has to send at least one block to each join processor. This could cause
delay to the unnecessary communication time. The results of the multi-step query

reflect this situation where adding more join processors increases the performance
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time rather than reducing it. If both the goals for the minimum and maximum num-
ber of blocks allocated to a join processor can be accomplished, then an arbitrary
number of blocks desired at each join processor must be established that balances
the physical capabilities of the processor and communication network. The multi-
step query model provides the capability to vary parameters to the exact physical

parameters to establish the desired number of blocks for each given physical case.

The last issue of control to be addressed here is the splitting of tasks among
processors. This concerns the splitting of the hash and join functions of the bucket
join ( and other equal comparison operators that use bucket processing). The results
of the multi-step query model presents mixed conclusions about using processors for
both actions or using dedicated processors for each action. The results illustrate
the fact that causing a bottleneck at any point affects the performance of the entire
operation. Therefore, the balance of each step to the amount of information being
processed 1s the most important feature of task allocation. Therefore, the situa-
tion that provided the complete base relations as input to the hash/join processing
showed better results when all of the processors are used to both hash and join.
For situations that reduced the size of the inputs, the resources were more than
adequate so the separation of tasks provided better results. This relates to the pro-
cessing load allocated to each processor described in the previous paragraph. This
proves that a task allocation strategy is not the best for each case and the exact
allocation algorithm must balance the processor speed and memory capability with

the communication time and capability.

8.8 Summary of Combined Step Effects

The ability of the system to perform individual relational operators efficiently
is important, but a system that performs a single operator very efliciently may not
provide the same level of support when the query depends upon more than one

operator to complete the query. The simplest example of a query of this type is the
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join. Normally, the query that uses the join does not want the entire results of the
join but only selected attributes. This query then not only requires a join operator
but also at least a project operation. The concept of query optimization [73.79] also
suggests that the input to the join may use a select operation. Therefore, the single

join may actually be a query using select, project, and join.

The realization that many queries are actually multi-step queries suggests that
some method of combining operators would reduce the necessity of passing data
from processor to processor to accomplish each step. The solution to this combined
operator was introduced in this chapter. The effect is that data passing is reduced.
which reduces the execution time of the query. This method of combining operators
also reduces the amount of data in intermediate relations that must be temporarily

stored waiting to be used in a later step.

The combination of operators provides the ability to represent any query in a
normal form query tree. This general query tree representation promotes the concept
of data-flow within the query. Data-flow processing uses the data to control the
sequencing of processing (a process is started when the data for that process becomes
available) rather than having a constant fixed processing strategy. The normal form
query tree uses the idea of combination of operators to reduce the different operations
required to solve any query. This reduces the intermediate relations that must be
passed (or stored on secondary storage) and the output from each binary node is
passed directly to another binary node. This, coupled with the reduced algorithms of
the binary nodes, allows the control to be flexible. This means that when a processor
finishes comparing one block with another block it must send a message to a central
controller to determine what it must do next {12,15,23,62]. Using the normal form
query tree combination of operators, this centralized control could be used. but it is
just as easy to dedicate processors to the operation where some processors first hash
the relations and other relations receive buckets for joining. The recursive application

of the hashing allows the workload to be balanced by a processor communicating with
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' its nearest neighbors to see if they can help in the processing. If the processor cannot
get help, it will complete its processing. The performance of the join may be poorer
\ than the optimum performance, but it is still accomplished. By using this flexible

control structure, the bottleneck of communicating with a centralized controller is

decreased, allowing more processors to be effectively used in processing an operation.

The normal query tree shows the possibility of combining operations. It also
shows that there are really only two types of processing necessary to solve any
query—the initial node processing and the binary node processing. The initial node
b processing is the retrieval of the base relation(s) from secondary storage. This initial
processing prepares the relations for further processing or solves queries that require
only a select and/or project (when no duplicate removal is required after the pro-
jection). The binary nodes then complete any combination of relations that may be

required or remove duplicates from a relation. The binary nodes may use multiple

.

v ’?.,',

processors without using the processors that retrieved the data from the disks. This
means that when the initial nodes complete the initial retrieval and pass the relation

on to the binary nodes, the initial nodes are ready to process another retrieval.

The final conclusion is that the normal form query tree offers possible perfor-
mance improvement when retrieving data using relational operators. But at the same
time, the normal form query tree solves queries with only three different types of
processing—sel-proj, bucket-processing, and nested-loop processing. This simplifies
the processing and reduces the volume of data passed by combining the individ-

ual relational operators into combined operators. These combined operators in the

- o
fc'l"g‘ .
4 %N

A,

y query tree allow all three forms of parallelism to be used in the multiple processor

rees
3

P environment. The implication of this is that the database machine has two sets of

*gf

logical separated tasks to perform in the initial and binary nodes of the normal form

Y .‘.A I‘c

query tree and this maps to a two stage architecture for the query processor.
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IX. Database Machine Architecture

The architecture of a database machine consists of the hardware, software, and
their integration. These components and their integration form a complete environ-
ment for solving queries. The focus of this research was not on producing the “ulti-
mate” database design but on producing the tools necessary to complete a database
machine design. The architecture presented incorporates the design concepts with-
out defining the actual physical hardware of the system. Thus, the architecture is
a logical design of a database machine with suggested hardware implementations.
However, the models presented provide the capability to complete the design by ap-
plying the trade-offs of cost versus performance to complete the physical design. The
design considerations present a general environment, but the models presented allow
the design to emphasis one system requirement and determine the effect of this on
the performance on other operations. The following sections discuss the application
of the performance models in the design of a database machine. First, a logical
architecture is presented and then the architecture is discussed, providing possible

physical implementations for each logical segment of the logical architecture.

