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I. INTRODUCTION:

The research objective of this project is to develop a system :o as-

sist a photointerpreter to understand, interpret, and report the contents of

a (digitized) photograph more rapidly and more consistently, and to reduce

the degree of personnel expertise necessary. "

The research reported here was begun during the 1984-85 academic

year under the direction of Professor Herbert Freeman. The two completed

subprojects are summarized below and the complete reports are included in

the attachments. Professors J. Modestino and G. Nagy took over in the Fall %

1985 and developed the detailed plans reported in Section IV.

The ancillary objective of the grant is to increase the number of

qualified personnel in the general area of artificial intelligence. The -

three major ways in whi-h we seek to accomplish this, as described in Volume %
I of the Annual Report, are: %

%

i. Improve and coordinate the AI-related courses at RPI and develop

a comprehensive graduate-level curriculum in Knowledge

Engineering.

2. Extend faculty opportunities for Al-related research. -

3. Improve communications among AI researchers, including graduate jA

students. We have alrea.dy held a number of meetings bringing

together faculty who were previously unaware of common

interests. We are now institutionalizing the interaction and

are extending it to nearby organizations outside the RPI .-

umbrella. .
•-. .% '

This report is organized as follows: Section II is a summary of a S

transform-based invariant feature extraction method for objects in digi:al

images. Section III is a summary of the development of a simple inference ..

engine for image interpretation. Section IV is an outline of the work cur- "-

rently underway, which will form the bulk of our activities in 1986.

468 % %,
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S

I.TRANSFORM.fATION INVARIANT ATTRIBUTES FOR DIGITIZED OBJECT 07U71:N .

Two methods for automatic recognition of obJects based on .e r Jft
closed chain-code boundary description were investigated. Granlund '"' .-. %

Zahn and Roskies [13] both derived expressions for Fourier descriotors o-

closed boundary objects which are invariant under scale, rotation and
translation. Persoon and Fu [11] reported good results using Fourier

descriptors to perform character recognition and machine parts recognition
'dallace and Wintz '12] obtained good results using Fourier descriptors :c

recognize three dimensional views of aircraft boundaries. A differen.
method for computing a scale-, rotation-, and translation-invariant descri-_

tion of an object boundary is given by Hu [7]. This method is based on

invariant moments. Alt [1962] derives moments invariant under an affine %

transformation [3] (i.e., they are invariant to translation, scale, and

"stretching" and "squeezing" along the horizontal axis, but are not in- IV %rV
variant under rotation). Dudani, et al. [4] reported good results in

automatic identification of aircraft using the invariant moments of Hu. %

Other approaches are described in [9], [12]. .- :,.

To test the invariance of both the Fourier descriptors and moment ..

invariants, the capability to both rotate and scale a digitized object was ...

programmed. To facilitate this process, several small command processing -%-
language programs were written. c'.A

The invariant attributes for 6 different scales and orientations of -

two objects' outlines were compared. The Fourier descriptors seem to be
more sensitive to scale and orientation than do the invariant moments. The

higher-order moments were also inconsistent.

A fuzzy isodata clustering analysis [2] of the invariant attributes ,-'-
for 20 aircraft outlines was performed (in LISP) on the Fourier and moment

descriptors. The full 16 member attributes vector gave the best clustering e..
of the test patterns. Neither the area, perimeter or Fourier descriptor at-

tributes are capable of detecting the "delta" wing aircraft typified by the

F-16XL [81 , whereas the moments do seem able to group them together. The .

details are provided in [10].-''

A fuzzy clustering analysis of 4 basic shapes (rectangles, squares,

triangles, and circles) was also performed. With this method, it was hoped

to enable statements such as "this closed boundary is 0.3 like a rectangle "

469
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and 0.6 like a triangle", which falls very naturally from the fuzz-, cl:ster-

ing approach. Unfortunately, the method was not even able to dis:-. ' s-

squares from circles. It was determined that the problem is . :he

original invariant moments and Fourier data. This data is not similar for

similarly shaped objects.

The invariant moments and Fourier descriptors for several "blob'

shapes were also analyzed. A successively larger amount of noise was added

to the outlines of 2 different blob shapes. The analysis shows that the i-.-

variant moments are, on average, more susceptible to noise than are :-e

Fourier descriptors. In addition, slight systematic variations in the out-

lines of the 2 original blobs were made to see how the invariant moments and V
Fourier descriptors reacted to them. The Fourier descriptors were again

less sensitive to the systematic noise.

In summary, both the invariant moments and Fourier descriptors seem

to be invariant under scale and rotation changes for simple objects such as I r
%

the rectangle. For more complex shapes, the first 3 invariant moments seem

to be more stable than the Fourier descriptors. The best clustering of the

aircraft is obtained using all 16 of the attributes. Clustering of the

basic shapes did not work due to the inconsistency of the Fourier descriptor -

and invariant moment data. The blob analysis showed that the Fourier

descriptors used here are less sensitive to both random and systematic

noise.

The fuzzy clustering analysis of the attribute data is a good way to S

make decisions about an object's shape without having to consider the actual %,*I

raw data values themselves. This is particularly true with an expert system .

where one wishes to write rules which are easy to interpret and maintain.

Neither the invariant moments nor the Fourier descriptors used here seem to S

be the ideal raw data values on which to base the decision about shape. , ,

Along with such measures as area and perimeter they do provide some help as % %e V

shown by the fuzzy clustering of the aircraft outlines presented in .,'.',

Attachment B. .
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I:I. DESIGN OF AN INFERENCE ENGINE FOR AN IMAGE 1NTERPREA-.: -: EXT.--

SYSTM-.

A combination of backward-chaining and forward-chaining strateg: has

been implemented. Two kinds of rules are introduced: IF rules are used for•%
backward-chaining and WHEN rules are used for forward-chaining. Prim!tii'e

certainty factors are associated with each fact. The truth value of false

is indicated by -i, true by +1 and 0 indicates not known.

To introduce more flexibility into the environment, provision has
been made to attach VERBS and PREDICATES to antecedent and consequent " '"

clauses of each rule. The VERBS are used to take some action on the conse-

quent clauses and PREDICATES control the manner in which the antecedent 0

clauses are satisfied.

The VERBs implemented are:

1. WRITE: to insert a fact into the list of facts,

2. CLEAR: to delete a fact from the facts list, -0

3. DISPLAY: to show a fact with all its attributes to the user.

4. ASK-Y: to ask the user a question and assign a true certainty factor,

if the reply is yes.

The PREDICATEs implemented are: •

1. IS-TRUE: to check whether the certainty factor associated with a fact

is +.,_

2. IS-FALSE: to check whether the certainty factor associated with a fact

is -1, and

3. ASK-Y: to ask the user whether the fact is true.

A rudimentary explanation of the conclusion has been incorporated.

This involves listing and displaying all the rules used to derive a PIN

conclusion. This provides some glimpse of a train of thought. A record is S

also kept of the usage of each rule. This may be used to assist some meta-

rules in the future. ...

A BEHAVIOR switch is provided with the backward-chaining inter-

preter, which can be toggled by the user. This causes the system to

alternate from behavior B1 to behavior B2. Behavior BI is the default,

where if a needed fact is not known, the system will first try to prove it

and if that is not feasible, it will ask the user. Bl has the advantage of

-_ minimizing the amount of questions asked to the user, but it also treats the N

S'
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user at the lowest level of input data. In the automatic image in:erpre:a-

tion expert system, this could directly be translated into a request for

specific data from the image processor. Behavior B2 also checks whe:her :-e

needed fact is known, but if that is not the case, it will ask :he user

directly. If the user does not know the answer, then the system wij! r v to

infer it using the rules. B2 involves the user at higher levels of dif-

ficulty, but it also asks too many questions and it may not be useful for an

automatic system. However, it serves as a debugging aid for the rulebase. .

The syntax adopted for the rules is given below:

<RULE>--> ( <RULE-ID> <CODE> )

<RULE-ID> --> unique-id

<CODE> --> <RULE-TYPE> <PREMISES> <CONSEQUENTS>

<RULE-TYPE> -- > (IF/ ('HEN))

<PREMISES> -- > <CONDITION> <PLREMISES-REST>

<PREMISES-REST>--> ( <CONDITION> <PREMISE-REST>)

<CONDITION> -- > ( <PREDICATE. fact) )

<PREDICATE> -- > IS-TRUE / IS-FALSE / ASK-Y . -.

<CONSEQUENTS> --> ( <ACTION> <CONSEQUENTS-REST>)

<CONSEQUENTS-REST>--> ( <ACTION> <CONSEQUENTS-REST> / )

<ACTION> -- > (( <VERB> fact) <CF>

<VERB> --> WRITE / CLEAR / DISPLAY / ASK-Y

<CF> --> +1 / -1 0

The general form expected for a fact is an object-attribute-value

tuple. However, this is not very rigid and facts can also be represented in

other ways. A label indexes facts in the fact base. The object-attribute- % %%

value tuple, the certainty of the fact and an indicator showing the origin

of the fact (the image processor, the user or the inference engine itself)

for explanation purposes are tagged as the property lists of the label.
", a . J

The LISP functions that carry out the above-mentioned functions are
given in Attachment A. ,

By introducing greater flexibility in certainty factors with a de-

pendence parameter D, it is possible to take into accotn the differing
. :..

statistical dependencies amongst the evidences. But it may be difficult for , ,a-

the expert quantitatively to assess the statistical dependencies, as such

assessment is no longer intuitive. It is easy to implement though but its

adequacy to take care of both the necessity and sufficiency conditions may

% ,,%..
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require versions of the same rule but with different dependence parameters P1

and certainty factors.

The subjective Bayesian method is the easiest to :..."emen:

However, it requires expertise to assign values :o the sufficiency anc

necessity factors in a way that reflects the true association. This is com-

plicated by the fact that multiple evidences may point to the same

hypothesis. If new premises have to be added to an existing rule, the suf-

ficiency and necessity factors may need to be appropriately modified. -

was found that judging the relevance of different evidences to the conclu-

sion requires a considerable amount of trial-and-error attempts. One -.
distinct advantage of this method is that it is impervious to the order in

which the probabilities of the evidences change. Besides, there are the as-

sumptions that the hypotheses should be mutually exclusive and exhaustive,

and all evidences should be conditionally independent under each hypothesis.

The Dempster's rule formulation is commutative and associative and

thus the order in which inferences are drawn is not critical. The probabil-

ity range (0, 0) corresponds to no knowledge at all and will result from any

attempt to apply an inapplicable rule. Even if such a rule is applied, it

has no effect on the eventual conclusions. Also, (a, 0) + (c, 0) - (a + c -

ac, 0). The probability ranges (a, 0) and (c, 0) indicate no disbelief in .0

the corresponding rules: in this case, the probabilities combine in the
usual fashion. It is possible to use this for dynamically changing

evidences because the inverse of the combination can be applied. This

enables us to retract the conclusion of an earlier inference without in- -"-

fluencing conclusions drawn by other means. However, to reduce computational.

time complexity, the evidences are required to be independent and the e

hypotheses mutually exclusive. Also the normalization process may lead to S

incorrect results.

In conclusion, the uncertainty associated with some types of

evidence or facts is complex and it is unlikely that a single, uniform rep-
resentation will ever be sufficient to model it. The necessity and

possibility theory, proposed by Zadeh [33], extends the Dempster-Shafer con- %

cept to handle the case when the evidence is a fuzzy set. In this approach,

the normalization is not required and thus may prove valuable. It may be

worthwhile to try it as an alternative for this expert system.

.- .- 4,.I'
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As a comparison between backward-chaining and for'ard.cha-n n.

szrategies. it has not yet been ascertained which approach is more sui:able

for this project. If there is no division of rules, a forward-chair._inz ap-

proach brings out the dominant features in the evidence, whereas a backward- J

chaining approach may be better suited to answer the user's specific1

queries. A combination of both approaches is implemented, but a more clear-

cut strategy may be desirable. It may perhaps be forward-chaining in the

preliminary stages, thresholding the probability estimates, and then

backward-chaining on a separate set of rules more pertinent to the user's

interest. If the rules incorporate variables, the matching procedure be-

tween the facts and either the consequent or the antecedent clauses need to

have a unification algorithm. %

%.
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:7. CURRENT PLANS: ,:: -

To reach our primary objective of automated phocoin:erpre.a::o. -e

have decided that it would be most effective to establish a number of inzer-

mediate goals which can be pursued simultaneously. Broadly speaking, -hese

sub-goals can be divided into research on fundamental problems which must be

solved to achieve success in automating photointerpretation tasks (tasks I

4 below), and the development and adaptation of mathematical and sof-'are

tools to build a demonstration system (tasks 5 and 6). At "this time, the

various tasks are deliberately formulated independently of each other in or-

der to allow separate groups to make progress without interdependence and ..--.

draw on the current skills of the participants even as new skills are

acquired. These diverse endeavors will be gradually integrated by the

principal investigators to Lcemonstrate both significant research contribu-

:ions and a prototype photointerpretation system. •

The major research tasks are the following:

I. Probabilistic model of images based on neighborhood-induced ran- -

gomfild. Random fields are the two-dimensional equivalents of

Markov chains. Their potential usefulness in digital image

registration and filtering arises from the fact that they allow a

precise mathematical characterization, with a relatively small num-

ber of parameters, of the objects under consideration. This allows

the application of formal techniques to analyze :he performance of
competing classes of algorithms. Our objectives here are to extract

the relevant image, parameters from real images and to compare the

predicted performance of image-processing algorithms on the model

with the experimentally-observed performance on the images. Various

sets of model parameters would be part of the knowledge base of an

expert system and would allow the selection of the most appropriate S
algorithm according to the statistics of the images under

consideration.

2. , odel for to~oranhic terrain features. Peaks, ridges and val-

leys are considered significant terrain features, but most current

480
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methods for extracting such features suffer from Mvopia rooted 0.

the differential calculus and they are unable to dis:irn.-ish sig-

nificant landmarks from local artifacts. :n order to overcome ::i %'

problem, we propose a model based on visibility. We ass.e : ..a- -e

horizontal scale is much larger than the vertical scale i~e.. :h-e P

horizontal extent and separation of features is much greater tha.

their vertical extent), that the terrain is relatively uniforml.-

sampled, and that in a given region all of the significant features J'

are of the same order of magnitude, but that large variations occur '

between regions. For each point the boundary of the surface area

that is visible from it is determined. Then a minimal set of obser-

vation points is selected such that the entire area under "/

consideration is visible from these points. In addition to the ap- % %I
plicability of the method to the extraction of features for special-

0purpose sketch-maps, the method should be directly applicable to the N% %

selection of observation posts, the location of hiding places, the p % . -

placement of line-of-sight transmitters and receivers, and to % %

orientation/navigation. Here again, the ultimate objective is to

include a feature-oriented abstraction of the area under considera-

tion in the knowledge base of the expert system.

3. Target detection and classification based upon multiole sensor

inputs In many image exploitation applications including photoin- 0

terpretation, there is some advantage in using multiple-sensor views
of the same scene to aid in target detection and/or classification.

Any scheme for accomplishing this must take into account the dif-

ferent characteristics of the various sensors as well as their 0

operational status and viewing conditions. The object of this re- .

search task will be to formulate and characterize AI techniques for

target detection and/or classification from multiple imaging

sensors. Particular attention will be given to the case of multiple 0

targets against cluttered backgrounds. Furthermore, ".e intend to

investigate the situation where image frame sequences are available

from each sensor and target motion is possible between frames.

%
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4. Smbolic mage Processina. A large amount of research has eee.

accomplished in recent years dealing with what migh: be cae:

n image processing. Here, individual pixels are represe.:ez_

by real-(or integer-) valued numbers and the images are opera:ze

upon by signal processing techniques suitably adapted to :',;o and

sometimes higher) dimensions. Typical numerical signal processi,_n

techniques include: image enhancement and restoration, edge detec-

tion and contour extraction, texture classification and

discrimination, etc. More recently, a body of techniques is being

developed which might properly be called s image process ing

in distinction to the now classical n image processing

techniques. In this case the image is no longer represented at the %

pixel level but at a higher level in terms of symbolic constructs. 's..y _,

The symbolic representation generally requires less storage and/or J - -

transmission and is typically in a form more useful to subsequent -0

image exploitation tasks. However, the distinction between these %or

two types of image processing is somewhat cloudy since often nUmeri-
cal techniques are used to obtain the symbolic representation of an ,%.

image. The purpose of this task is to investigate the use of Al S
techniques in symbolic image processing within the context of image

exploitation applications. More specifically, we intend to explore

symbolic representation and processing techniques useful in expert %

systems for image exploitation.

The principal development tasks are:

5. Relational database system for images. Database systems for

images have traditionally been customized, "home-grown" systems with

restricted application to selected image formats. Current database

technology offers, however, significant advantages for photoin-

terpretation, including high-level data modeling, file integration,

individual user views, query optimization, independence of physical

* and logical data organization, information hiding, multiple-user in- -- ,-

teractive access, and many design and application tools. In this

task, we will be attempting to demonstrate the feasibility of common

image-processing operations in the access language (QUEL) of a

%, 55"'., -S .
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general-purpose database system (ngres). Further. we allow the

user to view images as continuous enti :ies in both extent and

intensity. In essence, we are developing for image-processi.g a .1

concept analogous to floating-point arithmetic. Current work cen-

ters on automatic query translation and optimization using a

problem-specific knowledge base. The development of a high-level

photointerpretation-oriented application language and of low-level

image store organization for a general-purpose relational DBMS is

expected to pay dividends both in accelerated research and construc-

tion of the demonstration system.

6. Constrained image-segmentation and labeling Zechnigues. In man, '.

images. only certain segmentation patterns are admissible, and

results may be improved by restricting the search to these patterns.

Horizontal and vertical segmentaton boundaries predominate, for in-

stance, in modern city-scapes, factory floors, technical document

layouts, and integrated circuit design. In aerial photographs, the

constraints are more complex. Initially we are concentrating on en-

vironments where the boundaries of the objects of interest may be P' I;W

found by the consecutive application of a sequence of one- d -'

dimensional filters and detectors directed by an expert system with.-

gradually-improving knowledge of the segmentation rules. In the

second phase of the project, another expert system, with more

detailed knowledge about the relative positions of the different

types of objects, directs the labeling process. Eventually, we ex- %

pect to combine the two phases allowing image segmentation to be X YA

corrected by feedback from the labeling process. The labeling

process may be envisioned as a tree-search, with heuristics based on

the layout rules. The initial demonstration system will run in an

interactive mode, with a human P1-expert monitoring, questioning, ...._-.

and correcting the labeling subsystem. Among questions currently :

under study are the choice of the development system (we are

strongly prejudiced towards commercially-available expert systems)

and the precise formalism for introducing PI expertise in the

knowledge base.
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ABSTRACT .0 -
,01% %

This report describes the development of an inference

engine for an image interpretation expert system. The Opt%

inference engine has the capability to prove or disprove

hypotheses by chaining backwards through a sequence of rules

or to arrive at a conclusion from a set of observed facts.

Three metnoas for estimating the validity of the conclusion

drawn from inexact data and uncertain rules are described.

The design of the inference engine was specifically directed

toward possible use in an image interpretation expert

system. ,.%_ %
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1. INTRODUCTION

One of the recent achievements in the field Cf

artificial intelligence is the development of expert

systems. An expert system is a computer system that

attains high levels of performance in areas requiring

special education and training or in Specialized,

professional domains. The study of expert systems is

concerned with methods and techniques for constructing

man-machine systems with specialized problem-solving " . "

expertise. Expertise consists of knowledge about a

particular domain, understanding of domain problems and

skill at solving some of these problems. Expert systems

lay special emphasis on the knowledge that underlies human

expertise in a particular domain and not on

domain-incepencent problem-solving or formal reasoning

methoos. The knowledge-based expert systems are thus a

class of computer programs that use a collection of facts,

"rules of thumb" of the human experts and other knowledge

about a limited field to help make inferences witnin this

field. Amassing and managing a large amount of knowledge

rather than sophisticated reasoning techniques is

responsible for most of the power of the system.

Expert systems generally have several distinguishing

features, which include symbolic representation, symbolic

inference and heuristic search. They are similar to
,% %.

systems developed in other branches of artificial
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intelligence. The knowledge-based system approach is,-', .

different from conventional programming systems as the 0

goals here have no algorithmic solution ano inferences have

to be made on uncertain or incomplete information. The

advantages are that an expert system can be designed to

supply one or more hypotheses, request additional

%'information ano explain the reasoning process. it also%

allows modification of the knowledge used without extensive

reprogramming and use of the knowledge for other purposes, N, ,.
a.1 .)

like education. This is due to the fact that the model of

problem-solving in the application domain is explicitly in

view as a separate entity or knowledge base rather than

appearing only implicitly as part of the coding of the

program. In a conventional computer program, knowledge -

pertinent to the problem and methods for using this

knowledge are intertwined; thus it is difficult to extract

ano modify the domain knowledge.

Ordinary computer programs organize knowledge on two

levels: data and program. Expert systems, however,

organize knowledge on three levels, data, knowledge base

ano control. On the data level we have declarative

knowledge about the particular problem being solved and the

currrent state toward the solution of the problem. On the

knowledge-base level we have knowledge specific to the

particular kind of problem that the system is set up to -

solve. The control structure makes decisions about how to "- -
*, . N. li

use the specific problem-solving knowledge. Thus in an .%.%
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expert system, there is a clear separation between general

knowledge about the problem domain from information about

the current problem and methods for applying the general

knowledge to tne problem.

The knowledge base is manipulated by a separate,

clearly identifiable control strategy. This mechanism is

analogous to the deductive reasoning of a human expert.

The known facts and rules are used to infer conclusions.

This component of the expert system, which can be %-%

domain-incepenoent, is called the inference engine.% %

The objective of the research described here is to

build an inference engine suitable for an expert system for -. .

image interpretation. The purpose of this expert system

will be automatically to analyze aerial or satellite images 0

to determine their "meaning. The system thus will attempt

to pertorm the function of a human photointerpreter. One

constituent of this expert system will be the image

processor, which performs the task of extracting basic

information from the input image. This includes a shape

discriminator. The output of the image processor will

reside in the fact base. The knowledge base will be

gleaned from human experts. The inference engine will use -

the fact and knowledge bases probabilistically to determine

the objects in an aerial image.

One well-known way to represent declarative knowledge

is by means of formulas in first-order predicate calculus. - z
Simple declarative facts can be represented as instantiated

490
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predicates. Anotner way of representing declarative

knowledge is in terms Of frames. Frames are data

structures in which all knowledge about a particular obDect ,,
or event is stored together. Such a representation cannot

represent any more concepts than first-order predicate

logic, but the organization of knowledge can be useful for

modularity and accessibility of the knowledge. In

addition, frame systems allow ways to specify default

values for pieces of information about an object when that

object is not explicitly available. Semantic networks are

a third way to represent declarative knowledge. The

objects are represented by nodes in a graph and the

relations among them are represented by labelled arcs.

However, the most popular approach for representing the

domain knowledge needed for an expert system is by

production rules. Rule-based systems work by applying .,"-
le 

4. %

rules, noting the results ana applying new rules based on

the changed situation. Rule-based systems are particularly

attractive when much of the expert knowledge in the field

comes from empirical associations acquired as a result of ,

experience. When more causal information is available, the

former metnoo may be more pertinent, as in %20. The .:' . , :

rule-based approach has been adopted to represent knowledge

in the image interpretation expert system.

. S.•P"
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2. CONTROL STRATEGY

A production rule is of the form IF (A) AND (B) THEN

(C), e.g., IF (region-class is 'water') AND

(regions.surrouncing are 'land') THEN (region is lake).

This situation-action rule, as it is also called, captures

the semi-logical response of the human expert, that is, if

a certain kind of situation arises, a certain action can be

taken or a certain conclusion can be inferred. Clauses

tnat represent the situation are called antecedent clauses

ana those representing the action are called consequent•

clauses. Furthermore, the rules may be interconnected,

that is, the consequent clauses of a rule may form part of - %

the antecedent clauses of some other rule. A set of rules

,K: thus form a chunk" of knowledge in a particular field.

The first tasX is to input the rules for a particular

- domain in a specialized language an produce an internal.

representation. Then a general reasoning mechanism is

provided. The inference engine or rule interpreter has to

decide in what order the rules can be applied and in what

manner the rules should be enabled, that is, it must

establish tne matching process between the evidence

collected and the antecedent clauses of the rules. This

determines the control strategy.

The simplest strategy is to scan through the rule list

until one is found such that the antecedent clauses match

the facts present. Then this rule is applied, updating the
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set of known facts, and scanning is resumed. This process

continues until a goal state is reached or no rules can be

applied to extend the facts list. This method is called

forward-chaini. . Since the behavior of the system is

directly responsive to the set of known facts, this is a

data-driven control strategy or data-directed inference.

A different strategy is to select a goal to be

achieved and then scan the rules for one whose consequent

matches the goal. If such a rule is found, a match is

tried between the antecedent of the rule and the existing

facts. If such a match is possible, then the problem is S

solved, otherwise the antecedent clauses are treated as

problems to be solved and the same process is applied

recursively. This process stops when all the problems

generated are solved or if there are no further rules to

establish the sub-goal. This method is called

backward-chanin . It is also called the goal-driven
,m

control strategy or consequent reasoning and is similar to

means-eno analysis.

The two strategies serve different functions. The

data-driven or forward-chaining approach has the

disadvantage of generating many hypotheses not directly

relatec to the problem under consideration. This may lead

to wasterul erforts as well as runaway problems. However

the goal-driven, backward-chainJng approach has the

disadvantage of becoming fixed on an initial set of

hypotheses an having difficulty shifting focus when the
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data available do not support them. If the need is to

identify objects ana their meaning in a given aerial izrage,

the forward-chaining approach may be most appropriate:

whereas if the purpose is to determine whether certain *8

specific objects exist in an aerial image, the

backward-chaining strategy is suitable.

To alleviate the problem, a combination of

forward-chaining and backward'-chaining strategies has been

implemented in the inference mechanism here. The primary F.

- control lies in the backward-chaining method. While

evaluating the validity of a hypothesis, if new facts are

generated by the image processor supplementing the fact
4. ., %. ..

4.base, the forward-chainer gets activated. This ensures

adequate control.

Provision is made for two kinds of rules in the

•. system. *IF" and *WHEN" rules are to be used in

backward-chaining and forward-chaining modes, respectively.

Thus a choice exists as to in which specific way a fact is

to be used in the forward or backward direction. The .

rulebase has to be judiciously constructed to eliminate 0

redunoancies as well as to reduce search time.

4,
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3. DEALING WITH UNCERTAINTY
.4 %,i

Various kinds of uncertainty are typically encountered

in expert systems. The presence of uncertain information

can be attributed to at least four causes. The first type

is reiateo to the reliability of information. Uncertainty

can be present in the factual knowledge (i.e. the set of

assertions or facts) as a result of noisy input data,

imprecise feature extraction or due to inaccuracy and poor .-- "--

reliability of the instruments used to make the

observations. Uncertainty can also occur in the knowledge

base as a result of weak implications. This occurs when.-. "

the expert is unable to establish a strong correlation

between the premise and the conclusion. The expert also S

must artificially express the degree of implication as a

scalar value on an interval. .

The second type of uncertainty is caused by the .-. ,

inherent imprecision of the rule representation language.

If rules are not expressed in a formal language, their

meaning cannot be interpreted exactly. A 'lexical' match •

does not adequately compare subsets of facts with the W.

premisel a semantic match is required to compare the

approximate meaning of facts and premises. In classical

logic, modus ponens allows (Y is B) to be derived from the %

assertion of the statements: {X is A) and ((X is A) --> (Y

is B)J. However, the inference can be made only if the

unconditional assertion (X is A) is identical to the
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premise of the conditional assertion. Therefore, to cover

all possible situations, we need as many rules as tte _-___.

number of different values that X can take..- 

The third type of uncertainty occurs when inference is

based on incomplete information. In this case, we need

partiaily to match facts and premise, i.e. we have to

allow for a value of *unknown" during the evaluation.

Furtnermore, we need to be able to distinguish between

necessary evidence and possible (optional) evidence and be

able to treat them appropriately in the partial matching

process.

The fourth type of uncertainty arises from the

aggregation of rules from different knowledge sources or

different experts. There are four possible errors that can 0

occur in knowledge representea as production rules:

conflicting, redundant, subsuming, and missing rules.

Conflicting rules, that succeed under the same

circumstances but make contradictory conclusions, increase

the level of uncertainty by creating inconsistencies. -
. AL

Redundant rules, that under the same circumstances make the

same conclusion, may create an over-inflated assessment of

the certainty of the conclusion. A subsumed rule, in which
M

the premise of the first rule, is a subset of the second, '.i_

can create an over-estimate of the certainty of the common

conclusion. Missing rules, that fail to provide a needed

conclusion under the right circumstances, create

uncertainty of the third type, in which inference is based
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on incomplete information. This fourth kind of uncertainty % 0

can be reduced by compilation of the rule set into a.,

network and analyzing the network.

In the literature surveyed, many techniques were found 
%

to deal with uncertainty in expert systems. A good guide

to the various techniques is provided in [3]. Three of the Jk

methods# using certainty factors, by the subjective

Bayesian metnoo and by the Dempster-Shafer method have been 0

implemented.

A. Certainty Factors

The first metnod, of using certainty factors, is an "

extension to the approach used by MYCIN, which is based on k

confirmation theory, [281. Here, we. have a certainty

factor assigned to each rule. This is basically a measure

of the expert's belief that the rule is valid. The facts

also have an associated certainty factor which varies from
-1 to +1; -1 indicating that the fact is known to be.J..

false, 0 indicating that the fact is unknown and +1

indicating that the fact is known to be true. The

certainty factor is the difference between the degree of

beliez and the degree of disbelief for a given hypothesis

after supporting evidence is found.
• ... ...r ..

Thus all the certainty factors of the premises of a

rule are found and the minimum certainty factor is chosen.

The certainty factor of the conclusion is obtained by

multiplying the minimum certainty factor with the strength
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of tne rule. Now there can be other ways to prove the same

hypothesis by using other rules. For each path taken, we

calculate tne certainty factor and treat this as an OR

conoition, thus we must take the maximum certainty factor.

While an AND/OR tree of the rules to prove a hypothesis is

traversed bottom-up, the certainty factors can be

aggregated.

As shown in (251, this method of calculating

probabilities is based on the assumption that the facts are

under maximum statistical dependence. In general, if the

evidences are statistically independent, the probability of .0

(A AND B) is given by Pa*Pb and the probability of (A OR B)

is given by (Pa + Pb - Pa*Pb). In the case where the

statistical depenoence between the items of evidence A & B 0

is minimum (i.e. A has maximum dependence with NOT B), the

probability of (A AND B) is given by MAX(Pa + Pb -1, 0) and

the probability of (A OR B) is given by MIN(Pa + Pb, 1).

We have to make some provision to take into account the

statistical dependencies between evidences.

But evidences ace not going to be related exactly in

this manner, being under maximum or minimum dependence or

being statistically independent. So, we introduce a

dependence parameter D, which varies from -1 to +1. When D

equals 0, the two items of evidence are independent; when

D equals 1, the two items have maximum dependence; when D

equals -1, the two items have minimum dependence. Suppose

the probability calculated under the assumption that the
498
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items are independent is Cl, under maximum dependence is C2

ano under minimum dependence is C3, the actual resulting

probability is the appropriate linear combination,

P - (D * C2 + (1 - D) * Cl) for 0 <- D <= 1,

P = (IDI * C3 + (1 - IDI) * Cl) for -1 <- D < 0.

This makes the three previous categories of dependence

special cases, or in other words, provides a smooth

transition from one to the other. S

If D lies between -1 and 0, it actually yields the

necessary condition. When D is 1, the value obtained for

AND is the greatest and for OR is the lowest. When D is 0

-1, the value obtained for AND is the lowest and for OR the

greatest.

Another aspect which should be considered is where the

expert should assign a particular value of the dependence

parameter D, whether it should be assigned with each rule,

i.e. at each node of an AND-OR tree or for the entire tree

structure. If the statistical dependencies between

evidences vary depending on the rules, each rule should

have a value of D specified for it. 
-.n

This has been implemented with a backward chainer. In

this case, the parameter D can be specified for the entire S

rulebase. A sample session, the rulebase used with rP

certainty factors, and a program listing are given in

Appenaix A.

B.Subjective fayesi an Method
499 ,<,a,



The Subjective Bayesian method is described in [IlI

and was used in PROSPECTOR. This approach uses an

effective likelihood ratio to quantify the strength of a, S

given rule. Each antecedent clause or evidence E is

assumed to be independent, or conditionally indepenoent of

the other antecedent clauses for the same consequent or

hypothesis H. A rule is of the form E -- H. The prior

probabilities of the evidence and hypothesis are set to

some initial value. After some evidence is gathered, the

probability associated with evidence E changes. This in

turn should change the probability of the hypothesis H. S

In addition, two factors, the sufficiency factor LS

and the necessity factor LN, are associated with each rule.

The sufficiency factor measures the sufficiency of a piece •

of evidence to prove a given hypothesis and is ;..

%
mathematically given by LS - P(E/H) / P(E/HBAR) where

P(E/H) is the probability of the evidence E being true .

given that hypothesis H is true and P(E/HBAR) is the ,

probability of the evidence E being true given that

hypothesis H is not true. A high sufficiency factor .

indicates that if E is true, the probability of H is

greatly increased, whereas a low sufficiency factor

indicates that even if the probability of E is high (i.e. .-

E is close to true), it serves to increase the probability

of H only marginally. The necessity factor, on the other

hano, quantifies the necessity of a piece of evidence to

prove the negation of the hypothesis. It determines the

500



change in the probability of H, if the probability of the

evidence reduces (or in the extreme, if E is founa to be

false). It is defined as LN a P(EBAR/H) / P(EBAR/HBAR)

wnere P(EBAR/H) is the probability of the evidence E being

faise given that hypothesis H is true and P(EBAR/HBAR) is

the probability of the evidence E being false given that

hypothesis H is false. If the necessity factor is large, a
%

decrease in the probability of E has little effect on the

probability of H. If the necessity factor is low or close

to zero, the fact that E is false serves to reduce the

probability of H drastically.

Let Pp(M) be the prior probability of the evidence,

Pp(H) be the prior probability of the hypothesis, LS be the

sufficiency factor, LN be the neccessity factor, P(E) be

the probability of the evidence (which is the input), P(H)

be the probability of the hypothesis, and BM be the

Bayesian Multiplier. Then, P(H) - Pp(H) * BM, where BM is

obtained from linear interpolation between the three points

(0, LN), (Pp(E), 1) and (1, LS), as follows:

For P(E) < Pp(Z),

BM is given by P(E) * (1 - LN) / Pp(E) + LN.

For P(E) > Pp(E),

BM is given by [P(E)- Pp(E)] ' (LS - )/

(1 - Pp(E)) + 1.

Thus the sufficiency and the necessity factors control the

piecewise linear interpolation of the change of the

probability of the hypothesis H between the evidence
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acquiring a truth value of 'false' and 'true' from the

initial probability.

The following relations should always be true:

LS > 1 -- > LN < I ,

LS < I - LN > 1 , A6.zeJ_

LS "1--) LN >1.

One of the advantages of this method as mentioned in .

[231 is that if no evidence is obtained, the probability of

the hypothesis remains the same and the order in which
A '.'

evidence is obtained and rules are applied does not affect -

tne fina± probability. This advantage can best be utilized
by a forward-chaining system, rather than a.

backward-chaining system. In the implementation of tnis

method, whenever the probability of any evidence changes

(assuming the evidences correspond to some sensors or the

points at which data is gathered), it should trigger the - -

forward-chaining system and update the probability of the •

hypothesis.

This methoa has been implemented with a set of four

LISP functions. A sample session, the rulebase used with

the necessity and sufficiency factors, and a program

listing are given in Appendix B.

C. Dempster-Shafer Method

The Beliet Function proposed by Shafer [271, was

developed within the framework of Dempster's work on upper

ano lower probabilities induced by a multivalued mapping as
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in 181. In this context, the lower probability was

associateo witn a degree of belief and the upper

probability witn a degree of plausibility. A computational

problem has been encountered as the evaluation of the

degree of beliet and plausibility increases exponentially
witn the number of hypotheses. However, by introducing

assumptions about the type of evidence to be combined, the

computational time complexity can be reduced from 0

exponential to linear, as shown by Barnett (11. The

requirements for the evidences to be conditionally .

incepenoent ana the hypotheses to be mutually exclusive •

still remain. .e %

Shafer defines certainty to be a function that maps

subsets in a space on a scale from zero to one, where the
%

total certainty over the space is one. This definition

allows one to assign a non-zero certainty to the entire

space as an indication of ignorance. This provision for

indicating ignorance is one way in which this theory

differs from conventional probability theory and is a .N. .

significant advantage, since in this application and in

many others, the available knowledge is incomplete and

involves a large degree of uncertainty.

In this method, instead of considering a rule E -- > H

witn a certain probability, we assign a probability range

to the rule, e.g.,

If (region-class is sand)

then (region is desert) (0.9 0.05). 0.9 indicates the
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extent to which a hypothesis is confirmed by the evidence

ana 0.95 (1 - 0.05) is the extent to which it is

disconfirmed, i.e. this rule states that we believe a- *

. ,. %

region is desert if its class is sand in a range from 0.9.

to 0.95. It may be easier for an expert to assign a range

rather tnan a specific probability.

Next, as shown in [141, each fact accordingly has a

probability range (a,b) and the probability range of the
,d" - ..

consequent is obtained by taking the product of the range ".-*i'/.

of the fact (a, b) with the range of the rule (c,d)

resulting in (ca, bd). Now, if a chain of the rule is 0

formea as X --> Y with (a, b) and Y -- > Z with (c, d) the

range of X --> Z is (ac, ad).

The same fact can be obtained by different paths of

the tree resulting in different ranges (this is analogous

to the OR condition in the AND-OR tree). Here, we combine

the ranges of the same fact using Dempster's Rule of .-

Combination,

(a, b) + (c, d) (1 - ax * cx / (1 - (a * d + b *

c)),

1 - bx * di / (1 - (a * d + b * c))

where ax - 1 - a, bx -1 - b, cx n 1 - c, dx * 1 - d. .
z

This provides a mechanism to combine the certainty of

facts which can be concordant or contradictory. When this

is usea, it seeks consensus among all the hypotheses

supported by the user's observations. This approach is

attractive since problems of conflicting observations, %

. 504

-% %;, ._, , ... ,. .., .... , ,. .,.. ,. ...,.,. .. .,. .. ....... .... .., ..., .. ... .,. .... ...o. : ,:,- L



knowledge updating from multiple experts ana ruling-out are

resolved automatically by the rule of combination. The 0

conventional approaches to knowledge processing do not have

this advantage.

The processing procedure has five steps:

I. An observation of evidence and the certainty associated -. '

witn the observation are entered into the system. They

define a certainty function over the input space.

2. Multiple indepenoent observations are allowed. The . '. d 3

certainty functions defined by these observations are

combined by using the rule of combination.

3. A rule or mapping is activated when the evidence

receives a non-zero belief in the combined observation.

4. The certainty of the evidence is multiplied by the 1 -
%%7 ".';.i N" '

certainty of the rule, resulting in a certainty function

defined over the output space for each rule applied. -

1 05. By means of the rule of combination, all the activated

certainty functions in the output space are combined into a

single certainty function. From this certainty function,
1 0

the total beliet is computed.

This method has been implemented on a backward %

chainer. A sample session, rulebase used and program

listing are given in Appenaix C.

1~ 0

%-.
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4. DESIGN OF THE INFERENCE ENGINE %*s. q

A combination of backward-chaining and

forward-chaining strategy has been implemented. Two kinds

of rules are introauced, IF rules are used for

backward-chaining and WHEN rules are used for

forward-chaining. Primitive certainty factors are

associated with each fact. The truth value of false is

indicated by -1, true by +1 and 0 indicates not known. r *

To introduce more flexibility into the environment,

provision has been made to attach VERBs and PREDICATEs to

antecedent and consequent clauses of each rule. The VERBS

are used to take some action on the consequent clauses and

PREDICATES control the manner in which the antecedent
,

clauses are satisfied.

The VERBs implemented are

1. WRITE: to insert a fact into the list of facts,

2. CLEAR: to delete a fact from the facts list,

3. DISPLAY: to show a fact with all its attributes to the

user, an

4. ASK.Y: to asK the user a question and assign a true

certainty factor, if the reply is yes.

The PREDICATES implemented are

1. IS_-TRUE: to check whether the certainty factor

associated with a fact is +1,

2. ISFALSE: to check whether the certainty factor

associated with a fact is -1, and . .
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3. ASKY: to ask the user whether the fact is true.

A rudimentary explanation of the conclusion has teen

incorporated. This involves listing and displaying all the

rules used to derive a conclusion. This provides some

glimpse of a train of thought. A record is also kept of %Z

the usage of each rule. This may be used to assist some

meta-rules in the future.

A BEHAVIOR switch is provided with the

backward-chaining interpreter, which can be toggled by the
•. ..f .N

user. This causes the system to alternate from behavior Bl

to behavior B2. Behavior Bl is the default, where if a

needed fact is not known, the system will first try to 16..-:-
* - I..'

prove it ano if, that is not feasible, it will ask the

user. Bi has the advantage of minimizing the amount of

questions asked to the user, but it also treats the user at

the lowest level of input data. In the automatic image

irterpretation expert system# this could directly be

translated into a request for specific data from the image

processor. Behavior B2 also checks whether the needed fact

is known, but if that is not the case, it will ask the user

directly. If the user does not know the answer, then the

system will try to infer it using the rules. B2 involves

the user at higher levels of difficulty, but it also asks

too many questions and it may not be useful for an

automatic system. However, it serves as a debugging aid .

for the rulebase. •

The syntax adopted for the rules is given below:
t..'%-.
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<RULE> -> ( RULE-ID> <CODE>

<RULE-ID> ->unique-id.' \

<CODE> -- > (RULE-TYPE> <PREMISES> (CONSEQt.ENTS>S

<RULE-TYPE> -- > ( IF / ( WHEN

(PREMISES> -- > (CONDITION> (PREMISES-REST>

(PREMISES-REST> -- > ( <CONDI.TION> '<PREMISES-REST>/)

<CONDITION> -- > ( <PREDICATE> (fact))

(PREDICATE> -- > IS-.TRUE / IS-.FALSE / ASK-.Y

<CONSEQUENTS> -- > (ACTION> <CONSEQUENTS-REST>

'CONSEQUENTS -REST> -- > <ACTION> CoEQNY-S:/).

<ACTION> -- > ( <VERB> (fact) (CF>)

<VERB> -- > WRITE /CLEAR /DISPLAY IASK-.Y

(CF> -- > +1 / -1 /0

The general form expected for a fact is an
0

object-attribute-value tuple. However, this is not very

* ~rigid and facts can also be represented in other ways. A .\--.

label indexes facts in the fact base. The

object-attribute-value tuple, the certainty of the fact and ..

San indicator shoving the origin of the fact (the image

processor, the user or the inference engine itself) for

explanation purposes are tagged as the property lists of *.V

the label.

p1/ The LISP functions that carry out the above-mentioned

functions are given in Appendix D.
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5. ILLUSTRATION OF USE OF THE INFERENCE ENGINE

Two examples are given below to show the capabilit.es

of tne inference engine. For each case, the rulebase used

ano a sample terminal session are given. An attempt is

made to prove or disprove different hypotheses. The

probabilistic estimate of the hypothesis is obtained by

using certainty factors as in [28]. .

The first example relates a hypothetical,

simple-minced scenario to distinguish objects or regions

from an aerial image. The rulebase conforms to the syntax

previously given. Here, the format adopted for a fact is -

not the usual object-attribute-value tuple. The object is

'region' in all cases. The format of the facts is used

primarily to enhance readability. Verbs are attached with -.

each consequent clause and Predicates with each antecedent

clause. The strength of each rule is quantitatively

assessed. Each rule has a unique label. The rules are

listed below:

(defun setup ) *

(setq rules '(

(ruleif 51
(it (is-true (region-class is artificial))

(is_true (region-shape is regular))) 0
(then (write (regionclass is manmade) 0.96)))

(ruleif B2
(if (is-true (region-class is steel))

(istrue (region-shape is round))) 
(then (write (region is oiltank) 1))) 
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(ruleif 83
(it (is-true (region_class is tar))

(is-true (region-shape is long-and-narrow)) NO

(is-true (region-shape is regular)))
(then (write (region is road) C.9)))

(ruleif B4
(if (is-true (region-shape is rectangular))

(is-.true (regions.adjacent-on..two-.sides is roa
(is-true (regions-adjacent_on_two-sides have c

lass-water)) - * +
(is-true (region-class is man made))) ",". •

(then (write (region is bridge) 0.91)))

(ruleif B5
(it (is-true (region_class is concrete))

(is-true (regionshape is regular)))(then (write (region is building) 0.8)))

(ruleif B6
(it (is-true (region-class is metal))

(is-true (region-shape is roughly-rectangular)

(is-true (regions-surrounding have class-water

(then (write (region is ship) 0.87)))

(ruleif 87
(if (is-.true (region-..class is man-mrade))

(is-true (most-regionssurrounding have class- . %
water))

(then (write (region is offshoreoilrig) 0.84)))

(ruleif B8
(if (is-true (region-class is man-made))

(istrue (region-shape is longand-narrow))
(istrue (region-adjacent has class-water))
(istrue (region-adjacent has class-land)))

(then (write (region is dock) 0.91)))

(ruleif B9 % -%L

(if (istrue (region-class is metal))
(istrue (region-shape is airplane-like)))

(then (write (region is airplane) 0.7)))

(ruleif B10
(if (istrue (region-class is water))

(istrue (regionshape is regular))
(istrue (region-area is small))
(istrue (regionssurrounding have classartificial) .'.,:..
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(then (write (region is swimming-pool) 0.83))

(ruleif B1
(if (is-true (region-class is water))

(isfalse (region-shape is regular))
(is-true (regions-surrounding have classlan

(tnen (write (region is lake) 0.86)))

(ruleif B12
(it (is-true (region-class is land))

(isfalse (region-shape is regular))
(is-true (regions-surrounding have classawate

r)))
(then (write (region is island) 0.94)))

(ruleif B13
(it (is-true (region-class is water))

(is-true (regionshape is long-and-narrow)))
(tnen (write (region is river) 0.75)

(ruleif B14
(if (is-true (region-class is sand))

(is-true (region-adjacent has class-land))
(is-true (region-adjacent has class-water))
(is-true (region-width is small)))"-'""

(then (write (region is beach) 0.89)))

(ruleif B15 %I .

(if (is-true (region-class is marshy)) % %
(is-true (region-adjacent has class-land))
(is-true (region-adjacent has class-water)I) L

(then (write (region is marsh) 0.92))) 

(ruleif 816 .'-.. '

(if (is-true (regionclass is greenery))
(is_true (regionshape is regular)))

(then (write (region is field) 0.89)))

(ruleif B17
(it (is-true (region-class is sand))

(is-false (region-shape is regular)))
(then (write (region is desert) 0.95))) -

(ruleif B18
(it (is-true (region-class is ice))

(is-false (region-shape is regular)))
(then (write (region is glacier) 0.84)))

(ruleif 819
(if (is-true (region-class is water))

(is-true (regions-surrounling have class-dese
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(then (write (region is oasis) C.95))

(ruleif B20 0

(if (is-true (region is road))
(is_true (regionadjacent is airplane)))

(then (write (region is runway) 0.97)))

(rulewhen F1
(when (is-true (region-class is steel))
(then (write (region-class is artificial) 0.97))

(rulewhen F2
(when (is-true (region-class is tar)))
(then (write (region-class is artificial) 0.95)))

-. ,i ,,

(rulewhen F3 
" -

(when (is-true (regionclass is concrete)))
(then (write (regionclass is artificial) 0.96)))

(rulewhen F4
(when (is-true (region-class is sand))) . '

(then (write (region-class is land) 0.97))

(rulewhen F5
(when (is-true (region-class is greenery))) ,L
(then (write (region-class is land) 0.92)

(rulewhen F6
(when (is-true (region-shape is rouna))) "
(then (write (region is rectangular) 1.0)

(rulewhen F7 S
(when (is-true (regionshape is rectangular))) ..5 .5

(then (write (region is rectangular) 1.0)))

(setq hypothieses '

(region is oiltank)
(region is road)
(region is bridge)
(region is building) 

k

(region in ship) N',
,- (region is offshore-oilrig) ".--..

(region is dock)
(region is airplane)

- (region is swimming-pool)
(region is runway)
(region is islana)
(region is lake)

,'. *..- ...
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(region is river)
(region is beach)
(region is marsh)
(region is field)
(region is desert)
(region is glacier)
(region is oasis) )ON

The rules above are invoked to prove the

hypotheses sequentxal ., in the order given as shown below.

The facts are obtained either from files or from the user.

The factbase is also displayed for verification.

OK, lisp tryout
WARNING This software is for evaluation only and contains a .
time out mechanism ....

usethenforward ,
testif
testwhen
usethen
tryruleif
try rulewhen
stepforward
deduce
testif+
tryruleif+ 0
verify
inthen
prescreen
thenp
diagnose'-"
showrulesused 0
tracerules
why
tfp

* inif
usedp
how
attach
startl ist
buildlist -
write
clear
getcf -.-
getflag

513

"",-..



is- a..:a
list-.,facts
startriplist% 

%

buidriplist
writerip
clearrip
getcf rip
is-.truerip
display A

j ump

0

> (co kbase)
kbase

* setup
>(setup)
0)

> (cO facts-.oiltanK)
facts_01oltanx

((Cregion.class is steel) 0.95) C region-.shape is rou
rid) 0.80))
)(diagnose)

region is oiltanK) is proved with certainty 0.87
region is oiltanK)

> (co facts..oasis)
facts-.oasi s

C(region-..class is water) 0.9) CCregion-.shape is
* irregular) 0.95) C(regions-.surrounding have class-desert)

>0.92))
>(diagnose)

* Enter certainty of fact :Cregions.sur rounding have cias
s-water)
0.2
Enter certainty of fact : ( region shape rectangular)
0.3
Enter certainty of fact : ( region class artificial)

Cregion is oasis) is proved with certainty 0.63
P C region is oasis)

> (co f acts-dock) ~ ZZ
facts-dock

Cregionclass is artificial) 0.8) .( Cregion-shape is
regular) 0.85)

(Cregion-shape is long..an&.narrow) 0.7) (Cregion..adjac
ent

has las-waer)0.9) CCregionadjacent has class-land) 0 71
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> (diagnose)
Enter certainty of fact : (most-surrounding-regions have --.

class-water)
0.3 h * i
Enter certainty of fact : ( region-shape is irregular)

no ...
Enter certainty of fact : ( region-class is water)

no
( region is dock) is proved with certainty 0.56 A %
( region is dock)

>(co factsship) -
( ( region-class is artificial) 0.9) ( (region-shape is

rectangular) '

0.95) C C regions-surrounding have class-water) 0.87))
> (diagnose) -
Enter certainty of fact : ( region shape irregular)
no
Enter certainty of fact : ( region class land)

yes. ", "
Enter certainty of fact • ( region shape round) -,

no . ,
( region is ship) is proved with certainty 0.696
region is ship) .. .. ,

> (Co facts-river)
factsriver - v;
( ( ( region-class is water) 0.9) ( ( regionshape is

long-anotnarrow) 0.87))
> (diagnose) . 0
( region is river) is proved with certainty 0.696
( region is river)

> (co facts-island)
facts-islana

( region-class is water) 0.93) ( (region-shape is
irregular) 0.95) ( ( regions-surrounding have classuland) 0
89))

> (diagnose).,. -',,
Enter certainty of fact : ( region-shape is long-and-narr

ow) -
0.1 0
Enter certainty of fact : ( region-class is water)
no
( region is island) is proved with certainty 0.744
( region is island)

The next example illustrates how this inference

engine may be used to identify regions from an actual. .

aerial image. The image processor extracts edges and ". ,

heuristically closes region boundaries. Figure 1 displays
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the regions thus obtained. This contains six closed region

bounoaries.

The features of the closec regions, such as area, VW
% ., . o *.

perimeter, centroid, orientation, Fourier descriptors and

invariant moments, are calculated by the feature extraction

program and stored in a file. The feature data is

translated into a suitable format for the fact base by "

means of another program. A certainty measure is

introduced at this stage to determine how closely it
matches a fact. This is now suitable for symbolic

manipulation only. The rulebase used is listed below:

(defun setup ()
(setq rules '(

(ruleif ACT1
(if (is-true (regionarea is medium))

(is-true (region-perimeter is medium))
(is-true (region is roughly-rectangular)))

(then (write (region is wingof.airplane) 0.65

(ruleif ACT2 e
(if (is-true (region-area is very-small)) -' -

(is-true (region-perimeter is small))
(is-true (region-shape is bulbous))) '

(then (write (region is engine.of.airplane) 0. "-.'
7M)

(ruleif ACT3 *

(if (istrue (regionarea is large)) '2 -
(is-true (region-perimeter is long))
(istrue (regionshape is long-and.narrow

(is-true (region is regular)))
(then (write (region is fuel-storage-tank) 0.

9)))

(ruleif ACT4
(if (is-true (region is regular))

(is_false (region-area is small))
(is-true (region-shape is rectangular)))
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(then (write (region is building) 0.75)))

.%.e %~,

(setq hypotheses ' (
(region is wingof.airplane)
(region is engine-of-airplane)
(region is fuelstorage-tank)
(region is building)))

The inference engine then tries to find the most

probable hypothesis to fit each region. The terminal

sessions show the results obtained below. - *-.

For Region 1, ; ',..-.

> (co facts-1) •
factsl 1 '~

( C ( region-shape is rectangular) 0.7) ( (region-area is
•%.-.. .%

small) -0.7) ( ( region is regular) 0.5))
> (diagnose)
( region is building) is proved with certainty 0.4
( region is building) *

For Region 2, -

> (co fac* -2)
facts.s 2

region-area is large) 0.8) 1 C region-perimeter is
large) 0.7) C ( region-shape is long-and-narrow) 0.6) ( ( r
egion is uniform) 0.63))
>(diagnose)
( region is fuel-strage-tank) is proved with certainty 0

.54
( region is fuelstorage_tank) S

For Region 3,

> (co facts _3) ." '.

facts_3 *
C ( C region-area ia very-small) 0.89) C C region-perimet

er is small) 0.6) "
C ( region-shape is bulbous) 0.7))
> (diagnose)
( region is engineof_airplane) is proved with certainty

0.5 I 0
region is engineof-airplane)
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For Region 4,

> (co facts_4) '

facts_4 -
regionarea is medium) 0.4) ( ( regionperir.eter is

small) 0.8)
region-shape is triangular) 0.75) ( ( region is unifo

rm) 0.65))
> (diagnose)
No hypothesis can be confirmed.

For Region 5,

> (co facts_5)
facts_5 "

region-area is very-small) 0.6) ( ( region.perimete S
r is small) 0.5) ( (region is uniform) 0.72) ( ( region-sh
ape is bulbous) 0.4)) 'V %

> (diagnose) .,..
( region is engine.of.airplane) is proved with certainty

0.28
C region is engine-ofairplane) -•

For Region 6,

> (co facts_6) .,'-

facts_6
( ( region-area is medium) 0.75) ( Cregion-perimeter i

s medium) 0.8) ( ( region-shape is roughly-rectangular) 0.3" ~6)) v."'

> (diagnose)
( region is wing.ofairplane) is proved with certainty 

0. P.

37 0

( region is wing-.of-.airplane)

Thus, we see that the inference engine can be

used to determine conclusions provided the knowledge base

is set up appropriately. The power of the entire expert

system is derived from the knowledge it possesses and not

from the particular formalisms and inference schemes it .

employs. '- -

V '"".9.'.

,% %. V%_
.0 • ,e .. . .

.. . ." -:-/...X * . U. /

%" M.% %

d, "d "%



* S*

%j

% %

4' t

3,

.. % %

*v 'N% *."0 %...r



- uJ' . ra nWI r Wr.5*WrM MomJ Swm ,AUfl.n-WM flsJOR. M VWI~w .U VWW Vq V hW w p,. IM V'

6. CONCLUSICNS .

By introducing greater flexibility in certainty $IVA 0

factors witn the dependence parameter D, it is possible to %

take into account the differing statistical dependencies

amongst the evidences. But it may be difficult for the

expert quantitatively to assess the statistical

depenoencies, as such assessment is no longer intuitive.

It is easy to implement though. Adequately to take care of

both the necessity and sufficiency conditions may require

versions of the same rule but with different dependence

parameters and certainty factors.

The subjective Bayesian method is the easiest to

implement. However, it requires expertise to assign values

0
to the sufficiency and necessity factors in a way that

retlects the true association. This is complicated by the

fact that multiple evidences may point to the same ,

hypothesis. If new premises have to be added to an

existing rule, the sufficiency and necessity factors may

need to be appropriately modified. It was found that

judging the relevance of different evidences to the

conclusion requires a considerable amount of

triaL-ano-error attempts. One distinct advantage of this

method is that it is impervious to the order in which the

probabilities of the evidences change. Besides, there are

the assumptions that the hypotheses should be mutually

exclusive an, exhaustive, and all evidences should be
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conoiticnally indepenoent unoer each hypothesis.

The Dempster's rule formulation is ccmrutat1ve anc

associative arid thus the order in which inferences are S
•% -.

drawn is not critical. The probability range (C, 0)

corresponds to no knowledge at all and will result from any

attempt to apply an inapplicable rule. Even if such a rule

is applied, it has no effect on the eventual conclusions.

Also, (a, 0) + (c, 0) - (a + c -ac, 0). The probability

ranges (a, 0) and (c, 0) indicate no disbelief in the

corresponding rules; in this case, the probabilities

combine in the usual fashion. It is possible to use this

for dynamically changing evidences because the inverse of

the combination can be applied. This enables us to retract

the conclusion of an earlier inference without influencing

conclusions drawn by other means. However, to reduce

computational time complexity, the evidences are required

to be inaepenaent and the hypotheses mutually exclusive.

Also the norma!lization process may lead to incorrect

results.

In conclusion, the uncertainty associated with some '""'i 0

types of evidence or facts is complex and it is unlikely

that a single, uniform representation will ever be ,

sufficient to model it. The necessity and possibility

theory, proposed by Zadeh [33], extends the Dempster-Shafer

concept to handle the case when the evidence is a fuzzy
'S.. , %-.

set. In this approach, the normalization is not required

ana thus may prove valuable. It may be worthwhile to try
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it as an alternative for this expert syste. '- .%

As a comparison between backward-ch.ai r.: ar.

forward-chaining strategies, it has not yet been

ascertained which approach is more suitable for this

project. If there is no division of rules, a

forward-chaining approach brings out the dominant features
J 6

in the evidence, whereas a backward-chaining approach may

be better suited to answer the user's specific queries. A

combination of both approaches is implemented, but a more
4"

clear-cut strategy may be desirable. It may perhaps be 1 .-

forward-chaining in the preliminary stages, thresholding %_%-%
•S

the probability estimates, and then backward-chaining on a

separate set of rules more pertinent to the user's ..-

interest. If the rules incorporate variables, the matching

%
procedure between the facts and either the consequent or . '

* the antecedent clauses need to have a unification -"-"/

algoritnm.
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APPENDIX A

IMPLEMENTATION OF CERTAINTY 
FACTORS 

.- %,--

A sample session that demonstrates the use Cf

certainty factors to determine the validity of the

hypothesis is given. The rulebase with which this was ,../...

executea is included. The Lisp functions that are used to """- -

traverse the AND/OR tree of rules and aggregate the

certainty factors are also listed.

" .. --. "
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------- tain--

OK, lisp main . ,
WARNING This software is for evaluation only and contains a %
time out mechanism
ge %*
insert
recall 1
intrhen
thenp
finomax
finoproa
askuser

apifs
rtestif %-%
prove
diagnose
> (co setup) % %

* setup
setup> (s e t u p ) -""

> (co facts-oiltanK) 0
facts-.oiltanK
( ( (region class steel) 0.92) ( (region shape round) 0.

82))
> (diagnose)

region is oiltanx) is proved with certainty 0.82
region is oiltanK)

> (setq d '0.4)
0.4

> (co facts-oiltanK)
facts_ oiltanK
82))(region class steel) 0.92) ( ( region shape round) 0.

> (diagnose)
( region is oiltanK) is proved with certainty 0.9488512
( region is oiltanK)

> (setq d '0.7)
0.7

I> (cc factus-road)- facts _- road .< .-. ta( ( region class tar) 0.9) ( ( region shape long-and-nar
C-.(..%regio.

row) 0.85)
( ( region shape regular) 0.75))
> (diagnose)
Enter certainty of fact : ( region shape round)

no
Enter certainty of fact : ( region class steel)

no
C region is road) is proved with certainty 0.676153035
( region is road)
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>(co facts-.bridge)
facts-.,bridge

Cregion class tar) 0.9) C(region adjacent-o.n-.twcsiI des-..to
reg2~in-s-.road) 0.86) C(region adjacentcn-two-.sies.to0
region..witn..structure-.class- 2) 0.92) CCregi.on shape recta
ngular) 4-

0.84))
> (diagnose)
Enter certainty of fact : ( region shape round)
no
Enter certainty of fact ; ( region class steel)
no
Enter certainty of fact : ( region shape long-.and-.narrow)

region is road) is proved with certainty 0.8173629

(region is road)
> (co facts.ship)

((region class artificial) 0.9) ((region shape recta -:

r ngular) -

0.95) ( ( region surrounding-.regions region-.with..structure-
class-.2)

0.87)).

> (diagnose)
Enter certainty of fact : ( region shape round)
no
Enter certainty of fact :C region class steel)
no
Enter certainty of fact : ( region shape long-.and-.narrow)

yes
Enter certainty of fact : ( region class tar) -

no
Enter certainty of fact : ( region adjacent-on.two-sides-

to 0
region.witn..structure.class-.2)
yes
Enter certainty of fact :(region adjacent-on-two-.sides- '

to ~
region..25.road)
no..
Enter certainty of fact :(region class concrete):-
no
Enter certainty of fact :Cregion surrounding-.regions re

gion -witr
structure.class-.2)
yes
Enter certainty of fact :(region shape irregular)
no
Enter certainty of fact : ( region class land) 4

no

Enter certainty of fact : ( region surroundinq..regions
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regionswitn-structure-cClass-l)
no
Enter certainty of fact : region class water)

no
region is ship) is proved with certainty 0.7C8488756
region is ship)

> (co factsbeach) - -
facts-.beach
( ( (region class sand) 0.75) ( Cregion width small) 0.9)( (8)

region adjacent-to regionwith-structure-classl) 0.65) ( (
region

adjacentto region-with.structureclass_2) 0.89))
> (diagnose)
Enter certainty of fact : ( region shape round)
no
Enter certainty of fact : ( region class steel)
no
Enter certainty of fact : ( region shape rectangular)

no
Enter certainty of fact : ( region adjacent-ontwosides,..

to
region-witn-structure-class_2) 0
no
Enter certainty of fact C region adjacent-ontwosides_-'

to
region_ is_ road)
no ; _Cdel-

Enter certainty of fact : ( region class tar)
no
Enter certainty of fact : ( region surrounding-regions re ....

gion -witn
structure_ class_.-.2)
no
Enter certainty of fact : ( region shape irregular) ....

yes . -.

Enter certainty of fact : ( region class land)
yes
Enter certainty of fact : ( region surrounding-regions
regions-with_structure_class_ )
no ..-;.
Enter certainty of fact : region class water) .-
no
Enter certainty of fact : ( region shape longandnarrow)

yen
Enter certainty of fact : ( region surroundingregions
region-wit_ structure-class_ 2 )
no
Enter certainty of fact : C region most.surrounding.regio

ns
regionwitnstructure-class-'2)
yes

.1 %
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Enter certainty of fact : ( region class rmars-' --.) V

Enter certainty of fact : ( region class greenery) P% lee
no .

( region is desert) is proved with certainty 0.70911 •
( region is desert) p. %

> facts
( ( region is desert) 0.70911) ( ( region class greenery

region class marsh) -1) ( C region is beach) 0.46295375) (
region

belongs-to structure-class_12) 0.77625) C ( region .
most_surrouncingregions region-with-structure-class_2) 1)
( ( region
surrouning.regions region-with-structureclass_2) -1) C ,
region
shape long-ano.narrow) 1) C ( region class water) -1) C ( r
egion
surrouncing.regions regions-with-structure-class-l) -1) C (. -.
region

belongs-to structure-classl) 1.09) C ( region class land) %
1) ( (
region shape irregular) 1) ( C region surrounding-regions r
egion _witn
structure-class_2) -1) ( C region class tar) -1) ( C regio
n
adjacent-on-twosides.to region-is-road) -1) ( ( region
adjacent-on.two-sides-to region-with-structure-class_2) -1) 0 0

region
shape rectangular) -1) C ( region class steel) -1) C ( reg
ion shape
rouno) -1) ( ( region class sana) 0.75) C C region width sr.
all) 0.98)

region adjacent-to region-with-structure.classl) 0.65)
region

adjacent-to region-with-structure-class_2) 0.89))
> alpha0.5
> beta
0.8
> (diagnose)
( region is desert) is proved with certainty 0.70911
( region is desert)

> (setq facts '))

> (setq facts ')) • •
() ,....-.,.. v ,'-

> (diagnose)
Enter certainty of fact : ( region shape round)

no
Enter certainty of fact : ( region class steel)

no -'
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Enter certainty of fact : C region shape rectangular) %,%

no
Enter certainty of fact z region ad-ace"t_cn_-twc_sI.;es_
to
region_witn_ structure-class_ 2 )no ,.-..

Enter certainty of fact : ( region adjacent-on-two-sides_ .
to
region- is_ road) %
yes ___

Enter certainty of fact : ( region class tar)
no
Enter certainty of fact ( region surrounding-regions re

gion, -.witn
structure-class_2.2)

Enter certainty of fact ( region shape irregular) •
S yes -' '

Enter certainty of fact.. ( region class land)
yes
Enter certainty of fact ( region surrounding-regions
regions-wit-structure_ class_ l)
no
Enter certainty of fact C region class water)

no
Enter certainty of fact ( egion shape long-andnarrow)

no
Enter certainty of fact ( egion surrounding-regions
region-with-structureclass_2)
no
Enter certainty of fact : ( region most-surrounding.regio

ns
region-wi tn_structure-class_ 2) p
yesI
Enter certainty of fact : ( region adjacent-to

region-witn_structureclass_ 2)
yes .
Enter certainty of fact : ( region adjacent-to
region-witni-structureclass-l )
yes 0
Enter certainty of fact : ( region width small) "*"":

no
Enter certainty of fact : ( region class sano)

no
Enter certainty of fact : ( region class marsh)
no
Enter certainty of fact : ( region class greenery)

ryesgio imeao.
region is meadow) is proved with certainty 0.876168region i.s meadow). ." "

OK, como -.
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A.2 Certain~ty Factors: Rulebase

(defun setup (

(setq rules

Cr1: ((region class land))
(((region belongs,to structure-class-.

(r2: ((region class water))
2) 2.0))) ((region belongs.to structure.class.

(r3: ((region class artificial)) S
((region belongs-.to structureclass.y-:-

3) 1.0))

(r4: ((region class greenery))

11) 0.8))) ((region belongs.to structure.class..

Cr5: ((region class sand))
((region belongs-.to structure.class-

12) 0.9))

(r6: ((region class marsh))
((region belongs-.to structure-.class.

13) 0.8))

(r7: ((region class ice))
((region belongs-.to structure-class.

14) 0.9))

(r8: ((region class tar))
((region belongs-.to structure..class.

(r9: ((region class concrete))

32) 0.9))) ((region belongs-.to structure.class_

Cr10: ((region class steel)) ~ ~~
((region belongs-.to structure.class.

3)0.9))M*

Cr11: ((region belongs-to structure.class.l

(region shape regular)) N

((region is field) 0.8))
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(r12: ((region belongs-.to structure..c~ass_1

(region shape irregualar))
(((region is meadow) 0.9)))

(r13: ((region belongs..to structure.c4'ass..l
2)

(region shape irregular))
((region is desert) 0.8)))

(r14: ((region belongs..to structure.class..l

(region shape irregular))
((region is glacier) 0.7)))

(rlS: ((region belongsto structure-classI .

2)

(region adjacentto regionwithstru
cture-class-1)

(*l3 ((region adjacentto region.with...stru
cture.class-2)

(region width small))
(((region is beach) 0.7)))

(r16: (region belongsto structure.class_l
3) 'p** . 4

(region adjacent-.to region.with-.stru
cture.class-1.) P.,FV

(region adjacent-to region ,witw..stru
*cture-class-2)) .1 %~

(((region is marsh) 0.8)))

(r17: ((region belongsto structure-class I •

(region shape irregular)
(region surrounding-.regions

', (2))region -ewith structure-class

((region is island) 0.8))

18: ((region belongsto structureclass2- -

(region shape irregular)
(region surrounding-regions

)regionswithstructureclasa

((region is lake) 07.8))

(r19: ((region belongs-to structureclass.2

(region shape long..oand...narrow))
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(((region is river) C.8)))

(r20: ((region belongsto structureclass_2 -

(region shape irregular)
(region surrounding-regions

regionwithstructure class_"12) ). _- z

(((region is oasis) 0.7)))

(r21: ((region belongsto structure-class_3 /

,'- (region shape regular)
(region surroundingregions '-%

regionwith-structure-class_"
2))

(((region is ship) 0.8)))

(r22: ((region belongsto structure-class_3

(region shape regular) hN a
(region mostsurroundingregions 0

region-with-structureclass. ".".-"
2))

(((region is offshoreoilrig) 0.7)))

(r23: ((region belongs-to structure-class_3

(region shape regular)
(region shape long-and-narrow)
(region adjacent-to

region-with_ structure_ class_--

(region adjacent-to .

region_wi'-.h-structure-class- ".--2)) (((region is dock) 0.8))) .

(r24: ((region belongs-to structure-class_3 01)
(region shape long-and-narrow)
(region shape regular))

(((region is road) 0.9)))

(r25: ((region belongs-to structureclass_3

(region shape round))
((region is oiltanK) 1.0))

(r26: ((region belongs-to structure-class_3
2)

(region shape regular))
- -- I.- -
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(((region is bui',ding) 0.9)))

.% %.% %

(r27" ((region belongs-to structure-class_3

(region adjacent_on_ two_.sides_ -o
regionis.road)

(region adacenton two_ sides_ toregionwithst ructur eclass_. ...

(region shape rectangular))
(((region is bridge) 0.9)))

(r28: ((region belongs.to, structure-.class..3
3)

(region shape airplanelike))
(((region is airplane) 0.8)))

0
Cr29: ((region shape round))

(((region shape regular) 1.0)))

(r30: ((region shape rectangular))
(((region shape regular) 1.0))) )

%. S, %.q(setq hypotheses (

((region is island) 0.0)
((region is ship) 0.0)
((region is ship) 0.0)
((region is oasis) 0.0)
((region is bridge) 0.0)
((region is building) 0.0)
((region is island) 0.0)
((region is lake) 0.0)
((region is river) 0.0)
((region is offshore-oilrig) 0.0) -
((region is dock) 0.0)
((region is beach) 0.0)
((region is marsh) 0.0)
((region is field) 0.0)
((region is meadow) 0.0) -

((region is desert) 0.0)
((region is glacier) 0.0)
((region is airplane) 0.0)

(setq alpha '0.5)

(setq beta '0.8)
(setq d '1.0)
(setq facts '0)

536
16-" .

I- , , , , -. -. -. . . ., , . . . . . - . . . - -. . . -, . -.. '% "
; ... " " '; , .' ..- '.'. '.'.'. .. ; . . ,.'..''...''..-. v ' '..'-. ,; " : ,.%, % -,: .,'& . , _: -" , - ,



. %

P %

,% • *% .%

A.3 Certainty Factors: Lisp Functions

I THE BACKWARD CHAINER

WITH CERTAINTY FACTORS AND DEPENDENCE PARAMETE -.%
R

/* GE returns t if a>b or aub, otherwise returns nil.

(defun ge (a b)
(prog (

(cond ((greaterp a b) (return t)) . - '".
((equal a b) (return t))
(t (return nil)))))

p S

/* INSERT add a 'fact' to the factbase with a certainty f
actor cf. -

(defun insert (fact cf)
(setq facts (cons (list (car fact) cf) facts)))

/" RECALL checks whether a fact is present in the fact ba
se.

/* If present, it returns the associated cf, other
wise . "
/" it returns -2.0.

(detun recall (fact) .
(prog (rcfacts)

(setq rcfacts facts)
rcloop
(cond ((null rcfacts) (return '-2.0))

((equal (car fact) (caar rcfacts))
(return (cadar rcfacts)))) p

(setq rcfacts (cdr rcfacts))
(go rcloop) ))

-.'. .. . -.* '

/" INTHEN strings together and returns a list of rules, .
/* each of which can prove the fact. rn

:..: ..-.-..
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(defui inthen (fact)
(prog (itrules oprules)

(setq itrules rules)
(setq oprules 'M~
itloop
(cond ((null itrules) (return oprules))

((thenp fact (car itrules))
(setq oprules (cons (car itrules) opru'&e

(setq itrules (cdr itrules))
(go itloop)))

% , - t

I'THENP determines whether a fact is part of the RHS of
a rule.

(defun thenp (fact rule)
(prog (thens)

(setq thens (caddr rule)) ~ *~

thloop
conc ((null thens) (return nil))

((equal (car fact) (caar thens))
(return t))

(setq thens (cdr thens))Pe
(go thloop) ))

I'FINDMAX finds the strength of the rule for the given %
fact.

1' prod aggregates the certainty factor of the
premise (im

(mn)with the strength of the rule. It ret
urns the

maximum absolute value between prod and maxmn
* (wnich

I' was the previous max* value.

(derun findmax (fact rule mina maxm)
(prog (thens cf aprod amaxm prod)

(setq thens (caddr rule))
fmloopl \

(cona ((null thens) (print 'Error..infindmax))
((equal (car fact) (caar thens))
(setq cf (cadar thens)) z o
(go tmloop2f)

(setq then: (cdr thens))
(go fmloopl)
fmloop2
(setq prod (*cf minm)
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(setq aproo (abs prod))
(setq arnaxm (abs maxrm)) ~
(cona ((greaterp aprod amaxr.) (ret urr proAd2

(t (return maxm))))) 0

(defun finoproa (fact rule prob)
(prog (thens, cf) .,.

(setq thens (caddr rule))
fploop
(cono ((null thena) (print 'Error-.in-.findprod)

((equal (car fact) (caar thens))
(setq cf (cadar thens)).*
(return (* cf prob))))

(setq thens (cdr thens))
(go fploop)))

I' ASKUSER obtains the certainty factor for a fact from ..

the user,
I' does the required conversion from YES, UNKNO 0

WN, NO,
I' call INSERT to add the fact to the fact base

aria
I' returns the certainty factor.

(defun aSKuser(fact)
(prog (auct)

(printlist '"Enter certainty of fact (car
fact)

aSKloop
(setq aucf (read))
(cond ((equal aucf 'yes) (setq aucf '1.0) (go S

corioop))
((equal aucf 'unknown) (setq aucf '0.0)

(go cor.Loop)) -. ::
((equal aucf 'no) (setq auct '-1.0) (go

coriLoap))
((numberp auct) (go corloop))
(t (print '6ERROR! Please enter again.")

(go askloop)))*
corloop
(insert fact aucf) s
(return aucf) )

I'APIFS adds a 0.0 certainty factor to the premise list
to make r -

I' an apprpriate format for comparison withl the fa
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(detun apifs (ifs)
(prog (inifs opifs)

(setq inifs ifs) .~ \%

(setq opifs 'U

a ilIoop
(cono ((null inifs) (return opifs)))
(setq opifs (cons (list (car inifs) '0.0) opifs

(setq inifs (cdr inifs)) .N
(go ailoopf) %

%1.Z . %~

/0RTESTIF forms part of the recursive loop- It tries t
o prove

/0 each of the premises of the 'rule' by invoki
ng PROVE. /*

I' If any premise cannot be proven (cf < 0), it ..

returns % 1
/0-2.0, otherwise it returns the lowest cf fou

/0 amongst the premises. *

(defun rtestif (rule)
(prog (ifs min prsval mul)

(setq min '2.0)
(setq mul '2.0)
(setq ifs {cadr rule))
(setq ifs (apifs ifs))
rtfloop j1
(cond ((null ifs) (return (list min mulM)f
(setq prsval. (prove (car ifs))
(cond ((equal prsval '-2.0) (return (list prsva

1 mul))
((essp praval min) (setq min prsval))
((equal mul '2.0) (setq mul praval))
(t (setq mul (* prsval mul)fl

(setq ifs (cdr ifs))
(go rtfloopf)

I'PROVE attempts to prove a fact. It returns the certai
nty factor, .

