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o)
" An interval representation (or simply representation) R of a graph G is a collection of finite
” sets {R(v) : ve V(G)} of closed bounded intervals so that ¥ & v if and only if there exist O,
&Z R(u), Oy € R(v) with 8;; N By = @. The size of a representation is the number of intervals in the
entire collection.

3
E‘? The total interval number of G is the size of the smallest representdon of G and is denoted

I{G). This thesis studies /{G) by proving best possible upper bounds for several classes of graphs.
For some of the classes, the bounds are in terms of the number of vertices and for some of the classes,
'.:r‘ the bounds are in terms of the number of edges. The main result is that for planar graphs, [(G) <

22(G) - 3.
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;':; ‘ I. INTRODUCTION AND PRELIMINARY RESULTS
: n 1. Introduction

: ‘,:: A graph G is a set of elements V(G), called vertices and a multiset E(G) of unordered pairs of
;: vertices, called edges. If u and v are the vertices of the edge e, then this relation is denoted by u &
:;: & v, which can be read as “u is adjacent to v.”

Es Q"‘ A multiple interval representation (or simply representation) R of a graph G is a collection
? X {R(u) : u e V) of finite sets of closed bounded intervals of the real line so that u « v if and only if
' ’ f there exists 0, € R(u), 8, € R(v) with 8, N 6, # @. Unless otherwise specified, “interval” is as-
‘: J sumed to mean “interval of the real line.” We will use R to mean either the representation or the entire
" 4 collection of intervals. The size of R is the number of intervals in the entire collection and is denoted
e [Rl. The total interval number of G is the minimum size of a represention of G and is denoted

3

I(G). We will assume, without affecting /, that no two endpoints of intervals in any representaton

coincide and that no intervals corresponding to the same vertex have a non-empty intersection.

%
"-:"

SO Below we give two representations of a graph. We will use the coloring of the edges in Figure
S L1.1(a) and the coloring of the intervals in Figure L.1.1(b) in §L6.
' u x
O z w. ¥ By Y u vV w . u J_  ow
) .y .‘—.'Q‘«wm“,mz\ml—l ;. mxacwww ARSI _.-— —————
: ,(_. Figure I.1.1(a): G Figure [.1.1(b): R Figure I.1.1(c)
&
- In §1.3, we will show that /(G) 2 7 and so both representations are optimal. We will make further
~? use of this example in §L.6 and §I3.
- This thesis discusses the total interval number. In particular, we find upper bounds on / for vari-
'5-'!
q ous classes of graphs. There are two types of upper bounds. The first is in terms of the number of
o,
$ 7 veruces and the second is in terms of the number of edges.
'q -:. There are five remaining divisions of §I. In §I.2. we inroduce some standard graph theoretic
4 - terms and results that are not specifically related to the study of the total interval number. These are
)
2 ,f/f well known to most graph theorists and are included to make the thesis accessible to any mathemad-
,;: cian. In 313, we give a brief background of the total interval number. In particular, we introduce the
< I
'
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related parameter, interval number. In §1.4 and §1.5, we summarize the results that are proved in §II
and $1II and relate these results to the analogous results for the interval number. Many of the defini-
tions that are given in §1.2 are required for §1.3, §1.4, and §1.5. In §L6, we give additional terms and
results. These are less standard and more intimately related to the study of / than the terms of §1.2.

They are included in §I because they are important for almost all of §II and §II1.

2. Standard Definitions

Most of these definitions are found in {6]. For a graph G, let n(G) denote the number of vertices
and m(G) denote the number of edges of G. If e = {u,v]} is an edge, then we say that e joins u and
v, u is adjacent to v, e is incident to both u and v, and the endpoints of e are u and v. If e’ =
{u.v’}, then we say that e and e’ are incident. Furthermore, we will use {u,v} and uv interchange-
ably to denote e. If there is no edge of the form uu and no two edges have the same pair of endpoints,
then the graph is called simple. If we wish to emphasize that a graph is not necessarily simple, then
we call it a multigraph. If the edge uv is repeated, then we call uv a multiple edge. Most of the
graphs in this thesis are simple, and we consider / only for simple graphs. An isolated vertex is one
that appears in no edge. Note that isolated vertices do not affect the total interval number. In particu-
lar, the total interval number of any graph that has no edge is zero.

The trivial graph is the graph that consists of one vertex and no edge [6 p. 3]. A subgraph H of
G is a graph for which V(G) 2 V(H) and E(G) 2 E(H). A vertex-induced (or simply induced)
subgraph A of G is a subgraph for which E(H) = (e € E(G) : V(H) 2 e}, i.e., all edges of G that
have both endpoints in V(H). An independent set of vertices is a set of vertices whose induced
subgraph has no edge.

A walk is. a finite non-null sequence <uj,...,ux> of vertices such thatfor 1 <i<k- 1, uy; &
ui+1 [6 p. 12]. The ends of a walk <uj,...,ur> are u; and ug. A walk is closed if its ends are equal.
A trail is a walk <uq,...,u > for which i = j implies that {u;,ui+1) # {uj,uis1}. The set of ver-
tices of a tail <uy,....ux> is the set {u;: i =1,... k). Note that these are not necessarily distinct.
The set of edges of a trail <ujy,....ur> is the set (ujitieq:{ = 1.....5 - 1} and these are distinct.
Since we consider only simple graphs, a trail is specified equally well by its sequence of vertices or

edges, so we may consider either of these or the subgraph consisting of both to be the rail. A sub-

i ‘ SR . QU= 10 e
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trail of <ujy,...,ux> is a trail <uj,u(41,...,41+> where 1 S/and / + !’ < k. The length of a trail

<ut,...,ux>is k - 1, the number of edges in the trail.

A path is a trail <uj,...,.ux> for which all vertices are distinct. The distance in a graph G be-

: tween two vertices 4 and v is the length of the shortest path in G between « and v. A cycle is a trail
" <ug,...,ux.1> for which wug = uy.1 and, other than this, all vertices of the trail are distinct. To reflect
g - the cyclic structure, we will use (uguy...uk.1) for a cycle whose trail notation is <uy,...,u,.1>. Thus,
E ~] if u, v, and w are distinct vertices, then <u,v,w,u> means the same as (uvw). The graph that consists
b entirely of a single cycle with k edges is denoted Ci. A chord of the cycle (ugui...ug-1) is an edge
‘E:'E uup where 0<l<l'’sk-1and ll-11% 1(modp).
- A Hamiltonian cycle is a cycle that contains every vertex, and a graph is Hamiltonian if it
E contains such a cycle. A Hamiitonian path is a path that contains every vertex.
fj: If <uy,...,ux> and <ug,Upel,....Uk+> are two trails, then the concatenation of these two trails is
;‘ '. the trail <uy,...,.Ug,lk+1,- .. uk+> [6, p. 12]. If Ty and T3 are two trails, then we write T1T> to denote
: G their concatenation.
If G is a graph, V' is a subset of V(G), and E’ is a subset of £(G), then the graph G - V' is the
H graph obtained by deleting the vertices of V’ and any edge incident to any vertex of V', and G - E’ is
! the graph obtained by deleting £°. If V' = {u]}, then we referto G - {u} by G - «, and if E* = [e]},
) then we refertoto G - {e} bv G - e.
:j A graph G is connected if, for any u,v € V, there exists a path <uy,...,ux> such that u = u; and
2 v=u;. If Gis connected but G - u (G - ¢) is not connected, then u (e) is a cut-vertex (cut-

edge). Cut-edges of a connected graph are precisely those edges that are not in any cycle. A block
of a graph is a maximal induced subgraph with no cut-vertex; note that it is possible that the only block

of G is G itself.

If u is a cut-vertex. then let the vertex-sets of G - u be V1,...,V) and define the u-components [6

Wz R

& p. 119] to be the subgraphs induced by V| U {u}, Va U {u},..., and Vpu {ul).

- A graph whose vertices are pairwise adjacent is called a complete graph or a clique and, if it

S‘j has n vertices. is denoted K.

.. We say that two sets intersect if their intersection is non-empty. If {S,’};:1 is a collection of sets,
-

v OB A O O L BOOBOMION0 A O OO0 T N A OO
MO M P Ml =t AN ,‘?‘f'n i !’n X v'o.:'l"_'h' ) “3" :%‘J.".ﬁ‘. C.,‘t.;.'a‘,'l.!'ﬁ."s‘!'i.utt."&.:'o.?'oot'\.,'l.. l'!‘t':'a'»'o'f. OO R NN SN ,o'lf J' .s‘t‘..'e




2 @

P AP

X[ Sopas

-

XX2

“
b %

-

b
[} .'

> |
R

then the intersection graph that corresponds to {S,‘}‘.:1 is the graph with vertices {S,-}‘.:l and edges
given by v; &> v;if and only if §; N §j= @. If the §;'s are the vertex-sets of the blocks of the graph
G, then the resulting intersection graph is called the block graph of G [5 p. 6] and is denoted B(G).
Every block of a block graph is a complete graph [5, p. 46] and from this it follows that there is a
unique shortest path between any two vertices of a block graph.

A neighbor of a vertex u is a vertex v for which u &> v. The set of neighbors of u is denoted
N(u). The valence or degree of a vertex u is the number of edges that are incident to « and is de-
noted d(u). If necessary, we will write NG(u) or dg(u) to emphasize which graph is under considera-
ton. This notation is partcularly useful when there are subgraphs that are of interest. If all of the
vertices of a graph (or multigraph) have the same degree, then it is called regular, and if this degree is
k, then it is called k-regular.

Suppose that G is connected and « is the number of vertices that are of odd degree. Itis well
known that & is even and, if & 2 1, then the edges can be patitioned into o2 trails and no fewer. (6
p- 53]. If no vertex is of odd degree, then there is a trail that contains all of the edges and starts and
ends at the same vertex. In this case, G is called Eulerian and the trail is called an Euler Tour {6 p.
51].

A leaf is a vertex of degree one and a leaf-edge is an edge that is incident to a leaf. A bivalent
vertex is a vertex of degree two. A triangle is a set of three vertices that are pairwise adjacent.

An independent set of vertices is a set of vertices that is pairwise non-adjacent. A bipartite
graph is a graph G for which V can be partitioned into two independent sets, called its partite sets.
A complete bipartite graph is a bipartite graph with partite sets V" and V" and for which u e V’
and u’ € V" imply that u is adjacent to u’. A complete bipartite graph with partite sets that have sizes
p and q is denoted K)p 4, and X 4 is called a star with ¢ edges.

A forest is a cycle free graph and a tree is a connected forest. It is easy to see by induction that if
G is a tree with n vertices, then it has n - 1 edges. We emphasize that the definitions of leaf and leaf-
edge apply 10 any graph and not just to trees. However, it is true that any tree with at least two vertices
has at least two leaves, and that the only trees that have exac:ly two leaves are paths. A peripheral

vertex of a tree G is a leaf that is part of a maximum length path. A branchpoint is a vertex with de-
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gree at least three.

If, for any subset V' of V, where IV1 <k, G - V' is connected, then we say that G is
k-connected. If, for any subset £’ of E, where |IE1 < k, G - E’ is connected, then we say that G is
k-edge-connected. The connectivity of G, denoted x(G), is defined to be the maximum & such
that G is k-connected if G # K2, and 1 if G = K3. The edge-connectivity of G, denoted x'(G), is
the maximum k such that G is k-edge-connected. The minimum of the vertex degrees is denoted &G).
It is easy to show that k S x' < 8 [6 p. 43]. If §(G) 2 2, then we say that G is leafless. We also
define A(G) to be the degree of a vertex with maximum degree.