The database machine is designed under a given set of guidelines or assump-
tions. The first step in presenting the database architecture is reviewing the guide-

lines used to develop the architecture. The basic assumptions are:

e The database machine is capable of handling any size database. Thus, the size

of the relations may exceed the total memory size of all the processor(s).

e The processors form a MIMD environment with each processor having the

ability to communicate with other processors. s
s,
. . . . . . 3 '-)
e Each processing unit is a generic type processing unit with processor, memory. o
and the ability to execute a stored program. .
W
N
_\::i
A
e
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Y e The focus is on improving the performance of data retrievals and updates

(backup, checkpoints, and recovery are not considered).

e A data dictionary must be maintained identifying the relations in the database

and the properties of the relations. This is considered to be a separate entity
and will not be considered as a part of the database machine architecture. The
database machine will receive queries containing the necessary data definitions

included in the query.

¢ The performance optimization is accomplished through the use of parallel pro-

cessing and effective utilization of resources. Optimization techniques of re-

ordering the query steps are not considered to be a part of the database ma-

LN

5

chine architecture but part of the processing of the query before it is given to -

the database machine.

e Expansion of the system must be possible to handle larger workloads. N

e The database machine can handle any relational algebra equivalent query. All

retrievals will be considered in terms of relational operators.

'c'i‘:

e The design of a database machine can be accomplished in a structured method

CEAL AL SN
Ry

by examining the problems to be solved, analyzing the individual steps of

-

the problem, and using the analytical models for each step of the problem

A

. to support the trade-offs decisions necessary to create an integrated database

A
s

.

, machine.

!- k:

e Queries to the database machine are formed outside the database machine and

transferred to the database machine. Also, the output from the database ma-

chine is considered to go to a data sink capable of accepting data as fast as

e

database machine can produce it. Therefore. the solution of a query is not

dlu .

., 8

| assumed to be constrained by the speed of the connection removing the data
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from the database machine. This does not imply that the database machine

has to be a back-end machine to another computer. but that part of the sys-
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tem supporting these functions could be part of the same physical computer.

Figure 54 shows the logical environment of the database machine.

The design of the database machine has been based upon a structured ap-
proach to the analysis of the problem of retrieving the data to satisfy a query. The
following sections present a logical architecture based upon the analysis presented
in the previous chapter. This abstract architecture is then expanded to one possi-
ble physical architecture. This exercise is intended to illustrate an methodology for
using the models developed in this research and is not intended to be an “optimal”

architecture itself.

9.1 Database Machine Architecture

The database machine has two types of operations to process—simple retrievals
(data filtering) or the combination of two relations in a binary operation. These two

types of processing are illustrated by the normal form query tree with its initial and

binary nodes (see Figure 55). This defines a two stage or two part architecture for "\
the database machine. Figure 56 shows the logical database machine architecture -;:
suggested by the normal form query tree. The retrieval stage corresponds to the b

initial nodes and the binary nodes are the processing stage.

Each stage has a given set of tasks to process. The retrieval stage retrieves -
relations from secondary storage. The results of this stage are then passed to the N
processing stage or are output. This corresponds to the initial nodes of the normal
form query tree. The processing stage performs the actions of the binary nodes.
The data flow of the processing stage retains the intermediate results within the
processing stage and outputs the results to the *“host”. Figure 37 shows the logical

flow of data and separation of tasks of the database machine.

9.1.1 Retrieval Layer. The main task of the retrieval stage is the retrieval

4
1

LY

and filtering of the base relations for desired tuples and attributes. The resuits of

274 ,i

Y% i% s “w i w uw e . AT *,
HITICIN NN R N NI,



-

ST e TN S AT AN N e e
Lt e et Tl

Host

Query Source Update Source

Result Destination

Results

Queries Updates
Database
Machine Query and Update
Processing
I I
I I
I Data Store
I I
L e e - == - - - —
Figure 54. The Logical Database Machine Environment
®
s

LR VISP SN SR Y S e PP ¥ ] >
.'-.r.f,a,.r I-'J"J"-f o

SR

A

-"\"'\-’{-

AN I N AT T A AN I

~
~"

e

s YW

L
i)

.’
')

)

N

W
-+

&

TR AR U L P
P WSS

R
RN,

I..R.'\..v :
Vo

1

RATIH

2

v

A
et .

R SN
- - A

A

14
ay

I'd
'~ lN
[ S

=

o~

TR
n,



Initial
Nodes

’
4

Binary

Nodes OR

. -
!".l-.‘l.._

Tas

{

Ty
- .5

—— —  — c—

B e i@ L R PR
A AR RN

Figure 35. General Normal Form Query Tree

R S SN ¢

Lasw

PR Y

Processor

SaNs
X

Processor| |Processor| |Processor Processor| |Processor

»
.
w’e

1'.’1.'1 ':- >
Pl

7
/
/7
L &~

/ .
C Processing

Controller

T
R

Interconnection Network

i J

'y P
LA

'1 I’ " .'l .'

Retrieval
Stage

e
A 71 /4
\ ~ ~_

Processor

Processor| |Processor| |Processor

54

Processor| |Processor

- - -
DO N,
SN AY

W e

!
.
v
e

N

Interconnection Network

IE ¢

Figure 36. Logical Database Machine Architecture

I gy
LN

/S

y la,

It
'A» r_b

o

P A N L LA
. 4"-"}"}%}

4
5

~ 5l

PN 2% 0 NN
4 &
. 'Jl';').'l -

to
-1
(2]
‘
1
e

e A,

" .' ."'

.............. PO T B U S

I A PO PO P i S o e e T e T (e N R A '_.-\'.._. <
i}a_'.rﬁ')}.n?.n?.'hr:‘ } :‘R.&T;&)ﬂ.‘rt}i.\.‘f.'- n'.-'l.:.l.,- PRI, N o -‘:‘f. P SN N A W R S -.A...-..l R RPN



o i KW ™ O Nt aut yat kel ot bat e it AR it AR A 200 As gt oW e gih g
vab Rat 20 Bed a8 At w8t agl gt alt gt v 8 et e S 000 208 00 200 b 008 3 0 BN g0 y o 7

p Host
' Query Source Update Source Result Destination
A A
3 _ e e — - = = B
:e
Database -
Machine o
Binary Nodes NG
Y B

.
R

.
D

Controller

P

.‘{.{'!' '1'.{ '-7. .I

Initial Nodes

e

et s A

5 0 0
o
e’

*a 2"t
NN X P

v

Data Store

-t
1

ave T e, Vs alw
r

g -

l",.
« -.'c.

s

Figure 37. Logical Data Flow of Database Machine

o P RN ,,
L3 \'- AT A ata _‘\.__4 At .A.‘.-' __AA_-_A_AEM.A\



N
(fv

f

<

2ata®a's

the retrieval stage can then either be returned (if this completes the query) or passed

to the processing stage for further processing. The other task of the retrieval stage

is to complete updates to the database.