/0 if proved and -2.0, if cannot be proved.

(detun prove (fact)
(prog (rl asscf mincf max success

1mm mulcf lor prprob prod cf)
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It tries to see if the fact is present in the factzas
es
/* If founa, the corresponding cf is returned.

(setq asscf (recall fact))
(cond ((not (equal asscf '-2.0)) (return asscf)

/* All the rules are founa that can prove the fact.
I* A 'reverse' is done such that the rules are ordered b
y rule
/" number.

(setq rl (inthen fact))
(setq rl (reverse rl))

/* If no rule is found, the user is asked the validity o
f the fact. "--,-.

(cond ((null rl) (return (askuser fact)))) .-. "S
/* MAX* is initiaily set to 0. It calls RTESTIF with eac-
h rule.
/* Success is set to t, if the premises of any rule are
satisfied.
/' It also calculates max and lor depenaing on the value
of D.

(setq max '0.0) . .
(setq lor '0.0)
vpa r tl
(cond ((null rl) (go vpart2)))
(setq 1mm (rtestif (car rl)))
(setq mincf (car 1mm))
(setq mulcf (cadr 1mm))
(cond ((lessp 0.0 mincf)

(setq success t)

(setq prprob (+ (* d mincf) (' (minus 1

(setq prod (findprod fact (car rl) prpro

(setq max (findmax fact (car rl) mincf m
ax))

(setq lor (minus (+ prnd lor) (* prod 1o
* r)))

(cond ((greaterp (abs max) beta)
(go vpart2))) ))

(setq rl (cdr rl))
(go vpartl)
vpart2
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I* If any rule has succeeded, the fact is added tc t:.e fa
ctbase ,.. '.,% .v
I' ano the composite cf is returned; otherwise, -2.0 .S
returned. %

I
(cond ((equal success t) %.

(setq cf (+ (* d max) (* (minus 1 d) lor

(insert fact cf)
(return cf))

(t (return '-2.0))) ))

I' DIAGNOSE tries to prove each hypothesis in turn by PR-"

I* until the certainty factor of a hypothesis >
alpha, V V

I' or all the hypotheses are exhausted. -.

(defun diagnose()
(prog (poss cf)

(setq poss hypotheses)
dloop
(cond ((null poss) (return nil)))
(setq cf (prove (car poss)))
(cond ((ge cf alpha)

(printlist (caar poss) '"is proved witn
certainty cf

(return (caar poss)) )
(setq poss (cdr poss))
(go dloopf) %

S...-%

,S

N % ,' -
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APPENDIX B

IMPLEMENTATION OF SUBJECTIVE BAYESIAN METHCD " r

A sample terminal session is shown to illustrate the

use of the Subjective Bayesian Method to update existing .

probabililes of hypotheses to account for changing • '.

evidences. The rulebase with the necessity and sufficiency

factors is given. The Lisp functions used to calculate the 'M

change in probabilities along with a forward chainer are

attached.

% %

J I- W % ,
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-aesa Method: Sample Session
---- ---- ---- ---- ---- ---

OK, lisp ~
WARNING This software is for evaluation only and cornta~ns aq
time out mechanism

> (co probes)%%
probes
update
matchone
tryrule
displayf acts

> (co rules)
rules
setup

> (setup)

>(co setracts..build)

settacts
> (setracts)

((( region-class is tar) 0.1 0.1) ((region-.shape is na '-
rrow-.strip)
0.1 0.1) CCregion-.class is water) 0.1 0.1) C regions..s

urrouncing
have class-lana) 0.1 0.1) (Cregions...surrounding have clas
s-desert)
0.1 0.1) C(region-..width is small) 0.1 0.1) C(region-.len
gth is
large) 0.1 0.1) C region-.class is constructed) 0.1 0.87)

region-.shape is regular) 0.1 0.78) ((region-.shape is rect
angular)
0.1 0.1) (Ctwo-.regions-.adjoining are river) 0.1 0.1)(C
two-.regionsadjoining are road) 0.1 0.1) ((regions-.surrou
naing have
class-water) 0.1 0.1) C(region-.shape is roughly...rectangul

)CCregion-class is land) 0.1 0.1) C(region-..shape is ir
regular)
0.1 0.1) C(region.size is small) 0.1 0.1) (Cregions-.sur W
counoing
have class-constructeds) 0.1 0.1) C(region is road) 0.1 0.

region is lake) 0.1 0.1) CCregion is oasis) 0.1 0.1)CC
region is0
river) 0.1 0.1) CCregion is building) 0.1 0.1) C region

is bridge)
0.1 0.1) CCregion is offshore..oilrig) 0.1 0.1) CCregio
n nship)
0.1 0.1 region is island) 0.1 0.1) C region is swimmr

ing-.pool)

0.1 0.1)



> (update)
FACTS

( region-class is tar)
( Initial probability : C.1)
( Final probability : 0.1)

( regionshape is narrowstrip)
( Initial probability : 0.1) .
( Final probability : 0.1)

C region-class is water)
( Initial probability: 0.1)
Final probability : 0.1)

regions-surrounding have class-land)
Initiai probability : 0.1)

( Final probability • 0.1) %.%
.4%

Enter any character to continue.
C

regions-surrounding have class-desert)
Initial probability : 0.1)

( Final probability : 0.1)

region-width is small)
Initia± probability : 0.1)

( Final probability : 0.1)

regionlength is large)
Initial probability : 0.1)
Final probability : 0.1)

167 %T-I
region-class is constructed)

( Initial probability : 0.1)
C Final probability : 0.87) -".

£nter any character to continue.
C

region-shape is regular)
( Initiai probability : 0.1)
C Final probability : 0.78)

C region_shape is rectangular)
( Initial probability : 0.1)

.4 CFinal probability :0.1)

C tvo-regions_adjoining are river)
C Initiai probability : 0.1) _
Final probability : 0.I) a)-..
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( two_egions-adjoining are road)
( Init.al probability : 0.1)
Final probability : 0.1)

0

Enter any character to continue.
C

regions-surrouncing have classawater)
( Initial probability : 0.1)
( Final probability : 0.1)

( region-shape is roughly-rectangular) .
( Initial probability : 0.1)
( Final probability : 0.1) ,

( region-class is land)
Initial probability : 0.1) ,:
Final probability - 0.1)

region-shape is irregular)
Initial probability : 0.1)
Final probability : 0.1)

Enter any character to continue.
c

region-size is small) 0
Initial probability : 0.1)
Final probability : 0.1) ..- -

%%°%

( regions-surrounding have class-constructed)
Initial probability : 0.1)

(Final probability : 0.1)

region is road)
C Initial probability : 0.1)
( Final probability : 0.1)

( region is lake) 0
( Initial probability : 0.1)
( Final probability : 0.1)

Enter any character to continue.
C %

Vd ( region is oasis)
( Initial probability : 0.1)
( Final probability : 0.1)

( region is river)
C Initial probability : 0.1)
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(Fina.l probability 0.1)

( region is building)
(Inlitial probability 0.1)
( Final probability 0.868681481481)

( region is bridge)
Initial probability : 0.1)
Final probab-lity : 0.142777777778)

Enter any character to continue.
C

( region is offshore-oilrig)
Initial probability 0.1)

. Final probability 0.255654320988)

region is ship)
Initial probability 0.1)

( Final probability : 0.249722222222) 6

( region is islana)
( Initial probability : 0.1)
( Final probability : 0.1)

( region is swimming-pool)
( Initial probability : 0.1) 0
Final probability : 0.175555555556)

Enter any character to continue.
c
> (co settacts-river)

settacts_ river
setracts> (settacts) ,:-'-:"
( (se(regon_class is tar) 0.1 0.1) ( C region-shape is na

rrow tr±p)
0.1 0.1) ( ( region-class is water) 0.1 0.9) ( ( regions_-s :.

urrounaing
have classelana) 0.1 0.1) C ( regions-surrounding have clas
s-desert)
0.1 0.1) C C region-width is small) 0.1 0.83) ( ( regionle
ngth is
large) 0.1 0.91) C C regionclass is constructed) 0.1 0.1)

regionshape is regular) 0.1 0.1) C ( region-shape is recta
ngular ... ..
0.1) ( C two-regionsa.adjoining are river) 0.1 0.1) ( C
two.regions-adjoining are road) 0.1 0.1) ( ( regions-surrou
naing have
class-water) 0.1 0.1) C C region.shape is roughly-rectangul
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ar) 0.1 0.1
r gi 0.-ls is land) C.1 0.1) ( C region.shapeis

regular)
C.1 0.1) ( ( region-size is small) 0.1 0.1) ( C regions_s r
rouncing V P
have classuconstructed) 0.1 0.1) ( ( region is road) C.1 C.
1) ( (
region is lake) 0.1 0.1) ( ( region is oasis) 0.1 0.1) C .
region is ,.
river) 0.1 0.1) ( ( region is building) 0.1 0.1) ( ( region
is bridge)
0.1 0.1) ( ( region is offshoreoilrig) 0.1 0.1) ( C regio

n is ship)
0.1 0.1) ( region is island) 0.1 0.1)( (region is swiim
ingpool)
0.1 0.11)
> (update)

FACTS

( region-class is tar)
Initial probability : 0.1)

( Final probability : 0.1) 0
( region-shape is narrow-strip)

Initial probability : 0.1) -
C Final probability 0.1)

( regionclass is water) 0
Initial probability 0.1)

( Final probability : 0.9)

regions-surrounding have class-lana)
Initial probability : 0.1)
Final probability : 0.1) •

Enter any character to continue.
c

( regions-surcounding have class-desert)
( Initial probability : 0.1)
( Final probability : 0.1)

( region_width is small)
C Initial probability : 0.1)
( Final probability : 0.83) •

( region-length is large)
C Initial probability : 0.1)
C Final probability : 0.91)

region-class is constructed) ,
C Initial probability : 0.1)
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Final probability : 0.1)

Enter any character to continue.
C• S

* ",- .-, p &

region-shape is regular)
(Initial probability :0.1)

( Final probability : 0.1) *.. '

( regionshape is rectangular)
( Initial probability 0.1)
( Final probability 0.1)

(two-regions.adjoining are river)
( Initial probability : 0.1) *
( Final probability .. 0.1)

( two-regions-adjoining are road)
( Initial probability-. 0.1)
Final probability 0.1)

Enter any character to continue.
c

regions-surrounding have classawater)
( Initial probability 0.1)
( Final probability : 0.1) 5 0

regionshape is roughly-rectangular) p

Initial probability : 0.1)
( Final probability : 0.1)
region-class is land) v • i

Initial probability 0.1)
Final probability : 0.1)

( region-shape is irregular)
( Initial probability : 0.1) "
( Final probability : 0.1)

Enter any character to continue.

( region-size is small) 
4 P

( Initial probability : 0.1)
( Final probability : 0.1) 1%

Cregionusurrounding have class-constructed)
CInitial probability :0.1)
CFinal probability :0.1) 0

C region is road)
.,..... -..
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( Init.ai probability : 0.1)
Final probability 0.1)

( region is lake) S
( Initial probability 0.2)
( Final probability : 0.331111111111)

Enter any character to continue.
C

( region is oasis)
( Initial probability : 0.1)
( Final probability 0.313333333333)

( region is river)
( Initial probability • 0.1)
( Final probability : 0.843374074074)

( region is building)
Initial probability : 0.1)

( Final probability : 0.1)

( region is bridge)
Initial probability 0.1)
Final probability : 0.1)

Enter any character to continue.

region is offshoreoilrig)
( Initial probability : 0.1)
Final probability : 0.1)

(region is ship)
Initial probability : 0.1)
Final probability : 0.1)

( region is island)
( Initial probability : 0.1) S
( Final probability : 0.1)

.* ( region is swimming-pool)
( Initial probability : 0.1)
( Final probability : 0.26)

Enter any character to continue.

t . "

(co setractsisland)
settacts..islano
settacts
> (setractl)
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(((region-.class is tar) 0.1 0.1) CCregion-shape ;,s na
rrow-.strip)

0.1 0.1) ((region-..class is water) 0.1 0.1) (Cregionss
urrounoing 

_

have class-lana) 0.1 0.1) C regions-.surrounding have c~as
s-desert)
0.1 0.1) (Cregion-.width is small) 0.1 0.1) (Cregion..len

gth is
large) 0.1 0.1) C region.class is constructed) 0.1 0.1)(

7 A
region-.shape is regular) 0.1 0.1) C(region-.shape is recta
ngular) 0.1 .
0.1) C(two-.regions...adjoining are river) 0.1 0.1)(C

two-regions.adjoining are road) 0.1 0.1) ((regions.surrou
nding have
class-water) 0.1 0.92) CCregion-..shape is roughly..rectangu
lar) 0.1
0.1) CCregion-..class is land) 0.1 0.88) C(region-.shape i
s irregular

0.1 0.76) C(region-.size is small) 0.1 0.1) CCregions-
surrounaing
have class-constructea) 0.1 0.1) C(region is road) 0.1 0

region is lake) 0.1 0.1) C(region is oasis) 0.1 0.1)(
region is
river) 0.1 0.1) ((region is building) 0.1 0.1) (Cregion

is bridge)
0.1 0.1) CCregion is offshore..oilrig) 0.1 0.1) CCregio
n is ship)
0.1 0.1) CCregion is island) 0.1 0.1) CCregion is swimrn
ing-.pool)
0.1 0.1))
> (update)

FACTS

(region-.class is tar)
( Initia. probability :0.1)
( Final probability :0.1)

recgion-.shap* is narrow-.strip)
( Initiai probability :0.1)
(Final probability :0.1)

( region-.class is water)
(~~~~~ Inta rbaiiy 01

( Fintal probability : 0.1)
C~~~~0% Fia prbaiitr01

( regionssurrounding have class-land)
( Initiai probability :0.1)
Final probability :0.1)

Enter any character to continue.
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C

regions-surrouncing have class-desert)
Initial probability 

: 0.1)

Final probability : 0.1)

region_width is small)
Initial probability : 0.1)
Final probability : 0.1)
region-length is large)

Initial probability : 0.1)*.4""
( Final probability 0.1)

( region-class is constructed)
( Initial probability 0.1)
( Final probability : 0.1)

Enter any character to continue.
0

region-shape is regular)
( Initial probability 0.1)
Final probability 0.1)

.%". .&-.

region-shape is rectangular)
Initial probability : 0.1)
Final probability 0.1)

( two-regions-adjoining are river)
( Initial probability 0.1)
( Final probability 0.1)

( two_ regionsadjoining are road)
( Initial probability : 0.1) -..

( Final probability : 0.1)

Enter any character to continue. " 0

( regions-surrounding have classawater)
( Initial probability : 0.1)
( Final probability : 0.92)

( regon_shape is roughly_rectangular) e.( Initial probability : 0.1) .....N,.,
( Final probability • 0.1) ......

( regionclass is land)..-'..
( Initial probability :0.1)
( Final probability . 0.,88) _-.",..

- .4. * * r

, •-, .% %%-
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( region-shape is irregular)
( Initial probability 0.1)
( Final probability . 0.76) "

Enter any character to continue. -.

regionsize is small) -
Initial probability 0.1)
Final probability 0.1)

regions-surrounding have class-constructed)
( Initial probability 0.1)
Final probability 0.1) WA

region is road) -
( Initial probability 0.1)
Final probability • 0.1)

region is lake)
( Initial probability 0.1)
Final probability 0.1) : '- .

Enter any character to continue.
c

( region is oasis)
( Initial probability 0.1)
( Final probability 0.1)

( region is river)
Initial probability 0.1)

( Final probability : 0.1) .

( region is building)
( Initial probability : 0.1)
( Final probability : 0.1)

C region is bridge) -
Initial probability : 0.1)
Final probability : 0.1)

Enter any character to continue.
c

( region is offshoreoilrig)
( Initial probability : 0.1) -. :.
( Final probability 0.327777777778)

( region is ship)
( Initial probability 0.1) - ..
Final probability : 0.259444444444)
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region is islanc)

( Initial probability 0.1)
Final probability 0. 86158108642)

region is swimming-pool)Initiai probability . 0.1).",'-.
(Final probability :0.1) '

Enter any character to continue.

> (co settacts_bridge)
~setI acts_ bri dge,,,,'

settacts4
> (settacts)

region-class is tar) 0.1 0.1) ( C region-shape is na
rrow,_strip)
0.1 0.1) ( ( regionclass is water) 0.1 0.1) ( C regions-s %,:N.'N

urrounoing
have classuland) 0.1 0.1) ( ( regionssurrounding have clas
s-desert)
0.1 0.1) ( ( region-width is small) 0.1 0.1) C ( regionflen
gth is
large) 0.1 0.1) C ( region-class is constructed) 0.1 0.1)

region-shape is regular) 0.1 0.1) ( C region-shape is recta
ngular) 0.1
0.77) C ( two-regions-adjoining are river) 0.1 0.93)

two-regions-adjoining are road) 0.1 0.85) ( ( regions-surro
unaing have
class-water) 0.1 0.1) ( ( region-shape is roughly-rectangu
lar) 0.1
0.1) ( C region-class is land) 0.1 0.1) C C region-shape is
irregular)
0.1 0.1) C ( region-size is small) 0.1 0.1) C C regionssu

rrouncing
have classuconstructed) 0.1 0.89) ( ( region is road) 0.1 0
.1) (
region is lake) 0.1 0.1) ( ( region is oasis) 0.1 0.1) (
region is
river) 0.1 0.1) C ( region is building) 0.1 0.1) ( region
is bridge)
0.1 0.1) ( ( region is offshore-oilrig) 0.1 0.1) ( C regio
n is ship)
0.1 0.1) ( ( region is island) 0.1 0.1) ( ( region is swims
ing-pool)
0.1 0.1))
> (update)

FACTS

( region-class is tar)
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Initial probability : 0.1)
( Final probability : 0.1) -

( region-shape is narrow-strip) -
Initial probability : 0.1)

( Final probability : 0.1)

regionclass is water)
Initial probability : 0.1)
Final probability : 0.1) "• . -.- 

( regions-surrounding have class-land)
Initial probability : 0.1)

( Final probability : 0.1)

Enter any character to continue. '.

,p..--,--

regions..surrounding have class-desert)
Initial probability 0.1)
Final probability • 0.1) 0

region-width is small)
Initial probability : 0.1)

( Final probability • 0.1)

region-length is large)
Initial probability 0.1)

( Final probability : 0.1)

region-class is constructed)
Initial probability : 0.1)
Final probability 0.1)

Enter any character to continue.
c

region-shape is regular)
( Initial probability : 0.1)
Final probability : 0.1)

region-shape is rectangular)
Initial probability : 0.1)

( Final probability : 0.77) 'p

( two.regionsadjoining are river) "-"'*
Initial probability : 0.1)
Final probability : 0.93)

( tworegionsadjoining are road)
Initial probability : 0.1)

( Final probability : 0.85)
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Enter any character to continue.
c

regions-surrounding have classawater)
Initial probability 0.1)
Final probability 0.1)

region-shape is roughly-rectangular)
( Initial probability 0.1)
Final probability : 0.1)

region-class is land)
Initial probability 0.1)

(Final probability : 0.1)

region-shape is irregular)
( Initial probability-. 0.1)
Final probability : 0.1) -

Enter any character to continue.
c

( region-size is small)
Initial probability : 0.1)

( Final probability : 0.1)

regions-surrounding have class-constructed)
( Initial probability : 0.1)
( Final probability : 0.89)

( region is road)
( Initial probability : 0.1) 5
Final probability : 0.1)

( region is lake)
Initia± probability : 0.1)

( Final probability : 0.1)

Enter any character to continue.

( region is oasis)
( Initial probability : 0.1)
( Final probability : 0.1) V,

( region is river)
( Initial probability :0.1)
( Final probability : 0.1)

( region is building) .

( Initial probability : 0.1) .,

.3 3' ~ 3 ? V .' •P *..:."' ,,._...,
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( Final probability : 0.1)

( region is bridge)
( Initial probability : 0.1) .
( Final probability 0 .529982716049)

Enter any character to continue.
C

region is offshore-oilrig) ..Initial probability :0.1)"" [ .,i

( Final probability : 0.1)

( region is ship)M

Initial probability 0.1)
( Final probability :0.1)

( region is islanc) ... .
( Initial probability : 0.1)
(Final probability :0.1) °S

, ( region is swimming-pool)
( Initial probability : 0.1) .-
( Final probability • 0.117555555556)

Enter any character to continue. --

c S
t
> q """<"
OK, como -e

B.2 Sub.ct!ive_ Bayes ian Method: Rulebase '

(defun setup ()
(setq rules '(

(rulel (if (region..class is tar))
(then (region is road) 0.5 3.5)) -

(rule2 (if (regionshape is narrow_strip))
(then (region is road) 0.75 3.0))

(rule3 (if (regionclass is water))
(then (region is lake) 0.0 3.6))

(rule4 (if (regions-surrounding have class-land

(then (region is lake) 0.1 2.75))
(rule5 (if (region-class is water))

(then (region is oasis) 0.0 3.4))
(rul*6 (if (regions-surrounding have class-des.

rt)) _
(then (region is oasis) 0.1 3.0)) At.

(rule7 (if (regionclass is water))
(then (region is river) 0.0 4.0))
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(rule8 (if (region-width is small))
(then (region is river) C.1 2.0))

(rule9 (if (region-length is large))
(then (region is river) 0.75 1.3)) r%. ,9

(rulelO (if (region-class is constructed)) .

(then (region is building) 0.1 4.0))
(rulell (if (region-shape is regular))

(then (region is building) 0.1 2.9))
(rulel2 (if (region-class is constructed))

(then (region is bridge) 0.1 1.5))
(rulel3 (if (region-.shape is rectangular))

(then (region is bridge) 0.5 1.5))
(rulel4 (if (two.regions.adjoining are river))

(then (region is bridge) 0.1 2.2)) .:
(rulel5 (if (two.regionsadjoining are road)) 0

(then (region is bridge) 0.1 2.0)) -
(rulel6 (if (region-class is constructed)) .

(then (region is offshore-oilrig) 0.1 2
.0) )"...-",, (rulel7 (if (regionshape is regular))

(then (region is offshore-oilrig) 0.1 1
.5))

(rulelS (if (regionssurrounding have class-wat
er))

(then (region is offshoreoilrig) 0.1 3
.5)) . A ...

(rulel9 (if (region-class is constructed))
(then (region is ship) 0.1 2.75))

(rule2O (if (region-shape is roughly-rectangula

(then (region is ship) 0.1 1.5))
(rule2l (if (regions-surrounding have class-wat

Ser))
er)) (then (region is ship) 0.1 2.75))

(rule22 (if (region-class is land))
(then (region is island) 0.1 2.7))

(rule23 (if (regions-surrounding have class-wat
er)) "

(then (region is island) 0.1 2.7)) S
(rule24 (if (region-shape is irregular))

(then (region is island) 0.75 1.5))
(rule25 (if (region-class is water))

(then (region is swimming-pool) 0.0 2.8

(rule26 (if (region-shape is regular))
(then (region is swimming-pool) 0.0 2.0

(rule27 (if (region-size is small))
(then (region is swimmingpool) 0.1 1.5 m"- . '

(rule28 (if (regions-surrounding have class-con
structed) ) .. ,,
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then (regi.on is swiirning-..ool) 0.1 1.2 :

(setq threshold '1)

.1 Su5e!ctive Bayes.ian Method: Lisp ucin

FORWARD CHAINER UPDATING PROBABILITY
I' BY SUBJECTIVE BAYESIAN METHOD

1* UPDATE should be triggerred whenever any of the
1* probabilities of the evidences are updated.

(defun update 0(%)
(prog (progress)

(conds ((matchone) (setq progress t)))
(displayfacts) (return progress)))

I' MATCHONE tries one rule at a time.

* (defun matchone ()
(prog (morules)

(setq morules rules)
inloop
(cond ((null morules) (return t)))
(tryrule (car morules))
(setq morules (cdr inorules))%
(go mloopf)

I, TRYRULE checks whether th1e probabilities of the0
1' premise have changed. If so, it calculates the
I' new probability of the hypothesis.

(defun tryrule (rule)
(prog (iffact thenfact trfacts iprob fprob bin nf a

fut fat(aarrl)
(uetq thefact (cadadr rule))

(setq trfacts facts)
findiffact
(cond ((null trfacts)

(print iffact)
(print "List of facts incomplete.")
(return nil))
((equal (caar trfacts) iffact) 4
(go findbm)))

(setq trfacts (cdr trfacts))
(go findiffact)
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f i ndbm
(setq iprob (cadr (car trtacts)))

*(setq fprob {caddr (car trfacts)))
(setq nf (car (cddaddr rule))
(setq sf (cadr (cddaddr rule)))
(cond ((equal iprob fprob) (return nil))

((greaterp fprob iprob)
(setq bm (+ 11( fprob iprob)

iprob) ))))(t (setq bm (+. nf C'fprob UIC 'l nf0

)fprob)))))) 1%N
(setq trfacts facts)
(setq afacts '0)).,

changeprob
(cond ((null trfacts)

(print "Then fact of rule not includ
* ed in facts listO) (rtrni)

((equal (caar trfacts ) thenfact)
(setq nprob (* bm (caddr (car trfacts

(setq x (list (caar trfacts)
(cadar trfacts)
nprob))

(setq afacts (append afacts (list x)
(cdr trfacts)))

(setq facts afacts)
(return t))

(setq afacts (append afacts (list (car trfac
ts)Ml

(setq trfacts (cdr trfacts)) *'

(go changeprob))) 0

* 1* DISPLAYFACTS shows the initial and final probabilitie
* 5

of all th. facts in the factsbase on the screen.

(defun displayfacts (0
(prog (dffacts)

Csetq dffacts facts)
(print InFACTS)
(setq counter t0)
loop
(cond ((null dffacts) (return tM)
(print '6

(print (caar dffacts))
(print (list "Initial probability:

(cadr (car dffacts))))
(print (list "Final probability:

(caddr (car dffacts))))
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(setq dffacts (cdr dffacts))
(setq counter (addi counter))
(cond ((equal counter '4)

(setq counter 1'0) .'

(print
(print "Enter any character to conti

nue.)
(setq x (read)) )

(go loop)))

0%
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APPENDIX C

IMPLEMENTATION OF DEMPSTER-SHAFER METHOD

The method of associating the degrees of belief and .

plausibility and thus gauging the validity of conclusions

is demonstrated with the help of two sample sessions. The
.. > . Ndq

rules used in connection with this method are given. The

Lisp functions, that determine the probability ranges of '
the hypotheses, are also attached.
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C.1 Dempster-Shafer Methoo: Sar.ple session 1 ' ?-
. . %1, d,.

OK, lisp
WARNING This software is for evaluation only and contains a
time out mechanism

Salford University Lisp version 33
> (co dst)
dat
go
insert
recall
intlien
thenp
finadc
asKuser
apifs
rtestif
prove
diagnose

> (Co setup) .

setup p 0
setup .'

> (setup)

> (diagnose) -

Enter probability of fact being true : region shape rou
nid) S

0.97
Enter probability of fact being false ( region shape ro

unc)
0.01
Enter probability of fact being true : C region class ste :'-

el)
0.8
Enter probability of fact being false ( region class st

eel) " '

0.1
( region is oiltanK) is proved with certainty range ( 0.6

48 0.576E-1

region is oiltanK) ..

> (setup)

> (diagnose) , *
Enter probability of fact being true : ( region shape rou

nid)
no

Enter probability of fact being false : ( region shape ro .
unc) '.
3.0 I 0
Enter probability of fact being true : ( region shape reg -.

ular)

563u.. . . .. . . . . . . . . . . . . .. ?,
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Enter probability of fact being false Cregion shape reI
gular)
0.05 0
Enter probability of fact being true : region shape
long-ancinarrow)
0.•92 -.,,--

Enter probability of fact being false : ( region shape
long_ an_ narrow)
0.05 0
Enter probability of fact being true : ( region class tar

0.85
Enter probability of fact being false : region class ta

r)-
0.10
( region is road) is proved with certainty range ( 0.6885 
0.612E-1)
C region is road)

> (setup)() ",-

> (diagnose)
Enter probability of fact being true : C region shape rou

nd) - "
no -'-

Enter probability of fact being false ( region shape ro ..
una)
1.0
Enter probability of fact being true : ( region shape reg

ular)
no
Enter probability of fact being false C region shape re

gular)
1.0
Enter probability of fact being true : ( region shape rec
tangular)
0.82
Enter probability of fact being false : ( region shape re

ctangular)
0.1
Enter probability of fact being true : ( region

adjacent-on-two.sidesto regionwithstructure_class_2)
0.86
Enter probability of fact being false : ( region
adjacent-on-twosides.to region-with-structure-class_2)

- 0.02
Enter probability of fact being true : ( region

adjacent_ontwo-sides-to regionis.road)
N 0.7

Enter probability of fact being false : C region
adjacentontwosides.to region_ is_ road)
0.1 '
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Enter probability of fact being true : region class tar

0.89
Enter probability of fact being false : ( region class ta 0
r) Y

( region is bridge) is proved with certainty range C 0.63
0Q•5 6E-l1) - v -,

region is bridge)

> (diagnose)
Enter probability of fact being true • ( region shape rou

ha) 
:

no
Enter probability of fact being false : C region shape ro

un)

Enter probability of fact being fale :(region shape regular)
n.0
Enter probability of fact being true : ( region shape rec
gular)

no
Enter probability of fact being false ( region shape re.
tangular)Enter probability of fact being false :(region shape re ---'--.--

ctangu iar ).-.-,---

1.8
Enter probability of fact being true : region class con

crete)
no%%
Enter probability of fact being false ( region class co

ncret)
1.0
Enter probability of fact being true : ( region surroundi
ngregions ' "

region -.with structure-class-2) -0Enter probability of fact being false :(region surround--.'-,

ing-regions

region -with structureclass_2)
0.02
Enter probability of fact being true C region shape irr

egular)
0.94 ,
Enter probability of fact being false : region shape ir
regular)
0.05 ," -. 5

Enter probability of fact being true ( region class lan
d)
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0.96
Enter probability of fact being false ( region class :a

rid)
0.02 0
( region is island) is proved with certainty range C.77

76
0.6912E-1)
C region is island)> (co setup)

setupse tup ;i-
> (setup)., .

> (diagnose) ...<,,
Enter probability of fact being true : ( region shape rou 0

rid)
0.0
Enter probability of fact being false :(region shape ro

ncl)- .

Enter probability of fact being true (region shape reg .
ular)

Enter probability of fact being false : ( region shape re
gular)
1.0
Enter probability of fact being true : C region shape reg
tangular)

Enter probability of fact being false :(region shape re.:.::
c gul a ) %.:::::-

1.0
Enter probability of fact being true ( region surroundi
ngregions
region _witn structure-class_2)
0.0 .
Enter probability of fact being false C region surround

ing_ regions
region -with structure-class_2)

1.0
Enter probability of fact being true : ( region surroundi

ng_ regions
regions-with-structure-class-l)
0.0
Enter probability of fact being false : region surround
ing-regions
regions_with-structure-class-l).. "

1.0
Enter probability of fact being true : region shape 0

long_ anao_ narrow)
0.9
Enter probability of fact being false : ( region shape
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long-.ano3-narrow) P-.-

0.02 P

Enter probability of fact being true (region c~ass wat
er) a

0.95
Enter probability of fact being false Cregion cl.ass wa

ter)

region is river) is proved with certainty range (C.769
5 0.684E-1)

region is river)
> q-

OK, como -

C.2 Demnp~teSh§afer Method: Samplesessggion 2

0K, lisp
WARNING This software is for evaluation only and contains a
time out mechanism ~ a

> (codst) Salford University Lisp version 33
> (co das-)

dst
ge
insert.
recall
intrien
thenp
finodc

* aS~user
* apifs

rtestif
prove

* diagnose
>(co setup)
setup
setup

> (setup)
0)

> (diagnose)
Enter probability of fact being true :Cregion surroundi

ng...rgions
regioL..ith-.structure..class-.2)
0.9 a

Enter probability of fact being false :(region surround
ing..regions
region.with-.structure.class.2)

0.05 .

Enter probability of fact being true :Cregion shape reg ~ .

ular)
* 0.95

Enter probability of fact being false :Cregion shape re
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gular)
0.02
Enter probability of fact being true ( region class art

ificial)
0.8
Enter probability of fact being false ( region class ar

tificial) ,. -
0.1
( region is ship) is proved with certainty range C 0.648

0.576E-1) .
region is ship)

> (setup)

> (diagnose)
Enter probability of fact being true ( region surroundi

ng-regions .- - .,
region-with-structure-class_2)
0.6
Enter probability of fact being false : ( region surround

ing_ regions '
region-withnstructure-class 2) 0 I

0.3
Enter probability of fact being true : ( region shape reg

ular)
0.92
Enter probability of fact being false • region shape re

gular)
0.04
Enter probability of fact being true : region class art

ificial)
0.9
Enter probability of fact being false : r region class ar

tificial) 0

* 
0

*region is ship) is proved with certainty range C0.54 0

.48E-1)
( region is ship)

> (Setup)

> (diagnose)

Enter probability of fact being true : ( region surroundi
ng-regions
region-wi.th_ structure_ class_ .2)
0.0
Enter probability of fact being false : C region surround
ing-regions
region-with_ structure_ class_.2)

Enter probability of fact being true : ( region
most_ surrounding_regions region-withstructure_class_ 2)
0.9
Enter probability of fact being false : ( region
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mostsurrounding-regions region-wit.h_structure-class_ 2
0.05
Enter probability of fact being true : region shape reg

ular) S

Enter probability of fact being false : ( region sape re

0.1
Enter probability of fact being true : ( region class art

ificial)
0.92" "-"""
Enter probability of fact being false :(region class ar .:,-. :?

tif-i.i° •

0.04
region is offshore.oilrig) is proved with certainty rang

e ( 0.72
0.64E-1)

region is offshore-oilrig)
> (setup)

> (diagnose)
Enter probability of fact being true : ( region surroundi

ng_ regions -

region-witn-structure-class..2)
0.0
Enter probability of fact being false : region surround

ing_ regions
region-with-structure-class_2)
1.0
Enter probability of fact being true : C region

most-surrounding_ regions region_ with._structuree_ class_ 2)
0.0
Enter probability of fact being false : ( region 5

most-surrouncing-regions region-with-structure-class_2)
1.0
Enter probability of fact being true ( region adjacent-.

region-wi tnst ructureclals_ 2) "::J
0.9 S S

Enter probability of fact being false : region adjacent
_to
region_witn-structure-class_2)
0.06
Enter probability of fact being true ( region adjacent-

to , .".."
reg ion-w tn_ Stct ur ecl as s_ I) .:'•. "'-
0.82
Enter probability of fact being false . ( region adjacent

_to
region-witn-structure_ class_ 1)
0.14
Enter probability of fact being true ( region shape
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long_ ano_ na rrow ) :.:...
0.85"
Enter probability of fact being false • regicm s.hape-'"--
long.ano.narrow)
0.12
Enter probability of fact being true : ( region shape reg

ular)
0.95
Enter probability of fact being false : ( region shape re

gular)
0.02
Enter probability of fact being true : ( region class art

ificial)
0.97
Enter probability of fact being false : ( region class ar

tificial)
0.03

( region is dock) is proved with certainty range C 0.738
0.656E-1)

region is dock)
> (setup)() S

> (diagnose)
Enter probability of fact being true • ( region surroundi
ng-regions

* r egion_witn-structure_ class_2)
unKnown
Enter probability of fact being false ( region surround

" ing_ regions
-' region_ with_ structure_ class_ 2)

unknown ." .Enter probability of fact being true ( region

mostsurrouncing- regions region-withstructure-class_ 2)
unknown
Enter probability of fact being false ( region
most-surrounding-regions region-with-structure-class_2)
unKnown
Enter probability of fact being true • ( region adjacent-"

to S
region-with-structure-class_ 2)
unKnown"",
Enter probability of fact being false : C region adjacent

_to
region_witn_ structure-class'2)

-~untknownEnter probability of fact being true : ( region width sma
Ii) ~. ..,.,..

0.0
Enter probability of fact being false : ( region width sm - - -,

all) ~-
1.0 0
Enter probability of fact being true • ( region shape reg
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0.9

Enter probability of fact being false r egion shape re •0 0 4 - .- - ,. "gular)
0.94
Enter probability of fact being true : ( region class gre

enery)
0.97
Enter probability of fact being false : C region class gr
eenery)
0.02
( region is field) is proved with certainty range ( 0.742

05
0.4365E-1)

( region is field) * 0>. ...

OK, como -e
4..@-.

C.3 Dempster-Shafer Method: Rulebase *

(defun setup ()

(setq rules

(rl: ((region class land)) •
(((region belongs-to structure-class_.-

1) (0.9 0.05))))
(r2: ((region class water))

(((region belongsto structure-class_ -

2) (0.9 0.05)))) p

(r3: ((region class artificial))
(((region belongsto structure.class_. .

3) (0.9 0.05))))

(r4: ((region class greenery)) S
(((Mregion belongs-to structure-class_.

11) (0.9 0.08))))

(r5: ((region class sand))
(((Mregion belongs-to structureclasa_ -'.

12) (0.9 0.08)))) a "

(rG6: ((region class marsh))
(((region belongs-to structure-clas_'."

13) (0.9 0.08))))

(r7: ((region class ice)) 
(((region belongs-to structure-class_ " -

14) (0. 9 0. 0)) ))
• • . %r:AA .
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-7 -M N 4

(r8: ((region class tar))
(((region belongs-to structure_c:ass_ _--

31) (0.9 0.08)))) 0

(r9: ((region class concrete)) N "

(((region belongs-to structureclass_-..
32) (0.9 0.08)))

(rlO: ((region class steel)) 0
(((region belongsto structureclass_

33) (0.9 0.08))))

(rll: ((region belongsto structure_classl"-1

(region shape regular)) 0
(((region is field) (0.85 0.05)) -.

(r12: ((region belongsto structure-class_1..

1) (region shape irregular))
(((region is meadow) (0.85 0.05)))) .

% (rl3: ((region belongs-to structure-class_l"
2) (region shape irregular))

." (((region is desert) (0.85 0.05))))

* (r14: ((region belongs-to structureclass_1l
4) , -

(region shape irregular))
(((region is glacier) (0.85 0.05))))

(rl5: ((region belongs-to structure-class_l K'..-...*' ""
2)

(region adjacent-to region-witstru? . cture_€lass-1) .:?-,
(region adjacent.to region-with-stru

ctureclass_2)
(region width small))

(((region is beach) (0.9 0.08))))

(r16: ((region belongs-to structureclass_l
3)

(region adjacentto regionvith-stru •
" € cur ecl ass_ l) ...-

3).ure.-"aa.l (region adjacent_.to regionwith.stru -.
.. cture-class_2) .'..--

(((region is marsh) (0.9 0.08)))) .

(r17: ((region belongs-to structureclass_1l
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(region shape irregular)
(region surrounding_-regions

regionwithstructMre_¢c'ass_
2))

(((region is island) (0.9 0.08))).

(rlS: ((region belongs-to structure-class_2

(region shape irregular)
(region surroundingregions

regionswith.structure_ class

(((region is lake) (0.9 0.08))))

(ri9: ((region belongsto structure-class_2

(region shape longand.narrow))
(((region is river) (0.9 0.08))))

(r20" ((region belongsto structureclass_2
* 0

(region shape irregular)
(region surrounding_regions

regionwitstructure-class"-"12 )) '' .'"

(((region is oasis) (0.9 0.08))))
* S

(r21: ((region belongs-to structureclass_3

(region shape regular)
(region surroundingregions

regionwith_ structure_ class_ "
2)) S

(((region is ship) (0.9 0.08))))
= %% .% p.'

(r22: ((region belongs-to structure-class_3

(region shape regular)
(region mostsurrounding-regions -,.

region-with-structure-class,.
2))

(((region is offshore-oilrig) (0.9 0.
08))))

* S
(r23: ((region belongs-to structure-class_3

(region shape regular)
(region shape long-andnarrow)
(region adjacent-to

regionwit _structureclass_ S1 ) -. _ p _ .t

(region adjacent-to
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region_.witstructure class-
2)) S

(((region is dock) (0.9 0.08).

(r24: ((region belongs_to structure-class_3

(region shape long-and.narrow)
(region shape regular))

(((region is road) (0.9 0.08))))

(r25: ((region belongsto structure-class_3
3)

(region shape round))
(((region is oiltanK) (0.9 0.08)))) 0

(r26: ((region belongsto structure-class_3
2)

(region shape regular))
(((region is building) (0.9 0.08))))

(r27: ((region belongsto structure-class_3

(region adjacent_on_twosides..to
region_ is_ road)

(region adjacentontwosides to
r egi on w it_ St ructur eclass_ ..e.-

2)
(region shape rectangular))

(((region is bridge) (0.9 0.08))))

(r28: ((region belongs-to structure-class_3
3)

(region shape airplane-like))
(((region is airplane) (0.7 0.2))))

(setq hypotheses 'C

((region is offshore-oilrig) (0.0 0.0))
((region is beach) (0.0 0.0))
((region is marsh) (0.0 0.0))
((region is field) (0.0 0.0))
((region is meadow) (0.0 0.0))
((region is desert) (0.0 0.0))
((region is glacier) (0.0 0.0))
((region is oasis) (0.0 0.0))
((region is airplane) (0.0 0.0))
((region is oiltank) (0.0 0.0))
((region is road) (0.0 0.0))
((region is bridge) (0.0 0.0))
((region is ship) (0.0 0.0))
((region is dock) (0.0 0.0)) .. .

... 5745p4,-,:--,
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* 0

* -. , . '%,

((region is building) (0.0 0.0)l
((region is island) (0.0 0.0)) .. v.
((region is lake) (0.0 0.0))
((region is river) (0.0 0.0)) )) I 0

(setq alpha '0.5) -

(setq beta 10.8)
(setq facts '0)

C.4 Dempster-Shafer Method: Lisp Functions

I BACKWARD CHAINER WITH
/. THE PRCBABILITY RANGE CALCULATED
I* ACCCRD:NG ". THE DEMPSTER SHAFER METh

"- 5. " -p -

Ij.

I' GE returns t ,f at or &at, otherwIse, returns %l..-
* %0

(defun ge (a t:.
(prog (

o cor.a greater; a .r.t..r. t
Oqt.a. a rt.rn t.,

t ret.rn n.. •

I' INSERT add a 'fact' to tne fact-ase ,+t. a
/' protaoility factor range cfr.

(defun insert (fact cfr) • .
(setq facts (cons (list (car tact) cfr) facts)))

/* RECALL checks whether a tact is present in the fact ba
so.*
/0 If present, it returns the associated cfr, othe

rw ise
/* it returns -2.0.

(detun recall (fact)

(prog (rcfacts)
(setq rcfacts facts)
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r *110p 0 .

rcloop 'N
(cond ((null rcfacts) (return '-2.0)) j

((equal (car fact) (caar rcfacts)) _
(return (cadar rcfacts))))

(setq rcfacts (cdr rcfacts))
(go rcloop) ))

/* INTHEN strings together and returns a list of rules,
/" each of which can prove the fact. ,

(defun inthen (fact)
(prog (itrules oprules)

(setq itrules rules)
(setq oprules ' ()) i

4., i tioop
(cond ((null itrules) (return oprules))

((thenp fact (car itrules))
(setq oprules (cons (car itrules) oprule

s4)))0
(setq itrules (cdr itrules))
(go itloop)))

/' THENP determines whether a fact is part of the RHS of
a rule.

(defun thenp (fact rule)
(prog (thens) 4..

(setq thens (caddr rule)) . .
thloop S
(cond ((null thens) (return nil))

((equal (car fact) (caar thens))
(return t))

(setq thens (cdr thens))(go thloop) ))

/* FINDDC finds the cumulative probability range at th

00
/* 0OR juncture of the tree. It first has to -,

/e calculate the prob range due to the rule its

elf.

(detfun finddc (fact rule cfrange upnow) .
(prog (thens fdcfr a b c d abar bbar cbar dbar x y a

dpoc)
(setq thens (caddr rule))
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frnloopl
(cond ((null thens) (print 'Error-i..-fird-ax )

((equal (car fact) (caar thens))
(setq fdcfr (cadar thens)) S
(go fmloop2)))k

(setq thens (cdr thens))
(go fmloopl)
finloop2
(setq a ('(car cfrange) (car fdcfr)))

(setq b ('(car cfrange) (cadr fdcfr)))
(setq c (car upnow))

( dpt c d (( ar dpo) ( c
xst aa (minus 1 (dad)) aa br)(iu

1 ~ ~ st axof)) ::r (minus 1 (divide (' bar dbar) (minus

(reurn(list x y))

I' ASKt3SER obtains the certainty factor for a fact from
the user, -

does the required conversion from YES, LJNKNO 0
WN, NO, .

/0 call INSERT to add the fact to the fact base

aoreturns the prbbltyrne

(prog (aucfl aucf2) * :-
(printlist " Enter probability of fact being t

rue
(car fact))

mark 1
(setq aucti (read))
(cond ((equal aucfl 'yes) (setq aucfl 11.0) (g

o mark?))
((equal aucti 'unknown) (setq aucfl '0.0

(go mark?))
((equal aucti 'no) (setq aucfl '-1.0) (g

o mark?))
((numberp aucfl) (go mark?))
(t (print 1"ERRCRs Please enter again.")

(go marki)))%
mark? 2

alse (printlist "Enter probability of fact being f

(car fact))
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IJ "% S. "

mark 3
(setq aucf2 (read)) " %*
(cond ((equal aucf2 'yes) (setq aucf2 'I.0) ,o mark4) )

((equal aucf2 'unKnown) (setq aucf2 '0.0

(go mark4))
((equal aucf2 'no) (setq aucf2 '-1.0) (gmark4})),. -"

((numberp aucf2) (go mark4))
(t (print '"ERROR, Please enter again.")

(go mark3))-
mark4
(insert fact (list aucfl aucf2))
(return (list aucfl aucf2)) ))

]"I' APIFS adds a (0.0 0.0) probability range to the premi,
so list
/0I' to make an appropriate format for comparison wi
th
/' the fact base.

(defun apifs (ifs) ""
(prog (inifs opifs)

(setq inifs ifs)
(setq opifs ' M)
ailoop
(con ((null inifs) (return opifs)))
(setq opifs (cons (list (car inifs) '(0.0 0.0))

opifs)) •
(setq inits (cdr inifs))
(go ailoop)))

/* RTESTIF forms part of the recursive loop. It tries t
o prove

each of the premises of the 'rule' by invoki
ng PROVE.
/* If any premise cannot be proven (cf < 0), it
returns

/0 -2.0, otherwise it returns the lowest cf fou
nd
/* amongst the premises.
/* (Here, cf represents the first value in the
/* probability range, i.e. the min degree to wh
ich
/* the fact can be confirmed.)
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(detun rtestif (rule)
(prog (ifs x y prsva-1)

(setq x '10.0) -.

(setq y '10.0)
(setq ifs (cadr rule))
(setq ifs (apifs ifs))
rtf loop
(cona ((null ifs) (return (list x y))))
(setq prsval (prove (car ifs)))
(cond ((ge '0.0 (car prsval)) (return prsval))

((lessp (car prsval) x) (setq x (car prsv

al)) (Haesp (cadr prsval) y) (setq y (cadr pr
aval))))

(setq ifs (cdr ifs))
(go rtfloop)))

I' PROVE attempts to prove a fact. It returns the prob r
ange,

I'if proved and (0.0 0.0), if cannot be proved.

(defun prove (fact):.-
(prog (rl asscf cf r dc success)

I' It tries to see if the fact is present in the factbas
e.

If found, the corresponding cf is returned.

(setq asscf (recall fact))
(cond ((not (equal asscf '-2.0)) (return '(0.0

0.0)

All the rules are found that can prove the fact.
I' A 'reverse' is done such that the rules are ordered b

y rule
I' number.

(setq ri (inthen fact))
(setq rl (reverse ri))

If no rule is found, the user is asked the validity o
f the fact. I

(cona ((null ri) (return (askuser fact))))..

I' DC is initially set to (0 0).* It calls RTESTIF with
I' each rule.
I' Success is set to t, if the premises of any rule are0

satisf ied.
I' It also updates dc with each rule satisfied.
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(setq dc (0.-0 0.-0))--
vpartl
(cona ((null rl) (go vpart2f)
(setq cfr Crtestif (car ri)))
(cond ((lessp 0.0 (car cfr))

(setq success t)
(setq dc (finddc fact (car rl) cfr dc)))

(setq ri (cdr rl))
(go vpartl)
vpart2

I'If any rule has succeeded, the fact is added to the fa
ctbase 0

I'ano the cfr is returned; otherwise, (0 0) is returned.

(cond ((equal success t)
(insert fact dc)
(return dc))
(t (return '(0.0 0.0)

I' DIAGNOSE tries to prove each hypothesis in turn by PR
OVE,

I'until the certainty factor of a hypothesis >

alphaor all the hypotheses are exhausted.

(defun diagnoseoC
(prog (poss cfr)

(setq poss hypotheses)
dloop
(cond ((null poas) (return nil)))
(setq cfr (prove (car poss)))
(cond ((go (car cfr) alpha)

(printliat (caar poss) '"is proved with
certainty rang* f

(return (caar poss)) )
(setq pose (cdr poss))
(go dloopf)
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APPENDIX D

LISTING OF THE INFERENCE ENG:NE

% %

The Lisp functions of the conrbirned backward and

forward chainer, which incorporate the rule syntax

mentionea above, is included next. This calculates the

probabilities of the hypotheses with the help of certainty

factors.

%
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(defun usethenforward (rule)
(prog (thens success verb cfvalue f~acv.al

ue new..fact)
(setq thens Ccdr (cadddr r,,;e ))
(print * in-.usetienforward)
loop
(setq verb (caar thens))
(cond ((equal verb 'ask-.y)

(setq cfvalue (car (cdddar t
hens))))

(T (setq cfvalue (caddar then
S5M)))

(setq flagvalue 'system-..inferred)
(setq new-.fact (cadar thens))
(cond ((null thens) (return success)

((equal verb 'ask-y)
(Setq fact (list (caar thens)

(cadar thens

(caddar then
* 5))

(cond ((asK-.y fact)
(print 'ask,.y.returns-

T)
(setq success T)

(T (verb new-.fact cfvalue flag
value)))

(cond ((and (equal verb 'write)
(equal cfvalue 'I))

(setq success TM)
(print success)
(setq thens (cdr thens))
(go loop)))

(defun testif (rule)
(prog (ifs predicate fact)

(print 'in..testif)0
(print rule)
(setq ifs (cdaddr rule))
(setq ckcf '1) *--

loop %*

*(setq predicate (caar ifs))
(cond ((null ifs) (return T)

((predicate (car ifs)))
(T (return NIL))Ii(setq ifs (cdr ifs))

(go loop)))

(defun testwhen (rule)
(prog (whens predicate fact)

(setq winens (cdaddr rule))
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I S

(setq ckcf '1) ..

loop... %.

(setq predicate (caar whers))
(cond ((null whens) (return '.))l

((predicate (car whens)))
(T (return NIL)))

(setq whens (cdr whens))
(go loop)))

(defun usethen (rule) •
(prog (thens success verb cfvalue flagvalu

e new_-fact)
(setq thens (cdr (cadddr rule))) % %
(print ' in-usethen)
loop
(setq verb (caar thens)) I S
(cond ((equal verb 'ask-y)

(setq cfvalue (car (cdddar th
ens))))

(T (setq cfvalue (caddar thens

(setq flagvalue 'system-inferred)
(setq new-fact (cadar thens))
(cond ((null thens) (return success)

((equal verb ' ask-y)
(setq fact (list (caar thens)

(cadar thens

(caddar then
S))) .-. ,-,•

(cond ((asky fact)
(print 'asK-y-returned

T) . -
(setq success T))))

(T (verb new-fact cfvalue flag ,-.. % .

value)))
(cond ((and (equal verb 'write)

(equal cfvalue l1))
(setq success T)))

(deduce)
(print success)
(setq thena (cdr thens))
(go loop)))

I 0

(defun tryruleif (rule)
(prog (ruletype)

(print 'in-tryruleif)
(setq ruletype (caaddr rule))
(cond ((and (equal ruletype 'if) (testif

rule)) 0 0
(writerip rule 1)
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(usethen ru.6e)
(setq rulesused (cons r,';e .r.;es ;s

ed))
(return V)

(T (return NL)I)))

(defun tryrulewben (rule)
(prog (ruletype)

(setq ruletype (caaddr rule))
(cond H(and (equal ruletype 'when) Ctestw

(writerip rule 1)

(usethenforward rule)
(setq rulesused (cons rule rulesused

* (return T))
* (T (return NIL))))

(defun stepforward C
(prog (rulelist)

(setq rulelist rules)
ei. loop
* kip)))(cona ((is...truerip (car rulelist)) (go s

(cond ((null rulelist) (go exit)))
(cond ((tryruleif (car rulelist)) (retur

n TM)
skip
(setq rulelist (cdr rulelist))
(go loop)
exit
(return NIL))

(defun deduce (0
(prog (progress ckcf)

(print 'in-.deduce)
loop
(corid ((stepforward) (setq progress T)

(T (return progress))
(go loop)))

(defun testif+ (rule)
(prog (ifs predicate fact)

a' (st fScd rrl)
(setq ckcf lD
loop .

(print 'in...testif+)
(setq predicate (caar ifs))
(cond ((null ifs) (return V)

P ((verify (cadar ifs)))
(T (return NIL))

(setq ifs (cdr ifs))
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(go loop)))

(defun tryruleif+ (rule)
(prog (ruletype)(print ' in_tryruleif )..,, -:"'

(setq ruletype (caaddr rule))
(cond ((and (equal ruletype 'if) (testif

+ rule))
(writerip rule 1)
(cond ((usethen rule) .- J

(clearrip rule 0)
(setq rulesused (cons rule

rulesuse))
(return T))
(T (return NIL)))))))

(defun verify (fact)
(prog (relevantl relevant cfval flagval new-f

act ckcf)
(print 'in-verify)
(print fact)
(setq fact (list 'predicate fact 'comme

." nt ) ) ". . ,
* nt)) (cond ((is-true fact) (return T)))

(setq fact (cadr fact))
(setq relevantl (inthen fact))

(setq relevant relevantl) 0
(print relevant) . .
loop
(cond ((null relevantl)

(cond ((member fact facts) (ret
urn NIL)) ."

((and (print ' )
(print ' " )
(print '"Is this tr

ue :)
(print fact)
(setq cfval (read))
(equal cfval 'I)) .

(setq flagval 'user.suppl
ied)

(setq new-fact fact)
(aetq asked (cons fact as

ked))
(write new-fact cfval fla

*val)
(deduce)

(return T))
((equal cfval '-1)
(setq flagval 'usersuppli

ed)
(setq new-fact fact)
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(setq asKed (cons fact asx :
*ed) ) " "'".*p

(write new-fact cf-'al fiac .- ,
val)

(return NIL))
((equal cfval '0)
(setq flagval 'user-supli - ..

(setq new_-fact fact) -

(setq asked (cons fact ask 0
ed))

(write now-fact cfval flag
vai)

(return NIL))
((equal cfval 'WRY) .

(why fact) S
(go loop))

(T (setq asked (cons fact a
Sxed))

(return NIL)))))
loopl
(cond ((null relevantl) (go loop)) 0

((equal (prescreen relevantl) 'NIL)
(go exit))

((tryruleif (car relevantl)) (return T M)).::.:

(print 'in.looplverify)
(setq relevantl (cdr relevantl)) -
(go loopl)
loop
(cond ((null relevant) (go exit))

((and (writerip (car relevant) 1)
(tryruleif+ (car relevant))) •
(return T)))

(setq relevant (cdr relevant))
(go loop) ..--.

exit
(return NIL)))

(defun inthen (fact)
(prog (itrulem oprules)

(setq itrules rules)
(setq oprules '0)
itloop
(cond ((null itrules) (return oprules)) S

((thenp fact (car itrules))
(setq oprules (cons (car itrules)oprules) ) ) ) ..

(setq itrules (cdr itrules))

(go itloop)))

(defun prescreen (rule)
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(setq~.% if -s (carrue

loop ,, "

(setq predicate (caar ifs)) ]
! ~ ~~~(cona ((null ifs) (return )""<'-

" ((~~lessp (get '(cadar ifs) ocf) thr ..'- q
esnold)""" "
,, ~~~(return NIL) .-M :-

(setq ifs (cdr ifs)) -' ""
(go loop) )) "

(defun henp (fact rule)--
(prog (consequents)

(setq ihens (cdr (cadddr rule)))

loop
(setq verb (caat thens))
(cona ((o (equal 'write verb) (equal 'a'

C. .- %* ~ x- retr ))

(seq consequents (list )cada th
ens)()r)e)t)urn

(setq thens (cdr hens)) -

(cond ((null thens) (go exit)))"--- --"
(go loop)))

exit""""'
(se(q fact e(cadr act))
(cond ((member acnfact consequens) (ret-

urn T) )".'.--'

i: ~~(defun diagnose 07"- ' '
(prog (possibilities asked) -...(setq tossidlrties hypotheses)

loop
(cona ((null possibilitees) (equal-'a

(print ''No hypothesis can be con ----"-
f i rm e d ." ) - - ': "
I ~~~~(show rulesused )(ter ace rules ) :'"

(return NIL))
t hverify (car Possibilities)) -'")- -"-"

(cond (PRINI 'e(ypohesis)))
(PRINt (car possibiliies))