A graph is often drawn by associating a point in R2 with each vertex and, for each edge uv, draw-
ing a continuous curve between 4 and v. A planar graph is a graph that can be drawn in R2 in such
a way that no pair of edges intersects except at a vertex. Such a drawing is called an embedding. A
plane graph is a planar graph, together with a fixed embedding; we identify the points and curves of
the embedding with vertices and edges of the graph. A face 6f a plane graph is a2 maximal connected
region of the plane that does not intersect any edge or vertex. The boundary of any face consists of
edges and vertices and we say that these are incident to the face. We will identify a face F with the
graph induced by the edges that are incident to F. For a plane graph G, let ¢(G) be the number of
faces. Itis easy to use inducton on the number of edges of G to prove Euler’s formula, which
states that if G is connected, then n(G) - m(G) + &G) = 2. The degree of a face is the number of
edges that are incident to the face, where cut-edges are counted twice. The following examples illus-

trate this idea.

13 u

(R

v w \4 w

Figure 1.2.1(a): G Figure [.2.1(b): H

Both faces of G are of degree three. The unbounded face of H is of degree five and the bounded face

is of degree three.

For any plane graph, a cut-edge belongs to only one face and will be counted twice when comput-

ing the degree of that face. Other edges belong to two faces and will be counted once each when com-
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puting the degrees of these faces. By adding up the degrees of the faces, each edge is counted twice
and so 2m = z:;zifi, where f; is the number of faces of degree i.

The dual of a plane graph C is the graph G* defined as follows {6 p. 140]. Corresponding to
each face F of G is a vertex F* of G*. If e € E(G) is incident to two faces F and F», then there is a
corresponding edge between F{ and F¥. If e is a cut-edge, then it is only incident to one face F and
there is a corresponding edge {F* F*} € E(G*). Note that the dual might not be simple.

A planar graph having an embedding in which all of the vertices lie on a single face is called out-
erplanar. An outerplanar graph with no cut-vertex is either K7 or a cycle with some non-crossing
chords.

We subdivide an edge uv if we replace it by a new vertex w and new edges uw and wv. We
contract an edge uv by replacing u, v, and their incident edges by a new vertex w with N(w) =
Ng(u) u Ng(v) - {u,v). If G is a graph with an edge e, then we use G e ¢ to denote the graph G

with the edge ¢ contracted.

3. History

A graph G is an interval graph if it is the intersection graph of {S,} -» Where each §; is an
interval. In other words, an interval graph is simply a graph whose total interval number equals its
number of non-isolated vertices. The total interval number is one of several parameters used to gener-
alize the concept of an interval graph.

Interval graphs and multiple interval representations arise in many “natural” contexts. Writing
about genetics, Benzer [3] discussed systems of intersecting intervals in a genetics context but did not
discuss the resulting graph. Other applications for interval representations include scheduling and
avoiding interference in a cellular phone system. Hajos [14] wrote about them in a mathematical con-
text. A thorough reatment of multple interval representations, including applicadons, is given by
Roberts [21].

There are several well-known characterizations of interval graphs. one of which we will find use-
ful. An asteroidal triple is a set of three vertices x, v, and - with the following property: For any
two vertices of {x.,y.z}. there exists a path having no vertex adjacent to the remaining vertex of

{r.v.z}. A triangulated graph is one for which any cycle with at least four edges has a chord.
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7
Theorem 1.3.1 [4]. A graph is an interval graph if and only if it is triangulated and has no aster-
oidal triple.

This theorem often allows us to deduce that some graphs are not interval graphs. For example, the
graph of Figure L.1.1 has an asteroidal triple {x.y,z} and so it is not an interval graph. Since the graph
has six vertices, its total interval number must therefore be at least seven and the representations of
Figures 1.1.1 show that it is at most seven.

It is not surprising that most graphs are not interval graphs. Given a graph G, we would like to
measure how close G is to being an interval graph. Differing criteria of “close” lead to different graph
parameters. For example, the boxicity is defined as the minimum & such that G is the intersection
graph of k-dimensional real intervals. More closely related to the topic of this thesis is the interval
number, i(G) of a graph G, which is defined as the smallest number of real intervals that must be as-

signed to some vertex in order to obtain a muldple interval representation of G. This is expressed be-

low.

i(G) = min{max{IR(v}l: ve V(G)} : R is a represention of G} (I1.3.1)
Note the fundamental relationship / < ni, to which we shall return shortly.

The history of the interval number is much longer than that of the total interval number. The first
results on i appeared in 1979, when Trotter and Harary (15] computed i for trees and complete bipartite
graphs. Although the notion of total interval number is suggested in several papers (e.g. (13]) on in-
terval number, the first paper dealing with total interval number, by Andreae and Aigner [2], will not
appear undl 1988. In the past decade, many results on i that are analogous to the results of this thesis

on [ have been established. In §I.4 and §I.5, we shall state what our results are and compare them

with these results for i.

4. The Total Interval Number and the Number of Vertices
In §11. we will compare / to n for various classes of graphs. For each class. we will find an upper
bound on / in terms of n and give examples to show that the bound is best possible. We have not vet

given definitons for all of these clases. A Husimi tree is a graph for which every block is a clique.

A cactus is a graph for which every edge is in at most one cycle and it is dense if every edge is in
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f..\ : exactly one cvcle.

:f“.f

' The classes and bounds are given in Table 1.4.1. For comparison, we include the analogous re-
"

' l‘“) sults for ni in the same table.

)

S:‘ max(1(G) : max{n(G)i(G) :
i Class n(G)=n)}  Reference n(G) = n) Reference
v) -

g Trees 22 (2], $IL1 2n (15]

h

o : 11n - 4

R Dense Cactd —_ §I1.2 2n (23]

A

;',.0_ Cactd I_Snii_ll §II.27 2n (23]

" Husimi trees L §I1.3 2n §L4

i Outerplanar Graphs 27 SIL4* 2n (23]

ar Gra .
;:"'. P p —_
‘-. Planar Graphs 2a -3 §I1.5% 3n [23]
9

Simple Graphs it §IL6* A2 (oL

>~

o 1ln -3

f-;;) *—"g— is conjectured in [2].

,,;-_..J : :

; *Triangle-free case proved, general case conjectured. and extremal examples given in [2].

R Table 1.4.1

2\ Our results for trees are more extensive than for other classes where we just obtain the upper
N bound. We obtain an algorithm for constructing an optimal representation and we also characterize
':',::i, those trees for which the contraction of any edge reduces the total interval number by two.

b

.:",":.:.: It is of interest to note that the only classes of graphs for which no extremal graph is triangle-free
wh "

a" are dense cacti and Husimi trees; for the other classes, it is sufficient to consider triangle-free graphs to
:Eé:" show that the results are best possible.

L) |‘| |

E' : The sequence of classes in Table 1.4.1 is, except for Husimi trees, an ascending sequence of

A o

-_ classes. For any n, there are additional graphs to consider at each step of the sequence and so the

, ‘ bounds grow with the classes. Husimi trees is included as another way of generalizing trees.

oo

\é Griggs [10] proved the bound on i for simple graphs and used KLn /2] ns2] 10 show that it is best
i possible. Andreae [1] showed uniqueness for this extremal graph when the number of vertces is di-
‘;" visible by four, and later showed that this graph is also the unique tiangle-free exoremal graph when
,‘?::2. considering / [2]. He also obtained bounds for i in terms of the maximum size ® of a clique in mian-
R}

o gulated graphs. Comparing / with ® has not yet been tried and it may be a rich topic. The reason for
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- this is that ® limits the number of intervals that can overlap at a certain point and so it limits the number
i)
- ‘ of edges that a fixed number of intervals can represent. Using this idea, it is not hard to derive the
" bound /2 -2 =+ /2 and this would be a good place to start an investigation.

. w -

The cacti and outerplanar results for i are corollaries of the proof for planar graphs. We complete

e e w -
1 4
Y

a the comments on Table 1.4.1 by showing that if G is a Husimi tree, then i(G) < 2.

Theorem 1.4.1. If Gis a Husimi tree, then there is a representation R that assigns at most two

intervals to each cut-vertex and exactly one interval to each other vertex.

5y

Proof. Letybe the number of cut-vertices; we use induction on y. If y=0, then G is a clique
8

A 3 et
MM

and we can assign {0,1] to each vertex.

If v2 1, then pick a cut-vertex u such that, except for at most one u-component of G, all

&L

- A

u-components of G are cliques. If all u-components are cliques, then choose one of the u-components
':;T and call it G*. Otherwise, let G’ be the u-component that is not a clique. Note that 4 is not a cut-vertex

of G'. Let G” be the union of rest of the u-components An example is given below.
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b
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e Fi [.4.2: Gray areas represeent cliques.
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By induction, G’ has a representation R’ that assigns only one vertex to u. We can then represent

- et e e
=

:,); the edges that are not in G’ by using one interval for for each vertex in G”. Using the above example
Y to demonstrate this, the representation for G” would be as below.
*) .
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X Figure 1.4.3
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We close $1.4 with a discussion of / in terms of n for random graphs, which were introduced by

2
L]

oo Erdos and Rényi {8] and are treated in the book by Palmer [21]. We define a probability model for

-
T,
L

n
each n by considering all 2(2) labeiled graphs on n vertices to be equally likelv. If the probability in
L}
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::. this model that a graph has property P approaches one as » approaches infinity, then we say that
’ almost all graphs have property P. Let lg(n) denote loga(n).
}_ We know that almost all graphs satisfy ZT;%J sai £ ZT;(z_n)' The lower bound was obtained by
*: Erdds and West [9], and Scheinerman {25] recently proved the upper bound. Both bounds hold for /
': as well. The upper bound holds because / < ni. We follow the method of the Erdds-West proof on i
;‘. to establish the lower bound.
::;; Suppose that the vertex-set s (u; : i = 1,...,n} and that we have a representation with p intervals.
z—' Let &),....§2p be the ascending sequence of endpoints of the intervals. Fori=1,...,2p, let v; be the
f vertex corresponding to the interval with an endpoint at §;. Call <vy,...v2,> the derived sequence of
1 : vertices. Because no vertex has two intervals that intersect each other, the odd occurrences of any .
vertex in the derived sequence of vertices correspond to left endpoints and the even occurrences corre-
EE spond to right endpoints of intervals. Because the sizes of the intersections of intervals is immaterial,
, :; two representations with the same derived sequence of vertices represent the same graph. Since there
" o are at most n=? different derived sequences of vertices, we can represent oniy n2 graphs.
S; Hence, to represent all graphs with at least n vertices, we need to choose p such that n2f 2 2(2) )
i n
'/:g Taking the logarithm base 2 of both sides, we getp 2 ’_71'52(7) and we denote the right side as h(n). If
:}' qin) < h(n) - € for some fixed small €, then the proportion of graphs with n vertices that we can
. . represent with g(n) intervals is at most n-2€ and this approaches zero as n gets large. Hence the
.- probability of a graph having total interval number of g(n) or less goes to zero and we now have
" shown the first inequality.
:.‘ Although 7 < ni, and Table I.4.1 suggests that, for sparse graphs, / and ni are far apart, we be- ,‘
; lieve that the difference is small for most graphs. In particular, we believe that, for any € > 0, P(I/ -
' nil > ng) = 0 as n — ==. This means that, for almost all graphs, there exists a minimum representa-
: tion that assigns about / intervals to each vertex.
L, 5. The Total Interval Number and the Number of Edges
: In $II, we will compare / with m for various classes of graphs. For some of these classes. we will
give upper bounds on / in terms of m and give examples to show that the bound is best possible. For
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Vo g other classes, we can only give examples to show how big / can be for fixed m. The classes and
o
W bounds are given in Table L.5.1.
R t max{Il(G) :
:,'0' Class m(G)=m) Reference
N o
oA & Arbitrary m 1
)\! :_\. Sm + 2
nly Connected Y §1L.1
I-W |}
_ 1 .
Y 5; 2 2. connected 93-{— §I1.2
R - 3 2 k. for k 2 3, connected ¥ §11.2
l‘.“
B A 2-connected = $11.3
oo JE 3-connected * §I1.3
:i::. ﬁ: 4-connected m+ 1 §I1.3
,:‘é'.' B 2-edge-connected L%"l §I1.3
) -
e '& 3-edge-connected ¥ §I1.3
® 4-edge-connected m+ 1 [2] §1.6
ALV "Constructions show only that / can be greater than (1 + €)m for some € > 0.
e Table 1.5.1
R < The nature of this collection of classes is quite different from the collection of Table 1.4.1. For
r. q
‘ ‘; ' fixed n, the larger classes of Table 1.4.1 allow more edges. When we fix the number of edges, we
Yol
NN again want a chain of classes to study. but it is not clear what classes yield interesting bounds. The
it
.&;‘- 4 impetus for such a study came from considering a question raised by Andreae and Aigner [2}; what is
;: 3 the maximum total interval number for a connected graph with m edges? We will obtain a solution
AT«
e " that, in terms of Table 1.4.1, seems quite surprising: If m = 2(mod 4), then the unique connected
Ay A
Yy
‘ y graph with a maximum total interval number is a tree.
+ L
RN Foratree G, 8(G) =x(G) = x'(G) = 1. Therefore we studied the effects of the parameters J, K.
‘3 and K. By raising these parameters, we forbid the extremal example and thus obtain other interesting
)
®- ‘ classes to study. Raising these parameters also decreases the classes and so it is not surprising that the
T upper bound for //m decreases. Our results are not quite as complete for these classes as they are for
> e
w:;::r . the classes of Table 1.4.1. For some values of these parameters. we simply use examples to obtain a
\ )
P{ >~
YY) lower bound on the upper bound and we do not claim that these examples are extremal.
s
‘-;. G The bound / < m - | for 4-edge-connected graphs was noted by Andreae and Aigner [2]. by cit-
Kt 3 "“
:"::.. * ing a resuit of Jaeger [17]. In §L.5. we will show that, for triangle-free graphs. /({G) 2 m(G) - !
¢
.'.:;‘ ) .
o:. 3
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and, for any complete bipartite graph G, /(G) = m{G) + 1. Thus, x'(G) 2 3 is the last interesting
question for connectivity classes. The examples referred to in Table I.5.1 show that there is no such
trivial bound for other connectivity classes.