The only retrieval operation executed by the retrieval stage is the sel-proj
operation. Each processor executes the sel-proj and passes the result on to the
processing stage or to be output to the user. If the entire relation is desired. the

sel-pro; selects all of the tuples of the relation and removes no attributes.

The tasks of the retrieval stage may seem very limited. The lack of the retrieval
stage participating in further processing of queries beyond initial retrieval and fil-
tering was intentional. The purpose of this is two-fold: to provide the capability to
reduce the I/O bottleneck {11,13] when accessing the database and to improve the
throughput of the system [11] by allowing simple query retrievals to be completed
while the processing stage is executing more complex queries. The only method pos-
sible to insure this for all retrieval cases is to use parallel processing and distributed
data storage. The use of parallel processing does not provide the best retrieval in
all cases (see Chapter VII), but even optimized techniques using indexing may not
have an index for the attribute being retrieved. Thus, the alternative is to efficiently

use multiple processors to retrieve and scan pieces of the relation (reference Chapter

VIII).

The other consideration of eliminating the I/O bottleneck is avoiding the re-
verse flow of data within the system. Reverse data flow occurs when a relation(s) is
being retrieved and processed, but the same disks are simultaneously being used to
store intermediate results. This causes a conflict within the disk processing, forcing
the disk to perform costly accesses to find the correct location on the disk for the
data currently being handled. If reverse data flow is eliminated. the disk is onlyv
reading data (except for update operations). This allows the disk head to maintain

its position. reducing the disk accessing time. Also. improved disk retrieval tech-

niques (interleaved blocks, etc.) can be exploited by avoiding the conflict of disk A
L]
)
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accessing. The logical data flow represented in Figure 57. eliminates any reverse
dataflow within the system by requiring the processing stage to handle its own tem-
porary storage requirements. This allows the flow of data to go from retrieval stage
to processing stage to output. The one exception to this data flow is the handling

of updates by the retrieval stage.

The final action of the retrieval stage is to perform updates. All updates consist
of a select followed by the modification of a block(s) (reference Chapter VI). During
the select, the processors must determine if a tuple(s) was found that met the update
condition (or integrity check condition). Finding a duplicate tuple invalidates the
update. This forces the processor to notify the controller to stop the update action.
If all processors provide the controller positive responses that no duplicates were

found, then the controller directs an individual processor to add the new tuple.

The deletion case requires the processor to find the necessary tuple to be deleted
and then notify the controller. This allows the controller to maintain (or pass the
information to the process that maintains) the data distribution statistics. The tuple
is deleted from the block and the processor replaces the block on disk. Therefore.
the modification operation requires both a select and delete operation. The action
by the processors combines the selection check for duplicates and the finding the
tuple to be deleted as the deletion. These cases do not produce results other than a
completion message. This allows the retrieval layer to accomplish this action without

involving the processing stage.

In summary, the retrieval stage performs retrievals and updates of relations.
The controller receives a query, procures any necessary data definition information.
and broadcasts the query to the retrieval processors. The processor-disk pairs re-
trieve their portion of the relation, each processor performs the sel-proj operation and
either outputs the results or send the results to the processing stage. The retrieval

stage is then available to perform another retrieval or to execute an update.
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9.1.2 Processing Layer. The processing stage corresponds to the binary nodes
of the normal form query tree. The task of this stage is to perform the operations
necessary to complete queries that require more than the sel-proj operation. This
means that this stage executes join, product, intersection, difference, union. select.

project, and duplicate removal operations.

The processing stage performs either bucket or nested-loop processing. Bucket
processing requires the relation(s) being processed to be grouped in disjoint sets of
tuples and the disjoint sets or buckets are distributed to the participating processors
The processors then order the buckets and perform a join. a difference, an union. an
intersection, or duplicate removal. To perform a bucket process, the ideal number
of processors involved would be enough processors to hold all blocks of the input
relations in the memory of the processors with an evenly distributed set of buckets
(see previous chapter). In an actual distribution. one bucket maybe larger than all
the others. This could require the processors to handle more data than could be

contained in the processor memory. This requires some form of secondary storage

to be available to the processing stage.

The secondary storage required by the processing stage could be provided by
the storage associated with the retrieval stage. However, using this storage destroys
the one-way flow of data that has been established. Therefore. Figure 38 shows the

modified logical database machine architecture to include some temporary storage

capability at the processing stage.

The processing stage consists of independent processors with communication
capability. Based on the results presented in an earlier chapter, it is assumed that
the communication network provides a fully interconnected processor communication
network. This allows any processor in the processing stage to communicate directly
with any other processor in the processing stage. The advantage of this communica-
tion with the bucket processing is that an overloaded processor can request help from

neighbor processors and hash the buckets it received to redistribute the workload.
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o
2 This recursive application of the bucket processing provides a dynamic adjustment
to the problem of task allocation.
' The processing stage reflects the binary nodes of the normal form query tree.
: The binary nodes of the query tree perform the bucket processing described above
' and also require a nested-loop process. The normal form query tree also shows that
; there are multiple nodes to executed at a given level of the query tree. The logicai
y view of this is that the processing stage should provide the capability to perforn:
2 or more two different operations simultaneously. This alters the control view of tie

e ¥

processing stage to provide the ability to partition processors of the processing staw:
into separate control groups. Figure 39 shows this final logical view of the database

P machine architecture.
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The partitioning of processors allows one set of processors to execute a nested-

loop process while another partition is executing a bucket process. The partitioning
of processors also provides the capability to simultaneously execute multiple queries.
The partitioning is a logical grouping of processors. Therefore. the partitions are

not fixed groupings but an assignment for an individual task.