(con (PRIN aI ac cnerue. ()re
l ~~~(terpri) ----,
~~~~~(showrulesused) (tracerules)

(rerurn(possibilitbiestasked)

(setq possibilities (cdr possibilties))"
(go loop)))

fre.orsd(defun showrulesus(dt.c.r..e
(pot (x y z) rp

u587-n(a-osblte))"'

(stIosbiiis(drpsiiite)
i:...v-. , : ."., ,"v , ,,,-_-.:, .- (go--  loop)))..,_.. ...- :'-''/
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Csetq x rulesused)

setq y()j
(cona ((null x) (go loop))SI,

* ((member (cadar x) y)
(putprop (cadar x) (add 'I~ (get (cadar x

'no)) 'no))
(T (setq y (cons (cacar x) y))

(putprop (cadar x) 'l 'no)))
(setq x (cdr x))
(go loopi)
loop
(setq z y)
(print 'a

(print U

(print 'RULES - NO. OF TIMES USED

(print '0

loop
(conds ((null z) (return TM)
(prini (car z))
(prini ' : )
(prini (get (car z) 'no))
(print'
(setq z (cdr z))
(go loop)))

(detun tracerules C)
(prog (x y)

(print '

v(print 'U

(print '"TRACE OF RULES TRIED R)
(print')
(setq y 0 (
(setq x rules- in-.progress)
loopi
(cond ((null x) (go loop)) )
(setq y (cons (cadar x) y) )
(setq x (cdr x))
(go loopi)
loop
(cond ((null y) (return TM)
(print (car y))
(setq y (cdr y))
(go loop)))

(defun why (fact)
(prog (possibilities success)

(setq possibilities rulesused)
loop
(cona ((null possibilities)

(cond (success (return T))
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((is_-true fact,.
• ...,/, -.'*

(PR=NI fact:.
(PRINI ' *=was h'.- c:.t.es is. :

(terpri)
(return 7))
(T (PRINI fact)

(PRINI ''is not estat'-s
h-d..)

(terpri)
(return NIL))))

((ifp fact (car possibilities))
(setq success T)
(PRINI fact) (PRINI '"needed to

show:")
(terpri) .
(mapcar '(lambda (a) (p a))

(cdr (cadddr (car possib
ilxties) ) )

(setq possibilities (cdr possibilities))
(go loop)))

(defun ifp (fact rule)
(member fact (caddr rule)))

(defun inif (fact)
(mapcan ' (lambda (r)

(cond ((ifp fact r)
(list r))))

rules))

(defun usedp (rule) "
(prog (possibilities)

(setq possibilities rulesused)
loop
(cond ((null possibilties) (return NIL)

((equal rule (cadar possibilities)

(return T)))
(setq possibilities (cdr possibilities))
(go loop)))

(defun how (fact)
(prog (possibilities success cfval flagval) l'

(setq possibilities rulesused) ,
loop
(cond ((null possibilities)

(cond (success (return T))
((is-true fact)
(setq cfval (getcf fact))
(setq flagval (getflag fac ,

(PRINl fact)
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CPRINl '"was")
(PR:N1 flagval)
(?PR:N '"with certa ., o- fa

ctorn)
ctor ~(PRINi cfval)

4 (terpri)
(return T)-
(is-false fact) (setq succ

ess T) (setq cfval (getcf fact))

(setq flagval (getflag fac .-
*t))"- "- "

(PRINI fact)
(PRINI '"was")
(PRINI flagval)
(PRINI 'awith certainty fa

c t o r") -'"

(PRIN1 cfval)
(terpri)
(return T)) -"-
(T (PRINI fact)

(PRINI 'ais not establis
hecO)

(return NIL)))))
(setq possibilities (cdr possibilities))
(go loop)))

(defun attach (c p)
(putprop c p 'parent)
(putprop p (append (get p 'children) (list c))

*" 'children))

(defun startlist (fact cfvalue flagvalue) .
((lambda (parent child)

(attach child parent)
(putprop child cfvalue 'cf)
(putprop child fact 'fact)
(putprop child flagvalue 'flag))

(gensym)))

(defun buildlist (fact cfvalue flagvalue)
(cond ((member fact facts)

(prog (queue progeny)
(setq queue (list 'root))
tryagain
(cond ((null queue) (go exit))

((equal fact (get (car queu
e) 'fact) )'".

(putprop (car queue) cfval
ue cf)

(putprop (car queue) flagv
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a±ue 'flag)
(return T) ....

(setq progeny (get (car e,;e 'c -' -
hildren)) p

(setq queue (cdr que-e)) "
(setq queue (append progeny queue

(go tryagain)
exit
(print 'Error in building the fa

ct list.0)
(return NIL)))

(T (prog (queue next last)
(setq queue (list 'root))loop •
(cond ((null queue) (go expan))).
(setq next (get (car queue) 'chil

dren))
(setq last queue)
(setq queue (cdr queue))
(cond ((null next) (go expand))) 0 ]
(setq queue (append next queue))
(go loop)
expand
((lambda (parent child)

(attach child parent) " """"
(putprop child cfvalue ' 0

cf)
(putprop child fact 'fac %P,

t)
(putprop child flagvalue

'flag))
(car last) 5 0
(gensym))

(detun write (new cfvalue flagvalue)
(cond ((null facts) (startlist new cfvalue fla

gvalue))
(T (buildlist new cfvalue flagvalue)))

(cond ((member new facts) ) l 2
(T (setq facts (cons new facts)) ))

(defun clear (fact cfavlue flagvalue)
(cond ((setq cfval '0)

(setq flagval 'system-inferred)
(write fact cfval flagval))
(T ( return NIL))))

(defun getcf (fact)
(cond ((member fact facts) S S

(prog (queue progeny)
(setq queue (list 'root))
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loop

(con ((nll, ueue (goexit

(cond ((ognul (et (ao qeue) s

(setq queue (cdr queue))

(setq queue (append progeny queue

(go loop)
exit
(return Q)0M ,

(T (return 0)

(detun getfiag (fact)
(cond ((member fact facts) *.-

(prog (queue progeny)
(setq queue (list 'root))
loop0
(cond ((null. queue) (go exit))

((equal fact (get (car queu
e) 'fact))

flag)))) (return (get (car queue)'
fltqprgnyggt(cr)uue))

hildren))
(setq queue (cdr queue))
(setq queue (append progeny queue

(go loop)
exit
(return NIL))

(T (return NIL)))

(defun is-true (tact) *

(prog (
(aetq fact (cadr fact))
(cona ((member fact facts) (go checkcf))

(T (go exit)))
checkcf
(cona ((equal (getcf fact)) (return T))

(T (go exit)))
exit
(return NIL))

(defun is-false (tact)

(setq tactl (cadr fact))

(cond ((member factl facts) (go checkcf)
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(T (go exit)))
checkcf -

(cond ( (equal -1 (getct fact!)) (ret,-rn
T))

(T (go exit)))
exit .

(return NIL))

(prog (queue progeny)
(setq queue (list 'root))
(setq progeny (get (car queue) 'children

(setq queue (cdr queue))
(setq queue (append progeny queue)) .-

loop 0
(cond ((null queue) (return T))

(T (print lm
(print )
(PRINI "FACT U .

(PRINI (get (car queue) 'tact)) d-

(terpri)
(print ' U

(PRINl In CF *)

(PRINI (get (car queue) 'cf))
(terpri)
(print ' 0 S
(PRINl t SOURCE )
(PRINI, (get (car queue) 'flag))

(terpri)
(print't In

(setq progeny (get (car queue) 'childre
n))

(setq queue (cdr queue))
(setq queue (append progeny queue))
(go loop)))

(defun utartriplist (rule cfvalue)
((lambda (parent child)

(attach child parent) *

(putprop child cfvalue 'cf)
(putprop child rule 'rule))

Iriproo

(gensym)))

(defun buildriplist (rule cfvalue)
(cond ((member rule rules-.in-.progress)

(prog (queue progeny)
(setq queue (list 'riproot))
tryagain
(cond ((null queue) (go exit))
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((equal rule (get (car .e

e) 'rle))(putprop (car queue) cfva:

ue 'cf) (return TM)

hilre))(setq progeny (get (car queue) 'c

(setq queue (cdr queue))
(setq queue (append progeny queue

(go tryagain)
exit
(return NIL)))

(T (prog (queue next last)
(setq queue (list 'riproot))
loop
(cond ((null queue) (go expand"

(setq next (get (car queue) 'ch
ildren))

(setq last queue)
(setq queue (cdr queue))
(cond ((null next) (go expand))

(setq queue (append next queue)

(go loop)
expand
((lambda (parent child)

(attach child parent)

'cf)(putprop, child cfvalue

(putprop chiild rule 'r
ule))

(car last)
(gensym)) ) 1

(defun writerip (rule cfvalue)
(cond ((null rules-.in-.progress)

(startripliat rule cfvalue))
(T (buidripliut rule cfvalue)))

(cond ((member rule rules-.in-.progress))
(T (setq rules-.in...progress (cons rul

* e rules- in-.progrel ))

(defun clearrip (rule cfvalue)
(cond ((setq cfval '0) (writerip rule cfva

(T (return NIL)

(defun getcfrip (rule)
(cond ((member rule rules-.in...progress)
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(prog (queue progeny)
(setq queue (list 'riproct))
loop -

(cond ((null queue) (go0 ex,.t))
((equal rule (get (car q..eu-

e) 'rule))
(return (get (car queue)

cf) )))
(setq progeny (get (car queue) 'c

hildren))
(setq queue (cdr queue))
(setq queue (append progeny queue

(go loop)
exit
(return ' 99))

(T (return '99)))

(derun is...truerip (rule)
(prog 0)

(cond Hmremiber rule rules-.in-.Progress) 0
* go checkcf))

(T (go exit)))
checkccf
(cona ((equal 1 (getcfrip rule)) (return

* T)
(T (go exit)))

exit
(return NIL)))

(defun display (fact cbfvalue flagvalue)
(prog 0)

(print')
(print N N

(print fact)
(print'
(print 'ENTER ANY CHARACTER TO CONTINU

EP)
(setq don't-.care (read))
(return TM)

(detun ask-.y (fact)
(prog 0)

(print lin..ask-.y)
(cond ((member fact facts)

flag act))(cond ((equal 'user-.supplied (get

(seq qeston(return (getcf fact)))
(set quetion(cadr fact))

(print 0N. U

(print'
(print 11 this true:
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(print question)
(setq cfvalue (read))
(setq flagvalue 'user...supp'&ied)
(setq facti (cadr fact))
(write facti cfvalue flagvalue)
(setq asked (cons (cadr fact) asked:))
(print asked) b

(writerip rule 1)
I' (deduce)

(cona ((greaterp cfvalue threshold) (ret
urn T))

(T (return NIL)) )

(detun jump (fact cfvalue flagvalue)

(print
(print "WE ARE MOVING TO RULE BASEO)
(print fact)
fact
(return TMl

(setq rulesused U
(setq facts 0)
(setq rules.An..progress (
(setq threshold '0)

(setq asked 0)
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ABSTRACT

The cbjective of this project is to devec- tecn~q-,es

for classifying ob;ects in aerial and satellite !:aceryv

e.g. aircraft on the ground, mnotor vehicles, Oil storage

tanks, ships, large buildings, and bridges. Recogn.~tion of

these objects is based on their boundary (shape; on!,Y. :w c

distinct approaches were investigated, one based on Fo,-r.ez

* descriptors and one tased on invariant moments. A set cf

programs which compute and analyze these scale-,

translation-, and rotat~on- nvariant attritutes of ot:ect

c utiines is descrited. Th'e Fcurier descr.,ptcr- and

invariant moments methods were appli ed,* to test zata:-*.

representing 21 dic~tized aircraft outlines to give a list.

*of invariant attributes for each aircraft. A fuzzy

cl,.stering analysis of these invariant attritutes was nad e-

to see if aircr"aft of sim.Ilar shape cl-ustered tccether

tasec on the invariant attribute data. Two irrecu;:ar:l tSCi

shapes were analyzed to see the effect of rarndc7 an,;-

systematic noise on their invariant attributes. At is -

shown that the area, perimeter, invariant moments and-0

Fourier descriptors are useful in uniquely descriting

individual object shapes.
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I INTRODUCTION

Black and white aerial photographs ta~en wlt, cPtia: S

? .4"% . '

aerial cameras have long been and still are the pr.arv ..

source of aerial reconnaissance information. Cons-derI-g .

that the resolution of aerial film is at least 5C lines per ---

mm (with some films capable of up to 800 lines per mm; and

that each photograph measures 230 by 230 mm, it is obvious

why aerial photographs are such a valuable source of S

inf ormation.

The primary objective of this project is to

automatically interpret aerial photographs as they would be S I

interpreted (or exploited) by a human photointerpreter.

Computer processing of aerial photographs first requires

that they be digitized. The next step is to extract the S 0

edges from the digitized photograph. These edges are one

of the primary information sources a human uses to

distinguish various objects in the photograph. After S S

extraction, the edges are represented as lists of (x,y)

coordinate pairs. These lists can be closed (i.e. the

first coordinate pair is the same as the last) or open.

This report concentrates on recognizing objects based on

their closed boundary representation. -.-.- ,

Two methods for automatic recognition of objects based * S

on their closed boundary description are considered here.

Granlund [1972] and Zahn and Roskies [1972] both derived

expressions for Fourier descriptors of closed boundary

objects which are invariant under scale, rotation and
605
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translation. Perscon and Fu (19771 reported good resl.:ts ..

using Fourier descriptors to perform character re'ocr.i:'c,.

and machine parts recognition. Wallace and Win.z :" 9C"

obtained good results using Fourier descriptors to

recognize three dimensional views of aircraft toundaries.

A different method for computing a scale-, rotation-, and 0

translation-invariant description of an ob3ect boundary is

moments. Alt (1962] derives moments invariant under a,-

affine transformation (i.e. they are invariant to

translation, scale, and "stretchingo and "squeezing" along

the horizontal axis, but are not invariant under

rctation). Dudani et al (1977) reported good results in

automatic identificaticn of aircraft using the invariant

moments of u. This report describes the implei.entation

and analysis of both the Fourier descriptors and invariant

moments methods.

As a separate part of this project., an expert s'ste-

inference engine [Bhaskar, 1985] was implerented with the -

end goal being automatically to interpret aerial

photographs. The data provided by the invariant attributes '

discussed above is the basis for the fact base of this

expert system. To facilitate the writing of rules such as

*IF object is round, THEN object is oiltank", the shape

description of objects must be presented in a more natural

way than a list of Fourier descriptors and invariant

moments. A pattern recognition technique called fuzzy

clustering [Bezdek, 1981] was implemented to provide a
606
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natural transition from t e Fourier descl:cr:t a,.

invariant moment data to a more natural shape Zesr:-;...-..

language such as "this obDect, is shaped like a cr:tie

(0.8)", where the number in brackets is a Possi1i.-'ity

measure in the range 0 to 1.

Section II describes the Fourier descriptor method.

The invariant moments are discussed in Secticn I.

Implementation of these two methods on the computer is -. .

discussed in Section :V. Section V contains a summary cf S

the results presented in the Appendix along with a

conclusion.
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II. FOLURIER DESCRIPTORS

.,.- , 4, '.

The closed boundary of a recicn i.s c-r, s:serezi as a I

, complex valued function z(I) of the arc lengtn. . see

Figure 1). Due to the finite number of samplir.g ;-s,-

function z(l) is band-limited, and can be approximated ty a

Fourier series as

N/2
z(1) Z_ C exp(Znwl), (I) .

n--N/2 n

L
where C = (I/L) 5 z I) exp(- nwl) dl, (2)

0 -

for N =numner cf contour points and w *2/L,

and L = total length of the closed boundary. The complex

Fourier coefficients can be represented in polar form as

C = IC I exp(- ) (3)
n n n

Fourier descriptors which are invariant to scale, rotaticn

ano translation (for a proof see Merkle and Lorcn ::984"'d

are given as

IC I
D n n exp{j(# + (l-n)# - (2-n)o 11. (4)
n IC I n 2 1

These descriptors can also be written in polar form as

D =ID I exp(jy). () .. _ (5)
n n n S

The actual evaluation of (2) for the Fourier

coefficients requires that the object boundary te stored as

a sequence of x,y coordinates. The discrete Fourier -0

transform of the series z(l) is then taken to give the

608
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0
II.INVARIANT MOMENTSj

The two dimnensional (p+qlth order mcments cf a es:
* .J

distribution function f(x,y) are defined as%%

M ' x y f(x,y) dx dy, p, q 0 01 2, . (7)
pq -

For the discrete case, f(x,y) represents a closed bocundary

region, and the moments are computed as sums over the area

within the boundary with f(x,y) 1 I

The central moments are defined as
00 00

Su -(x-x) (y-y) f~x,y) dx dy,(80
pq -

where x =10 ,y 01
F. 7 m

00 00

* are tne centroid coordinates for the region. These cent:al

moments are invariant under translaticn of the region's

boundary coordinates.

scale invariant moments are obtained by use of

U
v *pq, p,q-2#3p . (9)

pq r ~%.
U
00

where r - (p+q)/2 + 1 (Hu, 1962].

Notice that r is a real number and can take on nonintegral

values.

Eliminating the dependence on orientation results in

the following 7 invariant moments:

5% %

2.?~



w 2 0  02

2 2
w (CV -V ) -4v-

2 20 02 11

2 2
w ( Cv - +v ) (34 v,,( . .

3 30 12 21 03 %lei

2 2
w (v + v ) (v +v ) , (1Cd)

.14 30 12 21 03

w (v - 3v ) v + v )(v + v ) -
5 30 12 30 12 30 12

2 2
3(v v ) + (3v - v )(v + V

21 03 21 03 21 03

2 2 0
f3(v * v ) - (v . v ) 2, (2C.e)

30 12 21 03

2 2
w - (v -v )(v + v ) (v *v )]"

6 20 02 30 12 2- 03 0

4v v v ) (v V 2, (10.f)
11 30 12 21 03

w 3 v -v )(v v ) (v : - 0
7 21 03 30 12 30 -2

2
3 (v + v ) ]-(v -v )(v v )

21 03 30 12 21 C3
'- . . d*..

2 2
(3(v + v ) - (v + v ) ] (l0.g)

30 12 21 03
The proof of the rotation invariance of these quantities is

T adoai inaatm nt

found in Hu (19621. Equations (10) are the translation, •
scale and rotation invariant moments. >. ''- '"'

An extension of these 7 invariant moments to include

higher order moments has been done using the general

invariant moment formulas given by Hu [19621. A Macsyma

C 611
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program was written to evaluate the general fcrmlas ard to

output FORTRAN statements to implement them.
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IV. COMPUTER IMPLEMENTATION

Three separate programs were written on tne :-cage

Processing Laboratory PRIME 750 computer. They are

1. DIGTIZ - digitize object outlines on the Talcs
digitizer -

2. MAKMSK - generate the mask data and chain codes for -

the digitized object

3. MAKATT - compute the transformation invariant
attributes of the object boundary

Some simple file naming conventions are followed. Each

different file has the object name plus a unique identifier

attached to the end. For example, for the DC-9 shown in

Figure 2, the following files exist:

1. DC9.DIG , digitized data file (EMACS editable) •

2. DC9.MSK = mask data file (EMACS editable)

3. DC9.CHN , chain code data file (not EMACS editable)

4. ZC9.ATT - object attributes file (EMACS editable) *

* S

The Talcs digitizer is a 0.001 inch resolution

rectangular solid state tablet. After attaching an object

outline to the digitizer, program DIGTIZ is run to enter
the coordinates in a point by point mode. Figure 2 shows a "'0

typical aircraft outline which was digitized (Jane's,

1983]. The digitized result is shown in Figure 18. When

digitizing the object outline, the follcwing information is

.... .' - ..

requested: '""-

• ,°- *-... ..- .- ,

L-f: . .-' - 1 .



- - .' o - - _

1. File name in which to store the digitized data.

2. Up to 80 characters giving the title of the Ob-ect.

3. Two ends of a scale bar and its length in meters.

- For aircraft, the scale bar information is commonly the

wingspan. After digitizing the entire closed boundary, the

file generated is in an editable form with a format as

shown in the example in Table 1.

The digitized data can now be plotted on the Versatec

plotter using program DIGPLT. The data is automatically -"

scaled to fit on one page of output Versatec paper. A -

complete library of all 21 aircraft outlines which were .-

digitized during the course of this project is contained in

, the illustrations.

Calculation of the invariant moments (as described in

section 111) requires a so-called mask description of the

" digitized object to give f(x,y). Figure 3 depicts the mask -

description of a simple object.

Generating this mask description from the original

digitized outline is done in a sequence of steps as

follows: ..

1. Convert from digitizer to image coordinates (i.e. --

digitizer origin a lower left; image origin a upper
left corner) by complementing the y coordinates.

2. Compute the Bresenham algorithm version (Foley and .
Van Dam, 19821 of the boundary so that the boundary 0
consists of connected adjacent pixels. The result
is a sequence of boundary points defined as

614" 
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I,...- '-.rr

S.. .. .

( ,x )P (y Ox ) ,0 -, (v ,x ) , . .-... -.

3. Flag any horizontal tangent ocecurr.nZ in a town-un-
down fashion; e.g.

1 2 3 4 5 6 7 8 Here, pixel ,4,4; 4i,:.
4 x x x be flagged by setting

the x value negative.

In the above example, pixel (4,4) becomes (4,-4).

4. Sort the boundary pixels in a 2D sort so that the
lines are in ascending order with the elements in -.-

ascending order for each line. This list taKes the
foarm -

(y ,x ), (y ,x 1, ... , (y ,x ),
1 11 1 12 1 13

(y ,x (y , ... , (y,x ),
2 21 2 22 2 2o

• 0.. . .

(y ,x ), (y ,x ), ... , (y ,x ),
i il i i2 i ij

5. Generate the mask description using the maskit
algorithm.

This last step is the most difficult.

This algorithm is used to generate the mask

description of an object given a sorted list of boundary

pixels with down-up-down horizontal tangent points flagged

by setting the first element of the tangent line to the

negative of the element. Subroutines MASKIT and MASKLI are

used to perform this process. The algorithm proceeds as

follows:

1. Scan the first row. All elements encountered here must -
belong to the object's mask. A bit map b is prepared

1 . N
for line 1 with l's for every element inside the mask,

615 \.' %
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O's for every element outside the MasK. For exa7; e,

b -0 0 1 0 0 0 0 0 .. 1 0 0C

2. Increment line counter i. If i > no. cf lines, st.;.
Otherwise, for line y , gather the m elements of onei .'..,_-'.

row together in a vector as follows:

el o (x , x , ... , x, , .
V il i2 ij im

3. Initialize b to b , and set b a0

d i-i', i I ,,-.4.4,

4. If m 1 1, set the bit b * 1, and go to step 6.
i, x

5. For each x , then -'..-

5.1 If x < 0 a new tar.gent line is found. ''

If b = I, then this is the beginning of a
i-I,X

ij
new hole inside the mask. Increment k, and keep
track of mask holes with array h , where

h a h , i=,2,3, k
k ik

h - present line for mask hole k,
1k

h = beginning column for mask hole k,2k". ..

h - ending column for mask hole k. 0
3k

---.-. %

5.2 If x is not connected to a previous mask hole,
i,j -1 .-

then check to see if x is connected to a previous

mask hole as follows:

If h a y and x > (h - 1) and x < (h +1),
1k i-i i j 2 k ij 3 k

then x is attached to h ; set h - h - x .
ij k 2k 3k i.

5.3 Set the bit position for x and x on.
: ii i, j~l...-.

5.4 If x is connected to a previous mask hole,0
i,j-.

or x, is connected to a previous mask hole, then

616
S-.% °

* S

.............................................. • ., ..
".a'- .' , '' . -" - *- - " " "- • -" . . . . . . . . ..... - . • o " "• - .- ... . . . . . . . . • " " -



V2.<..--,.

propogate the mask hole to these new elements tv
reassigning h and h as required. .-.

5.5 For x and x not connected to a previous
ij i,j-.• •

mask hole, check all bits in b from x to
i-i i'j-1

x I If all bits are 1 1, then add the elements

from x to x to b *--
i'J-l i

5.6 Increment j; if < < m, go to 5.1.

6. Assign the mask elements for line i based on b ; i.e. ,

for all contiguous bit strings in b for b = 1,
i ij

assign m - m , iul,2,3 for m = line,
k ik 1k

m = beginning column, m - ending column. .
2k 3k

7. Increment i; if i < no. of lines in the object, go to

2; otherwise, stop.

After finishing the algorithm, the mask description I I

consists of a list of mask elements m , i-1,2,3, kul,n for

n = no. of mask elements in this mask description. Table

2 shows how the file of mask data is stored. -

The standard 8 direction chain code (see Figure 4) is

generated directly from the Bresenham version of the object
* S

boundary. Once computed, the data is stored in a separate

file encoded 5 codes per 16 bit word. Figure 5 shows the

exact format for storing the chain code. Subroutines

PUTCOD and GETCOD perform the transformation to and from

this storage format.

617
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Using equations (4) and (10), the Fourier descr-::rs ,

and moment invariants, respectively, are computed. he

area is calculated in meters squared directly from the ,

moments (as m ), and the perimeter is calculated in meters -

directly from the chain code data. After calculation, ths

data is stored in an editable file in the format indicated

by the example in Table 3. For the Fourier descriptors, 0

only the magnitudes are stored. The descriptors for n-0

and n-l are not stored since they are scale and position --

dependent and do not contribute to the identification of an * S

object. Seven Fourier coefficients for n - -4, -3, -2, -1,
-.-.

2, 3, 4 are computed and stored along with the other

* -attributes. Subroutines DIGATT and FDESC of program MAKATT

are the primary computation routines.

Attributes computed from closed boundary cbDects

obtained from a digitized photograph will also include the 

centroid coordinates and orientation of the ma:or axis. -

Program MAKATT2 was designed to compute attributes of

objects from an actual digitized image. This program also

includes the extended moments calculation mentioned in

section III above.
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V. SUMMARY OF RESULTS AND CONCLCSIONS

To test the invariance of both the Fourier desc:r;tcrs •

and moment invariants, the capability to both rotate and

scale a digitized object was added to program, MAKMSK. - "

Figure 6 shows the standard flow of processing to make one

run" of the above programs .fi an ob~ect's

outline. To facilitate this process, several small command

processing language (CPL) programs were written. S 0

A comparison of the invariant attributes for 6

different scales and orientations of 2 oblect's outlines is

presented in the Appendix. The Fourier descriptors seem to S S

be more sensitive to scale and orientation than do the

invariant moments. The higher order moments (i.e. w , w5 ,
4

w and w7) are inconsistent also (see Table 7). .

A fuzzy isodata clustering analysis of the invariant

attributes for 20 aircraft outlines (see Figures 9 through

30) is presented in the Appendix. The full 16 member S -

attributes vector gives the best clustering as to the

aircraft's utility. Neither the area, perimeter or Fourier

descriptor attributes are capable of detecting the "delta"

wing aircraft typified by the F-16XL, whereas the moments

do seem able to group them together. Program FISODAT

contains the LISP source code used for the fuzzy isodata S S

clustering.

A fuzzy clustering analysis of 4 basic shapes

(rectangles, squares, triangles, and circles) is presented 0,

in the Appendix. With this method, it was hoped to enable

619
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statements such as "this closed boundary is C.3 1 e a

rectangle and 0.6 like a triangle", which falls verv r22

naturally from the fuzzy clustering aFproac-..

Unfortunately, the method was not even able to distiqus-,.--

squares from circles. It was determined that the proble.

is with the original invariant moments and Fourier data.

This data is not similar for similarly shaped objects.

The Appendix presents an analysis of the invariant

moments and Fourier descriptors for several "blob" shapes.

A successively larger amount of noise was added to the

outlines of 2 blob shapes. The analysis shows that the

invariant moments are, on average, more susceptible to •

noise than are the Fourier descriptors. In addition,

slight systematic variations in the outlines of the 2

original blobs were made to see how the invariant moments

and Fourier descriptors reacted to them. The Fourier

descriptors were again less sensitive to the systematic

noise.

In summary, both the invariant moments and Fourier

descriptors seem to be invariant under scale and rotation

changes for simple objects such as the rectangle. For more

complex shapes, the first 3 invariant moments seem to be

more stable than the Fourier descriptors. The best

clustering of the aircraft is obtained using all 16 of the "

attributes. Clustering of the basic shapes did not work

due to the inconsistency of the Fourier descriptor and

invariant moment data. The blob analysis showed that the S

Fourier descriptors used here are less sensitive to both
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random and systematic noise.

The fuzzy clustering analysis of the attri.ute data is

a good way to make decisions about an ot:ect's shape * S

without having to consider the actual raw data va>aes

themselves. This is particularly true with an expert

system where one wishes to write rules which are easy to " •

interpret and maintain. Neither the invariant moments nor

the Fourier descriptors used here seem to be the ideal raw

data values on which to base the decision about shape.

Along with such measures as area and perimeter they do

provide some help as shown by the fuzzy clustering of the -

aircraft outlines presented in the Appendix.
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,%: APPENDIX OF RESULTS

Figure 7 contains 6 plots of the outline of a

rectangle whose original digitized coordinates are S

(5750,4959), (8793,4959) , (8793,3952) , and (5750,3952)

- The rectangle has been scaled to fit into 2 different pixel

spaces of 128 by 128 and 256 by 256 pixels, with rotaticn

*angles o f 0, 22, and 45 degrees. Table 4 contains a list

of 7 attributes (area, perimeter, w , w , ID I, ID 1, and
Si.'. 1 2 3 . . . .

I 3 I) for each of these 6 rectangles. These 7 attributes

- "were also computed for a rectangle in a pixel space of 512 -.-.-

* by 512 with a rotation of 0 degrees. The percent

differences between the attributes for this 512 by 512

pixel space rectangle and the above menticned 6 rectangles

were computed (see Table 4). The overall average

difference was 1.42%, while the average difference for the

128 by 128 pixel space was 2.15%. For the 256 by 256 pixel

space, the average difference was 0.70%.

A similar analysis was performed on 6 different

transformations of the outline of a Boeing 727 (see Figure

8). Table 6 contains a comparison of the 10 attributes

r,- computed for them. Table 7 contains a list of all the 0

,.( actual invariant attributes for each case. The 3 invariant

moments used in the comparison have an average difference

of 4.2% while the Fourier descriptors used have an average S

difference of 59.0%. The Fourier descriptors are far more

623 
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sensitive to scale and rotation changes than the 'nva:-an:

moments. Notice from Table 7 that the invariant momen-.ts w

w, w , and w have a very small magnitude. '.ev ]
6 7

fluctuate widely among the different scales and rotations

used. These would not be good choices for transformaticn . ,

invariant attributes.

-F -3. . ..

To further investigate the usefulness of invariant

moments and Fourier descriptors, a fuzzy isodata clustering

analysis (Nickerson, 1984; Bezdek, 1981) of the first 20

aircraft shown in Figures 9 through 30 was made. The

number of cluster centers was chosen as 2, 3, 4, and 5 for •

each of

A. The full 16 member attributes vector,

B. The area and perimeter attributes only, .

C. The first 4 invariant moment attributes,

D. All 7 invariant moment attributes,

E. All 7 Fourier descriptors. - '

Table 8 contains the input data values used for the fuzzy . .

cluster analysis of the aircraft invariant attributes. The S

LISP program FISODAT in Appendix 2 contains the software -. '.

used to make the analysis. Table 9 lists the partition

coefficient for each of these cluster analyses. The closer .

a partition coefficient is to 1, the more closely it

62 ,
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resembles a "hard' clustering, and the better separated are

the cluster centers.

Tables 10 throuch 14 list the aircraft cl--se:s for

each of the above attribute vectors and number of cluster

centers. The abbreviations used for each aircraft are

defined in the list of illustrations. The number between 0 -

and 1 following each aircraft (e.g. .73 in Tu-28P.73) is

the largest element of its membership distribution in the

cluster center space. For each value of c, the aircraft

are arranged in descending order of the magnitude of this

largest element of their membership distribution.

The full 16 member attributes vector gives the best

clustering as to the aircraft's ;t'lity. Neither the area,

perimeter or Fourier descriptors attributes seem capable of

detecting the "delta" wing aircraft typ.fied by the F-16XL, 0 1

whereas the moments do seem az-e to arcu;, them- together.

L.A-~~~~ Lil -..5 -S- 1- DAi bs

Figure 31 shows 20 different ot;ects defining 4 basic *

shapes (rectangles, squares, triangles, and circles) which

were used to test the fuzzy clustering cf invariant

attributes. The figures were digitized as explained in I

section IV.A. Table 15 lists the invariant moments and

Fourier descriptors used to describe the 20 ob]ect outlines -- .

of Figure 31. Tables 16, 17, and 18 summarize the fuzzy p

clustering results of these 4 basic shapes.
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ande 1 ;:::s:;:;:;the resu' ts for I-cth invar::;: mom~ents
andForie dscrptrsconsidered si,.ultarnecus',v. Thre

is n evientcluserin ofthe 4 b-asic shapes wt on.e

and 4 of the rectangles in the second cluster. One .

triangle has established its own cluster center for cluster

3. Table 17 shows the results for the clustering of

invariant moments only. Again, the circles, squares and 4

of the rectangles cluster together, with the seventh

triangle establishing its own class. Table 18 contains the

results for the Fourier descriptors only. The results here

* 0

are slightly different* but again there is no clear

clustering of the same shapes with one another. The

rectangles cluster with the triangles, and2 of the circles

define their own cluster centers.s

Tables 19, 20 and 21 show the results of fuzzy

clustering with just the circles' and squares' invariant

attributes. The first 4 rows are for the squares with the

last 4 rows for the circles. Table 20 (invariant mome-ts

only) shows that one of the squares established its own

cluster, wheras with Table 21 (Fourier descriptors), one ... ' ."

of the circles attempts to establish its own class.

Why is the fuzzy clustering of these invariant

attributes not able to distinguish between circles and %

squares? The answer lies in the shapes themselves.

For the invariant moments, by performing the

integration of the equations of a square and a circle, one

can determine theoretically what the invariant moments

526
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should be. Cf the 7 invariant Moments used In the atove

analysis, only 1 should be nonzero for the scuare and

circle. The first invariant moment should be 0.1667 for

the square and 0.1592 for the circle. The rema'ning 6 " -

invariant moments should thoeretically be zero. Due to

small digitizing errors and the fitting of each object into

a 256 by 256 pixel space before computing the invariant

attributes, the 6 invariant moments which should be zero

are not. They represent the quantization noise. 0

The fuzzy clustering algorithm weights all of the

invariant attributes equally by normalizing their value

w.r.t. the largest attribute value. For example, in Table 0

15, the largest attribute value for the second invariant

moment for all 20 shapes is 0.3016 for shape no. 16. All

of the object's second invariant moments are divided by 0

this value to obtain the numbers actually used in the fuzzy

clustering. The end result is that numbers representing

noise are being used to do the clustering, which simply I S

does not work.

The reason why the Fourier descriptors do not work

well may be due to the fact that the very sharp S

discontinuities at the corners of the squares are difficult

to account for in the frequency domain. These sharp

corners represent a very high frequency content, and we are I .

here using only the 7 lowest order Fourier descriptors.

Looking at the raw data in Table 15, one can see that the

values of the Fourier descriptors for both the squares and

circles are quite different. It is not clear why the

627
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circles do not have consistent Fourier descriptors. .

* •

.. % -..- .

Figures 32 and 33 show two blobs and their noisy .

versions used to test the sensitivity of both the invariant

moments and the Fourier descriptors. Tables 26 and 27 give

a comparison of the noisy and non-noisy blob data. In both S

cases, the Fourier descriptors varied less (on average)

than did the invariant moments. The largest average

percentage difference was 76.3% for the invariant moments 1 0

of the noisiest case in Figure 32. The largest average

percentage difference for the Fourier descriptors was

13.7%. I

Figure 34 shows a third and fourth blob which are

slightly different than the first and second lo:ts,

respectively. These represent a systernatic discrepancy D

between the shapes. Tables 28 and 29 compare b 1
' S., - @

against blob 3 and blob 2 against blot 4, respectively.

Again, the Fourier descriptors seem less disturbed by the -

systematic differences than do the invariant moments.

Tables 22 through 25 contain the original input data

for all 4 blobs used above. The noisy blobs were obtained -

by adding a randomly distributed distance perpendicular to
,.-'*. --..-,,

the blob outline in a positive direction only (i.e. on one

side of the blob outline). 6
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Table 1. Digitized data file DC9.DIG
for McDonnell Douglas DC-9.

1 2 3 4 5 -,
123 4567890123 4567890123 4567890123 4567890123 4567890 -
McDonnell Douglas DC-9 Super 80 'stretched' versi.on

938.69 11.23
5834 2678
5888 2687
5737 3135

5835 2;74

Notes: 1. Line 2 format - 2F12.2 - scale bar length in
digitizer units and meters, respectively.

2. Lines 3 to end format - I5,lX,15

Table 2. Format of the DC-9 mask data file.

1 2 3 4 5
12345678901234567890123456789012345678901234567890
McDonnell Douglas DC-9 Super 80 'stretched' version
0. 9185871E-01"

26 186 193 '
27 185 194 '
28 186 196 -p.

29 187 198
30 188 200
31 188 201

*. . , .

359 186 191

Notes: 1. Line 2 format E15.7 - scale of the mask
data in meters per pixel.

2. Lines 3 to end format a 316 - line, beginning ,
column and ending column, respectively.
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Table 3. Example of the attribute data file format.
-,. -.

McDonnell Douglas DC-9 Super 80 'stretched' version
246.64 175.04

0.4726E 00 0.8529E-01 0.1143E-01 C.4054E-02
0.2759E-04 0.1182E-02 0.485ZE-06
0.1881E+00 0.6259E+00 0.4973E+00 0.2968Ev01
0.7632E-01 0.1107E+01 0.5542E 00

Notes: 1. Line 2 contains the area and perimeter in
meters squared and meters, respectively in
the format 2F12.2.". .

2. Lines 3 and 4 contain the 7 invariant
moments in format 4(E12. 4,2X)/.3. Lines 5 and 6 contain 7 Fourier descriptor .:

magnitudes in the same format as line 3;
Index n -4,-3, -2, -1, 2, 3, 4, resp.
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Table 4. Effect of scale and rotation cnances
on a digitized rectanle. ..

Scale Rot. Area Per. Moments Fourier % Chance
--- -------------------------------------
512 0 314.25 0

81.69 0
.2787 (1) 0
.0499 (2) 0 ; .

.2674 (-3) 0 -, ,.
2.397 (-1) 0
.1084 (3) 0

128 0 319.7 1.7
81.5 0.2

.2777 (1) 0.4

.0494 (2) 1.1 I 6
.2667 (-3) 3
2.380 (-1) 0.7
.1057 (3) 2.5

128 22 323.2 2.8
88.3 8.1

.2734 (1) 1.9

.%470 (2) 5.9
.2664 (-3) 0.4 - . -
2.423 (-1) 1'"
.1162 (3) 7.2

128 45 320.4 1.9
81.7 0.1

.2752 (1) 1.2

.0480 (2) 3.9
.2684 (-3) 0.4
2.414 (-1) 0.7
.1112 (1) 2.6

256 0 317.0 0. 9
81.7 0.0

.2778 (1) 0.3

.0494 (2) 1.1
.2675 (-3) 0.0
2.397 (-1) 0.0
.1084 (3) 0.0

256 22 316.4 0.7
88.4 8.2

.2782 (1) 0.2

.0496 (2) 0.7
.2675 (-3) 0.0
2.394 (-1) 0.1
.1078 (3) 0.6 -

256 45 315.0 0.2

.2791 (1) 0.1

.0501 (2) 0.4
.2672 (-3) 0.1
2.391 (-1) 0.2
.1075 (1) 1.7

631
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Table 5. Complete attributes list for
S51. by512,all 7 rectangle transformaticns. -

1. 512 by 512, 0 degrees
Test rectangle with aspect ratio of 3:1

314.25 81.69
0.2787E+00 0.4992E-01 0.00OE.00 C.OO0CE0"--O
..0000£ 00 0.0000E+00 0. 00"

0.9406E-12 0.2674E 00 0.2358E-1i 0.2397EC".'
0.1733E-11 0.1084E+00 0.8939E-12

2 128 by 128, 0 degrees •
Test rectangle with aspect ratio of 3:1

31 9.70 81.52
0.2777E 00 .0.4938E-01 0.0000E+00 O.O000E+00
0.0000£ 00 0.OOOOE+00 0.0000E+00
0.2699E-12 0.2667E+00 0.6931E-12 0.2380£+01 -
0.5385E-12 0.1057E+00 0.2472E-12 •

3. 128 by 128, 22 degrees
Test rectangle with aspect ratio of 3:1

323.18 88.31
0.2734E 00 0.4698E-01 C.2631E-08 0.2924E-09

-0.2564E-18 -0.6337E-10 -0.2459E-20
0.4548E-02 0.2664E+00 0.1697E-02 C.2423E*0! 1
0.1842E-02 0.1161E+00 0.4244E-02

4. 128 by 128, 45 degrees
Test rectangle with aspect ratio of 3:1

320.37 81.74
0.2752E 00 0.4799E-01 0.7313E-08 0.7707E-09 --

-0.7442E-18 -0.1443E-09 -0.1671E-17
0.2032E-12 0.2684E+00 0.4551E-12 0.2414E+01

*0.4179E-12 0.1112E+00 0.2126E-12
5. 256 by 256, 0 degrees
Test rectangle with aspect ratio of 3:1

316.99 81.70
0.2778E+00 0.4938E-01 O.OOOOE*CO 0.OOOCE-CO
0.0000E+00 0.0000E+O0 0.0000E 00
0.5215E-12 0.2675E+00 0.1240E-11 0.23 97E-C.
0.9723E-12 0.1084E+00 0.4553E-12

6. 256 by 256, 22 degrees
Test rectangle with aspect ratio of 3:1

316.43 88.40 C
0.2782E+00 0.4959E-01 0.0000E 00 0.O000£*00
0.O00OE+O0 0.OOOOE+00 0.OOOOE+00
0.5674E-04 0.2675z+00 0.1520E-03 0 .2394E+01
0.1520E-03 0.1078E+00 0.5674E-04

7. 256 by 256, 45 degrees - "'
Test rectangle with aspect ratio of 3:1 0

314.98 81.74
0.2791E+00 0.5010E-01 0.5104E-09 0.5519E-10

*-0.3316E-20 -0.1029E-10 -0.8648E-20
0.3902E-12 0.2672E 00 0.8955E-12 0.2391 E01,
0.7508E-12 0.1075E+00 0.3719E-12
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Table 6. Effect of scale and rotation chances
on a digitized Boeing 727.

Scale Rot. Area Per. Moments Fourier % C-ance

512 0 342.99 0
194.24 0

.4188 (1) 0

.05142 (2) 0 ......

.00139 (3) 0
.8041 (-3) 0
2.953 (-1) 0
.07683 (2) 0
1.133 (3) 0
.6468 (4) 0

128 0 369.88 7.8
197.04 1.4 0

.4014 (1) 4.2

.04758 (2) 9.5

.00150 (3) 7.8
.8660 (-3) 7.7
3.126 (-1) 5.8
.1435 (2) 86.8 ,
1.229 (3) 8.5
.6868 (4) 6.2

128 22 363.45 6.0
201.46 3.7

.4089 (1) 2.4
.05043 (2) 1.9 1 0
.00153 (3) 9.9

.6146 (-3) 23.6
3.124 (-1) 5.8
.2321 (2) 202.1
.9696 (3) 14.4
.6077 (4) 6.00

128 45 361.52 5.4
195.62 0 .7

.4040 (1) 3.5

.04445 (2) 13.6

.00147 (3) 6.0
.4282 (-3) 46.7
3.572 (-1) 21.0
.4772 (2) 521.1
.7914 (3) 30.2
.6834 (4) 5.6

Table 6 continued on next page. 1
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Table 6, continued.

Scale Rot. Area Per. Moments Fourier % Change
--------- ---- ------------------ --------

256 0 349.16 1•8
195.71 0.8

.4169 (1) 0.4

.05163 (2) 0.4 - 1

.00141 (3) 1.3
.8062 (-3) 0.3
2.951 (-1) 0.1

.08350 (2) 8.7
1.129 (3) 0.4
.6585 (4) 1.8

256 22 354.26 3.3
197 .42 1.6

.4102 (I) 2.0 S

.05072 (2) 1.4

.00131 (3) 5.5
.5782 (-3) 28.1
3 .040 (-1) 2.9 .

* .2007 (2) 161.2
.9158 (3) 19.2 0
.5902 (4) 8.8

256 45 346.98 1.2
194.63 0.2

.4158 (1) 0.7

.05014 (2) 2.5

.00136 (3) 1.9
.3884 (-3) 51.7
3.420 (-1) 15.8
.4166 (2) 442.2
.7406 (3) 34.6
.6387 (4) 1.2
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ratle 7. Com~plete attritutes 'List for
all 7 Boeing 727 transformations.

1. 512 by 512, 0 degrees "
Boeing 727-200 (Boe727)

342.99 194.24
0.4188E+00 0.5142E-01 0.1389E-02 0.1416E-C"
0.5394E-10 -0.2622E-07 -0.3213E-10
0.1371E+00 0.8041E+00 0.5359E+00 0.2953E CIl
0.7683E-01 0.1133E+01 0.6468E+00

2. 128 by 128, 0 degrees 1 • ]
Boeing 727-200 (Boe727)

369.88 197.04
0.4014E+00 0.4758E-01 0.1498E-02 0. 9491E-05
0.8531E-09 0.1810E-05 -0.7437E-09
0.1617E+00 0.8660E+00 0.5667E+00 0.3126E 01
0.1435E+00 0.1229E 01 0.6868E 00 S

3. 128 by 128, 22 degrees
Boeing 727-200 (Boe727)

363.45 201.46
0.4089E+00 0.5043E-01 0.1526E-02 0.2 959E-04
0.6262E-08 0.6603E-05 -0.5607E-09
0.3464E+00 0.6146E+00 0.4887E+00 0.3124E+01 . •
0.2321E 00 0.9696E+00 0.6077E+00

4. 128 by 128, 45 degrees
Boeing 727-200 (Boe727)

361.52 195.62
0.4040E+00 0.4445E-01 0.1473E-02 0.5303E-05
S0. 4319E-09 0 .1065E-05 -0.1821E-09
0.5320E+00 0.4282E+00 0.5016E+00 0.3572E01_
0.4772E+00 0.791 4E+0 0.6834E+00

5. 256 by 256, 0 degrees
Boeing 727-200 (8oe727)

349.16 195.71
0.4169E 00 0.5163E-01 0.1407E-02 C.7583E-C6

-0.6527E-11 0.5030E-07 -0.2389E-10
0.1281E+00 0.8062E+00 0.5277E+00 0.2951E C!
0.8350E-01 0.1129E+01 0.6585E+00

6. 256 by 256, 22 degrees
Boeing 727-200 (Boe727)

354.26 197.42
0.4102E+00 0.5072E-01 0.1313E-02 0.9787E-06

-0.2698E-10 -0.1929E-06 0.2243E-10
0.3156E+00 0.5782E+00 0.4837E+00 0.3040E+01
0.2007E+00 0.9158E+00 0.5902E+00

7. 256 by 256, 45 degrees
Boeing 727-200 (Boe727)

346.98 194.63
0.4158E+00 0.5014E-01 0.1362E-02 0.5300E-06
0.1001E-10 0.7382E-08 -0.1012E-10
0.5067E+00 0.3884E+00 0.4925E+00 0.3420E+01
0.4166E+00 0.7406E+00 0.6387E+00
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'able 8. The invariant attritutes for all 21 a ....

1. Boeing 727-200 (Boe727)
342.99 194.24

0.4188E+00 0.5142E-01 0.1389E-02 C.1416£-.-
0.5394E-10 -0.2622E-07 -0.3213E-10
0.1371E+00 0.8041E+00 0.5359E+00 0.2953E-.C
0.7683E-01 0.1133E+01 0.6468E+00 .. -

2. Boeing 747-200B (Boe747)
990.68 359.65

0.3734E+00 0.1079E-01 0.1146E-04 0.1562E-C2
-0.1963E-06 0.1622E-03 -0.7188E-07
0.2371E+01 0.3006E 01 0.2539E+CI 0.1407E+02
0.1140E+01 0.5695E+01 0.O601E+00

3. Boeing 757-200 (Boe757)
401.69 206.79

0.4011E+00 0.3218E-01 0.6562E-05 0.4333E-03
-0.3422E-08 0.7772E-04 0.2285E-07
0.4623E+00 0.6348E+00 0.3589E+00 0.4424E-CI-
0.1903E+00 0.1559E+01 0.3450E+00

4. Mikoyan MiG-25 (MiG-25)
222.05 148.83

0.2421E+00 0.6912E-02 0.7122E-02 C .1450E-02
0.4659E-05 0.1205E-03 0.3679E-07"
0.8779E+00 0.3601E+00 0.1706E+00 0.6346E Cl
0.1584E+01 0.8978E+00 0.4220E 00

5. Cessna Citation III (Ccit3-
63.06 82.91

0.3477EC00 0.6218E-02 0.1684E-03 0.3 954E-L3 S
-0.9802E-07 0.3093E-04 0.2823E-07
C.9151E+00 0.2499E+01 0.1652E+C1 C.9928E CI"
0.1568E+01 0.3534E+01 0.2266E+01.

6. Northrop F-5E Tiger II (F-SE)
34.45 57.24 S

0.3072E+00 0.2955E-01 0.7850E-02 0.3817E-02
0.2090E-04 0.6562E-03 0.8802E-08
0.3581E+00 0.6761E+00 0.4744E-01 0.4412E 01
0.7289E+00 0.1459E+01 0.1744E+00

* . " ,- A

7. Tupolev Tu-28P (Tu-28P)
184.49 123.15

0.2988E+00 0.2006E-01 0.1325E-01 0.2470E-02
0.1413E-04 0.3498E-03 0.8348E-07
0.3068E+00 0.6372E+00 0.8053E+00 0.3241E 01
0.8064E+00 0.1054E+01 0.1927E+00

Table 8 continued on next page.
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Table 8, continued.

8. McDonnell Douglas DC-10 (DC-10)
773.47 276.56 0

0.3232E+00 0.1097E-01 0.4864E-02 C.8598E-C4 -..-.

0.5550E-07 0.8986E-05 0.3429E-08
0.5549E+00 0.5992E+00 0.6978E+00 0.5561E+01-I 0.4426E+00 0.1499E+01 0.1566E+00 "

9. McDonnell Douglas DC-9 (DC-9)
246.64 175.04

0.4726E+00 0.8529E-01 0.1143E-01 0.4054E-02
0.2759E-04 0.1182E-02 0.4852E-06
0.1882E+00 0.6260E+00 0.4973E+00 0.2968E+01
0.7634E-01 0.1107E 01 0.5542E+00

". 10. McDonnell Douglas F-15C Eagle (F-15C)
96.92 74.87

0.2281E+00 0.6876E-02 0.5226E-02 0.8307E-03
0.1730E-05 0.6888E-04 -0.3502E-07
0.5318E-01 C.1l54E+00 0.4689E+00 0.2962E+01
0.7792E+00 0.27 91E*CO 0.1437E+00

11. Lockheed P-3C Orion (LP-3C)
226.99 167.23

- 0.3643E+00 0.1543E-02 0.1736E-01 0.1656E-02
0.8878E-05 0.6503E-04 0.4270E-07
0.5297E+00 0.6308E-01 0.2219E+0O0 0.5872E£C"
0.1506E+01 0.1055E+01 0.9400E+00

12. Grumman A6-E/TRAM (A6-E)
74.52 74.29 e:

. 0.3020E+00 0.8562E-04 CG3137E-03 0.9690E-03 0
0.4648E-06 0.8841E-05 -0.2634E-06
0.1491E+01 0.7446E+00 0.1372E+01 C.8595E+C"
0.1173E+01 0.1776E+01 C.1280E+01

13. General Dynamics F-16XL (F-16XL)
71.26 58.57

0.2292E+00 0.9834E-02 0.8638E-02 0.1198E-02
0.3852E-05 0.1187E-03 -0.1145E-06
0.1672E+00 0.1660E-01 0.6080E+00 0.3453E+01
O.9877E+00 O.4660E+00 O.9338E-01

14. de Havilland DHC-6 Twin Otter (DHC-6)72.73 89.5 9"-."" "
0.4193E+00 0.2004E-01 0.1428E-01 0.3992E-03
0.9295E-06 -0.5584E-04 0.2099E-06

0.3074E+01 0.1434E+01 0.3464E+00 0.2422E+02
0.5416E+01 0.6330E+01 0.3068E+01

Table 8 continued on next page.

637

: .:: : : . : :y : .- ... ..
. . . . . . . .. . . . . . ........ . . ..



Table 8, continued.

15. Cessna Skylane RG (CRC) -

24.23 43.44
0.3792E+00 0.1161E-01 0.2360E-C'L C.2605E-03
0.6127E-06 -0.2753E-04 0.2045E-06

*0.9046E+01 0.3727E+01 0-9 0 03 E+0l1 0.51227E+C2
0.1767E+02 0.3774E+01 0.1133E+02 *

* 16. Cessna 402C (C402C)
38.48 62.89

0.3428E+00 0.4550E-02 0.8726E-02 0.2245E-03
0.2282E-06 -0.1348E-04 -0.2159E-06
0.4740E+01 0.1060E+01 0.9519E+00 0.3082E+02
0.6998E+01 0.6157E+01 0 .4 43 OE.01

17. Lockheed C-5B Galaxy (C-5B)
1160.51 386.29

0.3651E+00 0.6432E-02 0.7851E-03 0.2087E-02
0.2656E-05 0 .167 3E-0 3 -0.2829E-06

*0.7124E+00 0.7942E+00 0.4091E+00 0 .107 0 E*02
0.1658E+01 0.3107E+01 C.4097E+00

18. Piper Chieftain (Piper)
39.34 60.68

*0.2928E+00 0.1007E-02 0.5686E-02 0.4764E-03
0.7800E-06 -0.1504E-04 0.7880E-07
0. 3 593E + 01 0.3624E+00 0.5415E+00 0.2165E+02
0.4170E+01 0.3332E+01 0.2916E+01

19. Rockwell international B-lB (B-lB)
384.89 171.74

*0.3085E+00 0.3759E-01 0.1484E-01 0.3385E-02
0.2399E-04 0.6559E-03 -0.6099E-06
0.1819E+00 0.1837E+00 0.5466E+00 0.2365E+01
0.6599E+00 0.4550E+00 0.6577E-01

20. Lockheed C-130E Hercules (Berc)
322.47 186.90 *

0.3287E+00 0.6477E-02 0.4747E-02 0.5058E-05
0.7185E-09 -0.3943E-06 0.3130E-09
0.2286E+00 0.3617E+00 0.4457E+00 0.6713E+01
0.8517E+00 0.1688E+01 0.3150E+00
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Table 9. Partition coefficients of the

cluster analyses.

1 Attributes vector used for the cluster analys.s is
c A I B I C I D J" -

--------------------------------------------------
2 1 0.53 I 0.91 I C.73 I 0.74 C.86
3 1 0.48 1 0.90 I 0.62 1 0.53 1 0.86
4 1 0.42 I 0.86 I 0.54 I 0.53 1 0.85 0
5 1 0.43 I 0.87 I 0.55 I 0.50 0.6 9

Note: c - Number of cluster centers.
A - full 16 member attribute vector.
B - area and perimeter attributes only.
C = first 4 invariant moment attributes.
D = all 7 invariant moment attributes.
E - all 7 Fourier descriptors.

639 .%

"-S." .d

0 •

| , • -.* - .0

639.
pg•



W7 ,.q V7 1V ''7" TOV 1%TMY 0VRflUFWW' WW;-Irv- '7 -Z'WT

Table 10. Clustering results for all 16 attributes.

I--------------------- Cluster center-------------------------
cI .1 2 1 3 I4
-------------I------------I ------------ I-----------------------0

*I Tu-28P.73 I Ccit3 .65 1
I MiG-25.72 I Piper .63 I1

*I LP-3C .67 I C402C .62 1
F-16XL.65 I DHC-6 .61 I1
IF-5E .63 I Boe747.58 I I0

2 I F-15C .62 I CRG .62 I1
I B-lB .56 1 A6-E .53 1

*I DC-9 .55 I Herc .53 1
II DC-10 .52 1 1 1

I Boe757.52 III
*I1 C-SB .51 1 1 1

I Boe727.51 I
-I-----------I------------ I------------- -----------I-----------

*I Tu-28P.88 I Herc .84 1 C402C e68 1
I F-SE .77 1 Boe757.78 I DHC-6 .68 1

*I DC-9 .51 I DC-10 .71 1 Piper .63
*I B-lB .47 1 Boe727.66 I CRG .48 1
*3 I LP-3C .44 1 MiG-25.64 I Ccit3 .47 1

*II F-15C .64 1 1
II A6-E .54 I 1 1I

*II F-l6XL.53 I II
C-5B .46 1

*II Boe747.39 I
* ------------- I ------------I ------------------------I-----------

I F-5E .85 I DHC-6 .68 1 MiG-25.78 I Boe757 .7 5 I
I Tu-28P.62 I C402C .62 1 F-15C .74 1 DC-10 .68
I DC-9 .46 1 Piper .46 1 F-16XL.73 I Boe727.59 I

*4 1 B-lB .36 1CRG .42 I A6-E .47 1 Herc .55 1
II LP-3C .45 1 C-SB .41 1
II I Boe7471.38 1 15A

-III Cci.t3 .22
-- -- -- ------- -- -- -- -- -- I- -- -- -- -- -- I--- -- -- -- -- -I-- -- -- -- -- --
I F-16XL.79 I Boe747.80 I Boe757.85 I F5-E .90 I DHC-6 .71 1
I F-15C .77 1 C-SB .55 1 Boe727.67 I Tu-28P.52 I C402C .52 I1

5 I MiG-25.75 I I Herc .64 1 DC-9 .41 1 Piper .42 1
I LP-3C .43 1 1 DC-10 .54 1 B-IB .30 I CRG .36 1
I A6-E .41 1 1 Ccit3 .30 1 I

l------------------------------------------------------------I
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Table 11. Clustering results for area and perimeter. .

-------------------- Cluster center -----------------------
C 2 1 3 1 4 1 0

-------------------------------- -------------- ----------- --------- '-
I Boe747.99 I Ccit3 .99 1--"I
I C-5B .96 1 Tu-28P.99 I- .
I DC-10 .66 1 F-15C .99 1"-

IA6-E .99 1 1
1 DHC-6 .99 1I1
I F-16XL.98 I" -
I F-5 -  .98 1 1 1
I MiG-25.98 I" .

2 1 1 C402C .98 1 "
I Piper .98 1 •
I CRG .97 1
I LP-3C .96 1
DC-9 .94 1I. '-

I Herc .88 1 -'1
I B-lB .87 1 1. ,
I Boe727.85 I I
1 Boe757.76 -I

-------------- I---------------- ----------- ----------- ----------- I
I Boe747.99 I Ccit3 .99 1 Herc .99 1
I C-5B .96 1 F-5E .99 1 Boe727.98 I
I DC-10 .66 1 F-15C .99 1 DC-9 .97 1

I A6-E .99 1 B-IB .96 •- •
3 1 F-16XL.99 I LP-3C .93 1 I

I C402C .99 1 Boe757.92 I
I Piper .99 I MiG-25.83 I
I DHC-6 .97 1 '
I CRG .97 1 " 1-1
I Tu-28P.51 I•

-------------i ------------I------------I------------I-----------
I Boe747.99 I A6-E .99 1 MiG-25.97 I Boe727.96 I
I C-5B .96 1 F-16XL.99 I LP-3C .96 1 Boe757.94 I
I DC-10 .48 1 C402C .99 1 DC-9 .85 1 B-lB .84 1

I Piper .99 1 Tu-28P.68 I Herc .84 I1*
4 1 1 F-5E .98 1 1 1

I Ccit3 .96 1 .1
I IF-15C .96 1 1 I
I I CRG .94 1 1 1

I DHC-6 .91 1 1 I 1
.. . ..---------- ----------- I ---------------------- I-----------
I C-5B .96 1 Boe727.98 I MiG-25.98 I A6-E .99 1 DC-10 1.0 1
I Boe747.89 I Herc .92 1 LP-3C .93 1 F-l6XL.99 I

I Boe757.89 I DC-9 .75 1 C402C .99 1 1
I I B-lB .86 1 Tu-28P.71 I Piper .99 I " " %

5 1 F-5E .98 1'
I I F-15C .96 1 1

I Ccit3 .95 1 1
I CRG .94 I 1
I DHC-6 .90 1 "

----------------------------------------------------------------- I
6%1 -
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Table 12. Clustering results for first 4 moments.

---------------------------- Cluster center-------------------------Ic 1123 14 1

------------ I-------- -----------------------

I B-lB .94 1 DC-10 .96 1..
I Tu-28P.91 I Piper .96 1"-
I F-SE .85 1 Herc .95 I1.
I DC-9 .74 1 Ccit3 .93 1:
I LP-3C .59 1 C402C .92 [

I F-15C .91 I1, I,
I A6-E .90 1

2 I 1 Boe757.82 I
I Boe747.81 I
I MiG-25.79 I " I
F-l6XL.78 J

I Boe727.70 I".--
C-5B .70 "

I DHC-6 .64 I 1 1
I CRG .50 . ,.1

--------------------- ----------- ----------- I-----------------------I
I B-lB .91 1 DHC-6 .87 1 Ccit3 .90 ,, ,
I F-SE .86 1 LP-3C .76 1 A6-E .88 1,-
I DC-9 .67 1 CRG .73 DC-10 .87 I1I-I
Tu-28P.50I I Piper .87 1 I.-

I Herc .85 1 I
I F-15C .81 1

31 I Boe747.76 I- "
I Boe757.70 I.,
I MiG-25.63 I"" "
I C-5B .62 "
I C402C .59 1. -
I F-16XL.56 I

1 1 Boe727.53 I. .
* ------------- I ------------i ------------I ------------I------------

I B-IB .91 1 Boe747.90 I CRG .75 1 Piper .90 1
I F-5E .80 1 C-5B .72 I DHC-6 .72 F-15C .68 1
I DC-9 .58 1 A6-E .58 1 LP-3C .71 1 DC-10 .87 1"'

I 4 I Tu-28P.44 I Boe757.52 I I Herc .84 1 0

I Ccit3 .47 1 1 C402C .73 1
I Boe727.37 I I F-16XL.52 I

I MiG-25.47 I
------------I------------I------------I ------------------------
1 F-16XL.92 I DC-10 .97 1 B-lB .89 I Boe747.98 I CRG .78 1
I MiG-25.92 I Herc .93 1 F-5E .73 1 C-5B .76 I DHC-6 .60 1
I F-15C .68 1 Piper .61 I DC-9 .51 1 A6-E .44 1 LP-3C .55 1

5 C402C .60 1 Tu-28P.36 I.-
I Ccit3 .54 -' 1,
I Boe757.36 I
I Boe727.33 I•

.'...."..,...........-.-.............' ..... ....., .., ... .... ...'...-...'- ... '.,'. "...."....... . . . . ..... .'..'.."..... .. ".. . . . .- "-. ... ".,..-..-"...
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Table 13. Clustering results for all 7 moments.

-------------------- Cluster center ----------------------- --,
c 1 2 3 4 5 S

----------------- ----------- ----------- ----------- ----------- 1 :
F-5E .93 1 DC-10 .97 1 I

I Tu-28P.85 I Herc .96 1.I-I
I DC-9 .71 1 F-15C .95 1
I B-lB .62 1 Ccit3 .94 1"..I

I Piper . 93 1 1 I-
I Boe747.89 I '- "
I C402C .88 1-I- -

2 1 1 F-16XL.88 I
I Boe757.88 I"'" -

I MiG-25.86 I I
I A6-E .84 1 1
I Boe727.81 I- .
I C-5B .73 1 1-1
I DHC-6 .73 1 I -1
I CRG .64 1 1 I
I LP-3C .58 1 1 1

------- I--------- ----------- ------- I---- ----------- -----------
I F-16XL.76 I DC-10 .87 1 F-SE .92 1
I C-5B .68 Herc .82 1 DC-9 .62 1
I A6-E .68 1 Piper .82 1 Tu-28P.54 I
I C402C .64 1 Ccit3 .72 1 B-IB .40 1
Boe747.60 I Boe757.64 I D 0

3 1 1 DHC-6 .62 1 1 .

Boe727.56 I. -.-
I MiG-25.52 I...I
ICRG .51 1 . -- "
I F-15C .49 ""1- 1"
LP-3C .43 1 1

-------- I--- -------I------------ I------------- -----------
I F-SE .93 1 DHC-6 .78 1 C-5B .80 1 DC-10 .92 1-
I DC-9 .51 1 CRG .76 1 A6-E .78 Herc .88 1
I Tu-28P.39 I LP-3C .62 1 C402C .53 I Ccit3 .82 1

4 1 B-IB .33 1 1 F-16XL.48 I Piper .76 1
I I I Boe747.48 I F-15C .68 1

I I I Boe757.65 I I
I I I MiG-25.52 I

I I Boe727.50 I
------------- I ------------------------I ------------ I ----------- I

I F-5E .93 I DC-10 .90 1 C-SB .89 1 MiG-25.75 I DHC-6 .82 1 •

I DC-9 .43 1 Herc .84 1 A6-E .70 1 F-16XL.73 I CRG .80 1
I Tu-28P.32 I Ccit3 .79 1 C402C .33 1 F-15C .62 1 LP-3C .36 1

5 1 B-lB .27 1 Boe757.61 I.;-,
I Piper .57 '" "
I Boe727.45 I I•
I Boe747.33 I I

-------------------------------------------------------------- I
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Table 14. Clustering results for all 7 Fourier descri-tors.

I-------------------- Cluster center-------------------------
ci 2 1 3 I4 5-
-------------I------------I ----------- ----- -----------

1 C402C .92 1 Boe727.99 II
I DHC-6 .88 1 Boe757.99 I II
I Boe747.72 I MiG-25.99 I II
I CRG .71 1 F-SE .99 1 0

*I Piper .51 1 Tu-28P.99 I I
*II DC-1O .99 1 1
*II DC-9 .99 1 1

*2 1 1 Herc .99 1I
I LP-3C .98 1 1 1
I B-lB .98 1 1 1
I IF-l6XL.97 I II

*II F-1SC .97 1
I A6-E .96 1

I C-5B .88 1 I
*II Ccit3 .52 1

-------------- I------------I----------I--- ----------- ----------- I
I DBC-6 .95 1 CRG 1.0 1 Boe757.99 I
I C402C .86 1I MiG-25.99 I
I Boe747.76 I I F-SE .99 1
I Piper .62 1 1 Tu-28P.99 I I
I Ccit3 .60 1 1 DC-10 .99 1

*I I DC-9 .991
IIHerc .99 1

3 31 1 LP-3C .98 1 1 I
I I Boe727.98 I I

I B-lB . 97 1
I F-15C . 96 1

II F-16XL.96 II
I A6-E .92 1

I-------------------I C-SB .76 1I1
------~~ ~----- ----------- ----------- I------- ----------- I

Table 14 continued on next page.

644



-.able 14, continued. ~V

I-------------------- Cluster center-------------------------
C I 1 1 2 1 3 1 4 1 5 1 0

----------------- I--------------------- ----------- I---------------------------------------p>~

I CRG 1.0 1 Ccit3 .88 I Tu-28P.99 I C402C .92 1
I I Boe747.82 I Boe757.98 I DHC-6 .911

II MiG-25.98 I Piper .501
I IF-SE .98!1

II DC-10 .98 I1
I DC-9 .98 1

II Herc .98 I
4 1 I Boe727.96 I

I LP-3C .96 1
I B-lB .96 1
I F-15C .95 1 1
I F-16XL.94 I
I A6-E .84 1
I C-5B .63 1

-------------I------------I ------------I ------------I-----------
I Boe747.86 I B-lB .91 1 OC-10 .96 I C402C .92 1 CRG 1.0 1
I Ccit3 .73 1 F-16XL.91 I Boe757.95 I DHC-6 .90 1 1

II F-15C .90 1 F-5E .87 1 Piper .38 1I
I LP-3C .77 1 Herc .77 I 1

5 I 1 MiG-25.68 I Boe727.73 I
I DC-9 .68 1,'2
I A6-E .68 1
1 Tu-28P.64 II

I I C-5B .57 1I
-------------------------------------------------------------- I
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Table 15. Invariant attributes of the 4 basic sha-es
Numbers 1-5 are rectangles, 6-9 are squares,
10-16 are triangles, and 17-20 are circles.

1. 0.2383E+00 0.2902E-01 0.1916E-06 0.1498E-c7
-0.8009E-15 -0.2550E-08 0.5230E-16
0.4891E-02 0.2888E+00 0.6453E-02 0.289CE01,
0.6720E-02 0.1848E+00 0.4873E-02

2. 0.3071E+00 0.6651E-01 0.2602E-06 0.2424E-07
-0.1 911E-14 -0.6225E-08 -0.2364E-15
0.5424E-02 0.2518E+00 0.5390E-02 0.2182E 01
0.5072E-02 0.7834E-01 0.4748E-02

3. 0.1857E+00 0.6720E-02 0.4619E-06 0.1869E-07
0.3837E-15 0.4243E-09 0.1694E-14
0.7218E-02 0.3141E 00 0.1054E-01 0.5411E.01 0
0.9700E-02 0.5269E+Co 0.1453E-01

4. 0.2054E+00 0.1443E-01 0.1631E-06 0.1031E-07
-0.4214E-15 -0.1236E-08 -0.3343E-16
0.7019E-02 0.2997E+00 0.7746E-02 0.3849E+01
0.8292E-02 0.3246E+00 0.7150E-02

5. 0.5613E+00 0.2872E+00 0.9343E-04 0.6790E-04
0.5408E-08 0.3633E-04 -0.5562E-10
0.1137E-02 0.1971E+00 0.4408E-02 0.1520+01-
0.1026E-01 0.3321E-01 0 .5133E-02

6. 0.1668E+00 0.5157E-04 0.2982E-06 0.3824E-08
0.5552E-17 0.2173E-10 -0.1290E-15
0.5544E-01 0.2537E 00 0.2123E 00 0.6306EC2
0.1660E 00 0.7008E+01 0.5522E-01

7. 0.1667E+00 0.1368E-04 0.3331E-05 0.4775E-07
0.1650E-13 0.1262E-09 -0.9519E-14
0.1919E+00 0.2274E+00 0. 9722E-01 0.7543E.C2
0.5525E 00 0.8397E+01 0.1276E+00

8. 0.1667E 00 0.3414E-05 0.3496E-06 0.4344E-08
S 0.1575E-15 0.5821E-11 0.6202E-16

0.2286E+00 0.5449E+00 0.3296+00 0.2267E+03
0.3670E+00 0.2503E+02 0.2287E+00

9. 0.1669E+00 0.6814E-04 0.6546E-07 0.2172E-08
0.2417E-16 0.7486E-11 -0.9315E-17
0.1250E-01 0.2812E+00 0.3687E-01 0 .5001E 02
0.7688E-01 0.5557E+01 0.2910E-01

10. 0.1985E+00 0.23501-02 0.4758E-02 0.5624E-04
-0.2897E-07 -0.27181-05 0.2722E-08
0.5415E+01 0.2720E+00 0.6496E+01 0.6145E 02
0.1219E+02 0.1820E+01 0.1233E+01

Table 15 continued on next page.
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AN.

Table 15, cor.tinued.

. O.2237E 00 0.1304E-01 C.5988E-02 C.6982E-0G2

0.1427E-05 0.7971E-04 0.1063E-07 -

0.3984E-01 0.3206E+00 0.3405E+00 0.2941 E ""

0.4367E+00 0.2673E-01 0.1527E+00

12. 0.2506E+00 0.2574E-01 0.6464E-02 C.5209E-03

O.1l1OE-07 -0.2207E-C4 -0.9558E-06
0.1336E+00 0.7797E-01 0.3482E-01 0.2178EC..
0.4586E+00 0.1491E+00 0.1228+00

13. 0.3742E+00 0.1030E+00 0.1066E-01 0.1797E-02
o.0.- . 31 9E-04 0.6785E-05
0.1424E-01 0.1819E+00 0.2078E+00 0.1671E CI

0.9870E-01 0.1685E£00 0.4252E-01 0

14. 0.3018E+00 0.5401E-01 0.7947E-02 0.7866E-03

-0.3622E-06 -0.8273E-04 0.1933E-05
026 90E-01 0.2086E-00 0.1533E+00 0.2181E+01
0.3867E+00 0.2667000 0.5400E-01

15. 0.4276E+00 0.1458E+00 0.2898E-01 0.1886E-01
0.4411E-03 0.7204E-02 0.1543E-06
0.1483E-01 0.1874E+00 0 .9012E-C1 C 1561E01
0.1732E*00 0.2899E-01 0.8651E-01

16. 0.5818E 00 0.3016E+00 0.5434E-C1 0.4084E-01 0
0. 1923E-02 0.2207E-01 -0.4708E-04
0.3804E-01 0.1584E+00 0.7824E-01 0.1411E01

0.1511E+00 0.4982E-01 0.7519E-01

17. 0.1592E+00 0.9736E-06 0.7497E-06 0.8691E-1 I"

0.9415E-20 0.2932E-14 0.2009E-19
0.3721E+02 0.1127E+01 0.3853E 00 0. 5721EC3-

0 .2775E+01 0.3638E+02 0.3649E+02

18. 0.1592E+00 0.6580E-06 0.8963E-07 0.1084E-10

0.9157E-20 0.8620E-14 0.5512E-20
0.1862E+02 0.4319E+00 0.1623E+01 0.2793E+03 I S

0.5529E+00 0.1931E+02 0.1821E+02

19. 0.1593E+00 0.1173E-04 0.4778E-05 0.3886E-09

-0.8507E-17 -0.7453E-12 0.1442E-16
0.4260E+01 0.4084E+00 0.3645E 00 0.6448E+02

0.8479E+00 0.4145E+01 0.4173E+01 I S

20. 0.1592E+00 0.6620E-05 0.3712E-06 0.7519E-11
0.8391E-20 0.1616E-13 -0.9347E-20
0.6618E+01 0.7103E+00 0.5757E+00 0.1113E+03
0.2201E+00 0.6712E+01 0.6666E+01
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A'. Table 16. FuzZy clustering results for all 4 tasic shapes;
invariant moments and Fourier descriptors.

Membership distribution of
each shape in each cluster

------------------------------------------------------- A'

Shape Cluster 1 Cluster 2 Cluster 3 Cluster 4 .e
----------------- --------- --------- --------- ---------

1. 0.613 0.374 0.005 0.008
2. 0.210 0.780 0.004 0.006
3. 0.802 0.187 0.005 0.007
4. 0.752 0.236 0.005 0.007
5. 0.288 0.564 0.079 0.069

6. 0.924 0.070 0.002 0.004
7. 0.890 0.100 0.003 0.0060
8. C.564 0.295 0.034 0.106
9. 0.932 0.063 0.002 0.003

10. 0.390 0.369 0.090 0.151
11. 0.661 0.326 0.005 0.008

*12. 0.404 0.578 0.008 0.011
13. 0.107 C.879 0.006 0.007
14. 0.112 0.882 0.003 0.003
15. 0.288 0.541 0.112 0.059
16. 0.001 0.001 0.998 0.000
17. 0.007 0.006 0.003 0.984

j18. C.402 0.265 0.042 0.292 -

*.19. 0.907 0.084 0.003 0.006
20. 0.685 0.248 0.017 0.049

p 6L48I



Table 17. Fuzzy clustering results for all 4 b-asic s~~s
invari.ant mnomlents only.

memTbership distribution of
each shape in each cluster ~:

Shape Cluster 1 Cluster 2 Cluster 3 Cluster 4
--------- ~~*-~-/ -- - - - - - - - - - - - -

1. 0.140 0.845 0.002 C0. 013
2. 0.655 0.301 0.004 0.03 9
3. 0.002 0.997 0.000 0.000
4. C.019 0.978 0.000 0.002
5. 0.008 0.004 0.001 0.987
6. 0.009 0.990 0.000 0.001
7. 0.009 0.990 0.000 0.001
8. 0.009 C.990 0.000 0.001 -

9. 0.009 0.990 0.000 0.001
10. 0.039 0.955 0.001 0.004
11 . 0.126 0.861 0.002 0.011
12. 0.295 0.682 0.003 0.020
13. 0.893 0.066 0.003 0 .03 8
14. C.844 0.138 0.002 0.016 0
15. 0.430 0.215 0.077 0.278
16. 0.000 0.000 1.000 0.000
17. 0.013 0.985 0.000 0.002
18 . 0. 013 0.985 0.000 0.002
19. 0.013 0.985 0.000 0.002
20. 0.013 0.985 0.000 0.002
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Table 18. Fuzzy clustering results for all 4 basic snapes; .

Fourier descriptors only.

Membership distribution of 0 0
each shape in each cluster

Shape Cluster I Cluster 2 Cluster 3 Cluster 4

1. 0.970 0.001 0.025 0.004
2. 0.985 0.000 0.012 0.002 7w, -

3. 0.951 0.001 0.041 0.007
4. 0.963 0.001 0.031 0.005
5. 0.981 0.001 0.015 0.003
6. 0.687 0.006 0.270 0.037 ,
7. 0.600 0.008 0.339 0.052 *
8. 0.206 0.050 0.445 0.300
9. 0.789 0.004 0.182 0.025

10. 0.275 0.101 0.326 0.298
11. 0.931 0.002 0.059 0.009
12. 0.903 0.004 0.074 0.019
13. 0.979 0.001 0.017 0.004
14. 0.990 0.000 0.008 0.002
15. 0.981 0.001 0.015 0.003
16. 0.966 0.001 0.027 0.006
17. 0.000 0.999 0.000 0.000
18. 0.024 0.018 0.048 0.909
19. 0.272 0.005 0.685 0.038 . .
20. 0.141 0.015 0.731 0.112

* 0
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Table 19. Fuzzy clustering results for circles and squares; ,......
invariant moments and Fourier descriptors. " -%

membership dist.ribution of 7

each shape in each cluster
-- - - - - - - - - ----- .% '% 5

----- ~~; ~ -- -- -- -- -- -

6. 0.912 0.088 •
7. 0.587 0.413 ' ""8• 0.557 0.443

9. 0.844 0.156 ..-
17. 0.2 49 0.7 51 "'''' [-> '

18. 0.•211 0.•78 9 -'*'...
19. 0.654 0.346 0
20. 0.609 0.391-..------

Table 20. Fuzzy clustering results for circles and squares;
invariant moments only. r s

Membership distribution of "

each shape in each cluster

--------------------------------------

Shape Cluster I Cluster 2

-- -- ---- ---

6. 0.063 0.937
7. 0.998 0.002

8. 0.017 0.983
9. 0.107 0.893

17. 0.018 0.982
18. 0.023 0.977
19. 0.156 0.844 .
20 0.011 0.989

A J
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--- - ---- ---- ---- ----

Table p 21CFzzucuserngreut fo Circes an2 qurs
* ~--- Fouie-dscipor-oly

6. 0.013 0.987
7. 0.017 0.9830
8. 0.080 0.920
9. 0.022 0.978

17. 0.989 0.011
18. 0.367 0.633
19. 0.018 0.982
20. 0.040 0.960
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Table 22. The input data for blobl.

Chain code data for file: BLOBl.chn *

No. of links , 775
Starting (xy) -( 38, 57)

00700000000000122232323433334344343434343 4434444443444343332 '
232222121111110110100100100000000000000707007007070777777777
707776777676766767776776776777767070000000001001010101010101 .
211010111010100110000000070707070777677667666667666666665666
666566656656565554545454544454445444544445444444454444444544
444444445454444444544544545455454445455655565655665666666766
677777776770707070070000000000000000000100000100000010000000
000010000700000000707777077676666656665555555554555454544544
454545454454445454555545545555555565656556556565565565656656
555565454545554554545454545444544444444434443343234323222321
22221212121121211211221212111211221221212212222222222223 2232
223223232232232333222232323232232323223223223232323222322322
3223 223232222223222222122212212211211111111011011121100

I 0

,/. -. .1.

Mask data for file: BLOBl.msk .

No. of mask elements - 255 , •

Row Bcl Ecl Row Bcl Ecl Row Bcl Ecl Row Bcl Ecl
-------------------------------------------

13 31 45 14 28 47 15 25 50 16 23 53
17 22 55 18 20 57 19 19 58 20 18 59 .
21 17 60 22 16 61 23 15 62 24 14 63
25 14 64 26 13 65 27 13 66 28 13 68
29 13 69 30 13 70 31 14 71 32 14 71
33 14 72 34 15 73 35 16 74 36 17 74
37 19 75 38 23 75 39 30 76 40 33 76
41 35 76 41 132 140 42 37 77 42 131 142
43 39 77 43 128 144 44 41 78 44 126 146
45 44 79 45 124 148 46 46 80 46 123 149
47 47 80 47 122 150 48 48 81 48 120 151
49 49 82 49 118 151 50 51 82 50 117 152
51 51 83 51 116 153 52 52 84 52 116 153
53 52 84 53 114 153 54 53 85 54 112 154
55 53 86 55 110 154 56 53 87 56 108 154
57 36 40 57 53 88 57 106 154 58 35 88 -

58 104 154 59 34 90 59 101 154 60 34 155
61 33 155 62 32 155 63 30 155 64 29 155
65 27 155 66 26 155 67 25 155 68 24 155
69 23 154 70 22 154 71 21 154 72 20 154 0 0

73 19 154 74 19 154 75 18 154 76 17 153

Table 22 continued on next page.
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Table 22, continued. .,

Row Bcl Ecl Row Bcl Ecl Row Bcl Ec€ Row BCl Ecl
--- --- =---.--- --- --,- --.-, --- --- --- -

77 17 153 78 17 153 79 16 153 80 16 152
81 16 152 82 15 152 83 15 151 84 15 151
85 15 150 86 14 150 87 14 149 88 14 148
89 14 147 90 14 145 91 14 143 92 14 141
93 15 139 94 15 135 95 15 131 96 15 127
97 15 122 98 15 114 99 15 106 100 16 95

101 16 93 102 17 85 103 17 82 104 17 79
105 18 77 106 18 75 107 18 74 108 19 72
109 19 68 110 19 66 111 20 65 112 20 65
113 20 64 114 21 63 115 21 62 116 21 62
117 21 61 118 22 61 119 22 60 120 23 59
121 23 59 122 24 59 123 24 58 124 25 58 O
125 25 58 126 25 58 127 26 58 128 26 58
129 26 58 130 27 59 131 27 59 132 27 59
133 28 59 134 28 60 135 29 61 136 29 62
137 30 63 138 30 64 139 30 65 140 31 66
141 31 66 142 32 67 143 32 69 143 122 126 "
144 33 71 144 110 135 145 33 73 145 103 137 •
146 34 76 146 97 138 147 34 139 148 34 140
149 34 142 150 34 143 151 35 144 152 36 144
153 37 145 154 37 145 155 38 145 156 38 145
157 38 145 158 39 145 159 39 144 160 39 144 .
161 40 144 162 40 144 163 41 143 164 41 142 ,
165 41 141 166 42 140 167 42 139 168 42 138 •
169 42 137 170 43 136 171 43 135 172 43 133
173 44 132 174 44 131 175 44 129 176 44 127
177 44 124 178 44 120 179 44 118 180 44 116
181 44 114 182 44 Ii 183 44 107 184 44 105 -'
185 44 103 186 43 102 187 43 101 188 43 100 •
189 42 98 190 42 97 191 41 95 192 41 94
193 41 93 194 40 92 195 40 91 196 40 90
197 39 89 198 38 88 199 38 88 200 37 87
201 36 87 202 35 86 203 35 86 204 34 85
205 34 84 206 33 84 207 33 83 208 33 82

209 32 82 210 31 81 211 31 81 212 30 80
213 29 79 214 29 79 215 28 78 216 28 77 -

217 27 77 218 26 76 219 26 76 220 25 75
221 25 75 222 24 75 223 24 74 224 23 74
225 23 73 226 23 72 227 23 71 228 23 70
229 22 70 230 22 69 231 23 67 232 23 65
233 23 63 234 23 62 235 24 61 236 24 59
237 25 58 238 27 56 239 27 54 240 28 52
241 30 50 242 31 48 243 35 44

654J I2
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Table 23. The input data for blob2.

Chain cod* data for file: BLOB2ochn *
-- ---------------------

No. of links - 641
Starting (x,y) - ( 23, 113)

111010101010010100010000010000000010001001000100010010000100
001000100101101111121121122122121212122122212122212222122212
122121211212111111211010101010101010100010000010000000000007
000700070707077707707077777677676776767767676676666766667666
666666666666666666566566565655655455555545545454545445454545
454454454454544545444544445444545445444545445454545455554545
556556666666666667667676676676676766766766676667666766666666
566666665656656656565565655555565655555455545455454544444544 I 0
444444444344444443434343333333332323323222322222222222221221
221222212222122212222122222222222322322322323233333434334334
34344343443433333232232222212122112111101

Mask data for file: BLOB2.msk

N~o. of mask elements =231

Row Bcl Ecl Row Bcl Ecl Row Bcl Ec Row Bcl Ecl

13 157 169 14 151 173 15 147 177 16 145 179
17 143 181 18 141 183 19 139 184 20 137 185
21 135 187 22 133 188 23 131 190 24 130 192
25 129 193 26 129 194 27 128 195 28 127 196
29 126 197 30 1,25 197 31 124 198 32 123 199
33 123 199 34 122 200 35 122 200 36 121 201
37 120 202 38 120 202 39 119 203 40 119 203
41 118 204 42 118 205 43 118 205 44 117 206
45 117 206 46 116 207 47 116 207 48 116 207
49 116 208 50 115 208 51 115 208 52 115 208
53 115 208 54 115 209 55 114 209 56 114 209 '-.r..

57 114 209 58 114 209 59 113 210 60 113 210
61 112 210 62 112 210 63 112 210 64 112 210
65 111 210 66 111 210 67 111 210 68 110 210
69 110 210 70 109 210 71 109 210 72 108 210
73 108 210 74 107 210 75 107 210 76 107 210 *
77 106 210 78 106 210 79 106 210 80 105 210
81 104 209 82 104 209 83 103 209 84 102 208
85 102 208 86 101 208 87 100 207 88 99 207 "
89 98 206 90 96 206 91 95 205 92 93 204 "
93 90 204 94 86 203 95 81 202 96 76 200

Table 23 continued on next page.
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Table 23, continued. . .,
.1* w

Row Bcl Ecl Row Bcl Ecl Row Bcl Ecl Row Bc! Ecl ON

97 73 199 98 69 198 99 65 197 100 62 196
101 58 195 102 49 193 103 43 192 104 39 190
105 37 188 106 34 186 107 32 184 108 30 181 A-.

109 28 179 110 26 177 111 25 175 112 24 173 '

113 23 170 114 21 167 115 20 164 116 19 162
117 18 159 118 17 157 119 17 153 120 16 148
121 15 144 122 15 142 123 15 139 124 14 135
125 14 133 126 13 130 127 13 128 128 13 126
129 13 124 130 13 122 131 13 121 132 14 120
133 14 119 134 14 117 135 15 115 136 15 114
137 16 113 138 17 113 139 18 112 140 19 111
141 20 111 142 22 111 143 25 111 144 27 111
145 30 111 146 32 I1 147 34 111 148 35 111
149 37 111 150 38 111 151 40 111 152 42 111
153 43 112 154 44 112 155 45 112 156 46 113
157 46 113 158 47 114 159 47 114 160 48 114
161 48 115 162 48 115 163 49 115 164 49 116
165 49 116 166 50 116 167 50 117 168 50 117 O
169 51 118 170 51 118 171 51 118 172 51 119
173 51 119 174 51 119 175 51 120 176 51 120
177 51 120 178 51 120 179 51 121 180 51 121
181 50 121 182 50 121 183 50 122 184 50 122
185 50 122 186 49 122 187 49 123 188 49 123
189 49 123 190 48 123 191 48 123 192 48 123
193 48 123 194 48 123 195 47 123 196 47 122
197 47 122 198 47 122 199 47 122 200 46 122
201 46 122 202 46 122 203 45 122 204 45 121
205 45 121 206 44 120 207 44 120 208 44 120
209 44 119 210 44 119 211 44 119 212 44 118
213 44 118 214 44 117 215 44 117 216 44 116
217 44 115 218 44 115 219 44 114 220 45 114
221 45 113 222 45 112 223 45 111 224 46 110
225 46 109 226 47 108 227 48 108 228 48 107
229 49 107 230 49 106 231 50 105 232 51 104 -,

233 52 103 234 53 102 235 54 100 236 55 99
237 56 98 238 57 96 239 58 94 240 60 93,.
241 62 91 242 64 89 243 72 83

%
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Table 24. The input data for biot3.

IP

Chain code data for file: BLOB3.chn 24

No. of links - 741
Starting (x,y) - € 37, 57)

000007000000001122232323334343434343343443434443444344434443 -"

322222112121111110010010010000000000007000000707077077077077
777077767677676767676767676776777707007000000001001010010010
101111111011011010100000007077077677676776766667666666665665
666666566656555545454545445454445445444544454444444454444454
444444544444454444544454554545454555555656566656666666666767
777777776070070070000000000000001000100000001000000000007707
767667667666666665656666555654554545454545455545456554545565
655656555655656565656565656565655455555455454544454454445444 - @
454444444434334343223 222222222221212212121212112112112121212 ,.---.
121212122122222222223222322232322323223222322323232323232232
223223232322323232322232232223222322232232232212222212221212
121111111111111121002

* S

Mask data for file: BLO3.msk

No. of mask elements - 254 * S

Row Bcl El Row Bcl Ec Row Dcl Ec Row Bcl Ec.

13 31 43 14 28 50 15 25 52 16 22 54 .
17 21 55 18 20 57 19 19 58 20 18 60
21 17 61 22 16 63 23 16 64 24 15 65
25 15 66 26 14 67 27 13 69 28 13 70
29 13 71 30 13 72 31 13 72 32 13 73
33 14 73 34 15 74 35 19 75 36 23 75
37 27 76 38 31 76 39 33 77 40 36 77
40 133 140 41 38 78 41 131 142 42 39 78
42 129 143 43 41 79 43 128 145 44 43 79
44 126 146 45 45 80 45 125 147 46 47 80
46 123 147 47 49 81 47 122 148 48 50 81
48 121 149 49 51 82 49 120 149 50 51 82
50 119 150 51 52 83 51 118 150 52 52 84
52 117 151 53 53 84 53 115 152 54 53 85
54 113 152 55 53 86 55 110 153 56 53 87 .. '
56 107 153 57 37 42 57 52 89 57 105 153 I S
58 35 92 58 102 153 59 34 153 60 34 154
61 33 154 62 32 154 63 31 154 64 30 154
65 29 154 66 28 154 67 27 154 68 26 154
69 25 153 70 24 153 71 23 153 72 22 152
73 21 152 74 20 152 75 20 152 76 19 152

* 0

Table 24 continued on next page.
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Table 24, continued.

Row Bcl Ecl Row Bcl ECJ Row Bcl Ecl Row Bcl Ec'
-- n n n n n n n n n n -- - - - - - - - - - -

77 19 152 78 18 152 79 18 151 80 17 151

81 17 151 82 17 151 83 17 150 84 16 150

85 16 149 86 16 148 87 16 147 88 16 146
89 16 144 90 15 142 91 15 140 92 15 138 %~

93 16 135 94 16 133 95 16 129 96 17 126 X -

97 17 122 98 17 118 99 18 109 100 18 103
101 18 95 102 18 88 103 19 83 104 19 79
105 19 77 106 19 76 107 20 74 108 20 72
109 20 70 110 20 68 111 21 67 112 21 66
113 21 65 114 22 64 115 22 63 116 22 63
117 22 62 118 23 62 119 23 61 120 24 61
121 24 61 122 25 61 123 25 60 124 26 60
125 26 60 126 26 60 127 27 60 128 27 60
129 28 60 130 28 60 131 29 60 132 29 60
133 29 60 134 30 61 135 30 61 136 30 62
137 30 63 138 31 64 139 31 65 140 31 66
141 32 67 142 32 68 143 33 69 144 33 70
145 34 71 145 106 117 146 34 74 146 98 118 -
147 35 77 147 94 120 148 35 121 149 36 122

, 150 36 122 151 37 123 152 37 123 153 37 123
154 38 124 155 38 124 156 38 124 157 38 125
158 39 125 159 39 125 160 39 125 161 40 125
162 40 125 163 41 125 164 41 125 165 41 125
166 42 124 167 42 124 168 43 123 169 43 123 ,..

. 170 43 123 171 43 123 172 44 123 173 44 122
174 44 121 175 44 120 176 45 120 177 45 119
178 45 117 179 45 116 180 45 114 181 45 112 <

182 45 110 183 45 108 184 45 106 185 45 104 , o.
186 45 103 187 44 102 188 44 100 189 44 98

* 190 43 98 191 43 97 192 42 96 193 42 94
194 41 92 195' 41 91 196 40 91 197 40 90
198 39 90 199 39 89 200 38 88 201 38 88 .*

202 37 87 203 37 87 204 36 86 205 35 85

206 35 84 207 34 84 208 33 83 209 33 82
210 32 82 211 31 81 212 31 81 213 30 80
214 30 80 215 29 79 216 29 79 217 28 78 % %
218 28 78 219 27 77 220 27 77 221 27 76
222 26 76 223 26 75 224 25 75 225 25 74
226 25 74 227 25 73 228 25 73 229 25 72
230 25 71 231 25 69 232 25 68 233 25 67 '-'I-

234 25 66 235 25 65 236 26 63 237 26 62
238 26 60 239 27 58 240 29 54 241 31 51

U242 32 47 243 34 42
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Table 25. The input data for blo4 .

Chain code data for file: BLOB4.chn I S

No. of links * 615
Starting (x,y) - ( 18, 117)

121101101010101001001010000100010010100100101101101110110111111110101111111111111111121112111121221212111212112111212121 - ..
1111011010101101010001001001000000000070000007007070707707o 7
770707777776776676767676766767666667666666766666666666666566
665656565655555556554554554554545445445445445454544545444544
545445444545445444545445445445455455555556565665666666766666
766766766767676766767676666667666666665666666566656665656556 "
555656565565655565545545454454545444544444444443444444443443
433343333323323233232322222232221222122212222122212222212221-.
221221222223222223323223333333343333343434434344343343232322 . .... *.

23 2222121212211

Mask data for file: BLOB4.msk -..-. ..-

No. of mask elements - 231
* 0

Row Bcl Ecl Row Bcl Ec Row Bcl Ecl Row Bcl Ecl
--- ~~~~~~~~o --- --- -- -- - -- - - - - -- - -

13 153 163 14 150 170 15 147 173 16 143 175
17 141 177 18 139 179 19 138 180 20 136 182 -
21 134 184 22 132 185 23 131 186 24 129 188
25 128 190 26 127 191 27 126 192 28 125 193 S S
29 124 194 30 124 195 31 123 196 32 123 196
33 122 197 34 122 198 35 121 198 36 120 198
37 119 199 38 119 199 39 118 200 40 117 200
41 117 201 42 116 201 43 116 202 44 115 202
45 114 203 46 113 203 47 113 203 48 112 204
49 112 204 50 111 205 51 110 205 52 110 205 *
53 109 205 54 109 205 55 108 205 56 107 206
57 106 206 58 105 206 59 105 206 60 104 206
61 103 206 62 102 206 63 102 207 64 101 207
65 100 207 66 99 207 67 98 207 68 97 207
69 % 207 70 95 207 71 94 207 72 93 207 "
73 92 207 74 91 207 75 90 207 76 89 207 - 0
77 88 207 78 87 206 79 86 206 80 84 206
81 82 206 82 81 206 83 80 205 84 79 205 -

85 78 204 86 77 204 87 76 203 88 75 203
89 73 202 90 72 202 91 70 201 92 69 200 ..-

93 68 199 94 66 198 95 65 197 96 63 196 0

Table 25 continued on next page.

659
A A

• • P -

-, . .".: : .. .'- / F' .- :... .? . .. " - ".." " ... . -.::-:. -.... : :. . : .: ::: - : : :



Table 25, continued.

Row Bcl Ecl Row Bcl Ecl Row Bcl Ecl Row Scl Ecl
-- -- - - - - ---- -- --- -- --- S
97 62 195 98 60 195 99 57 194 100 54 193

101 52 191 102 49 190 103 45 188 104 40 187
105 38 185 106 35 184 107 32 182 108 30 180
109 28 177 110 26 174 11 24 171 112 23 168
113 21 166 114 20 164 115 19 161 116 19 159
117 18 155 118 17 152 119 16 150 120 16 147 0
121 16 143 122 15 141 123 15 138 124 14 134
125 14 132 126 13 129 127 13 126 128 13 123
129 13 121 130 13 120 131 14 118 132 14 117
133 14 116 134 14 115 135 15 114 136 15 113
137 16 112 138 16 112 139 17 Il 140 19 Il1
141 20 110 142 22 110 143 25 110 144 27 109
145 30 109 146 32 109 147 34 109 148 35 109
149 36 109 150 37 109 151 38 110 152 40 110 .
153 41 110 154 42 110 155 43 110 156 44 110
157 45 111 158 46 111 159 47 111 160 47 112
161 47 112 162 48 112 163 48 113 164 49 113
165 50 113 166 50 114 167 50 114 168 50 115 I
169 50 115 170 50 116 171 51 116 172 51 117
173 51 117 174 51 117 175 51 118 176 51 118
177 50 119 178 50 119 179 50 120 180 49 120
181 49 120 182 49 120 183 48 120 184 48 120
185 48 120 186 48 121 187 47 121 188 47 121
189 47 121 190 47 121 191 47 121 192 47 121
.193 46 121 194 46 121 195 46 120 196 46 120

197 45 120 198 45 120 199 45 120 200 45 120
201 45 120 202 44 119 203 44 119 204 44 119
205 44 119 206 43 118 207 43 118 208 43 118 .. ,.
209 43 118 210 42 117 211 42 117 212 42 116
213 42 116 214 43 115 215 43 114 216 43 114
217 43 113 218 43 112 219 43111l 220 43 111
221 44 110 222 44 110 223 45 109 224 45 109
225 46 108 226 47 107 227 47 107 228 48 106
229 48 106 230 49 105 231 50 104 232 50 103
233 51 103 234 52 102 235 53 101 236 54 99 S
237 55 98 238 57 96 239 58 94 240 59 91241 61 89 242 64 87 243 73 83

.. -f' ..

- .=, .,
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Table 26. A comparison of the invariant attributes of the
noisy blobls to the non-noisy bloi.

Invariant moments: Noise - 12.5 Noise = 25
---------.....- - .... ..

Index Original Data (% diff) Data (% diff)
-- -- ---- - -- -- ---- -- --

(2,1) 0.2933E+00 0.2979E+00 ( 1.6) 0.3014E+00 ( 2.8)
(2,2) 0.2159E-01 0.2253E-01 ( 4.4) 0.2317E-01 ( 7.3)
(2,3) 0.3489E-04 0.3664E-04 ( 5.0) 0.3941E-04 ( 13.0)
(3,1) 0.5684E-02 0.5927E-02 ( 4.3) 0.6072E-02 ( 6.8)
(3,2) 0.2457E-03 0.2526E-03 ( 2.8) 0.2632E-03 ( 7.1)
(3,3) 0.2878E-06 0.3063E-06 ( 6.4) 0.3239E-06 ( 12.5)
(3,4) -0.3866E-07 -0.4189E-07 ( 8.4) -0.7623E-07 ( 97.2)
(4,1) 0.4293E-03 0.4549E-03 ( 6.0) 0.4826E-03 ( 12.4)
(4,2) 0.6595E-02 0.7053E-02 ( 6.9) 0.7429E-02 ( 12.6) 0
(4,3) 0.1768E-01 0.1881E-01 ( 6.4) 0.1972E-01 ( 11.5)
(4,4) 0.4094E-03 0.4421E-03 ( 8.0) 0.4689E-03 ( 14.5)
(4,5) 0.4094E-03 0.4421E-03 ( 8.0) 0.4689E-03 ( 14.5)
(5,1) 0.5064E-02 0.5520E-02 ( 9.0) 0.5939E-02 ( 17.3)
(5,2) 0.2843E-02 0.3073E-02 ( 8.1) 0.3230E-02 ( 13.6)
(5,3) 0.3804E-03 0.4040E-03 ( 6.2) 0.4259E-03 ( 12.0)
(5,4) 0.4346E-04 0.4649E-04 7.0) 0.5181E-04 19.2)
(5,S) 0.4346E-04 0.4649E-04 ( 7.0) 0.5181E-04 ( 19.2) -

Average I%diffl ( 6.2) ( 17.3)

Fourier Descriptors: Noise - 12.5 Noise - 25
---,.--.--- --

Index Original Data (% diff) Data (% diff)
- -- - -- -- - - -- -----

-4 0.2394E+00 0.2428E+00 ( 1.4) 0.2435E+00 ( 1.7)
-3 0.7'.2E+00 0.6897E+00 ( -2.1) 0.7113E+00 C 1.0)
-2 0.8878E 00 0.8543E+00 ( -3.8) 0.8367E+00 ( -5.8)
-1 0.3573E 01 0.3545E+01 ( -0.8) 0.3442E+01 ( -3.7)
2 0.4383E+00 0.4339E+00 ( -1.0) 0.4789E+00 ( 9.3)
3 0.7544E+00 0.7391E+00 ( -2.0) 0.7199E+00 ( -4.6) I S
4 0.59%4E+00 0.6095E+00 ( 2.2) 0.5878E+00 ( -1.4) ...

Average Idiffl ( 1.9) ( 3.9)

Table 26 continued on next page.
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Table 26, continued.

d 01.4

Invariant moments: Noise a 50 Noise = 75 .
-- - - ---------

Index Original Data (% diff) Data (% diff) h

(2,1) 0.2933E+00 0.3059E+00 ( 4.3) 0.3208E+00 ( 9.4)
(2,2) 0.2159E-01 0.2387E01 ( 10.6) 0.2617E-01 ( 21.2)
(2,3) 0.3489E-04 0.4523E-04 ( 29.6) 0.6045E-04 ( 73.3)I 0
(3,1) 0.5684E-02 0.6409E-02 ( 12.8) 0.7729E-02 ( 36.0)

. (3,2) 0.2457E-03 0.2960E-03 ( 20.5) 0.3773E-03 ( 53.6)
(3,3) 0.2878E-06 0.3915E-06 ( 36.0) 0.6201E-06 ( 115.5)
(3,4) -0.3866E-07 -0.1139E-06 ( 194.6) -0.1749E-06 ( 352.4) -

(4,1) 0.4293E-03 0.5673E-03 ( 32.1) 0.6632E-03 ( 54.5)
(4,2) 0.6595E-02 0.8025E-02 ( 21.7) 0.9530E-02 ( 44.5) .
(4,3) 0.1768E-01 0.2116E-01 ( 19.7) 0.2539E-01 ( 43.6)
(4,4) 0.4094E-03 0.5381E-03 ( 31.4) 0.6018E-03 ( 47.0)
(4,5) 0.4094E-03 0.5381E-03 ( 31.4) 0.6018E-03 ( 47.0)
(5,1) 0.5064E-02 0.6658E-02 ( 31.5) 0.8590E-02 ( 69.6)
(5,2) 0.2843E-02 0.3601E-02 ( 26.7) 0.4678E-02 ( 64.5)
(5,3) 0.3804E-03 0.4953E-03 ( 30.2) 0.6515E-03 ( 71.3)
(5,4) 0.4346E-04 0.6182E-04 ( 42.2) 0.8573E-04 ( 97.3)
(5,5) 0.4346E-04 0.6182E-04 ( 42.2) 0.8573E-04 ( 97.3)

Average I%diff 1 ( 36.3) 76.3)

Fourier Descriptors: Noise - 50 Noise = 75

Index Original Data (% diff) Data (% diff)

-4 0.2394E+00 0.2118E+00 C -11.5) 0.1851E+00 ( -22.7)
-3 0.7042E+00 0.7131E 00 ( 1.3) 0.7137E+00 ( 1.3)
-2 0.8878E+00 0.7124E+00 ( -19.8) 0.7393E+00 ( -16.7)
-1 0.3573E+01 (0.3270E 01 ( -8.5) 0.3058E+01 (-14.4)
2 0.4383E+00 0.4524E+00 ( 3.2) 0.4444E+00 C 1.4) 6,0

3 0.7544E 00 0.6513E+00 ( -13.7) 0.5873E+00 C -22.2)
4 0.5964E+00 o.5540E+00 ( -7.1) 0.5713E+00 C -4.2) S

Average Ifdiffl C 9.3) C 11.8)
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Table 27. A comparison of the invariant attributes of the
noisy blob2s to the non-noisy blob2.

Invariant moments: Noise " 12.5 Noise = 25

Index Original Data (% diff) Data (% diff)
----- -- -- - ---- -

(2,1) 0.2843E+00 0.2865E+00 ( 0.8) 0.2881E+00 ( 1.3)
(2,2) 0.37601-01 0.3843E-01 ( 2.2) 0.3922E-01 ( 4.3)
(2,3) -0.2565E-04 -0.2621E-04 ( 2.2) -0.2757E-04 ( 7.5)
(3,1) 0.2727E-02 0.27681-02 ( 1.5) 0.2808E-02 ( 3.0)
(3,2) 0.1531E-03 0.1547E-03 ( 1.0) 0.1600E-03 ( 4.5)
(3,3) -0.94081-07 -0.9641E-07 ( 2.5) -0.1025E-06 ( 8.9)
(3,4) 0.30581-07 0.3074E-07 ( 0.5) 0.3131E-07 ( 2.4)
(4,1) 0.2538E-02 0.2658E-02 ( 4.7) 0.2739E-02 ( 7.9)
(4,2) 0.8763E-02 0.9056E-02 ( 3.3) 0.9314E-02 ( 6.3)
(4,3) 0.15211-01 0.15651-01 ( 2.9) 0.16001-01 ( 5.2)
(4,4) 0.16481-02 0.1722E-02 ( 4.5) 0.1790E-02 ( 8.6)
(4,5) 0.1648E-02 0.1722E-02 ( 4.5) 0.1790E-02 ( 8.6)
(5,1) 0.1065E-02 0.1107E-02 ( 3.9) 0.1148E-02 ( 7.8) '. N.
(5,2) 0.8143E-03 0.8370E-03 ( 2.8) 0.8639E-03 ( 6.1) *
(5,3) 0.8217E-04 0.8384E-04 ( 2.0) 0.8751E-04 ( 6.5) -
(5,4) -0.1481E-04 -0.1530E-04 ( 3.3) -0.1619E-04 ( 9.3)"
(5,5) -0.1481E-04 -0.1530E-04 ( 3.3) -0.1619E-04 C 9.3) ".

Average l%diffl C 2.7) ( 6.3)

Fourier Descriptors: Noise - 12.5 Noise = 25

Index Original Data (% diff) Data (% diff)
-- -- - - ----- -- - ---- -- ----

-4 0.2388E+00 0.2314E+00 ( -3.1) 0.2241E+00 ( -6.2)
-3 0.5042E+00 0.5101E+00 ( 1.2) 0.4969E+00 ( -1.4)
-2 0.1831E+00 0.1873E+00 ( 2.3) 0.1825E+00 ( -0.3) .--

-1 0.2926E+01 0.2897E+01 ( -1.0) 0.2887E+01 ( -1.3)
2 0.3686E+00 0.3727E+00 ( 1.1) 0.3787E+00 ( 2.7) %.V'i
3 0.2255E+00 0.2291E+00 ( 1.6) 0.2470E+00 ( 9.5) 0
4 0.2003E+00 0.1925E+00 C -3.9) 0.1801E+00 (-10.1) .

Average I%diffl C 2.0) C 4.5) ,-.-.

Table 27 continued on next page. 5
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Table 27, continued.

Invariant moments: Noise - 50 Noise 100
------ ------ ---------- ------

Index Original Data (S diff) Data (% diff)
-- ---- --- ---------- --- ---- - ----- 1

(2,1) 0.2843E+00 0.2934E+O0 ( 3.2) 0.3039E+00 ( 6.9)
(2,2) 0.3760E-01 0.4121E-01 ( 9.6) 0.4525E-01 ( 20.3)
(2s3) -0.2565E-04 -0.3179E-04 ( 23.9) -0.3547E-04 ( 38.3)
(3,1) 0.2727E-02 0.3085E-02 ( 13.1) 0.3321E-02 ( 21.8)
(3,2) 0.1531E-03 0.1769E-03 ( 15.5) 0.1837E-03 ( 20.0)
(3,3) -0.9408E-07 -0.1268E-06 ( 34.8) -0.1418E-06 ( 50.7)
(3,4) 0.3058E-07 0.3192E-07 ( 4.4) 0.2183E-07 ( -28.6)
(4,1) 0.2538E-02 0.3003E-02 ( 18.3) 0.3588E-02 ( 41.4)