It is more difficult to compare bounds on / with bounds on i when the bounds are in terms of m
than when they are in terms of n. Spinrad, Vijayan, and West [9] proved that i(G) £ 1 + Vm(G)/2,
with equality for triangle-free regular graphs. This result is hard to relate to /. However comparison is
easier when we focus on a local vertex property. Griggs and West [15] proved that i(G) <
[ éﬁ;_—ﬂ‘l and we can compare ni to [ here. Suppose that & is odd and that G is k-regular so that
n = 2m/k). The above bound then gives us ni < nk/2 + n/2 =m + n/2. We will soon see that / <

m + n/2 and so these bounds agree for this class of graphs.

6. Fundamental Ideas for the Study of the Total Interval Number

An edge uv is twice subdivided if it is subdivided and then one of the new edges is subdivided.
A penultimate vertex of a tree is one for which all but at most one of its neighbors is a leaf (if all of
its neighbors are leaves, then it is the central vertex of a star).

If F is a face and no vertex incident to F is a cut-vertex, then the edges that are incident to F are the
edges of a cycle. If this is the case, then we will refer to the face by citing the cvcle. If we have such a
face F = (ug,....uk.1), then we say that it is a k-gon and that u; and u; are [ steps apart on F where [
is the distance on F between u; and ;. Note that a plane graph with no cut-vertex is one that is either a
single edge or one for which every face is a cycle. Note that the vertces of any 3-gon form a triangle
but that some triangles are not the vertex-sets of any 3-gon.

If R is a set of intervals, a is the leftmost endpoint of any interval in R, and B is the rightmost
endpoint of any interval in R, then let F(R) = [a,B]. We say that R is contiguous if F(R) = (6 :
8 e R}. A maximal contiguous subset of R(V) is called a component of R. If 8 € R(u), then we
say that 0 is a u-interval. If 8 is a u-interval and some subinterval 8’ of O intersects no other member
of R(V), then both 8 and u are called displayed and 8’ is called a displaved part of 8. Note that
we can place a small interval within 8’ without changing the fact that 8 is displaved.

We order the intervals in R(V) by left endpoints. If the left endpoint of 8y is to the left of 82, then
we say that 8y is earlier than 8-, An interval that overlaps & - 1 earlier intervals is called a
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depth-k interval. The earliest interval is necessarily a depth-1 interval. Note that since the intervals
of representations have distinct endpoints, there is a gap of positive length between the left endpoint of
a depth-1 interval and all earlier intervals. We say that a depth-k interval introduces the & - 1 edges
that are accounted for by its intersecting earlier intervals. For example, if a u-interval intersects an ear-
lier v-interval and an earlier w-interval, then we say that the u-interval introduces both uv and uw. If
no edge is introduced more than once, then the representation is irredundant. A component of a
representation R is a maximal real interval, every point of which is in some member of R.

Let ri{R) be the number of depth-£ intervals in R. Note that R has exactly 7| components. In an
irredundant represention, each depth-k interval corresponds to k - 1 edges and so m =
Z:,( k - 1)rg. Therefore small irredundant representations will have relatively few intervals of
small depth and relatively many intervals of large depth.

It is nevertheless often useful to restrict ourselves to representions with no intervals of large depth.
A depth-k representation is a representation with no interval of depth more than k. For a graph G,
let I1{G) be the minimum size of a depth-k represention of G.

We are most often interested in depth-2 representations and the corresponding parameter /2. Note
that, for oriangle-free graphs, all representations are depth-2 and therefore /2 = /.

Depth-2 representations are intimately connected with trail covers. A trail visits (ends at) a ver-
tex u if u is in (an end of) the trail. A trail covers an edge if it visits one of the ends. A trail cover
of G is a collection of edge-disjoint mrails in such a way that every edge of G is covered by at least one
zail. The minimum number of trails in a trail cover of G is called the trail cover number 1(G). A
al cover with a minimum number of trails is called optimal. If there exists a trail 7 such that (T} is
a wail cover, then we call T a covering trail. A trail cover T visits (ends at) u if some member of

T visits (ends at) u.

Suppose that T = <uy,...,ux> is a rail. We define the canonical representation of T to be the
depth-2 represention that has £ intervals, each of which is displayed. with lett endpotnts in the order
uy.....,. We iliusmate this in Figure [.6.1. Note that the representation is contiguous.

If R) and R: are representations for the graphs G and H. then the representation Ry W R20of G o

H s defined by shifung the intervals of R so that no member of R intersects anv member of R+, and
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then taking the union of Rj and R».

u?

u! uz « v o U
Figure 1.6.1

Since the theme of the thesis is to minimize the number of intervals, the operati~n of making one
interval from two is quite desirable. If R is a representation, 01, 82 € R(u), 01 = [(«,B], 82 = [7.3],
a < B <y< 3, and [B,y] intersects no member of R(V), then we can replace 6; and 6> by [«,5] to

obrtain a smaller representation. We call this operation a splice.

Theorem 1.6.1. For any graph G, I2(G) = m(G) + t(G). Furthermore, any minimum depth-2
represention has exactly r components.

Proof. We first show that I3(G) S m(G) + #(G). Suppose that T is an optimal trail covering
so that IT1=r. Let R’ be the union of the canonical representations of the trails in 7. Then for each
edge uv that is not in any T € T, at least one of its vertices, say u, is in some T € T and there is a
displayed u-interval 6 in R". Place a small v-interval inside a displayed part of 6. Having done this
for all such edges, call the resulting representation R.

Every interval in R introduces exactly one edge except for the intervals corresponding to the first
vertices of each trail. Hence /2(G) S RRI=4G)+m(G).

The reverse inequality is essentally proved by reversing the above construction. Suppose that R is
an optimal depth-2 represention. Because R is depth-2, any non-empty intersection of intervals can be
climinated by shortening or removing intervals without affecting other intersections. Hence we may
assume that R is irredundant.

Remove the intervals that are not displayed and consider the set R’ of remaining intervals. Because
R is irredundant, R’ is a union of canonical representations for a set T of edge-disjoint trails with each
depth-1 interval corresponding to the first vertex of a member of . Hence (71 =r(R’) = ¢r|(R).

Each edge in G is either an edge of some member of T or it is introduced by a non-displaved inter-
val placed within the displayed part of an interval corresponding to some vertex of a member of T.
Hence Tis a trail cover.

We stll must show that "7 = /2¢G) - m(G ). Since R is opnmal. this is the same as showing that

T =Rl -mG,. Since R is irredundant. there is a one-to-one correspondence between depth-2 inter-
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W vals and edges. Hence m(G) =ra(R)=IRl-ri(R)=1R|- 7.4

Consider the graph G and representation R of Figure I.1.1. The optmal trail cover is marked on G
with a thick gray line (¢ = 1) and the corresponding R’ of the above proof is marked with thick gray

vy
o,

intervals. As a more abstract example, we can partition the edges into n/2 trails (fewer unless every

vertex is of odd degree), and so I < m + n/2; this result was of interest in §L.5.

=4

The previous lemma shows that m + ¢ is an upper bound on / since m + ¢ =/ 2 /. Since the pa-

= rameter ¢ is conceptually easy to deal with, finding bounds on ¢ is very important when studying /. We
t & now present a few fundamental tools for doing this.
,% The edge-set (vertex-set) of a trail cover is defined to be the union of the edge-sets (vertex-
- sets) of the constituent trails. An edge e (vertex u) is vital if, for every trail cover T with edge-set S1
}‘2 (vertex-set T1), there is a set 57 of edges (T2 of vertices) that contains e (contains «) such that there
exists a trail cover T~ with edge-set 51 U §2 (vertex-set T U T3) and IT1 = IT0, .
When trying to find an optimal trail cover, one can start by assuming that all vital edges are in the

ﬁ edge-set, and then augment or merge trails.

Lemma L.6.2.

(1) The neighbor of a leaf is vital.
’ 1) If u > vand dfu) =d(v) =2, then uv is vital.

(i) Ifue>v,we v, and u = w, then we may subdivide vw and delete uv without de-
creasing the ail cover number.

?-; (iv) U Nv)={uw),uzrw xe u,yeo v,andve (xy}, then we may subdivide ux and
- wy and remove {uv,vw} without decreasing the trail cover number.

b Proof. The first two assertions are trivial.

For (iii), let G’ be the graph that results from applying (iii) to G and let the new edges be ux and
';' xw. Note that, for any trail cover of G, there is a corresponding trail cover of G that is obtained by
x contracting the edge wx and replacing any subtrail <u.t,w> by <u,w>.
To cover the edge ux in G, some zail T must visit either w or x. If T visits u, then we can use the
?’ corresponding Tail cover in G. If T visits x. then the trail contains either the edge ux or xw. In either
case, we may assume that 7 continues to w or t, and so we may assume that both « and w are visited.
- aeretore the corresponding trail cover in G contains « and so e is covered.
-
.
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For (iv), we simply repeat the argument of (iii) one more time. &

We call the operation of Lemma 1.6.2(iii) a snip and the operation of Lemma 1.6.2(iv) a double
snip.

We now use the characterization of /3 that is given in Theorem 1.6.1 to show that computing / is
NP-complete. It is well-known [11] that the problem of determining if there exists a Hamiltonian path
for riangle-free 3-regular planar graphs is NP-complete. Given such a graph G, replace each vertex as

shown in Figure [.6.2, and call the resulting graph K(G).