The partitioning of the processing stage provides the ability to adjust the
resource allocation to the problem. Partitioning also allows a decentralized control
svstem. A single overall allocation scheme would perform the partitioning or resource
allocation of processors, but a local processor of each partition would then assume
control of the processing within that partition. This provides a flexible, adaptable

processing configuration.

9.2 A Database Machine Design

The logical architecture defines the function of each logical component of the
database architecture. In the final step, the logical components need to be mapped
to a physical architecture. The following sections describe some of the design and
performance considerations in mapping the logical database architecture to a physical

implementation. One possible physical implementation is illustrated in Figure 60.

The design of a database machine consists of the physical mapping of pro-
cessing requirements to hardware, but also incorporates the software to contro! the
processing. In addition, the physical structure used to store the relations must be
defined. The goal of the design is to provide the best performance in solving re-
lational queries. However, every design has some limitation due to the physical
characteristics of the hardware, lack of knowledge in the software control. and/or
cost restrictions. The following sections review the logical tasks to be performed by
a database machine and the use of the analytical models in the design of a physical

implementation of the logical database machine architecture.
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9.2.1 Retrieval Stage. The retrieval stage is responsible for maintaining the e

e

~permanent” database and retrieving relations from this database to be used to

’.{',

solve user queries. The speed of execution is the main consideration of the retrieval
stage. The analytical analysis of retrieval operations has determined that there
are different methods of optimizing the retrievals (Chapter VII) depending upon

the data structure of the stored relations. The conclusion of the analytical models

My N Y B oS o aTwT AN BT ST T .T ey | & &

was that optimized data structures could provide optimized retrievals or the same

s st REELS

performance could be obtained using an unordered-unindexed data structure with

R

more physical hardware for retrieving and storing the data. However. for every

% g
:: case it was determined that the relation should be distributed for storage. This :.
E distributed storage pattern of the relation maintains an equal number of blocks on ."
:! each disk (where each disk holds a horizontal fragment of the relation). Also. the :
. modeling showed that multiple processors accessing a single disk create a contention

BN AN

N o problem that increases the performance time of a retrieval. Therefore, the goal of y
CY ~
p a design would be to associate a single processor with each disk or set of disks.
o . . . . .
E:- The mapping of the retrieval stage functions to hardware requires phyvsical hardware
s/
tj to store and retrieve the relations. The situation desired by the mapping is to
4
associate a processor with a disk as described above. However, cost restrictions mav
X inake this infeasible or reduce the number of disk/processor pairs from the desired
L performance level. This provides the opportunity of using the analvtical models
: to evaluate the different options available and to determine the best parameters to
meet the constraint. An example of using the analytical models might compare oL
N
the performance of retrievals when using 5 disk/processor pairs versus using 3 disks -’:
ns
. . ‘e . Ly
with 10 processors. Also. the models provide the ability to compare the various: N
data structures with the different configurations to determine if this may provide i~
~
¢
: o : ~
the desired performance level within the cost constraints. ~
X
The other design consideration of the retrieval layer is the update capability. "
AN
P For some environments. the performance of updates may be as critical to the total "
VN KO
>
<
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syvstem performance as data retrievals. Using the update and retrieval models. the
syvstem can be balanced to provide a design to give the desired performance. The
architecture presented mapped the retrieval stage functions to a set of disk/processor

pairs with the relations distributed over all the disks.

The advantage of the round-robin distribution of the data and the disk pairs
is that adding new disk/processor pairs and redistributing the data can provide
an linear performance improvement. Since each disk may contain a portion of the
relation, each processor/disk participates in the retrieval or update of a relation.

Therefore. the retrieval stage is a SIMD environment.

The SIMD environment of the retrieval stage suggests that the controller have
the ability to broadcast the retrieval or update instruction to each processor. Also.
during the update operations the processors needed to communicate with the con-
troller. This means that each processor must have a communication line to the
controller. The physical implementation of this could be individual communication

links or a common bus.

9.2.2 Retrieval-Processing Stage Interconnection. The processors of the re-
trieval stage pass the results of the sel-proj operation to the processing stage for
further processing in some cases. The logical view of this data transfer and out-
putting of results is that the retrieval processors have a full interconnection to each
processing stage processor. The mapping of this logical communication capability to
physical implementations is limited to some form of network or physical connections
between processors. Since the time required to complete this communication affects
the performance of the entire query retrieval. the analvtic models provided the ca-
pability to change the communication time parameter to model different physical

implementations and the performance effects of each.

The obvious physical implementation is a full interconnection network for pass-

g the results between stages. However, if a processing stage processor is to receive
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the results from a retrieval processor and the communication buffers of the process-

ing processor are full, the retrieval processor must wait until buffer space becomes
available. Also, the assumptions stated that the database should be adaptable for
expansion. The fully interconnected network requires each addition to be connected
to every other processor. This may not be adaptable for expansion. Therefore, the
suggested implementation of the information exchange facility between the retrieval

and processing stage includes an interface (cache) memory.

The advantage using an interface memory consisting of cache memory is that
the controller tells a retrieval processor which block to pass data to and the processor
does not have to wait for a processor to receive the data. Also, the cache memory
provides a broadcast type ability by allowing several processors to read the same
block of data. The cache memory requires an interchange network between each
stage and the memory. But expanding either the processing or retrieval stages has

no effect on the other stage because of the modularity provided by the interface

mermory.

9.2.3 Processing Stage. The processing stage corresponds to the binary nodes
of the normal form query tree. This requires the processing stage to perform join.
product, intersection, difference, union, and duplicate removal operations. The pro-
cessing stage accomplishes these operations by using two types of combined operator

processes: nested-loop and bucket.