(4,2) 0.8763E-02 0.010E-01 ( 15.3) 0.1171E-01 ( 33.6)
(4,3) 0.1521E-01 0.1722E-01 ( 13.2) 0.1967E-01 ( 29.3)
(4,4) 0.1648E-02 0.1975E-02 ( 19.8) 0.2366E-02 ( 43.6)
(4#5) 0.1648E-02 0.1975E-02 ( 19.8) 0.2366E-02 ( 43.6) >-"..,.
(5,1) 0.1065E-02 0.1341E-02 ( 25.9) 0.1647E-02 ( 54.6)
(5,2) 0.8143E-03 0.9869E-03 ( 21.2) 0.1131E-02 ( 38.9) ,o
(5,3) 0.8217E-04 0.9993E-04 ( 21.6) 0.1101E-03 ( 34.0)
(5,4) -0.1481E-04 -0.1908E-04 ( 28.8) -0.2250E-04 ( 51.9) ,
(5,5) -0.1481E-04 -0.1908E-04 ( 28.8) -0.2250E-04 ( 51.9)

Average %1diffl ( 18.7) ( 35.9)

Fourier Descr ipt or s: Noise =50 Noise =100

Index Original Data (% diff) Data (% diff)
- - -- - - --- ------ ---- -N

-4 0.2388E+00 0.3234E+00 ( 35.4) 0.2480E+00 ( 3.9)
-3 0.5042E+00 0.4960E+00 ( -1.6) 0.4621E+00 ( -8.3) :

-2 0.1831E+00 0.1467E+00 ( -19.9) 0.2083E+00 ( 13.8)
-1 0.2926E+01 0.2925s+01 ( -0.0) 0.2777E+01 ( -51)
2 0.3686E+00 0.4543E+00 ( 23.3) 0.4585E+00 ( 24.4)
3 0.2255E+00 0.2492E+00 ( 10.5) 0.2784E+00 C 23.5)
4 0.2003E+00 0.1903E+00 ( -5.0) 0.1954E+00 ( -2.4)

" Average IdiffI ( 13.7) ( 11.6)
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Table 28. A comparison of the invariant attributes .
of blob3 to blobl.

P %

Invariant moments: Blob3
- -- -------.. y .,

Index Original Data (I diff)
-- -- ----- -- --

(2,1) 0.2933E+00 0.3051E+00 ( 4.0)
(2,2) 0.2159E-01 0.2927E-01 ( 35.6) -
(2,3) 0.3489E-04 0.8068E-04 ( 131.2)
(3,1) 0.5684E-02 0.7736E-02 ( 36.1)
(3,2) 0.2457E-03 0.4716E-03 ( 91.9)
(3,3) 0.2878E-06 0.8649E-06 ( 200.5)
(3,4) -0.3866E-07 -0.2516E-06 ( 550.8)
(4,1) 0.4293E-03 0.1053E-02 ( 145.3)
(4,2) 0.6595E-02 0.9563E-02 ( 45.0)
(4,3) 0.17683-01 0.21653-01 ( 22.5)
(4,4) 0.4094E-03 0.9466E-03 ( 131.2)
(4,5) 0.4094E-03 0.9466E-03 ( 131.2)
(5,1) 0.5064E-02 0.6352E-02 ( 25.4)
(5,2) 0.2843E-02 0.3 995E-02 ( 40.5)
(5,3) 0.3804E-03 0.7097E-03 ( 86.6)
(5,4) 0.4346E-04 0.1132E-03 ( 160.5)
(5,5) 0.4346E-04 0.1132E-03 ( 160.5)

Average ldiffl ( 117.6) " Ni-

Fourier Descriptors: Blob3 -"
-------------------------- -----------

Index Original Data (% diff)
-- -- - - ----- -- --

-4 0.2394E+00 0.2281E+00 ( -4.7)
-3 0.7042E+00 0.5937E+00 ( -15.7)
-2 0.8878E+00 0.6040E+00 ( -32.0)
-1 0.3573E+01 0.3142E+01 ( -12.1)
2 0.43833+00 0.5547E+00 ( 26.6) Z"--
3 0.7544E+00 0.4735E+00 ( -37.2) •
4 0.59643+00 0.4653E+00 ( -22.0)

Average I1diffI C 21.5)
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Table 29. A comparison of the invariant attributes
4 of blob4 to blob2.

Invariant moments: Blob4
--------- ---

Index Original Data (%diff)
-- ---- --- S- - -- ---

(2,1) 0.2843E+00 0.2708E+00 C-4.7)
(22) 0.37601-01 0.3306E-01 -12.1)

(2,3) -0.25651-04 -0.3341E-04 (30.3)
(3,1) 0.2727E-02 0.2681E-02 C-1.7)
(3,2) 0.1531E-03 0.1840E-03 C20.2)
(3,3) -0.9408E-07 -0.1181E-06 C25.5)

41(3,4) 0.30581-07 -0.5238E-07 (-271.3)
(4,1) 0.25381-02 0.2081E-02 (-18.0)
(4,2) 0.8763E-02 0.7425E-02 C-15.3)
(4,3) 0.1521E-01 0.1293E-01 C-15.0)
(4,4) 0.16481-02 0.1325E-02 (-19.6)
(4,5) 0.1648E-02 0.1325E-02 C -19.6)

4,(5,1) 0.10651-02 0.1011E-02 (-5.1)
(5,2) 0.8143E-03 0.7946E-03 (-2.4)
(5,3) 0.8217E-04 0.9525E-04 C15.9)
(5,4) -0.14811-04 -0.1662E-04 (12.2)

*(5,5) -0.1481E-04 -0.1662E-04 C12.2)

*Average l%difft 29.5)

Fourier Descriptors: Blob4

Index Original Data (A diff)
---- -- - - --- -- - -

-4 0.2388E+00 0.21031+00 C-11.9)
4,-3 0.5042E+00 0.5265E+00 C 4.4)

-2 0.1831E+00 0.2853E+00 (55.8)
-1 0.2926E+01 0.3127E+01 ( 6.9)

2 0.36861+00 0.4492E+00 ( 21.9)
3 0.2255E+00 0.1765E+00 ( -21.7)
4 0.2003E+00 0.1681E+00 ( -16.1)

Average 1%diff I 19.8)
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t, b..% A-...
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* .'.

3 4 5 6 7 8 9 10 11 12

10 x x x x
11 x - x x x12 X X X X "x x-
13 X X X "'12 x x - x x x x x . .+.

13x - - - x x x
14 x x------- - xi5 x-------------- x -.. _ *
16 x - - x x x x
167 X X X "-"-X

17 x x x --

(a) The digitized outline; x - boundary
point, - * internal point.

vJ% 00

-" ~ ~. .'-."."-

row bcol ecol row bcol ecol
m m m m m in

k 1k 2k 3k k Ik 2k 3k '

1 10 4 6 7 13 6 12
2 10 12 12 8 14 4 12
3 11 4 6 9 15 4 11

-. 4 11 11 12 10 16 5 11,-...
5 12 4 9 11 17 5 7 :
6 12 11 12

(b) Mask description

. , • / - ' . ,p .

Figure 3. Mask description of an object.
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Figure 3 4. Th1ieto hi oe

File~* No. Dat

Fiur 4. Te Stdiretin charinacoe. of chain

0 16 1*2 Staring y coordinate of chain

4 32 1*4 No. of codes stored in this file
6 16 Encoded Up to 5 codes stored as follows:

bit: 11511411311211111l01 91 81 71 61 51 41 31 21 11 0:

bit 15: if - 0, this word contains 5 codes stored one for
each 3 bits# first starting from bits
14 to 12;

if - 1, this is the last word in the chain indi-
cating that:

(a) bits 14-12 contain the number (0 to 4) of
codes stored in this last word,

(b) bits 11-0 contain up to 4 codes as indi-
cated by bits 14-12.

Figure 5. Format of the chain code data file.
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methods !sr a arevcca.,Soea<er ee.-::: .-

ti.me sceech -.nde rs:and. no svs: em- 7he nr=-e:t is to e r.
out over a ne::zd of' five vears c::ver-l-n: fiscal' years - C':.:
throuzh k relate d :Dro:ect, "Sceech Analys,-s Base' ::n
Model c! the A-,ditory systemr was carried out 2,nder the ;

*Post-:octora. crocrani ~Y- 119 4.

The Post-Dcctora: researo- orsaram zrod,.ced a signal nr==ess-n=
mo de.' o! the a ;::crv system. :t was shown that speech

0crocessinz azzr.:ms based -= this model are cacab'e '

* resolvina speech nar-ameters in bot'" the time and freqcuenc

domain~s with zreater accuzrac-; than was heretofore scssilbe.

70
71-e =oa-s o: te wcrw f : FY '-av.e been tO::

1. Develoo th e sgrna. processin algori-thms, based on the

auditory system. model, which can be used to extract

descriptive parameters from sneech. - -

* To develoc a naradi:m for ohoneme secmentation and =reL:i-na-: -

To carry cut a :terat-ure search and olan a study4- of pa-:tern- %
matc'nI-a architecture, to be carried out in 7-v- 1?~e.

At the time of this writing, the FY 1985 project has been

approximately 75% completed. 11he tasks listed above are nearly

complete, as described below. Their completion is ant:c:pated i

the near future.'.
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k, .... ,

RE :. SEARCH ACT:'.:T:ES

:t has been f.:-n t:at the a :"ry svs-:-- - -:-beL=-=:

the basis s a soee:-h ana_'s:s :c ::-. '-as s=er: ::r - . .
V-

c! both t:e an± freauencv events. -.he syste- oro:'.des a.
c ~ ~ ~ ~ ~ ~ : t'h : useievzf:a~

accurate o t .h-svn-.. t-'e - e ,-

selecting the times at whi,:h to- neas.re the spee:n f -nan-

freauencies.

It has been found that a ='t:-svnchronous anal':'s-s met.n=2 zan ze

used to resolve formant "2cations w:t- a resclt:on that :s five

times greater than :s available with trad_:t:ona" frmant

extract:on techn:=.es. :t :s believed that this ad--t:ona.

resolution w:' ead to i.,roved speech seaentat::r. and =honeme -

- .... ... , 4'

The purpose of phoneme ident:fcation is to reduce the .'

dimensionality of the speech signal to manageable proportions.

The data rate needed to represent the phoneme sequence can be

est:mated as 6 bits per phoneme at an averace of 2 phonemes er

second, for. a total of approximate1 12: bits ver second. The
aztual data rate may be fou or five t-mes as hi:z beca se of the

Imossibil.tv of identifying the co-rect phoneme with certa--n.:v

at this level of the system.

The oeneral nature of the decisicn-malkin svs,.em has been

investigated. The current plan is to use a fuzzy-logic system.

Such systems are characterized by the maintenance of lists of .

elements for each point in the sequence. These lists are

searched systematically under higher-level control. :n th:s

case, the higher-level process would be seeking to construct

reasonable words and phrases. The sequence of fuzzy phoneme sets *

would provide the raw material for the construction. A ma'or

goal, therefore, is to not re-ect correct ohonemes while

0 minimizing the size of each set. It is not necessa.-y to

rank-order the sets by probabilities (which are probably not

available to the process). Wort recognition is carried -ut v
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'V. .K -K. K. K.

the pa:ta.. st:n~s n : n e. % - . .

,woul! be most helof-: - t'-s %atz--.- zces.

proceed left to r'.ht as thne ehne7 .e .ists are =resen:e_.

* -wever, :t is evident that the -rszess ..mst =roceed , :ct-. -

directions it -.'e. The t-o-directiona! orocess is :.,cse z.

the fact that words are of di ffering lenaths and recsqnt::n in

some reg:or.s w -' - te -ore re.a -- e than n others.

The word-sequences selectio n must be under the control of a

process which contains a knowledge base of the structure -

utterances for the =:,.en-. c ntext. This knowled-e base can make

'-se of an a=crz=r:ate =ra-mar and lexi:on for the context. The

content and stru . ucture of the knowledge base may be tailored-

accordin= to acc.lication.,

The structure of particu;ar .h.nemes coes no- depen! uo-n t"e

higher-leve.- structure of the utterance. However, the structure

in which they are embedded can, and should, be exploited in the -

decoding process. The spoken expression imposes a structure that
0

must be observed by the phoneme string over an extended intervai,

much as a convc'tional code immoses a stru ctr,:e on a seauence of

b* nar d its.

The set of chonemez that are used to build the -tterance are

ia--e invari.ant from one person to an.cther. :n larce measure,

the phoneme set does not even depend on the lancuace of the

speaker. It is expected that the effect of language will be

second-order, in which one or two phonemes are added to or .

deleted from the set and the use frequencies are changed

somewhat. However, word recocnition will be highly dependent on

nationality, region, language and context. .
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:nter-choneme irteracti ons tat Zc:;r in~ the sceec.:- z::

=rocess. The temnlates of isolated ci~~-'nemes t ct '-a'.e tee-n

st :r'.d i =:assicc2. soeech science are of~ * ; se

becau-se :ftne cr-anoes that take nlace in a d!vnain::: svstem.

choneme dent~ficati--n sv,,stem fo,: crtin-.c-.;s soeecn m,4st te tase %

or. a dynamic mode:. This means that the characterlzat:on cof

ohonemes bv sicrnal carameters that are extracted from the sneec=.

will'- be denendent or. the surroundIna phon~emes an~d their

parameters. OZnce the phonemes have been identified, their late:s v
w:..be the same as if they were soc'Ken in iscoatlcn: ho-wever,

the Process of extractin= t*hem from a background of dvr~ami=-

parameter variations is far more comnplicated than extractina them

from a sta-:,c parameter background.-:- -

A~ dynamic' -node: of speech productior. views the productio. rcess %

as on~e of continuous motion of the vocal.-tract articulators.

This produces an organized interaction of the phonemic elements

In which the narameters of ad-acent elements are systematically

blended across the phoneme boundaries. Thus, no static

reoresentas:cn wil: be adeazuate for describino the chonemes by

tn-e: narameter values.

The , ~ t that is oresented :s not one of measur:nc the

val-ues of the phoneme parameters. Such parameters as the fo-rmant

frequencies, intensity, duration, pitch and voice'-unvo-4ce can be

measured. However, the phonemes must be identified in the

context of other phonemes because the values of the parameters

will be dependent on the surroundings, Thus, it is the

interpretation which must be dynamic.
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As..bs ta:-tia~ :co-3 c- ..rse ar ex-sts =n the ::a r a zer -:za::

;honemes in static sit::eat--o -ns. -Howe'-er,':'z-,

terms of dynamic movement :f 'oca_-tra:- ar't: at-rs "s -

unexplored A becinn.nz =c:nt is nresen:eO in the art- v-

9)rowman and c.dste:n :t is expected that t-e soee-h

scientist's workbench, develoned on the basis of the audit,4 -,-

model, will provide a too" which W" 11 allow this :m.-,Crtant
investigation to be carried cu- e%-editlously. - ,

A. Application of Expert System Methods

:t is zenerallv recocnized that speech recognition can be carrie"

cut successfully if a reasonatly accurate phoneme string can be

* extracted from the voice waveform. The analysis system that is

based on the auditzry model provides an analytical tool forvS

accurate>y comcutina the values of the imnortan- .arameters of

speech and tracking them continuously as they vary. In a sense,

these parameters are the coordinate values that describe the

speech in a soecialized state space. What is missing is the

[ conversion from the continuous parameter variations in this state

- space to a rellable segmentation into discrete time space and a

reliable mapping of the segments into a phoneme sequence.

' The general procedure is to separate the secmentation and

identification problems. However, it is our view that this is

not necessary. Moreover, we believe, this division will lead to *'

suboptimal performance. Thus, we seek to map from a state space

of continually varying speech parameters to the discrete phoneme

sequence. It is our view that this discrete phoneme sequence - .

preserves the essential information for speech recognition.

, The basic oroblem, then, is to find a suitable speech state space -

and a mapping from that space to the phoneme sequence. The

parameters that must be preserved are generally recognized.

These are the speech formants, the pitch, the energy levels in

various frequency bands, and certain binary information such as

voice/unvoice indications. What is missing is the mapping from
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ccab.nati'.s amer va..e s and t-e~-t :ies int -- _en

seq-,ences. 7he . ' contains exoerineren:a.' an--

iformation about ca:ameezer cc-tina:, =ns that idern.: i :e-.:2

o'onemes and disc:r1:nate them fron =ther ='nonemes. ".is

mostly related to th-e ient--ficat.1on o-f p-.onenes s=CKen i

~sola:on. We have been unable to identify any work<, be ~

author'..tative or speculative, for the maoopn= from ccntinucous

speech into a discrete phoneme sequence. Ah a t is available in

*the literature are Paoers on the study of c:rameter variat:cns

that are useful in identifvina oarticzu;ar chonemes.

.k diff iculty in p ursu Ing this task i s in eva -,.at ing the ef f ca:y

of various rules for identifying phonemes. BeyoDnd that is the

oroblem of collecting a large enough body of rules that are

internally consistent to meet essentially all of the parameter

comtinati-ons that are observed in continuous speech. This

* oroblem is compounded by our desire to make the identificaticn .

procedure applicable to a wide range of speakers.

it is our intention to apply knowledge eno'ineering tools too in -

* 0
th.sinvestiaation. We plan to build a rule-bsdeor system

fo:r choneme identification on the basis of speech parameter

me a su;r emen ts . 'The system will make use of rules t'nat are fcund

scattered thro--ugh the literature as well as rules that we create

.n the course --f our investigation. 7his approach has a number

of advantages.

1. It provides a structure for organizing the knowledge scattered
through the literature on phoneme identification. 0

2. It works naturally with heuristic rules. Most of the rules
found in the literature are heuristic.

3. it provides a tool which can be applied and evaluated in a
convenient manner. S
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* . t*-e exoer: wcr<s welin any oartic-u2.ar s* ,..at :-.e-. - --

can- be asked wh.="' 1a;zua res it u:sed :o, ma<e a
decision. Therey:, the effective rul.es =an be :leane : r-... .-..

the kncwledae base.

5. Rul.es can eas:':, be nodified.

6. -New rul;es :an eas-,2.v be incoroorated.

The knowledce base :sseparated from the speech data base.

S8. High-level tcols for buiding the knowled- e base are readily
avai.lab-le.

9. Rules for speech sementation will examine the same -araeters.
that are used for phcnerne idetfication. Thus, sementato . .

ann be m dh"r car-_be ma-e to work together in a .
coor-diant manner.

The choneme exert sste- will therefore be a research tool wh.- %%

will be used to find a useful rule base. Tle rule base that is

constructed can then be incorporated in a special computational

_structure for rea-time ooeraten.

It is important to emphasize that this kind of knowledge base can

be used with uncertain and ambiguous informationl and that it can

* provide phoneme identification with indications of the

uncertainty involved. This is a suitable match to a fuzzy- locic

m -e th o ol ogy.

.t is antic ated that the same methodolog y can be extendee ts

cover word identification from fuzzy phoneme s ,tri ngse5. e

Ill. SPEECH SCINIST'S WORKBENCH

* A close association with Dr. Robert Houde of Speech Recognition

* Systems, Inc. of Rochester, New York has led to the acquisition

of speech processing software to be used for the speech analysis

ortion of this protect. This is needed for the analytical front

end of the system. It does not involve any of the tools

necessary for phoneme identification.

- . a - -.o .

Thiuse anlyih softreirretary and amigos nofr tn avdaihabl foran
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j S
d :str:bu: ..rr esa '. : as deveLooed by S ee:h Recoor.: -.

Sys-e-s, : n own t a:: s. :

"orovided at no cost ti- e .n!erstan :.n= . .- . w: • • e

only for the resear:h of :his =ro'ect. T-e '-_aare -.s tee-.

develoned bv a team of s=eech scientists and =r:r.a-,ers a: .

Speech Recocrt:on Systems, :nc. with a budget and effor::ha- ::s

at least an order of ma-nt:ude beyond what is pcssibte : .

this pro-ect. Their willingness to allow it to be used for :-.:s

research helps us to overcome a very large obstacle.

The software is written :n "C" to run on a Sun Microsvstems, :n:.

comouter. This brand of comcuter has been ourchased by R:T

Research Cor.oratlon, and has been made ava:a b-e for use on this

oro ect.

The nlan "s to run the expert system en=neer-.c tools on the * S
same system so that all of the software tools are avalat e cn-

the same svstem.

The Speech Scientist's Workbench contains the following software

modules:

barzrach.c Plo-ts bar graphs.

client. c Used for recordinc speech t = a ditalf fle
and playing back speech from a di:ital file. .:

defaut.c Default craoher, labeller, . .and
funct ion rout:ne.

do menu-c Menu handler. p

do mouse.c Handles mouse selection in option and
graph windows.

do opt.c Routines to handle selected options. -

filetype.c Holds information used by graphers and ". -
measurers.

acreate.c Routines for creating'and jodating graphs. -

gr fif2.c Draws an xy graph from a data file. -

gr form.c Draws the form graph.

., ,. .,. . .
% '%°-



:raws the stectrocr:am ara:-.I

cram4D-c Calls gram.: wt' certain parameters.

gram -.c Draws -'.ear pred:::~ve ccde: zra=c- e"

gramger.2.c 5jeneric snec:rocram ;racp.er:- =a...e:
by a few routines.

routines.

grff!t .c FFT grapher.

arfsw.c Handles actions in the graph
subwindow of soeechtool.

i-tercect.c TUsed for handJlina filteri-=
parameter lists.

inval sig.: Handles the loading and updatin ng4,
- data.

abel.c Used for labeling graphs.

o~t~cSets un all available options for
speechtool.

point-c Point grapher.

prtsw.c Handles all events in the feedbac.K
window of speechtcol.

rec..: ?)oes the reco-rdir-c of the cr:.cnal
signal. .-

redraw.: Performs refreshina and L~ndati- nof0
displayed records.

S' rmdifc Line grapher.

ticks-c Ticks grapher (the time axis).

tool.c Main routine. From this routine, one .>'.

accesses the analysis algorithms.

The tasks for the coming year are focused u;pon the completion of

the speech science needed for this pro~ect and the initiation of

thesytmsuis *esec sinesuiswl .tlzth
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expert system .cdei:.. a-=rsach described above. The svs, em-

studes will c-onCentrae on the structu:re of t"e phcne.e.a-_ -. data

base and the patter. search procedure t: be -used in phcne.e .

dentification. The design of a structure- which will a..:

real-time phoneme matching is critlca. to the s uccess cf te

recocni'ton process. The system studies wil- also I.cu-e an

examination of system control. structures, such as Hearsay ::,
with the view of making a control system selection in t""e

following year of the pro:ect. ;

A. Tasks -"

1. Develop a set of characteristic parareter reationshis for*
each pneme. -

2. Develop a dynamic production model based upon the dynamic ..
articulator target model of the speech process.

3. Develop a speech phoneme segmentation algorzthm. I

4. Develop a phoneme-phoneme psycho-distance measure.

5. Examine candidate data-base structures and search algorithms
for use in dynamic phoneme identification.

6. Examine system control structures for the integration of I ,
multi-level knowledge bases.

I 0

711.

4... **, .

* w .-

4.-. --.%.

I 0

:..:.. -. ,..-,:

* 0

. . . . " % - - .

• - ° -S° -• . - -. . .. . .- . .• . .. . ,-



B:BL'LIOGRAPHY"

Abra..sn, A.S. an! "_:sker, L. , K ), "Rela:-'ve Power of Z;es:
FC Shift Versus Voice i.mna', Phonet.ic Lng u stics, no. 2r--,.

Baker, J.K., (195), "The ra-cn Systen: An er.v:ew",
7 Trans. ASSP-23, cc. '4-29.

Bates, M., (1915), "The Use of Syntax in a Speech Understan-n- .,
System", :EEE Trans. ASSP-23, pp. 112-1-1.

Becker, R. and Poza, F., (19-5), "Acoustic Process'na in the S--:
Speech Understand:ng System", IEEE, Trans., ASSP-23, p0. 416-42.

Bedzek, J., (1981), Pattern Recognition wit- Fuzzy Ot-ect":e
Function Alzorithms, Plenum.

Blunstein, S.E. and Stevens, K.N., (19'9), "Acoustic Invar.ance
in Speech Production: Evidence From Meas. of Spectral Char.", 0
,:ASA, Vol. 66, No. 4, PP. !1-0'.'

Bobrow, D.G. and Collins, A., (19'5), Reoresentation and
Understanding, Academic Press, New York.

.ondarko, .V,"Te Svilable Structure of Speech and S
Distinctive Features of Phonemes", Phonetica, Vol. 20, pp. _-4 .

Browman, C.P. and Goldstein, L.M., (1984), "Towards an
Articulatory Phonology", Unpublished Manuscript.

Browman, C.P. and Goldstein, L.M., (1985), "Dynamic Mode.inz f0
Phonetic Structure", Phonetic Linguistics pp. 35-5.3.

-Chomsky, N. and Halle, M., (196), The Sound Pattern of -n=i:sh,
Harper & Row.

De Mor4, R., (1983), Computer Models of Speech Usinc Fuzzy•
Al~orithms, Plenum.

E-mas, P.:., (1985), "The Perception of Speech :n Early infan,.
Scient:fic American, pp. 46-52.

Flanagan, J.L., (1972), Speech Analysis, S -thesis and
Perception, (Second Edition), Springer-Veriag.

Flanagan, J.L. and Rabiner, L.R., (1973), Speech
Synthesis-Benchmark Papers, Dowden, Hutchinson & Ross.

Fowler, C.A., (1983), "Converging Sources of Evidence on Spoken
and Perceived Rhythms of Speech...", J. Exp. Psy.-General V. 1 ,12,
pp. 386-412.

Fromkin, V.A., (1985), Phonet.c Linuistics, Essays in Honor of
Peter Ladefoced, Academic Press, New York.

'7 1
oo _ o. .o . o . . ... .. • .. . .. - , . . ..712"

--<-< '-" - " -"-"."-' . ': "" . '- "° -°"" '-" "- , .-. , " , 'b " "'" """" ;'' - ', ,'."--"''.- -',v %'' ", ." ," ,



- A..

H awey, ,-., (1. "'y, Scee ' .e t::. -v an-. Snea<er
*. .Recoc.tl .. . Ben.zh.-ar< Pa=ers, ::wder, .- z s:-. & :.s.

'akobson, R., Fant an-d ia.Ze, (H9ale ' . .r S ..-..
Analysis: The Z.ist:nztive Feat.ures an-? The.r C:rre.ates, :,
Press. O

* Judson, L. and Weaver, A., (1965), Voice Sc:enze,
Appleton-Cent'r:y Crof s.

Kates, James M., (1983), "An Auditory Soectr _. Analys s Model
Using the Chirp Z-:ransform", IEEE ASSP-31. , No. 1, pp. 14E-136.

Keidel, Wolf D., et al., (1993), The Phvsiologica_ Basis of
," ~ Hearina, Thieme-Stratton.

Kelso, J.A.S., et al., (1985), "A Qualitative Dynamic Analys:s Of
Reiterant Sceech Produc.:i-.: ?hase Portraits...", JASA, Vc'. ",
pp. 266-2B0.

Malmberg, Bertil, (1968), Manual e.f Phonetics, American Elsev:er.

" Newell, Allen (195), "A Tu,trial on Speech U-;erstand:n
* Systems", Speech Recognition (Reddy), no. 3-54. 0

. Parkins, Charles W. and Anderson, Samuel W., (1983), Cochlear
Prostheses: An International Svmosium, New York Academy of

• .Sciences.
A .- .P1 .

Parkins, Charles W., et al., (1983), "A Fiber Sum Modulation Code
for a Cochlear Prosthesis", Cochlear Prostheses: :nt. Svmp., 22.490-_50 1.-. .. 't

Par'ash, A., et al., (1983), "A Kinematic Study of Lincual
Coart:"latior in VCV Sequences", JASA, Vol. 4, op. l15-1125.

* Potter, Ralph K., Kopp and Kopp, (1966), Visible Sceech, rover.

Reddy, >.R., (1976), "Speech Recogr.it.-on. by Machine: A Review",
:EEE Proc., Vol. 64, pp. 501-531. ,

" Reddy, D. Raj, (1975), Speech Recognition, Academic Press, New

York.

Ruske, G., (1982), "Auditory Perception and Its Application to
Computer Analysis of Speech", Computer Models for Percept...

Saltzman, E.L. and Kelso, J.A.S., (1983), "Skilled Actions: A
Task Dynamic Approach", Haskins Labs, SR-76, pp. 3-50.

Seneff, Stephanie, (1985), "Pitch and Spectral Analysis of Speech -

Based on an Auditory Synchrony Model", MIT-Res. Lab. of
Electronics.

Sussman, H.M., et al., (1973), "Labial and Mandibular :ynamics
During the Production of Labial Consonants...", JSHR, Vol. 16,
pp. 397-420.

713

0Z0

"":"':'":"'



~~ller,~n 3,ea..* .era r:azrs:. as a - :.e X
-, of Temporal Regtz-ar'.ty in Speec.', .. --x=. Psv: Ha Perze=:.--. -,

co. 463-472.

Psvchoacoustic models", -'ASA, Vol. 65, No. 2 (19-9), Pp. ;22-4z-.

Zwicker, E. and Ternardt, E. , (1974), Facts and Models-i
Hearingo, Springer-Verlag.

-h 
0

4.1



8 TIME,-ORIENTED PROBLEMI SOLV ING

Report submitted by:
Janes F. Allen

Computer Science Department
University of Rochester
Rochester, NY 1J4627

TABLE OF CONTENTS

Summarry...................................................... 716

Description of Research Accomplished..............716
1 ) A Concise Interval-Based Theory of Time ..................... 716
2) Planning in Uncertain Worlds.............................. 716
3) A Theory of Plan Recognition.............................. 717

Future Research .............................................. 717 -

Appendix 8-A: A Commo~n Sense Theory of Tim.................... 719
Appendix 8-B: A Model of Naive Temiporal Reasoning .............. 731
Appendix 8-C: Toward a Theory of Plan Recognition.............. 7 49
Appendix 8-D: A Formal Logic that Supports Planning with a Partial

Description of the Future ................................ 817

I 0

715



Annual Report of Project: Time-Oriented Problem Solving

Air Force Contract No F3,1602-.5-C-)n.'-.
• " ". "%* S"'p '

PI: James F. Allen. Comop..ter Science De:ar~ment. Uni'.ers,tv . Rccres:er

Novermoer 198.5 %

Summary

In the last year we have made progress in our research on tirr e-,r:entec :r .,ern
solving in several areas. We aeve.opec a new theory of time oasei jr. temrnra,
intervals that is consideraoiv simpler ana mcre elegant than )ur :rev.-)us :ne."r';.
and which subsumes ana extends the latter We also nave mace coS.deraole
progress on the development -f a :crmai .mc.diei for proolem s,,virZ in. te.",ir-l. .4

rich, uncertain worids based .)n t.e comoination of our temoora, ia'c .inri -.-...- .

iogics oicounterfactuals. We have aisc Snown how pian recokncr. n _- wr d"
,e.g., the blocks woridj can be ,ormaLiv related to and der..ei :r.m a "r', fr - "
planning in those worlds, thereov reiating planning ann pian rec .i'.,)r. i.n an
intuitiveiv satisfying way. Finally, we are close to completing t.e con.e.-si;r. fir

ORNE system me generai inference engine upon which ur :,anninz anri pLan
recognTition systems are built, into Common Lisp on the Smbul.c-s ma:r,.ia , tro 0m
Franz Lisp on a VAX. Testing of the new system is expectea to oe comnete on .. --.

December 1st.

Description of Research Accomplished

A detaiied descripti,.n of the research completed is descroea in the a:tacnec
papers and technicai reoor-s. Here we zive a short descriotion )f eacr. r :he r.a-r
results. ' .

I) A Concise lncerval-Based Theory of Time "---

The iterature on the nature and representtior. of -. me Ls 2... s:. :es an
contradictory tneuries. This is surpriing smnce the nature or :ime a.-es, t,) ,:ause any
worry for people in their evervnay coprin with :he w,rid What this su .s that
there is some form of common sense knowiedge about time that is rcr. enough to
enable people to deal with the world, and universai enough to enable conptration and .

communication between people. In the last year. we have developed such a theory.
We have an axiomatic theory of time in terms of intervais and the sin'e relation •
.EEET. We have shown that this axiomatization subsumes Aliens interv3l-based
theory, and have extended the theory by formally defining the be inrninzs and
endings of intervals. wnich are snown to have the properties we normallv would
associate with points. We disting'uished between these point-ike ooiects ana the
concept of moment. i.e.. non-aecomposable intervals, as hypothes;zec in aistcrete tAn.e
models. Finally. we nave examined the theory in terms of each ,f severa' different I
models, including continuous and discrete models. and ihown that ,ur ,zic .s
consistent with both.

2) Planning in Lncertain World..

En this prQect. A.lens ,n:ervi,-basec. -empirai logic has been exteroed '.v.h & .a. ,

,: )unterfac.uai-like modaity. ca: .d [F1 RLED that can be usec to descroe wnat car.
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:rooierns wriere the robot has a practical descnputon of the past. present. ana
expetedfuture. and its goai is to zorng aoout a set )t desirea :uture c:na-os 'X_2

snodone the theEE moaitar:ng ato repre~wsenkoredr:e tou wnat ne
~an nd cnnotdo.It also can be usedl to reason aoout ti neat:

-cricurrent actionS. and to srec.,:v conaitionS unncer w.nicn thre tw; ac-.ons an oe
executed together. A formai semantics :or tnis og-c is in projgress.

3) A Theorv of Plan Recognition

The problem of reco gnizing an agent s plans arises in many contexts n worK i.n
artificial intelligence. The pian recognition techniques suggested in .he literature____
are rarely formally Justifled. We have developed a theory of plan recorn.mtior. as a
special kind of non-monotonic reasoning, and have demnonstrated now formal
techniques developed for such reasoning-- namelyv. circurnscrOtiofl and rnininmal
entailment--can be used in plan recognition. In this way, a theory of pian recognition
has been derived directly f'rom a theory of planning. This deveiopment suggests that **-V

the processes of planning and of plan recognition are actuaily two different
viewoints of the same problem. nameiv. reasoning aoout actions and causailty.

* Future Research

In the next year we oian to complete our formal theory of Planninz *in uncertain
worids and use it to gnuide the aievelopment of a planning system on the Symboikics

* that can construct conditional plans to deal with uncertainty. This systemn will be -

able to reason about simple events in the future that are not actions of the pianner.

Our work on a general acti-mn reasoner. subsumnin g both planning and pian
recognition. will continue as well We intend to c eveiop the theory in a simpie world
where two azents are constructing anda executing plans. We will deveicp a mnod,!! of
one of these agents that can constru.ct pians. ooserme the actions ot tne Oth~er agent :

and infer the other's plans. and then use this information to -cifhe inzt.ai pian. -.
We will examrine situations where tne agents must compete. mnust cooperate. :r are
indifferent to each other s goa~s.

Our initial domain will probably be a route pian ning worid wriere :ne agent mav
* plan to avoid or meet the other agent. Initially. we will keep the tempora.' and spatial

aspects of this world to a minimum. ana enricn the domain as the worK prcgresses.
An nialimplementation of this system will be begun, and will Incorporate as much
of our previous planning system as is possible.
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ACommon-Sense Theory of Time

James F..Allen and Patmck J. Hayes ,
Departments of Computer Science and Philosophy :

Uniersitv of Rochester
Rochester, NY 14627

December 1984

Abstract

The literature on the nature and representation of time is full of disputes and ,
contradictory theories. This is surpnsing since the nature of time does not cause an%
worry for people in their everyday coping with the world. What this suggests is tlat
there is some form of common sense knowledge about time that is rich enoug.h to
enable people to deal with the world, and which is universal enough to enable .

cooperation and communication between people. In this paper, we propose such a
theory and defend it in two different ways. We axiomatize a theory of ime in terms .. .

of intervals and the single relation MEET. We then show that this axiomatizauion .

subsumes Allen's interval-based theory. We then extend the theory by formally
defining the beginnings and endings of intervals and show that these have the
properties we normally would associate with points. We distinguish between these -.

point-like objects and the concept of moment as hypothesized in discrete time
models. Finally, we examine the theory in terms of each of several different models.
Introduction .. -. '-N.'

The literature on the nature and representation of time is full of disputes and ,
contradictory theories. This is surprising since the nature of time does not cause an-
worry for people in their everyday coping with the world. What this suggests is that
there is some form of common sense knowledge about time that is rich enough to --
enable people to deal with the world, and which is universal enou.h to enable
cooperation and communication between people. In this paper, we propose such a
theory and defend it in two different ways.

First, the theory is powerful enough to include the distinction between
"intervals" (i.e., times corresponding to events with duration), and "points" (i.e.,
times corresponding to instantaneous events), as well as allowing substantial
reasoning about temporal ordering relations (including the abilities described in
[Allen. 1984]). In addition. it includes a formalization of the beginning and ending of
events by introducing the corresponding beginning and endings of times. We show

* that beginnings and endings act in many ways like "points." >et can be distinguished
-" from them.

Second. the theory has as allowable models a number of the temporal models
that are suggested in the lterature. This includes models that equate time with
intervals and points on the real number line. models that h~pothesize discrete time.
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and an' model which mixes real points and intervals. Our claim is that if our
common-sense theory of time excluded any one of these models. ther there would be
no debate as to whether that model was valid, since in that case our own primlrnre
intuitions on the matter would be extremely clear. We do make one restnction on the
models considered: they must allow the possibility that mo inter, als MEET. which is

defined as the situation where there is no time between the two intervals. and no -.
time that the intervals share. The importance of this relationship for naie theories of
time has been argued elsewhere (e.g.. (Allen. 1983: 1984]), ard so ,ill not be,
defended again here. Even with this requirement, we shall see that substantially
different models are possible.

One important intuition which guides us is that time is occupied by e%ents. If the " %

universe did not change. there would be no time. Any sort of event or happening
which can be described or thought of has a corresponding time. and the universe of
times consists of these. We will often appeal to this intuition, which notoriously
sometimes indicates continuity and sometimes discreteness. (In particular, it is the
source of the need to allow time intervals to be able to MEET.)

In Section 1. we axiomatize a theory of time in terms of intervals and the single
* relation MEETS. It is then shown in Section 1I that this axiomaazation subsumes the
-" interval-based theory proposed in [Allen, 1983: 19841. 0

We then extend the theory in Section III by formally defining the beginnin s
and endings of intervals and show that these have the properties we normally would
associate with points. In Section IV, a distinction is made between these point-like
objects and the concept of moment as hypothesized in discrete tune models. Finally.
in Section V, we examine the theory in terms of each of several different models.

The proofs of the theorems are not included in this paper. Most of them are --- : >
* fairly straightforward. Where this is not the case. we try to give an intuitive argument--

of why it is true. All the proofs are included in a Ionizer 'ersion of this paper to
appear as a forthcoming technical report. -

I. An Axiomatization of Interval Time

We start the formal development by positing a class of objects in our ontology
that we shall call TIMES. These are intended to correspond to our intuitive notion of 0
when some event occurs. We do not. at this early stage, make any committment as to
whether all times are decomposable or not.

The essential requirement of our intuition above is that two time intervals can
MEET. We will take MEET as our pnmitive relationship between times and show
that we can constructively define the complete set of possible relationships between
intervals in terms of MEETS. It can easily be shown that the only other of the
thirteen relationships in terms of which all might be defined is OVERLAPS. (We are
not .et sure whether OVERLAPS would do: certainly, if so. the reduction would be :
far more complex and not directl. constructi'e. Other sets of relations can be defined ..
and reduced to one or two: for example. Hamblin [19721 uses a relation we could 0
define as less-than-or-MEETS 720
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For example. we can define a relationship BEFORE to hold between intervals
only if there exists an internal that spans some ume between them. Thus

I BEFORE J <= => EXISTS k. I MEETS k & k MEETS I. 0

As a notational convenience, we shall abbreviate conjunctions such as the abo.e into '."-.

a chain, i.e.. I MEETS k MEETS J. We shall also use the abbre iauons used in,, ..:-,

[AUen. 19831 for disjunctions between pairs of intervals. Thus "I (o oi s f d) i" is
shorthand for the formula -

(J OVERLAPS ) OR (J OVERLAPPED-BY I) OR (J STARTS )
OR (I FINISHES 1) OR (J DURING 1).

These relation names are all defined in Figure 1, below.
I 0

As another example, I equals J only if there are two intervals, one that meets
both (at their beginning), and one that both meet (at their ending), i.e..

= J < => EXISTS kl. k MEETS I MEETS I &
k MEETS J MEETS I -

The other possible relauonships are defined in Figure 1. By including the
inverses of these relations in the obvious wa.. we have all thirteen relationships
defined construcuvely in terms of MEET. Each enr defines the ordered relation
between I and 1 (I BEFORE , 1 OVERLAPS J, etc.). The inverses are also between
I and J and are equivalent to the oniginal relatonship between I and I (e.g., [ 0
BEFORE J (= => J AFTER I. etc.). The small letters listed with each give the '-'-'.

abbreviauon for the relation that will be used later in some examples.

7 2
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Relation Inverse Definition

BEFORE- b AFTER. a EXISTS k. I MEETS kc MEETS I .. ,

EXISTS k. -k MEETS IMEETS &
k MEETS J MEETS

OVERLAPS. 0 OVERLAPPED- BY. oi EXISTS a-bc-d-e . a MEETS I MEETS d MVEETS e & .-

aMEETS bMEETSJIMEETSe &
b MEETS cNMEETS d

STARTS. s STARTED- BY. si EXISTS a.b.c a MEETS I MEETS b MEETS &0
a NtEETS J 0EETS c

FINISHES. f FINISHED-BY. fi EXISTS ab~c. a MEETS b MEETS I MEETS: &
a.MEETS I MEETS c

DURING. d CONTAINS. di EXISTS a-.c.d S
a MEETS b MEETS I MEETS: MEETS d &
a MEETS JNMEETS d

Figure 1: The Relationships Bet-k-een I and J In terms of the MEET Relation

With this reduction, we can axiomatize the interval logic entirely in terms of the
one relation. as follows.

The first two axioms are based on the intuition that each interval may MEET any
other interval at a single "place." Intuitively, these axioms simply state that litervals
have a unique beginning position and a unique ending position. As a consequence of
this. if two intervals both MEET a third interval. then any internal that one NIEETs.
the other MEETs as well.

Axioms for Uniqueness of "Meeting Places": -

(Mil) ALL 1j.
(EXISTS k. IMN1EETS k&JIMEETS k) =>

(ALL L. I MNIEETS I <= I MEETS 1)

(M2) ALL .0
(EXISTS k. k MEETS!I & k MEETS 1) = >

(ALL 1.I MEETS! I= < MEETS J) -

r The third axiom captures the notion of ordering. It simpl% states that given mvo
6 "places" where t'wo Intervals meet. then these places are either equal or one precedes

the other. This is axiomatized Without referrng to places as follow4s:

Ordering Akxiom:
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(M3) ALL Ij.k.l.
(I MEETSJ & k MEETS I) =>

1) (i MEETS 1) XOR *-

2) (EXISTS mn. i MEETS mn MEETS 1) XOR0
3) (EXISTS nl. k MEETS nl MEETS J)

In other words, we have exactiv three possible cases. shown in Figure 2. for any four
intervals i. j, k, and 1.

-k -- I- -rn-H

Casel1 Case2 Case 3 0

Figure 2: The Three Possible Orderings of i1,j k. and I in k'uomr M3

Finally, we need some existence axioms. First given any interval, there exists an
interval that meets it. and an interval that it meets, i.e.. *0 .

(M4) ALL i.EXISTS*j, k j MEETS i MEETS k

k

A consequence of this axiom Is that no infinite tune intervals are allowed in our
theory. One Furt-her existence axiom is needed- It says that. gi,,en two intervals that
MEETr. there 'is an interv~al that consists of the two Intervals concatenated. or merged,
together. To define this precisely we need to introduce a "union" operator on
intervals.

Defn-3:- 1-J is the ordered union of I and 1, deftned bv

(M5) ALL . I MEETS J =>
EXISTS (I +-1) such that EXISTS a~b

aMEETS I MEETS J MEETS b&a MEETS(I+J) MEETS b

i~~e.,. N- 1J

Using the defined relations above, this axiom can be restated as

ALL [.J .I MEETS J => EXISTS (1-1-) such that
I STARTS (V-i) & I FINISHES (I-J):1.::

We can prove that when I -I exists It is unique. and that -is associative.

An intersection operator on intervals also proves useful throughout in the proofs.
Let IJ be the interSeCtIOU of I and J. which is defined as follows:-

723
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P1J is the interval such that -. ''

The intersection contains all intervals in both I and J
(11) All I.(0IN 1) AND (iIN 1)= > IN!

The intersection. if it exists. is in both I and I
(12) EXISTSi(I N 1)& (IIN J) => 0'J IN' 1) & iIJ INiJ)

*We can prove that I!J is unique if it exists, and it exists whenever I and I overlap In
the intuitive sense of the word.

I.e., I (o oi s si f fi d di =)J.

Since this is all derivable from axioms Mi-M5. axioms 11 and 12 can be regarded as a
* definition of this notation.

11. Capturing the Behavior ofran Interval-Based Temporal Reasoner **0

The question now arises as to whether the above axiomatization of MEET and
the definitions of the other interval relationships totally captures the behavior of the
Interval logic in [Allen. 19831. This wins out to be the case. afthougzh it is tedious to
show. We can prove that, for any two intervals I and J. then exactl\ one of the
thirteen interval relationships possible holds betw~een them. We can also shoyb that
the transiur~try table in (Allen. 1983] is a result of the above axiomnauzation. This had
to be shown enrm by entry through the table. following the intuitive reasoning by >.
possible cases which was used to construct the table originally The proof, while long,2'Q

* is simple. as it only involves te repeated application of the ordering axiom M3. For
example. given 1. J. and K such that I OVERLAPS I & I DURING K. we know-

EXISTS ab.c,d.e .a MEETS I MEETS d MEETS e &
a M.4EETS b MOEETS I MVIEETS c &
b MEETS c MEETS d

EXISTS f.g,hj f MEETS g MEETS J MEETS h MEETS j&
F f MEETS K M EETSj

aThese facts can be presented pictorially as in Figure 3.

-f-""- g

Figure 3: 1 OVERLAPS I & J DURING K

'1. 724 '
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V Using Axiom M'3, and the facts a MEETS b & f MEETS g, we ha'e three cases."

1) a MEETS g, and hence b = g (since a MEETS b MEETS J & a
MEETS g MEETS 1): but then we have

a MEETS I MEETS d+h MEETS j &
a MEETS K MEETS j.

which by definiuon entails 1 STARTS K:

2.) EXISTS mn a MEETS m MEETS g-, in which case we ha~e

a MEETS m MEETS g-c MEETS d-h MEETS j &
MEETS I MEETS d-h MEETS j &

a MEETS m MEETS K MEETS j

..which b definition entails I OVERL.-PS K- Z

3) EXISTS n . f MEETS n MEETS b: in which case Ae ha'e

f MEETS n MEETS I MEETS h MEETS j & •
f MEETS K MEETS j

which by definition entails I DURING K.

Thus, we have the fact that

(I OVERLAPS J & J DURING K) => I (s o d) J

which is one of the ertnes in the transitivity table in [Allen. 1983].

This set of five aoioms is of a manageable size for companng different theones *
and for theoretical proofs. This is not to say, of course. that the ssstem should be re-
implemented solelh in terms of the MEET relation. There are important efficienc"

a gins from using the larger set of primitives, as already described in [Allen. 19831.
* ~• u". . - ' ° "

IlM. Nests: Beginnings and Endings

There are classes of events described in English that cannot be associated with a
temporal duration. These are often called "instantaneous" events, or
accomplishments" (e.g.. [Mourelatos. 19781). Such events cannot be qualified by a

duration. Thus. we can say "I closed the door." but if we say "I closed the door for
three hours." it means we are repeatedl. performing the action (contrast "I sat on the
floor."). Some argue that this is because the closing the door describes the
accomplishment of some state b the performance of some action. The time of this
event is the time when the door changed state from being open to being closed.

Other examples tnole e~enrs that are considered instantaneous in the same
way, yet the world is esseniall. identical after the e~ent and before it. For eample.
a click, or the flash of a strobe, cannot be qualified by a duration. 't et the word after
a click, or flash, could be es6entiail, the same as before It. One common approach to
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* handling the timnes for such events is to model them as points (real points in the
* continuous model: integers in the discrete model). In this section and the fcilcoAinz
* one, we shall develop two distinct notions of points from our tinter'a lcg:c. Tlh-se

%III be compared in the Final section.

In this section we shall construct the equivalent of points Aithin the initer~a!
logic defined in Section [1 by adopting a variant of filters. one of the standard,,

* mathematical constructions of points from intervals. ,

In particular. we define the beginning of an inter'al to be the set of all inter, als
that "touch the beginning" in an way. and the end sLrndarly.

BEGIN(I) ={p IEXISTS b.c .b MEETS I & b MEETS c &
p =b-i-c OR p = c OR p b=

or
o r p

ENDY) {p I EXISTS ab .I MEETS b & aMEETS b &
p =a-b OR p =a OR p b=

o r I...p

or -p--

These sets are alvs non-null. These could also be defined b the Collol~ine 0

BEGLN(I) p I p p (o s m fi di e si) [1
ENDfl) p I p p (oi f mi flidi e si) 11

For convenience. we can define a nest as a beginning or an ending: '

NEST(p) <= => EXISTS I . p = BEGIN(I) OR p = E\Nfl)

Given this definition of nests. we can now define relations over the set of nests
which gi,.es them the properties of points. To see this. we need to define an ordenng .. ~
relation on nests. We shall sa a nest N is beibre a nest M iff there is at least one
interval in N that is before some internal In M1.

for an%. tw~o NESTS. N and '0iU"

<KM < z> EXISTS n.m rnnis in\&mris in M& n<m
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* Now we can show some important properties about nests. First, nests are rmher !Ike
filters. In particular, using the intersection and union operations defined abo'.e. we
can show that nests are closed under intersections whene~er the% exist, and tat if we ,
take any interval n in a nest N. then n - m for an inten~al rn (such that their unicr
exists) is also in N. More formally, we have the lemmas:-

Lemma 5: If P and Q are in a nest N, then P!Q exists and is in N

Lemma 6A: If P is in a nest N, then P ~Q is in N for any Q such that P MEETS Q -~-

*Lemma 6B: IfP is ina nest N. then Q ~P is in N. for any Q such that QMEETS P

Another crucial property Involves the union operation: if an Interval n - m is in a
* nest N. then either n or m is also in1 N: *

Lemma 7:If n--mIs in Nfor anNEST theneither nisinNorm ISMnN

The main result is that. given any two nests. and the ordering reltiuonshiups
between nests defined above. the nests must either be equal, or one is before the

* other. Furthermore, these possibilities are mutually exclusive.

TheoremS8: For any two nests N and M. either N < M. M4 (N or N=\I

We can also show that the intuiti'~e definitions of the interval relations in terms
*of nests are theorems. For example. we have

BEGIN(I) < ENDOI)
I MEETS .1<==> ENDO1) =BEGINMJ
I OVERLAPS I <==> BEGINMl < BEGIN(J) &

BEGIN(J < ENDOI) &
ENDU) ( ENDIJ)

* The second of these is especially important. as it shows that there is only one "place"
* where two meeting intervals actually meet. This is. perhaps Surprisingly, a delicate-

matter. Very small changes in the definitions of BEGIN and END faI to achie%e
this. It Is perilously easy to get a point structure. which distinguishes two "sides" of a

* single point, and other oddities, as discussed in [Van Benthem, 1982]. (We are
gratefu to Professor Dana Scott for bringing this and Hamnblin's work to our
attention, and emphasizing some of these subtleties.) We will discuss this at greater
length in a forthcoming technical report.

IV. Discrete Time and Time Points

We can now show that discrete time models introduce a different kind of "point"
*than the points that are defined above. In particular. discrete tune hypothesizes times
* cthat are not decomposable. Let US Introduce a distinction between mnie-,nterials and-

moments as follows-.
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ALL I TRUE-INTERVAL(l) <=>
EXISTS ab.c.d . a MEETS I MEETS d

& a MEETS b MEETS c MEETS d

ALL I. MOMENT(I) <=> -TRLE-INTERVAL(I)

Thus. a true-interval has at least two sub-intervals (which might in turn be moments
or true-intervals)--one that STARTS it and one that FINISHES. Another wa of
stating the definition of a true-interval would be that it is the result of some unicn
operation. i.e..

ALL I . TRUE-INTERVAL(I) <=> EXISTS a~b I = a-b

Before we continue, it is important to remember that all of the earlier theorems
were proven before any distinction was made beteen moments and true-intervals. .',.'
so they all hold for both classes: none of the proofs ever depended on the .
decomposability of an interval. These definitions allow us to prose that two moment.-,
cannot overlap in any sense of the term. %et they can MEET each other. Moi'
precisely.

ALL I.J MOMENT(I) & MOMENT(J) => I (< m = mi >) J

Let us now consider the relationship betmeen nests and moments. The definition
of nests did not exclude nests defined at the beginning or ending of moments. In
fact- we can show that the beginning of a moment is less than the ending of that
same moment! Thus, although a moment cannot be decomposed, we can distinguish
its beginning from its ending. •

We can also show that moments and nests cannot be considered to be isomorphic
to each other. This is easily seen from the observation that moments can \ EET each
other. whereas nests cannot. Intuitively, a moment is a time during 4hich some e ent
(a flash, a bang) occurs, while a nest defines an abstract "posmon" in the sequence of
ti mes.

:. V. Discussion

-" It is interesting to interpret these axioms in various possible models. The simplest
one is discrete time: intervals are pairs of integers <n,m> with n < m. and <n.m> -

MEETS <m.k). Then a moment is a nondecomposable interval <n.n+ 1>. and nests
. pick out integers, the places "between" moments. In this model there is a clear

distinction berween moments and points. We can also define several models based on
the real line. For example, time intervals can be mapped into open or closed real . ."
intervals: however, then times can never MEET. A simpler continuous model, based
on the integer model abo~e. defines time intervals as pairs of reals <a.b>, with <a.b>
MEETS <b,c>. Following through the axiomatic definitions with this as a basis makes
nests define points on the real line, as expected. but now there are no moments at all.
since even the smallest interval is decomposable. We might tr-, to extend the model
to allow intervals of the tbrm <a.a), which would quaihf as moments. but no%
consider <ab>. <b,b> and b.c>. B our definitions, the first MEETs the last. et
they have the second betueen them, so the first is BEFORE the last. %iolatinv the
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ordering axiom. We have tried to fit real. substantial--though 'er small--ume
intervals into merel) mathematical "places." and they don't fit.

However. another possible model is one which mixes these, using the same
definitions of interval and MEET (from which all else follows) but allowing parts of 0

the time line to be discrete and parts to be continuous. Intuitively, if we have only
coarse time measuring tools available, then we can treat tune as discrete, but the
posibilit2y always remains of turning up the temporal magnification arbitrarihl far, if
we have access to events which can make the finer distinctions, distinctions which AL
can split "moments" into smaller and smaller parts.

Our axiomatic theory allows all of these models and others: it is uncommitted as
to continuity or discreteness of the sequence of times, yet is powerful enough to -:-.-.-

support a great deal of the temporal reasoning of common sense.
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/ A Model of Naive Temporal
Reasoning

James F. Allen
Henry A. Kautz

Department of Computer Science
University of Rochester
Rochester, New York

Temporal reasoning is an essential part of most tasks considcrcd as intelligent
behavior. In fact, It is so prevalent that it is often not rccognized explicitly. In this,
paper, we shall consider naive temporal reasoning as it is requircd within two arca,.
natural language comprehension and problem solving. .

For example, consider the following story:

Emic entered the room and picked up a cup in each hand from the tablc. Hc drank from
the one in his right hand, put the cups back on the table, and left the rxmim

This story contains many explicit temporal relationships. For instance. we arc
told that Emie picked up the cups after he entered the room. and that the cups wcrc
picked up more or less simultaneously. After they were picked up. he drank trom.
one, and latcr still he put the cups down more or less simultancously. Therc rc 
temporal relationships that are obvious from this story that arc not cxplicidy r cn-
cloned as wclI. For example, we know that he held the cups for more or lcs's 111c ,-
same span of time, and that while he drank from one cup. he was holding (he oier

S cup in his left hand.
In problem-solving situations, we see more evidence of teniporal rcaoing.

Consider the simple blocks world in which there is one action. namely picking up a
block and moving it to a new location. Assume we are given an initial situation with I
three blocks on a cable and want to construct a tower:

S We must rcason that putting B on C must prcccdc putting A on B l.ooking dccpcr.
howcvcr, thc above tcnporal constraint is only valid in a domain in %%his.h mil% olc

put action can occur at a tinie. In a domain , idi to am s. lor insintcc. c ,,hsuld- "
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iknt)% that 11hC at 1nn of pullin! 1I on C iiUst complete no later than the act ion of

pLltis g A on 13 completes, but otherwise they may overlap or be performed simul-

tancously.
In more complicated domains. tcmporal reasoning bcconics cncial. For in-

stance. assume block A is on a rotating table and hence can only bc rca hcd

pcri :fcally as ic passes clowe to the arm. A plan to put A on B involves waiting for 4.

blKk A to appear and then picking it up while it is available. "'

All of these examples miy scem obvious, but it is not obvious how to explain

cvcn such simple cxamplcs within existing models in artificial intelligence. This ., ;

paper outlines a theory of time that accounts for many of the foregoing examples

and that appears to be computationally effective. We hope to provide motivation

and background for our research effort, leaving the actual details for other papers

(Allen. 1981a. 1981b). In the first section, we shall discuss basic issues on the

nature of temporal representations and argue for an interval-based approach rather .

than a point-based approach (i.e.. in which time is viewed as analogous to the real

line). We shall then provide a brief description of a temporal reasoner we have built

and demonstrate it by some examples involving story comprehension. Finally, we -

shall describe how the model may be applied to problem solving.

,'- '. ,:-:

I A Theory of Time Based on Intervals

Let us consider some (generally accepted) intuitions about time. The primary intui-
tion is that times and events arc intimately connected. Our perception of time is

intimately connected (or identical to) our perception of events. Thus. in the discus-

sion below, we will be discussing the nature of events as much as the nature of time.

I Most of our temporal knowledge is introJuccd without explicit rcference to a 0

date. By date we mean not only calendar dates (e.g., March 25, 1950). but
also times of day (e.g., 12 noon). Temporal information in language is con-
veyed mostly by tense, order of presentation, and temporal connectives (e.g.,

"before." "during," "while"). Temporal information in plans is relative to -

the other actions in the plan rather than to a specific date (e.g.. action A must
occur before action Bi.
The same emphasis on relative information over precise quantization occurs

in considering durations of time. It is more common to Icam that event A took

longer than event B, than that A took 35 minutes versus B taking 15.

2. Given that we know an event E occurred over time T, we believe that by : -

considering the event more closely we could in fact break down E (and hence

the time T) into subcvents (and hence sublimes). For example. the event of
walking to school can he decomposcd into a series of events consisting of one

step, each of which could be decomposed into moving a leg forward, which

could be decomrscd into lifting your fool off (hc ground, pushing it forward,

tc. Even events that appear to complete other events (c.g., arriving at school)
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0
can bc dccomposcd (cntcring the building. opening ihe dor. ctc So it "
appcars we can always "Incrcase thc magnification- and lind niorc stru.Lurc

3. Notwithstanding the decomposability of timcs discussed in 2. it appears that .
we also often consider timc as indivisiblc. In other words. in a given situation.
we often view time as being pointlikc. This obviously vaeri,, A historian I S
interested in ancient history might not care cvcr to break down years into -ine./ %- ..
divisions (thus a year is "pointlikc"); however, a computer cngminer ma, -
want to consider times as small as or smaller than nanoseconds. to the -
engineer, a second might be like a century to the historian.

4. Time (or events) appears to be hierarchically organized. I-or instance. wc can -r.
detect a hierarchy of times by considering the ambiguous nature of the word
'now. 'Now' may refer to the time of my writing this hentencc. rhc tine of
my writing this page, or larger periods such as the time of rescarch projects.
The question "What are you working on now'"" at a confercnce relers. to a ,.--
much larger time than the instant the question is asked. If it didnt. one would
have to answer "nothing" every time one had an idle moment. Thus, no%%
appears to be ambiguous, and can refer to one of a hierarchy of times based on
containment.

The e intuitions strongly support the claim that times should be viewed as Inter-
vals. What this means simply is that all times can be dcconm'scd into suhtiiIc..
This is actually a fairly nontrivial claim, in that it disallows models in which times Z .,
may be points. Thus we cannot start, for instance, with the real line as a mnodel of -

the time line and build time intervals from time points as in Bruce (19721 and 0
McDermott (1982). We want to claim that thcrc are no time points in such a strong
sense. The major arguments for this are, first, that allowing time points presents us
with certain technical difficulties, and second. that we can do without time rints,

An annoying characteristic of allowing time points in the strong sense is that it
presents difficulties in defining the semantics of our temporal logic. For exainple.
considcr the time of running a race (call It RR) and the time alter the race tAR)

These two events are intimately related by definition; the latter interval beings
where the former ends. If we allow time points, we must consider %hcther time
intervals are open or closed. We cannot pick one option unifonily. Ifintervals are " "
open. then there is a time between RR and AR in which the race is neither being run
nor is it over. If intervals are closed, then there is a time in w hich the race i, both
being run and is over. It has been suggested that this problem can he avoided by a
convention that all time intervals are open at a lesser end. and closed at 1he later
end. but this seems completely arbitrary and indicates the modcl is unintluliC. tor
each interval would only have one endpoint. In an appitpriale iiiodcl. such a
question should never have arisen. Another solution is to claim that it does not makc
sense for predicates to hold at time points, but this is essentially climiatin, Iime
points as useful entities. . ..

Addressing the second point, we don't nccd to introduce rxint, to cxpl- n or ,
elaborate on interval-based descriptions In the next section v e %hall nrdile. "
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sc en relations (and thcir inversc,) that complctcly characterize how two time
intervalk could hc related.

While %%e want to allow pointlike tcmporal reasoning, we should not cquate thi,
with allowing Infinitesimal points in our modcl. For one ting, we mj> later rcason -. ,

about the same times that %%ere previousli considcred to be points as though the\ are S
intervals with rich intrcmal structure. This could not be done if the original times
were represented as points. We vicw point-based reasoning as a special case of
interval reasoning: by viewing a time as a point we (temporarily) eliminate the
possibility that it could overlap another time also viewed as a point. As a conse-
quence the reasoning task would be simplified, for we would be ignoring any
internal structure of the time "points." This allows a notion of abstraction some-
wkhat similar to that in hierarchical problem-solving systems such as Sacerdoti's
( 197"7). . .--- .

Let us move from consideration of the underlying model of time to consideration
of models ol temporal reasoning. The intuitions discussed above appear to eliminate
techniques that depend on constructing dates for each event. In the domains we are
considering, such information is not available and cannot be constructed in a rea-
sonable manner. Even allowing "fuzzy dates" (e.g., Vere 1981) will not solve the
problem. For instance, assume we know that events A and B did not occur over the
same time interval, either A occurred entirely before B or vice versa. There is no
%ay we can assign fuzzy dates to A and B that capture this knowledge. Thus we are
left with relative reasoning schemes.

One possibility (even without allowing points) would be to have parial ordenng
of the start and finish of intervals. Thus, intervals might start at the same time, or
one might start before the other. Similarly, we could analyze the endings of inter-
vals. This scheme is theoretically adequate but makes it difficult to define reasoning
techniques that reflect our intuitions. For instance, the most common type of rea-
soning we wkill perform is considering whether some propery P holds at a certain
time t. Typically, such information will not be explicitly stored, but wlll need to be
inferred. The key inference rule we desire is:

If pro'rpsition P holds o-cr interval T. and incrval t is during T, then P holds over
intcrval I.

Modc lng the during relationship using a partial ordering of endpi"unts makes this
inference more complicatcd. Thus we prefer a representation that explicitly captures
such containment information. A further benefit of this organization is that it re-
flccts our intuitions about the hierarchical organization of temporal Irowledge. This %
representation is outlined in the next section.

2 A Representation of Temporal Knowledge

2.1 Reasoning About lnt'erials
A pair of time intervals can be related in only a small number of ways, such
as by the "during" and "meets" relationships above. Thirteen primitive rela-
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0

X equals () Y XXXXXX
YYYYYY '.

X bcfure ()Y XXXXXX
Y afier (>) X YYYYYY

* S

X meets (M) Y XXXXXX
Y met by (mi) X YYYYYY

X overlaps (ot Y XXXXXX
Y overlappcd by (o,) X YYYYYY

X siars () Y XXX p
Y sarted by (so X YYYYYYYYY

X during (d) Y XXX
Y contains (c) X YYYYYYYYY

X finhcs (f) Y XXX
Y finishcd hy (fi) X YYYYYYYYY P 0

Figure 1. The Thirteen Primitive Relations

lions, graphically illustrated below in Figure I, form the basis for all kno% lcdgc
relating two intervals. *

Often the precise relationship between intervals is not known. A complex rcla-
tion is a disjunction of primitive relations. For example. if we know only that no
part of X occurred outside of Y. then X could have been equal to Y. or could have
fallen at the start, middle, or end of Y. Thus

X entirely within Y

abbreviates the complex relationship X (= s d f) Y.
Similarly. one can assert that X and Y are disjoint by sa) ing that X is related to Y

by any of the primitive relations which have that propcrty: X (< n nil >) Y .... . -;
Finally, knowing nothing about the relationship betwccn X and Y is cquivalcnt to
holding the disjunction of all primitive relations between the two:

X ( < > s si d di f fi m nni o oi) Y

This formulation naturally suggests that our tcrnporal knowledge he organiicd in p S
a constraint network. Such a network is a directed graph. where each nodc repre-
sents an interval. The arc between any two nodcs is labeled with the set of primitive : -

relations which are consistent with our knowledge of the relationship of the -.

intervals.
In addition to constraints imposed by world knowledge. the scnanic. of the

temporal representation impose certain binary and tcrnary constraints. These con-
straints can be used to complete the graph, as well as reduce the sizc of labcl scts on
the given arcs.

The binary constraints merely state that the label on an arc from. ,,av X to Y is the
inverse of that from Y to X. Thcsc constraints are rcadilN dcricd fron the t.ble p

above. e.g.,
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* The inverse of aset of pnimitives is thle set of inverses of cach pimi1tivc;e,'.

If X (o s d) Y thecn Y (ol s9 0 X. %

More Interesting are the ternary constraints, which encode thc trazsrinv' proper-
ties of the primitive relations. For examplc. if X is during Y, and Y is during Z. thcn
ceriaink' X is during Z. Some other combinations of primitlvc rclations yield only
dsj'uiictive Information. Suppose X starts Y, and Z finishes Y. Then X could be
before. mieet, or overlap Z.

If X (h) Y and Y (1-1) Z then X (< iII 0) Z

* or. expressed more briefly,

(S) *(Fi) - (< 111 0)

The transitive constraints can thus he considered to define a multiplication opera-
tion over Interval relationships. A multiplication table for eight of the primitive

2 relations, showAn in Figure 2. is easily constructed. In this table, the three relations
* s. f and d are collapsed into the one relation d. and likewkise si, fi and di are
J collapsed into the one relation di. (For the table for all thirteen relations, see Allen,

1983a.) The product of two complex relations is simply the disjunction of all
products of pnmitives from the first complex relation with primitives from the
second.

* XW'e now have the basic deductive tools for working with our temporal logic. The
* netvork may be built and updated in various ways (see Vilain, 1982 for an alter-

native treatment to the one presented here). An algorithm based on incremental
cm'nstrainlI pr-opagation is useful for maintaining an updated network as new con-
straints and queries are dynamically applied.

lirieflv. when a new constraint is asserted, one checks whether it in fact shrinks .- S

the old label set on the spdcified are. If so. it (and its inversec) is Inserted in the net,
and all transitive relations passing through the arc (and its inversc) are computcd.
1Ih leProcess is then applicd recursively to thie resulting new constraints. Queries
about the relationship of one interval to another are simply answered by inspection.

The story fragment which began this papper serves to demonstrate initrval reason- ,-

Ing. Imagine that temporal assertions arc being dcrivcd from a text as it is sequen-
tially processed:

Ernie entered the room and pickcd up a cup in each hand.

ENTER (m) HOLDIR (A 1)

L N rFR Inm) HOLJ)L (A 2)

r relations marked %kith Al. A2, etc. aire assertions, and those
:ire dcrived refitiinns IFniering mieets bh hoiiino vemis
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< >C d di 0 oi m mi
Ar IB

<< no < 0 < < <0

info d m drn) Un

>no > > oi > >0 > 1

info dm Unii d
d > d nlo < o > o1 <

info Urn drnu m mi

di < o > 01 o oi di 0 M1 I

di m di mi d di U1 di di m dti M

0 < > oi 0 <0o <0 0 01 < i

di mi d di m m Uj J1

01 <0o > Oi > 01 00 (it

di m d di mi J di n. d

m < > oi 0 < < i d

di mi d m m

i< o > oi > oi > Udi >
di m din mi Mi

*Figure 2. The Transitivity Table

Constraint propagation fills in the relaitionship between the holding cvcnl's. by5. 0

* multiplying HOLDR (mi) ENTER and ENTER (in) I IOLDL:

HOLDR (=s si) HOLDL (DI)

He drank from thc one in his right hand-.

DRINK (d) HOLDR (A 3)

g Drinking is now known to have occurrcd after entering (by miultiplying WA) and
(AlI) inverse), but the relationship to holding the second cup'is not fully known. We
derive:

DRINK (> mi) ENTER()2

DRINK (> d f mi oi) HOLI)L )39 0

-- Pitt thw' cup'. t'iA) iii ilic i~iblk- mid 10t thc ro'im
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From the first proposition deduced from this Statcmcnt;

HO[.DR (mi) LEAVE (A4)

We infer that leaving occurred after entering and drinking:

DRINK ()LEAVE (134)

ENTER LEAVE (D5)

HOLDL (< c fi rn o) LEAVE (136)

Thcn. adding the final assertion

HOLDL (i) LEAVE (A5)

]cis us derive that the cups w.crc held for the same periodJ of time. and that John
dnkwh'ic holding the scLOnd cup as wcll:

HOLDR = IOLDL (M7)-

HOLDL (c) DRINK (D8)

The constraint propagation algorithm, we sce, only derives significant new asser-
lions about the relationships between intervals, and automatically halls when no
more can be drawn. Such nice behavior is rather more difficult to obtain when one
tries to feed a collection of axioms about time to a general-purpose theorem prover!

The basic propagation algorithm can be elaborated in several ways. It is ob-
viously costly and unnecessary to maintain a complete graph for the constraint
netwkork. For example, the system may deal with a numnber of intervals that occurrcd

* vestcrday, and a numnber that occurred today. Rather than explicity link every node '

in the first group via a "before" arc to every node in second, wc introduce refer- V-

* ('lence ierviils. All of yesterday's itrascan be asserted to be during a certain
reference interval, say YEST[ERDAY, and all of today's intervals to be during
IODAY. Finally. YESTERDAY is asscrrcd to be before TODAY. Constraint
propagation is no( carr icd through reference intervals . Instead, when a query comes

in concerning intervals not directly related, one answers it by climbing up theA
reference hierarchy. A more thorough discussion of reference intervals (including
their use in maintaining a notion of the present) is found in Allen (1981a).

Alternatively, one may desire to ensure that the propagation algorithmi is c-onj- *.-

plete. Although basic constraint propagation seems to capture most of (he~ inferences
that are -obvious" to humans, in certain cases it does not constrain all arcs as
tightly as po~ssible. A more complex algorithrii that builds a constraint hierarchy
fWrcudcr. 1978) can he shown to fully capture the tempoxral semantics.
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2.2 Reasoning About Durations
An important aspect of time intervals is that they have durations. So far, thcre is no
way to assert that interval X lasted for 45 minutes, or that X lasted for twice as long
as Y. Such knowledge can have consequences for the interval logic dicu,,cd
above, for instance, if X has a smaller duration than Y, then X is con,,traincd not to .

contain Y. This section describes a logic for reasoning about durations, w hich is

separate from, but integrates nicely with, the basic interval logic.
The simplest approach might be to choose a basic unit for durations, say seconds.

. %

and assign a real number of those units to every interval. This is clearly inadcquaic.
since knowledge of durations is often approximate:

The trip lasted several hours.
The reaction takes two tofive minutes to complete.

The next stage might be to use fuzzy numbers for durations. Thus one might cncodc
the second statement above as

REACTION = 1120 3001 SECONDS
$

Note that it is somewhat clumsy to use the same units for all durations. ihc problcm' ,

is exacerbated when the size of unit is completely inappropriate: for example.
encoding knowledge about geological eras in microseconds! Even worse, much
knowledge refers to no fixed scale: -

* 0

Driving across town takes longer thin walking.
John ran around the track three tines while Mary played icni,.

Perhaps suprisingly, all these statements can be rcprcscnted in a unilorm mmncr.
Our solution is to construct a constraint network for duration knowledge (se % 1)a". . 0

1981, for a very similar treatment of spatial knowlege). The nodes are time (tr- I-.-..
vals (as before) and the arcs are labeled with fuzy numhcrs. where a yu//y niuihcr
is an open or closed interval over the positive real numbers together with inltnity. :;.

An arc indicates that its source node is a fuzzy multiple of its destination. The 1 0
example statements could be rcpresentcd as:

TRIP 12 101 HOURS
REACTION 12 51 MINUTES
DRIVING (I =) WALKING I 0
MARY-PLAY-TENNIS 13 31 JOIIN-RUN-AROUND-TRACK

Incremental constraint propagation. using standard fuiz' multiplication. can be
used to update the constraint network as new information arrive"

The ncxt brief cxamplc shows the integration of scaler and relative duration
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kno" led~e. Suppoise 'i ne and Bcii travcl across town, the first by car, the Utter by
hus. The bus ride is kno\%n to take 30 to 60 minutes.

BUS 130 601 MINUTES (A6)

Other real world knowledge states that the car trip should be faster:

CAR (0 I) BUS (A7 --.

That is. ,he car trip is between 0 and I times as long. Thus the car trip is between 0
and 60 minutes, exclusive:

CAR (0 60) MINUTES (D9)

Now suppose we learn that thc car trip took at least 45 minutes:

CAR 145 .) MINUTES (A8.

Propagation then narrows the constraint on the length of the bus ride:

BUS (45 601 MINUTES (D10) 0

In more complicated situations, ceitain units (such as the "standard" time -'

units-minutes, hours, weeks, etc.) can be used as reference durations to keep the
network of managable size.

2.3 A Unified Inplementation
A time interval logic system and a duration logic system as described above have
been implemented in LISP. Since certain interval logic assertions yield duration
information, and vice versa, an interface program links the two systems. The
following example demonstrates constraints liowing back and forth between the S

interval and duration systems as the temporal information gleaned from a story
fragment is processed.

Moc and Larry began reading Priuipii Matiumatic'a.

The two reading events could be simultaneous, or one could last longer:

NIOE-READ (= s si) LARRY-READ (A9)

MWNe read for over an hour.

Now a duration assertion is made:

MOE-READ ( I HOUR (A 10)

:j° .- .-

L;trr, ',i<ippcd reatlnt and fell at,,.'c atiler W1 nmm .'i""" """
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This statement contains both intcrval and duration information. Thc fir,,t is thc
assertion that Larry's sleep follows on the hcels of his reading.

LARRY-READ (in LARRY-SLEEP AIS

Next comes the duration assertion:

%LARRY-READ 110 151 MINUTE (A 12) *4 4

*Given an assertion relating hours to minutes,

MINUTE 160 601 HOUR (A 13

The duration reasoner first deduces Moe's reading time in minutes (or Lan" in
hours), and the relationship between the two:

MOE-READ (60 m) MINUTEI)

* ~MOE-READ (6 x) LARRY-READ It

When (1312) is added to duration network, the interface program noies that it
potentially constrains the interval network as well, since it implies that Nloc's
reading event could not be during Larry's reading event. So thc interval assertion Is
made:

MOE-READ (< > c Si fi m mi o oi) LARRY-READ (D 13 --

Combined with (A9) above, this means that Larry's reading n1iu1, ,J~irl Noc'v

MOE-READ (Si) LARRY-READ i4

Finally, interval constraint propagation adds the fact thait Uirrv s sleeping 111Wr havC
begun while Moe read, but it's nut known whether it contlinued on alterward.

LARRY-SLEEP (d f oi) MOE-READ u)5

More elaborate examples can be devised where a duration constraint triggers ain
interval constraint, which eventually triggers another duration constraint, and so oin
for several iterations.

* 3 Problem Solv'ing with the Temporal Reasoner

Givcn the modecl of temporal reasoning. wve cain C0ilNider hovm it aiiIcco' mir aip-
proaches to plannini nd problemi-sol 111L! I,% (uil" trrcnt pr'l'lcmi oki haxc i
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quite cnde inodel of lime: tlc world is represented as sets of facts, each set
desci, ing an ils[ antan cous slice of tiinc (a state). An action is a function from one - - -

state to the next. Therc is no notion of an action taking an, tlmc. A goal description
is simply another state. The planner attempts to find a scquencc of actions that will
transfonn the initial state into the goal state. V

Stat-hased models do not casily allow for the possibility of simultaneous ac-
tions. or actions or events not caused by the agent. In addition, (he goals described "

arc conflined to one time instant. Thus wE couldn't express a goal such as "Put
hhock A on 13, and then later mio - A to block C." Goals of this form arc nut as
uncommon as they might seem. For instance, the above goal statement might be the
description of how, to signal something to another agent.

There are other problens that have been aoJrcsscd by some systems. For in-
,,tance. McDermott (1978) allows constraints on the solution to a problem such as,
'Don't violate goal .r during the solution." Vere (1981) allows events not caused

hN the acent provided that there is a reasonable estimation of the date at which the
c'ent wAll occur. These arc both attempts to introduce more general world models -.

into problem solving. lhe foregoing temporal reasoner seems to suggest a model of
planning that may be able to incorporate all the above and more into one uniform
fr;ime" ork.

The model of the %orld we suggest is that the current state consists of all the
planner's knowledge of the present and past, and predictions about the future
expressed in an interval-based temporal logic. Planning an action does not update
the state of the world but updates the predictions about the world. An action might
affect beliefs about the future, the past, or in fact the present. Thus the states in this
n model are states of the planner's knowledge and independent of the temporal as- .
pects of the world being modeled. We could generalize this further by explicitly
mitroducing a blief predicate and indexing it by time, but this is unnecessary for the . -

preent discussion. 0

In thi% view. a plan is a coIlection of assertions viewed as an abstract simulation ..-

,,f some future world, including actions by the agent, other events, actions, and
tates. Most of thec, actions, event, and states must be causally related if it is to be

a reasonable plan, though it may be simply known that certain events (and states) ,:,

%&ill (o:cur without any causal explanation. -

A goal is a partial description of the world desired. This description is not
confined to the world at some specific time. A goal may include sequences of statcs
Iget A on B. then later get A on C), restrictions throughout (never let ON(B,C) be ".
true), or any other set of facts expressable in the temporal logic.

Problem solving can be approached along fairly traditional lines. We could use *

nmeans and analysis, decomposition of actions, etc.. (e.g., Ernst & Newell, 1969; .,".-,,.
likcs & Nilsson, 1971; Saccrdoti, 19771). Action descriptions may be quite stan-
(dard. except that each part of it will be teniporally qualified. For the example
below, we will use a SI RIPs-like action formalism. An interesting side effect of
thi', approach is that the temporal reasoner may do a lot of the problem solving for % ,-

74'.-.

7J42 " "' ". '

II',P",' #',4 . ."%" 4',+ .%, . - ." -,, -. ." -"- ." ." -" -" -- ,4 -- .- - " -" -.... "." . ". . . " " " " " ° ° """

.-,.:. . .:-... -,.--. ::,::.::.::. =======================================:. :.-:..:.-':.. .- .::::,::.::..:..::.:...:: :: :+- .. .:... ,::-:- :-.:.:.: .'..-



- v)

us. For instance, It will allow for nonlinear plans along the line,, ol Sj ccrd()ti

(1977), and in fact do all the bookkeeping for deriv Ing ordering consLr intV bct~cer.
actions.

Consider a very simple example. We want to stuck three blocks, A. B3. and C.
*stariing from a world in which each is clear on the tabie. %khite this cximpic: i,

*trivial, it allows us to demonstrate our approach in a fairly short spacc. 1Thus it the
initial time interval 1, we have the facts

holds(CLEAR(A).l)
holds(CLEAR( B).l)
holds(CLEAR(C),l).

* Our goal description is to build a tower that stands during time interval F. Thu,, Ac
*want

holds(ON(A.8),F)
holds(ON( B,C).F).

* Note that as this stands, it can be considered to be a (vcrv abstract) plain. It. *

* however, has no causal connecctions between the initial and final states, so is, not
* considered to be a useful solution. As we go along, we will list the tc11iporal

constraints that are added. Our first constraint is that I is before F,

I I~)F (A13)

Let us assume Sacerdoti's strategy (or conjunctive subgoals: we shall solv-e each
independently and then check for interactions. Each ON(x.y) goal can tic achielved
by an action PUTON(x,y) that has preconditions that x and y are clear, and an cltcct
that x is on y. With the temporal augnrtation. we have

occurs( PUTON(.r.v%) .1)
only if, holds (CLEAR(x).tlI) where t linishcs I I

holds (CLEAR(y).t2) wher finislics (2
and the effect is holds (QN(x,y).t3) where ( nuxs 13.

Applying this action description to our first subgoal holds 4ONIA.B),F) whe intro-

duce the following assertions into the plan for some time TAB:

occurs(PuTON(A,B),TAB) where I before or meets TAB;
holds(CLEAR(A).TABpI) where TAD finishes TAl3pI
holds(CLEAR(B).TABP2) whcrc TAB finkshcs TABp2
holds(ON(A.B),TADc whcrc TAB mnc's JA~e

and F is during TABc
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To sumniarUnc. thc temnporaIl constraints added are:

I < ni) TAB (A14)

TAB lf) TAE~pI (A 15)

TA13 tOTARp2 (A 16)

-. TAB (m) TABc (A 17)

F (sf (d) TAE~c (A 18)

-These relationships can be shown pictorially if we let Time increase from left to
right, and use dotted lines to indicate uncertainty as to thc position of the ends of

-intervals. Then (hecConstraints (A 14) to (A 18) can be shown as Iii Figure 3. The
constraint propagation algorithnm infers all the obvious relationships (e.g., TABpI 4-.

(in) TABe) implicit in this diagri.
Do (he same for an action PUTON(B.C) during time TBC. and we get the

constraints:

I (CV nil TBC (A 19)

I1BC (n)TBCpI (A20)

.4.TBC M0 TBCp2 (A2 1)

- TBC (in) TBCc (A22)

F (s f d) TBCc A23)

Now general world knowledge must come into play. We know that CLEAR(x)
-, and ON(y,x) arc mutually exclusive, so [I*

holds(CLEARWx.t I) and
4, hold&ON(y.x).t2)

are truc. then it must be the case that t I and t2 are disjoint, i.e.,

4.4

T ITA

F
-- TAIIp2---

Figuire 3. T[le Inleriall Asociaited %iti, l1rroN (Al?1)
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Examining the above plan, we find

holds(CLEARsB.TABp2) and
holds(ON(A,B).TABe),

and so could infer that . ''

TABp2 (<~ > mn mi) TABe,

but these two intervals are already further constrained to he TAL~p2 (in TAlle.
which was derived from constraints in Axioms (A 16) and (A 17)[ As a conscqucncc.
this has no effect. A constraint that is not already known. howcver, arises fromi thce
facts

holds(ON(A.B).TABe) and 0

holds(CLEAR(B).TBCp 1).

giving us

TABc (< > m mi) TBCpt1. 12 4)

However. the constraint (A18) and the constraint TBCpI < F liflcrred Irou
Axioms (A20), (A22), and (A23) eliminate the possibility that TAI~c i% less than or
meets TBCpI. This situation is shown in Figure 4. Thus we arc left vilah the
conclusion that TABe is either after or met by TBCpI:

TABe (> mi) TBCp1. t)D17)

This is shown in Figure 5. The relationship bctween TAB and l13C. thec tiic" ()I thc S
two PUTON actions, is now constrained to be

TAB (e di si fi f > mi oi) TBC I)

Thus, PUTON(B,C) must be completed by the timic PUTON(A.B3) coiipltc. I'lic
reason that this constraint is not stronger so far is that therc is no Implicit W%%w~piion
that actions cannot be simultaneous in this niodcl. 11' wc add such a constraint

TDC
TBCPI

T11Cc-

STAMk.

Figure 4. The kc,;uIIe (if AIR. A20. A22. aind A23
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ITttCc

---- --~l -- -

Figure S. The Result or Adding A24 (Producing D17)