Figure 1.6.2

Lemma 1.6.3. A 3-regular planar graph G has a Hamiltonian path if and only if «#K(G)) = 1.
Proof. Let H be the seven-vertex replacement of each vertex in G. If (K(G)) =1, then let T be
a covering trail. Because of the edges within each copy of H, T must enter each copy of H, and be-
cause there are only three edges from a copy of /4 to the rest of the graph, T can pass through H at
most once. During this visit of H, it is possible for T to visit every vertex of A and so we may assume
that T visits each copy of H exactly once. Contracting the edges of T that are within each copy of H
gives a path through G that visits each vertex exactly once and we have a Hamiltonian path of G.
Conversely. if G has a Hamiltonian path, then, instead of passing through a vertex u of G, we can

have the path touch each vertex of the copyv of H that replaced u and get a covering path for K(G). a

Theorem [.6.4. The decision problem 7/ £ m + | is NP-complete.

Proof.  We restrict our class of graphs to the class that arises from replacing every vertex of a
3-regular planar graph with 4 as in Lemma [.6.3. Such graphs are triangle-fres and therefore, for this ’
class./ <m = 11f and only if there is a covenng trail. By Lemma 1.6.3, a fast algorithm for testing
coverability by one a1l would yield a fast algorithm for deciding whether a 3-regular planar graph has

1 Hamultonian path. Hence we have reduced the problem of deciding whether a 3-regular planar graph

has a2 Hamiltoman path to deciding whether / < m ~ 1.
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The decision problem/ < m + 1 is in NP since, given a graph G, a non-deterministic algorithm
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can guess a set of m¢G) + 1 intervals and verify in polynomial time that this is an interval representa-

donof G.&
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'3!.'-3 II. THE TOTAL INTERVAL NUMBER AND THE NUMBER OF VERTICES
G 1. Trees
o .\:
;:-_C: The first main result of §II.1 is a proof of the correctness of an algorithm for finding a minimum
‘e
) rail cover. Since trees are triangle-free, / = /2 =m + t and so this algorithm yields an algorithm for
Tty
R computing the total interval number of wees. The second main result of $11.1 is a characterization of
-Q|
o' .
.:::: ’ wees for which the contraction of any edge decreases the trail cover number. Note that the contraction
L
’ of any edge of any tree does not increase the trail cover number. We will use this characterization to
oy give a new proof of the upper bound on the total interval number of trees and to show that if n =
o
“ & 3(mod 4), then there is a unique extremal graph.
'
“ We now start on the first main result. Suppose that G is a tree and thatu € V(G). A vertex u is
N
el partially useful (useful) if some optimal trail cover ends at u (contains <u>). Note that a useful
y o vertex is a partally useful vertex. Relative to a vertex u, we need to define two kinds of optimal trail
‘_.«- covers. The definitdons of these kinds depend on whether « is useful, partially useful but not useful,
\ ~hI
:. or not partially usetul. A trail cover is partially u-optimal or u-optimal as described in the
KX
;:,‘:3; following table:
?’;' then a trail cover T'is a then a trail cover Tis a
oA If uis: partially u-optimal trail cover if T is: u-optimal trail cover if T is:
b usefruf opuamal and ends at w. opumal and contains <u>.
Ay partially useful optimal and ends at u. optimal and ends at u.
-' not pardallv useful optimal. optimal.
2t Table II.1.1
?Eﬁ
1ode Note that a u-opumal mrail cover is a partially u-optimal trail cover.
Ld
'.' , Fix G and some u € V(G). The algorithm that we describe will find a u-optimal trail cover of G.
:: Let N(u) = {uy,....ug). Foreach i.let G; be the component of G - u that contains u;. Let:
e
:}: Z={(T1.....T7g) : T: is a partially wu;-optimal trail cover of G;) (I1.1.H)
[} ’,&‘."
P If T ts a quil cover of G. then deleting u and all edges incident to 4 from each T € T that contains
»
b
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x results in a set 77 of trails for which each mail is withinone G;. Let 3= (T : V(G 2 VIT)). It

s easv o see that TJis a trail coverof G, Let A7) =¢T1,....70.
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Theorem II.1.1. If Tis u-optimal, then A(T) e C.

Proof. Let(7i,...,7¢) = A(T). If the theorem is false, then we may assume that 7] is nota
partially uj-optimal trail cover of Gj. We now construct a trail cover U that will demonstrate that T is
not u-optimal. Let Ty = {T e T:V(Gy)2 V(T)} and let U{ be a pardally u)-optimal trail cover of
Gi.

Case i. No member of T contains uu and hence 7] = 7). Suppose that [Tl < IT)l. Let U’ =
T-T1+ Ji. Then U1 <17 and, since T is optimal, I’ is not a trail cover of G. But the only
possible edge that is not covered by U’ is uuj. This implies that 7 does not visit u. But then U =
U {<u>} is a wail cover of G, IU1 <171, and U ends at u, so T cannot be u-optimal.

Hence we may assume that I}l = iTl. Since T is not partially u;-optimal, 71 does not end at u;
and Ji does end at uj. Let U’ be the member of U1 that ends at «;. Extend U’ to « and call the
resulting trail U. Let U1 =Uj-U'+U andlet U'=T-Ty + Uy. If T ends at u, then the
corresponding trail can be concatenated with U to obtain a smaller trail cover IJ. If T does not end at

u. then let 7= U, In each case U/ demonstrates that =" is not y-optimal. This completes Case i.

Case ii.  There exists T € T such that E(T) 3 {uu1}. Let T’ be the trail induced by the vertices of
T that are not in V(G1). Note that T ends at u. Since T ends at 4y and is not partially u«j-optmal.
i< Tl LetU'= T-T1-T+ T + J{. Note that IJ1=1T1and U’ is a trail cover of G.

[t T ends at u, then T"= < u>, T does not contain < u>, and U’ does contain < u>. Hence T
1s not y-opamal.

It T does not end at u, then there are two cases. If Tends at u. then, in J’, concatenate the mem-
ber other than T" of T that ends at u with T" and call the resulting trail cover . Because of the con-
catenation, !J1 < 177, If T does not end at u. then let IV = U’ Since T’ ends at 4. J ends at u.

In either case, the existence of J proves that T is not partially u-optimal and hence is not

u-optimal. &
We now demonstrate that both types of optimality are necessary by giving two examples. In
Figure [I.1.2ta), we have a graph with a parrially u-optimal trail cover (indicated with thick gray lines).

If we remove u from the trail cover. then we are left with a non-optimal trail cover for Gy. In Figure
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e
?{3 [1.1.2(b), we have a u-optimal trail cover, but if we remove «, then the resulting trail cover of G7 is
ol
.'; 4 . . .
1 only partially u>-optimal and not u-optimal.
N Uy u U2
'.)-_ A f—p—y
TS

- _.:;_ \ x B &
b~ »:": / \ / \
D) ®

Wt Figure II.1.2(a) Figure I1.1.2(b)

- -h.."

e If we adopt the convention that the wail <u> has two ends at &, then the optimality, 4-optmality,
e,
o and partial u-optimality of a trail cover are all determined by the number of and placement of the trail
A}

K> -2, cover's ends. For example, if two trails intersect at some vertex u, then which continuations from u

n",:_.

"'3_.‘; are assigned to which trails is irrelevant for our purposes. Henceforth, we will ignore these distinc-
™~
dons and simply consider them to be the same trail cover.

v - . . . . . .

S The algorithm for finding a u-optimal trail cover is essentially the reverse of the removal of « from
- a u-optimal trail cover. It takes as input a member of C and gives as output a trail cover of G.

b"‘-'

e .

Algorithm IL1.2. Suppose that (T,....75)e C. Ifd=0(.e. G=K)), then T= Q.
g pp

.":s" . . .

- Otherwise, use the following algorithm.

: ".'.

’.(‘}‘ - v oy
B a. Let Ty =T1 VU ... U T4
P b. Extend any member of U1 that ends at any 4; to u. Call the resulting set of trails /.
i~ c. If U2 does not vist u (i.e., there were no extensions in step b.) and some 7} does not visit
'{;: u;, then let J3 = U3 U <u>. Otherwise, let U3 = U.

‘::;:‘, d If two members of /3 end at 4, then concatenate them to form one trail. Repeat this until at
- most one trail ends at u. Call the resulting set of trails T.

‘N

LJ . I . : : — .
§on It is clear that if T is u-optimal, then applying Algorithm I1.1.2 to A(T) produces T, a u-optimal
5

5 -- . .

1 trail cover of G. Our next goal is to show that we can start with any member of Z and apply
ialy
51,659 Algorithm II.1.2 to obtain a u-optimal trail cover. The following lemma is phrased in terms of u and G

[

o but its first application is for each u;,G; combination.
7 .~_:f

I Lemma II.1.3. Suppose that some partially u-optimal trail cover T of G visits but does not end at
t":-'_

- u. Then every partially u-optimal trail cover of G visits but does not end at u.
o Proof.  Suppose that Tand T are partally y-optimal trail covers of G, with T visiting but not
-

- . P Ce . . —~— . .

N ending at «. and T not visiting u. Since T does not end at u, no optimal Tail cover ends at « and the
@4
K,
tf‘{_.’, o P L <yt atas -..-a_'?_r;) IR O R 4‘.- NN Wy "‘ﬁ ) W) A W -4.‘-1; '.’\n_ -
' R b ,r' .. \‘0‘”\5‘ 4 ' —.l 'l 4%, (r"" 'o, _, VTP COTTRN o 2l A '.0 “l,l'! ":“ - '! ' d"'t“‘&"c"'«“é‘.":“.n LN 'u. N N .-I'. ) -.I.
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X,
’ :I 33'.'j set of optimal trail covers is the same as the set of partally u-optimal trail covers which is the same a

- the set of u-optimal trail covers. Hence =" and T~ are u-optimal.

F -

¢ apply Theorem II.1.1 to each of T and . The number of trails produced by removing u from

o

:: n T7is 177 since T does not visit u. But the number of trails produced by removing u from T is at least
, < 171 + 1 since T visits but does not end at u. This is impossible since Theorem I1.1.1 shows that these
N . ’.g numbers must be the same. 4

E o Theorem IL.1.4. If(Ty,....,T74) € T, then applying Algorithm I1.1.2 to (T7,...,=2) produces a
': ;: u-optimal wail cover of G.

\s.: E Proof. Let T bea u-optimal trail cover and (77,....74) = A(T"). By Theorem II.1.1, each
:::: T/ is a partially u;-optimal trail cover of G; and so 7 ends at ; if and only if T; does. If, for at least
:~ ;} one i, 7 ends at u;, then the result is straightforward.

':_5 If no T; ends at u;, then the only way that the theorem can fail is if, for some £, 7} visits u; and 7}
:\:: < does not. (If this happens, then Algorithm 1I.1.2 applied to (T7,...,74) will produce the trail < u> in
" N step ¢). But this is impossible by Lemma I1.1.3.a

ﬁ: It is clear that K1) = 0 and so the only partially u-optimal trail cover of K is the empty set of

= ails. Furthermore, Algorithm II.1.2 produces a u-optmal wail cover of G and therefore a partially

u-optimal trail cover. We now have the following recursive algorithm for finding a u-optimal wrail

L
—

’ —

23 cover T of G.

b2 R

Ay 0 Algorithm 1L.1.5,

i

: s a. If G =K, then T = @. Otherwise, go to step b.

:r”‘ - b. a) For each i, apply this algorithm to G; to obtain a u;-optimal tail cover 7 of G,.
‘.'-: b) Apply Algorithm II.1.2 to (T,....Tg)to get T.
N

.- * By modifying Algorithm [I.1.5 slightly. we obtain an algorithm for computing the trail cover
& . , . - : : .
Mo T number without storing the Fails. For a tree G and a vertex u, let T be a u-optimal trail cover of G.
-~
- Detine .G as follows:

e - ..

. V.G = 0if T does not visit u.

[ e e
s . WG =1 if T visits u but does not end at .
YA ur.Gy =2 if T ends at u but does not contain <u>.