The bucket processing uses the equal-comparison type processing (Chapter
[X). Included in the equal-comparison process is the removal of duplicate tuples
from each input relation. Therefore, if the final process concludes with a projection
that may introduce duplicate tuples, the results would have to have the duplicates
removed. For all the processing, the logical architecture requires the processors to
have the ability to pass information to other processors. All of the performance mod-

eling results presented in previous chapters assumed no communication restrictions.
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v This means that the implementation to provide this would be a full interconnection ah
~ad
communication network connecting the processors. ’
3
)
A fully interconnected set of processors is suggested as the mapping of the :f_
NG
‘ logical architecture to a physical architecture. However, this may be to costly or A
“
D
physically impractical to implement. Therefore, the design process must determine b
the communication capability/number of processors ratio that best fits the require- IS
b ments of the svstem. The models developed provide the capability to analyze these oy
] -
different situations to predict the performance capability of each. Especially critical ;
. . . . . . . » ! '
is the consideration of the multi-step queries if this type processing constitutes much :‘:‘_
l.-a
of the workload of the system. e
o
A full interconnection network would be the best implementation from the ;"'
performance view. From a practical implementation standpoint, the full intercon- :_,
S
nection network may not be feasible. The control structure of the logical database \:
architecture suggested that the processing stage be logically divided for control into D
partitions. The partitioning of the processing stage provides a logical division of A
the communication required within the processing stage. This logical division allows o
the communication between partitions to more fixed points. In current multipro- e
l\.ﬁ
cessor environments, the hypercube interconnection structure is a alternative inter- »
2
connection structure {78] to a fully interconnect network. Therefore. the hypercube e
: . . : : N
interconnection structure will be used to show how the interconnection network may N
Ks
. . . - Iy
constrain the proces:ing and how the processes can be modified to better utilize the "'
network.

The task allocation for the best performance suggested that for bucket pro-
cesses each assigned processor hash part of the relation and then all processors par- ." :
ticipate in the join or comparison processing. Also discussed was a task allocation ::::

. __:.4
that assigned some processors to only hash and others to only process the buck- ":‘:i
A
ets. The concern of the dedicated task aliocation was maintaining balance and not .
)
= forcing a small number of processors to do an inordinate amount of the processing. SR
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The limited communication of a hypercube (limited direct communication between

processors without using intermediate nodes) does not support the full interchange
required by the shared processing control structure (without time delays of passing
the data through intermediate nodes). A suggested modification to accommodate
the more limited communication capability is to use a modified dedicated task allo-

cation.

The modified task allocation to perform the bucket processes assigns some
processors to hash portions of the inputs, retaining a portion of the input for later
processing. The hashing processors only hash the input into small number of buck-
ets. The processors receiving the first level buckets now hash their inputs, retaining
a portion of the buckets for later processing. The second level inputs already form
logical groups so the hash of the second level is just breaking the groupings into
smaller pieces. Thus, the results of the second level do not have to be fully inter-
changed. Figure 61 shows the logical operation of this modified hash/join process.
The figure only shows 3 levels of processing. However, the processing of level 2 could
be replicated at each level to provide the fanout of data desired. The constraint
of this method is that the lower levels must scan a larger portion of the inputs.
But the purpose of the modified bucket process was to adapt the process to limited

communication capability of the processors.

The other operation of the processing stage is the nested-loop. The nested-
loop operation compares each tuple of the inputs. The nested-loop operation is
discussed in Chapter III. The control situation of the nested- loop is that operation

is assigned to a partition(s) and a processor within the partition is given the of task

of controlling the process.

The operations of the nested-loop or bucket processes either provide the results
to output to the host or temporary relations to be used as input into another binary
node. If the results are input into another binary node. the controller directs the

results to go to another partition for processing. or the results could be sent to
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. the interface memory to be processed. If the results are output. a contention could
- develop. The output in all the analytical models was assumed to go to a parallel data N
. sink. To implement this would require parallel lines connecting the *“host™ with the N
Y
\. . . . . \
~ processing laver. This may not be feasible. Therefore, an implementable method of >
‘_ simulating parallel output is to send the results to a segment of the interface memory.
j: Then an output processor can retrieve the results from the interface memory.
. The operations discussed above have all tried to etfectively use the resources
available to eliminate having to store temporary results on secondary storage. How- :
N
" ever to be able to handle all cases, this is not feasible. This requires the processing 14
oy [y
- . . . 4
"j stage to have some secondary storage capability. The implementation of this sec- “j
W . . . . .
ondary storage capability needs to maintain the dataflow within the system. This .:1
meauns that the retrieval stage is not considered to be a temporary storage depository. i
N N
N The secondary storage suggested by Figure 60 is some disk storage at each processor. -
. ’
\ . g . v . 1
A This ability to access secondary storage without contention from other processors :
o
- " . . . . ~ . (
‘ - is the assumption used in forming the performance models of multi-step query. An -
% ‘.~'
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alternative but less desirable method would provide only one disk for each partition.

This would provide the storage capability but could increase the performance time
of an operation that required secondary storage to used because of the contention

time in accessing the disk.

9.2.4 Controller. The controller is the interface between the “host” and the
retrieval and processing stages. The controller directs which query or update to
process and provides the necessary information to perform the operation. The task
allocation techniques for individual queries has been discussed in the previous sec-
tions and previous chapters. However, one other factor to improve the throughput

of the system is the sequencing of query execution.

Sequencing the query execution can improve the throughput of the system
by utilizing all parts of the system. The best example of the controller sequencing
queries is when the database machine needs to process a multi- step query and also a
simple retrieval query. If the multi-step begins first, there reaches a point where the
retrieval stage completes the retrieval of the base relations. The retrieval processors
are then available to perform the retrieval query which only requires action by the
retrieval stage. Also, updates could be accomplished by the retrieval stage while the
processing stage operates. This provides the capability to improve the throughput

of the system by separation of tasks.

The result is that by using a modular design of a database machine based
upon the analytical analysis of the relational operations. the capability to improve
throughput exists. This modularity of the system also allows the capability to expand

the system to improve the performance as needed.