* (hrning us inI line with miost current planning systcmis), thcn we have a new
constraint that PUION(A.Bh and PUTON(B.C) must be disjoint:

TAB (< > m mi) TBC (A25)

Of these, only the (> nl) relationships are possible, thus we derive

TrAB (> ml) TBC. (Dl19)

i.e.. PUTON(B3,C must occur before PUTON(A.B3). ThuIs, In effect, %ke have used
* . thc temporal inference macwhinery together with some general knowledge about the

world to capture thc action orderinig as done by the resolve conflicts critic in
Sacerdoti. This final configuration is shown in Figure 6.

As scen in the forcgoing examplcs. actions may take time and may occur simul-
tancously. In a more complex example using hierarchical planning, as In Saccrdoti,

*we can model two actions that could occur simultaneously at one level of abstrac-
lion, but then when they are decomposed would have ordering constraints on their
subparts, It is even possible that the subactions of two abstract actions could be
intcricavcd. For more details on this. sce Allen and Koomen (1983).

4 Future Dire ctions

We have presented a model of tlim based on hierarchically organized time intervals
and specified an inference technique based on constraint propagation. This model .0

* appears to account for much of the temporal reasoning that is required for story
comprehension and problem solving. There are cases where the technique, based on
maintaining pairwisc: consistency betwcen temporal relationships, is inadequate.

I TBc

TAB

1TA~k

Fi.'tirc 6. The Final? (Cnfigisralion, with D)19
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For example, in thc problem-olving domain wc can allow" actio, it) (),cur SumItl1- S

tancously. or we canl constrain acions of a certain typic to oc.cur SCqucnhiI\1 \ e

cannot, however, constrain the domain so that t~o actions of a ceriain tkpo nia hc
simultaneous but more than tv~o arc nlot allowecd.

For example. consider the state of holding a block. A two-arnicd robot ,Aoulj K
able to hold two objects at one time. In other words. if TI., T2, and T3 are: the, rim> 0

of three distinct holdinL! states, then the three can never sirnultancousl\ o) crl ap
They may pairwise overlap, however. Such a constraint cannot be cxpres,cd in the
current system. Generalizing the technique to allow suc constraints nut', hc coni-

putationally prohibitive. If so, we shall have to introdue ,pcIaJ-purimno: n1L'chJi-
nisms externial to the temporal reasonine system to handle such cases,

The other major area of investigation conccrnis the organization and u,,c ol --

reference intervals in problem solving. Reference intcrval,, arc the mcchanf\:n hor
controlling the computation and must be used extcnsivelv In ain efti1cient pl~innci
Currentlv. our reference hierarchy mnirrors, the action hierarc:hy cacoh jcllufl 11\ .

reference inter-val Ahich clusters together that action's precondtimn,,, cffects. and
subactions. Problems arise from interactions between actions \\ e arc eun,,dcrine-

various ways to adjust the reference hierarchy A~hen such ntcraetbons ()Cr

0
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AbstracI

The problem of recognizing an agent's plans arises in many contexts in work in a:nIfcal
intelligence. The pian recognition techniques suggested in the literature are rarely forall,.
justified. We view plan recognition as a special kind of non-monotonic reasoning. and
demonstrate how formal techniques developed for such reasoning -- name',
circumscripton and minimal entailment -- can be used in plan recognition.

The first half of this paper reviews a broad range of work in artificial intelligence and
philosophy which relates to plan recognition. A formal treatment of a simple case of plan
recognition follows, and the paper concludes with proposals for future extensions of this
work.

This work was supported in part by the National Science Foundation unde. gr.: .
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Chapter 1
Introduction

.:4

1.1 Logical Theories of Plan Recognition '
%...+..

of ;Plan recognition is the process by which an observer infers the goals and intentions
of an agent. It is a special kind of reasoning from effects to causes: physical effects, such
as motions or utterances, are related to psychological causes. The observer can then predict
the future actions of the agent, and either help or hinder the agent in the pursuit of the "
agent's goals. Theories of the mind based on work in artificial intelligence and cognitive
psychology stress the importance of plans, structured representations of collections of
actions, facts, and goals, in this process. The observer draws upon the information stored
in a library of common plans, together with a plan inference algorithm, or set of plan
inference rules, to perform the recognition.

A logical theory of plan recognition relates sentences describing observations to
sentences describing the resulting mental state of the observer. Yet a logical theory of plan

' recognition is not a psychological theory, in the sense that specific logical rules correspond
to specific psychological mechanisms. Nor must a logical theory predict specific kinds of .....- ..

errors people typically make. Instead, a logical theory describes the ability of a perfectly
competent agent. Perfect competence is usually identified, in the philosophical tradition, ,

with perfect rationality. The concept of perfect rationality is hard to pin down, unless one 0
simply defines it to be, for example, maximizing expected utility. It is unclear, for
instance, if a perfectly rational agent must be logically omniscent. None the less, some
aspects of perfect rationality seem uncontroversial: an agent should not hold contradictory -"

beliefs, or at least should be prepared to revise his beliefs if he discovers a contradiction;
an agent acts in order to achieve his goals in an efficient manner, an agent tries to keep his
beliefs about the world in accord with the actual state of the world; an agent believes that .
other agents are rational beings like himself; and so on.

Is a logical theory of plan recognition possible or even desirable? It is possible to -

A argue that plan recognition is properly extra-logical, a way of reversing parts of a theory of
action; the process is fundamentally heuristic. looking for a logic different from ordinary " .

logic is misguided. But these objections can be answered. First, plan recognition must be ,

logically formalized in order to develop a complete theory of planned behavior. Not only
do agents commonly assume that other agents will anticipate their desires, certain acts -- in ".
particular, speech acts - are planned in order for another agent to recognize the intentions -
behind them. Second, although particular plan recognition algorithms may not be provably
correct or complete, it is important to have a precise statement of the problem which they
are approximately solving. Heuristic algorithms should be viewed as special-purpose
deductive rules, "hard-wired" theorems, rather than as simply rules of thumb. Finally, a
logical theory of plan recognition does not purport to replace deductive logic, and may even .

-," be expressed in traditional first-order logic. Probability theory is an example of a very -S-
successful framework for reasoning from effects to causes which, as (Kyberg 74] shows,
can be given a precise definition in first-order logic.

Philosophers have identified three main modes of reasoning: deductive, abductive,
and inductive. They are illustrated by the following syllogism:

K. 753

-. . . .. .. . .. .

.... .... .- .......... ..... '....... . .... "..'". " .. "........ ..... .'."."--'-..--.-



I A%

w ,- , . q-

i. All men are mortal.

ii. Socretes is a man.
iii. Socretes is mortal. ) •

Deduction allows one to conclude (iii) from (i) and (ii). Abduction allows one to conclude.
in the proper circumstances, (ii) from (i) and (iii). (Those circumstances include not
knowing that Socretes is some creature other than a man.) Induction allows one to
conclude (i) from many cases like (ii) and (iii). Plan recognition is thus a special case of
abduction. Philosophers such as Peirce (Goudge 69] have argued that logical theories of
abductive and inductive inference are both possible, and necessary to help describe the
greater part of scientific inference.

I propose to begin to develop a logical basis for plan recognition, which will be used
to justify and explain particular plan recognition algorithms in terms of conceptually simple
model-theoretic operations.

1.2 Kinds of Explanation

The driver of a '63 Pontiac sedan turns on his left turn signal at the corner of Oak and
Hillcrest. What explains this action? Many explanations can be offered, including: the .'-.. .,.*

driver wants to signal a left turn; the driver wants to make a left turn. or the driver wants to
buy a set of spark plugs at the auto parts store at the end of Oak Street. These explanations .-..-..

are all compatible, and exhibit increasing degrees of speculation on the part of the observer.
They also show different ways that a particular action can be connected with a plan.

The driver signals a left turn by turning on the left turn signal. Using the .
terminology of [Goldman 70], turning on the signal generates the act of signaling. One act
generates another if simply performing the first act in appropriate circumstances counts as
performing the second. In this case, the appropriate circumstances include being on a
highway, and not, for example, being parked in a garage. The driver signals the left turn % %
as part of the plan for making a legal left turn. Finally, making the left turn, and then
driving down the street, places the driver at the auto parts store, and thus enables him to ...

buy the spark plugs. Sometimes it is useful to distinguish these three kinds of explanation,.-
which will be called generational, step, and enabling. Some plan recognition algorithms
provide different mechanisms for each kind of inference. The distinctions between the
types of explanation are not always clear (nor may they even be important); different.. .
formulations of the same problem can often assign basically the same explanation to one
category or another.

1.3 The Nature of Plan Recognition

Suppose we observe a woman enter a train station, as in [Allen 80]. The known _ _
plans involving train stations are those to meet or to board a train, and so we conclude that
the woman is in fact performing one of those plans. But then we may discover that she is
actually looking for a lost dog. Or suppose we learn that Mr. Smith withdrew a large sum -

3f money from his savings account and immediately went to the race track. The obvious " .

tempt tion is to combine these pieces of information, and conclude that the dissolute Mr.
Smith is going to blow his family's fortune on the horses. But the actual explanation may .
be much more innocent. Mr. Smith mdy be at the race track in order to hand out religious
tract, and the money may be for a persona] computer he is buying later that afternoon.

75'4

%. ..%.-., * S



- = w . ~-.. ..-
* Sr

Plan recognition is a paradigmatic case of non-monotonic reasoning. On the basis of
partial evidence, the observer jumps to conclusions not sanctioned by deductive inference.
In the first example above, we assume that the known plans involving the train station are
the only plans involving it. In the case of ,Mr. Smith, we assume that all evidence should •
be accounted for by a single explanation. Additional information -- such as the fact that ",-.N .€ .
Mr. Smith never gambles -- would have led us to draw different conclusions. AN

These examples illustrate one of the difficulties in formalizing plan recognition in
monotonic logic. Let L be a set of axioms for planning, plan recognition, and general real-
world knowledge; B be a set of observations of the actions performed by an agent; and k 0
be the first-order provability relation. From B together with L we wish to infer an . :
explanation for B, in terms of the intentions of the agent. That is, we wish to find a .
statement P such that ,

BQL I- P •

where P describes the agent's overall intentions. No matter what additional observations or .
pieces of world knowledge are added, P still can be derived. In particular,

BQLQ{-,P} I- P

For example, if from observing Mr. Smith going to the racetrack we conclude that Mr.
Smith wants to gamble, then from observing Mr. Smith going to the racetrack and not
gambling we can also conclude that Mr. Smith wants to gamble. While the basic problem
here seems obvious, there are proposals for formalizing plan recognition which have -

precisely this property. 0 0

Therefore - must be replaced by some non-monotonic derivability relation. Let us
call this relation (L) - to indicate that it somehow incorporates the information in L. This - .-

relation should allow the following statements to simulataneously hold:

B (L kP
B Q { -P } -() .'--.

There are a number of ways to go about defining (L) . These include:

1. Probability theory (section 2.5).

2. Default logic (section 2.6).

3. Let L be a set of axioms for planning. Define a function 0 which maps L and B into a S
stronger set of formulas such that

O(L,B) -P iff B (L) P
(Chapter 3).

4. Define (L) k as a predicate in a (monotonic) meta-language, or a language with *
quotation of formulas, in order to discuss non-monotonic inferences from sets of
sentences.
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The first two approaches are discussed in the section on related work below. The
main piece of new work in this proposal, chapter 3, develops the third approach. There I
show how the axioms of a theory of planning can be systematically augmented to yield just
the implications desired for performing plan recognition. These manipulations are given a
precise (model-theoretic) semantics, and, I argue, can be justified by general principles of
rationality. The last alternative above is the most general. In my proposals for future " .
work, I am leaning toward using a meta-languistic approach, in order to have an explicit .
recognition relationship available, for use in those cases of "intended recognition"
discussed above.

1.4 Applications of Plan Recognition i
Plan recognition is a central component in many programs of research in artificial

intelligence. These include work on story understanding [Bruce 81, Wilensky 83].
"helpful" natural language systems [Allen 80, Cohen, Perrault, & Allen 81, Carberry 83.
Litman 84], program-writing assistants [Rich 8 1], high-level computer system interlaces
[Huff & Lesser 82], and models of strategy and conflict [Carbonell 79].

The general problems of plan recognition are of secondary interest to these
researchers, who are mainly interested in developing sophisticated theories of the various
application domains, which include some aspects of plan recognition. My work should ..
prove complementary to theirs; inspired by the issues they have raised, and providing a

* general foundation for the plan recognition techniques they have developed.

1.5 Outline of Paper ..

Chapter 2 discusses related work on plan recognition, expert systems, and probability
theory. Chapter 3 shows how plan recognition can be understood as a process of defining
a set of "minimal" models which contain the observations. This process is given a proof- -
theoretic definition, and employs and extends McCarthy's circumscription operator in a
novel way. I also discuss a simple plan recognition algorithm which is, in restricted cases. -.-.

correct according to the semantic theory. In chapter 4 future directions of research are
discussed.
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Chapter 2
Related Work

This work builds on efforts in several different areas of research. In artificial
intelligence, plan recognition has received most attention from people interested in plan-
based theories of discourse. Section 2.1 reviews the plan-recognition aspects of the work
of Allen, Litman, and Cohen and Levesque. Plan recognition is also a major part of the
work on automated consultants, discussed in section 2.2. Many of the problems
encountered in plan recognition are instances of more general problems of reasoning from
effects to causes. Section 2.3 discusses work on medical expert systems which addresses
some of these issues. Section 2.4 discusses the early and important psychologically- ... ,"
oriented work on plan recognition by Schmidt, Sridharan, and Goodson. Finally section 0

2.5 briefly overviews work on story understanding, and particularly that by Wilensky.

Outside of artificial intelligence, probability and decision theory provides the most
popular framework for dealing with the kinds of concerns present in plan recognition. In
section 2.6 I explain why probability theory alone does not immediately solve all the
problems of plan recognition and suggest that my work be viewed as complementary to, ,
rather than in competition with, probabilistic approaches. . .

One of major ways in which my work differs from previous efforts is my attempt to "" .
formally describe the non-monotonic aspects of plan recognition. Section 2.7 describes
work by McCarthy and Lipschitz on circumscription. Their model theory for *
circumscription will be generalized and incorporated in my modql theory for plan
recognition.

% %, ,
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2.1 Plan Recognition and Discourse

2.1.1 Allen and Perrault.'

Papers by Phil Cohen and Ray Perrault [Cohen 78] first formalized Austin's and
Searle's speech act theory in terms of planning. Utterances were viewed as actions which -
transformed the beliefs of the speaker and hearer. James Allen [Allen & Perrault 80] -
extended the analysis to include plan recognition. Plan recognition is necessary to account .
for the fact that a speaker need not fully and literally execute a speech act in order to achieve
its effect. Instead, the speaker need only perform an act which suggests to the hearer that
the speaker's overall intention is to achieve the desired effect. Phenomena accounted for by
plan recognition include indirect speech acts, understanding of sentence fragments, and
certain kinds of context-dependent implicatures.

Allen analyzed plan recognition in terms of a set of plan recognition rules together
with a heuristic control strategy. The rules isolate those inferences which are plausible, or
are suggested by the recognizer's set of beliefs. The control strategy determines which of
these inferences are likely, or should actually be accepted. This very general framework is
also applied to planning, where rules are used to suggest possible future actions, and the
control strategy determines which actions to ultimately perform. Allen's most influential
achievement was in determining a powerful and universal set of plan inference rules. The .-
corresponding control strategy was less well developed, but did grapple with some
important and difficult issues.

Underlying Allen's system is a state-space formalization of planning. In order to be
precise in our termirology, it is convenient to develop the system in several steps. Imagine
that the universe consists of a set of instantaneous possible worlds; a particular sequence of
these worlds is distinguished as actual. Actions are functions from worlds where their
preconditions hold to worlds where their effects hold. A state is a set of propositions
which describes a set of possible worlds: namely, those in which all the propositions hold.
An action instance links two states if the set of worlds obtained by applying the action to S
each world described by the first state is included in the set of worlds described by the
second state. An action description is a syntactic rule for determining what states can
be linked by what action instances. (In much literature on planning it is common -- though
a bit misleading - to blur the distinction between actions and action descriptions.) Figure 1
illustrates this terminology.

An action instance may have a body, which is either: a sequence of more primitive
action instances which specify how that action is performed; or a proposition, such that any ' *-'" -

plan which achieves the proposition is also an instance of the action. A planning -''-,
problem is a set of action descriptions, an initial state, and a set of goal states. A '...
solution plan is a chain of action instances and intermediate states which link the initial
and a goal state. A (partial) plan is simply the initial state and a goal state together with -

some action instances and intermediate states.

Rather than directly synthesizing solutions, however, it is generally more efficient to
adopt a notation which allows us to represent partially ordered plans. A plan is represented
by a directed graph. Each node is either a proposition or an action instance. Arcs link
preconditions to action instances, and action instances to effects. N-ary links may connect 0
actio, instances to their bodies. Figure 2 illustrates a simple plan graph, and two of the
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linear plans which it could represent. Note that the plan graph does not represent an entire
state as a node. A partial plan corresponds, in general, to a disconnected plan graph. The
part of the graph connected to any goal prc"ostion is called the expectation, and tha"
connected to any initial proposition, the alternative. Let us say that a graph is grounded
if it is connected, and all of its leaves are initial state propositions. Any solution plan is - 0
represented by a grounded plan graph, but the reverse need not hold. Once a grounded.,
plan graph is found, it is necessary to check that it represents at least one linear plan. A ..

planning problem is represented by a set of plan graphs, where each plan graph contains % % ,%

the same initial state but a different goal state.

So much is fairly standard. As explained in [Nilsson 80], planning can be viewed as
a (possibly bidirectional) search through the space of intermediates states, in order to
construct a graph connecting the initial and goal states. Viewed at the meta-level, however,
planning is a search through the space of partial plans. The entire original planning
problem is considered one node (or one node for each possible goal state), and the solution
plan another node (ibid). Instead of being linked by actions, nodes at this level are linked
by rules which suggest ways to further specify or alter a partial plan. These plan
construction rules include the backward-chaining heuristics normally hardwired into
planning systems. Allen saw that plan recognition could be formally defined so as to be
functionally equivalent to planning at this level.

A plan recognition problem consists of a sequence of observed initial states linked by
observed action instances, and a set of expected goal states. A solution is sequence of - -

action instances which complete the chain from the last initial state to any goal state. In
terms of plan graphs, either a planning or plan recognition problem is simply a set of partial
plan graphs. A solution is a linearizable grounded plan graph, which further specifies one
of the problem graphs.

While the rules suggest ways to expand a node in the meta-level search space, a
control strategy determines which nodes to expand, and which solutions are good ones.
Any planning problem may have an infinite number of solutions, but most should be
rejected out of hand, because they contain unneccessary or redundant actions. Likewise, a
plan recognition problem may have many implausible solutions. In some cases the system ,
may lack either sufficient information about the problem or computational resources to
come up with any solution. In such cases it is incumbent upon the control stategy to
choose the best partial graph. Planning and plan recognition may favor different control
stategies, as well as different rules. For example, a plan recognition strategy may favor
partial solutions which make most use of observed actions, while a planning strategy may
favor graphs which ground the greatest percentage of the goal propositions.

Rather than simply reasoning about the "real world", Allen's system actually reasons
about an agent's wants and beliefs. KNOWS, BELIEVES, and WANTS are treated as
two-place modal operators, each taking an agent a a formula as arguments. Formulas of
the form

X WANT P
X BELIEVEP 

are sometimes abbreviated as XW P and XB P respectively. When a sentence P appears
in a formula of the above form, we say that "P is embedded by XW" or "P is embedded.-
by XB".

Single propositions, states, or entire plans or plan graphs may fall within the scope of -"
a belief or want operator. To want a proposition is to want to be in a state where that 0
proposition holds; to want a plan is to want one of the sequences of worlds described by
that plan to be actual. When an agent X plans, each plan graph is actually embedded by

759

%S
Z z 6 A



i ::.I-., ...

W7 w
D2 p3 p 5

ACI CTi I eci CTI RCTIa I S

t Si c f p p  p I, a ,.s

Stt Sqcnit fpooiinpadrpeet ols

wS, w6,- w7, -,, etc.

act~~~~~~~, I, isa ntacfacinRTI hr

w- - -, ( I! S

,..'. .. .. '*

Relation of states to worlds,

State S1 consists of proposition p 1, and represents worlds.--,.,-..

w , wZ,w3,w4, etc
Stete Sg consists of proposition p2, end represents worlds
w5, w6, wT, wS, etc--,.-,-

acti1 is an instance of action ACTI. whiere"?.":'

W5 - RCTI(wl),

Figure I

.. 5.-.... ;.

760

Z-5

.A1
*5**.- .-...-. ,-. .

* .. * . . • . - .

-~ --- * 5-.--. -. ~ ' .**5****4** ..*,.* .. **".-.. . .,.5 .

. , '-.','.'... .. .. ,-.S * ,.." * .. ....-. ,-....- 5 . -, .- . . '..- .- - . , -. . . ,; -.-.- ,- .- . j .,.,_, -* . -.-.-. . ,., -. ,. ¢ --
.'.'. '.. ., .'.'..... .. '''. .. . . .',.. '.. ."." ." . ." ...-.. ' , ' .,; .¢..r,' "...-', ". .. . - "." .'.'-. . '...'''',. '.'.. ." ,-,.'.P



. 0

. " i".. ,

li 0

Sg: al Sg: qoal -

1Oc 1__ __

Octoe Iu~l KT24 III I

Sct5 1 s"c a t
Oc: ectact, W3/ n C - b"s,'Ce-.I S- , u

Iia 1Ty initia]2~l 
i

Plan graph (center) and two possible .

represented plans

SI: initial state Sg: goal state S2, S3. S4: intermediate states . :
I* 0

goal 1, subgoa12, initial2, etc propositions

Figure 2 •-

* 0

.' -.. -. ,

I e

".A- .,

* S

,,- ., . .p'

. . . . . . , -. . . . . . ... :9.., . ,,,

• .'.'€",- /','#' ,P / 4 W',, ,, , *° '. o,"",'.@.'," '',,'/ " ."" "J" /"@" " " - ".w . * _ . . .. , i' ,.

. . .• ./'-, e.,',+ f",' ,,J+,, /, ,Ji . %w ',W%, ' ,,p =, p , p~ .",,% ,,p,,, j +e,.' '.,,W'j-V. i-, , •". " i"-"* .'.,0 '

l .i i I ii.-- -- & d _ .. _- _li J ? * l I -



XW. Plan recognition is performed in the context of what the system believes that a,
agent A wants (SBAW). The operator KNOWREF holds of terms for which the agen--
knows the referent. The expression X KNOWIF P abbreviates (X KNOW P) % (X
KNOW -IVP).

Table 1, taken from [Allen 83], lists the plan construction and plan recognition rules
used by the system. The operators =>c and =>i are not logical connectives. but indicate
"likely" or "possible" inferences. As discussed above, the plan construction rules (those
which use the =>c operator) refer to propositions that an agent X wants, while the plan
recognition rules (those which use the =>i operator) refer to those that the system believes
that an agent A wants. But note that both kinds of rules legitimately can apply to either •
kind of problem. Any proposition embedded by SBAW is, of course, also embedded by
the inner AW. Furthermore, in the epistemic logic used by Allen there is no distinction
between what an agent wants and what an agent believes that he wants. Thus, where we
set X=A=S, any proposition embedded by XW is also embedded by SBAW. Figure 3
Wllust'ates how one may begin to search the space of plan graphs in several different ways.
starting at the graph in the upper left comer. (Each step in the diagram actually corresponds
to the application of a pair of rules.)
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Chain backwards:

*action-precondition XW Act =>c XW P P a precondition of Act

action-body XW Act =>c XW B B a part of body of Act

effect-action XW E =>c XW Act E an effect of Act

know-rule XW P =>c XW (X KNOWIF P)

- nested Planning XW (Y WANTP=c if X believes
XW (Y WANT Q) Y WANT Q =>c

Y WANT P

Plan Construction Rules

Chain forwards:

precondition-action SBAW P =>I SBAW Act P a precondition of Ac:

body-action SBAW B =>i SBAW Act B a part of body of Act

action-effect SBAW Act =>i SBAW E E an effect of Act

*want-action SBAW (n WANT Act) =>i n is the agent of Act
SBAW Act

*know-positive SBAW (A KNOWIF P) =>i SBAW P

know-negative SBAW (A KNOWIF P) =>i SBAW -1P

know-value SBAW (A KNOWIF P(a)) =>I
SBAW (A KNOWREF the x: P(x))

* know-term SBAW (A KCNOWREF D) =>i0
SBAW(P(D))

recognition of SBAW (S WANT P) =>i if SEAB (S WANT P
nested planning SBAW (S WANT Q) =>c S WANT Q)

* decide inference SBAW (SBAW P) =>i0
SBAW (S WANT P)

Plan Inference Rules

Table 1: Plan construction and inference rules from [Allen 831
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The most general and important rules are those labeled chain backward and chain
forward, the former used in consuucuon and the later in recognition. These implement a
GPS-like problem reduction stategy. In fact, the other rules can, for the most pa:t. be
reduced to important special cases of these general rules. These are discussed in order.
starting with the plan inference rules.

The want-action rule states that if A wants some other agent n to want to do some
act, then A wants that act to be done. In fact, an agent wanting to do an act is a
precondition for all intentional actions. Thus this rule is a special case of precondition.

Know-term is an important rule which states that if you want to know what a term:

refers to, you may have another goal which takes that term as an argument. This rule arises
because in order to actually execute an action, one must generally know the referents of the
parameters of the action. Thus there is actually a KNqOWREF precondition for every term
which appears in every action. Again, this is a case of precondition-action

On first examination the rules know-positive and know-negative do not seem to
be cases of this kind of forward chaining. An example of the use of these rules is the
situation in which I ask you, "Are the police here?" If I'm a law-abiding citizen, you can
infer that my goal is in fact for the police to be here; if I'm a criminal, then probably my
goal is for the police not to be here. What then is the link between KNOWIF P and either " ':'

P or --t, in the vocabulary of actions and plans? Suppose my goal is P. Before I perform
any other action to attempt to achieve P, it is simply a good idea to check whether P already
holds. If it does, I do nothing; otherwise, I must frind some less effortless plan to achieve
P. Therefore let us add the following action schema to the library of action descriptions:

CHECK-POSITIVE(agenm, P)
precondition: agent KNOWIF P
effect: P
bodv: if P then null; else achieve(P)

CHECK-POSIIVE thus provides the link between wanting to know whether P holds and
wanting P. The achieve(P) clause in the body of the action need not be expanded at the
time the agent adopts a plan containing this action. A very cautious agent may, of course,
do so, in order to foresee what to do in the worst case. There is, of course, a
similar action:

CHECK-NEGATIVE(agent, P)
precondition: agent KNOWIF P
effecti --P ,,

body: if P then achieve(--P); else null

Given these two actions, the know-positive and know-negative rules each reduce to
an application of the precondition-action followed by the action-effect rules..-'...

Know-value is similar to the previous rules. This rule states that if you want to

know if some object "a" has property P, then you may want to know the referent of the
thing with property P. The missing action here is something like the following: .

I
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CHECK-REFERE-NT(agent. the x: P(x), a)
preconditon: agent KNOWIF P(a) 

:V

effect: agent KNOWREF the x: P(x) ---
body: if P(a) then null; else achieve(agent KNOWREF the x: Px),

This is a bit over-simplified; there must also be a condition in the precondition or
body that the agent believes that a is the only thing (or the only thing in focus) that is a P.
Like the two previous actions, this one must be incorporated into plans with care; in
particular, if P(a) does not turn out to be true, then the expansion of the body had best not .
consist of the same CHECK action again.,

The decide-inference involves the way in which one agent can get another agent to
adopt a goal. If you are helpful and friendly to me, then one way I can get you to adopt the
goal P is to simply make you aware that I want P. That is, from the fact that you think I
want you to believe that I want P, infer that I want you to have the goal P. One way to -'-

make this link explicit is by introducing a "cause to want" action. That is:

CAUSE-TO-WANT(A, S, P)
precondition: helpful(S, A) - -

effect: S WANT P
body: achieve( SBAW P)

The discourse planning system by Cohen which provided a basis for Allen's work included
just such an operator. Decide-inference is thus just another case of forward chaining.

Under the plan construction rules, the know-ruie is a case of the backward chaining
rules applied to the CHECK-POSITiVE action above. This just leaves the nested planning ..- ,-
constuction and recognition rules. These rules are used to reason about planning by
others. The nested-planning rule states that in order to get another agent to adopt a goal
P, get him to adopt a goal Q, where we can depend on him to accomplish P in trying to
achieve Q. This sort of indirect interaction is not actually that unusual. Allen gives an ,.,... ,..
example where I want to get my roommate Bill to leave the house, in order to set up a .."*. .."
surprise birthday party. Rather than simply asking Bill to leave, I tell Bill to get
some beer. Presumably Bill will then generate a plan to get the beer, which will
cause Bill to leave the house. Figure 4 illustrates this situation in terms of the .:.: *...
usual effect and precondition links. This does not appear to be the standard form
of a plan. The graph "doubles back" at the points where the planning context ."-

changes from my wants to Bill's wants.

Allen's system straightens out the graph by simply adding a link of
unspecified type from the REQUEST(X, Y, "Get beer") to the Y WANT leave(Y).
This rule and the corresponding recognition rule can be motivated, however, by
considering general principles of rationality. The planning paradigm relies on
the fact that an agent plans and acts in order to achieve his goals. But this ..

principle can be expressed more strongly. An agent's adoption of a goal will,
given certain considerations, cause the agent to intend to execute any plan that
achieves that goal. The considerations include the conditions that pursuing that
goal does not conflict with some more important goal, and that the intended plan
is in some sense the "best" plan available for reaching the goal. Very roughly,
this is captured by the following action description:
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ADOPT-PLAN(Agent, Goal, Plan) "

effect: Agent WANT Plan
body: achieve(Agent WANT Goal) where

effect(Plan) implies Goal
A -. exist G2 Agent WANT G2 A more-important(G:. Goal) A

conflict(G2, Plan)
A optimal(Plan, Goal) %

One might prefer to formulate the body clause above as a precondition clause instead; that
would allow one to consider the time which it takes a plan to be constructed. The . -O
predicates "more-important", "conflict", and "optimal" are certainly not easy to define: the %
nested-planning rule simply ignores those condition. But given even a simplified
version of the ADOPT-PLAN action, the nested-planning and recognition of
nested-planning rules again reduce to instances of backward and forward chaining. ,, ,
Note that the Q mentioned in the nested-planning rule is any substep of the Plan
mentioned in the ADOPT-PLAN action.

While Allen described his plan inference rules as rules of "likely" inference, we have
presented them here purely in terms of a logic of action, in order to isolate all notions of

likelihood or probability in the control strategy. The control srategy selected and expanded
highly-rated nodes in the search space of plan graphs. The implementation details of the
stategy are not important, but the following five "scoring" heuristics it employed reveal
general principles which will appear throughout later work. Again quoting from [Allen
83), they are:

(HI) Decrease the rating of a partial plan if it contains an action whose -"

preconditions are false at the time the action starts executing.
(14.2) Decrease the rating of a partial plan if it contains a pending or executing

action whose effects are true at the tme that the action commences.

These heuristics favor plans which do not contain unnecessary actions. The
predicate "optimal" in our ADOPT-PLAN action tries to capture the same basic
idea. Later we will relate the notion of a minimal model with that of minimizing
the number of unnecessary actions in a plan.

(H3) Increase the rating of a partial plan if it contains descnpuons of objects and
relations in its alternative that are unifiable with objects and relations in its

T heuristic aempis to minimize the number of distinct objects mentioned in a plan,
which again is an approximate way to minimize the number of distinct action-instances in
the plan. As will be discussed later, an operation more general than standard unification is
actually required. The heuristic actually implemented is, roughly: if objects in the ..
alternative and expectation could consistendy be equal, make them equal, and increase the
rating of the plan. This step of "making objects equal" may be better understood as an
additional plan inference rule, since it transforms one plan graph into another, more
specific, graph.

(H4) Increase the rating of a partial plan if the referent of one of its descriptions
is uniquely identified. Decrease the rating if it contains a description that "' .
does not appear to have a possible referenL

Plan graphs containing impossible descriptions correspond to no actual plan.
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(H5-) Increase the rating of a partial plan ifan inescinis found betwee ts,,--.'
alternative and expectation, i.e., they contain the same action or goal.". . "-""""

This heuristic favors plan graphs which are mostly grounded. Because plan graphs ,--- -:
are constructed incrementally, the effect of this rule is to favor shorter plan graphs. Thus.- 06,- , ".."--
like (H I) and (I-U), this heuristic favors plans containing a minimal number of actions. .. .G

In summary: the major contribution of this work was to present a set of universal,.--,-. '-"-plan recognition rules. Some, such as the know-positive rule, appeared rather ad hoc-.

we have attempted to simplify their presentation. Through the control strategy, the system .,.."
did try to find te best interpretation of the observations, not just any interpretation. The !: ;;i
system handled all three lands of "explanation" discussed in the introduction. Generational
explanations are found by forward chaining on the body-action rule, where the body is a i-. -;
proposition; step explanations, by chaining on body-~action where the body is a seqtuence " ""'
of actions. and enabling explanations, by chaining on the precondition-action and •
action-effect rules. ," "-.

The weakest part of the work involves the control strategy. What exactly are the.-..-•...
heuristic rules vying to apprmate' (We've provided some possible explanations.) What "-.'.''.
can actually be recognized from a set of observations can only be detemined by ru nning a "''''''""''
particular implementation of the theory. The plan inference rules by themselves are so •
powerful that practically any alternative could be eventually linked to any expectation. .-,; '-"
Important issues of default reasoning -- such as making terms equal if they could .'""'.......
consistently be so -- arm only casually dealt with. Finaly, the system does not attempt to .,;1'-
deal with incranental plan recognition. The next piece of work addresses many of these -. -...
problems.-'.-."--:--

A. . .A

r . - - ."
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2.1.2 Litman

While Allen's work concentrated on how a single utterance could invoke the plan
which contained it, work by Barbara Grosz [Grosz 77] tried to connect the structure of a
discourse to that of an underlying domain plan. Grosz's account was primarily generative:
how and in what order can a speaker coherently describe the various steps in a task plan. - •
and how does that plan affect the objects that can be referred to by various kinds
of anaphora. While [Sidner & Israel 81] and [Carberry 83] began to extend plan
recognition to deal with sequences of utterances, work by Diane Litman [Litman
& Allen 84] contains the most detailed and concrete proposals. -- '

Litman's plan recognition system includes a set of domain-specific plan schemas, a .

set of domain-independent mwa-plan schemas, and an incremcntal recogniton algorithm. -
The plan and meta-plan schemas are like the action descriptions in the previous section, and
are hierarchically organized. Meta-plans are plans which can take other plans as
arguments. They include, for example, a plan to help a hearer identify a parameter which
appears in another plan (IDENTrFY-PARAMETER), and a plan to insert a repair step into
a plan which would otherv 'e fail (CORRECT-PLAIN). The algorithm constructs and
updates a data structure which represents the plans being recognized. To be precise, the
data structure represents what the observer believes is the state of the joint intentions of the
actor and observer. The joint intentions of two agents are, roughly, those things which .-

they mutually believe they both want. The observer is furthermore assumed to
be totally cooperative, so that whatever it learns of the actor's wants
automatically becomes part of its wants as well. "

Plan recognition is performed incrementally by applying the recognition algorithm to
the current version of the joint plan after each action (utterance) by the actor. The observer
may also plan and execute a response, and appropriately update the joint plan. Implicit
temporal constraints exist between succeeding steps of subplans in the joint plan. At any
stage certain actions may be labeled as LAST or NEXT, to indicate the most recent finished -.

action and nearest future action, respectively. Thus the joint plan includes both past and ..'-.-
future intentions. Figure 5 illustrates this process.

Litman's system is notable in providing a simple, non-probabilistic, highly
constrained recognition algorithm. Many of the complications of the control
strategies of earlier systems are eliminated by declaratively encoding
knowledge of the planning process in meta-plans, and by employing constraint
propagation techniques. For example, cases handled by the rules know-term -

and know-value in Allen's system turn out to involve the IDENTIFY-
PARAMETER meta-plan. Litman's work is also unique in cleanly accounting
for plan suspension and resumption.

We now consider the system in more detail. The joint plan is built as a stack. At the
bottom of the stack is actor's domain-specific task plan. The actor expands and executes
this plan until it must, for some reason, be suspended. For example, the actor may require S
more information in order to actually execute one of the basic actions in the plan. A meta-
plan, such as IDENTIFY-PARAMETER, which takes the lower plan as a parameter, is
then pushed on the stack and expanded. In the course of execution, this meta-plan may be .

suspended as well, and a meta-plan affecting it pushed on top. When an acton is actually :,.

xecuted, it must be a step of the plan on the top of the stack. When a plan completes
xecuuon, it may be popped from the stack .
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The plan recognition algorithm attempts to reconstruct as much of the stack as is
unambiguously determined by the actions so far observed. When it observes an action, the
system attempts to attach somewhere on the stack, according to the following preferences:

1. Attach to the plan on the top of the stack.
2. Attach to a new meta-plan, which refers to a plan somewhere in the stack, and

push that meta-plan onto the stack;
3. Attach to a new meta-plan, which refers to some other new plan. If that other i. '

plan is also a meta-plan, construct a plan for it to refer to, and so on, until a
domain-specific plan is reached. Push everything onto the stack, with the
domain-specific plan on the bottom and the original meta-plan on top.

To attach an action to a plan one finds a chain of body (decomposition) links from
the observed action to a step of the plan, Since one is merely climbing a tree, this process
is fast and always terminates. (This assumes that the agent is actually performing some
combination of known plans. Recent work by Martha Pollack investigates cases where the
agent is attempting to perform a "buggy" plan, so that the recognizer cannot link the agent's
actions to a plan which appears in, or which can be synthesized from plans which appear ",".
in, the common plan library.) The other, more computationally explosive types of forward
chaining are handled by some of the meta-plans. Cases may arise where there are at the .." ./,
same preference level several mutually incompatible ways to attach an observation to the
stack. In such cases the algorithm creates a copy of the stack for each alternative, and stops
chaining. Later observations should allow the system to determine which alternative is the
one intended by the actor. It is important to note that the actor is always executing an action
from the plan on the top of his private plan stack. He may, however, have popped the
stack or pushed a new eta-plan before acting. Therefore the recognition algorithm may
need to manipulate the entire stack before incorporating the action. The ordering of the
preference rules indicates that the observer is trying to build a model of the hearer's .

intentions which introduces as few new plans as possible.

Some of the parameters to a partially recognized plan may be only partly specified.
As the plan is built up, however, constraints arise between various parameters. When one
plan is attached to another, parameters which may consistently be set equal are in fact
made equal. This kind of consistency unification, as mentioned in the previous section. 0

serves to minimize the size of the overall plan. A partially specified parameter to a meta-
plan may, of course, be a plan. Performing consistency-unification between a plan ,.
parameter and a domain plan can have the effect of all of the knowledge precondition, want .
precondition, and nested planning rules in Allen's system.

Table 2, taken from Litman's paper, illustrates the ITRODUCE-PLAN and
IDENTIFY-PARAMETER meta-plan schemas. Dl4rMODUCE-PLAN says that in order
for a speaker to get a cooperative heamr to want to perform a plan, the speaker may request
that the hearer perform some step of the plan. When the hearr reicognizes INTRODUCE-
PLAN, the plan recognition algorithm attempts to make the parameterized plan equal to -.

some present or domain-specific plan, using consistency unification. Thus this meta-plan '".

roughly corresponds to the nested-planning rules. The IDENTIFY-PARAMETER meta- .
plan, as mentioned before, is used to handle information-gathering actions as part of meta-
plans concerning domain (or other meta) plans, rather than as direct expansions of the .. *-.'.-

preconditions of domain plans.
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HEADER: INTRODUCE-PLAIN(speaker, hearer, action, plan)
DECOMPOSITION: REQUEST(speaker, hearer, action)
EFFECTS: WAN-r(hearer, plan) . .

N"EXT(action, plan)
CONSTRAiNTS: STEP(aczion, plan)

AGENT(action, hearer)

HEADER: IDENT'Y-PARAMNEER(speaker, hearer, parameter, action, plan)
DECOMPOSITION: INT-OROEF(speaker, hearer, term, proposition)
EFFECTS: NEXT(action, plan)

KNOW-PARAMETER(hearer, parameter, action, plan)
CONSTRAINTS: PARAMETER(parameer, action)

STEP(action, plan)
WANT(hearer, plan) -. -.
PARAMETER (parameter, proposition) ....'. .,.
PARAMBTER(term, proposition) .

Table 2: Meta-plans from [Litman & Allen 84]

In the examples considered in Litman's paper, the domain plans themselves are so
highly structured that there is no need for "pure" precondition-action or action-effect S
chaining. Whenever two plans are serially linked, they are either substeps of some
common plan which already appears in the plan library, or one plan involves knowledge or
want preconditions of the other. Our knowledge of discourse may indeed be almost
entirely precompiled in this way. The assumption may be less reasonable if one considers
plan recognition in general, where the actor is not necessarily overtly trying to make his - -

intentions obvious to the observer. Suppose you observe me buying sugar, butter, eggs,
and chocolate chips at the supermarket. Then you would be justified in concluding that I
intended to bake some cookies. But while we probably know of a plan such as a SHOP-
FOR(item) and COOK(food), do we really want to conclude that we necessarily have a
plan such as SHOP-FOR-THEN-COOK(item, food)? It seems more reasonable to assume
that some general rule is connecting the two plans. A meta-plan such as the following *

could be used to express such a rule:

HEADER: ESTABLISH-PRECONDITION(Plan 1, Pre, Plan2)
EFFECT: Pre

LAST(Planl)
NEXT(Plan2)

DECOMPOSITION: Planl
CONSTRAINT: effect(Pre, Plan 1)

precondition(Pre, Plan2)

The problem with such a meta-plan, of course, is that it may be just too general, leading
immediately to too many ways to consistently unify its unbound parameters. It may be p
better to have a number of more specific metaplans: for example, one that establishes "have
resource" preconditions, just as IDENTIFY-PARAMETER establishes knowledge
preconditions.

In summary, Litman's work demonstrates the power of metaplans, constraint
accumulation, and consistency unification for incremental plan recognition. More I S
knowledge of planning and plan recognition is declarative, rather than being hidden in a
control strategy. Like Alien's system, Litman s tries to find the best explanation for the '
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observations. The ordered preference rules seem closely related to our notion of rrnnma2
model consttion. UiM=n does not provide a rigorous formal treatment of plans or plan
recognition. No distinction is made in the work between a particular data structure used to
represent a plan and what a plan "really is". While an action or (non-meta) plan may be
thought of as a function from state to state, as in the situation calculus, it is not at all cler ,

what a meta-plan is. Finaly, the precise links between the particular meta-plans she
presents (such as Th.TRODCCE-PLAN) and general principles of rationality and planning *

are not made (although they no doubt could be). The next piece of work we examine
attempts a formal reconstruction of planning and plan recognition from basic principles, but .

makes some important trade-offs in the process.
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2.1.3 Cohen and Levesque _e-.- .-

@ S

• A.I..' ,,.', .,

Recent work bv Phil Cohen and Hector Levesque [Cohen & Levesque 80, Cohen 8, -.. ''4
has attempted to formally characterze the space of possible inferences available to an agent
engaged in conversation. They have deliberately not dealt with selecting between
alternative interpretations of an observation, and have so far been concerned only with
single utterances. Their theory is presented as a set of axioms which elaborate many of the
notions captured by Allen's plan inference rules. Dynamic logic [Harel 79] combined with r-,'. -w
a modal epistermic logic provides the framework for the theory. The goal of the work is to
provide a semantically clean foundation for plan based theories of discourse. based on
general principles of rationality. They claim that philosophical accounts of language which I
simply postulate "speech acts' are too unprincipled, and that speech acts can be formal:%
derived from these more general pnnciples. We will not attempt to evaluate these lingu:s-::
claims, but will examine those axioms that describe general cooperative behavior. These
axioms employ a vocabulay for action which is considerably richer than that usuai'
encountered in formalizations of planning. Terms such as "eventuall.,", "causes'. an d. -"-".-
"can' are given definitions in dynarrc logic. While Cohen and Levesque have dehberate>, 41
tied to keep their system as simple as possible, and do not pretend to offer adequate
definitions of these very difficult concepts, difficult technical problems do arise. One
might also question how intuitive and general are the axioms for plan recognition. My own ., '....,
work has emphasized the non-monotonic aspects of plan recognition ignored by Cohen and
Levesque. Toward the end of this section I shall suggest how it might be possible to merge
the two approaches.

Dynamic logic is a modal logic for reasoning about action. Actions are semanticallv
interpreted as reachability relations over instantaneous states. Where p and q are formulas, ,'-'-
the formula:

(imply p (Result agent act q))

means that the result of an agent performing act when p holds necessarily results in q S S
holding. Semantically, this means that q holds in all worlds reachable by the action
specified by agent doing act from any world where p holds. (Note that Result is a .-.-.
modal operator.) A solution to a planning problem is a formula of the above form, where p
describes the initial state, q the goal state, and act is some compound action.

Cohen and Levesque introduce the modal operators BEL (believe) and GOAL, and 0 0
define know and mutually-believe in the usual way. In order to reason about planning we
need to be able to state such things as: that a state was actually reached by performing a
particular action; that some action will evennualy be done; that in a state, an agent is able
to successfully perform an action; and that doing one thing causes another thing to happen.
Once these terms are defined, we can state the plan recognition rules as axioms. For
example, the rule that corresponds to forward chaining along precondition-action links can 0

be stated as follows:
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Shared-recognition precondition effect:

(imply "i

(B\13 v~ x 0
(and (or (CAUSE x p (CAN x q)) 0

(CAUSE x p (CAN v q)))
(EXPECT y (GOAL x q))

-,(GOAL y -)
(HELPFUL y x)))

(CAUSE x
(BMB y x (GOAL x (GOAL y p)))

(BMB y x (GOAL x (GOAL y (FLITELY-WAIT-FOR x q))))

0

The following example helps illustrate this axiom. Suppose that you (v) and I (x,
mutually believe that if the door were opened, you could leave the room. Formally:

(or (CAUSE me (open door) (CAN you (you leave)))
(CAUSE you (open door) (CAN you (you leave))))

Furthermore, you expect that eventually I will want you to be gone. and you have nothing
against going, and you are helpful to me.

(and (EXPECT you (GOAL me (you leave))) -

•,(GOAL you -,(you leave)) e
(HELPFU-L you me))

This satisfies the antecedent of the first unplication:

(BMB you me
(and (or (CAUSE me (open door) (CAN you (you leave))).

(CAUSE you (open door) (CAN you (you leave)))
(EXPECT you (GOAL me (you leave)))
-(GOAL you -- (you leave))
(HELPFUL you me)))

Therefore, whatever I do to make it mutually believed that I want the door opened (such as
saying, "Open the door!"):

(BMB you me (GOAL me (GOAL you (open door))))

will also make it mutually believed that I do in fact want you to leave. That is, whatever I 0

do will cause you to believe that I want you to have the goal of having me not
have to wait forever for you to be gone:

7...
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0

(CAUSE me
(BM*B you me (GOAL me (GOAL you (open door))) ,.4

(BMB you me ,,*.
(GOAL me (GOAL you

(CAUSE (FINTrELY-WAIT-FOR me (you leave))))

Putting this all together, we have an instance of the shared-recognition precondiuonreffec.axiom:

(and (or (CAUSE rre (open door) (CAN you (you leave)))
(CAUSE you (open door) (CAN you (you leave))))

(EXPECT you (GOAL me (you leave)))

--(GOAL you -,(you leave))

(HELPFUL you me)))

(CAUSE me
(BB you me (GOAL me (GOAL you (open door))))

(BMB you me
(GOAL me (GOAL you

(FINITELY-WAIT-FOR me (you leave)))))

So far Cohen and Levesque have not tried to introduce body-action type chaining
axioms into their system. This is in sharp contrast to Litman's system, which relies on ..
body-action chaining exclusively. It appears that considerable effort is required to even
devise a way to state that an action is part of a longer plan (as opposed to enabling another
plan), since plans are not quite "first-class objects" in the logic; one can only write formulas
about the result of executing a plan.

While newer work may change the details of these axioms, several points are worth
noting. First, all the possible interpretations of an action logically follow from the action.
In the above example, if you also expected that I would eventually have the goal of getting
a breath of fresh air, you would have interpreted my request to open the door both as a
request to leave and a request to air out the room. This may or may not be reasonable.
Worse, if I had said, "Close the door!" in the above example, the axiom could have been
used to prove that I wanted you to leave, since having the door closed enables you perform -.

the complex action of opening the door again, and then leaving the room!

Cohen and Levesque would respond that such interpretations, however bizarre, could •
be correct in some circumstances, and so should follow from the logic. It appears that
blatent contradictions (such as concluding that I want both p and not-p) can be avoided by
stating all conclusions in terms of what my goals will eventually be. (I can consistently
want you eventually to be here, and also eventually to be gone.) Furthermore, the addition
of more complicated "gating conditions" (the first antecedent above) can further const'an -

the applicability of the axiom. Indeed, it is already highly constrained by only considering .. ..
plan recognition where all relevent facts are mutually believed by all parties. ....
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Cohen and Levesque hope to provide a logical foundation for reasoning about -

interaction and cooperation, but not at this point work towards a practical system. [Bler,.kc
851 discusses some of the problems encountered in working out the semantic details of the
various operators (in particular, FINITELY-WAIT-FOR), and notes that a formalism 1 0
which treats actions as objective events, rather than accessibility relations, may simplify
matters. (The CAN operator is also troublesome. It appears that (CAN agent goal) is true
whenever the agent knows of any plan, of any degree of complexty, that achieves the goal.
But then the antecedent of the preconditionieffect rule is too weak, since CAN of
almost any proposition is always true.) But in addition to these logical details, one must -. '
worry about how the various plan recognition axioms should be justified. A foundation
for planning and plan recognition should systematically link rules for planning with rules
for plan recognition. Otherwise the axioms will tend to appear as more or less arbitrary ..

heuristics, rather than general principles of rationality.

My own work has concentrated on the problems of multiple interpretations and
multiple observations not dealt with by Cohen and Levesque. I believe that some sort of
non-monotonicity must be introduced to handle these problems. It is no doubt possible to
extend Cohen and Levesque's system along these lines. For example, suppose the
antecedent to the precondition/effect axiom above were strengthened to include the

condition -,(ABNORMAL p q x y). Then we add an axiom stating that ABNOR.MA.L
holds just in case p also enables some other goal which is incompatible with q. By -
circumscribing ABNORMAL, we can ensure that the precondition/effect rule only applies
in unambiguous cases. This is, of course, only a very vague suggestion. still, one would
hope that something like this could be done, since Cohen and Levesque's work is one of
the most ambitious attempts to date to provide a logic for rational interaction.

.. .-? . .
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2.2 Automated Consultation

A natural application area for the discourse systems discussed above is the e S
human/computer interface itself. The Argot project at the University of Rochester, for
example, worked largely with dialogues between a computer system user and the (at that
time human) operator. A project at BBN studied dialogues between a user and a
(simulated) program that edited data structures. It is not surprising, therefore,
that plan recognition is a central component of several programs of research
aimed at creating automated consultants, systems which would help a person
use a particular, complicated program, or perhaps an entire operating system.

One of the earliest automated consultants [Genesereth 79] helped people use
MACSYMA, a powerful program for manipulating symbolic equations. Genesereth first
created a model, MUSER, of how a user typically breaks down a task when using
MACSYMA. This model relates the task, or plan, structure to the structure of the formulas
being manipulated. Plans are represented as procedural nets [Sacerdoti 77), together with
input/output links between various steps. (The input-output links play both the role of the
plan parameters, and the precondition/effect conditions, in the systems described above.)
Genesereth suggested that plans could be viewed as a kind of structured dataflow graph. A
library contains both common plans, and common mistakes.

When a user had a problem with MACSYMA, he would invoke the advisor, and tell
it both his intended goal and what he had actually done -- using Allen's terminology, he
would give it the expectation and the alternative. The advisor then attempts to construct a
plan graph which connects the two. The plan graph is constructed heuristically, and may
contain errors, such as unsatisfied preconditions. The advisor then debugs the
plan and tells the user what to do.

The advisor used an ordered set of plan recognition rules, which are very similar to
those used by Allen and Litman. The rules apply deterministically: the partial plan is
expanded only in unambiguous cases. An "escape hatch" exists in that the advisor can ask
the user for clarification if all else fails. The rules, in brief, are:

1. Propagate constraints through the plan, along input/output links.
2. Expand downward (plan-body) as far as can be done deterministically.
3. Expand upward (body-plan) as far as can be done deterministically.
4. Try to identify a node from the expectation with one from the alternative.
5. Add a node which is both a subgoal of the expectation and a supergoal of the ]

alternative.
6. Add any entry in the library which contains the alternative.
7. Assume that inputs which cannot be determined are noc required. (This " ".

reflects a common source of error in user's plans.)
8. Ask the user for more information about the plan. .- ,'.':

Genesereth's work raised many issues and techniques which were developed (or
rediscovered) by later researchers. Like Litman's system, the consultant provided a
"limited" inference mechanism, and could not just chain off in arbitrary directions. He did
not, however, formalize the principles above (except in a particular implementation in
LISP), or deal with multiple expectations, belief contexts, or multiple plans.
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The Programrners Apprent:ce (Rich 81] is a consultan: for deve~opine ar,
debugging LISP programs. This ambitious Aork recognizes and deb' s pro''a-.. ra:.r.- -
than plan, fragments. It deals with many difficult notions. such as .:era::on. ass,=7ne.
variables, and the distincton between a function and the impiemenia.:on of afunc::on.
are not yet of central concern in our own work.

An operating system consultant under development at the University of , .

Massachusetts [Huff & Lesser 82] is notable for dealing with multiple. concurrent piar.s. -.- ,
and relating plan recognition to parsing. The system tracks users actions, and allow s
users to specify high-level actions which are disambiguated by context. The system has a .,. .
hierarchical library of operating-system level tasks performed by programmers, such as
compile or edit. Part of the task library is a "task grammar", a grammar which allows
symbols to be rewTitten as extended regular expressions. For example, the plan to update
source code is partly described by the rewrite rule:

updatesource unit=>
((edit compile check_results) I
(edit compile)
(comp ,e check results)
(compile))-

Since a programmer may be working on several different prolects during the same
session, the notion of a regular grammar is extended to that of a shuffle grammar. If e and "
f are expressions, their shuffle, written e$f, is the set of strings constructed by mixi"- .
together a string of e with a string of f. The interleave of an expression e, written e@. is
the expression shuffled with itself, an arbitrary number of times. For example, the fact that
several unrelated programs may be worked on simultaneously is represented by the
grammar rule

0

programn-ing work =>
(doprogramming
do documentation,
make-erroas)@'

The intelligent interface tries to parse the (partial) input of the user as it is recei', ed. It 0
employs heuristics for ordering alternative partial interpretations of an observation vhen: ~parsing. (Huff and Lesser note that the grammar is, in general, context- sensitve so that .'-'.'.

any practical parser must be heuristic-based.) The heuristics try to "rmnirruze" the amount
of mixing performed by the shuffle operator, and the number of shuffles invoked by the
interleave operator. For example, it should prefer the shuffle eeeeffff over eeffeeff.
which is preferred over efefefef. Likewise for interleave, s is preferred over s$s,
which is preferred over s$s$s. The heuristics include:

1. Prefer (linking an observation to) an existing plan instantiation over creating a

new instantiation.
2. Prefer a new related instantiation to a new unrelated one.
3. If alternative interpretations both appear in the same higher-level contairung

plan, prefer the interpretation which appears first in that higher-level plan.
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It is -,.omant to note that these he,.r.s,.cs, %kih are cr0:: s. css of..

*s-ystem. standJ outside the plan grammar. Hi f anl Lesser Ss:;:. ,s1p on *-7

zrounds t hat Pe ople don t ;mrp arournd at, randorm \xhen :he ork A s %x C o r. ~
Leveque wor, th foral part of the work oniv outlines the spa:e of allpssbe

context- independent explanations for an action, instead of the smraer.c space of; reason---:,--
explanation~s.
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2.3 Expert Systems ....

Few connections have been drawn between work on plan recognition and expe.
systems. Yet an early paper by Harry Pople, who was later to become famous for the

nfERNIST expert system, explicitly made the connection between diagnosis. plan
recognition, and even perception, analogy, and intuition as examples of abductive
reasoning [Pople 731. Earlier attempts to automatically generate abductive hypotheses . .?&
(statements which would entail the observations) exhausuvely had not been promising.
The principle of Ockham's Razor suggests that a good explanatcy hypothesis should
imply all the data, and yet be concise as possible. Pople described how this could be
implemented in a system based on resolution. The method is to attempt to generate a linear
resolution proof of the observations from the domain axioms. This proof will not succeed.
of course, but certain of the leaves of the partial proof tree will represent possible abductive
hypotheses. Ockham's razor is applied by factoring across partial trees -- that is. b% 0
combining lower leaves of the tree. This process is illustrated in figure 6. The result of
such factoring, which Pople called synthesis, should be a hypothesis (leaf) which explains
(entails) several pieces of the data. Synthesis corresponds to the unification heunsuc in
Allen's plan recognition system. As I have argued, synthesis is thus a special case of the""-
more powerful consistency unification operator which is actually required in order to
implement Ockham's razor. No doubt drawing on Pople's language, Eugene Charniak has
used the term abducrive ufnicanion for what we call consistency unification.

More recently Reggia, Nau, and Wang [Reggia et al 831 have proposed a formal
model of expert systems based entirely on Ockham's razor. They associate a set of -.- "...
possible manifestations with each disease. Given a set of symptoms (observed -"-
manifstations) M, the problem is to demine a set of diseases which covers M.- and is
parsimonious. In simple cases my formulation of the plan recognition problem also
reduces to this kind of minimal cover problem.

Perhaps the most interesting work on diagnostic systems involves building "deep'
models of the causal processes that create the symptoms [Kunz 83]. It may be possible to
relate the construction of models of an agents intentions in plan recognition system to these
kinds of causal models.

The literature on expert systems is growing explosively, but I will not attempt to
make further connections with iL Most of the work emphasizes matters of efficiently
handling large numbers of facts, and of course ignores all issues of beliefs, goals, and
rationality, In some ways, too, the plan recognition problem is easier than most of those
faced by expert systems, since we can assume that we are dealing with cooperative agents --. :

and not obstreperous diseases. Yet there are tantalizing parallels in the two areas; for
example, the problem of control focus in either a plan recognition or expert system.

I!
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2.4 A Psychologically-Based System % .%" ,.~* ;-../y-:

One of the first papers to explicitly invoke the phrase "plan recognition" was the
report by Schmidt, Sridharan, and Goodson on the BELIEVER system. BELIEVER was % % %

designed to illustrate and test a psychological theory of "how descriptions of observed
actions are utilized to attribute intentions, beliefs, and goals to the actor." [Schmadt 78] -.-
Schmidt and his colleagues conducted experiments in which human subjects were
presented simple linguistic descriptions of sequences of actions by a single agent. The
descriptions were deliberately made stylistically "flat", in order to avoid issues of narration
and rhetoric. The sequences were interrupted at various points, and the subjects were .*
asked to summarize events so far, describe what the agent was trying to do, or predict wha- -

the agent would do next. The researchers observed that: ..

1. Summaries often included non-described, but expected, actions. The
temporal order of non-causally related events was poorly remembered.

2. Subjects did not provide summaries which referred to a disjunctive set of "

plans, but they did provide "sketchy" summaries.
3. Subjects often provided summaries of the form: 'The agent was trying to

do (some act), but failed because (some reason)."

From these and similar observations, Schmidt concluded that people understood and
remembered event sequences by recovering the implicit structure of causal relations
between the events. This suggests the psychological reality of relationships such as
enables or in order to between actions. (Note that such relations are not made expicir
in many formalizations of planning.) The data also suggests that plan recognition is a
single-minded, hypothesis-driven process. Based on the initial observations
(descriptions), the subjects seemed to devise a single hypothesized plan (for the actor).
This hypothetical plan would be incrementally revised and made more detailed as further
observations were made. S

BELIEVER implemented this strategy of plan recognition. On the basis of a model of
"" the "world" of an agent, and a series of statements about actuons by the agent, the system

constructed ard maintained a data structure called an expectaton srrucnure, which recorded
the system's hypothesis about the agent's intentions. The expectation strucmre contained a
single plan graph, similar to those described in the section above on James Allen's work. S
This plan graph consisted of a set of actions and propositions, some of which
corresponded to observations, and others, to domain-specific goals, partially ordered by in
order to and enables links. Unlike Allen's later approach, the expectation structure was
assumed to be connected.

The initial expectation structure could be invoked in several ways. If BELIEVER
was simply told the actor's overall goal, it would construct a plan by backward chaining.
If BELIEVER was told the setting, it would retrieve a "canned" parameterized plan from ,

memory. Finally, BELIEVER could try to infer candidate goals from the observed actions. .- -
While A!len concentrated on this final type of inference, it was only treated in passing in the "
werk . . BELIEVER.
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The actions in an expectc plan typica!' had nrany unbound parameters. As eac: ..
observation was input. BELIEVER tied to match the descnpuon against an expected ac-or,.
(that is, an action in the expected plan whose preconditions were true). A matcn could bin.-
parameters in the action; these bindings would be propagated through the plan. poss:'"--

. mtiggerng other bindings. Failure of the observation to match an expected action r uS:O
trgger hypothesis revision critics. These revision cntics were also invoked if the system
noticed that some event had occurred which would mean that the expected plan
would not work as it stood.

The plan revision critics could change the expected plan in many different ways. by
patching in pieces to take care of "accidents", adding subplans to "undo" side-effects of .'
plans, changing a goal to a closely related goal (e.g., change the goal eat to drink), and so
on. The aim was to be able to recognize plans which contain errors and mishaps. For
example, given the sequence:

John went to the cabinet. ,'.,
John took out a record.
John went to the hi-fi.
John dropped the record on the floor.

we would want the system to recognize that John has the plan of playing the record. and
that John had a accident. and not simply give up since there is no reasonable domain plan
for throwing records on the floor. Given this input, a revision cntic in BELIEVER would -
probably add a patch to the expected plan to reachieve the state holds(John, record).
which would enable the expected action put-onto(John, record, hi-fi). Once this ..
patch was made, BELIEVER would then expect the action pick-up(John, record).

The work on BELIEVER is important for stressing the importance of recognizing ".,.
failed and erroneous plans, and the techniques of incremental binding of plan parameters.
The latter technique was stressed in later work on incremental plan recognition, such as 0
Litman's work discussed above. Recent work by Manha Pollack [Pollack 84] investigates
problems in recogmzing erroneous plans. Schmidt was unable to provide, however, any
interesting global strategies for controlling the all-powerful plan revision cnucs. No
distinction was made between plan revisions due to problems in the described world, and
those due to non-monotonic inferences made by the observer itself. Aside from the kind of
plan abstraction which arises from using plans with unbound parameters, no use of 0
hierarchical planning was used. The issues of bottom-up goal inference were, as noted
above, largely ignored. Schmidt did note that the use of plan hierarchies could lead to
much more powerful bottom-up plan recognition algonthms. -

785

I _ " 2

A785 ... ,,.,

"--:-~~~~~~... -' .. . ....."" • - - .•.,."... .. , -. .- , . . ... " ".,''-., .- ,- .: '



~V '.~ ~~ - ~ *.a x v.v. --. V5 '-.: - - - r -P 7P ~b,.~- -

aJ.,. .- -'.€,

2.5 Story Understanding
-- '-..',:

Plan recognition forms :he basis for much work :n sto,- ,nes:,:in As w::- :-c

BELIEVER system, the goal of that work is to build a mode! of :-e si.".auon cescn:ed b% a -'-

piece of text, and in particular. to model the beliefs' of the characters described b, :.te -.- .text. (Belief is in quotations because fictional characters na,.ra.11y cannot have real beefs"-
Adequacy of the model is typically tested b. using it to answer questions about the ong:nal
story. Storv understanding requires knowledge about rhetorical techniques (e g. .
Lehnens "plot un:t" theory [Lehnert 80]), knowledge of the physical world described b%
the story, and most relevant to our work, knowledge of human interaction, as simulated b%
the characters in the story,. The work on plan-based theones of discourse was pa,'-
inspired by work on plan-based theories of character interaction in Br-,uce s s:ud% of
children's stones [Bruce 811. Shank's theory of scripts was designed to account for all
kinds of regulanties in the world, both physical and social [Schank '5! For exarp.le. !re
restaurant script teais us that restaurants rpIcaly have tables and chairs. an. that a person
in a restaurant typically has the goal of eating.

While scnits alone only provide a limited version of plan recognition. Wilensky
[Wilensky 82] has extended Schanks conceptual dependency theor, to handle"-.
sophisticated theories of planning and plan recognition. Wilensky is interested in
planning problems which involve little or no search ("canned" plans are known for all .

possible goals) but do involve complicated interactions between goals. Wilensky argues
that most everyday planning problems are of this son. In Wilensky's theory, production
rules, called themes, relate situations to the goals induced by the situations. For example, a
theme such as Mainraan-Bodily-Comfort might invoke the goal stay-dry when the
planning agent is in a situation (or is thinking about a situation) in which it is raining. An

0invoked goal is expanded by its standard plan. Certain meta-themes look for interesting
interactions between active plans and goals. For example, the agent may have a goal to go
outside and get the newspaper, as well as the goal not to get wet, which was invoked
because it is raining. The Achieve as Many Goals as Possible meta-themne fires in this
situation, and adds a goal to resolve conflict where this meta-goal includes pointers to the 'S
conflicting plans. The planner then finds a meta-plan. such as Repian or Abandon Goal,
in order to achieve this meta-goal.

The data structures used to represent themes, plans, and meta-plans can be used
interchangably for planning or plan recognition (which Wilensky calls understanding .For example, given the following text

John wanted the newspaper.
It was raining outside, so John called for his dog Spot

a system built on this theor, could conclude that John wants Spot to fetch the newspaper
by reasoning as follows: Having the newspaper is one of John's goals. The standard ,).an -

for this is to go outside and get the newspaper, and so this standard pin . ttenti,'%C'o.
ncluded :n John's wants. The fact that it is raining would invoke the s..-. 0. soL.S-Ln-S

is added co John's ,-dts. The system then simulates Johns planning: the goals conflict.
,o a resolve conflict goal is also created. There are many different wa,,s that resolve
ofl':ct -an be achi.'ved. so the recognizer stops planning. Now the s,,stem learns tha"

SJo.:n callel for Spot rhe effect of this is determined to be that Spot is with John. Tne
• stem tie, : connect this new piece of input. as tightly as possible. with the current S
-'l.an It r.otic:s that o'.- expansion of the replan meta-plan for the resolve cony7ict meta-
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- ii]
goal is to alter the ge: paper plan so that some other agent goes ou:s,,e and .es t'e per
Making Spot the otner agent connects this plan to the input.

Wilensky's meta-plans are roughly comparable with the plan cons-uction and plan .,

recognition rules in Allen s system, but have the advantage of be:ne a sing'e set of rules.
Meta-plans to Avoid Wasting Resources and Maximize Value of Goals Achieved encode
knowledge about what is a reasonable plan, instead of hiding all such knowledge in a
control procedure, or in rating rules. Wilensky's notion of a meta-plan is sirmlar, but not
identical, to Litman's. Litman's meta-plans, we recall, are not invoked to achieve explicit
reta-goals, but instead are recognized when their bodies occur, or planned for when ther -'

(non-meta-level) effects are desired. But whenever a meta-goal appears, it is immediatelY
attached to meta-plan, so the difference does not appear crucial.

Several important aspects of plan recognition are not formally encoded as meta-plans,
"* but are simply stated as "text comprehension principles", presumably hardwired into the

system. The most important of these are: coherence, least commitment. and parsimony.

Coherence apparently means that the recognized plan is consistent. This princple
may be related to the "consistenc, part of the consistency unification algorithm d~scussed
earlier.

Least commitment means that a recognizer shouldn't assume that any particular %.
explanation found is the explanation, and then have to undo it. This pnnciple is also
reflected in Litman's aim of designing a largely deterministic plan recognition algorithm.

Parsimony means that the explanation should "maximize the connecuons between
the inputs". Parsimony may be related to my notion of a minimal model of an agent s
plans. as discussed in Chapter 4. Parsimony is an old idea in A.I. circles; but no one really
knows how to state it both precisely and sensibly! (One crucial problem involves
inference chains: if an arbitrary number of inferences are allowed, then usually an arbitrary .

number of connections can be drawn between inputs.)

While Wilenskv has implemented parts of this theory in many computer programs, " '
much of it (especiaLly the prnciples above) remains vague. Wilensky has not dealt with the .

problems of encoding temporal relations (except for those induced by causality), and the ...-.
problems of belief contexts (such as "quantifying in" or nested and mutual beiief.

VS

78..

,o .. .' - "J

i~. .--.: ,...-......._... ,........ .. ... .... . •" ", . ,. "
, .%.",", ,,,"* -" '.*,- " - _--.-*'' ,.'.''-.-..x - • " - """ -"," -,. ' . . -" ' .' -,", ," -'-, .". - *"-"-"



I~ 0

% % %

2.6 Statistical Inference

Probability theory provides the basis for reasoning from observations to supposed I
causes in practically all the sciences and humanities, with the exception of most areas of -_,-.- -

artificial intelligence. The overwhelming success of statistical inference in all these diverse
fields for the last few hundred years should at least cause the computer scientist to hesitate
a bit before devising a new sort of theory. Indeed, after largely rejecting probabiLity theory. ,
a decade ago, a growing number of researchers are building new systems (or re-describing
old systems) for such tasks as vision or diagnosis based on classical or more recent
theories of probability. In this section I will describe (part of) plan recognition in terms of
very elementary statistics. My own work in plan recognition, and much of that cited
above, can be viewed a method of performing certain steps in the probabilistic inference. A
logical theory of plan recognition, towards which I am working, also addresses issues
about which classical probability theory has little to say: most importantly, the problem of
when a likely statement should be accepted as fact. The literature on statstical inference is. -.

of course, colossal, and I have neither the space nor competence to review it here.
I merely hope to suggest that my work is complementary to statistics, and is not
a case of reinventing the wheel. The discussion which follows is largely based on
comments made in a talk by Eugene Charniak.

Let HI, H2, etc. be various hypotheses about an actor's intentions, and Al, A2. etc. 0
he various actions. We identify the set of Hi with the set of (known) plans. Part of the
plan recognition problem is to determine which plans are likely on the basis of observed
actions. That is, where P is the probability function, and A = {Al, A2, ..., Am)
represents the observations, find a set of hypotheses H = {H1, H2, .... Hn} such that
P(HIA) is large. ,

Bayes formula tells us that the following holds:

P(H I A)= P(A IH) P(H)

P(A) %

Given a fixed set of observations A and certain simplifying assumptions, it is
possible to determine the relative probabilities of various candidate hypothesis sets H.
Assume that every plan (every Hi) has about the same prior probability k, and exactly one
possible expansion (body). In cases where a plan should have multiple expansions,
introduce an Hi for each expansion, and then define the original plan as the disjunction of

the expansions (e.g., P * HI v H2 v ...).

Let us begin by considering the case where the actor only performs exactly one plan--
- that is, the Hi are disjoint. To calculate relative probabilities, the denominator P(A) can
be ignored, since itis the same for all candidate H's. P(H) = k (since H must be unary)
and

P(A I H) = lif (V 'Ai E A) 3 Hj e H). stepof(Ai. Hj)
= 0 otherwise

So the most likely plan is simply the one which incorporates all actions. But since plans
are parameterized, there are an infinite number of candidate H's to consider. We need
some way of searching this huge space. Classical statistics seems to have little help to
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offer; statistical theory has concentrated on the special case where the various Hi are of the % .
same known form (e.g. the percentage of red balls in the urn) parametenzed only by some ... ,,p.,
numerical coefficients. But here we must deal with a large number of fundamenal. .',,'I

different plans which take different discrete parameters. The minimal model construction I
propose in this paper corresponds to this search. Plan recognition algorithms try to