) ’ B

K vi.Gr o= 2t T ocontains <u>.

4 )
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By Lemma [1.1.3 and the definitions of u-optimal, the value of v(u,G) is independent of the choice
of the u-optimal trail cover 7. Define d, {uy,....uq}, and {Gy,...,Gg} as before. Forj=0, 1, 2, and
3, let oj(u.G) = 1{i : v(w;,Gi) = j}! and B(G) = «3(G) + ay(G). Algorithm II.1.6 computes #(G),
vu,G), op(u,G),..., a3(u,G), and B(u,G).

Algorithm IL1.6.

a. If G =K\, then v(u,G) = ¢(G) = 0. Otherwise, go to step b.
b. a) Fori=1,...,d, apply this algorithm to (u;,G;) to obtain #G;) and

v(u;,G;). Use these to compute ag(u,G),..., a3(u,G), and B(u,G).
b) Letr'=3% «Gi)-LBuGi2l

¢) If B(u,G)=0and at3(u,G) <d, then £(G) =1 + ¢’ and v(u,G) = 4.
d) If B(u,G) =0 and ax(u,G) =d, then ¢(G) = t' and v(u,G) = 1.

e) If B(u,G)> 0 and B is even, then #(G) =t’ and v(u,G) = 2.

f) If B(u,G) is odd, then #(G) = ¢’ and v(u,G) = 3.

We now concentrate on the second main result of §I1.1. Recall that the result of contracting e <
E(G) is denoted G e e. An edge e is contractible if #(G e ¢) = (/G) and a tree is critical if it has
no contractible edge. A critical tree G is k-critical if #(G) = k. Let Gy be the set of k-critical trees.

The next lemma is a collection of simple observations.
Lemma II.1.7.

(i) If e is incident to a penultimate vertex and e is not a leaf-edge, then e is vital.
(i1) If an optimal trail cover of a ree G contains intersecting trails <uy,.. -Up,U,...>and
<....u\Wi,...,wg>, then some optimal trail cover contains the trail

<ui,. ..,up,u,wl,...,wq>. o
Note that Lemma II.1.7(i1) is not necessarily true of graphs with cycles.

Lemma II.1.8. Each non-leaf neighbor of a penultimate vertex is not useful.
Proof.  Letube a penultimate vertex in a tree and let v be its non-leaf neighbor. Suppose that
T is a trail cover that contains <v>. The leaf edges that are incident to u must be covered and this re-

quires another trail 7. Replacing T and <v> by <u,v> produces a trail cover that is smaller than T and

so T is not optimal. &

Lemma I[I.1.9. Inacridcal tree, every penuluimate vertex « is bivaient.

Proof. Let G be atree containing a penultimate vertex «. and let G’ be the tree obtained from G
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by contracting all but one leaf-edge incident to u. Note that « is still a penultimate vertex in G’ and so
there is an optimal trail cover 7 of G’ that ends at «. Then T is also a trail cover of G. Hence G is not
critical. &

We now consider 2-colored graphs, i.e., graphs in which each vertex is assigned black or white.
If G is 2-colored. then we define an augmentation of G at « to be a larger 2-colored graph obtained
as follows. Add a path <wjy,...,ws> on five new vertices, making w3 white and wy, w2, wy, and ws
black. Then if u is black, add an edge uws and if u is white, idendfy 4 with w3. These operations are

iilustrated in Figures I1.1.3(a) and Figure I1.1.3(b).

u {
L I3 w WA w <
- R o .—1 e t'i ‘.VD
“’1 Wwa W‘; W_i WS -— U = wo
r——ee Ot g 2

Figure II1.1.3(a) Figure I1.1.3(b)

We say that H is an augmentation of G if, for some u € V(G), H is the augmentation of G at u.

Let =1 = (K2}, where both vertices are black. Let = be the augmentations of the members of Zy.1.

)

We list &1, .72, and &3 below.

- 8- 8

Figure II.1.4

Let = be the union of the =;’s.

Theorem II.1.10. If G e 7 then o/G) = k, each white ventex of G is partiaily useful but not
userul. and each black vertex of G is useful.

Proof. We use induction on . Fork = 1. the claim is clear. Suppose that £ > 1 and that G is
an augmentation of G’ & T atu. We will apply Algorithm I[.1.6 to G at w3,

Suppose that u 1s black. The w3 has three neighbors and the subtrees of algorithm I1.1.6 are G-
rooted at i and (wo copies of K. Bv the induc:ion hvpothesis, i is usetul in G'. and so viu.G’) = 3,
Since Liwaws s = Urwravna = 3owe obtin UwsGo = 2 (ie.. wy is partially useful) and
aGr= =G frem Alconthm 0l A

Tosnow thatuny tlack vemex or s serulin (G0 note that, by iaduction. vis aserul in G’ ang

—

O therz oIy Lran Joves T nan o ontns <> Let T= T L f<iwswtawve> ). Since
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Gr=uG’)+1=17,7 is optimal.

We can use a similar argument to show that the white vertices of G’ are partially useful in G and no
edge of G’ is contractible. We now show that each white vertex v of G’ is not useful. Suppose that =
is a trail cover that contains <v>. Let T" be the subset of trails of 7 that intersect G'; IT12 ¢(G') + 1
since <v> is not useful in G'. Moreover, since there is only one edge from G’ to the rest of the graph,
at most one member of T can visit { wy,w?2,w3,wg,ws} and it must visit 4. Such a trail cannot cover
both wiw2 and wiws and hence T must contain a trail that does not intersect G°. Hence (772 «(G’) +
2 and is therefore not optamal.

We must show that no new edge is contractible and that each new black vertex is useful. To show
that wy or wa is useful, or that wiw2 or waw3 is not contractible, extend the ws-optimal mrail cover of
waws and the u-optimal mail cover of G' in Algorithm II.1.6. A similar argument works to show that
w 3 and ws are useful, and that wyw2 and wow3 are not contractible. To show that uws is not con-
Tactible. let T be an optimal trail cover of G that contains <u>. Now contract uw3 and replace <u>
bv <w~,u.ws>; we now have a trail cover of G that has «G’) rails and so uws is not contractible.

Now suppose that u is white in G'. From Algorithm 11.1.6, we obtain B(u,.G) = B(u.G’j + 2 and
sodG)=uG’)+ 1 and vu,G)=2. Moreover, since u is white in G°, V(1,G’) = 2 and there is an
optimal ail cover T~ of G’ that contains a trail 7 that ends at u. Extending T to w= or wy shows that
w3 and wy are useful and that uws and wiws are not contractible. A similar argument shows that wy
and w2 are useful, and that uw> and wiw? are not contmractible. By starting with the trail <w-,uovy>,
we see that every vertex in G’ is partially useful. black vertices of G’ are useful, and edges of G’ are
not contractible. We must still show that no white vertex of G’ is useful.

We already know that u is not useful. Let v be a white vertex of G’ that is not equal to «. Let " be
a trail cover of G’ that contains <v>. Let T be the set of trails of 7 that intersect G* . 1712« G') + |
since <v> is not useful in G'. If there are two members of 7" that visit {wq,w2,w4q,ws}, then one
must visit w2 and one must visit wy. We can redistribute the edges of the two trails so that one or
them is <w2.i.wi> and the other does not visit {wi.w=,wi.ws): call this trail cover 7. Note that
J - {<wau.wy>) contains <v> and visits u. Hence it is a trail cover of G’ and. since v is not usetul

in G- {ewaiewe>H2uG'y = 1and T2 4G') + 2 and is therefore not optimal. &
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Theorem II.1.11. Forany k2 |, Gy = .

Proof. From the previous theorem, we only need to show that &y 2 Gx. We use induction
on k. [t is easy to verify the theorem for k = 1. Assume that the theorem holds for 1,....k - 1.

Suppose that G € Gy, u) and u are the leaves on a path of maximum length, and that u; & vy.
Since vy is penultimate, it is bivalent and we can define w by N(vy) = {u],w}. Let w’ be the neigh-
bor of w besides v that is on the path between u) and . If dfw) = 2, then the edge ujv; is con-
racuble. If w is adjacent to any leaf, then that leaf edge is contractible. Hence d(w) 2 3 and, except
for w', every neighbor of w is penultimate (or else u would have a vertex at greater distance that uy).

Since all penulumate vertices in any critical ree are bivalent, we have the situation illustrated below.

9

Figure I1.1.5

Let  =dlw) - 1; the vertex w has the § penultimate and bivalent neighbors vy,...,vz.

If § =2, then, by two applications of Lemma II.1.7(i) and one application of Lemma II.1.7(ii),
we have one trail T that covers the edges that are incident to w, vy, and va. Let G’ be the graph ob-
ained by deleting these edges from G. Since G is k-critical. G* must be (& - 1)-critical and. by
induction, G’ € H.q.

We now show that w’is black. Suppose that w’ is white. Contract the edge ww’in G. The trail
T now contains the vertex w'. By Theorem II.1.10, w’ is not useful in G’ and therefore the fact that T
visits w’ does not affect the number of trails that are still required to cover E(G’). Hence «(G
ww') = 1 +1(G’) = k, contradicting the criticality of G. Hence w’ is black in G’ and G is an aug-

mentation of G" at w’,

v
)
3

If J is odd. then v applications of Lemma II.1.7(1), followed by
r

[1.1.7(ii) resuits in == trails and an additional trail T that we may assume is viw. The construction

applicagons of Lemma

of Lemma [I.1.7 does not forbid extending T to w’. Theretore, the edge ww’ is contractible,

contradicting the crincality of G. Hence J cannot be odd.
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If  is even and at least four, then let G' = G - {vy,v2}. By two applications of Lemma II.1.7(i)

and one application of Lemma 11.1.7(ii), we cbtain one trail <vy,w,v2> that covers £(G) - E(G').

Repeating this procedure, we may assume that there is another trail <v3,w,v4>, making the fact that w

has already been visited meaningless. Hence we can safely ignore the fact that the first trail visits w

and so G’ € 5¢.1 and, by induction, G’ € Xy.). By Lemma II.1.8, w is not useful in G'. By in-

duction, w must be white and so G is an augmentation of G’ at w. A

e Coroitary II.1.12. For any ree G with at least three vertices, /(G) i—ﬂ(—?——s’- .

-3

v. Furthermore, for any n, there exists a wee G, such that /(G ,) = |- 5'3 Jand so the result is best

possible.

P, Proof. LetfiG)=n(G)- 4G)+ 1. It suffices to show that f2 O for all trees. Suppose that

G is such that fis minimized. If the congraction of an edge does not decrease the trail cover number,

then it decreases f and so we may assume that no edge is contractible. Hence G € Gy = X for some

k. But then G is created by a sequence of augmentations from K. Each augmentation from a black

vertex increases ¢ by one, n by five. and hence f by one. Each augmentation from a white vertex in-

creases ¢ by one, n by four, and hence does not atfect . To minimize f, we therefore use as few aug-

mentadons from black vertces as possible.

The first augmentation must come from a black vertex because inidally, there are no white vertices.