The modeling provides the basis, then, for developing a physical design by
predicting the capability of a given situation. This reduces the design considerations
in mapping the requirements of the system to a design. The general form of the

query tree also aids the design by logically grouping the processing requirements of
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X. Conclusions and Recommendations
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10.1 Conclusions

Po AN
LA AN

The goal of this research was to provide the capability to design, using a struc-
tures design approach, an improved database query processor through the use of a
multiprocessor environment. The use of a multiprocessor environment suggested the
use of parallel processing to improve the data retrievals. To avoid using intuition

as the guide for the design of the system, a thorough examination of the feasibility

VN

[

i

of parallel processing of relational operators needed to be done. This examination :'.;j«'.

NN

‘ explored the theoretical considerations of parallel processing and modeled the per- NN

) \-
\ formance of different implementations and environments for parallel processing of ]
v

)

relational operators. The following discussion summarizes the results of each step in

.
L "
A

-
a

developing the capability to design an improved database management environment.

"l

5

B RN
The first consideration of using parallelism in a database retrieval is determin- »

ing the theoretical constraints of parallelism in database retrievals. The application :f-',:

\-’\

of Ullman’s properties of relational operator manipulation [79] and set theory princi- ::‘

N

A

ples provided the capability to determine the feasibility of using partitioned relations

WA 4

and parallel processing to execute the relational operators. Two additional proper-

.
"

ties of simplifying manipulating relational operators, commuting a product with a

b Zn 2 Y T
PR

ical considerations. The result was that horizontally partitioned relations provided

the least constrained application of parallel processing of the relational operators.

|
)
!
|
|
}
)
s
!
|
)
)
)
{ union and commuting a join with a union, were introduced to facilitate the theoret-
!
i The next step in the design development was determining how individual re-
: trieval operations should be implemented. This incorporated the use of analytical
E modeling of the individual relational operators. Analytical modeling of relational op-
' erators is not new. However, the analytical models presented extended the modeling

to include architectural combinations (i.e., sending results to a backend as well as
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storing results on disk, using multiple processors with single disk path. and a single
processor with access to multiple disks) not previously considered for all individual
operators. Also, the models varied the destination of the results to illustrate the

impact of the disk accessing time when temporary results must be stored on disk.

The remaining action of the database is updating the relations. The effects of

performing updates is usually neglected in the design of database retrievals. How-

v,

ever, new demands for immediate, accurate data require the application of real-time
updates. The updating of relations includes determining if the update will not cor-
rupt the database (i.e., add duplicate tuples to the database). To provide comparison
of the implementation of updates, the analytical models of the retrieval operators

were extended to include three update actions: insertion, deletion, and modification.

The 237 query performance models provide the capability to evaluate the per-

BAOENEN D Culal o AL o),

formance of the individual query operator implementations for various data struc-

Bastl it

A"
A
LN

- tures and hardware environments. Performance results for the individual operators.
for a given set of hardware performance parameters, presented conflicting results.
Parallel processing was the best method of performing projects and joins but an

optimized indexed structure was the best method of implementing the select and

update operations. However, the optimized data structures could also allow the
underlying tuples to be distributed for storage to allow the multiprocessing environ- =
ment for all cases to be possible. Thus, the performance of each relational operator

may be improved through the use of parallel processing and the performance im-

provement of additional hardware resources to provide improved parallel processing

can be determined by the analytical query models.

The analytical modeling of the individual query steps provided insight into
the data structure and implementation of single-step queries. However, it failed

to address the requirement that many database queries require a combination of

individual relational operations to complete the query. Therefore, the final modeling

.-:’r\

- consideration was to incorporate the multi-step query.
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| e Queries of a relational database can be expressed in a tree form. called a :f.'\
i query tree. This query tree provides a dataflow model of the individual query. This {.
: dataflow model provided the impetus to define a general model of any database _::
E query - a general normal form query tree. The normal form definition of any query ’:
' is possible by the combination of binary and unary relational operators as a single 3
) operation. N
:
E The normal form query tree definition was extended to model multi-step queries.
' providing performance modeling capability for any given query. The general mod- i‘-
t eling capability used the recursive definition of a binary tree and the combined op- :':
L eration properties of the normal form query tree to provide a recursive normal form -::
E query tree. This provides modeling capability for any complex multi-step query. ;;
! The analytical modeling of multi-step queries involved the determination of :3
} the affect of the data distribution, the hardware architecture., and the control or t
o task allocation of the processing, on the performance of the query. The analytical -;;
models developed provide the capability to vary each of these performance variables ?,:J‘
to evaluate the effects on the performance of executing a complex query. For a given \,.
set of hardware parameters, various combinations of data distributions. resources ;:é
and control structures were used to construct a set of curves depicting the perfor- ;
mance trends of the interaction of data distribution. resources available and how \
the resources are applied to the problem. These results provide guidance for further I
research in control structures and task allocation. '
The building blocks for the development of a database design are provided by
the analytical models and general form of the query tree. However. the final step b
presented showed how the analytical models and normal query form could be used .\'
to develop a design. Using the results of the modeling. a logical architecture of a
multiprocessor retrieval environment was presented.
- The logical architecture incorporates parallelism. intranode, independent. and .
el pipelining, to improve performance. There are two measures of performance - the :_::
e
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A
¢ hd time required to execute an individual query and the throughput of the system. The
- throughput of the system depends upon the time to perform each individual query

2 but also depends upon the capability to provide support for more than one task
? at a time. The logical database architecture’s logical separation of tasks provides
: modularity and flexibility, allowing a one-way data-flow within the primary parts
p of the system to reduce the performance delays due to disk accessing contention
2 delays. This provides the capability for improved throughput in the system because
> the retrieval stage supports the processing stage but it also operates independently.