heuristically solve this problem. -'.

Now relax the assumption that the Hi are disjoint. Now it is harder to compute P( AH ):. - ..-

P(A H) = I if ( V Ai e A) (3 Hj e H). stepof(Ai, Hj)

= P(A' I H) where (Ai e A')
iff (Ai e A) A -(3 Hj e H). stepof(Ai, H<)
otherwise.

All we can tell is that if H doesn't account for all the observations, then P(A H) < I. If
we are comfortable assuming that the Hi are independent, so that

P(HI A H2) = P(HI) P(H2)

then we can note the following: if hypothesis sets H and H' are of the same size, and if H S 6
accounts for all of A but H' does not, then P(H I A) > P(H' JA). Furthermore, if H and
H' both account for A, the smaller set has the higher probability. The plan recognition
construction I will describe will have similar characteristics.

I have argued that in performing plan recognition (as opposed to more general cause-
effect reasoning) it is particularly justifiable to strongly invoke Ockham's razor to prefer S 0

explanations which only require the actor to have as few unrelated intentions at a time as
possible. This condition does not fall out of the probabilistic framework so far: it may
give a high probability to an H which does not quite account for all of A, but would have
to be greatly expanded to account for the remainder. This can be remedied by adding
additional constraints on our probability function. For example, one such constraint could
be:

(V Hi) P(Hi) > P(G)

where G - disjunction of {Hi A Hj I ij 

In the end, then, probability can give us a way to compare the relative merits of - .

altmtive hypotheses about an actors intentions, but does not automatically give us a way
of selecting hypotheses to compare. We don't seem to need any of the high-powered
mathematical techniques statisticians have developed. And still the problem of deciding
what likely statements to accept as true remains.

In my model-theoretic treatment of plan recognition, the statements that the observer
should accept are simply those which are valid in the minimal model construction. Using "-,".", " "
probabilities, we need some sort of rule of acceptance, or at the least be prepared to deal
with all the complexities of allowing an agent to hold degrees of belief. [Kyberg 74] dea.-.
in detail with the complexities of both these problems. The present situation appears
particularly difficult, because we have not come up with absolute probabilities, but only a *
method for ordering the relative probabilites of certain statements. Thus no simple rule -- ,, -
such as "accept H if P(H) > .95" will do. .. ,..-
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I have no doubt that a purely probabilistic treatment of plan recognition is possible.
and perhaps even desirable. But adopting a probabilistic framework would lead fax afieid
into many difficult areas, and not immediately clarify our understanding of the pamcular
problems at hand.

) •
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2.7 Non-Monotonic Inference ..

A system of inference is a method for drawing conclusions from a body of fac:s. . -ii! Non-monotonic inference systems have the property that a conclusion rnay be overturned if..-.-..'

the body of facts is enlarged. Systems of non-monotonic inference include probabilistic "
inference, logics with default rules [Reiter 80), and logics with a circumscription operator
[McCarthy 80].

The relation of plan recognition to probability is discussed in the previous section. .',-

How useful are default rules for plan recognition? It is straightforward to cast, for . '
example, Allen's plan recognition rules as default inference rules. Using Reiter's logic, . '

we could write, for example, the action-body chaining rule as:

Want(agt, actl) A stepof(actl, act2) : M Want(agt., act2) S

Want(agt, act2)

This says that if an agent wants an act that is a step of a higher level act, and it is
consistent that (M) he wants the higher level act, then conclude that he wants the higher -
level act. But little has been gained from the use of default logic. All known systems of
default logic share the property that given a set of facts and set of rules, one may reach
different and perhaps mutually contradictory sets of conclusions, depending on the order in
which one applies the default rules. The logic insures that each set of conclusions, or
extension, is internally consistent, but gives no way choosing between them. As a basis
for plan recognition, then, default logic suffers the same criticisms as the dynamic logic
framework of Levesque and Cohen: too much of the problem remains hidden in the
strategy which orders the application of various rules of inference. While in Cohen and
Levesque's system all possible interpretations of an observation were logically entailed. .

using a default logic, some more or less random possible interpretation would be logically
entailed.

Circumscription is a specialized form of non-monotonic inference developed by .

McCarthy to handle the "qualification problem" in planning. McCarthy wanted to be able.-
to formally state that "the objects that can be shown to have a certain property P by
reasoning from certain facts A are all the objects that satisfy P." [McCarthy 80] For -- .

example, we might have a description of a bunch of blocks on a table, and want to make a -.,.....

plan to build a certain kind of tower. It might be necessary to pick up a block B, which can @'." >*,
only be performed if B is clear. If we cannot prove that there is anything on top of B, then,
in general, we want to be able to conclude, by circumscribing the predicate on, that nothing
is on top of B.

The circumscription of a predicate is a formula of second-order logic which involves
the entire collection of facts at hand. McCarthy showed that the circumscription of a
predicate is true in all minimal models of the original collection of facts, where a minimal
model is defined to be one in which there are no unnecessarily true instances of the ,-.-
predicate. While [Davis 80] pointed out that circumscription cannot always capture the
notion of a minimal model, [Perlis 85] showed that it can for any predicate with a finite .
extension.--.-.,"

In the next section of this proposal I will invoke minimal models to describe the .
inferences performed in plan recognition. For example, from the fact that an action occurs, "..

. . . .. . . . . . . . . .
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one wants to be able to conclude the disjunction of all plans containing that action. Tha:
disjunction holds in all models of the plan axioms which are minimal in the predicate used
to state that an action occurred. Circumscription serves for this inference. We ac-uaL'+
want to infer something much stronger: the disjunction of only the most succinc: plans .- ,
which incorporate the observations. Later I show how the nouon of a minimal model ant
the circumscription formula can be strengthened to account for these inferences.

McCarthy's def..",ition of predicate circumscription is as follows. Let v(p,R) be a
formula of first-order logic in which the n-ary predicate p, and any predicates in the set of

predicates R, appear. The circumscription of p relative to W(p,R), where the predicates in

R vary, written circ(W(p,R),p;R), is the following formula: ]
A(p) AVp',R'. [vl(p',R' ) A V'x. p(x) z p(x) ]D [ Vx. p(x) p'(x) ]

The symbol x stands for a list of n variables. The lists of varying predicates, R and R'.
can be omitted if empty. This formula can be understood as asserting that any predicate
p'which satisfies all the conditions imposed by y on p, and whose extension is contained
in that of p, is exactly the same as p. That is, there is no proper subset of the extension of
p which satisfies all the conditions imposed on p.

For example, the circumscription of p relative to p(A) is:

p(A) A Vx. p(x) z x=A

That is, that A is the only p-thing. The circumscription of p relative to p(A) v p(B) is: -"..

[A=B A p(A) A p(B)] (B [p(A) A -,p(B)] (B [p(B) A --p(A)]

where the symbol eD is exclusive or. It is important to note that circumscription makes no

assertions about the predicates in \ other than p, unless the circumscription formula
explicitly marks them as variable, by including them in R. These other predicates are called
parameters, because we can imagine setting them to arbitrary extensions which are

consistent with \I. One should also note that circumscription does not guarantee that the

size of the extension of p is as small as is consistent with \V. For example, the
circumscription of p relative to

A*B A AOC A B C A [p(A) v (p(B) A p(C))]

does not entail p(A), but only

[p(A) 9 (p(B) A p(C))] S

The model theory of circumscription is spelled out in precise detail in the next section.
For now it suffices to say that a model of a formula is minimal in p if there is no other
model of that formula which is identical, except that p holds of some things in the first .

model but not in the second. As mentioned above, it is easy to show that the "...-.'
circumscription of a predicate relative to a formula is valid in all minimal models of the ]
formula. The notion of a minimal model is powerful enough to capture notions such as
transitive close or decidability of arithmetic, which cannot be axiomatized. Thus the
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second-order circumscripton formula does not, in all cases, allow one to formallv deduce
all statements valid in the minimal models. In many useful cases, however. iS]
circumscnpuon is complete for these semantics, and the circumscnption formula is in fact
equivalent to some first-order formula. [Minker & Pelis 851 show that circumscnption is
complete if we assume an axiom to the effect that the circumscribed formula has a finite . ,
(although possibly arbitrarily large) extension. In the examples in this paper the -'

circumscribed predicates turn out to have only a few true instances, and so the finiteness
limitation is no problem. .

7:]~.. .. N,

- ]
% o-,

•.? --.-:.•

-F" "":

.F •

..

-o

.- : ,,,-. : -
.-." 7 3- ,. . . . .



% %

• . .' ...d

.-.-.: %**

Chapter 3
An Approach to Plan Recognition
: ~,"-",.,

i .. : , .. .,

In this section the semantic, or model theoretic, aspects of plan recognition are
discussed. At least in the simple cases examined, plan recognition corresponds to a r-.
sequence of simple model-theoretic operations. This semantic framework can then be used. -
to motivate and justify various plan recognition algorithms.

It is useful to draw a few distinctions which limit the scope of the present proposal.
First, we limit ourselves to recognizing instances of plans schematized in a plan libran.
rather than dealing with the full, arbitrarily complex set of plans that an agent couid
synthesize in order to meet some set of domain specific goals. Second, we formalize onl-
a part of that knowledge about plans and actions which is common to the observer aLd
agent, and not explicitly represent the separate beliefs, desires, and intentions of the two. - 1

Finally, we adopt an event-based framework for planning [Allen & Koomen 83,
McDermott 81], rather than the more traditionial use of the situation calculus.

A small set of general assumptions underlie the non-sound inferences performed in
plan recognition. First, the plan library is taken to be complete: all the particular ways of
performing a high-level plan are specified in the library. Second, we assume that all
observed actions are purposeful, and can be explained by their appearance in a plan. Third,
we invoke a principle of simplicity of intention. An agent is likely to be performing only ]
one or a small number of plans at any time. There may be other general assumptions, but
these suffice for the examples in this section. The assumptions appear to be justifiable by
appeal to general principles of rationality, as well as the contingencies of plan recognition.
These assumptions can be semantically characterized in terms of the minimization of certain.
predicates.

3.1 The Planning Framework

First-order logic provides the framework for planning, where plans, actions, and
, times, as well as agents and physical objects, are all types of individuals. Instances of

plans or actions are designated by constants or constucted by combining t0., appropriate
functions. For example,

pickup(George, Block6, T2)

could be a term representing the action instance of George picking up a certain block during S
the tim interval designated by T2. Functions which designate plans have the same form as
action functions The predicates do and perform hold of those action instances and plan

Sinstances respectively which actually occur. The distinction we are drawing between
actions and plans is rather arbitrary, and should eventually be abolished. for now, think of

* acdens as irreducible physical acts, and plans as all more complex acts. Plans and acuon,, "--- "-,-
are described by a collection of sentences called the plan library. Those sentences relating .

actions and plans are of the following form:

-S
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do(a I) Ado(a2) A... A•do(an) A pe-for..(pj)

Each ai is a term designating an action, and pj designates a plan. , stands for a

subformula which further consrrains the applicability of this axiom: in particular, rna,
assert that certain relationships must hold between the arguments (if any) taken by the
various action functions. For the time being, we will only consider constant action terms,
and make no use of 4. The axiom states that if actions 1 through n occur, then plan j also
occurs. Each sequence of actions to the left of an implication sign is a particular expansion.
or body, of the plan to the right. Note that each sequence of actions is a sufficient, but not
necessary condition for performing the plan: there may be multiple possible expansions
for the same plan. An agent's knowledge base also contains other sorts of
axioms, such as those relating a plan to its effects, an action to its preconditions,
frame conditions for actions, as well as general domain-specific information, but
they will not affect what follows. S •

A planning system could use a library of this form to determine possible ways of
performing a plan. For example, suppose we tell such a system to perform some plan P
The system must find some expansion for P which is correct for the current state of affairs.
That is, the system should prove a theorem of the form: '--.

CO Ado(al) Ado(a.2) A ... Ado(an)AT r perform(P)

where a) is a formula representing what is known about the world, 't is an expression

constraining the various temporal indexes which appear in the ai, and the antecedent of the
implicaion together with the plan library is consixten. There are, of course, many ways •
that this framework for planning can be elaborated.

3.2 A Propositional Example
I S

In the following example, action instances are represented by constants, and no use is
made of constraint expressions. Let L be the plan library:

do(al) A do(a2) = perform(pl)

do(a3) A do(a4) ) pcrform(p 1)

do(a1) A do(a3) A do(aS) = perform(p2)
do(a2) A do(aS) A do(a6) perform(p3)

We wish to define a semantic relationship which captures the intuitions discussed above

about what plans should be recognized from a set of observations. We write B (L) F to
mean that on the basis of plan library L, having obtained the observations in B (and only %
the observations in B), one may conclude the formula F. Examples of formulas which ,
stand in this relationship are:
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do(a6) (L) = perform(p3)

do(al) (L) perform(pl) v perform(p2.

do(a3) (L) perform(pl) v perform(p2) ) •

do(al) Ado(a3) (L) 6 perform(p2)

Thus, if a6 occurs, then P3 must occur. since that plan provides the only explanation
for that action. From al (or a3) individually we can only conclude that either PI or p2 is

the intended plan, since a I (or a3) appears in an expansion of both plans. If both a I and
a3 occur, then P2 must be intended, since the actions belong to different expansions of P. -

3.3 Defining the Plan Recognition Relationship

The relationship will be defined in several steps, corresponding to the three different .,
assumptions discussed above. -

3.3.1 Step I : The library is complete

The assumption that all ways of expanding a plan appear in the library corresponds to ..

minimizing the set of plans which occur, while the set of actions which occur acts as a
parameter. That is, we minimize the predicate perform, with do as a parameter. This
means that whenever a plan occurs, it is entailed that some body of that plan - some set of
actions- also occurs. We employ the following definitions.

W(F) is the set of (Herbrand) models of the set of formulas F. -. d

ml Sp;R] m2 holds just in case mI and m2 are models which agree on all
predicates other than p or those in the set of predicates R, and the extension of q in .'.-.,

ml is a subset of the extension of q in m2.

min(M, p;R ) is the subset ofM which is minimal in p, where the predicates in R
vary; that is,

{m I mE M A-B m'. m EM Am' S[q;R] m}.

(As before, the list of varying predicates R is omitted if empty.) Now consider the ,
formulas which are valid in min(W(L), perform). These include the "completions" of the
formulas in the plan library. For the example problem, these are:

(do(al) A do(a2)) v (do(a3) A do(a4)) a perform(pl)

do(al) A do(a3) A do(a5) a perform(p2)

do(a2) A do(a.5 A do(a6) a perform(p3)

A, little cdlculation reveals that the original library L has 360 different Herbrand models,
but ondy 64 of these survive this first minimization. Each step in the construction of (L) -
,can be thought of as filtering out some models which represent "non-optimal''
interpretations of possible observations.
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3.3.2 Step 2 All actions are purposeful

Next, we add the assumption that actions only occur when they appear in some plan.
This corresponds to minimizing the predicate do. Note that perform is a
parameter at this step. If we tried to minimize do and perform simultaneously,
the resulting models would contain no true instance of any action or plan.

The current set of models is min(min(W(L),perform),do). Many of the
implications needed to perform plan recognition are valid in this set of models. In
partcular, the following statements from our example problem hold:

do(a6) perform(p3)
do(al) 'perform(pl) v perform(p2)

do(a3) D perforrn(pl) v perform(p2)
S

do(al) A do(a3) ) perform(p2)

There are only 10 distinct Herbrand models in rin(min(W(L),perform).do). These are
all illustrated in table 3 below, and the reader can verify that the formulas above hold in all
of them. But this set of models must be further constrained.

mode d Lh o I ds Derform holds of
ml <->
m2 <-> al a2 p1
m3 a3 a4 pl
m4 <-> al a3 a5 p2
m5 <-> a2 a5 a6 p3 0
m6 <-> al a2 a2 a.5 p1 p2
m7 <-> al a3 a4 a5 p1 p2
m8 <-> al a2 a5 a6 p1 p3
m9 <-> a2 a3 a4 a5 a6 p1 p3
mlO <-> al a.2 a3 a5 a6 pi p2  p3 0

Table 3:
Models in min(mn(W(L),perform),do)

3.3.3 : Simplicity of intention

So far, the knowledge base has been manipulated before any observations were
made. The assumption that the agent is performing only a few different plans is
implemented by forcing the extension of perform to be as small as possible, after the
observations are added. That we must wait is obvious from that fact that before any "
observations ae made, it is consistent that the agent is not performing any plan.

Suppose we observe a2 and a5 . Adding this information to our knowledge base

corresponds to selecting those models from figure 1 in which do(a 2 ) A do(a 5 ) holds.
This set of five models is pictured in table 4.
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model do holds perform holds of

m5 <-> a2 a5 a6 p
m6 <-> al a2 a3 a5 p1 p2
m8 <-> al a2 a5 a6 p1 p3 0
m9 <-> a2 a3 a4 a5 a6 p1 p3
mlO <-> al a2 a3 a5 a6 p1 p2 p3

Table 4: .-.. ,
Models in

W(do(a2)^do(a5)) r rnin(min(W(L),perforrn),do) .

The most concise explanation for the occurrence of this pair of actions is P3..
However, P3 is not valid in the set of models above; in particular, it does not hold
in m6. Instead, only this weaker formula holds:

(do(pl) A do(p2)) v do(p3)

The kind of minimization used before (which, it will turn out, is simply circumscription),
can't be used to obtain the desired result. Therefore we define the following, much
stronger, form of minimization.

ml S[IP] m 2 holds just in case the size of the extension of p in ml is no greater
than it is in m2. 0

mincard(M , p) is the subset of M whose members are minimal in p,; that is,
m{M IneM A--3m.m'e M ^m'<[1pJ]m}

Note that in the ordering relation above, the models m I and m 2 do not need to agree on afl 
predicates other than p, as was the case before. That is to say that all other predicates, are
allowed to vary, instead of being parameters.

Now we can put the pieces together. First, minimize perform and then do in the
plan library. Next, add the observations. Finally, select those models which minimize the
number of distinct plans. Call this final set of models p.. Formally: N

t=mincard( W(B) n min(min(W(L), perform), do), perform)".-.-'"

where B - observations do(aj) .. do(ak)

See figure 7. In the example problem 4 contains only the single model m 5. Thus we
obtain the desired result that "

4 6. do(p3) )

The plan cecognizer may, or course, be mistaken. The two actions a2 and a5 may .

actuplly belong 'o the unrelated plans p I and P2. In that case one must expand B with
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this additional information and recompute L. Such are the dangers of non-monotorm: 'i
inference. The semantic relation between observations and recogrzed pians is simpN

B (L) F if and only if F
where .± is defined as above

3.4 Proof Theory

Circumscription is the proof-theoretic counterpart of the min operator [Davis 80].
Minirizing the cardirairv of the extension of a predicate, as does the mincard operator, is
not the same. One can define, however, a formula of second-order logic which precisely
captures the latter son of min ization. At least in the simple examples examined so far.
only a small number of first-order instantiations of the second-order formulas involved are
actually required to obtain the desired results. The plan recognition process can thus be
given a proof-theoretic, as well as semantic, definition.

Let W(p.R) be a formula of first-order logic in which the unary predicate p, and the
set of predicates R, appear. Define:

circcard(w(pR), pAR ) =df 0

V(p, R ) A Vp', R ',f• . W(p', R' ) A VX . p'(x) 3 By. x=f(y) A p(V)] -

[Vx,y . p(x) A p(y) A xy = f(x) 0 f(y)

The variable p' ranges over predicates, and R is a list of variables ranging over predicates. I. 0
The variable f ranges over unary functions. This formula can be understood as asserting

that any predicate p' which satisfies all the conditions imposed by W on p has an extension
which is no smaller than that of p. That is, any function f from the extension of p which is
onto the extension of p' is also I to 1. Quantifying over the predicates in R allows them
to be set to the values which let the extension of p be as small as possible. ".,.,

We would like circcard to correspond to the circrmun operator. It appears to do so, in
thosc cases where the predicate p has a finte extension. I will not give a formal proof of
this correspondence in this paper. As is the case with circumscription, it appears that it is
easy to show that circcard is correct with respect to the circmin semantics, but difficult to -

show that it is complete.

'The following example illusrates the cirvcard formula. Let

A(p)= A*B A (p(A) A p(B)) v p(C)]

Minimizing the cardinality of p should entail that p(C), but circumscribing p only
stren'hens the disjunction to exclusive or. In proof theoretic terms.. .

*irccard'y(v), p) - pC)
clrc(W(p), p) I I- p(C).

(Nc(W( ) n' MA) - p(B)) e p(C.
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To see this. substitute x=C for the predicate variable p'. and the constant funcuon C for
the function variable f in the cLrccard formula. This ields:.

A*B A [ (p(A) A p(B)) v p(C) I A
* S

{ AeB A (A=C A B=C) v C=C ] A
VX x=C = 3V . x=C Ap()].-

[ Vx,y p(x) A p(y) A X*V CC ]l '-.-

This formula simplifies to:

A*B A [(p(A) A p(B)) v p(C) ] A
['Vx,y . p(x) A p(y) A x*V C* ]

or equivalendy: .

A=B A [(p(A) A p(B)) v p(C) ] A

T 'x,y p(x) A p(y) - x=y ]

The second line above says that there is only one p thing. Therefore, since A=B. the
formula implies that p(A).

The proof-theoretic plan recognition operator, which corresponds to the (L) .
construction above, is defined by simply combining the appropriate circumscripton and
circcazd operators:

1 0

circcard( B A circ( circ(L, perform), do), perform, R)

where B is a formula representing the observations, and
R = { do, }, the set of all predicates other than perform
or equality inL. p

Making useful inferences from such a complex formula is extremely difficult:
practical systems would probably have to rely on the less formal recognition algonthms
sketched below.

3.5 Plan Recognition Algorithms

How can a plan recognition algorithm which respects these semantics be
implemented? In the simpliest case, where there are no constraint expressions, and action
and plans are represented by constants, plan recognition is equivalent to a version of the *
minimal cover problem. Consider each plan body to be a set of actions. An acceptable . *.,...

cover of a set of observations is a set of plan bodies which include all the observations,
and includes no two bodies of a single plan. The observer should conclude the disjunction
of all acceptable minimal covers of the observations. The medical diagnosis system of
[Reggia 831 performs precisely this calculation. An unpublished paper by Reggia presents.
in great detail, algonthms for solving such minimal cover problems. No universally p
efficient algorithm is likely to be found, since the rimnimal cover problem is NP-complete.
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In practice, however, one may use algorithms which perform efficiently when the size of
the mmnmal cover sets is small... .

To help lay the groundwork for the discussion of plan recognition in more
complicated cases, consider the following very simple "filtering" algonthm. This algorithm,
works properly when each plan has a single expansion, and all observations can be -.-

explained by a single plan, and returns FAIL when they cannot. (The first limitation is
easy to lift, but it is considerably more complicated to handle cases where more than one
plan must be postulated.)

Pronositional Plan Recognition Algorithm ,

1. Initialize P to the set of known plans, {pI, pn}.
2. If P = {pj}, then conclude perform(pj) and halr.
3. If there are no more observations, conclude the disjunction of the elements of P,

perform(pi) v ... v perform(p,).
4. Obtain an observation do(aobs).
5. Remove from P any plan whose body does not contain do(aobs).

* 6. Go to step 2.

* The key step is #5, where each observation is integrated into the partially recognized I
plan, and so maintains the mmimality of perform. In the more general case, this step .. . -

involves performing consistency unification between the observation and each candidate
plan.

3.6 Parameterized plans and actions

As discussed above, plans and actions are usually represented by functions, whose
arguments include the agent performing the act, the specific objects acted upon, the time at
which the act occurred, and so forth. (It is also possible to relate these arguments to an
action instance by the use of a role predicate, as in [Alen & Frisch 82], but this does not . -
affect the present discussion.) Time intervals can be related by predicates such as meets.
if one immediately follows the other, or before, or during (with the obvious
interpretations), etc. Sec [Allen 841 for details. For example, an axiom for the plan stack
could be:
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V x y t t2 t3 t45. ..

do(goto( x, t1 )) A

do(grasp( t2 )) A *

do(goto( y, t3 )) A '.

do(release( t4)) A

{ box( x ) A

clear( X, t2 A

clear( y, t.4) A

meets( t1, t2 )A Meets( t2, t3 )A mees( t3, 14 )A * ~t5 join(tl, t2, t3, E4)}
perform(stack( x, y, t5 ))

The formula asserts that one may stack x on y by going to x, grabbing it- going to y.-
and then dropping x. Box x must be clear in order to be grasped, and y must be clear in
order have something put on it. The entire plan is performed over the concatentation (the
join) of the time of each action. The conjunction of do-predications is the body of the plan. *
The expression in curly braces constrains the plan.

How should the simple plan recognition algorithm be extended? Instead of simply
locating observations within candidate plans, the algorithm must merge observations with-
these plans. Before this step is performed, all the parameters in the candidate plans have .... ,-.
been bound to various skolem functions, or to terms which appeared in previous S
observations. Thus the merging process may require that some terms which appear in the
observation statements must be set equal to terms which appear in the candidate plans.
Standard unification involves merging two expressions by finding particular instantiations
for their variables. In the final step of the semantic construction for plan recognition, all the
functions and constants are allowed to vary. Each acts like an existentially-bound variable.
which must take a value such that a model for the observations and library exists which is * 0
minimal in the number of performed plans. Because terms are allowed to vary, but there
must exist at least one consistent set of binding for all terms, we call the merging process
consistency unification.

Below is the revised plan recognition algorithm. Note that there may be several
distinct ways to merge an action with a candidate plan. *0*

.4 . . ..
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First-Order Plan Recognition Algorithm

1. Let x be the knowledge base. Let 5 be a copy of the plan-body axioms of the plan
library L, but with each universally quantified variable in L replaced by a new skolem-
function (see comments below). Imualize P to the set of mples,

{(Pj, {al_..an}, xj) 1 do(al) A...^ do(an) A Xj ) perform(pj) e

2. IfP = {(p, {al,...,an}, x)}, then conclude xAperform(p) and halt.

3. If there are no more observations, conclude the disjunction of the elements of P,

[xiAperform(pi)] v ... v [XjAperform(pj)].

4. Obtain an observation do(aobs), where any existentially-quantified variables in obs ar t

replaced by skolem constants.

5. For each (p, {al,...,an), x) e P do:

Remove (p, {al,....an}, x) from P:
For each ai e {al,...,an} do:

Let cp be the weakest set of equality assertions such

that ^ -ai =a obs

If K L (do(a1) A...^ do(an)1 A P} is consistent, then '"---

add (p, {al,...,an}, 4(P) to P

6. Go to step 2.

The reader may be wondering why ur'versalty quantified variables are skolemized in
step 1. The algorithm attempts to establish that there exists some instance of some known ::
plan. While the plan-body axiom is of the form

IV x (do(aI(x)) A... Ado(a(x)) A "D erform(p(x))

* the formula to be established is of the form
°.-x '."

3 x. [do(al(x)) A ... A do(an(x)) A A perform(p(x))]

Universally-quantified variables in the axiom thus correslond to existentially quantified
- variables in the formula to be established. Therefore we are in fact skolemizing

existentially-quantified variables, as is usually the case.

The algorithm may be performed incrementally, where the system is allowed to
perform other actions between steps 3 and 4; alternatively, all the observations may be "
gathered beforehand. There is no implicit temporal relation between succeeding

* 'observations; all temporal relations are explicitly encoded in time indexes.
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The following example illustrates the algorithm. Let the plan Lbrav contai te scack •-
plan above, and some others not containing the goto action; say, -,. stack

' t1  t2 t3 . ,

do(grasp( t1 )) A

do(release( t2 )) A

-> { meets( t1, t2 ) A
t3 = join(c1, t2 ) }I,"L>"

:D perform(clap( 13 )

ebn(The robot arm on display aL !' e Toronto Science Center appears to perform exactly these 7;ii ~ ~two plans, over and ove., ' , Thie system observes a goto motion followed by grasp. A "."-",
(hand-run) trace of the aag&.rithmn follows:

(step 1) SetP = {
(stack(C,D,S), {goto(C,S 1), grasp(S2), goto(D,S3), release(S4)1

box( C) A clear( C, S2 ) A clear( y, S4) A meets( S1, S2 ) A
meets( S2, S3 ) A meets( S3, S4) AS = join(Sl, S2, 53, S4 )).

(clap(R), {grasp(R 1), release(R2)},
meets( RI, R2 ) AR = join(R1. R2)) }

(step 2) P is not unary, so continue. 0

*"_-." (step 3) There are more observations, so continue. . .

*' (step 4) Obtain the next observation, do(goto(OBJ99, T34)). Note that T34 is a constant
created to "timestamp" the observation.

.- (step 5) Update P. The clap plan is disqualified, and there are two consistent ways .
to merge do(goto(OBJ99)) with stack. P is now (with changes in italics)

(stack(CD,S), {goto(CS), grasp(52), goto(D,S3), release(S4)},

box( C) A clear( C, S2 ) A clea( y, S4) A meets( S1, S2 ) A
meets( S2, S3 )Amee ( S3, S4) AS = join(S1, S2, S3, S4)
AOBJ99= C A S1= T34),

(stack(CD,S), {goto(C,S 1), grasp(S2), goto(DS3), release(S4)},
box( C) Aclear( C, S2) Aclear( y, S4) Ameets( S1, S2 )A
meets( S2, S3 ) A meets( S3, S4) A S -join(S 1, S2, S3, S4)
A ^OBJ99 DAS3 T34)}

*. (step 2) Continue as before.

PS -. .
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(step 3) At this point, the system can conclude the disjuncnion of two plans: either the
agent is going to stack OBJ99 on something, or stack something on OBJ99.

(step 4) Obtain the next observation, do(grasp(T40)), where the system knows tha: .

before(T34,T40).

(step 5) The action do(grasp(T40)) can merge with the first candidate in P. The second
candidate is eliminated, because

meets( S2, S3 ) A S3 = T34 A S2 = T40
from the constraint expression, together with

before(T34, T40)
from the knowledge base, is inconsistent. This is because together they would imply

meets( S2, S3 ) A before( S3, S2)

(step 2) The system concludes "---
perform(stack(C,.,S)) A

do(goto(C,S 1)) A do(grasp(S2)) A

do(goto(D,S3)) A do( release(S4)) A

box( C ) A clear( C, S2 ) A clear( y, S4) A meets( S 1, S2 ) A

meets( S2, S3 ) A meets( S3, S4 ) A S= join(S 1, S2, S3, S4) .

AOBJ99= C A S =T34 A S2 =T40
or, more simply, that

perform (stack(OBJ99,D,S))
where the full extent of the time interval S, and the destination object D, are not yet ..

determined.

Figure 8 illustrates the splitting and filtering of the candidate set P that the algorithm
performs. Note that the system should reach this conclusion even if the single-plan
limitation of the algorithm were lifted, since it is the most concise account of the
observations.

For the limited case described, where the actor cannot be performing more than one
plan, the algorithm appears to be correct, according to the semantic treatment of plan
recognition discussed earlier. Because of the initial minimizations of do and perform, each
observed action entails the existence of a corresponding containing plan. Maintaining the
minimality of the extension of perform requires that each succeeding observed act be equal
to some step in a previously hypothesized plan. S

It is not possible to implement a plan recognition algorithm which is complete in the
fust-order case. For example, if arbitrary constraint expressions are allowed, then testing
the consistency of the potential plan could be undecidable. In practice, however, most
cases of inconsistent merges can be blocked. Many can be detected by using a system of
types; see, for example, [AUen & Frisch 82]. Constraint propagation systems, such as .
RUP (McAllester 80], can also be used to approximately solve the problem of
inconsistency detection. Those remaining cases where a plan recognition system may not
realize that a potential interpretation is inconsistent may prove difficult and confusing for
hurians as well.
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Chapter 4
Future Directions

4.1 Example Problems

The theory presented in the last chapter only handles the simpliest cases of plan
"-' recognition. There are two more less independent ways the theory can be develope

further. 'ill'
One is to integrate plan recognition with multi-agent planning. For example. one ,-,

would want to represent situations in which an observer must plan to do some:hing in order .

to determine another agent's plan, or in which an agent plans to do something in order tha:
his plan be recognized. Discourse analysis, as discussed in chapter 2, includes
many problems of this sort.

A second way to develop the theory i to apply it to cases where the plans to be
recognized have greater internal structure. We need to consider hierarchical plans. where a ]
step of one plan may itself be a plan, rather than a primitive action: plans with loops and
tests; and possibly plans which modify other plans, such as Litman's or Wilensky s meta-
plans.

For the immediate future we intend to concentrate on the second set of problems. We -
will not immediately try to base our work on real data (as did [Schmidt 78]). Instead, the
following series of constructed examples should illustrate the intended scope of the work.
If their subject matter seems contrived, the reader should feel free to restate them using a
more realistic domain, such as the Unix (tin) operating system. or strategic warfare. Please
note our logic is aimed at simulating the human's reasoning in these examples. not the
robot's'

The Scenario

The postman has just delivered a box containing Robbie IX (partly assembled), the
ldcest product from Heuristic Automatons Limited. You snap Robbie together and press the
ON button. Robbie begins moving about the house, and quickly discovers a set of LEGO
(tim) blocks, together with a booklet entitled "LEGO Fun for Everyone!" Robbie scans the .
booklet, then begins playing with the blocks. You want to ask Robbie what he's building.
but unfortunately, you neglected to order Robbie's optional Natural Language Module.
Howevei, by romparing Robbie's actions with the step-by-step plans illustrated in the
..Ockle:, y.u are able to make a good guess about what he's up to ....

p ,.,. .
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.. 1.1 Example 1: Multiple Observations

Robbie takes a set of wheels. Hes building sorne knd of ve.o. .,o'.---.-'
see. there are plans here for a racing car. a firetruck. and a lunar explorer. All of :hose
require two sets of wheels, so he's going to have to find another se,. He s got tte. ant

now he s getting some red blocks. He must be building a fire truck. ,.'-

4.1.2 Example 2: Plan Hierarchies :-,",:,

The booklet has two larger pictures of the firetruck: one inside a fire house. ard
another, on a cit, street. Robbie must be building one of these "ci t, models, rather than
the "lunar landscape" or "racetrack" scenes.

4.1.3 Example 3: Tests and Conditional Actions "

Robbie tres to spin one of the wheels. It seems stuck. Robbie pu:s it off. T,e -
% -,instructions say that "wheels should turn freely on their axle. lubricate if necessa:-.
. ,v -Robbie must have been checking that. He's wandered off now; probably searching for an

oil can, you think.

4.1.4 Example 4: Loops

Robbie returns with the 3-In-One, oils the wheels, and finishes the truck. Now he'll
beein something new, you think. Robbie picks up a large flat base, to which a number of
of blocks are attached. He pulls off one block, drops it, pulls off another, drops
it ... Robbie must be clearing off the base, by removing all pieces attached to it.

4.1.5 Example 5: Concurrent Plans

andRobbie picks up a rod-shaped piece. It must be the firehouse: that base is the floor.
adthe rod is part of the fire pole. Ooops -- he's sticking a green ball onto the rod, makin

a tree. It's the street scene after all, and that base must be for something else -- a buiidinc.
maybe, or a billboard.

4.1.6 Example 6: Higher-Order Plans

j."l.By now the LEGO village occupies most of the house. Only the court house and the

jail remain to be built. But both, according to the manual, are built from red blocks, and
there aren't nearly enough pieces of that color left. Robbie hesitates. For a moment you - -'Si
fear that he's about to disassemble the firetruck to get the pieces for the buildings. then

- disassemble the buildings to rebuild the firetruck, forever and anon. Instead. Robbie
begins building something that looks like a court house out of white bricks..
Very good, you conclude, Robbie has modified the court house plan by '.

substituting white for red.
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4.2 Hierarchical Plans

While the rrunimal model construct:ion may not suffice -o ,'.andle a': ' exa.-='is
above, it can be easily extended to deal with a stanc plan hierarch. .

Let the predicate do be applicable to plans or actions which occur. A basic pi,;a :s ....-.
one which cannot be decomposed. An ultimate plan is a highest-level. domain-specif:c
plan, which need not be explained by its appearance in a more complex plan. Define: ..-.

dobasic(x) E do(x) A basic(x) ]

doultimate(x) m [ do(x) A ultimate(x) I

The plan library is as before, but with do used in place of perform. and some plans
marked as basic or ultimate. The plan recognition construction is as follows: -

I. Minimize (circumscribe) basic and ultimate. This ensures that plans not exphic::.-.'"
marked with either predicate are known to be "intermediate level" plans.

2. Minimize do, where the predicate doultimate is allowed to vary. The predicate
dobasic acts as a parameter. This means that intermediate and ultimate-level plans -

ordv are minimized.

3. Minimize do, where the predicate dobasic is allowed to vary. The predicate
doultimate acts as a parameter. This means that basic and intermediate-level plans
only are minimized.

4. Add the observations.

5. Now a choice arises. Minimizing the cardinalitv (circcard) of doultimate
corresponds, as before, to making the assumption that as few different highest-level
plans as possible are being performed. Minimizing the cardinalir of dobasic -

corresponds to the assumption that the agent will perform as few basic actions as
possible; this invokes a principle of "least effort" by the agent.

The following example illustrates the new aspects of this construction. Let the plan library
be.

do(a) A do(b) D do(d) do(d) A do(e) D do(f)

do(c) D do(e)

basic(a), basic(b), basic~c ultimae(f)

Planis d and e are intermediate- level. Step I idds the constraint that:

basic ') [ x=, - \=b v x=c
ultim ate(x) =) x.-f.".., -".

Step strengthens the implication; in the plan library to equivalences. The process works
.or on, numbcr of intermediate levels in ihe librlry. In iftu!tive terms, a plan at level n in
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the hierarchy can only hold if it must because some set of basic plans hold; but
the basic plans force the level n plan to hold by forcing its level n-i substeps to
hold. The result in the example is:

do(a) ^do(b) - do(d) do(d) A do e -dofi'
do(c) do(e)

Step 3 means that if any plan occurs, then it must be because some ultimate-level plan.
which contains it occurs. Since the example here has only a single ultimate-level plan.. -.

every plan is cons:ained to entail it:

do(a) z do(d) do(d) = do(f)

do(b) D do(d) do(e) = do(f) 2..
do(c) do(e)

The final two steps are, of course. mvial in this example ever.'thmnz is evidence for f).
Appropnate semantic and proof-theoretic descnpuons of the entire construc:'.on. can. as in -

the previous chapter. be pieced together. The model set 4 becomes:

mincard(W(B) n -.

min(nun( •

rin(min( W(L). basic), ultimate),
do{ doultimate}),

do;{ do basic ),
doultimate)

where B= observations • -

As discussed above, the final doultimate could be replaced by dobasic. in order to make
different assumptions for the final runimization. The proof-theoretic operator is defined
analogously. - "

4.5 Conclusions

This paper has discussed the importance of plan recognition for work in , .

artificial intelligence, and has begun to sketch a formal basis for non-
quantitative methods of recognition. We have shown that plan recognition is an
important form of non-monotonic reasoning, and can be used to test various
methods of non-monotonic logic, such as circumscription or default logic. Future
work will extend both the model theory and corresponding algorithms to handle
more complicated plans.

* "
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A FORMAL LOG,C THAT SLPPORTS PLANNING

WITH A PART!AL DESCRIPTION OF THE FIJTURE * "

Richara N. Pelavin .

Department of Computer Science
University of Rochester

Rochester, N.Y. 14627

A bstract ':. U"

This paper presents a formal logic that can be used to reason about planning to

achieve one's goals A robust temporal logic (Allen's interval logic) will be extended -

with a counterfactual-iike modality, called IFTRIED, that can be used to describe

what can and cannot be done by the planning agent, the robot. This allows us to

represent planning problems where the robot has a partial description of the past, "

present, and expected future, and its goal is to bring about a set of desired future

conditions. We will show how the IFTRIED modality can be used to represent

knowledge about what can and cannot be done. We will also briefly discuss how

the logic can be used to reason about the interaction of two concurrent actions and

will specify some conditions under which two actions can be executed together. 0.

Introduction

This paper presents a formal logic that can be used to reason about planning to :..-

achieve one's goals. As an example, a typical goal might be to get to the corner

store without getting wet. One must be able to reason that this could be achieved

by walking to the store and taking an umbrella if it is going to rain. In general, we ..

are interested in robot planning problems where the robot has a partial description

of the past, present, and expected future, and its goal is to bring about a set of

desired future conditions The robot must construct a plan, which consists of actions *

that it can cause, that it believes can be executed and if executed would make the

goal hold. Plans with concurrent actions will be considered.
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" Given a logical statement representing the robot's current goai (i e aes re.

future conditions,, planning to achieve this goal can be thougnt of as ',nod-c a

constructive proof of the following form.

=', ~~." ...". -",

Given the sentences representing the robot's current beliefs, prove that there .

exists a plan P such that P can be executed and if P is executed, the goa"
conditions would hold

One of the most successful approaches to representing events and their effects in

A.I. has been situation calculus. In this logic an event is represented by a function

that takes a situation, which is an instantaneous snapshot of the world, as an * 0

argument and returns the situation that results from applying the event to its -

argument. In effect, the world is viewed as a sequence of situations linked by .-.-.-.-

events.

Typically, planning problems in situation calculus had the following form. Given -

a partial description of the current situation and a goal, which is a partial

description of a desired situation, a sequence of actions must be found that when

.,A applied to the current situation yields a situation where the goal is true. This type S

of planning problem is very limited. Plans are treated as sequences of actions and

therefore cannot contain concurrent actions. The planner's description of the world - .

is limited to statements about the current situation, assertions cannot be made

about the past or future. For example, situation calculus cannot be used to •

represent that it will rain in 5 minutes. The types of goals that can be handled are

also limited. Only goal conditions that hold at the completion of plan execution are

treated; goals that hold during execution, such as 'do not get wet while going to --

the store, are not handled. .

• i" ~There have been a number of planning systems that have handled a larger class -"--
of planning problems than situation calculus. Wilkin's SIPE [61 and Vere's DEVISER

S(51 are two examples. SIPE can handle plans with concurrent actions. Wilkins -
introduced the notion of resources to reason about the interaction of parallel

actions. A resource is defined as an oblect that an action uses during its execution.

If two actions share the same resource, they cannot be executed in parallel. ..

S'.. ..-..
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Vere's DEVISER explicitly represents time thereby allowing the user to represent

facts about future conditions along with facts about the present state. The system

can represent that an event not under the control of :he pianning agent will occur -

at some specified time. One can specify that some goal Condition must hold r,-

betvieen two time points. A goal can also be the conlunction of two sub-goals that .

hold at two different times. Vere's system cannot, however, represent relative e IF :,

temporal information. For example, he did not allow goals of the form "achieve

goal A sometime between 2:00 and 3:00 and achieve goal B after goal A". He aiso -

did not allow disjunctive type knowledge such as: either event A will occur starting

at 5:00 orevent B will occur starting at 5.00.

The planning systems just mentioned have no formal basis. They can be viewe .-

as ad hoc extensions to the simple state-space planning paradigm that can be

represented by situation calculus. An alternate approach, which will be taken here, .1
is to develop a formal logic that adequately represents the planner's view of the

0
*. world. A planning mechanism then can be constructed that is based on this logic. .

Recently, Allen (1] and McDermott (3] have presented logics that explicitly .. j;-.". .1
specify the temporal Intervals over which events occur and properties hold. Both

absolute and relative temporal information can be represented. Overlapping

events can be represented by asserting that their associated intervals overlap in

time. A robot planner can use either of these logics to represent its knowledge

about the past, present, and future. By taking a goal to be any temporal statement,

one can specify conditions that must hold during any time in the future. Therefore,

goal conditions that hold during plan execution can be handled

Lacking from both McDermott's and Allen's logics is a construct that can be used

to represent how the robot can affect the world. Without extending either logic it

is impossible to state *If condition C holds then action ACT can be executed'. It is

also impossible to state that a condition, such as whether or not it is raining, cannot

be affected by the robot's actions. It is essential that a logic that supports planning "

be able to represent this type of knowledge. Consider the following example.

Suppose that the robot knows that the only way it can get wet is by being outside

without an umbrella while it is raining. If the robot's goal is to go to the store

without getting wet, it must make sure that these three conditions are not

simultaneously true The robot must be able to deduce that it has no control over
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whether or not it is raining. It cannot plan to stay dry by executing actoons ,.na.
.0 prevent a raining event. A plan must be constructed that is contingent on w-,erie.-U. -".- - J

or not it is raining. If it is raining during plan execution, an umorella must oe taKen

on the walk to the store. If it is not going to rain, it is not necessary to take an

umbrella on the walk.

The logic being presented extends Allen's temporal logic with a modai operator

. that represents sentences describing how the robot can affect the world. Allen's
logic will be briefly presented in the next section. We will then introduce a new

,. class of objects that refer to plans at particular execution times. Following this, we
will discuss what we mean by "can be executed". The modal operator expressing
what the robot can and cannot do will then be presented. This modality, called

IFTRIED, will express counterfactual statements having the form 'if the robot tries

" to execute plan P during interval 1, statement Q would be true". We will then give a
brief overview of how one evaluates counterfactuals and briefly introduce

Stalnaker's semantic theory of counterfactuals. Finally, it will be shown how
anIFTRIED can be used to represent sentences describing what the robot can and

* can not affect.

The notational conventions used throughout this paper are as follows. LISP type
notation will be used to represent logical sentences. For example, the sentence (P a)
refers to the unary predicate P with argument a. The logical connectives will be
represented by: AND for conjunction, OR for conjunction, IF for material

implication, IFF for equivalence, FORALL for the universal quantifier, and EXISTS for

*;;; the existential quantifier. All variable terms will be prefixed with a"'"

Allen's Temporal LoQic

Allen formulated interval logic in terms of a sorted first order logic. The syntax is
divided into terms that denote events, time intervals, objects in the domain, and
properties which are propositions that can hold or not hold over particular (time)

intervals. He introduced a set of binary predicates that specify the temporal
relation between intervals such as IN, STARTS, MEETS. For example, (MEETS il i2)

means that the interval denoted by i1 immediately precedes the interval denoted 9
by i2, that is, i1 is before i2 and there is no interval between i1 and i2. The HOLDS
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predicate was introcuced to soec:fy the intervals over which a propety noics The

statement (HOLDS p i) means that the property denoted by p hotcs over the riterval

denoted by i. An axiom was asserted capturing tne fact that if a property nolos ove, v* S

an interval, then that property holds over any interval contained in this interval.

The OCCURS predicate was introduced to specify the intervals over which an event -. 

occurs. The statement (OCCURS ev ) means that the event denoted by ev occurs

over the interval denoted by i. Allen distinguished events from processes. An event I
refers to some activity that results in some accomplishment, such as walking to the ..'--'

store, while a process is an activity not involving a culmination, such as "I am

walking". The events that can be caused by an agent are called actions. For

simplicity, we have assumed that the robot is the only agent and therefore all -

actions will refer to events that the robot can cause. The robot can affect the world

by executing some set of its actions in some specified order. This collection of ..

temporally ordered actions is a called a plan. Objects that refer to plans at ";--.

particular execution times will be added to the ontology.

Plan instances

In situation calculus, a plan is taken to be a sequence of actions to be executed in .. .,

the current situation. This is clearly inadequate for our purposes since we want to

allow plans with concurrent actions. Secondly, we want to consider plans with * •
execution times starting any time in the future, not just the current situation. Thus, ::ii:i:i:

instead of talking about plans we will talk about plan instances which refer to plans -

at particular execution times. Similarly, an acti'on instance is defined as an event
that the robot can cause at a particular execution time. -1

Plan instances can be classified into three different categories. The first type is .

isomorphic to the set of action instances. Saying that one of these plan instances .

occurs is equivalent to saying that its associated action instance occurs. The second v -,

type of plan instance refers to inactive processes occurring over some time period,

such as 'staying at the same location between 3:00 and 3:10" Each plan instance

of this type can be viewed as the non-occurrence of some set of action instances.

For example, if the robot can only change locations by executing a -goto" action, •

,'821.- ..-
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staying in the same location between 3.00 and 3 10 can oe viewed as :re non--

occurrence of any goto action instance that starts between 3 C an 3 10 j
The third type of plan instance is formed by composing two oian ,ns-ances

together. By definition, a composite plan instance occurs iff both of its comrrone-ts
occur. A plan instance with concurrent actions can be represented by composing
two plan instances with overlapping execution times.

It is important to note that plan instances are partial descriptions of the robot's
actions over some time period. An alternate approach would be to treat a plan
instance as a complete specification of all the actions executed and not executed , S

over some time period. If this approach was adopted, a plan instance could be - -

defined as an ordered pair consisting of an interval denoting the time of execution . -

along with a set specifying all the action instances to be executed during this
interval. We have not adopted this approach here because of the following. First of

all, this definition of plan instances is subsumed by our definition. Secondly, if a
plan instance Is a complete specification over some execution interval, two plan
instances with overlapping execution times cannot both occur. It is useful to allow
for plans instances that overlap in time. For example, two plans instances might be
separately constructed to achieve two different goals. These plan instances might
overlap in time In order to achieve both goals, one must be able to deduce
whether or not these two plan instances can both occur when taken together.

Successful Executions and Execution Attempts -

Reasoning about how the robot can affect the world involves finding plan
instances that can be executed and determining what the world would look like if

the plan instance is executed. First, we must discuss what it means to say that a plan
instance can be executed. We develop this notion by making a distinction between -' '-

successful executions and execution attempts. A similar distinction was made by 0

Haas [2]. It will be assumed that the robot can attempt to execute any plan

instance, but it might be the case that the plan instance does not successfully

complete. We will say that a plan instance can be executed iff it successfully *"."-

completes when attempted. Saying that a plan instance occurs is taken to mean •

that it successfully completes. Consider the following example If a robot is more
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than 5 feet from a wall at 3 00, it can execute the pian irsta-'ce "move o-.vara -

feet starting at 300". If the rooct is 3 feet from the wail at 3 CC arc attemc:s :h s ...

plan instance, it will move forward three feet and then aimlessly grirn ts gears or a
* 0

short period. In this situation, the robot cannot execute "move forwarc 5 fee.

starting at 300". ,_ . .

For traditional reasons, the conditions under which an execution attempt eacs
to a successful execution will be called preconditions. In state-based systems.
preconditions were used to specify whether or not an action can be executed in the

current state. These were defined as formulas such that if they hold in a state then
the action can be successfully applied yieiding a new state. Our new notion of
preconditions is somewhat of a misnomer because they might specify conditions

that must hold while the plan instance fs in progress For example, one of the -

preconditions for walking over the Elmwood avenue briage between 2 00 and 2:10

is that the bridge is open between 200 and 2 10. '

Reasoning About the Effects of Plan instances

The robot must be able to determine the effects of its actions. This involves

reasoning about what statements would be true if a particular plan instance is

attempted. Given a logical statement describing the goal G, the robot must find a
plan instance that can be executed and if executed would make G true. Since by

definition if a plan instance occurs then it must have been attempted, the following
expresses that plan instance pi can be executed and if executed G would be true . -

S1) If the robot attempts pi, then pi occurs and G holds o

In general, we are interested in reasoning about sentences having the form.

52) If the robot tries to execute pi, then P holds *
where P is any logical statement s-- -- -

If S2 is treated as a material implication, it would vacuously hold if the antecedent, .
the robot tries to execute pi", is false. Thus, we shall interpret S2 as a *

counterfactual statement. Allen's logic will be extended with a counterfactual
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'. modalty, called ;FTRIED, th~at represents sentences havng S2's forrr 7RIED ,t3Kes -.."-..
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"" two arguments, a term denoting a plan instance and a logical statene- . -n~e - ""

statement (IFTRIED pi P) expresses the counterfactual "if piwere atternotec: tnen P "">-

"' would be true". We will use the phrase pi's preconditions hoid to mean tha- pi ''''-.-..

[- ~would occur if attempted. This can be expressed in the logic as (IFTRIED pi (PLAN- .,...

." OCC pi)) where (PLAN -OCC pi) means that plan instance pi occurs..-...--

_-r °

It must be noted that IFTRIED can be used to describe what the root could have"

Sdone along with what it can do. We are assuming that our logic can represent the ..- *
robot's vew of the word at any partcular tme Suppose that we are examnng the "

robot's beliefs at some particular tme which we wil call the current tme If pa is a

:-+ plan instance whose execution time starts before the current time, the statement""""]

wouRId occurea ha if throtha attempted. Thpcnbepesdi th wlogi astre (IFTRIED piA-a-

C ih(PLAN-OCC pp) means that the poot could have executed pi. If p has an execution-

time that starts after the current tmeb (IFTRIED p P) means that f pi s attempted, P

"would be true. in the remainder of this paper, we wll not explicitly dentify the
Slacurrent time and therefore ignore tense distinctions. For example, we wll use "

(can to mean "can or could have'.t.davectp.Iihsn euo

EvaluatinQ Counterfactuals

Before exploring IFTRIED in more detaii, it will be helpful to discuss how one
evaluates a counterfactual. This is best captured by the following test proposed by
Frank Ramsy.

Suppose that you want to evaluate the counterfactual, "If A then C " First you
hypothetically add the antecedent A to your stock of beliefs and make the

minimal revision required to make A consistent. You then consider the

counterfactual to be true iff the consequent C follows from this revised stock of

beliefs. --

a' Now, we are interested in how the robot evaluates (IFTRIED pi C) at some particular
:0 time. (IFTRIED pi C) is considered true iff proposition C is amongst the belief set

which is computed by adding "pi is attempted" to the the set of current beliefs

about the actual world and making minimal revision for consistency If the robot
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currently believes that pi s attempted, no revision is necessary anc (!FTRE- of C; s - j

believed iff C is believed, This is also the case if the robot currently beiieves :nat ,-

occurs since necessarily if a plan instance occurs then it is attempte' -

Our formal analysis of IFTRIED is based on Stalnaker's [4) treatment of

counterfactuals . The intuitions behind his theory agrees with the Ramsy test. His .

model theory is based on possible world semantics. A function is introduced in the 0 %

model that takes a possible world wvO and proposition P as arguments and returns

the 'closest" world to wO where P is true. The counterfactual "if A then C " is

evaluated as true at possible world wO iff C is true in the closest world to wO where

A is true. 0 S

Stalnaker emphasized that most matters of "closeness" are decided by

pragmatics, not semantics. He did, however, specify a minimal set of requirements

that a closeness function must meet. These properties lead to a small number of

valid axioms. in our model theory, we have introduced an accessibility relation,.-
called CL, that closely parallels Stalnaker's closeness function. His closeness

properties have been translated into properties that CL must meet. We also have

imposed some additional properties on CL that arise from the specific nature of -

counterfactuals having the form "If plan instance pi is attempted then P would be

true"

The details of the semantic theory, the set of valid axioms, and inference rules • I
will not be presented here. A later paper will cover these issues The remainder of

this paper will provide an intuitive feel for the meaning of IFTRIED by illustrating

how it is used. .1

Using IFTRIED

We will now show how IFTRIED can be used to encode statements describing ..

what the robot can and cannot affect. Using this knowledge along with beliefs

about the actual world (which are encoded by statements not containing the

IFTRIED modality), the robot tries to deduce that there exists a plan instance that

can be executed and f executed would make the current goal true. As previously

mentioned, stating that a plan instance can be executed is equivalent to stating that * *

it would occur if attempted Therefore, given a logical statement G reciresenting

825

.- . . . . . . .. .. . .

. . . . . . . . . . . . . . . . . .. . . . . . . . . . . ... .. ]



the current goal, the robot looks for a plan instance pi such that (IFTRIE , (PAN-

OCC pi)) and (IFTRIED pt G) are true. (note: typicaly, we are Jook rg for a .an

instance with a future execution time and therefore must adcl the aooji:ona,

restriction that pi must have an execution time starting after the current :ime. For ,.- .'

convenience, we will make the following definition :,.-'-

(CAN-OCCUR p') -- ef (IFTRIED pi (PLAN-OCC pi))

- Now, it might be the case that (CAN-OCCUR pi) is false, but if another plan instance
would be executed then (CAN-OCCUR pi) would be true, that is, there exists some
p12 such that (IFTRIED pi2 (CAN-OCCUR pi)) holds. This seems to be closer to the

english usage of the word "can". One might say that some action can be performed -'

when it is known that this action can only be performed in conjunction with some

other action that brings about its preconditions.

Conditions that the Robot Cannot Affect ''

A proposition will be called inevtabJe iff the proposition is true and would

remain true no matter what plan instance the robot attempts. Examples of

inevitable propositions are statements about causal laws and statements that relate

a plan instance to its preconditions and effects. (INEV P) will be used to represent

that P is inevitable. INEV is defined in terms of IFTRIED as follows -

.:.. h,-. -%

(INEV P) = def (AND P (FORALL 7pi (IFTRIED pi P)))

If some proposition is inevitable, then the proposition is inevitable no matter
what plan instance the robot attempts. This can be represented by the following

statement which is a valid axiom schema in our system

(IF (INEV P) (FORALL 'pi (IFTRIED 'pi (INEV P)))) "
where P is any logical statement

This schema is used when we are reasoning about nested IFTRIED statements. From

the assertion that some causal law P is inevitable, we can deduce that (IFTRIED pi u

(IFTRIED pi2 P)) )s true for any plan instance terms, pi1 and p12

826
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Now, the robot might not know whether some proposition is inevitaole, bu-

doeS know that it cannot affect whether it holds or not. A typical exampie of this * 0

is a proposition stating that it will rain during some interval. We can represent that

proposition P cannot be affected by the robot's actions by the following •

(AND (IF P (INEV P)) (IF (NOT P) (INEV (NOT P))) Ap. , 0

Encoding P-econditions and Effects
* 0

Typically, planning systems are given knowledge specifying the preconditions

and effects for each action that can be caused by the robot. Fror this information,

the system must derive how these actions can be combined to form a plan that,"..4

achieves some specified goal. In our logic, plan instances refer to single action * 0

instances as well as composite objects. First, we will describe how to represent the .

relationship between a plan instance and its preconditions and effects. Following

this, we wilt discuss how we can reason about the combined effects of executing a

number of plan instances together . e

If the preconditions of plan instance pi hold, then pi will occur if attempted, no

matter what the robot does or could have done. For example, consider the plan

instance where the robot walks from home to the store starting at 3.10 and arriving *

at 3.30. We will let the function term (walk home store)@i3 10-3 30 denote this

plan instance Its preconditions are that the robot is home just prior to execution.

Thus, it is inevitable that (walk home store)@13:10-3:30 can be executed if the robot

is at home just prior to 3:10 (i.e. during some interval that meets the interval i3: 10- •

3:30). This can be encoded as follows:

(INEV (IF (EXISTS 'i-ah (AND (HOLDS (at home) ?i-ah)

(MEETS 'i-ah 13:10-3 30)))
(CAN-OCCUR (walk home store)@13:10-3:30))

where (at loc) means that the robot is at the location -

denoted by Ic

I 0

*.. . .- ,• • . • .- -

.. . . - , .-..---. . . . . .".. . . " " .- " . .. ' .'. '' , . '-' ' . ' . . ' '''''



if a plan instance occurs then each of its effects holds, no mat*,er Wmat *ne roo:2

does or could have done. The effects of (walk home store)@i3.10-3 30 are triat :h-e - '
robot is outside during execution and is at the store immediately after exec.t'or.
Therefore, it is inevitable that if (walk home store)@3: 10-3:30 occurred, the rooo- ~
would be outside during interval 13:10-3:30 and at the store immediately after 3 30 '

(i.e. during some interval that is met by 13.10-3.30). This can be represented by the
following:

(I NEV (I F (PLA N-OCC (walIk home sto re) @13 10 -3:30)-
(AND (HOLDS (at outside) 131 10-3:30)

(EXISTS 'i-as 0
(AND (HOLDS (at store) 7i-as)

(M EETS 13:10- 3.30 'i -as))))))

From the assumption (INEV (IF (PLAN-OCC oi) EFF)) which relates pi to one of its

* effects EFF, the following can be derived:

(IF (CAN-OCCUR pi)
(IFTRIED p1 EFF))

This statement says that if pi can be executed then EFF wouid be true if pi is
attempted. The reason why this is deducible from (INEV (IF (PLAN-OCC pi) EFF)) is as
follows.

1) (IFTRIED pi (IF (PLAN-OCC pi) EFF)) is entailed by our assumption (INEV (IF
* (PLAN-OCC pi) EFF)

2) By definition, (CAN-OCCUR) is equivalent to (IFTRIED pi (PLAN-OCC pi))

3) Modus ponens distributes out of the IFTRIED modality, that is, the following
is a valid axiom schema:

(IF (IFTRIED pi (IF P Q))
p (IF (IFTRIED pi P) (IFTRIED pi Q))).

where P and Qare any logical sentences--
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4) From 1-3, it is easily seen that (IF (CAN-OCCUR ot) (!FR!E: pi E ogcaly
, ,N ~~% ' -" .,

follows from our assumption V."

A Simple Example -

Suppose that the robot's goal is to get to the store just after 3 30 We will let G
represent this goal statement. If the robot currently believes that it will be at home P

just prior to 3:10, it will be able to deduce that it can execute (walk home
store)@i3:10-3:30 and thereby achieve its goal. On the other hand, suppose that

the robot believes that it will be at home from 2:30 to 300 but has no beliefs

about where it will be from 3:00 to 3:30. In this situation, the robot cannot deduce

that it can execute (walk home store)@13 10-3:30. If, however, we could introduce

another plan instance that guarantees that the robot will be at home just prior to

3:10, (walk home store)@(3.10-3 30 can be executed and the goal achieved

Let us now consider the plan instance where the robot stays at home between -'

3:00 and 3. 10. We will let the tunction term (stay-at home)@i3:00-3.10 denote th is

plan instance. Its preconditions are that the robot is at home just prior to 3 00 and

its effects are that the robot will be at home between 3.00 and 3 10 From the -

belief that the robot is at home between 2:30 to 3 00, it can be derived that (stay-at
home)@i3 00-3 10 can be executed and if executed the robot can execute (walk

homestore)@13 10-3 30. This can be represented as follows -.

(AND (CAN-OCCUR (stay-at home)@i3 00-3 10)

(IFTRIED (stay-at home).i3:00-3 10
(CAN-OCCUR (walk home store)@i3: 10-3:30)))

since successfully executing (walk home store)@i3:10-3.30 brings about the noal G
(i.e. the robot is at the store just after 3 30), we have the following:

(IFTRIED (stay-at home)@13 00-3 10 "

(IFTRIED (walk home store)@i3 10-3 30 G))

The above example suggests that goal G can be obtained by executing a plan -• .

instance composed of the plan instances (stay-at home)@13 00-3 10 and (walk '

829
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home store)@(i3 10-3.30 in this exampie, this happens :o be t'e case We cannot,

however, always deduce that a plan instance composed of two plan instances. pi

and p12, can be executed together when the foilowing is true S
*' " i . - "

(AND (CAN-OCCUR pi) " .J--

(IFTRIED pil (CAN-OCCUR p12))

This issue will be addressed in the next section

Plan Instance Interaction

As just illustrated, statements with nested IFTRIED modalities can be used to

reason about the interaction of two plan instances (remember that CAN-OCCUR is

defined in terms of IFTRIED). It is important to note that the plan instance

arguments in a nested statement can have any temporal ordering In other words,

the statement (IFTRIED pil (IFTRIED pi2 P)) can be formed regardless of the

temporal relation between pi I and pi2. This is useful when we are reasoning about

the combined effects of two plan instances with overlapping execution times.

Consider the function term (stay-at home)@3 00-3 30 which denotes the plan

instance where the robot stays at home between 3 00 and 3 30 Assuming that the

robot currently believes that it will be at home just prior to 3 00, it can deduce the

following

(AND (CAN-OCCUR (stay-at home)@3.00-330)

(IFTRIED (stay-at home)@3.00-3 30

(CAN-OCCUR (walk home store)@3: 10-3 30)))

This is because execution of (stay-at home)@3:00-3.30 makes it true that the robot

will be at home just prior to 3.10. Unlike the example in the previous section. it is

not the case that we can combine (stay-at home)@3 00-3 30 and (waik home I

store)@3-10-3 30 to form a composite plan instance This is under the assumption

that the robot knows it cannot be at two places at once If (walk home store)@3 10-

3 30 occurs then the robot will be outside between 3 10 and 3 30 ana if (stay-at

r 830
S S
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* 0

home)@3 00-3.30 occurs *hen the rooot will be at home be!weer' 3 00 and 3 30

Therefore, the two plan instance cannot occur together.

One might ask under what conditions can we conc~ude that plan instances ..

and p12 can be executed together when it is known that pi I can be executeo anc f

attempted, p12 can be executed. That is, the following is known - -:

Cl) (AND (CAN-OCCUR p,1) P

(IFTRIED pi l (CAN-OCCUR p12))

This hapoens to be the case if it is inevitable that attempting p12 does not prec!ude

the occurrence of pil By this we mean the following is true:

C2) (INEV (IF (PLAN-OCC pi 1) (JFt1RED pi2 (PLAN-OCC pi 1)))

C2 can be read as: it is inevitable that if pi 1 occurs then pi 1 would still occur even if

Spi2 were to be attempted. We must note that C2 is a sufficient but not necessary .-'. -

condition that guarantees that pil and p12 can both be executed assuming C1 iS

true.
* 6

If it happens to be the case that pil's execution time is before p12's execution

time, condition C2 will necessarily hold. This is because we are assuming that it is

inevitable that attempting a plan instance does not affect any conditions prior to

the plan instance's execution time.

Conclusion * •

The logic presented in this paper extended a robust temporal logic (ie Allen's

temporal logic) with a counterfactual-like modality that can be used to represent

sentences describing how the robot can affect the world This allowed us to

represent planning problems having the following form

Given a partial description of the past, present, and future, and a set of goal

conditions, find a plan instance (which can be composed of concurrent action

831
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instances) that can be executed and if execute would make th-e goal cond:ior's

hold
,.%4 , ( .4 . j

This extends the class of planning proolems typicaily hanclea oy situation caic;I.s n 0

the following ways. One can represent knowledge about the past and future

along with knowledge about the present state Plan instances can contat'

concurrent actions and have any execution time they are not restricted to be

sequences of actions to be executed in the current situation Finally, any terrporai

statement can be a goal statement, we are not restricted to goals that describe -'

conditions that must hoi just after plan execution.

The IF'TRIED modality can be used to specify what propositions can and cannot

be affected by the robot's actions. Without making extensions, neither

McDermott's or Allen's logic could encoce this type of knowledge We have snown

how to represent that some proposition is true no matter what the robot does We : ..

have also shown how to represent that some condition can not be affected by the .

robot's actions, such as whether or not it is raining.

By nesting the IFTRIED operator, we can represent how plan instances interact

with each other We presented sufficient conditions that guarantee that two plan -

instances can be executed together Other forms of interaction can also be

represented. For example, we can reoresent that two plan instances can be

separately executed, but cannot be executed together This might be the case if . .

the two plan instances had concurrent execution times and shared the same

resource.
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COMPUTER ARCHITECTURES FOR VERY LARGE KNOWLEDGE BASES

P. Bruce Berra
Electrical and Computer Engineering 1

Syracuse University
Syracuse, New York 13244-1240 , -,

Introduction

The current state of the art in knowledge based expert

systems is such that the intensional database (IDB) of rules and the

extensional database of facts (EDB) are small and main memory

resident. However, there is a current need for expert systems with . ' "

large and very large knowledge bases. With these systems comes the

problem of the efficient management of the knowledge base. Data base

management system technology can help with smaller knowledge bases but

when real time requirements and a very large knowledge base are

involved one must consider innovative hardware approaches. -

Thus, the long term goal of this research project is to

develop innovative computer architectures that efficiently manage very

large knowledge bases in a real time environment.

There are many ways to represent the knowledge in an expert

system. We have chosen a logic programming framework because of its I
strong mathematical foundation, its commonality with relational data

base management, prior and current Prolog and MetaProlog work at

Syracuse University and the potential for making significant •

improvements in the performance of logic programs through the 0

exploitation of search parallelism.

In this report we begin with a description of the partial

match retrieval problem that results when one seeks to retrieve

° 7% "-:4.- k'
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facts from the EDB. We then discuss our approach to the improvement

of the performance of the partial match retrieval problem and present S

an initial computer architecture. Finally, we discuss accomplishments

to date and future plans.

8-6. ."-

9. - . .

. • ..



* S
7-7-4. V%

Partial Match Retrieval .

In our initial investigations we have taken the approach 0 S

that the intensional data base (IDB) of rules is separate from the

extensional data base (EDB) of facts. We assume that the inferencing

engine goes about the process of solving logic programming problems

through processing of the rules and making calls to the EDE to obtain

facts that are needed in the process. As previously mentioned we are ..

concerned with a very large knowledge base of facts and high access 0

time requirements.

In order to illustrate that the problem at this level

becomes one of partial match retrieval consider the following fact 0

type.

HAPPENING (Person, Event, Data of Event)

One instance of this fact type can be the following: 0 •

HAPPENING (J. Jones, Graduated, June 1982)

This is interpreted as the fact the J. Jones graduated from

* 0
something in June 1982. In the process of solving a logic program the

query to the EDB could translate into any of the following queries: .

What happened to J. Jones?

Who graduated? .

What events took place in June 1982?

When did J. Jones graduate?

What happened to J. Jones in June 1982?

Who graduated in June 1982?

Did J. Jones graduate in June 1982?

and many others.

837 ..' -
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The point here is that access may be required on any subset

of the fact type arguments. The queries above represent access on S

one, two and all argument positions. The problem becomes a special

case of the partial match retrieval problem. It is a special case

because we, in general, will specify in what argument position we 0

expect to iind the value we are seeking.

The partial match retrieval problem can be solved by first

indexing on fa,.t type and then creating an index on each argument 0

position within a fact type. While this approach effectively solves

the problem for small EDB's it is ineffective for a VLKB. Since we

are indexing on each argument position the index data can be as large 0

as or larger than the facts themselves. In a small EDB with just a

few megabytes of fact data doubling the size of the data base is not a

severe price to pay for retrieval performance. However, if one has S

several gigabytes of fact data, doubling the total amount of data by '

creating indexes on each argument position does not represent a viable

solution to the problem. This is true not only from the storage point

of view also from the accessing point of view since one must manage -

much more data. Thus, other methods must be found, when dealing with

gigabytes of data that give improved performance.
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Surrogate Files

Over the past year we have made detailed comparative

evaluations of techniques that reduce the size of the index data and .

offer improved retrieval performance. The principal techniques that -. --

we have evaluated include superimposed code words (SCW), concatenated S S

code words (CCW), cc.binations of SCW and CCW and transformed inverted .

lists (TIL). We will use superimposed code words to illustrate the .

ideas. 0

In our previous example suppose we use a hashing function-.

to transform each of the arguments to a fixed binary representation , %

(say 32 bits). That is, 0

H(J. Jones) 100.. 1

H(Graduated) 110. .0

H(June, 1982) 110.. 1 •

Logical OR result 110.. .1

We can logically OR the individual binary code words to

form a superimposed code word. We would then attach a unique • 0

identifier to the code word. This unique identifier would be the same

one that is used to identify the fact in its complete form. Thus,

there would be a surrogate file of SCW's with one entry per fact and . -

this file would be used to improve retrieval performance.

As illustrated in Figure 1 if one wanted to retrieve a fact

based upon one or more arguments, one would pass each of the arguments

through the same hashing function, and OR their fixed length binary

representation together in order to generate the query code word

. . . . . . . . . . .- .
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(QCW). One would then compare the QCN with all of the SCW's for that-.

fact type seeking matches on the ones of the QCW. This process is we!--

suited for as associative memory and special hardware has been proto- S

typed by Ahuja and Roberts (1980). All of the SCW's that had ones in

, the same positions as the QCW would be possible qualifiers. The id's of

the possible qualifiers would then be used to retrieve the pages in ques- 0

tion. The input key values would then be compared with the possible

matches. If the desired fact(s) exists within the data base it will be

found. However, a number of pages may be retrieved that do not contain

* desired facts, called false drops. There is an inverse relationship be-

tween the number of bits used in the SCW and the number of false drops.

The use of SCW's in the contact of logic programming has also been discus-

sed by Wise and Powers (1984).

In the use of concatenated code words we would concatenate

the binary representation along with the unique identifier to form the

CCW. The use of CCW's is one extreme while the method of SCW's is the

other. The concatenation method almost insures (subject to the

quality of the hashing function in avoiding collisions) that the .

unique identifier(s) that is obtained is indeed the one(s) that is

desired. However, it does so at the expense of a longer word length.

The method of SCW's reduces this long word length but does so at the

expense of increasing the number of pages retrieved that do not

contain desired facts.

In order to fix the ideas consider the example three

argument fact type. When we attach the unique identifier it becomes a

relation in the relational data base management context and each of

- - . '- "- "-. -
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the facts can be referred to as a tuple. We will assume that the

relation comes from a much larger EDB,the tuples consist of a MByte of 0
.~~~*.-.,,'.

. data and there are approximately 15,500 facts involved. To develop a