However the remaining augmentations can come from the one white vertex. This construction yields

graphs with minimum values of f and this value is zero. This establishes the lower bound on f and the

sequence of graphs constructed this way shows that it is best possible. s

Let = be the set of graphs indicated in Figure I1.1.6. The above proof shows that members of >

A are the only graphs for which f = 0 and therefore, the only graphs for which / ,224_3. (note that

there are no “floor” marks in this statement).

ax

/

]
kY

Figure I[I.1.6
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s 2. Cacti and Dense Cacti
) )
\ ﬂ We will define a finite set = of exceptional cacu. The goal of §I1.2 is to prove Theorem I1.2.1.
L ;
N s . , - 18n(G) -
AN Theorem I1.2.1. If G is a cactus that is not in Z, then /(G) <———T— Furthermore, for
N any n, there exists a cactus G, with n vertices for which /(G,) = L-lﬁ'%——_l and so the result is
v 8 best possible.
2
N Let fiG) = 18n(G) - 13[(G) - 12. Theorem [1.2.1 can be restated in the following more conve-
e
:: e nient form.
4
A
~ < Theorem II.2.1'. If Gisacactusthatis notin E, then f(G)2 0. Furthermore, for any n, there
. 7
\ exists a cactus G, with n vertices for which 0 € ffGp) < 13, and so the result is best possible.
LY N
' + After defining Z, we will construct an infinite sequence of cacti that shows that Theorem I1.2.1" is
COERN best possible. We will then prove Theorem I1.2.1' for triangle-free cacti and then use this result to
ALY
Fh
‘ N prove Theorem I1.2.1" for arbitrary cacti.
N
A
{ ﬁ We first define an infinite set =’ of graphs, a finite subset of which will be the exceptional subset
AT =. The set =’ is built by starting with the two small graphs K> and Cy; f(K2) = -2 and f{C4) = -5.
N
. T eqq ¢
Y. We then define two enlargement procedures. Each procedure will increase f but by such a small
! amount that we can apply the procedures a few times and still have a negative value of f.
,',J! The enlargement procedures depend on the graphs I'; and I'> shown below.
[ p p grap
- u
Cal 7,
A
s V2 g g2 u
3N
". o V3 vawy w1 EI
SO Figure I1.2.1 I r>
N .:J.
¢ Fori=1.2, an i-operation on a graph G is the identification of u € V(T;) with some ve
SO
,,: by VrG). Exampies of these operations appear below.
v,
YN
_. [ \Y
,,
Y
K"y N,
Y
O @ .
' “ Figure 11.2.2 G FuG)
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The vertices and edges added to the graph during the operatons are called new and the rest of the

vertices and edges are called old.

Lemma IL.2.2. If H is any graph obtained by a 1-operation from a graph G, then ffH) = fiG) + 1.
Proof. Since niH)=n(G) + 8, it is easy to verify that the lemma is true if and only if I(H) =
[tG) + 11. The representation below shows that /(")) < 11 and so, by representing G and I'y sepa-

ratelv, we see that I(H) S I(G) + 11.

TR

1'% V4 wi w1a wi

e,

Vi Ve 131 wWo wy

Figure 11.2.3

We must show that /(H) 2 [(G) + 11. Suppose that R is a represention of H. Partition the inter-
vals of R into R{UR> where Ry = U(R(u) :uis old} and R> = U{R(u): u is new). Since the
graph induced by the new vertices is triangle-free, we can use Lemma 1.6.1 to show that (R21 2 10 and
that, if IRal = 10, then R1 is contiguous. Since R is a represention of G, IRyl 2 /(G). Therefore,

Rl = IRl + !R21 2 I{G) + 10 and equality exists only if IR}l = /{G) and R> is contiguous.

Hence we may assume that R is contiguous and that it corresponds to a single covering trail of the
graph that is induced by the new vertices. Any such trail must contain the edge vywj and this edge can
e neither the first nor the last edge of the mail. Therefore, any interval of R that intersects both a
vi-interval and a wy-interval must either intersect no other interval or at least one other member of R-.

In partic;xlar, if some u-interval @ intersects both a vi-interval and a wi-interval then. since u is not
adjacent to any other new vertex, 8 must not intersect any other interval. But then the removal of 8
leaves a represention of G. Hence IR{I2/(G)+ 1 and RIZI(G) + 11.

If two different u-intervals 81 and 8- intersect members of R, then. since R is contiguous, re-
moving R2 and splicing 81 to 62 results in a representation of G with IR(I-1 intervals. Hence 'Ryl 2

IGy+1and RI21(G)+ 11.a

Lemma II1.2.3. If H is any graph obtained by a 2-operation from a graph G. then fiH) 2 (G, + 2. '
Proof. Since n/H)=n(G) + 3, it is easy to verify that the lemma is rue if and onlv if I(H; >
[(G)+ 4. Suppose that R is a represention of H. We partidon R as in Lemma I1.2.2 and use the sam¢ &

arguments to show that /(H) < I[{G) - 3 implies that IR{l = IrG) and 'RA = 3.
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If it is possible to remove the intervals of R2 and rearrange the components of R} so that there are
two u-intervais 81 and 6. with no other interval between them, then 8; and 8 can be spliced together
to obtain a representon of G that has tewer intervals than R|. Butthen R, > /(G)and Rt 2 /(G +
4. Since w is the only old vertex with an interval that intersects any member of R7, only one u-interval
intersects any member of R>. But there must be at least five intervals involved in the representation of
the new edges. Since there is only one u interval involved, we must have K2l 24 and R 2 [(G) +
4 a

Let =7 be the set of graphs that can be built from {K2,C4) by a sequence of 1-operations and

2-operations.

Lemma I[I.2.4. Forany Ge Z" . 0G) = 1.
Proof.  Neither operation changes the number of vertices that are of odd degree. Since K has
only two vertices of odd degree and C4 has none, each member of = has at most two vertces of odd

degree and all of the edges can be raversed with a single trail. &

ForGe Z'and i e (1.2}, let k¢ G) be the number of i-operations applied to a member of
{K>2.Ci) o obtain G. We say that G has base K2 (Cy) if G is the result of 1-operations and

2-oceranons applied to K> (Cy).

Corollary IL2.5. Suppose that G € =°. If G has base B. then fiIG) = fiB) + k1(G) + 2k~ G).
Proof. Lemmas I1.2.2 and I1.2.3 show that |-operations and 2-operations increase the total
interval number by at least eleven and four. Lemma I0.2.4 shows that, when restricted to members of

=", they increase it by at most eleven and four. The rest is simple arithmetic. &

We detine = to be those members of =’ that are obtained by one of the following.

L. Start with K> and apply up to one l-operation.
1. Start with Ca and apply one of the fotlowing.

1. Two 2-operations

5. One 2-operation and up to two |-operations
0. 2r0 2-operations and up to four !-operations

.y

creciselv those mempbers ot =7 for which r'< 9. Atlter esiablishing the best possible assertion of

Theorem {121, we will show that the members of = are the onlyv caca for which £ < 0.
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( To prove that Theorem [1.2.1" is best possible. we need to construct a sequence of cacti for which
; we can find a suitably large lower bound. This bound will be established by actually computing / for
? d the members of the sequence.
‘, There are two types of subgraphs that are particularly useful when computing the total interval
' number of triangle-free cact. A cluster of a non-Eulerian subgraph is a maximal induced subgraph C
S that satisfies the following:
:::: L. nCj;z22
R . C is Eulenan. . -
. 1. Exactly one component of G - E(C) is non-trivial.
. E It C is a cluster, then let D(C) be the non-trivial component of G - £(C). There is exactly one
::‘ vertex of V/C) that is also in D(C) and this vertex is called the base of the cluster. If C is a cluster
.,: with base u and VNp(c)u) = (v}, then C is called an appendage and v is called the neighbor of C.
.’ Examples appear in Figures [1.2.4(a) and I1.2.4(b).
::

.

S

A\

- -

LISV

-

Figure [1.2.4(a) Figure I1.2.4(b)
a For each graph, the circled verdces induce clusters with base u. In Figure I1.2.4(b), this cluster is an
a) > p & ’
A" appendage with neighbor v. Note that v is also the base of a (different) cluster and its neighbor is w.
>
(& . - .
- The next lemma and its corollary are the keys to computing ¢ for cacti.
>
.' Lemma [1.2.6. There exists an opumal trail cover T such that. for each cluster C, there exists
_.':‘ T = T such that some submrail of T¢ is an Euler tour of C.
‘-_\.
) Proof. Let T be amail cover. Fix some cluster C and let u be the base of C. Because some

2dge or C s not incident to «. some trail must contain a vertex of C other than u. If such a trail con-

>1 1 VY

- wins . then it is an entering trail and if it does not contain u, then it is an interior trail.
>,
2’ - . . . . . . .
" It "here is no entening trail. then remove all interior trails and add a mail that is an Euler tour. Now
v
®
. "
\!

i
|

=
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v suppose that there is at least one entering trail. We first remove all intenor trails. Each entering trail T
o a contains at least one subtrail that starts and ends at 4 and whose edge-set is a subset of £/C). We re-
move the edges of these submails from the edge-set of T, leaving us with a set of edges of a trail 7" that
contains « and covers all of the edges outside of C that T does Repeat this for every entering trail.

Now select some mail U that contains «. If U = <u>, then replace U with an Euler tour of C.

Ortherwise. there is a subtrail <u.v> of U. Replace this by an Euler tour of C concatenated with

<UV>.

a4

For each case, the number of trails does not increase. Repeat this procedure for each cluster. s

fE ™~

i . Corollary I1.2.7. LetG beacactus. Then there is an optimal trail cover = such that, for each ap-
3 pendage C with base u and neighbor v, some T¢ € T has an end at 4. In particular, a lower bound on
> ¢ 15 half of the number of appendages.

; E Proof. Consider the optimal trail cover of Lemma I1.2.6. Because there is only one edge inci-
. dent 10 u and not in ZYC ), both ends of the trail cannot be outside of V(C).a

In Figure I1.2.5, there are thirteen graphs {G; : i = 1,....13}; one for each congruence class
modulo thirteen.

Let G’ be the graph in Figure I1.2.6.

.
r
o
- Figure [1.2.6: G’
s ;:
We will construct graphs by identifying a vertex of G; with copies of G’. The next lemma shows that
- each copy of G’ increases the ail cover number by one.
= Lemma I1.2.8. Let G, be the graph obtained by identifving the vertex u of r copies of G’ with the
L]
h verex u ot G, Letg, =r+1ifi=l13andr+2ifi=13 ThenuG,,) =1,
o~ R . . .
: Proof. Toestablish G, ) < ;. note that the number of vertices that are of odd degree shows
| that we can paritnton ‘and not merely cover) the edges into 1, » Tails.
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Let G =G;,. We will show that /fG) 2 t;, We will do this by finding a subset U of V for which
{12 21 .-1 and there exists some optimal trail cover T that ends at each member of UU. Note that each
vertex labelled v or vj in Figure I1.2.5 is the base of an appendage. Therefore, by Corollary I1.2.6, we
may put each of these vertices into U. We will be done if we can find 2r more vertices to include in U
and this will be accomplished if we can find two vertices from each copy of G'in G.

Fix some copy of G" and assume that it is labelled as in Figure I1.2.6. Consider the appendage
with base u’. By Corollaryv I1.2.6. we have an end at the base of this appendage. [f this copv of G’
does not have another 2nd. then this trail must ¢ yntinue out of the appendage to v and. by symmery,
we mayv assume that it continues o w.

After removing the edges traversed so far. v is a leaf of the remaining graph. If some trail contains

v. then it has an end at v, providing the second end within G*. If not. then the edge w'v is not in anv

>



trail and can be removed when searching for an optimal trail cover. The left 4-cycle is then an ap-
d pendage and we may assume that some trail has an end at w’ since no trail can traverse the edge v’

b twice. Hence each copy of G’ contains two ends of trails. #

The reader may wonder why attaching copies of G to the triangle-free members of £ does not in-
crease the trail cover number. The reasoning of the above argument breaks down since each trangle-
free member of Z has no appendage and hence the first copy of G’ does not increase the trail cover

number. Subsequent copies do increase ¢ by one.

Corollary 11.2.9. Theorem I1.2.1" is best possible.
Proof. By using the fact that #(G;) = 1if i# 13 and 2 if i = 13, we have 0 <f(G;) < 13.