) Thus, allowing the queries requiring simple data retrievals to process while more
; complex queries are being completed, improving the throughput of the system. g

_: The other performance measure, the performance of an individual query, was l:.:
- directly compared to an existing benchmark to show the performance improvement %
provided by the logical architecture. A benchmark of existing database manage- :_{
.; o ment systems and database base machines [9] provided the means of comparison for '.j

several complex queries. Using the parameters provided from this benchmark. the

\ performance improvement possible utilizing the parallelism concepts developed was
.‘ shown. The results (shown in detail in Appendix C) showed a significant perfor-

. mance improvement (a minimum of order 5 decrease) over existing database systems
and database machines. This shows the potential of a database query processor. con-
structed using a structured design approach, to provide improved performance over

; database machine designs that used the intuition and experience design approach.

b .
: 10.2 Recommendations
. The results show the the potential for further research to develop an actual K
implementation of a multiprocessor database machine using the analytic model de- ﬂ:.j’
,‘,' veloped here. Therefore, there are several areas of further research required for :':
E improving the design of a database machine. The first research area is actually j
: 4 r continuing the design process to implement the processes modeled by the analvti- i
: 2
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cal models. This would provide the capability to perform empirical analysis. This

process would also explore the physical limitation presented by physical hardware.

Another area of the database machine design that needs more research is op-
timizing task allocation. The multi-step query models provide the capability to
evaluate the performance of a given query for different control approaches. However.
the analytical models must use estimates of the selectivity factors to determine the
performance of the given query. The process that allocates the tasks within the
system does not have this prior knowledge of the size of the inputs into each node of
the query. If the controller had complete knowledge of the size of the inputs at each
node, an optimal task allocation could be done (but possibly not in real- time). This
implies the need for two different research focuses - size estimation within multiple
step queries and task allocation and load balancing in a dynamic multiprocessing
environment. The normal form query tree provides an environment that provides

ol the basis for both of these research topics.
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Appendix A. Multi-Step Query Results
The following graphs represent the results of the performance modeling of the
multi-step query models varving the input sizes. number of processors. and allocation
of tasks to processors.
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Appendix B. Multi-Binary Node Performance Results

The multi-binary query are queries consisting of retrieving multiple relations.
preforming a sel-proj on the base relations, joining the results from the sel-proj, and
then joining the results of the lower level joins. Figure 80 illustrates the structure of

the query performance results presented here.

The multi-binary query has many parameters that could be varied 1n the pre-
sentation of performance results. The performance parameters that affect the size of
the inputs and outputs and the number of processors and their tasks are the focus of
the results presented. There are four cases presented in the following graphs. Case 1
assumes that each relation is distributed across all of the disks and that the proces-
sor assigned to process the binary nodes, use a hash/join. The hash/join assigns all
of the processors to hash the incoming inputs, then when all of the input is hashed
the processors begin the join of the buckets assigned to that processor. Therefore.
Case 1 is annotated as Case 1 x-y on the graphs. where x is the total number of
retrieval processors and y is the number of join/hash processors assigned to execute
each binary node. For the Figure 80, using Case 1 10-20 means that there are 10
retrieval processors and 20 processors available for each binary node. for a toal of 70

processors executing the query.

Case 2 assumes that each base relation is placed on 1/n of the disks. where n
is the number of input relations. Therefore, for the model presented each relation
is assumed to be distributed on 1/4 of the disks. For Case 2 10-20. this means that
there are a total of 10 retieval disks/processors are available but each relation is
stored on 1/4 of the 10 disks or only 2 of the disks. The possible advantage of using
the smaller number of disks to store the relations is that the retrieval of all of the
relations can be overlapped. Therefore, for the model query presented both subtrees
of the root node can begin processing immediately. If the data distribution of Case

1 is assumed. then the left subtree has to complete retrieving both relations before
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the right subtree can begin any processing. Figures 52 and 53 show this overlapping

of processing possible in a multi-binary node query.

Case 2 10-20 continues by using 20 processors to hash/join at each binary node.
The processor tasks are assigned the same has Case 1, where all of the processors first
hash the inputs and then all of the processors join there buckets. Case 3 assumes
the distribution of relations across all of the disk the same as Case 1. But. Case
3 assumes that the processors assigned to each binary node are separated so some
processors only hash the inputs and the processors assigned to perform joins do not
assist in the hashing of the inputs. The notation for Case 3 is Case x-y-z. where x
is the number of retrieval processors, y is the number of processors hashing inputs.

and z is the number of processors performing joins.

Case 4 combines the task allocation of Case 3 and the data distribution of Case

2. Therefore, Case 4 is annotated as Case 4 x-y-z on the graph. For Case 4. x is the
NN total number of retrieval processors but each relation is stored on 1/4 of the total
disks.

The results presented use the selectivity factors shown in Figure 80 to deter-
mine the size of the relations resulting from each operation. The results are presented
where relation 4 size varies from 100 blocks to 1430 blocks for each graph. The other
relation- have their size fixed for each graph. The graphs also vary the number of
procesors assigned for each task for Cases 3 and 4. Only a small representative set
of results are presented to show the effect of different processor allocation and the

different data distributions.

The results presented illustrate the variance of the preformance depending

upon the processors allocation stategy. The results do not indicate that one data al-

location scheme is better than other but that the matching the number of processors }'-‘
to the tasks is more important. Although. the join processing is slower than hashing

inputs the balance which makes it seem that more processors should be assigned to