concatenated code word with unique identifier for each fact would re- '.* . -"

quire about 20 bits for each argument position and 14 bits for the •

unique identifier. Thus, the total number of bytes of CCW would be

144 KB or 14.4 percent of the total. With SCW comparable values are -

about 80 KB or 8 percent of the total. This number is obtained by al- 0

lowing 14 bits for the unique identifier and 28 bits for the SCW.

Roberts (1979) suggests that the length of the SCW should be such that

the number of ones and zeros occur with equal probability in order to -

minimize false drops. The value of 28 bits for the SCW may vary by a

few bits with more detailed analysis but the basic point is that there

is not a lot of difference between a SCW method and the concatenation ,,,

method for small numbers of argument positions in fact types. The

difference occurs when there are many arguments per fact. In this case

the method of SCW may be of considerable value.

It may be that there is a point in between these two methods

that is optimal. For instance, Lloyd et al (1980, 1982) has taken an

interesting approach in which he selects bit values from various

positions of the binary representation of the argument values in the

facts and concatenates them to form a code word. Also, we have"-

explored the development of a method that is a hybrid of the SCW
.. - -

method and the concatenation method. The resulting code word has

unique portions for all of the arguments and non-unique portions that

represent the ORing of two or more arguments. While this method

8-.2
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While this method reduces the length of the code word it does however,

increase the probabilty of false drops from that of CCW.

Another approach that we are investigating is the use of S S

transformed inverted lists. In this method we hash the originial ' '

argument values for each position and keep a list with pointers to the, -

original facts. If one is searching for a fact based on a single S

argument this method has definite advantages since less index data

needs to be processed. However, when a number of arguments are

involved additional processing will be required since lists will have 0 5

to be intersected. Also, updating the list of facts will be more

difficult than with SCW and CCW. We are in the process of preparing a

report in which we compare these various techniques. 5 5

'- ,". % %
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Comvuter Architecture for Partial Match Retriea -

In addition to improving the performance of partial match

retrieval through the use of surrogate files one can gain an

additional measure -f performance through the use of special hardware.

Shown in Figure 2 is our current architectural configuration. We S

assume that the intensional data base (IDB) is managed by the

inferencing engine (although it need not be) and that the EDB is

managed by the back end system. The EDB processor is envisioned to be

a sequential computer with a data base management system running on it

that will manage the facts. It may also be involved in the management

of the surrogate file but that has not been determined 
as yet. The .. 1

partial match retrieval processor is a special piece of hardware that

will be designed especially for the processing of the surrogate file

depending upon what indexing method we choose.

8.'4.
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PMRP - PARTIAL MATCH RETRIEVAL PROCESSOR
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EDB - EXTENSIONAL DATABASE
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Summary of FY 85 Research

investigations have focused on two related areas; 1) the development

of techniques for assessing the extensional database (EDB) of facts in

minimum time andi 2) the dvlpetof parallel computer architectures

that can further speed up EDB processing. When one seeds to satisfy

subgoals in a query, access to the EDB can take place on any subset of

arguments that exist in the clause type under consideration. The Sy

problem then becomes one of partial match retrieval with some form of

indexing over all argument positions. In order to reduce the amount

composed of superimposed code, concatenated code words, transformed

inverted lists or some combination of the three. These are

L 0
transformations of EDB key values into binary representations. While

a code word exists for every fact in the EDB the total code word file

is on the order of 20% of the size of the EDB of facts. This is

compared with sizes of upwards of 100% for other methods of indexing.

As pointed out previously we are in the process of preparing a report

on the results of our analyses.

With regard to the development of parallel computer

architectures we have postulated a back end system that consists of a

control processor, a special purpose partial match retrieval processor

and disks for the storage of the surrogate file and the EDB. We are ]
" ~currently investigating several approaches to the partial match x."...

retrieval processor from associative processors to streaming
p, 5

processors.

P** 84(,
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In addition to those tasks discussed above we are

investigating the interface between Prolog!Metaprolog ani4 a relational 0

database management system (INGRES). We are also engaged in a revi1ew

* of the state of the art in optical storage devices and optical

* processors with a view toward the use of such devices in our future

- research. Finally we have begun a study of various expert system

builders.

0
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Research Plans for FY 86 and 87

During the next year (1986) we will continue our evaluation of

partial match retrieval methods and special computer architectures for 0 0

their efficeient implementation all in the context of logic program-

ming. We expect to begin the design of the special purpose processor -

about midway through the year. We will begin to assemble the necessary •

hardware, software and knowledge for the knowledge base back end system

as shown in the initial architecture. We will have to pay special at-

tention to those functions that are required for a complete system. 0

These functions include creating the EDB, back up, update, integrity,

security and others. In addition we will need to identify an expert .

system application area in order to ground our research. ° .

We will also continue to investigate the use of optical storage

devices with their potentially high bandwidths (200-400 MBytes/Sec.) in

order to increase the rate at which the EDB can be processed by the back b

end system. If resources permit we will also investigate processing of

the data in optical form.

There is considerable interest in architectures that increase "'

rate at which logical inferences can be performed. As these prc -

develop, increased emphasis will need to be placed on the manaierm-

the knowledge base. There are many open questions regari::

inference processor, the knowledge base processor anu : t

tuent parts of the system can be integrated. Th,

concentrate on the development of the proce- ,

a prototype Prolog/Metaprclog svs'er. .

with other research being e
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Research Plans for FY 88 and 89

If we are to effectively handle VLKB's we must deal with * 0

the storage of the knowledge in disk form. Since the bandwidth (3-5 M

Bytes/Sec.) of magnetic disks is not expected to increase much during % . _

the time period of this research we must consider the distribution of

the EDB over many disks. This will allow for simultaneous parallel

read out from the disks, thus effectively increasing the bandwidth. "..-
* S

Another way to increase the bandwidth of the disks is to .. ',.

compact/decompact the data being sent to and from the disks.

Estimates are that compaction can effectively increase the bandwidth

by a factor of two. Thus, with the minimization of the amount of

extra data through the use of surrogate files and the methods -

described above we hope to be able to deal effectively with the

magnetic disk bandwidth problem. Finally, we expect a positive impact

based upon our optical disk research.

In the time period 1988 through 1989 we plan to construct ."'-

* 0

an advanced architecture as illustrated in Figure 3. We will use the
- -..--i

techniques described above for aiding rapid EDB retrieval but many

other problems will arise regarding distributing the EDB, coordination
* 0

and communication among the processors, the numbers of processors of

various types needed for effective operation of the system, the estab- -

lishment of a VLKB and the interfacing to the inferencing mechanism.

Our long term goal then is to be able to demonstrate such a system by .-"" .

the end of the project. . '

849 0 0
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Summary

The on-going work of this project is focused on the development of extensions of the
logic programming language Prolog which are suitable for application to the problem -

of maintaining consistency and logical structure for large dynamic knowledge bases. S
The logical representation of the assertions of a knowledge base is to identify them
with the facts and rules of the logic programming language. Such a collection of facts
and rules is called a theory. To adequately model the dynamic character of the
knowledge base, one must be able to efficiently manipulate alternative theories, a (vir-
tual) sequence of such alternative theories providing a representation of the changing •
knowledge base. Moreover, it is desirable that the process of manipulating alternative
theories be logically well-grounded. Present-day Prolog, while it has highly efficient
implementations, does not meet these requirements. The project is developing so-." -
called metalevel extensions of Prolog meeting the following requirements: -. -

A) The extension allows one to express alternative and changing KBs;

B) The extension has a logical basis;

C) The implementation methodology for Prolog can be expanded to
efficiently implement the metalevel extensions.

The metalevel extensions have the character that logical concepts which are implicit in
Prolog systems are made explicit in the extension. In particular, theories, which are
only implicit in Prolog, become explicit first-class objects capable of being the values 0
of variables and of being dynamically constructed and modified in a logical manner.
While the immediate motivation for the reification of theories was the representation of
change in knowledge bases, a pleasant side-effect is the ability to cleanly implement a . --
number of classical artificial intelligence knowledge representation schemes such as
frames and semantic nets. A similar approach is being taken to the problem of con- "

trol, though it is not yet as well developed. 9.. .,
..-..-. . .. ,.
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Background and Goals

This research is directed at the development of logic-based methods for manipulating
and maintaining large complex knowledge bases. The focus of concern is with the

problem of reason or truth maintenance. Assertions may be recorded in the
knowledge base which may later need to be withdrawn, either because the assertion
was incorrect, though this was unknown, or the assertion may have been a hypothesis
tentatively added to examine its consequences in the presence of the rest of the
knowledge base assertions. The difficulty arises from the possibility that other asser-
tions may be deduced from the problematical assertion and recorded in the KB. When

-" we later go to withdraw the problematical assertion, we must locate all other assertions
in the KB which apparently depend on it, determine whether or not they possess sup-
port other than the problematical assertion, and if they do not, withdraw them also, re- -

cursively iterating this process to their dependents, etc. The approach taken by this
project is from the point of view of logic programming, since the central concern of
reason maintenance is deductive consequence and consistency.

The most successful exemplar of the logic programming paradigm to date is Prolog.
Unfortunately, it is inadequate to the task of large scale knowledge base maintenance.
The most desirable way to represent a knowledge base in Prolog is to identify the
assertions of the KB with Prolog facts and rules. However, because pure Prolog only
provides for one monolithic program database, one cannot directly represent a chang-
ing KB. Practical Prolog adds the assert/retract facility to accomplish this. However, .. '

this has negative aspects:

1) the logical basis of the system is destroyed;

2) since the KB is intertwined with the management code, this is very poor, ."
programming practice for large systems; .

3) it does not allow one to express and maintain altt native KBs or contexts.

However, the implementation techniques of Warren [1983] for pure Prolog are ex-
tremely powerful, efficient and flexible. Consequently, the approach taken by this pro- S

ject has been to seek an extension of Prolog with the following properties:

A) the extension allows one to express alternative and changing KBs;

B) the extension has a logical basis;

C) one can extend Warren's implementation techniques to provide efficient
implementations of the extension. ".....

.1 ]

Principal Efforts
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The first year of the project has been devoted to this task. We have explored a class
of extensions of Prolog which can be described as meta-level extensions. Our activi-
ties have been divided among the following interrelated subtasks:

% %

i) Elaborating various versions of the metalevel constructs and examining •
their applicability to the problem of KB maintenance and also to the imple-
mentation of expert systems, since the latter is often intertwined with the use
and maintenance of KBs.

ii) Elucidating the logical status of the metalevel constructs;

iii) Examining methods of extending Warren's methods to accommodate the
constructs.

As a basic part of this effort, we devoted considerable effort during the year to the *
construction of a high-quality Prolog implementation based on Warren's techniques.
We explored a number of approaches to this, and eventually constructed a Warren ..- '
abstract machine (WAM) which executes abstract instructions emitted by two distinct,"- " -'>- ,"

compilers. The WAM is a byte-code interpreter implemented in C. As such it is quite
portable (to byte-addressable machines which includes the DEC VAX architecture, the •
Motorola 68000-series architecture, the National Semiconductor 32000-series architec-
ture and numerous others), yet is very efficient. It executes the standard naive reverse
benchmark at 12K LIPS on the VAX 780. (While this is really a poor benchmark of
Prolog performance, it provides a rough yardstick by which to compare systems.) It is
by far the fastest of the portable systems to date. It executes at slightly better than * S

one-half the speed of Warren's Quintus Prolog product.

One of the two compilers which emits code for this WAM is coded in Prolog, the oth- -
er in C. The latter is integrated with the WAM, incrementally compiling and loading
the code presented to it. The other is coded in Prolog. It can be compiled by the C
version and run in the WAM environment, loading its code for execution by the
WAM. The process of constructing these two compilers taught us much about the
subtlties of Prolog compilation. Details of these systems and some of the compilation
techniques we have evolved are presented in the papers attached as appendices to this
report.
We devoted several months to exploring the problem of creating interpreters for the

metalevel extensions by writing them in Prolog and executing them over our WAM .....-.
(extended by a few simple low-level constructs to provide for simulation of the -"

metalevel notions.) While we had some success at this, overall we found too many
difficulties in the approach. Simply put, the few low-level extensions of the WAM
that we had introduced were inadequate to the task. Using them to simulate the
metalevel constructs produced code which was simply too complex, and failed to cap-
ture all of the intended functionality of the constructs.

Thus, towards the end of the year, we turned our full attention to the question of truly
extending the WAM to provide suitable facilities for the correct implementation, via a

-855
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compiler, of the metalevel extensions. Fundamentally, the metalevel extensions are
governed by the position that important logical concepts which are implicit in Prolog .

must be made explicit in the metalevel extensions. Theories -- that is, collections of
formulas constituting a program database -- have occupied the greatest part of our at-
tention. To make them explicit, they must be capable of being the values of variables
and they must be dynamically creatable and modifiable. To achieve this, the most im-
portant underlying task is a modification of the treatment of compiled code and the
space it occupies. Roughly, we must be able to treat code sequences rather like ordi- ,.
nary Prolog terms and the space it occupies must be managed rather like the standard
WAM heap. Two options present themselves: Y-. 4

First, simply store the code on the existing heap, adjusting the WAM accord-
ingly;

0Second, store the code in a separate area, but add management facilities to the
. WAM which handle that code area in a manner similar to the heap.

At the moment, we lean towards the second, but feel that there is no vast difference
between the two schemes. The differences will lie mostly in matters of detail. Our
preference for the second is based on our estimate that it will provide for a somewhat ,.-, ..

cleaner system. We have designed most of the changes needed for this extension, and
expect to start coding them into our present WAM after the end of the present academ-
ic semester.

For the metalevel extensions which focus on making the notion of theory explicit, we
are convinced t.at, given the properly extended WAM, the problem of creating a corn-
piler for the metalevel extension will be relatively straight-forward. Linguistically, the
metalevel extension (which we call metaProlog) closely resembles ordinary Prolog
with the "call(G)" built-in predicate replaced by the predicate "demo(T,G)" which re-
cursively invokes the backchaining Prolog-type search mechanism in the context of the .
theory or program database T. Consequently, the metaProlog compiler will be a rath-
er straight-forward extension of our present Prolog compiler(s).

Related Concerns ,

One of the exciting fall-outs of the work has been the realization that making theories
explicit first-class objects allows us to create clean implementations of a number of
very popular artificial intelligence knowledge representation schemes. In particular, we
are able to implement frames and semantic nets very cleanly and powerfully, including ... ,
extensive inheritance of properties. We have also been led to discern the possibility
of a rather direct implementation of message-passing. However, this latter will require
some alteration of the search regime of the underlying deductive engine; we have not
yet fully explored the consequences of this. These ideas are set out in more detail in
two of the accompanying appendices. .

As a secondary issue, we have devoted some attention to the question of extensions
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which allow more flexible control of the deductive engine. Our approach here has
been governed by the same philosophy which governed the addition of theories.
Namely, rather than graft on a non-logical control language, we feel that the underlh-
ing concepts involved in control should be made explicit to some reasonable degree.
Exactly what form this should take is not yet clear. However, it seems certain that S
abstract representations of the search space as a whole, the partially completed search,
the discarded part of the space, and the as yet unsearched portion of the space should ,.,

be available as reasonably first-class objects, amenable to direct reasoning by the pro-
gram. However, while we having some very intriguing ideas as to how to accomplish
thi,, the impact on the WAM seems more extensive and thus we are proceeding more
slowly in this line.

Future Plans

Our goals for the immediate future are the coding of the extended WAM and the in-
stallations of the accompanying changes to the compiler so as to achieve an operation-
al metaProlog compiler system. When this is achieved, we will enter into an extended
period of implementation of prototypical knowledge base maintenance schemes and ex-
pert systems using the metaProlog compiler. This will provide not only a testing of
the constructed system, but should also iteratively feed back information leading to im- -:'.-'-
provements of the system. We expect the efficiency and capacity of the system to be -. '.

sufficient to explore some experiments of realistic scale. After some period of this
endeavor, we will begin working closely with Professor P. Bruce Berra's effort to in-
tegrate the code management schemes of our extended WAM with the (software) svs-
tems his project is designing for the low-level management of very large knowledge
bases. We will also continue our investigations of control extensions at a secondary
level of effort.

Research Group Composition

Besides the principal investigator, Professor Kenneth A. Bowen, the group is com-
posed of a number of students at Syracuse University. Two of them, Ilyas Cicekli and
Andrew Turk, are supported by the AIC contract. Another, Kevin Buettner, has sup-
port during the academic year from a Syracuse University Graduate Fellowship, but '

during the summer of 1985 was supported by the Post-Doctoral Program grant under
which some of the work preliminary to this effort was conducted. The other student
members of the group have support from other grants or University graduate assistant-
ships. They are: Hamid Bacha, Aida Batarekh, Loren Fairbank, Rumi Gonda, and
David Wolfram. Another student, Keith Hughes, is employed under Professor P.
Bruce Berra's grant, and is working very closely with our group. He is devoting effort
towards the integration of the logic programming system(s) with large-scale relational
database managers. Currently he has been investigating the problem of interfacing the
logic programming system(s) with the relational database system INGRESS as a prel-
iminary step to integration with the systems being designed by Professor Berra's '..

group. It is hoped that several new students will join the group in the course of the ... -
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academic year.

.% . ' ",.

Visitors and Travel "
I S

We benefited considerably from a number of visits during the year by colleagues from
the logic programming community. Hideyeku Nakashima of the Electrotechnical La- -

boratory, Ibaraki, Japan, spent two months as a visiting CASE Center scholar. His %
work is closely related to our own and the regular discussions we had with him were
quite enlightening. Jacob Levy of the Weizmann Institute of Science, Rehovot, Israel, 1!
visited under the USAF Window on Science Program. Our discussions of implementa-
tion techniques with him were extremely helpful. We also spent time discussing ques-
tions of concurrency, which, while not of foremost concern for our group at the mo- .
ment, are of considerable long-term significance for us. Throughout the year we ,-.
worked closely with the Theorem-Proving group directed by Ewing Lusk and Ross S
Overbeek at the Department of Energy Argonne National Laboratory, Argonne, Illi-
nois. They have been deeply concerned with questions of Prolog implementation and
during the first phase of the year, we made use of their implementation of the WAM,
later replacing it with our own. Bowen made a trip to Argonne in October, 1984, for
technical discussions, and during the year, both Lusk and Overbeek made separate trips ,
to Syracuse to continue those discussions. Throughout the year, we were able to main-
tain very close contact via the connection between CSNET (Syracuse) and ARPANET
(Argonne). The work would have benefited even more had there been a direct AR-
PANET connection between the two sites. In May of 1985, most of our group attend-
ed a non-formal Workshop on Prolog Implementation hosted at Argonne. The value -

*" of the discussions we had there was extremely high, leading to some of our key in-
sights. Other visitors whose discussions contributed to our efforts include: Allen
Brown of General Electric Corporate Research & Development Laboratories, Schenec-

" tady; Jean-Louis Lassaize of IBM Yorktown Heights Research Center; Lee Naish of
Melbourne University; K. Ueda of ICOT; Maarten van Emden of the University of
Waterloo; and Tobias Weinberg of Digital Equipment Corporation. In July of 1985,
the group attended the Symposium on Logic Programming in Boston where we derived ... ."..

considerable benefit from a large number of informal conversations.
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Syracuse, NY, 13210 USA
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Abstract

The nature of a metalevel extension of Prolog is outlined. The key features include the treatment of
theories (databases) and metalevel names as first-class objects which may be the values of variables.
The use of the power of these constructs in traditional knowledge representation is explored. In particu- .
lar, it is shown how frames, semantic nets, scripts, message passing, and non-standard control can be " '
represented. 0

V.." ,, d'-

1. Introduction S

Beginning in Bowen and Kowalski [1982] and continuing in Bowen and Weinberg
[1985], we have explored metalevel extensions of the basic first-order logic program- ..- -
ming paradigm, and especially of Prolog. The aim of these investigations has been to
provide a powerful programming language suitable for artificial intelligence applica-
tions, while at the same time recapturing a fully logical semantics which was lost
through Prolog's addition of such primitives as assert/retract to the pure Horn clause
paradigm. The use of assert/retract in Prolog reflects a real programming need in,"
many artificial intelligence applications, namely the need to segment or modularize the
clause database for a variety of purposes. For many applications, a static segmentation - ::.'-..
of the database would be inadequate, since database segments may need to appear to

This work suppored m pail by US Air Fore grant AFOSR-82-0292 and by US Air Force mtract F30602-81-C-0169.
The author is very grateful to the foUowing people for numerous valuable ccnversauons on the topics of this paper:
Hamid Bach. Aid& Batasrkh. Kevin Buettner. I1yas Cicekh. Hidey Nakashima, Andy Turk. Maarte van Enden. and
Toby Weinberg
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change in time or even come into and pass out of existence during run-time execution
of the program. Combined with the desire to provide such facilities together with a .. -
logical semantics, we adopted the approach of ascending to a metalevel point of view.
At its most simplistic, this would consist of a (first-order) metalevel axiomatization of
the object level proof theory. That is, the programming system would axiomatize the 0
notion of theory and proof for some object-level language, allowing theories (sets of
formulae) to exist as first-class objects in the sense that they could be the values of
variables, and thus could be passed into and returned from procedures; in particular,
they could be dynamically created or destroyed, and new (modified) theories could be
generated from previously existing theories. The basic connection between theories, •
formulae, and proofs would be provided by the proof predicate

demo(Theory, Formula, Proof) .,0

which holds precisely when Proof is a proof (in the axiomatized system of logic) of ..-.-.

Formula based on the axioms in Theory.

However, to exploit the full potential of the metalevel approach, we must avoid the ,, 

stratification into levels (object, meta, meta-meta, etc.) that the simplistic approach en-
tails. To do this, we must effectively amalgamate the basic object language with all of
the upper meta-levels. One approach to accomplishing this is to (conservatively) ex-
tend an ordinary first-order predicate calculus language to one in which finite sets of
formulas are represented by terms, and in which every syntactic item (from variables
to sets of formulas) is named by a constant of the language (1). Note that these con- -

stants participate in other terms and formulas, and these latter also are named by other
constants. The relation

nameof(<Item>, <Name>)

is incorporated as part of the basic first-order proof machinery of the extended
language. This is accomplished by simply iterating the process of extending a
language by adding constants to name all its items in a manner similar to pp. 43-45 of
Shoenfield [1967]; in addition, all of the nameof assertions are added at each itera-
Lion. The extension is conservative in the sense that if A is a formula expressed in the
original language, and A is seen to be provable in the extension, then it follows that A
is provable in the original system. -

The facilities provided by such an extension turn out to be surprisingly powerful. .- :
Many of the constructs used for knowledge representation in Al programming turn out
to have rather direct representations in terms of theories and names. These include
frames, semantic nets, and scripts. In the following sections, we will outline an ap-
proach to the design of one particular metalevel extension, called metaProlog, and il-
lustrate how frames, semantic nets, and scripts may be represented. In addition, we
show how an object-oriented message-passing paradigm may be represented. Howev- ..-

er, to obtain the correct behavior from this paradigm, execution control other than the -. -

standard Prolog control must be available. This leads us to explore one method of im- -

plementing non-standard control by means of metalevel knowledge of control mechan-
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isms. Given the representation of message-passing and appropriate control, knowledge .
representation schemes such as blackboards can easily be implemented.

It is important to stress that what we present here is not a description of how to imple-
ment these ideas in a fixed, precisely specified system, but rather an outline of how * 0
some extension of Prolog incorporating such metalevel ideas might deal with a large
body of existing techniques for knowledge representation. It is an exploration of the
power inherent in the metalevel notions. As such, it can be viewed as a presentation
of design goals for a precise system.,.

2. The Nature of the metaProlog Extension.

The amalgamation of language and metalanguage described in the last section was ori- •
ginally suggested by Gbdel's [1931] famous incompleteness proof in which he used %'
the technique now called "Gbdel numbering" to demonstrate that ordinary arithmetic
could express substantial portions of its own formal syntax, including a definition of
the basic proof relation. Thus, in particular, the amalgamated language allows object-
level programs to ascend to the meta-level via calls on the demo predicate. The nature S
of the proof relation for the amalgamated system can perhaps be most easily seen via .-

an ordinary Prolog axiomatization of the core of the proof relation for the amalgamat-
ed system. In the first (definitional) axiomatization below, the structure-sharing ap-
proach is expressed by making the necessary substitutions explicit as arguments to the
appropriate predicates. The predicate *

match(Left, Right, InSubstitution, OutSubstitution)

is the unifier; it attempts to extend the input substitution to a substitution unifying its •
first two arguments.
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demo(Theory, Goal, [], Substitution, Substitution)

empty(Goal).

demo(Theory, Goal, [Reason I RestProof], InSubst, OutSubst) " -

select(Goal, SubGoal, Rest-Goals),
react(Theory, SubGoal, Reason, 0

In-Subst, InterSubst, ContinuationGoals),
merge(Continuaion Goals, RestGoals, NewGoal),
demo(Theory, NewGoal, Rest-Proof, InterSubst, OutSubst).

react(Theory, demo(New Theory, SubsidGoal, SubsidProof), sbs(SubsidProof).
In Subst, Out Subst, true).

demo(NewTheory, SubsidGoal, Subsid_Proof, InSubst, OutSubst).

react(Theory, current(Theory), current(Theory), In-Subst, In-Subst, true).

react(Theory, SubGoal, s(SubGoal, Rule), InSubst, OutSubst, RuleBody)

find(SubGoal, Theory, Rule),
parts(Rule, RuleHead, RuleBody),
match(SubGoal, RuleHead, InSubst, Out Subst).

Figure 2.1

We have provided two special forms (distinguished predicates) recognized by the sys-
tem: demo(_., . and currentL). (More will be indicated below, and certainly others
will arise.) The first clause for react allows recursive calls on the demo predicate,
while the second clause allows a clause to determine the theory under which it is being

a,.' executed.

If we assume that the metavariables of the metaProlog system being axiomatized are to
be identified with the variables of the underlying Prolog system, we can present a
more compact axiomatization as follows:

7.. . . -

,.%
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demo(Theory, Goal, [1)

empty(Goal). S

derno(Theory, Goal, [Reason I Rest_Proof])

select(GoaI, SubGoal, Rest .Goals),
react(Theory, SubGoal, Reason, Continuation-Goals),
rnerge(Continuation Goals, RestGoals, NewiGoal),
demo(Theory, NewGoal, Rest-.Proof).

react(Theory, demno(New Theory, Subsid-Goal, SubsidProof),
sbs(SubsidProof), true)

demo(New .Theorv, Subsid Goal, Subsid Proof).

react(Theory, current(Theory), current(Theoryv), true). '

react(Theory, SubGoal, s(SubGoal, Rule), Rule Body)

find(SubGoal, Theory, Rule),
parts(Rule, Rule-Head, Rule_Body,),
match(SubGoal, Rule-Head).

Figure 2.2

The role of assert/retract in ordinary impure Prolog, modifying the single global data-
base, is replaced by the construction of new theories out of old ones using two primi-

* tive built-in relations:

add jo(<Old Theory>, <Assertion>, <New Theory>)

drop-from(<Old Theory>, <Assertion>, <New Theory>) ..- ::

Figure 2.3

From a logical point of view, <New Theory> is obtained by first making a copy of
<Old Theory> and then modifying this copy appropriately. From a programming
language point of view, actual copying is too high a price to pay in general (though it
may be necessary in certain restricted circumstances). Instead, the actual implementa- U

tion must ma-ke it appear that such copying has taken place, even if it really hasn't.%%
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This can be achieved by describing one of the old and new theories as a modification
of the other. Thus, we could either describe <New Theory> as the result of adding
<Assertion> to <Old Theory>, or vice-versa. Of course the implementation of the
demo predicate must know how to manipulate such descriptions when retrieving ax-
ioins for use in a proof. As is the case with the classic Al frame problem, access to
the axioms of the theory represented as a description becomes slow as the number of
modifications increases. Since in the typical application of these facilities (add_to and
drop-from) it is the new theory which will be most heavily accessed, the design deci-.
sion for metaProlog has been to provide for fast access to the new theory. This is ac- ',-'.

complished by letting <New Theory> be the actually modified representation of <Old
. Theory>, while, after execution, <Old Theory> is left as a description in terms of

<New Theory> (2). Versions of the predicates add-to and drop-from are also provided
which carry out complete copying for occasions when this appears necessary for
efficiency.

The intended logical interpretation of such a metalevel extension of Prolog is that of a
, (first-order) axiomatization of theories and proofs in the amalgamated language. In the

usual use of logic, a first-order formal axiomatization has an intended interpretation
;d outside of language. For example, the intended interpretation of Hilbert's axiomatiza-

tion of geometry was a world of geometric figures, while the intended interpretation of
Peano's arithmetic was a world of numbers. In these cases, it is almost an accidental
after-effect of the formal process that (Herbrand) interpretations built out of linguistic

. elements can be constructed. In contrast, in this setting, the intended interpretation of
a formal metalevel Prolog extension is in a world of language: the metalevel system is V

intended to talk about theories and proofs of a language. An alternate semanatic possi-
- bility is to provide the system with a Hintikka-Kripke modal semantics. In either case.

the interpretation of names is that they are proper nouns functioning as rigid designa-
tors in the sense of Kripke [1972]. Thus, if <n> names a certain theory <t>, it will
point at same physical manifestation of <t>. If an operation add-to(<t>, <a>, <t2>) is
performed, <n> will subsequently point at the physical manifestation of <t2>. The si- S

"- tuation is analogous to that for proper names in natural language. For example, as-
sume 'John Jones' refers to a certain (physical) person. Then, after undergoing an
operation for removal of the gall bladder of John Jones, the name 'John Jones' refers

d to the resulting physical person. These concerns raise difficult foundational issues
which will treated elsewhere. S

The metaProlog system is related to the PrologfKR and URANUS systems of Nakashi-
ma [19821 and [1985]: our theories are very similar to his "worlds". The exact logi-
cal semantic status of his system is not entirely clear, though he has indicated in
conversation that he has considered an S4-type modal semantics for his system. One
significant difference is that his system does not appear to provide for meta-level
names of all objects. Another closely related system is MANDALA (Furukawa et al.

- [1984]) which also incorporates a version of the "world" notion and a version of our
"demo" predicate. As with Nakashima's systems, the logical status of MANDALA is
not clear, nor does it appear to incorporate meta-level naming. The metaProlog system
is also closely related to the systems of Miyachi et al. 11984] and Kitakami et al.
[1984 since they also grow out of the ideas of Bowen and Kowalski [1981].
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3. Brief Syntax of metaProlog -T -- .-.-- 4

The surface syntax of metaProlog is quite similar to that of Edinburgh Prolog, with .

'"-' replaced by '<--' and conjunction indicated by '&' rather than comma. The most • *

significant difference is the requirement that quantification be made explicit, rather
than indicated implicitly by a variable convention. As described more fully in Bowen
and Weinberg [1985], this requirement follows from two points:

* The desire to allow manipulation of partially instantiated theories, as would _ 0

follow from the principle that they are to be treated as fully first-class objects;

* The desire to provide a correct semantics for add to and drop from.

The difficulty with regard to the latter can be seen by considering the following two S

Edinburgh Prolog clauses:

h :- X = a, assert(p(X)), p(b). :-,"-:

h :-assert(p(X)), X =a, p(b).

Figure 3.1
h

In standard Prolog, the first fails, while the second succeeds, since Prolog assumes
assert(p(X)) means that "if X is uninstantiated, add 'all [X : p(X)' to the database."
However, the logical reading of these clauses treats the comma as a conjunction con-
necting the literals, and logical conjunction is communtative. Thus the two clauses
ought to produce the same result. In metaProlog, if the programmer wishes to achieve
the effect provided by Prolog's default assumption, he or she must explicitly indicate * .
the quantification:

... & add-to(tl, all [x] p(x), t2) & ...

If, on the other hand, 'x' is quantified somewhere in a clause which has been applied,
but at run-time, the interpreter (meta)variable replacing x has not yet been instantiated,
the effect of the call

...& add to(tl, p(x), t2) &

would be to add the partially instantiated assertion p(x) to tl, constructing t2 as a par-
tially instantiated theory. Later processing could cause x to become instantiated, result- ".
ing in more precise specification of the theory t2. 0 0
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Since quantification must be made explicit in metaProlog and consequently, no vari-
able convention is in force, all identifiers beginning with a letter (uppercase or lower-
case) are now constants.

4. First Uses of Theories and Names

Since theories are first-class objects, they can participate in clauses in the same manner
as constants and other terms. Thus one theory Ti can contain an assertion

useful(T2)

about another theory T2. Thus, for example, consider the problem of defining a data- ~*.. .'

base management system. A simple approach to such a system might run as follows: C~ C
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all [CurDB] dbm(CurDB, n).

all [CurDB, request, requests, NewDB] •
dbm(CurDB, [request I requests])

<-" "~~.'. ,-- .. ,:

process(request, CurDB, NewDB)
& dbm(NewDB, requests). , -.

all [assertion, proof, CurDB .

process(retrieve(assertion, proof), CurDB, CurDB)

demo(CurDB, assertion, proof).

all [Assertion, Proof, CurDB] A
process(insert(Assertion, present(Proof)), CurDB, CurDB)

demo(CurDB, Assertion, Proof).

all [Assertion, Response, CurDB, NewDB, IC, UnAcProof, RR, RevProof] •
process(insert(Assertion, revision(Response)), CurDB, NewDB)

demo(CurDB, insertconstraints(IC),-)
& demoaIC, unacceptable(Assertion, CurDB), UnAcProof)
& demo(CurDB, revision rules(RR), _ 0

& demo(RR, revise(UnAcProof, CurDB, NewDB), RevProof)
& Response = [Assertion, UnAcProof, RevProof].

all [assertion, CurDB, NewDB) •
process(insert(assertion, done), CurDB, NewDB)

add-to(CurDB, Assertion, NewDB).-"

Figure 4.1

The database manager is represented by the two-place predicate 'dbm'. The first argu-
ment of dbm is a theory representing the current state of the database, while the
second argument is a stream (list) of requests to be processed against the database. As *
can be seen, dbm is a simple tail-recursive procedure, with all the real work being '.-,

done by the three-place relation 'process'. The first argument of process is the request ,..-

to be processed against the current database which is contained in the second argument
of process, while the state of the database resulting after this processing is represented
by the theory in the third argument of process. The first clause for process deals with
simple retrieval (which includes implicit information deducible from the database), 6

while the last three deal with addition of new assertions; depending on the nature of
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the insertion constraints and revision rules used in the third clause, this can also handle
updates. The second clause for process reflects a parsimonious philosophy on the part
of this particular database maniger: nothing is added which is already explicit or im-
plicit in the database. Whether this is an appropriate philosophy, or just how much e
resources should be expended in the attempt to determine whether something is impli. V.
cit. is a matter of the particular philosophy of each database management system. The

* . . . •~

fourth clause of process is a default: if none of the other clauses are applicable to a
proposed addition, then add it to the database.

.• - .. J

The third clause embodies the possibility of management of integrity constraints and -.

D) 0

theaiston ainstan ts also reiustrates us fexiiiypi in the thr l use of theores. hane".,,.,
pthis. sthe databas carrise with itro e colectio of primngitosraitsoh in the form'-'%'.'

insert-constraints(IC)

in which IC is intended to be another theory embodying the integrity constraints to be
used. It is assumed that IC contains clauses defining the two-place predicate "unac-
ceptable". If the proposed assertion can be proved unacceptable under the rules embo- I •
died in IC, then the database retrieves vet another theory, RR, via the assertion

revision rules(RR).

These are clauses defining a three-place predicate "revise" which, using the informa-
tion obtained from the proof of the unacceptability of the proposed assertion. revises
the database. This could range from simple rejection of the proposed update to serious
reason maintenance activities. The records necessary for reason maintence can be
represented as theories and recorded in the database using the same method of asser-

tions.

Many natural insertion constraints can be expressed, such as:

.A '?°*,

• -~~.\ " ,. -•'
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root.:.
subtheory(t 1).
subtheory(t2).
pare n ttheorv (root).

tl:
subtheory(t3).
parentjheory(root).

t3: ...

Moreover, assume that the clauses for the predicate find (from the definition of
demo/react) contain the following clauses among their first entries (cf. Appendix B):

find(Goal, UNV, Rule)

find(subtheorv(V), U, )

find(Goal, V, Rule).

find(Goal. '..'NV, Rule)

current (Theorv),
find(parenttheory(U), Theory, 9
find(subtheorv(V), U, 9
find(Goal, V, Rule).

These clauses then would allow calls such as

demo(rootltl/t2, Goal, Proof)

to be effectively equivalent to .

demo(t2, Goal, Proof).

As indicated above, names refer or point to the (syntactic item) which they name.
Since they are just constants of the system, they are also first-class objects and hence
can appear in assertions. Thus, one of the most common uses of names is to make
assertions about clauses. This is perhaps most naturally done by recording assertions.
about the clauses of one theory, say ti. in another theory, say Q. Thus if we wish to - a

attach confidence factors to the assertions of ti, we might do it as indicated in Figure
.1*~ 4.4.
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t2 tl

conf( 0.5) assertion I

conf( 0.3) assertion2

Figure 4.4

Among the possible benefits of such an approach, we would list the ability to simul-
taneously attach differing confidence factors (using t2, t3, etc.) to the same set of
assertions (tl), and the ability to modify the confidence factors associate,. with the
assertions of tl (by using drop-from and add-to to move from t2 to t2', etc.). Another
application of this technique is the representation of information for a reason mainte- I
nance system. For example, in the context of the simple database manager sketched
above, the basic database db might always contain an assertion

justifications(reasons) r- <.'-

where reasons is expected to be a theory recording the justifications for every item ad-
ded to the database. The entries in reasons would be assertions about the clauses in db -'

and about deductions (or default justifications) justifying the presence of the assertion ." .
in the database. The actual assertions in reasons would be facts whose arguments p
were names of clauses in the database, names of proofs, terms representing application
of default rules, etc. Such information is truly meta-level knowledge about the data-
base, and the facilities of a meta-level system such as metaProlog provide powerful
and flexible means for the expression and manipulation of such meta-level knowledge.

.rV V

S. Application to Representation of Frames

Frames (cf. Minsky 119751 and Kuipers 119751) constitute a powerful and commonly * •
used method for representing knowledge in Al programs. The meta-level approach ad- ....

vocated here provides a natural method for representing frames using theories and
names, and sheds some interesting light on the issues raised by Winograd 119751.
First consider the notion of frame. In its most elementary form, a frame is rather like a -

record structure with named slots which can be filled with appropriate entries. For ex-
ample, a portion of a room frame (suitable for a vision system) might appear: V

Z1- •
4.. P
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number-of walls: 4

%%

lp 11

number of walls:ro 4 ).¢_, .,

number of doors: I 1).
colorwalls: blue be
.ypeo...fjioor: .ood wood)

color floor brown brown)

Figure 5.1

From a simple logical point of view, the filling of such named slots with values
qamounts to making assertions about a room, and so the knowledge contained in the

frame could be taken as being equivalant to a corresponding set of assertions, such as: %*, ,, P'

number ofwallsroom, 4).
numberof doorsroom, 1).
colorofwalls(room, blue).
rypeof~floor(room, wood). "
color-of floor(room, brown). ,

Figure 5.2

Note that despite the slot-naming convention of the original frame, the logical
9equivalent could be expressed somewhat differently (and potentially more flexibly) by: -.-'--

numberof(walls of(room), 4).
numberof(doors-of(room), 1). •
color...of(wallsof(room), blue). -.."
type of(floor of(room), wood).," ""
color~of(floorof(room), brown). "". '

Figure 5.3

Another alternative would be:

number_of(walls~.of, room, 4). '"'.+:
number_of(doorsof, room, 1).-""'-

etc. - . - .

Figure 5.4'""""

. .. .. .
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A system in which this frame occurred would typically have to deal with more than
one concrete room, and so might associate some identifier with the frame as its
identification, say <frame-id>. Then, of course, the logical equivalents above would
be formulated with 'room' replaced by <frame-id>. In a meta-level logical system.
the various logical equivalents above are each theories. Since theories are first-class %

objects, they also have names. Thus, an alternative to using a randomly generated
frame identifier as a means of identifying the frame would be to use the theory name.
Of course, in the various equivalent theories above, we would then replace 'room' by ,
the name of the theory.

* 0

Once we have chosen to represent frames by certain logical theories, we can see an al-
ternative to the approach sketched above. Given that any theory will automatically
possess a name in the metaProlog system, it is somewhat redundant to include that
name in all of the basic assertions of the theory. Alternatively, we could drop the in-
clusion of the frame-theory name in all of the assertions, assuming that the context . •
(the frame-theory in which they are located) is always available. Thus the first logical
representation above would become:

numberofwalls(4).
number-of doors(1). D •
color of waLls(blue).
type..ofjiloor( wood).
coloroffloor(browvn).

* 0

Figure 5.5 -'S

And the last two versions would coalesce to:
} •

numberof(walls of, 4).
number-of(doors-of, 1).
color of(walls of, blue).
tvpe.of(floor-of, wood).
color of(floor-of, brown). D 0

Figure 5.6

These approaches to representing frames provide the elementary advantages any frame 1 0

system must possess. The information in the frame is physically grouped together, so
that once the frame is accessed, all of this information is immediately available.
Moreover, if names encode the address of the object named. then reference to the
frame-theory by name provides fast access to the frame.

* 0

Further development of this representation of frames necessarily involves at least a
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sketch of the development of a system for processing frames. We could centainv .-
present such a sketch as a free-standing metaProlog program. However, we will show % .
how such a system can be integrated with the metaProlog proof predicate demo, thus
providing a built-in frame processing capability in metaProlog. This should be regard-
ed as a design study for a metalevel Prolog which intends to provide built-in frame
processing capabilities (3) The development we will present will actually indicate how
a free-standing system would be developed. We will assume that the first variation on
the representation of frames by theories is being used, namely, that the frame name
(i.e., the metalevel name referring to the physical manifestation of the frame) is repeat-
ed in all of the assertions recorded in the frame.

First consider the problem of retrieving a value C, where C is an uninstantiated vari-
able, which is the color of the walls of the particular room in question. This would be
tackled by solving the goal:

demo(db, color-of walls(<frame name>, C), ).

One possibility is that a color of walls assertion about <frame name> has been direct-
ly recorded in db, and so the goal will be solved by demo. But the expected case is •
that the desired color of walls assertion has been recorded in the frame pointed at by

<frame name>. To deal with this case, we must add the following clause to the
definition of demo/react, before the last clause for react given earlier:

react(Theory, Goal, fr(Argl), Continuation)

Goal =.. (Pred, ArgI I Rest Args], .',

nameof(Arg 1, Frame-Theory),•. -.

find(Goal, FrameTheory, Continuation).

Figure 5.7

The use of find in this clause for react provides for the possibility that the slot entry in
the frame might not be a simple binary fact, but might be a rule providing a method. - .

for calculating the value of the entry, rather than simple recording of a value. Thus
there will be no need to provide separately for "value-calculating" demons.

To show that this approach can lead to a realistic frame system, we must indicate how
to incorporate three additional behaviors:

inheritance

* demon processing

frame updating

-874. 1
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default values for slot entries

Consider the first. Assume that we wish an inheritance hierarchy based on the predi- -

cate 'is-a'; that is, frames may contain assertions of the form: .. '.

is a(<Frame Name>, <Super Frame Name>).

The normal tracing of such a hierarchy can be accomplished by adding the following -'
clause to the definition of demo/react following the first frame clause described above: S

react(Theory, Goal, inh([Argl I Inh_Tracel), Continuation)

Goal =.. [Pred, Argl I RestArgs].
name of(Argl, Frame Theory),
find(is a(Argl, SuperFrameName), ArgI, ),.."--.
name-of(Super-Frame-Name, Super FrameTheory), ..... . .*..

Super Goal =.. [Pred, SuperFrameName I Rest Args],
react(SuperFrame Theory, Super-Goal, InhTrace, Continuation). ." -" .

Figure 5.8
V, j• . -

Exceptions to the inheritance mechanism are accomplished by simply recording the ex- •

ceptional assertion in lower frame. Thus if a particular room has five walls instead of ';Q-V- ,"
the normal four provided by the generic room frame, the assertion ' ,-.

number of walls of(<Frame Name>, 5).
,. .0

is simply recorded in the frame for the particular room. Its presence there overrides
the inheritance mechanism.

5--...-;';-

To accomplish frame updating, we must first recognize that in the normal use of
frames, the process of updating the frame over-writes the old frame, and so there is no 0 -
notion of continued access to the old frame. Basically, we want to create a new theory
representing the frame, but with the previous slot-value entry dropped and the new
slot-value entry added. This is accomplished by adding the following clause to the
definition of the definition of demo/react: ' .", '.

- 5--..
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,... i. '

, react(Theory, update(Frame-Name, Slot, New_Value),
. upd(Frame-Name, Slot, NewValue), true)

OldAssert =..[Slot, Frame-Name, Old_Value],
drop_from(Frame, Old-Assert, Intermed_Frame),
NewAssert =.. [Slot, FrameName, NewValue],
addto(Intermed Frame, New Assert, New Frame).

Figure 5.9 k""

A potential difficulty lies in the fact that assertions in the database or in other frames . '
may point to the current frame via the frame name; after updating, one must assure ,
that these point to the new frame. But here our design decision regarding the nature
of names as rigid designators comes into play. Since we actually physically update the
representation of the old theory to create the new theory, and since names encode the
physical address of the theory pointed at, after this update, all names which pointed at
the old theory now point at the new theory.

* Although the inheritance mechanism for frames provides the basic method of supply-
ing default values for slots, it is sometimes desirable to provide such values locally in
the frame itself. This is different than providing exceptions to inheritance, but
proceeds by much the same mechanism, utilizing a standard method for providing de-
fault processing in Prolog. This methods consists in exploiting the ordered processing .-

of clauses under backtracking. Thus a clause which provides the default processing
for a predicate p is provided as the last of the clauses making up procedure p. If new
clauses for p are added to the database, one takes care to add them using "asserta"
which always inserts the new clause before any previously recorded clauses. In our

* setting of frames, we use theksame methodology. When a given frame f is initially
created, if a slot s is to have a default values associated with it, a clause providing that
value (e.g., s(default)) is added to f. So long as the entry for s in f is not updated, this
clause will provide the desired default value. When the entry for s in f is updated, the
mechanism described above simply replaces the default clause with the new entry.
Thenceforth, the newly recorded value is provided. If it is desirable that the default
value clause remains in the frame along with the newly recorded entry, a variant
update-a can be used which records the entry before any preceding entries, without
deleting the existing entry. The processing for update-a is similar to that for update
above; it can simply record the value, or it can be designed to determine whether one
or two entries for the slot have been recorded, and in the latter case, drop the first en- . "

try from the frame. In this way, only the default and most recently recorded entries . .
"* would be preserved in the frame.

:;,,..-,5.

Finally, demon processing can be achieved by a variety of techniques. Perhaps the
most direct is to assume that the frame contains rules whose heads are of the form
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demon(<slot>, <old value>, <new value>, <frame>)

The intent of these rules is to provide procedural attachments to the particular slot,
which may in fact affect the final state of the frame. Such processing can be invoked '--...,,

by modifying the clauses of demo defining frame processing. Thus, to provide for
"on-update" demon processing, the clause defining frame updating would be modified
to read: ..-

react(Theory, update(Frame Name, Slot, New-Value),
upd(FrameName, Slot, New-Value), true)

OldAssert =..[Slot, Frame-Name, OldValue], .
drop-from(Frame, OldAssert, IntermedFrame_0),
New_Assert =.. [Slot, Frame_Name, NewValue],
add-to(Intermed Frame, NewAssert, IntermedFrame_ 1),
demo(IntermedFrame 1,

demon(Slot, Old-Value, New-Value, IntermedFrame ), _). -

Figure 5.10

Note that since the demon has access to the frame via IntermedFrame]l, it can modi-
fy other slot values via updates. The power of these techniques lies in the treatment of
theories and names as first-class objects.

6. Application to semantic nets and scripts •

Since semantic nets and scripts have a high similarity to frames within inheritance
hierarchies, it should be evident that we can easily capture these techniques in the
present setting. Consider, for example, the simple fragment of a net shown in Figure
6.1 (drawn from Winston [1984], p. 262):

* S

..", ",'. ,. .
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dp

I Color(Default)
Block --------------- > Blue S

I ako
'.. ,...,

Color(Default)
Wedge Brick ------------.. .-- > Red

I is-a I is-a -- ".

Wedgel8 Brick12
'. -.5..-..

Figure 6.1

Each node can be represented by a small theory which contains an assertion

label(<node name>). .:""--

together with assertions representing the links to other nodes. Thus for example, the -

node for Brick would be a small theory containing the assertions: t.- -
label(Brick).

ako(<Name of Block node>).
defaultcolor(<Name of Red node>).

Since the pointers to other nodes are metalevel names encoding the address of the
theory pointed at, they really are pointers in the same sense as LISP pointers used in
many implementations of semantic nets. Inference, say via spreading activation, can
be programmed in a manner similar to more usual implementations. Note that since
the nodes of the net are theories, they can contain a rich structure other than the sir-
ple representation of connections as indicated above. Besides providing for the possi- -- -

blities of procedural attachments in a manner similar to that for frames described ear- -

lier, it would be possible for a given node to contain an entire separate semantic net-
work inside of it, or to contain a rich metaProlog theory which could be made use of
in procedural or declarative ways. "

The representation of scripts can be flexibly accomplished using a combination of the
techniques we have described for frames and semantic nets. Thus, for example, the. "-t..
scenes of a script can be represented as theories, as could the episodes of a scene,
while the episodes could be represented as lists of individual acts, with special terms '" '-

representing alternative branches to other episodes. Since terms (including lists) are
constructed via pointers (as in LISP), the lists representing episodes can be so con- .. *.
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structed that each episode is represented only once, though the lexical representation

below does not show this. Consider the RESTAURANT script from pp. 43-44 of
Schank and Abelson [1977]. The basic script is represented by a theory as follows:

Script(RESTAURANT). 0 S

Track(shop(coffee)).
Props([Tables, Menu, Food, Check, Money)).
Roles([S,W,CM,O]).
Scene(l, Entering, <Name of Scene I Theory>).
Scene(2, Ordering, <Name of Scene 2 Theory>).
Scene(3, Eating, <Name of Scene 3 Theory>).
Scene(4, Exiting, <Name of Scene 4 Theory>).
Entry.conditions([ [S,is,hungry], [S,has,money] ]).
Results([ [S,has,less,money], [Ohas,more,money],

[S,is,nothungry], optional([ S,is,pleased])).

Figure 6.2

A minor alternative would be to represent the Entry conditions and Results by small
theories, with assertions being used instead of the lists as above; e.g., has(S, money) 0 S
instead of [S,has,monev]. Scene 1, that of Entering, could be represented by the fol-
lowing theory:

scene name(Entering).
episode(only, [ [S,PTRANS,S,into,restaurant],

[S,ATrEND,eyes,to,tables], • •
[S,MBUILD,where,to,sit],
[S,PTRANS ,S,to,tablel, %
[S,MOVE, S,to,sitting,position] '[':0,, '
I next([scene(<Name of Scene 2 Theory>)]) ]).

Figure 6.3

The predicate episode describes the entry episodes for the scene; in this case, there
was only one. The end of an episode is signaled by by encountering a term

next([<destination>, <destination>, ... J)

which indicates alternative following episodes within this script, or indicating exits
from this scene to other scenes. As indicated, destinations can be represented by terms
such as scene(...) whose argument is a theory name, or episode(...) whose entry is a
(pointer to) a list, or 'exit', which would indicate the exit from the script. Note that
episode pointers can be pointers to the beginning of an episode list or a pointer into .
the middle of such a list. In the presentation of the representation of Scene 2 below,
we have used lower case labels to indicate the addresses of terms and have enclosed
them in angle brackets when they are used in next terms.
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scene-name(Ordering)
episode(Imenu~on,table], <cel>).
episode([W,brings,menul. <e I>).
episode([ S~asks~for,menul, <e2>).

el: f[ S,PTRANS,menu.roS] I next([episode(<e4>)1II
e2: [ [S,MTRANS,signal,to,W]." V-

[W,PTRANS ,W,to,table I, "K*
[S,MTRANS,'need menu',to,Wl,
[W,PTRANS,W,to,menu] I next~lepisode(<e3>)]) I

e3: [[W,PTRANS,W,to,table],
[W,ATR.ANS,menu,to,S] I next([episode(<e4>) I

e4: ([S,M4TRANS,food,list,to,CP(S)I,
e8: [S,NMBUILD,choice,ofFJ,

[S,1viRdS,signaA,to,V;],
[W,PTRANS ,W,to,table],
[S,MTRANS,'I want F',to,W1 next([episode (<e 5>)]) "4

e5: I[W,PTRANS,W,to,CI,
[W,MTRANS,[ATRANS ,F] ,toYN] I next([ episode (<e 6> ).epi sode (<e7 >fl

e6: I C,MTRANS,'no F',to,W],
[W,PTRANS,W,to,S],
[W,MTRANS,'no F',to,S] I next([episodek<e8>),

scene(<Scene 4 Theory Name>,[ no,pavb)I
e7: [[C,do, script (pre pare,F)]I next([scene('zScene 3 Theory Name>)]) I

Figure 6.4

The remaining two scenes from this script are treated similarly.

7. Message passing and object-oriented programming

In its most basic form, object-oriented programming views computation as consisting
of the passing of messages between entities called "objects" which, beyond the capaci-
ty to send and receive messages, possess local procedures whereby they can do work,
including deciding what to do on receipt of a message and what further messages to........
send. Since theories contain procedures and can refer to other theories via names, it is
natural to represent objects as theories. We can easily accomplish message passing by

* ~adding clauses to demo as above for frames. Let *~-.~

send(<theory>, <message>, <response>)

be a distinguished predicate. Consider the following additional clause for the

definition of demo/react:
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react(Theorv, send(DestinationTheory, Message, Response"
send(DestinationTheory, Message, Response, Trace), true) , . .

demo(DestinationTheory, receive(Message, Response), Trace). .-, - -- -....

Figure 7.1

If DestinationTheory contains clauses defining the predicate 'receive', this clause for
demo achieves the desired message passing. Note that this technique also captures the .... -

partially instantiated message idea of Concurrent Prolog (Shapiro [19831), since both
Message and Response could be partially instantiated terms. -".. *. -

In many applications of message passing, it is desirable to view certain objects (here. ."-'-.--

theories) as databases or blackboards accumulating assertions supplied by other ob-
jects. We can achieve this by adding a variant notion of sending a message. Let -..- ".,

assert(Theor,, Assertion. Response) 6 " "

be a distinguished predicate, and add the following clause to the definition of
demo/react:

react(Theory, assert(DatabaseTheory, Assertion, Response).
assert(DatabaseTheory, Assertion, Response, Trace), true) -

demo(Database_Theory,
process(add(Assertion, Response), S

DatabaseTheory, NewDatabaseTheor,), Trace).

Figure 7.2

Here it is assumed that DatabaseTheory contains clauses defining process similar to
those described earlier in connection with the database manager example. Note that by
varying the clauses defining process, different database theories can achieve different
methods of processing assertions.

Finally, let us note that this logical construal of message passing provides an alternate,
more logical method of construing input and output in this system. Simply, the user's
terminal as well as files are viewed as theories to which messages are sent and from
which responses are received. For example, if 'user' is a distinguished theory name,
the process of writing can be viewed as simply sending a message to user and ignoring •
the response:
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send(user, <output item>, ..

On the other hand, reading from the terminal can be seen as sending a message re- .
questing a read, and expecting the item read to be supplied as the response:

send(user, read, Read Item).

Note that as noted earlier, the response slot could be filled with a partially instantiated - .

term indicating the nature of the item to be read, or the message slot could indicate
more specifically what is to be read, as for example:

send(user, read(clause), ClauseToBeRead).

8. Metalevel control

The default control mechanism of metaProlog is that of ordinary Prolog: depth-firs:.
left-to-right, backchaining exploration of the search space. There are. however, occa-
sions on which some programmers would find it advantageous to be able to obtain and
exploit other control mechanisms. In particular, to achieve the proper behavior for the
message passing paradigm described in the previous section, it is necessary to have
fair processing of the send and receive requests among the objects. A number of

. suggestions have been set forth over the years for extending the control of logic pro-
gramming systems, and our own thoughts have touched on a number of schemes. We
believe this is an area which will undergo considerable change and evolution in the fu-

" ture, since no one approach has yet become dominant. What we have done in the
present setting is to provide one fairly flexible method for adding alternate control
mechanisms, with the hope that it will provide a testing ground for alternative ap-

*l proaches. Examination of the two clauses defining demo proper indicate that Goal ap-
pears only as a variable -- that the demo clauses have no knowledge of the structure of
Goals. In fact, the only two predicates which must have knowledge of the structure of
goals are 'select' and 'merge' (as well as 'empty'). Consequently, it will be possible
to package goals in manners that can possibly indicate to 'select' and 'merge' that
non-standard control is to be utilized. Thus, instead of packaging goals G1, G2,... sim-
ply as GI & G2 & ..., one might use a compound structure such as

notation(GI & G2 & ...)

to indicate to 'select' some non-standard desire. Note that notation could also carry ad-
ditional arguments beyond the acutal goal. The meaning of some such notations could
be built into 'select' (and 'merge'). On the other hand, if 'select' and 'merge' are -
given Theory as an extra argument, then they can also look for clauses defining the '-
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non-standard control notation, much in the manner of Pereira [1984]. The predicate
, 'find' could also be treated similarly. The modified forms of the relevant clauses of

demo/react together with fragments of the clauses necessary for 'select', 'merge', and
'find' are presented in Appendix B.

y A.....

As an example, consider the circuit diagnosis problem sketched in Bowen and Wein-
-',. berg [1985]. To follow Eshgi's [1982] approach, one finds it desirable to operate

under a control regeime which defers selecting subgoals of the form 'andGate(...)' or
'orGate(...)' until as late as possible. Under the facilities described above (cf. Appen-
dix B), this could be accomplished by including I'-- following clauses in the theory (C
& D & P) which describes the circuit under diagnosis:

all [Gs, G, RGs]
userselect(defer(defer(Gs)), G, RGs) ..

user select(defer(Gs), G, RGs).

all [Gs, G, RGs•
userselect(defer( true & Gs ). G, RGs)

user select(Gs, G, RGs).

all [A, B, SG, RB]:
userselect(defer( A & B ), SG, defer( A & RB

table(A)
& userselect(defer( B ), SG, RB).

all [Al, A2, B, SG, RA]
userselect(defer( (Al & A2) & B , SG, defer( RA & B) )

user-select(defer( Al & A2 ), SG, RA).

all [A, B, Op]•
user_select( defer( A & B ), A, defer( B ))

functor(A, Op, )
& Op W'&.

all [A, Op]:
user select( defer(A), A, true)

functor(A, Op, _
& Op*'&""
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9. Conclusions

We have described one approach to creating a metalevel extension of Proloc which
treats theories and names (of theories) as objects capable of being the values of van- ..

ables, fully on a par with ordinary terms. The preceding sections have illustrated the
tremendous power inherent in these ideas, showing that many of the common devices ,.-.

used for knowledge representation in Al can be cleanly captured in such an extension. -
It is likely that these metalevel techniques can be used in new and previously unfore- -.-
seen ways to represent knowledge. The ideas considered in this paper raise many in-
teresting theoretical and practical problems. To explore these problems together with
the questions of applications to Al, our research group is actively exploring the con-
struction of efficient interpreters and compilers for such metalevel systems. Through
these efforts as well as the related research mentioned in Section 2. we expect to see
exciting developments in this area in the near future. -
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11. Appendix A: Definition of demo without control ...:,. .,

Here we have collected together all of the clauses for demo/react which do not accoun: *

for metleve] control (for the latter, see Appendix B)i.
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demo(Theo-v, Goal, U)

empty(Goal). ..

derno(Theory, Goal, [Reason I RestProof])

select(Goal, SubGoal, Rest-..Goals), '

react(Theory, SubGoal, Reason, Continuation Goals), A a

rnerge(Con tin uation-Goal s, Rest-Goals, New Goal), 0.
demo(Theory, New_ Goal, Rest Proof). -'i%.'.

react(Theory, demo(.NeATheorn'. Subsid-Goal, SubsidProof).
sbs(Subsid Proof), true)

demo(NewTheory, S ubsi _Goal, S ubsid_Proof).

react(Theory, current(Theory), current (Theory), true).

react(Theorv, Goal, fr(Fraxne_Trace), Continuation)

Goal =.. [Pred, ArgI I Rest-Agsl,
name-.of(Argl, Frame_Theory),
find(Goal, Frame Theory, Continuation).

react(Theory, Goal, inh([Argl I Inh_Trace]), Continuation)

Goal =.. [Pred, ArgI I Rest Args], "

name...of(Argl1, Frame_Theory),
find(isa(Argl, Super _Frame_Name), Argi, ,
name of(SuperFrameName, Super FrameTheory),
Super..Goal =.. [Pred, Super FrameName I Rest. Args],
react(Super Frame_ Theory, Super-Goal, Inh-Trace, Continuation),

react(Theory, update(Frame-Name, Slot, New--Value),
upd(Frame_.Name, Slot, New Value), true)

OldAssert =..[Slot, Frame-Name, Old-VYalue),
drop...from(Frame, Old_.Assert, Intermed_Frame),
NewAssert =.. [Slot, FrameName, New-Value],
add-to(Intermed-Frame, NewAssert, New-..Frame). .

/*' Modified form to use to allow demon processing on update-, similar
modification should be made to other frame axioms if demon processing
is desired there-, e.g., on access, or on inheritance, etc.
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react(Theory, update(Frame_'aine. Slot. :New_ Value,
upd(Frame-Name, Slot, New..Yalue), true)

OldAssert =..[Slot, Frame_Name, OldValue],
dropjfrom(Frame, OldAsserr, Interrned_Frame-0),
New-.Assert =.[Slot, FrameName, New Value], -

addjo(Intermed_Frame, New-Assert, Interined_Frame 1),
demo(lntermed_Frame_l,

demon(Slot, Old-Value, New-Value, InterinedFranme-1), )

rec(* oy ed(DsiainTer, esgRsos)

reat(heoysend(DestinationTheory Message, Response),tre

desen(DestinationTheory, Message, Response), ue

dectTeo(Dasetnataonj heory, Aesstio, Response),_)

reat(heovasser(Database Theory, Assertion, Response),tre

demo(Database Theory,
process(add(Assertion. Response),

* DatabaseTheory, New_Database_ meory), 9

react(Theorv, SubGoal, s(SubGoal, Rule), Rule-Body)

find(SubGoal, Theory, Rule),
parts(Rule, Rule Head, RuleBody),
match(SubGoal, Rule Head).

12. Appendix B: Definition of demo with metalevel control
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demno(Theorv', Goal. [I)

empty(Goal).

dexno(Theorv, Goal, [Reason I Rest Proof])

select(Goal, SubGoal, Rest..Goals, Theory),
react(Theory, SubGoal, Reason, ContinuationGoals), .

merge(Continuation Goals, Rest-Goals, New....Goal, Theory),
demo(Theory, New Goal, RestProof).

/* react clauses ... *

react(Theory, SubGoal, s(SubGoai, RueRloy

find(SubGoal, Theory, Rule),
parts(Rule, RuleHead, Rule_Body.),
match(SubGoal, Rule_Head).

select( SubGoal & SubGoals, SubGoal, SubGoals, )

1* special built-in select control clauses *

select(Goal, SubGoal, RestGoals, Theory)

demo(Theory, user-selecr(Goal, SubGoal, Rest-Goals), )

select(Goal, Goal, true, )

find(Goal, TI & T2, Rule)

find(Theory, TI, Rule).

find(Goal, TI & T2, Rule)

find(Goal, 12, Rule).

find(Goal, U/V, Rule)

derno(U, subtheory(V), 9
find(Goal, V, Rule).

find(GoaI, '..'/V, Rule)

current(Theorv), 5

find(parent theorv(U). Theory, 9
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demo(subtheory,(V), U, _,
find(Goal, V, Rule). '

/* Other built-in specialized find rules and normal (Prolog) retrieval */

find(Goal, Theory, Rule)

demo(Theory, userfind(Goal, Theory, Rule), _.

010
* 1 3 . F o o tn o te s -. " " "

(1) There appears to be a viable alternative to the introduction of metalevel names
which we have introduced here. Roughly, this approach regards all entities, including
what are normally regarded as formulas, as terms, much in the manner of Church's
systems of type theory and sense and denotation (Church [1940], [1951]). A subclass
of these terms are contextually distinguished as formulas. Since formulas in reality are
terms, they may directly appear in other formulas without the mediation of metalevel

names. The details of this approach remain to be worked out.

(2) For those with knowledge of Prolog implementation methods following Warren
11983], we can indicate some of the details of how this is to be carried out. The basic
representation of theories consists of a predicate-name hash table the entries of which
can point to various kinds of buckets. The table and the buckets are allocated on the
heap (global stack). [Alternatively, the code space can be managed as a separate
(garbage-collectable) heap similar to the global stack used for terms.] Also, the trail
mechanism is modified so as to allow recording of values other than undef to which a
variable must be reset upon backtracking. (Several methods are available for this; on
byte-addressable machines, one is particularly efficient.) Let TI be a variable which .

has previously been instantiated to a theory, let T2 be an uninstantiated variable, and ' '
suppose the call

& add to(Tl, p(8), T2) & .

"- is to be executed. All the events which are to take place are trailed. If no clauses for
p appear in TI, an entry for p is made in the hash table for Ti. An entry for p(8) is -, ,
made in the appropriate bucket. T2 is set to point to the hash table pointed at by T1. "
And finally, TI is reset to point to a description based on (the variable) T2 and the
trail entries; this description enables the system to recover the changes made when
clauses from the original Ti are requested (though nothing is really reset unless back-
tracking occurs). TI can be thought of as a virtual modified copy of T2. It is impor-
tant that the description for TI be in terms of the variable T2, instead of the actual
physical representation of the updated theory, since further changes to the theory might 0
otherwise invalidate that description.
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(3) A powerful alternative to this approach would be to design the basic demo/react in-
terpreter in such a way as to allow the user to add clauses for demo and react in hi_ .
own theorn' in this setting, they could be clauses implementing a particular style of
frame processing. In essence, this would provide a powerful form of logical reflection
(cf. Bowen and Kowalski [19823). This line of investigation is being pursued by our S S
research group. It appears to be quite straignt-forward to provide such power in an in-
terpreter approach to demo/react, but complications arise when one attempts to under-
stand the nature of compilation in this situation.

* .,* €-. .*J

It should also be noted that the notion of inheritance for frames which will be S S
developed can be generalized to a notion of inheritance applicable to theories in gen-
eral. Properly done, the frame notion is then simply a special case of the more general
notion.

0 S

0 S

- - *. -

-r* % S''
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Fast Decornpiation of Compiled Prolog Clauses

Kevin A. Buettner

Logic Programming Research Group
School of Computer & Information Science *

- Syracuse University

Introduction
The programming language Prolog has a number or builtiri predicates for operating on the

global database. Among these operations, the predicate ass et. retract, and clause are found in .-.. ,,-

most Prolog systems. In the logic programming community, these predicates have gained a cer-
tami notoriety. In spite of the bad press that these operations have gotten, many practical and
useful programs are written which need and require these operations although in theory it is possi-
ble to dispense with them.4, The view of the author is that these operations are important and
should be provided in modern Prolog systems. Even languages which claim a sounder logical *-

foundation with respect to the database operations$ have implementation problems similar to
those found in ordinary Prolog.

The first Prolog environments were interpreter based. The database operations are rela- S

tively easy to implement in these environments due to the similarity between the run-time data
structures and the code structures. At the present, the trend seems to be towards compiler-based
Prolog environments. Many if not most of the compiler-based implementations have their roots
in the abstract machine of David Warren [1993;. With the advent of this compiler-based technol.
ov', implementation of the database operations has become more challenging due to the fact that
the run-time dwaastructures are quite a bit different from the code structures. The run-time data *0
structures are much the same as they were under interpreter-based implementations, but the code
structures are different; they are now sequences of instructions to execute. Implementation of the
ssert operation with this new technology isn't too difficult. All one needs to do is invoke the

compiler on the clause to assert, obtain the sequence of instructions and link these into the index-
ins scheme.

e F
It is the implementation of either retract or clause that is more interesting. These opera-

tions are similar in that we must be able to take fairly arbitrary patterns and find a clause in the
database which matches these patterns. Again for interpreter-based sytems, this isn't usually
very hard due to the similarity between the run-time structures and the code structures. But "

matching clauses in a compiler-baned system is more diffcult. As obsered by Clocksin [1985] in ~.
his discunion of the implementation of Prolog-X, there are basically three ways to attempt the

1) Saving a copy of the clause in the run-time data structure format.

2) Decompilation of clause code to obtain the original structure.

3) In addition to compiling the clause, compile the clause's source which is used explicitly ,

for matching purposes. So in normal execution, one version of the clause is used; but
when the clause is to be matched, the other version which will return the source struc-
ture is run instead.

t It is often possble to reorganize programs so th" assert &ad retract are AOL used, but at the expese Of
efficiesey Lsd quit. often clmnty of expreiun.

1 e4, metaProiog (cf. Bowen mad Weinberg 191.51) provides the operations addTo and dropFromn which are
wed to cre now theories from old ones. -
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Clocksm's Prolog-X system uses the third method, but has the disadvantage that essentia.ily two

copies of the clause are saved in the database Fortunately . there is a way of using W,'arren s
abstract instruction set which allows us to obtain the original clause structure from the object

code with little effort. Furthermore. very few limitations exist on the types of compiler opt:miza-
tions that may be performed. The limitations that do exist, however. may be easily circumvented
with no low in efficiency. In the ensuing discussion of the decompilation technique. familiarity 0
with the abstract machine described by Warren 19831 is assumed. .....

/ Decompiltion

Suppose we have a source clause of the following form: %

H :- Gl,...,G, . •

This translates (schematically) to:

match args of H
et up args of G, - "
call gl/'n,ES"
set up args of G2 0
call g/ n I,ES2

set up args of G.
execute g. S

In the above, call and execute are actual instructions. match represents the sequence of get and
unify instructions that perform the head matching. act up refers to a sequence of put and unify
instructions that install arguments for the call or execute instructions. In practice, the initial
match and set up instructions are often merged as an optimization. This assumption wil not
affect the proem which we are about to describe.

*Before discussing the nitty gritty details, it should be noted that a fair amount of structure
is created by the object code in normal execution. For example, if the clause is run with all unin-
stantiated arguments. by the time of the first call the original variables will be instantiated to *6

structure representing the arguments in the head of the clause. Similarly, just before a call or
execute, the A registers contain the arguments of the goal about to be called. To get back the
structure of the entire clause entails taking these pieces and wrapping them up with the appropri- .

ate functors that represent the head, goals, commas between the goals, and the ":-" between the *.

head and the goals. The decompilation technique will be discussed in two stages. The first stage
is to look at an object code transformation that when run by the underlying Prolog engine will
give back the original clause structure. The second stage is rather easy; ways to avoid doing the .
actual transformation are considered. %

A transformstion that will take object code representing a clause (in the above form) and
produce object code which can be run with a single argument (which may have varying levels of
instantiation) and return the structure (or pieces of the structure as the level of instantiation
requires) will now be described. The idea is to tack on a prologue to the beginning of the code
which will create the uninstantiated variables for the head and set up the clause predicate name. . -. ,.

Basically the prologue will create something of the form

h(ArgArg2,...,Arg.) :G G

The A registers will have pointers to the variables Arg,...Ag, 0 respectively. Because the A regis-
ters contain pointers to variables, the get instructions in the match section of the clause code will