R

From the previous theorem, we have ¢; r+1 = t; » + 1. Itis clear that m(G; r41) = m(G;,) + 17 and,

TI .‘LJ

since G, is triangle-free, that I{G; ,+1) = 18 + I(G; ;). Moreover it is immediate that n(G,; ,,1) =

~ n(G; )+ 13. From these facts and the definition of f, we have f(G; r+1) =f(Gir). &

We now present the proof of the upper bound for triangle-free graphs. We seek to find triangle-
D free cacti with minimum values of f and show that, for cacti not in Z, this minimum is zero.
If G is a cactus and some operation on G results in a cactus H, then we define An = n(G) - n(H),
Am=m(G)-m(H), At=1t(G) - t(H), Al = I(G) - I(H), and Af = f(G) - f(H). Note that Af =
l 18An-13A7 and A/ = Am + Ar. These difference operators allow us to focus on hypothetical
graphs with negative values of f. It may seem more natural to define the difference operaters to be the

- negative of what they are; the choice of sign is made to make the most critical part of the proof more

1@ Vo

= natural.
Y

o

A tiangle-free cactus G is abnormal if G € E and f(G) <0. Our goal is to prove that there are

5 4

v,

WY no abnormal cacti. The following lemma follows immediately from the definitions and simple arith-
] .

9.1 metic.

Lemma 11.2.10 Suppose that G is an abnormal graph and H is the result of some operation on G.

L’L“\{k. “ K

If H is a non-exceptional triangle-free cactus and Af 2 0, then H is abnormal.

By Lemma [1.2.10. it is sufficient to establish the following three properties for an operation in or-

der to prove that it preserves abnonmality. We continue to use the convention that G is the graph being
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\: operated on and # is the result of the operation.
4
\ If G is abnormal. then A is a triangle-free cactus. (I.2.1)
o If He Z, then G is normal. (I1.2.2) A
A AF2 0 (IL2.3)

- s

For the operations that we will discuss, (II.2.1) will always be easy to establish because the

-
.
P

operarion will be defined to ensure it. A tedious but simple inspection will be necessary to establish

s
[P
o

(I1.2.2). For this, it i1s convenient to have the triangle-free members of = listed explicitly. There are

~

only six and they are shown below.

b F &

- Figure 11.2.7

{"f

We will work out the details for establishing (I1.2.2) only for the first operation.
- The key step in establishing (I1.2.3) is to bound Ar by some appropriate constant. We do this by
ransforming an optimal trail cover for A into a trail cover for G. It is because of rhis transformation

:hat we define the difference operators as we do.

There are two abnormality preserving operations A and A’ (defined in Lemmas [1.2.11 and
A [I1.2.12) that increase the number of vertices. We will assume that these operations are performed until
D .
P X " * - - . ~
2 thev cannot be performed any more. Itis easy to see that this process terminates in a finite number of
steps.
° p
v, . . . - .
There are then ten operadons {4/ :{ = 1,...,10}, each of which preserves abnormality and y
- decraases the number of vertices. But each of these operations could resuit in a graph on which 4 or
o . . :
® A" could operate. Therefore we define ten “‘companion’ operations {A;: i =1,...,10}, each of
2
¥ -7 which preserves abnormality, decreases the number of vertices, and leaves a graph on which neither 4
7 and A’ can operate.
. ., ‘ )
p :J . . -~
[ ) Lemma I1.2.11. Ifu<s Vand Nrw = [v}, then let A(G) be the graph obtained from G by
.
- adding two new vertices «y and 2 and the edges {wuy.uqus.uav). Then A preserves abnormality. N
N ~
.
®
'~
-"_.
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Proof. Itisclear that A satisfies (I1.2.1).

For (I1.2.3), let H = A(G). Let a be the minimum size of trail covers of G - u that visit v. Itis
easy to see that nG) = 1fH) = a. Hence Ar=0and A/ = Am. Since Am = -3 and An = -2, we
have 18An - 13A7 = 3 > 0 and (I1.2.3) is established.

For (11.2.2), note that if H is exceptional, then, by inspection, we have the candidates for the pairs

{G.H) that are listed below.

.

.
{V
Vv V! v v
D“ 1 m 1 M 1 m ] )
H Vv 1% Va Vv 0] V VA Y 1

Figure 11.2.8
For each candidate for G that is not exceptional, it is easy to verify that #/G) =1 and fiG) 2 0. s

Lemmas [1.2.12 through I1.2.20 similar to Lemma II1.2.11. For each operation, we must verify
properties (11.2.1) and (II.2.2). These are always straightforward so the proofs wiil concentrate on the

verification of (I11.2.3).

Lemma II.2.12. If uand v are bivalent and adjacent to each other, and no 4-cycle contains uv,
then let H = A(G) be the graph obtained from G by contracting uv to form the new vertex «’, and
adding vertices {v',vi,v2} and edges {u'v’, v'vi,viva,vau’}. Then A’ preserves abnormality.

Proof. The restriction concerning a 4-cycle ensures that H is triangle-free. It is easy to verify
(I1.2.1) and (I1.2.2) (the same candidates for A exist as for Lemma I1.2.11). For (I1.2.3), note that A¢
is again zero since uv is vital by Lemma 1.6.2(ii). Then the same calculations used in Lemma I1.2.11
apply. a

Henccrorth, we restrict ourseives to triangle-free cacti tor which neither 4 nor A’ applies. Let ~
be the ubnormal mangie-tree cacd for which neither A nor 4" applies.

In the proofs ot the following lemmas. we will assume that A is the result of the operation being

A P .- S A AU I .r'.:-‘ "4"‘ §
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discussed.

Lemma IL2.13. If C isacluster with base «, and C is not a 4-cycle, then let A{(G) be the graph
obtained from G by removing V(C) - u and making u the base of a new cluster that is a 4-cycle.
Then A{ preserves abnormality.

Proof. Properdes (I1.2.1) and (I1.2.2) are easy to verify.

For (11.2.3), Lemma I1.2.2 guarantees that Az = 0 and therefore that A/ = Am. Now let oy be the
number of k-cvcles in C. By hypothesis, (og - 1) + Z:.—.sak 2 1.

Since each k-cycle in C increases the number of vertices by & - 1 and the number of edges by «,

we have the following identties.

nC)= 25 (k-Dag+1land m(C)= D~ kog
An=7 (k-1jok-3and Am= D 7 kag-4
Af= 18An- 13A1 = 2ay4 - 2+ 3o Skay - 18

Note that each summand in the final formula of Af is nonnegative. If oy < 1, then z;sak 2 1,
Z::SSkak -18a427,and Af2 5. If @y 22, then 204 - 22 2 and Af 2 2. Either way, (I1.2.3)

1s established. 4

Lemma II.2.14. If Cy is an appendage with neighbor u and C is a cluster with base u, then let
A3(G) be the graph obtained from G by removing V(C2) - (u}. Then A3 preserves abnormality.
Proof. Properties (I1.2.1) and (I1.2.2) are easy to verify.
From Lemma I1.2.13, both C and C7 are 4-cvcles. By Lemma I1.2.2 and corollary 11.2.3,

ttH)=1t(G). Hence At=0,Am =4, Al=4, An=3, and 18An- 13A7=2> 0.4

Lemma II.2.15. If C| and C; are appendages that have a common neighbor u«, then let A3(G) be
the graph obtained from G by removing V(C) u V(C2) Then Aj preserves abnormaliry.

Proof. Properties (I1.2.1) and (I1.2.2) are easy to verify.

Suppose that we have an opumal trail cover for 4. By using one additional trail to cover the edges
or the appendages and the edges from u« to the appendages, we see that Az < 1 (Note thatif He =,

then Ar = 0). Since Am = 10, we have A/ £ 11. Since An= 8. we have 18An - 13A/> (1848} -

t12xily=1>0.a
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~.:\ :‘\'. For the next two lemmas, properues (I1.2.1) and (I1.2.2) are easy to verify and property (II.2.5)
Y:" g follows directly trom calculatons and the easily venified fact that Ar = 0.

.. ) Lemma II1.2.16. Suppose that C is a cluster with base u1, and some w2 € Niuy)- ViC) is biva-
Si lent. Let Ay(G)=G - (V(C)-uy). Then A4 preserves abnormality. &

3:,- f_., Lemma II.2.17. Suppose that C; and C3 are clusters with bases uy and u3, 4} < w2, and each
> i u; has exactly two neighbors that are not in its cluster. Let A§(G) =G - (V(C3) - {u2}). Then A
E:“!. ;’. preserves abnormality. &

; 'R The next three lemmas deal with appendages. The operations and proofs are almost identical to
'c'f - each other. Therefore we summarize the operations in Figure 11.2.9. Lemmas I1.2.18, I1.2.19, and
h ‘,; [1.2.20 deal with the configurations shown in Figures [1.2.9(a), [1.2.9(b), and I1.2.9(c). For all three

configuradons, the corresponding operation results in Figure I1.2.9(d).

X ’ - Wl wa Wl wo wl wa
.',.- . Vl VA Vl VA Vl Vo
= W p———aW2
4 4 4 2
/ ‘t-_

Figure [1.2.9(a) Figure 11.2.9(b) Figure [1.2.9(c) A§4. A7, or 4§ — Figure [1.2.9(d)
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S We write out the proof only for Lemma I1.2.18. The other proof's are similar.

-"ﬂ .
‘ ~ ‘.' . 3 -

-EZ‘ ~ Lemma I1.2.18. Suppose that C is an appendage with base u and neighbor vy, ¥(vy) =
ot B

.' . {up,wy,va}, Nfva) = {vi,wa)} and vyva is not part of a 4-cycle or a 5-cycle. Let 44(G)= G -
,. 2 (ViCyu {vy,va}) U {wiwa]. Then A4 preserves abnormality.

Y

5

Proof. Properties (I1.2.1) and (I1.2.2) are easy to verify. Note that the restriction concerning

R

Y 4-cycles and S-cycles included ensure that Ag(G) contains no triangles. For (I1.2.3), arithmetic shows
R

o that it is sufficient to establish that Az < 1.
o Let ¢ = wiw~ and let T be an optmal mail cover of H. If e € £(G) or if no trail in T contains e,

*
' 2 e
. C then use T and add a wrail that covers £(C) and the path <wy,vy,va, wa> thus showing that Ae < 1. If
-’ N . . —— - .

,’,f A some T € T contains e. then adjust = by the following:

A
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i. Remove e, resulting in two trails 7y and T2, where T ends at w) and T3 ends at w».
ii. Extend T to vy, then uy, and then an Euler tour of C.
1il. Extend T3 to va.

We have replaced T by {T,7-}, again establishing that Ar< 1.4

For Lemmas I1.2.19 and 11.2.20, it is sufficient to show that Az < 1 in order to establish (I1.2.3).
The adjustment of T in the last part of the proof can easily be modified to do this. We state these lem-

mas without additional proof.

Lemma II.2.19. Suppose that C is an appendage with base u; and neighbor vy, C’is a cluster
with base vs, v| & v, N(vy) = {uy,w1,v2}, N(va2) - V(C’) = {vi,w3}, and vyvs is not part of a
d-cycle ora S-cycle. Let A7(G) =G - (V(C) L V(C’)) U {wiw3]}. Then A7 preserves

abnormality. &

Lemma II.2.20. Suppose C is a an appendage with base u) and neighbor vy, C’ is an appendage
with base u» and neighbor va, vi & v, N(vy) = {u,wy,v2}, N(va) - V(C') = {vy,wa}, and viva
is not part of a 4-cvcle ora S-cycle. Let A8(G) =G - (V(C) w V(C’) U {vi,v2}) U {wiwa).

Then Ag preserves abnormality. &

Foreach of i = 1,....8, let A; be defined as A/ followed by applications of A or A’ until neither A
nor A’ applies. We state the following lemma without proof. At this point, the only assertion that
needs verification is that the number of vertices decreases. For each of the eight cases, this is easy to
veritv.