p -
R join. the results reflect the opposite of this. But the balance of using more hash pro- :-':j
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e cessors provided a better balance of processing. However. the allocation here was the -
’
same for each binary node. Futher investigation should be done to determine what T
the optimal number of processors at each node would provide the best performance. A
This should include considering varying number of processors to each binary node N
.\
to try to achieve balance. .
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Appendix C. Benchmark Performance Comparison e
1 Bitton. DeWitt, and Turbyfill have done a benchmarking of current database T
f management systems and database machines [9]. This benchmark provides the pos- -
sibility to compare the projected performance times for complex queries generated ”
bv the multi-step query models with actual execution times of syvstems. The purpose -
of this i1s not to directiv compare the performance times. but to show the potentia. o
. . . . »
of using parallel processing in the construction of a database machine. <
4.
To compare the benchmark results with the resnlts of the analviical models N
for multi-step query, some parameter translation must be done. The benchmark X
‘ . . . . »
exercise used relarions consisting of 10,000 tuples. Each tuple consisted of 132 bytes. ’
This (using the performance parameters of Table 3) translates to a relation with ’
" approximatelv 140 blocks. Where each block contains 71 tuples of 182 bytes.
J‘
The next value to be considered was the number of processors to be use *
in computing the performance results. The benchmark compared single processor
~vsterms will multiple processors systems. However. the multiple processor svstem
RRAN
was limited to 3 or 4 processors because of controller constraints. Therefore. there »
-
. . - . >
was no direct comparison for the number of processors to use. The number of RS
i
Lo
processors used was just an arbitrary number, but the total number of processors ;"{-;_
~
. . . . . . . . . "
involved was limited to what is currently available in a multiprocessor environment. '."fJ
Thas. the number of processors used was 10 retrieval processors and 10 processors s
at each node of the complex querv. This is more processors than used by any of the O
svstems benchmarked. but the purpose of this exercise is to prove the capability of e
. »
parallel processing. N
ol
Three queries were used for the benchmark. The first query. joinAselB. first T
I.' -
. . “ o . .y . . -"--
~elect 1000 tuples from relation B and then joins this with relation A. which has e
. .. ) ]
;.. 10000 tuples. The second relation assumes that the seiection process on relation B C:,’\‘j
N NS
LN
*
et
s.j}.i
a1 )
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™ lias heen done prior to performing the join. Therefore. the join is a simple join of N
s
E a 10.000 tuple relation and a 1000 tuple relation. The final query performs a select .
,'f operation on both relations A and B that reduces the 1000 tuples each. These two E:::
E 1000 tuple relations are joined and produce 1000 tuples. These 1000 tuples. from :':.'.
i the joining of the relations A and B, are then joined with a 1000 tuple relation. C. >
A To approximate the number of tuples produced. a selectivity factor of .1 was
E used for the selections performed on A and B and a projection factor of 1 was used
i to provide the sel-proj operation the necessary parameters. Experience of executing
" the multi-step queries indicated that using a join selectivity factor of .0001 produces
o
:'; slightly more output blocks than the sum of the input blocks for a join operation.
E This 1s more than the number of block produced in the benchmark. but provides a
value that is not less than the value used in the benchmark.
Figure 86 shows the results of the benchmark performance for the three queries.
\ In Figure 86, Table 5 assumes the systems do not have any existing indices for the
relations used. Table 6 shows the optimized retrievals for each system for performing
the three queries. The performance models of the multi-step queries do not consider
the data structure. Therefore, only one time parameter is expressed for each query.
The results produced for joinAselB was .08 minutes. This retrieval used 10
retrieval processors and 10 hash/join processors for a total of 20 processors. The
; result of joinABprime was .079 minutes. This also used a total of 20 processors. The
final query joinCselAselB produced results of .083 minutes. This query utilized 10 - 1
retrieval processors and 10 processors at each binary node for a total of 40 processors. o
These results compare very favorable with the results presented from the benchmark j;fi
in Figure 86. The results also illustrate the capability to improve the performance :.'
through the effective use of multiple processors such as the more complex querv '.:
joinCselAselB being completed in approximately the same time as the less complex ::
queries. v
e, N
- The results presented for the analytic performance models are not exact nun- :::‘_:
>
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Join Queries Without Indices

Integer Attributes

Total Elapsed Time in Minutes

Query
System joinAselB joinABprime joinCselAselB
[ C-INGRES 10.2 9.6 9.4
C-INGRES 1.8 2.6 2.1
ORACLE >300 >300 >300
[DMnodac >300 >300 >300
IDMdac >300 >300 >300
DIRECT 10.2 9.5 5.6

Join Queries With Indices

Integer Attributes

Total Elapsed Time in Minutes

Primary (clustered) Index on Join Attribute

Query
System joinAselB  joinABprime joinCselAselB
U-INGRES 2.11 1.66 9.07
C-INGRES 0.90 1.71 1.07
ORACLE 7.94 7.22 13.78
IDMnodac 0.52 0.59 0.74
[DMdac 0.39 0.46 0.38
DIRECT 10.21 947 5.62

Join Queries With Indices
Total Elapsed Time in Minutes

Secondary (nonclustered) Index on Join Attribute

Query

System joinAselB joinABprime joinCselAselB
U-INGRES 4.49 3.24 10.55
C-INGRES 1.97 1.80 2.41
ORACLE 8.52 9.39 18.85
IDMnodac 1.41 0.81 1.81
IDMdac 1.19 0.59 1.47
DIRECT 10.21 9.47 3.62

Figure 86. Benchmark Results

(Reproduced from Reference 9])
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bers but an estimation based upon a given set of performance parameters. Tie
performance parameters used are easily obtainable values for today’s state-of-the-
art hardware. The only definable difference between the benchmark cases and the
performance models is the use of multiple processors utilizing parallel processing.
This comparison encourages the modeling and design considerations presented in
this document to be extended to a physical implementation to provide the capabil-

ity for further analysis of of the effectiveness of parallelism in database operations.
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The design of faster relational database query processors to improve the
data retrieval capability of a database was the goal of this research. The emphasis
was on evaluating the potential of parallel implementations to allow use of multi-
processing. First, the theoretical considerations of applying relational operations
to distributed data was considered to provide an underlying data distribution and
parallel processing environment model. Next, analytical models were constructed
to evaluate various implementations of the select,project, and join relational op-
erations and the update operations of addition, deletion, and modification for a
range of data structures and architectural configurations. To predict the perform-
ance of the query processor for all cases, the individual operator models needed
to be extended to models for complex queries consisting of several relational
operations. The solution to modeling multi-step queries was the use of a general
form to express a query. This normal form query tree uses combined operations
to express relational algebra equivalent queries in a standard form. This stan-
dard tree form was then used to construct analytical models for multi-step que-
ries. These models provide the capability to model the potential of different
forms of parallelism in solving complex queries. The results of the analytical
models present a logical design for a multiprocessor query processor. This logical
query processor using multiple processors and employing parallelism illustrates
the potential for an improved query processor using parallel processing when the
analytical model results of complex queries are compared to a benckmark of some
current database systems.
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