be forced into write mode and wil create structure. We don't want the call and execute instruc-
tions to run, so we replace them with code which will unload the argument registers and produce .
the appropriate goal structures.
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N N
Schematically, the transformation looks like this:

Original Transformed Comment"s
Code Code ., _._.._.....__

getstructure :- 2. A I Prologue %
unifyvariable As W .
unify variable At
get-structure h/ no.As e".• '
unifyyariable Al e.

'.•L'.' ,

unify.variable An,

mach argsof H match args of H
set up afra of GI aet up args of G!
Call g1/'n,ES1  getstructure ','/'2, At Call

unify.variable As Transformation *
unifyvyaiable At
get-structure g5 /n-,,As

unifyjocal.value Al

* S
_ unifyjocalvalue An -

set up G of G. aet .p arV of G. _____

execute 5,. get-etructure g. /n. ,At Execute
unifylocal.yalue Al Transformation

unifyjocal .vlue An. *
proceed .

Notes:

* The As and At in the above transformation refer to unused temporary (argument)

S unifyJocaivalue instructions are used to insure that pointers in structure built on the p
hep als point to objects on the bep. This is necemary due to the fact tha ana rgu-

ment register may have a pointer to a variable on the local stack. If a unify.yalue
instruction is used in this situation, a pointer from the heap to the local stack is
installed causing a dangling reference when the environment is deallocated.

•.*. -&. •a.#

The above transformation scheme will work for clauses with at least one goal where both *
the head and each of the goals has at least one argument. As it stands, it will not work for unit ...-

clauses or for clauses which have nullary goals. These eases, however, are not difficult to handle.
For unit clauses, the prologue changes slightly. When it is necessary to work with a nuUary goal,
a getconstant instruction is used instead of a getj.tructure instruction. For example, the prolo- ""'"'-""'

gue for a unit clause whose head has no arguments is: :... .

getconstant hAl D S

The prologue for a unit clause with one or more arguments is

895 .- .- .4-: .
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get.structure h,, n.A-
55 unify..variable Al

unifyvariable Ano 0

N. An execute instruction with no arguments translates to %%

get-constant g. /n. .At
proceed

It is left as an exercise for the reader to fill in the other variations. It is possible to define the
translations so that there are no variations between unit clauses and rules. but in practice these
variations cause little difficulty. The translation procedure given here has the added advantage
that in attempting to match (unmatchable) partially instantiated clauses, failure can occur quite
early. To make the translation procedure more uniform, it would be necesary to delay building
the structure for the :- until the execute instruction. It would also be necessary to translate
proceed instructions, which are currently untouched.

. As an example. consider the clauses that make up part of a popular benchmark:

nre(,).
nrev([HIT',L):- nrev(T.RT), conc(RT,4H'.L).

This compiles to the following object code:

- nrev/2:

switchon term L434,

L440,
L464,

fail
L434: try..me.else L458,2 %
L440: get-nil Al % nrev(n,""" ~get_nil A2 )'"""'

proceed

"" L458: trustme..else fail,2
L484: allocate

get_list Ad 7 nrev(
unify...yriable YI % H I
unifyvariable Al % T],
get.vyahable Y2, A2 % L) :-
putvariable Y3, A2 % nrev(T,RT)
call nrev/2,3 %

put-mUnafe.yalue Y3, Al % conc(RT,
putlist A2 % [
unify..value Y1 % H

S,,~-nifYjil % ,.
putyvalue Y2, A3 % L)
deallocate %
execute conc/3 %

Performing the transformation on the first clause gives:

let jtructure nrev/2,.U
unifp._.ariable Al 9
unifi_.ar'able A2
get-ail Al % nrev(0,
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1 0
get-nil A2 C"C % ..

proceed C- .c Z .- '

The instructions of the code new to the clause are italicized. The switch and tr.-_me_eise %rr.--
uons were not included because they form part of the procedure nrev 2 rather than the first .',
clause of nrev/2. The second clause for the nrev procedure transforms to 0 0

unify_variable A4 .
unify _ariable AS
feta.tructure nrev/2,A4
unify_variable Al
unify variable A2
allocate II 7
getJist Al / nrev(C '" '
unify...variable Y1 / H
uniy..ynable Al % T;,
get..variable Y2. A2 % L)-
put..vnable Y3. A2 % nrev(T,RT);etetructure ''IS""''

uni/p....variabli A4
urnfy varisble A5 ' -'- ,'-

get structure nrev/2.A4
unifyJocaJ-value Al
unif_local value A2 V

put-Unsafe.value Y3, Al 0'% conc(RT,
put Jist A2
unify.value Y1 % Huniy-" % oil"-"."..
put..value Y2, A3 % L) - -

deallocate %
qet_.tructure conc/3,A-

unify local value Al -
unifyjo c lvalu e A-0
vinify bealyvaluc A3
proceed

The reader should think of each of these transformations above as a unary unit clause. Al
should point to the structure to be matched or a variable. In the latter case, when the proceed
instruction is reached, the variable will b instantiated to the clause structure. Of course, the
original variable names will be mising; these may be filled in if desired by a number of different
methodi. N S

--

In a real implementation, it will be undesirable to perform the actual translation. What
should be done instead is to run the code for the prologue elsewhere, jump to the start of the %
clause code and interpret the call and execute instructions in a different manner. This interpreta-
tion of the call and e ecute instructions can be realised in t least two ways.

The first way of reinterpreting the call and execute instructions is to add another mode bit ,
to the machine. This may in fact be worthwhile since clause and retract are, in some program,

t If it is important to fill in the original variable amu, another clause vuame(DBRef,VNsmeList) may be
meted. OBRef is a referne to the clamue in the database. VNameList is a List of the vanLbles (as atoms)
that occur in the clause from left to right with no duplications. To reinstall the vanable names, the clause -*_ .

structure obtained from the decompilauon proem should be traveed from left to right. Every time a hic "
(variable) is found in the structure, it is flled in with the first element in the vatiale name lit. After Halling a 0

AA

hole, the first element of the list is discarded ad the rest of the list as tueed for the remainder of the traversal S"-".' _
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quite heavily used. In one mode, the call and execute instructions behave normallv in the other
mode, the sequence of get and wni/ instructions is performed. T o set the mode bit. it may be

desirable to create a new instruction which will also perform code for the proiogue and branch to
the start of the clause.

The second method involves setting breakpoints on the call and execute instructions. The
break routine is responsible for performing the sequence of get and unify instructions correspond-
ing to the call or execute instruction and for setting the next breakpoint if any The very first-
breakpoint is set by the code that does the prologue. This second method is quite appropriate for .--.. ,

a software implementation of the Prolog engine, implementing mode bits is quite expensive in
software. On the other hand the first method, described in the preceding paragraph, may be ... .

more suitable for a hardware implementation of the Prolog engine.

In the C-based Prolog system written at Syracuse University, the second technique is used.
The prologue is actually implemented as pa t of a builtin which returns the clause structure of a
given clause.4 This builtin also sets a breakpoint on the first call (or execute) instruction, if any,
and sets the P register kprogran counter) to the start of the clause to decompile. When the
clause is done "executing", it has decompiled itself.

*I Limitationa

, The limitations of this method have to do with the implementations of =/2. var, I, non-
varl', and similar builtins.

Some compilers emit the following code for =,2:

. put argument one, Al 0

put argument two, A2
get.yalue AIA2

Provided that the get.yAlue instruction doesn't fail, the above method described will work fine;
the problem is that the resulting structure won't always be the same as the original structure.
The meaning of the two clauses will be the same, but syntactically (modulo variable names), they 6
won't be. The reason for this is th" the transformation fails to take into account the fact that
get-value is used in place of a call to the equality predicate. If the get.value instruction is
replaced by a call to -/2 or perhaps an instruction that performs the same function a3 getva aue
Aj,A2 then the decompilation method will work.

Even worset, some compilers transform clauses with '2 in them. For example. ' "'

". ~ ~~pf(~(;x',Y)) - h(Y). ::::::::

may be transformed to

,: ~p( h(Y),lg h(Y)),Y) ).

Again, the decompiLation procedure wil work, but probably not as expected.

Another problem reauts in the way that var/i is implemented in some compilers.

p(cX- var(X).

may be implemented w.

t The bniltin i called a ella.w.-sruetur(ProeNmn.ArityJ)BRef.Struct) where ProcNrme &ad Arity are the
predic"a name and arity of the claiaM referenced by DBRef. Struct is usually an output argument and
reprMnts the source structure of the clause. An Ldditiousa builtan is provided for obtaining an initial date base , ....

- reference to the Sprt clause of a procedure given the module, predicae name, Lod arity. Another builtin is used
. to find the net clause in the indexing scheme, failing when it finds no more. With thee builtia, it is possible

to implement clause/2, cia m/3, and isting/I. Additional buiitans designed for removing reference and inser-
in& new ones re provided for implementing retract and assert. 0 .

t Or perhaps better depending on your point of view.
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get constant
put-yalue A2.A.
switch_onterm LI.fal.filf.ai.

Li: proceed
Again, the problem is that a transformation isn't defined for the switch.on term nstruction It

would be possible to define a transformation. but unwise since this same instruction may be used
to implement nonvar also. A better approach is to create instructions which impiement the var
and nonvar operations and define the obvious transformations on them for the decornpilation pro-
cem.

Similar problems exist (in some compilers) for other operations (usually builtis). Either by
making explicit cls or by defining new machine instructions, these problems can usually be ., .
rctihed.

"" Coneduions

The methods described in this paper have applications beyond implementation of clause, -

retract, and listing. The method of setting breakpoints may be used to implement debuggers (in
particular, the standard four-port debugger). In a nutshell: breakpoints are set on the next ca..l,
execute or proceed instruction and the next failure address (obtaaned from the top choice point,.
When the breakpoint is executed, the appropriate call, redo, fail, or exit message is printed. Redo
and ftail mesages are printed when the failure breakpoint was reached. One or more exit res-
sages are printed when a breakpoint corresponding to a proceed instruction is executed. CaJl mes- -". ,

sages are printed on call and execute instructions. Because of the generalized tail recursion
optimizations in the Warren architecture, it is necessary to maintain debug frames. These frames -

contain such information as the previous debug frame, the parent debug frame, the call structure
and whether the instruction that caused this frame to be created was an execute or a call. These
frames may be safely kept on the heap; in fact keeping the frames on the heap permit.. a clever
implementation of deciding how many redo messages to print when a failure occurs.

Both the decompilation and debugging methods have been implemented in a system con- 0
." structed at Syracuse University. The underlying compiler is very fast, incremental, Lad has an
- interactive interface. All of the flexibility of an interpreted system is achieved in this compiler-

based system. Moreover there are no interface or portability problems as are often found in Sys- .- .
tems which require both an interpreter and a compiler. -

-....
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The Design and Implementation of a High-Speed
Incremental Portable Prolog Compiler

Kenneth A. Bowen, Kevin A. Buettner, Ilyas Cicekli, A-ndrew Turk e:
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School of Computer & Information Science

S-racuse University
Syrcue.NY. 13210 US A
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Abstract
The design and implementation of a relatively portabie Proiog compiler achieving 12K LIPS on
the standard benchmark is described. The compiler is incremental and uses decompilation to Irn- Zoe.*
piement retract, clause, and listing, as well as support the needs of its four-port debugger The 0
system supports modules. garbage collection, database pointers, and a full range of built-ins

1. Introduction

In the course of exploring implementation techniques for rnetalevel extensions of
Prolog (cf. Bowen and Kowalski [19821. Bowen and Weinberg '19S5. Bowen
1985 ). it became apparent that a fast flexible Prolog compiler would be a lisefu,

tool to serve as a starting point for developing experimental implement ations :.,
the extended systems. Consequently. in late 1984 we began exploring just Such a
project. We planned to base the system on the designs of Warren ;1983'. iropie-
menting a byte-code interpreter for the abstract machine in C. while impiement-
ing the compiler itself in Prolog. We worked initially in C-Prolog on the Data
General MfV/8000 which was the machine available to us at that time. We were
fortunate to join forces with the group working at Argonne National Laboratory
(Tim Lindholm. Rusty Lusk, and Ross Overbeek) who were interested in the im-
plementation of Prolog on multiprocessor machines. They had already imple-
mented a byte-code interpreter for a system which would support multiple ver-%
sions of Warren's abstract Prolog machine (W.AM). different machines running on .\ ..

different processors. but using shared physical memory and implementing ap-
propriate logical memory spaces. The system was parameterized as to the

This wora supported in part by US kir Force grant .4FOSR-S-00.2 and by US Air Force -ontract F30WO2-8i-
C-0169 The authors are very grstetui to the roiiowing peopie tot numerous vaiiiabie -oriv-rsations on the to- .

pics or this paper Hantid Bach&, Aid& Batarekh. Jim Kajiya. Kevin Larue Jacob Levy. T.M L~rndhoi Rustv
Lust. Jon Mills Hidey Nautiima. Rows Overbeek. Kari Puatr, and Toby Weinberg
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number .f hvsical processors. so that we cou0od run a v.sicn Ina' pra: " -
-, ter set to one. yieiding a sequentia, by'e-code :nlerpreter f.-ra :s :''

machine. Thus. in principie. we could focus our effcr : on -. e .... t:..

,he compiler. Naturally. life being what it is was nc: quite ",at sim:e. The A -

gonne group had implemented their b te-co,.e, "nterpreter 1- C o.. a 7N
While they had striven for portability, one sericus hardware assumpticr a.
crept into the code. namely that the underlying machine was byte-addressab;.
Since the %V/SOOO is not a byte-addressable machine, we found that we had to

* devote considerable energy to porting the Argonne W\VA.\ to the .V\t'8000. How-•%
ever. the changes necessary to achieve this port were propagated back into the
original A.rgonne code. so that the present .rgonne W.k is in all lik.ihood an
extremely portable system. The Argonne system includes a -.\A.\I assembier'"
which will assemble and load -\VA.\I assembly code• (This was revised by ---

Cicekli to remove limitations on the sizes of programs which could be assembied .- '..""
and loaded.) Thus we were able to hand-compile and run test examples. W e were

. disappointed in the resulting performance. the naive reverse benchmark (nrev
performing at only about 4K LIPs. We concluded that the relatively slow speed""
was due to a combination of the portability requirements and the data structures-
necessa-v for multi-processor implementation (even though we were making no
use of those facilities) Performance improved somewhat when we moved to a '-.,

" newly acquired \AX 780 running Berkeley UN-LZ 4.2. but was still disappointin. 0
This disappointment, coupled with an interest in implementing a Prolog system
on 68000-based machines. led Turk to begin exploring a new implementation of a
byte-code interpreter written in C. while as a group we continued work on the
compiler.

0
The need to devote resources to the port to the .7/SO00 had slowed our
development of the compiler, so it was not until late Februar of 1985 that we
had a first version of the compiler itself constructed and operational in C-Prolog. !
While writing the compiler in Prolog was of course a joy. we found ourselves
somewhat hampered by C-Prolog's restricted memory size and apparent lack of

- significant tail recursion optimization and garbage collection. Consequently. we
.. were forced to somewhat unnaturally segment parts of the compiler. store inter-

mediate results in files. etc. The compiler itself had grown fairly large. reflecting
.-" our explorations of various optimization techniques. Vhen we began to attempt

to boot the compiler on itself, we were frustrated to discover that we immediately
overran the maximum allowable local and global stack spaces. While we found ,
that by a combination of breaking the compiler into many small files and using
Prolog assert/retract hacks to reclaim stack space we could begin jamming it
through, we were quite upset by the butchery this was performing on what we
originally regarded as relatively clean code. At this time. Buettner had been de-
voting some time to exploring the implementation of a Prolog compiler on 16-bit

S-machines. in particular the design of a byte-code interpreter for that environ-
ment. In a burst of enthusiasm, he roughed out a new byte-code interpreter for
the abstract machine coupled with an implementation of a moderately sophisti-
cated compiler, all written in C. in the space of a month. 'e now found our-

* selves in the (perhaps enviable) position of possessing three distinct implementa-

9C 2
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,ion of he 3b trac rnac ne iail written in C) and two cne xr-P

C and the otner in Prcoz..

While there were some differences in structure between the compi'e.
operated on basically the same principles. On the other hani. cur *w- ",,-,.
grown i-piementaticns of the abstract machine appeared :c use snifican:.,"
different techniques. and of course differed markedly, from the Argonne implemen- .

tation. Since both of our local WVAt.\s executed nrev at better than 6K LIPS and-
both authors asserted that not all opportunities for optimization had been ex- ,., '
ploited. we decided to pursue development of both machines and compiler! in p
parallel. In the course of the summer of 1985. we saw both machines evolve tc-
wards a more common structure. and begin achieving speeds in nearing 10K LIP S
on nrev. \'e also had the interesting experience of booting the Prolog-baseci ver-
sion of the compiler using the C-based Prolog compiler. We were able to do th's
without introducing any of the ugly adjustments we had found necessary when
using C-Prolog. Since the two abstract machines seemed to be evolving towards
a common structure. we decided in July (at a breakfast meeting at the Logic Pro-
gramming Symposium) to coalesce the two efforts. making a final incorporation of
the remaining clever techniques of Turk's machine into Buettners. From that
point on. we focused most of our efforts on developing the C-based Prolog cor,-
piler and abstract machine. We did complete the Prolog-based version of the 0
compiler and delivered a copy to the Argonne group in late August. It is expect--
ed that this version will be made publicly available along with the Argonne
W.ANI sometime in the near future. The rest of this paper will be devoted to
describing the design. structure, and facilities of the C-based system. . .

- •.

2. Organization of the System

We will assume familiarity with Byrd. Pereira and \Varren 1980. Pereira. * S
Pereira. and Warren t19781, and Warren [19831. To the user. our system presents
the appearance of a standard Edinburgh-style interactive interpreter. However.
it is really an incremental compiler. Thus we have no need to support a separate
interpreter with all the difficulties of consistency between compiler and inter-
preter which are normally entailed. Briefly, the major services provided by the •
system are as follows:

" The compiler is resident in the system. incrementally compiling original and '..*..+

added program clauses (including those added by assert) as well as goals.

" Programs may be organized into modules which are relatively independent of .
file structure in that multiple modules may be included in a single file (a sin-
gle module can also be spread over several files); visibility of procedures is .

controlled by use of import/export declarations: clauses not appearing within
a module declaration are stored in a default global module: constants and ..e,

functors are globally visible: modules may appear as submodules within oth-
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er ..du-es: . . - .-

* . Garbage compaction o-f the zloba! stack heapi and '.5 v:iis:
point er- reversal algorit-hm of \Iorris.197S: no garibage ezn-
for the code space:

9 Run-time use of retract. clause, and listing is accomplished via a zenera.
* decompilation technology (described in detai; in Buettner '19S$ 5 th s c-

nology is also used to support the debugging subsystem:

* A full four-port debugging model (cf. Byrd',190")i provided: it reies on h
decompilation technology mentioned above and accomplishes its t as: by con-
structing linked lists representing local stack frame entry and exit on- the z.:-
bal stack (heap): it is largely, complete. though some standard commands
remain to be Implemented:

e Database pointers are supported : these exist as Prolog ter ns Which can .Zc-
in other terms and predicates:

The system supports :he full range of built-ins standard in Edinburgh-style Pr:- -'

log Systems. 'Some are implemented 'in C. with the rest being written in Pric
and compiled by the sy.stem.

The system occupies approximately 135K bytes of virtual memory (and 76K
bytes of physical memory) when loaded. Performance of the system on the naive .-..-

reverse benchmark is shown in Table 2.1 (measured in LI for lists of .ena-h
100 and 1000. The slower figures for lists of length 1000 of cour-e reecs the
need to perform garbage collection.

Unoptimized Optimized
100 9.6K 12.0K
1000 8.5K 10.51K

Table 2.1. Benchmark performance.

The "unoptimized" column represents the performance of the system running
* with the output of the UNMX 4.2 C compiler unchanged. The -optimized-

column represents the performance of the system with the output of the C con '-
piler slightly hand optimized. The only optimization specific to a Prolog system -

is a tightening of the dereference loop. A of the rest of the optiization.s are of
a generic sort that could be performed by a highly optimizing C compiler, such as
shortening branches to branches (to branches...). Another such optimization
involves reclaiming poorly used machine registers. In the compiler output. the
low numbered machine registers are only used for scratch values and are not
saved on procedure entry/exit. The usage of these registers was reorganized and
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rode added before calis and exits to render them safe. Nlost of these :tz-

* :~~~on= were performed on the code simruiating abstract nac2:.ne isrc~n.-
native code compiler could ge, right from the bez:;nr-;ng. iwhlle cu. e 1r -
::rming many other optimizations. It would not surprise is co see a ::

increase factor of 3-4 resultIng fromn nat"Iv-e code cornpilation.

3. Compiler Organization -

While the principkzs .,, -ich the two comnpilers operate are quite sirni.ar te r
internal organization somewhat different.

3.2 Clause Compilation

The overall action of the Prolog-based compiler Is divided Into three mna~cr %.
* passes:

1 I compilation of individual clauses to Intermediate code.
'2) organization of groups of 'intermediate clause code Into procedures. and
3, generation of instructions for the abstract machine.

*During the first pass. the compiler treats each clause for a procedure separatel..
producing intermediate code representing the action of that clause. This pass is
organized 'into three phases: lexical analysis. parsing. and intermediate clause
code generation. The lexical analysis phase outputs a list of annotated tokens.

* The parsing phase processes this list, more or less in a definite clause grammar
style. to produce a complex Prolog term representing the clause: a considerable
amount of variable analysis is also performed during this phase. The third phase
processes this term. producing another Prolog term representing the required
sequence of abstract machine instructions. Considerable use of difference lists 0
and uninstantiated logical variables representing machine addresses is made dur-
ing these phases. During the second pass. the intermediate code for the individual

clauses constituting a procedure is connected using the indexing 'instructions.
Our method of indexing, which differs from Warren [de831, will be described later.
The output of the second pass is a complex Prolog term representing the pro-
cedure. Consequently, assembly amounts to a traversal of this term, calculating
symbolic addresses as necessary. and linearizing the entire structure: loading is

* then straight-forward.

The C-based version of the compiler utilizes a standard Prolog reader to read the

clauses as terms. It makes one pass through the term, performing its variable
analysis and building appropriate tables. On a second pass through the term.

this compiler generates and loads the instructions for the clause, linking them
into the naive try-me-else indexing chain for the procedure (see Section 3.2). Full
indexing for the procedure is generated when the module containing the pro-
cedure 'is sealed.

procssesthi ter. prducng aothe Prtog erm eprsentng te rquird ,..-t.



" Examination of the examples supplied in Warren [19831 shows that the required get- and
put- instructions occur in the order corresponding to the left-to-right ordering of the
corresponding terms in the source clause. In an effort to minimize the number of instruc-
tions generated and to optimize A-register usage, our compilrs reorder these instructions.

. They also make a very serious attempt to set up the arguments to the first call in the body
while carrying out the head matching. They also perform the now-standard Warren-style
optimization of permanent variable allocation by trimming environments. (The permanent ,,., .
variables used in implementing cut are also included in this optimization -- cf. Section 4.)

3.2. Indexing

Access to the block of clauses constituting a procedure is handled in the usual wa'v with hash
tables, though provision for modules and hiding of local procedures complicates this a bit. .....

Within the list of clauses constituting a procedure, it is desirable to minimize the number of
". clauses attempted but failed due to failure to match the head of the selected clause against

the incoming goal. Such a failure can occur only when the incoming goal contains instan -
tiated variables; if all variables of the incoming goal are uninstantiated, the goal will match
the head of each clause of the given procedure. Consequently, the indexing process has two

"" major tasks to accomplish: S

(a) When the incoming goal contains uninstantiated variables in designated indexing
argument places, it must provide a means of trying each clause of the procedure in order. .

(b) When the incoming goal contains instantiated terms in the argument places designated .

for indexing, it must provide a means of selecting only those clauses whose heads satisfy the
following: for each argument position designated for indexing, the term occurring in the "
clause head must match the term occurring in the corresponding position of the incoming -

goal.
0

As with all other current Prolog systems known to us, ours only supports (or desiglates)
indexing on the first argument of procedures. (However, our plans for the future include
relaxing this restriction). We have not modified the indexing instructions of Warren
[1983], but we do employ them in a different manner. Focusing on the first argument of
procedures, a block of clauses is a maximal subset of the clauses for a procedure,
contiguous in the given clause ordering, all of whose first head arguments are of the same ,,.,.
type, where the allowable types are:

constant, compound term (other than list), variable, and list. : ,

Roughly, one uses indexing instructions at the lowest level to control access to each block,
coupling these with second-level indexing instructions to control transfers between blocks. .'.-

A sequence of instructions of the form

try - retry - ... - retry - trust -
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specifies a zrcu - c -:auses to be tried in sequence, as does a sequence :fte: _r.

tn _me _else... retry_m e _else re'rv _m e else ..... _me _ s .se.-a '. '

In the second case. the branch instructions mus: be physicaiv neir:e'a, - -

the code of the individual clauses, while in the first. the coilection 31 6r-
instructions can be physically quite removed from the code of the clauses con- .

trolled. We refer to these as try chains and try me else chains. respectiveiy.
Note that in a try me-else chain, the label of each instruction is the address -
the succeeding retry_meelse or trust instruction. Consequentl . this succeeo-', P
instruction and its following clause code need not physically follow the code c'.
the preceding clause. Consequently. we can regard a try_me_eise chain as a
linked list of clauses. In the case of try chains, while the actual try-retry-trust
instructions must physicaily follow one another (they constitute a vector of
instructions), the actual code blocks of the clauses they control can be distributed a -
in memory in any manner whatsoever. These code blocks need bear no ph.sical
relationship to one another nor to the controlling try chain, other than the fact
that the try chain instructions reference the addresses of the clause code blocks.
We exploit both of these observations in the implementation of assert and
retract. Our method of indexing runs as follows. To cater to requirement ia
above, we create one master tr" me else chain linking all of the clauses of the
procedure. In catering to requirement (b). we avoid using the ..._me else instruc- -.-

tions. restricting ourselves to try-retry-trust to control sequential access to both
clauses and blocks. Constant and compound term blocks are of course accessed
using switch instructions, and overall access to the upper-level indexing is ini-
tiated with the switch.,on -term instruction. Sequential ordering of groups of 0

clauses as well as groups of blocks of clauses is indicated with try chains: no use
of try me else chains is made in the upper-level indexing meeting requirement-
tb). Consequently. the indexing meeting requirement (a) is totally separated from-
the indexing meeting requirement (b). We feel this provides great flexibility for
insertion and deletion of clauses (by assert/retract or by a run-time editor w > e

minimizing the number Of choice points which must be created. Figures 3.1 an '
3.2 schematically indicate the structure of this scheme.

4. Abstract Machine Organization and Cut

The layout of the various machine regions is shown in Figure 4.1.
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Code Area Lcw Nle-rcrv

Heap or Copy Sitack

Local Stack

Trail

A Registers Highn Memory

~%%

Figure -4.1. Abstract Machine Organization,

A bit table for garbage collection Is also permanently allocated. For the most
* part. we have implemented the instruction set of Warren J'1983' with only minor
*modifications. The most significant extension to date is the addition of a new

machine register (called cutpt) and new instructions to allow us to compile cut.
These instructions and their effects are listed below:

Instruction Action -

setB from cutpt B :=cutpt

seBfrmYn B :=Yn
sa-e...utpt n 'In 'Dn: cutpt ~
save B in Yn Yn :=B

Figure 4.2. Instructions Necessary for Cut. ,-

The last instruction is only necessary for compiling the so-called "soft
cut.

The difficulty in dealing with cut is that at compile time. it is Impossible
to know how many choice points will be created for a procedure before a
clause of that procedure is entered. Consider the following trivial program.

f (a).

f(b).

f/i: switch-on-term Cla.L1.fail.fail
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SLi: swit ch on constant 2. a:C1. b:C2 ' -

* Cla: trvme else C2a .- - -

Cl: get _corstant a-AO - a,

proceea

C2a: trust me else fail C f(
C2: getconstant b.A.0 c b i

proceed c .

When the first clause CI is executed, there can be one or zero choice
points for the procedure f/1, but this cannot be detected at compile time-
because it depends on the incoming value in the first argument register
AO. If the incoming value in AO is the constant a. there will be no choice
point created for the procedure f/I. but if a is an unbound variable, there
will be one choice point created for the procedure f,'l.

The new register cutpt is treated in the abstract machine as follows. The
value of the last choice point register B is automatically stored in the
cutpt register by a call or an execute instruction to record the address of
the last choice point before the procedure is invoked. The current value of
the cutpt register is saved in a choice point when the latter is created. The

cutpt register is reset from the value stored in the last choice point when --- ,
backtracking occurs.

The following examples illustrate how the compiler uses these instructions
to compile cuts.

-a..,.
Example 1 .o °

p q.-. q2.

Code for the clause:

allocate 1
save..utpt_in YO

call ql/O.1
set B from YO
deallocate
execute q2/O

,.. ,

Example 2

P :" ' •
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- Code .or the ccaLse -

set B from cut t
proceed

Notice that the ciause doesn't have an efv'ronme,: and ::a" t-h .
register contains a pointer to the last choice point before the pr. e 're
is invoked.

Example 3

p qI. q2.

Code for the clause

allocate I .. -
,-- cutpt- Y

call q1 .1
call q2 .1
set_B from YO
deallocate •

proceed

This approach can be optimized.

5. Conclusions

The abstract machine design of Warren 1983 together with the cc..,pl-
tion techniques suggested by his examples are a sound piece of software
engineering. We have filled in some gaps such as the implementaticn c,.
cut which were omitted in his discussion. and have introduced "--.
modifications in the pursuit of refining and optimizing performance. The
present system provides an excellent basis for our primary goal. the pur-
suit of implementations of meta-level Prolog systems. Our approach will 0

be to introduce modifications to the abstract machine providing the
required functionality, the priman" one being a change in the treatment of
the code space. This will be coupled with appropriate changes in the corn-
pliers. We expect this to lead to efficient implementations of the experi-
mental systems. 5
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Compiler Optimizations for the WAM-"

Andrew K. Turk

Logic Programming Research Group
School of Computer & Information Science

Syracuse University ,
Syracuse. NY, 13210 USA

Abstract

A series of Warren Abstract Machine (WAM) implementation techniques are presented. These tech-
niques and compilation strategies are designed for use in a highly optimized native code Prolog com-
piler. A thorough knowledge of the WAM and Prolog compilation is assumed.

1. Motivations

On conventional hardware, it is necessary to compile Prolog to native machine code ,

for optimal performance. Ideally, a native code compiler can work along side one of .

the many byte-code compilers which already exist. This paper outlines a series of op-
" timizations which can be used by an intelligent compiler to translate WAM byte-codes

into the native machine language of a conventional machine. Most of these strategies
need not be applied to every clause and procedure; the compiler is relativelv free to
decide which method is best, or at least take advice from the programmer. It is as- .. ,

sumed that the optimizations will only be applied to static code. .

2. An Overview of Native Code

WAM byte-codes can be naively translated into native code in a straightforward
fashion. Each of the steps and conditionals which must be performed by the byte-code
interpreter must also be executed by native code. When these steps are directly -

translated into a native code stream, the overhead inherent in the interpreter is elim- . -

inated. However, much more can be done than the simple elimination of the inter- - -

preter.

3. The Read/Write Mode Bit -

Warren's original design incorporates a mode bit which tells the machine whether it's
in read mode or write mode. Many hardware and software interpreters actually use a 0

mode bit. However, mode bits are expensive and difficult to manage in a native code
system. Fortunately, there is a straightforward method which eliminates the bit and re-
tains its functionality.

This work supported in part by US Air Force oontract nnber F30602-81-C-0169 0
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The mode bit is set by get instructions and must be maintained through the execution '

of the following unify instructions. Instructions which change the mode (either gets or
puts) cannot occur between a get and its unifvs. The simplest way to eliminate the
mode bit is to compile each unify" sequence twice, once for write mode and again for
read mode. First. the code to dereference the register in question is emitted. Follow,-
ing that is a conditional branch to the read mode sequence (which directly follows the
write mode sequence). Right after the conditional is the first instruction of the write
mode sequence. A branch around the read mode code is placed after the last write
mode instruction.

No "continuation branch" is needed after the read mode code because the next in- -" " -
struction corresponds to rest of the clause. Put instructions force the machine into . -

write mode. This is done only so that the unify instructions will work properly. Since
the mode is always write after a put. there is no need to compile a separate sequence
for read mode. Some software implementations achieve the same effect with a set of
unify instructions that always work in write mode. The compiler should emit the write
mode sequence first in order to make write mode propagation more effective.

*" 4. Write Mode propagation

*- Compiled constants and variables do not change the mode. However, when an un-
bound variable is passed into a clause at runtime, a getStruct or getList will force the
machine into write mode. Not only will that particular getStrucr or getList invoke
write mode, but any substructure corresponding to that instruction must also run in
write mode. This is because all of the unify Var instructions in the original unify se-
quence run in write mode, and therefore create fresh unbound variables on the heap.

When write mode is propagated to a getStruct F, An or a getList An, the machine can
infer that An contains a reference to an unbound variable on the heap. Because of
this, the runtime dereference and tag check for undef can be skipped. This can amount
to a significant savings for programs which spend a lot of time in head matching.

* Unfortunately, there is no way to propagate read mode. Furthermore, without undue
overhead, the write mode of an instruction can only be propagated to its "leftmost"
subtree. This is due to the fact that there is no way to distinguish between a propagat-
ed write mode and a non-propagated write mode.

In order to implement this technique, the compiler takes advantage of the fact that the
unify sequences are compiled once for write mode and once for read mode, with a . -

branch in between. If the compiler detects that the mode can be propagated from 0
some parent get instruction to a child get, the "continuation branch" in the parent's
code will jump PAST the dereference and check for undef, directly into the write
mode unify sequence of the child. If the mode for the child can be propagated, then...'.
its continuation branch will skip the dereference and check for undef of the next get,
and so on.

Whenever the mode cannot be propagated, the parent's "continuation branch" will.

-916-
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enter the child's get at the beginning. 1n order to capitalize on this optimization, the
byte-code should match head structure in long left-descending chains so that the mode
can be propagated as far as possible.

5. Shallow Backtracking on the VAM 

Other Prolog implementations distinguish between two different types of backtracking:
deep backtracking and shallow backtracking. Shallow backtracking occurs when the
current choicepoint is the topmost object on the local stack; everything else is deep . ,

backtracking. However, we will restrict the definition of shallow backtracking to cases
where some clause has failed in head matching and another clause remains to be tried
in the same procedure.

Most WAM implementations have a single global subroutine or label which resets the
machine and argument registers after a failure. This routine is used in the compilation
of a get instructions when an incoming argument doesn't match. However, in order to
optimize for shallow backtracking, the native code compiler should compile these ac-
tions in-line along with every retry and trust instruction.

Seen in this light, each retry resets the argument registers, resets the machine registers. 0

updates a field in the choicepoint, unwinds the trail and finally jumps to the next
clause. Each part of the retry has an entry point, and if no argument registers were
changed by the previous clause, the machine can simply jump past that part of the re-
try, just as if the mode were being propagated.

0 0

Suppose that a procedure contains two clauses, numbered 0 and 1. Failure in the head
of clause 0 will always cause shallow backtracking. Each instruction in the head of
clause 0 which might cause failure must have some way of causing the machine to fail
(i.e., branching to a failure label). Furthermore, the compiler will know how many re-
gisters might have been modified in clause 0 prior to each instruction.

Thus, the trust separating clause 0 from clause I will be arranged so that the first re-
gister modified in clause 0 is the last one reset in the trust. The second register
modified will be the second to last reset, and so on.

By doing this, the compiler can have the first possibly failing instruction in clause 0
jump past almost all of the compiled trust because only a few registers have been
changed. The last possibly failing instruction in clause 0 will fail into the beginning
of the trust in order to reset all the changed registers.

Since the compiler calculates where to jump during shallow backtracking, the -"'-

nextClause field in the choicepoint record is only used for deep backtracking. Clause ..
I is the last clause in the example procedure, and it can only cause deep backtracking.
The compiler cannot calculate the failure label in this case, and must emit code to
jump to the failure label stored in the choicepoint. Failure labels in choicepoints al-
ways point at the first instruction of a compiled rerr or trust in order to reset all the
machine registers.

-917- G'

........-....... ................--.......- j..-• o °. " ".d" o " " "-. "" "' . ,°" %.. - .
-

- * .
-
.*.J.*.

.
-*- 

. " % .
=a

t
",% "*o

" " " '. % . ' " % " ° % ) "
" ' "

" °
-"" 

%
• " "=" - "-". "

" ' "
-' "' .' - "• .'"



WV L - -.

6. Improved Choicepoints

Many procedures are compiled with a type of indexing which uses two tr' instructions.
These procedures are composed of a series of blocks of clauses with a try for each
block. In addition, there is a tr. which laces all the blocks together. Under certain
circumstances the machine can detect at run-time that only one clause in a particular
clause can possibly match. In this case, the inner try instruction is not executed and
the second choicepoint is not created.

Since the creation of a choicepoint is a very expensive operation in terms of both
space and time, the compiler should strive to avoid unnecessary choicepoints. A closer
examination of the second choicepoint occasionally used in the indexing scheme shows
that all its fields except for B and the address of the next clause are duplicated from
the first choicepoint. In fact, the only interesting part is the address of the next clause
because the B field simply points to the first choicepoint.

Two choicepoints can be collapsed into one if the next clause field of the hypothetical
second choicepoint is included in the first. In particular, the two fields are allocated ."

together in the first choicepoint and function like a small stack. A try instruction ,'44

pushes an address on the stack, a retry changes the topmost entry' and a trust pops the 0
stack by one.

Since present compilation technology never requires more than two choicepoints per
procedure, this sub-stack can be manipulated directly as an array. A try simply copies
the first field into the second and a trust copies the second into the first. Sophisticated
indexing techniques which require more than two choices may become available.

In this case, it will be advantageous to have another register which points to the top-
most stack entry in the most recent choicepoint.

The only restriction is that the compiler must be able to know which tr instruction
will be executed first and which trust will be executed last. This is because the first
try needs to allocate the choicepoint, while the last trust will deallocate it.

This technique avoids a great deal of space and time overhead by collapsing multiple
choicepoints into a slightly larger initial choicepoint. More importantly, it means that
the compiler can calculate exactly how much local stack space will be needed by the
procedure at compile time. This allows it to allocate other objects below a procedure's
choicepoint, such as an environment, and to share these objects between clauses.

7. Avoiding Environment Allocation

An environment is required for any clause that has more than one subgoal. The en-
vironment must be allocated before any use of a permanent variable and before the call
to the first subgoal. Since most implementations do not have a top of stack (TOS) re-
gister, the TOS must be calculated dynamically. This involves a conditional test and - ",
possibly an indirect load and an addition. Many byte-code compilers emit code so that
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the allocate instructions occur as late as possible in the hopes that the clause will not

match and the environment need not be allocated.

However, procedures that use at least one try in their indexing always calculate the
TOS in order to put a choicepoint on the stack. Thus. after a choicepoint has been I 
laid down, the B remster contains the TOS. The compiler can recognize this and corn-
pile references to permanent variables as offsets from B instead of E. Once the head
of the clause has successfully matched, CP and E are copied into the local stack and E
is updated to reflect the new environment. %-%el del

This technique cannot be applied to procedures which optionally use zero or one
choicepoint. Obviously, if no choicepoint was pushed on the stack, then B does not
contain the TOS. In this case, there is a good chance that the procedure will be deter-
minate anyway, and the compiler should not be overly concerned about optimizing for
fa il 'are . I

8. Improved Argument Registers

There are two drawbacks in the way argument registers are reset after failure in the
WAM. First, many registers will be reloaded even though they were never modified in •
the first place. One solution to this problem to make use of shallow backtracking.
However, many registers are still reloaded from the choicepoint even though they will
never be referenced due to early failure in the head. Fortunately. this problem can also
be minimized by a careful compiler.

This technique involves reloading argument registers from the choicepoint of a non-
determinate procedure only when absolutely necessary. Normally, the effective ad- .

dress of an argument register is either a host machine register or an offset into the ar-
gument array. However, the compiler can change the effective address of the first
top-level occurrence of an argument register in the code to be an offset into the current
choicepoint.

Thus, the compiled remr instructions will not include code to restore certain argument
registers. The first effective address of such a top-level argument register corresponds
to the stored value of that register. The machine should not change the contents of the *
choicepoint, but it is free to read whatever is necessary. This amounts to treating the
choicepoint as a read-only cache of saved argument registers.

Two potential difficulties arise. Some of the instructions which are optimized away in
byte-code (e.g., getVar X1, Al) cannot be eliminated with this scheme. Since the
failure code will not reload certain argument registers, the compiler must explicitly re-
store all such registers that appear in the clause code.

Furthermore, trust instructions delete the topmost choicepoint and in the process re-
move the initial copies of the argument registers. To eliminate this problem. the com- , -""-"
piler must emit code which only deletes a choicepoint after the head of a clause has
matched or only after the head has failed. In the latter case, the machine would delete

* •
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the topmost choicepoint and then jump to the deep backtrack label of the previous
choice.

A careful combination of this method and shallow backtracking should be more
*effective than either method alone. Register usage between clauses and the "deter-

minateness" of the procedure will influence how the compiler emits code to reset the
state after shallow backtracking.

9. Backtrackable Assignment

This next technique is not an optimization, nor is it unique to native code prolog im-
plementations, but it was developed along with the other methods in this paper.

Backtrackable assignment appears to be a useful device for a number of different ap-
plications. It requires that extra information be stored on the trail for certain entries:
those that were assigned to. The extra information is a copy of the particular cell be-
fore it was destructively assigned.

Naive implementations of backtrackable assignment either place a tag bit on each trail
entry, or store a reset value with each reset address. The former requires that the tag
bit be checked on each trail entry during failure and the latter doubles the size of the
trail. Fortunately, a simple method exists which pays no overhead for normal trail en-

* ties.

The idea is to interleave two separate stacks, one for normal trail entries and one for
reset-to-value entries. Each stack will have a pointer to the topmost element. TR
points at the topmost normal trail entry, while TR' points at the topmost reset-to-value
pair. This is similar to the way choicepoints and environments are interleaved on the
local stack.

Each time a normal unification is trailed, an address is pushed onto the trail and TR is
incremented. During a destructive assignment, a pointer to the cell, the contents of the
cell, and the previous TR' are pushed on the trail with TR being incremented by. TR'
is updated to reflect the new entr,.

When backtracking requires cells *c be reset, the machine compares the copy of TR in
the backtrack frame with TR"; the higher of these two is copied into a temporary loca-
tion Temp. The part of the trail between Temp and the current contents of TR
represents a contiguous block of normal trail entries. The machine can loop through

0these, decrementing Temp and resetting variables to undef without checking any tags
or worrying about strange objects in its path. If Temp is higher than the copy of TR .
in the backtrack frame, then Temp points at a reset-to-value entry which resets the
variable and decrements Temp accordingly. Otherwise, no reset-to-value entries occur
in the current trail segment. -,' .- ,.-.

This process continues by repeatedly untrailing a block of normal trail entries (possibly
an empty block), and then untrailing a reset-to-value entry. When all the appropriate
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trail entries have been removed, TR will point at the top of the trail and TR' will point
at the most recent reset-to-value entry.

10. Conclusions
* 0

A number of optimized compilation techniques have been presented. An advanced
compiler should be able to make use of them when it has determined that a particular
procedure can be made more efficient. The optimizations are relatively independent so
the compiler is not forced into a few rigid compilation models.

* 0
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I. Introduction

V.

Prolog has many attractive features as a pfogramming tool for artificial intelligence. These
include code that is easy to understand, programs that are easy to modify, and a clear ,- ,-.
relation between its logical and procedural semantics. Moreover, it has proved possible to
create clear and efficient implementations. Nonetheless, we perceive several shortcomings.
Chief among these is difficulty representing dynamic databases (databases which change in
time) and an apparent restriction to backward chaining, backtracking, depth-first search.
Our intent in this paper is to present an extension to Prolog, called metaProlog, which " .- .

preserves the virtues of Prolog while introducing powerful constructions to attack these
problems. This work is a direct continuation of the investigation into meta-level program-
ming in logic begun by Bowen and Kowalski [1982].

Many applications of artificial intelligence demand facilities which amount to the ability to
dynamically manipulate databases. Databases are naturally represented in Prolog as a set
of assertions and clauses. This exploits all the advantages of Prolog's inherent deductive
machinery. However, the logical core of Prolog provides no conceptual basis for segment.
ing or modifying the database. Most implementations o&4 Prolog have provided ad hoc
extensions to the basic logic programming paradigm which allow for dynamic modification
of the program database by the program itself. But since the database is the program,
the use of these facilities introduces difficulties similar to those introduced by global vari-
ables and self-modifying code in conventional programming languages. The effect of these
features on the virtues listed above is catastrophic. Programs become difficult to under-
stand, reliable modification of the code is almost impossible, and the logical semantics is " -

utterly destroyed. We know of no mathematical or philosophical definition of first-order
proof where the collection of axioms is not fixed. We would suspect any such notion to be
incoherent. We believe these difficulties can be overcome by the introduction of theories
as first-class objects which can be dynamically created and passed as parameters. In stan.
dad Prolog, goals are invoked with respect to a single background theory. In metaProlog,
goals must be proved in an explicitly identified theory. We regard this system as simply a
first-order logical theory of axiom sets and proofs.

The means of indicating that a metaProlog goal G should be solved in a particular theory
T is an explicit call on the proof predicate demo. From a logical point of view, the proof
predicate is really a relation between three objects: the theory T, the goal G, and the
proof P which attests to the solvability of G in T. But logic programming is not only
concerned with the static existence of proofs, but also the process of discovering them.
That is, it is also concerned with the notion of search space and search strategies. Thus,
for logic programming, the deep central relation is the one which holds between a theory
T, a goal G, and the complex object consisting of a proof for G in T seen as a portion of
a search space explored by a particular search strategy. Our investigations have led us to
the conclusion that all of these entities must be treated as first-class objects (metaProlog
terms) capable of being manipulated and passed as values of parameters.

This approach appears to provide a logically sound programming formalism sufficiently . ,%
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powerful to write clear reLiable programs for experimental and ap-Lied artificial intellgence. ~ -v-

We also believe it Possible to construct efficient implementations of such a system, but will
leave this question to a later paper. Although problem of efficient implementation has
been of deep concern throughout our design process, our concern in this paper is with
questions of conceptual and logical foundations. (Various portion# of the system have -

been simulated by implementations in Edinburgh Prolog and parts of a prototype system
have been written in C.)

Z.,w.

Let us close thin introductory section With an example illustrating the power of the ap-
proach. Suppose that one has two collections of goals, Gl....,Gn and Hi,.. .,Hm ad
that one wishes to solve G..... ,Gn in theory Ti under one search strategy Mi, and to
solve Hi,-.. ,Hm under another strategy M2 in theory T2, where both M2 and T2 depend
on the state of the computation resulting from the solution of G.1,. .. ,Gn, as well as on
Ti, G1,... .,Gn, and Hi.... ,Em. Let F be the problem to be solved by thin work and let
'next..strategy' be some procedure acting on theories, goals, and computation states which
will be used to compute T2 and M2. Then we could describe F as follows:

F in solvable if
GM.... &Gn in solvable in Ti using strategy Mi
and Si is the resulting computation state,
and next.strategy acting on Ti, G ... .&Go,

HI&. .. .&Hm, and Si yields T2 and M2,
and Hi... .Hm is solvable in T2 using strategy M2.

Let vi,... ,vk be the variables of G,. GH..,m.Then, in the metaProlog formalim
we will introduce below, this could be expressed by: -

all 'vi,-. .,vk,T2,M2,S1i.:
F(v 1,. ..,vk)

demo(Ti, G ... .&Go, strategy (M1) +comp (Sl1))
& nextstrategy(TI, GI... .&Gn,

HI... .&Hm, Si, T2, M2)
& demo(T2, HI.... .&Hm, strategy(M2))

M. Meta-Level ?oama

It is important to make clear our notion of meta-level programming. Briefly, one distin-
guishes between the formal language being used to conduct some (unspecified) axiomatic. .%

investigation (the object language) and the language used to carry on any discussion about0
the object language (the metalanguage). For many purposes (including those of this pa-
per), the metalanguage need only be powerful enough to discuss the combinatorial on-::.
tactic properties of the object language. The essential point is that the relations of the
metalanguage are about the syntactic entities of the object language: the variables of the
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metalanguage range over various syntactic entities of the object language. In contrast, ,
*'- the variables of the object language either have no specified range (when it is viewed as

a formally uninterpreted language) or (when the object language is treated as being in-
terpreted) range over the members (possibly extremely mathematically complex) of some "
specified set.

Properly viewed, an ordinary Prolog interpreter is already a meta-level object. The object ."

level consists of a fragment of ordinary first-order logic, a language and proof predicate.
The latter describes which formulas of the language are consequences of sets of other
formulas of the language. The meta-level of a theorem-prover is concerned with the ma-
nipulation of sets of object-level formulas in the search for a collection of formulas which
witnesses the derivability of a given goal formula from a given set of axiom formulas. The
prover proper is a meta-level object because its variables range over formulas (and other
syntactic classes) of the object level language.

Thus a Prolog interpreter really defines a relationship between sets of formulas (the pro- -
Cram database), goal formulas, and proofs, namely the relation that the proof witnesses
the deducibility of the goal formula from the program database. (Note that the standard .

Prolog interpreters return a portion of the proof to the user, namely that part of the sub-
stitution applying to the variables occurring in the goal). As commonly implemented, pure
Prolog interpreters incorporate the program database as a fixed part of the interpreter.
Thus, from a meta-level point of view, a standard Prolog interpreter provided with a fixed
program database defines a certain meta-level unary predicate applying to goal formulas.
This meta-level unary predicate holds for just those goal formulas which are deducible from
the program database by the interpreter. The fundamental operator of standard Prolog -

systems is thus a one-place operator (usually written call(...)) which invokes a search for 0

" a deduction of its argument from the implicit program database parameter. The heart of
the proposal set forth by Bowen and Kowalski was to utilize a system implementing the
full deducibily relation described above. Such a system would have metavariables which >-x.'..'
not only range over formulas and terms, but would also allow the metavariables to range
over sets of formulas (called theories). The fundamental operator of such a system is a .

three-place operator, usually written demo(Theory,Goal,Proof), which invokes a search for
a proof of the goal formula appearing as its second argument from the theory (or program) -

appearing as its 6- at argument.

- All metaProlog proram databases are the values of metaProlog variables and are set up
- either by reading them in from files or by dynamically constructing them using system
" predicates. Besides the built-in predicate demo/3, the system predicates include

add.to(TbEory, Axiom, NewTheory)

drop from(Theory, Axiom, NewTheory)

which build new theories from old ones by adding or deleting formulas. Thus for example,
one might find the body of a clause containing calls of the form
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•..add-to(T1, A, T2), demo(T2, D, P), . (.) ,-.. ..... ...
* - . . -'.,

where the theory which is the value of TI has been constructed by the earlier calls. The

effect of (*) would then be to construct a new theory T2 resulting from Ti by the addition

of the formula A as a new axiom, and then the invocation of a search for a proof of the

formula D from the theory T2. Since demo implements the proof relation, such programs
as (*) preserve the logical semantics of Prolog while providing for the dynamic construction
of new databases from old.

The correctness and completeness of an implementation of demo are expressed by what
were called resection rules by Bowen and USowaiski:

If demo(T, A, P), then A is derivable from T via proof P.

If A is derivable from T via proof P, then demo(T, A, P).- "

These rules provide the justification for the implementation of calls on demo in the abstract * "
metaProlog machine as context switches. In essence, at most times the machine behaves as .

a standard Prolog machine with the current theory (the analogue of the usual fixed program
database) indicated by a register. When a call demo(T, A, P) is encountered, the database
(theory) register is changed to point to T and a new search for a deduction of A is begun.
Thus the efficiency of standard Prolog computations is preserved and the overhead of meta-
level computation is localized in the construction of new theories from old. This approach
provides a meta-level programming methodolgy suitable for constructing other methods
of exploring the search space of derivations of A from T besides the top-down depth-first -

approach of standard Prolog. Exploitation of this approach will ultimately provide the ..

meta-level programmer with a library of search strategies which can be (programmatically) "
invoked depending on the particular problem and context.

In order for any language M to serve as a metalanguage for another language L, M must

contain names for all the appropriate syntactic entities of L. Thus, since metaProlog is to

serve ts its own metalanguage, it must contain names for all of its own syntactic entities,

just s any natural language does. To this end, constants act as names of themselves. For
non-constant items, metaProlog provides structural or non-structural names (and some-
times both), where the former ar compound terms whose structure reflects the syntactic
structure of the syntactic item they name. Facilities for manipulating names am provided,
such as methods of obtaining the name of a compound expression from names of its com- -

ponents. And methods for moving between a name and the thing it names are included,
analogous to univ (= .. ) of ordinary Prolog.

One further subtle point regarding variables must be treated at this point. The logical
interpretation of Prolog's theorem prover stipulates that variables actually occurring in the " ""
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program's clauses are in fact implicitly universally quantified object level variables, even
,*; though they are syntactica.ly indicated by metavariables. In using a clause, the interpreter

replaces these universally quantified object level variables by existentially quantified meta-
level variables. The syntactic conflation of object- and meta-level variables is acceptable
for pure Prolog deductions, but causes difficulties as soon as assert and retract are added to -
the system. If an expression (say p(X)) contains a metavariable X which is uainstantiated
at the time when assert(p(X)) is executed, there is a natural sense in which the call
ausert(p(X)) is incoherent: the formula to be added to the database is not fully specified. ,,'-'....
The Prolog approach to this problem is to once again conflate the existentially quantified A. .  ,

metavaiable X with a corresponding universaly quantified object-level variable, actually
asserting (all X)[p(X)]. This approach destroys the logical semantici of clauses in which
such cals occur. Assuming that there are no clauses for the predicate p already in the
database, the goal statements of the following two clauses should be logically equivalent:

h - X =a, aert(p(X)), p(b). (A")

h- assert(p(X)), X = a1 p(b). (A2)

But the first fails, since it only adds p(a) to the database, while the second succeeds, since
it adds (al X)[p(X)]to the database. To avoid such difficulties, the metaProlog system
requires that programmers be explicit about their intentions, clearly indicating universally
quantified object variables. Thus, to add (all X)Fp(X) ]to a theory T, one would write

add-to(Theory, allX : p(X), NewTheory).

Note that in the above expression, the symbols X, Theory, and NewTheory are metaProlog.""
. constants. There is no way a metaProlog programmer can write the name of a metaProlog

variable. He or she can only indicate the position of such variables to the metaProlog

interpreter by using the explicit universal quantifier which is represented by the symbol 0

all/l. From the syntactic point of view, al/I is just a function symbol used to form terms.
The symbol al/1 functions as a quantifier only when a term formed with it occurs as
a clause in a theory or as an argument to certain meta-level predicates. As an example,
consider the following two metaProlog clauses which achieve the same effects as the clauses

* (Al) anud (A2) above:

&Hl IX,T1,T2]:
h(Tl, T2) -

X = a & add. to(Tl, p(X), T2)
& demo(T2, p(b), .).(BI)

all T1,T21:
h(TI, T2)

add. to(Tl, all X : p(X), T2)
& demo(T2, p(b), .).(B2)
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(N.B. There is no sense in which the symbol X as it occurs in (B2) is a variable - it is a
metala'rolcg constant.) " - 1
M. The metaPolog System.

The metaProlog system is syntactically similar to the Edinburgh system. We use - for
the implication symbol (instead of :-) and use & as the conjunction operator, rather than
comma. The major difference lies in our treatment of variables and constants. For the
reasons we discussed above, we require that the implicit universal quantifiers on clauses be
made explicit. Quantification is indicated by applying the function symbol aU/I (which is
parsed as a prefix operator) to a term whose principal functor is the binary infix operator
:/2 and whose first argument is either a metaProlog constant or a List of metaProlog
constants and whose second orgument is an arbitrary metaProlog term (we call such things
"indicated terms'). Thus, for example, the Edinburgh clause

append([Head I Tail! Rt, Head I R-.TaI [):-
append(Tail, :t, R.Tail). ">:-"

could be written
all [Head, tail, Rt, r..Tail]:

append([Head I tail], Rt, [Head I r.Tail])
• ppend(tail, Rt, r.Ta)."-..--,

If the clause contains only one variable, the list brackets in the quantifier can be dropped.
(Dropping the convention of , p.ding symbols beginning with upper cue as variables
reduces the need for single quotes and the awkwardness that entails.)

The set of built-in predicates of pure Prolog exists as a subset of the metaProlog built-ins.
(Indeed, pure Prolog is a subset of mttaProlog, modulo the conventions regarding variable
naming and quantification.) As is clear from the preceding sections, the three predicates
demo, add.to, and drop. from constitute the core built-ins for manipulating theories and P S

proofs (replacing call, assert, and retract from Prolog). We have already discussed add-.to
and drop. from. We need to discuss demo in somewhat greater detail.

Calls on demo support a convenient idiom for describing implicit unions of theories. Specif-
icaly, a cal of the form

demo(Theory I &Theory2, Goal, SearchInfo)

is logically equivalent to the call

demo(Theory3, Goal, Search[nfo)

where Theory3 is the ordered union of Theoryl and Theory2 in the following sense: If
theories are regarded as the ordered list of their axioms, then Theory3 satisfies

append(Theory 1, Theory2, Theory3).
* S
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However, the system does not physicaily create Theory3, but regards the expression The-
oryl & Theory2 as a description of a virtual theory. In effect, when searching for a rule
or fact to apply to a selected subproblem of the current goal, it first searches Theory -

for a candidate, and only on failing to find such a candidate in Theoryl, it then searches
Theory2. Another usage supported is the explicit indication of the axioms of the theory.
Namely, if it is desired to search for a deduction of G from Al,. .. ,An, this is achieved by
the call

"1 demo('Al, ... ,AnI, G, Search.Info).

The two usages can be combined, as in the calls:

demo([Al,... ,Anl& Theory2, Goal, Search-Info).

demo(Theoryl & [Al,... ,Anj, Goal, SearchInfo).

We have stated earlier that the proof predicate demo is a three-place relation holding

between a Theory, a Goal, and a Search Space/Proof. We need to explain further the .'

nature and use of the third argument. It may be used for a variety of purposes. These
include extracting pieces of the proof or search space, controlling the search strategy, and
introducing or extracting annotations to the proof, such as confidence factors. We intend
this facility to be user-extensible. As a first step in this direction, search information
expressions can be combined using the infix operator +/2, as in

demo(Theory, Goal, Search.nfol + Searchnfo2). 0

Two examples of search information annotations are proof(P) and branch(B). The proof(P)
annotation causes the system to accumulate a representation of the proof branch in the
(uninstantiated) variable P, allowing the programmer to extract a successful proof for
furthur processing, such as providing explanations, etc. We see no reason to prevent the
programmer from passing a partially constructed proof cum searchspace to demo through
the use of proof(P). The branch(B) expression causes the call

demo(Theory, Goal, branch(B))

to succeed in all cues, binding the uninstantiated variable B to the left-most branch of
the search tree. Note that in the case that the left-most branch is theoreticaUy infinite,
the call wiU still succeed due to depth bound limitations of the syste.n. Backtracking into .

this call will cause B to be bound to successive branches of the search tree. As discussed .:

in detail below, the call

metOf(B, demo(T, G, branch(B)), Branches)
0
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would cause Branches to be bound to the (lazy) list of all branches of the search tree for 0

G relative to T in the order that they are explored by the system.

As part of our program of providing powerful tools for Al programming, we seek to offer the

programmer control of stream-based communication between concurrent processes, while

still holding to our program of preserving the essential elements of Prolog semantics. In the S

logic programming context, this amounts to implementing some form of and-parallelism.

The most straight-forward sort of and-parallelism to attack is simple producer - consumer ..

computations. However, since the implementation of producer - consumer relatios in

which the producer is allowed to non-determinately retonsider the stream it has produced ... "

is difficult to say the least, we restrict ourselves to determinate and-paraDel situations ...
Other approaches to parallelism in Prolog (e.g., Parlog (Clark and Gregory [198?]) or Con-

current Prolog (Shapiro [19831)) achieve this restriction by introducing committed choice.
However, while preserving the correctness of the computations, this approach loses Prolog's
deductive completeness. In contrast, we preserve both the correctness and completeness
by restricting ourselves to running in parallel only producer - consumer computations in S S

which the production of the stream is determinate. (Note that the computation of the

stream may involve non-determinate aspects; it is simply at the point of adding a new
element to the stream that the producer must act determinately. Also, consumption of the
stream may be entirely non-determinate.) The essential point appears to us that it is not

really the processes which must be forced to be determinate, but rather the communication S S

between them. Thus our approach is to force the producing process to determinately 6l
the communication buffer;, all else can be non-determinate.

We have identified two useful classes of producer - consumer computations which meet

our requirement (and the possibility of others certainly exists). The first is the (lazy) , 0
production of sets via complete exploration of a search tree (i.e., the lazy form of Prolog's

setof construct) and the production of streams by determinate tail-recursive procedures.-
These are indicated in metaProlog programs by the constructs

also lutions(Template, Goal, Stream) and
streamOf(Goal, Stream).

We see these as entirely encapsulated independent computations: their only method of

communication with parent or sibling processes is via the stream variable. Every element
of the stream must be ground. / the producing proem would have otherwise produced 0 0

a partially instantiated term as a stream element, that term must be converted to a
ground term by use of the 'naming' or 'indicating' operator discussed above in conjunction
with quantification. The same restrictions clearly must apply to the Goal argument of

both stream-of and al..jolutions. One method of implementation is that of producer . .-.

variables. The first invocation of Goal binds the variable Stream to a buffer together with 0 S

a description of Goal and its environment. Subsequent attempts to access the variable .. -

stream by the consumer causes Goal to be run through one cycle of its computation,

binding Stream to a cons cell whose first element is the item produced and whose second ... -.

element is a description of the rest of the buffer together with the current state of the
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0
computation of Goal. It is important to recognize that the producer variable does not .....

act like normal Prolog variable. Indeed, since any attempt to match a non-variable term "
against an element of the stream causes the stream element to be instantiated to a ground
term by the producer, and since the producer is determinately committed to the binding it
produces, producer variables behave for all intents and purposes as ground objects. Thus
it is perfectly permits hie for producer variables to appear in the Goal arguments of other
producer processes. This allows for two-way communication between producers. Proce-
synchronisation is achieved by requests for bindiqv passed from process to process. It is
clear that the two communicating processes mustreated simultaneously. The construct

simultaneous(Process , Process2)

achieves this effect. It can be invoked with any number of arguments.

Because we see these processes as entirely sealed computations with their own environ-
ments, it is possible, in appropriate hardware settings, to run them truly in parallel,
allowing the producing process to fill the buffer up to some pre-set limit or even run to
completion when the stream is finite. On sequential hardware, the implementation is
simple co-routining of the producer and consumer, with the additional overhead entirely
localised in the communication - there is no slow down of the basic Prolog computation.
In particular, the computational children of the Goal of one of these processes do not in-
herit the parzllel mode: they run as normal Prolog processes. It should be possible to mix
parallel and co-routined execution with no change to the program or its behavior. Finally,
while we have not attempted to do so, it seems evident that or-parallelism could be intro-

* duced with a stream operator whose top level was expanded in an or-parallel manner. One
might even introduce committed-choice versions of such an operator without disturbing
the semantics of the rest of the system. 0

IV. A PW asm mlng EumpIe.

. In this section we describe approaches to fault-detection in digital circuits based on the
ideas of Esghi [19621. For the purposes of fault-finding, the devices must be described in
some sort of predicate calculus formalism, for example andGate(G, Inl, 1n2, Out), which
expresses that G is an and-gate with input lines In1 and In2, and output line Out. Similarly
for orGate. The topological description of the circuit is contained in the theory cl, which
besides expressions such as those above, indicates the lists of input and output wires for
the circuit. The behaviors of the circuit components are described in the theory tt (for
truth tables) which contains such rules as:
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a1 Gate, Inl, InZ, Out,:
andTable(Gate, I, ,2, Out)

not(exceptional(Gate))
standardAnd(ln1, 1n2, Out).

standardAnd(high, high, high).

all 1n2:
standardAnd(low, 2, low).

all hni: t

stndardAnd(Ini, low, low).

The significance of the predicate 'exceptional* will be described later. The topology
and component behaviors can be used to predict the circuit outputs given the inputs as
described in the theory laws which defines a predicate predict(InputValueList, OutputVal- I
ueList) which calculates the output wire values by backchaining through the circuit from
the output wires back to the input wires. Normal simulation of circuit function would be 0 0
carried out by the call:

demo(cl&tt&laws, predict(InList, OutList), 4. •

The fault detection problem consists of attempting to locate the source of the fault based
on faulty input-output behavior. We will make the common simplifying assumption that
the fault is caused by a single wire of a single gate being stuck at high or low. The basic
method we will apply (due to Eaghi) attempts, given a faulty input-output pair (If, Of),
to determine a theory Tf obtained by minimal perturbation of the theory tt such that Tf
correctly describes the behavior of the faulty circuit. Examination of Tf will then reveal
the location of the fault. The basic algorithm runs as follows: -

1. From tt and (If, Of), construct a set HYP of theories H such that: .... .-

i) For all i, demo(cl & Hi & laws, predict(If, Of), ) succeeds; 0 •
ii) For some i, Hi correctly describes the faulty circuit.

2. If HYP contains only one element, halt and output HYP.
3. Otherwise, proceed as follows:-.

i) Choose distinct Hi and Hi from lY?;
ii) Construct a discriminating input Id which distinguishes Hi S

and Hi; if no such input exists for any choice of
Hi and Hj, halt and output fYP.

4. Apply Id to the faulty circuit, obtaining output Od.
S. Delete from HYP all Hi for which the following call falls: " ,

demo(cl & Hi & laws, predict(ld, Od), .. " "

6. Goto 2.

Once the set HYP is constructed in step 1, the remainder of the algorithm is basically
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.traifht.forward (though we will return to it below). The set HYP is constructed by first
maing tie Ca.lI:

setOf(B, demo(cl&tt&laws, predict(if,Of),
user.choice+branch(B)), BadBranches)

.- ' .- '._

First note that the goal of this setOf would fail without the control information since
tt describes the correct circuit, while (If, Of) is faulty for this circuit. But the control

branch(B) causes the setOf to produce the list of all branches of the search tree. The user-
choice forces these branches to be constructed according to the user choice theory uc which
describes, in the style of Pereirao, a next-goal choice procedure which delays as long as
possible selecting goals of the form

VandTable(., .)' or "orTable(., .)'. "'"".

- Next each of the failed proof branches on BadBranches is used to guide the generation of
candidate theories Hi for HYP. Essentially, tt is modified so that failing calls of the form

.andTable(G,, .)' or 'orTable(G,,.).

become successful: essentially the failing call is added to tt together with the assertion
.exceptional(G)" to produce Hi. HYP is then filtered by steps 2-6.

For any realistic circuits, the lists BadBranches and HYP will be unmanalbly large if
produced in their entirety. However, the lazy nature of etOf causes the production of Bad-
Branches to be co-routined with the action of gen(BadBranches, HYP) which generates
HYP from the elements of BadBranches. The procedure gen is defined as a tail-recursive -4-4'-
streamOf construct, so that it can in turn be co-routined with the filter process imple-
menting 2-6. The nature of the streamOf and simultaneous constructs allows the dynamic
generation of processes. This permits filter to be organized in a manner analogous to the
classic parallel implementations of the seve of Eratoothenes. FList, each Hi making it
through the current filter is recorded on a working list. Next, as each pair Hi, Hj makes
it through the filter, the diwriminating pair (Id, Od) is generated, and used to produce
a small check process check(Id, Od, H) which tests H to determine whether H correctly
predicts the i-o pair (Id, Od). This check process is attached at the current end of the
filter, much as the divisor test for the most recently generated prime is attached at the
end of the save. Also, as each pair (Id, Od) is generated, check(Id, Od, H) is applied
to each element of the current temporary scratch list, and any H on that list which fail
the test are removed. The entire process gradually terminates as each of the processes,
from the initial setOf call through last check process gradually close down (by seeing the
streams they are consuming being closed). When the last of these processes closes down,

,. the elements remaining on HYP all correctly predict the faulty i-o pair and pass all the
tests for behavior of the real faulty circuit which have been generated. If HYP contains
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more than one element, these hypothetical cannot be distinguished by i-o behavior. They
are all candidate Hi descriptions of the possible source of the fault. Finally, let us note
that these methods can be adapted to a setting of hierarchical diagnosis in the style of
Genesereth [19821.

V. Coneuston. '-4..

We have elaborated a system called metaProlog which, namrowly conceived, is an extension ---.,-.

of Prolog. The real power (meta.power) of this system lies not in the specific system -

facilities we have described, but in the programming methodology they introduce. The
example in the preceC.ding section only beings to explore the possibilities of this system.

*." Using this approach, we have begun to logicaly characterise frames and default hiermhes, .

generalised networks of theories and semantic nets, and more gener control strategies such • .

as bottom-up or breadth-first search. There is no logical requirement that the only notion ...-.-

of proof in metaProlog be the Horn clause-oriented demo predicate we have introduced.
*. We see no reason why other methods of proof canot co-exist with demo. We envisage "
"' the situation in which another method of proof would be rapidly prototyped using explicit - -

recursive calls on the present demo, and later integrated into the system at a low level -

using the same bootstrapping methods we ae adopting for the implementation of the
basic metaProlog system.

By stepping up to the full meta-level point of view wherein all components of the system
have become first-clau objects, we have entered the realm of a logical construmal of Theories,
Goals, and SearchSpaces in which it is posuible to axiomatically and programmatically -

characterize elements of the system previously regarded as parts of the implementation. 4

This allows us to introduce powerful logical approaches to the construction of artificial
* intelligence systems.
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