Lemma II.2.21. Foreachi=1....8,if Ge C and G is abnormal. then A;(G) € T, Ai(G) is

abnormal, and nfA(G) < n(G).a

Now assume that G is such that none of {4;:i=1,...,3] applies. We will define two more op-
erations Ag and A | that also preserve abnormality and decrease the number of vertices. and then
modifyv them as we modified Ay,....4g to form Ag and A .

Recall that every block 1s either a single edge or a cycle. We call these types of blocks edge-
blocks and cycle-blocks respectively. If there is at most one edge-block, then we can traverse the
enure graph with just one trail and. by the argument of Lemma I1.2.13. G is normal. Hence we may

assume that there are at least two edge-blocks.
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Lemma II.2.22.  There exists a cycle © in G and a vertex w in @ such that © has the following

property:

With the exception of w, every vertex u of © satsfies exactly one of the following conditions.
(1) diu)=2
(i) d(u) = 3 and u is the neighbor of an appendage. (11.2.4)

(i)  dru) =4 and u is the base of a cluster that is not G.

Furthermore, some vertex of © other than w is the neighbor of an appendage.

Proof. LetB(G) be the block graph of G. Let ¢ and e’ be maximally distant edge-blocks.
Since e is not part of any cycle, it is a cut-edge. Let X and Y be the two components of G - e, where
e'€ E(Y). Defineuandvbye=uv,ue X,and ve Y. Let X’ be the block that is on the mini-
mum path in B(G) between e and e’ and is adjacent to e.

If X has an edge-block e”, then e’ and e” are a greater distance from each other in B(G) than e and
e’ are, a contradiction. Hence, X is Eulerian. Since G has no leaves, n(X) 2 2 and it follows that X
is a cluster and therefore a 4-cycle.

[f there is an edge-block e” = u'v, where u’ # u, then e” is also a maximum distance from e’ and
so the same argument shows that 4’ is the base of a 4-cycle cluster. But then we have a configuration
on which A3 could act. Therefore the only blocks that contain v are e, X', and perhaps some other
cvcle-blocks. Leat A be the graph induced by the union of the vertices of these other cycle-blocks.

If H contains a vertex x of some edge-block g, and x = v, then g is farther from e’ than ¢, a con-

>
N tradiction. Theretfore # is a cluster and we have a configuration on which A> can act, a conzradiction.
’3-_ Therefore, the only blocks that contain v are ¢ and X".
-' If X’ is an edge-block, then we have a configuration on which Ag can act. Therefore, X'is a cy-
;:E cle-block. Let © be the cvcle corresponding to the block X*. Let X” be the block that is not ¢, is on
the minimum path between e and e’. and shares a vertex w with X’ (See Figure I1.2.10).
X Now suppose that ve V(©)and y # w. Let Z be the union of the y-components that do not
f’.': contain £/@®). If Z contains exactly one cut-edge g’, then. either v satisties (ii) or else g’ is farther
.
from ¢"than e is. a contradiction. If Z contains more than one cut-edge. then either we have a
configuration on which A2 can act or we again have an edge-block that is farther from e’ than ¢ is.
- Hence Z is Eulenan and is therefore a cluster, and (iii) holds for v. &
l)
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"o‘:j:v We continue with the assumption that none of 4, A’, Ay,....Ag applies. We now define the two
r

" operations Ag and A 0, one of which will apply.
:',I:: Define © and w as in Lemma I1.2.22. Let 4 and u? be members of © that are not equal to w. We
A

‘*ﬁ:; summarize the restrictions on the pair (41,u2) from Lemmas [I.2.11 to I1.2.20 in the following table.
«.- Operadon that inhibits Resulting

1Sy .

( ’_:Q u) u? this configuration possible lengths for ©

o

e bivalent bivalent A’ 4

A bivalent base of cluster A4 None
! bivalent neighbor of appendage A6 4,5

fros base of cluster ~ base of cluster As None

3o base of cluster neighbor of appendage A7 4,5
.- neighbor of
-t appendage neighbor of appendage Ag 4.5

Lol

" Table I1.2.11

:':' Let A§(G) =G - (VIG")-{w}). Define Ajp(G) by the following. Start by applying 4¢(G). Then
T

“,;'.':’, add a 4-cycle that consists of new vertices and edges and a new edge between w and one of the ver-
B

o

'1.*‘ tces of the 4-cycle. Examples of these two operations are given below.

- w w

o w

f—:: w

l‘\.

o

o -

. "

J.-~

-;Z:j Figure I11.2.12 G -  AYG) G = A{(G)

.

~’;.~ Let = be the union of the vertex-sets of the clusters that have bases or neighbors in V(®) - {w}
[ X

I, and let ” be the graph that is induced by = U V(®). We see from Table [L.2.11 that we are restricted
X .»',:.

4 ;;:. to our candidates for G*. A partial list of the candidates for G’ is listed in Figures I1.2.13. Each can-
. “.\'

.. , didate that is not listed is a Tivial modification of one that appears: e.g.. one can place a cluster such
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that its base is any vertex that is already on a trail and simply increase 4f. Note also that there must be

at least one appendage.

The caption of each candidate gives the operation that is to be applied, as well as bounds on the

values of the difference operators. In the diagram of the candidate, we show a partial trail cover that

verifies the claim for Az. Note that, for graphs on which we wish to apply A1p, we get a “free” trail as

long as it starts or ends at w.

Ag'”
An=3Am=4 An=11Am= 14
At=0Af=2 At 1 Af23

Figure 11.2.13(a) Figure I1.2.13(b)

An=11 Am = 14

At 1Af23
Figure [1.2.13(c)

w

Ao
An=11 Am= 14

Ars 1 Af23
Figure [1.2.13(d)

Ar=04Af=2
Figure [1.2.13(e)

A
An=13Am=17
Ar< 1 Af20

Figure I1.2.13(H

y Ny
An=8Am=10 An=12Am= 135
Ars 1 Af2 1 Ar<1AF2 S

Figure [1.2.13(g) Fiaure I1.2.153¢h)

e
W
®. B
A9
An=12Am=15
Ars 1 AF2 8

Figure [1.2.13(1)
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A A0 Ag
An=11 Am= 14 An=12Am =15 An=13Am=17
Ar< 1 Af2 3 Ar<1 Af=8 Ar<1Af20
Figure I1.2.13()) Figure I1.2.13(k) Figure 11.2.13(])
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An=20Am =25 An=8 Am =10 P
At<2Af29 Ar<1Af21
Figure 11.2.13(m) Figure 11.2.13(n)
Again the tedious and simple verifications of properties (II.2.1) and (I1.2.2) are omitted. h

For i =9 or 10, let A; be A/ followed by applications of A and/or A’ until neither A nor A’ ap-

%,

plies. We state the following lemma without proof. The only assertion in the lemma that needs further

verification is the last one.

Lemma I1.2.23. Foreachi=1,...,10,if G is abnormal and G € C, then A;{G) is abnormal,
Ai#G)e Z,and n(A{G)) < n(G).a ]
This completes the proof of Theorem [1.2.1' and hence Theorem I1.2.1 for triangle-tree cacti. v,

Now suppose that G is a cactus with a triangle T = (ujusu3). Let G; be the union of the
u;-components that do not contain 7 (See Figure I1.2.14).
Let n; = niGyy. Itis clearthatn = ny + n2 + n3. Forije {1.2.3} and i # j, let G;; be the graph .

induced by VIG;) v VIG;j).

Lemma I1.2.23. If i j, and & are distinct. then [ S [(Gyj) + [(Gy) + 1. !
Proof. Let Ry and R: be opumal representations for G and G and let "= R; UR,. Let &
e w et T et e AT T LN Y a4 o RN Y T N P -.. T e ) K\ » )
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and 8- be the u;-interval and u-interval of R whose intersection represents u;u;, and let 8 = 81 N
2. Since wu; is in no cycle within Gy, and hence no triangle. no other interval of Ry intersects o.

Place a small ui-interval within 6.4

Figure [1.2.14

Let == {G:niG)=5(mod 13)) = (G :fiG)=0mod 13)}. If G & 7, then f(G) 2 0 im-
plies that fiG) 2 1. Since G € Z implies that f{G)(mod 13) € {-5,-4,-3,-2,-1}, FNn Z=0.

Now suppose that G is a cactus with at least one triangle T, G € Z, and that Theorem I1.2.1°
holds for all cacti with fewer vertices or fewer edges than G. Choose T = (ujuau3) so that Gy and G2
are miangle-free. We will be finished proving Theorem I1.2.1" if we can prove that fiG) 2 0.

The next two lemmas do not use the fact that G; and G» are miangle-free.

Lemma I1.2.25. Forie {1.2.3), n; =1 implies that f2 0.
Proof. Without loss of generality, let i = 1. Suppose that ny = 1. Let H = G - uau3. Since
no member of = has a cut-edge that is incident to a bivalent vertex, H € = and since A is smaller than

G.ftH)20. In an optimal representation R’ of H, we must have one of the configurations of Figure

II.2.15¢a.
75
Uy ul - Uy
u‘\ - . . u}— uﬂ . . - u"
— e —— ool p— e ———————e—r— e —
i
Uy - Us
U~ U3 TEY
Figure I1.2.15¢a) Figure [1.2.15¢b)

We can adjust the representations as shown in Figure [1.2.13(b) to obtain a representation for G

with the same size. This proves that [rG) < [(H ) and therefore that G 2 ftH) 2 0. a
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L%
o Lemma 11.2.26. Fori=),ije (1,2,3}, fiG;) < O implies that f(G) 2 0.
0 Proof. Since G;j is smaller than G, the hypothesis f(G;;) <0 is the same as G;j € =. Note
e
A that w;u; is a cut-edge of G;j and its deleton leaves the two graphs G; and G;. The only members of =
.r.,; that have cut-edges are shown below.
!
»,
&
;ﬁ
:.:1 D
'.'.! Figure I1.2.16
e For either of these graphs, the deletion of the (only) cut-edge leaves a graph with two components,
.l‘f
:_,, at least one of which has only one vertex. Hence if G;j € Z, then either n; =1 or nj = 1. The result
4
A now follows from Lemma I1.2.25.
S The following is the most heavily used lemma of this part of the proof.
4 Lemma II1.2.27. Suppose that i, j, and k are distinct. f(G,j) 20, fiG¢) 20, and 7 2 {G .G}
».’ Then fiG) 2 0.
2 Proof. By definition, fG) = 18(n; + nj + ng) - 13[(G) - 12. By Lemma IL2.1, -13/(G) 2
" -13t1(Gyj) + I(Gy) + 1), from which we have f(G) 2 [18(n; + nj) - 131(Gjj) - 12]+ (18ny -
o 13/1{Gr) - 12] - 1 = flGij) + f(G) - 1. By the hypotheses, we have flGij) +flG)2 1.
g
_J. We now show that ffG)2 0. By Lemma 11.2.26, we may assume that for all ij e {1.2.3),
1'; =/, fiGj;)2 0. We will consider the following four cases.
o
-“: i. G1,Gr, G3ze =
$ i. Gis 2.G2.Gze =
e il. G1.Gre £,G3¢ =
7
& iv. G1.G2,Gze =
{::EL The arguments of the first three cases do not use the fact that G and G are mriangle-free and so
SN
KO- any other case can be reduced to one of these tour cases by permuting Gy, G2, and G3.
-g.r: Case L. If. for some k. G; € =. then apply Lemma 11.2.26. Otherwise, note that (G2 =
Y
! E: 10rmod 155 and 50 Gy2 & . We can now apply Lemma [1.2.27 with &k = 3.
490
. Case:r.  If G2 & 7 then apply Lemma [1.2.26 with & = 2. Hence we mav assume that G2 = ~.
.1'::
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/ ;:C Since G| € = implies that ny # Srmod 13), and n3 = 5(mod 13), we have (ny +n2)# 5 (mod 13)
=
R — - . :
[ and Gya e 7. Since Gi & =. we can again apply Lemma I1.2.27 with k = 3.
:j:::‘ . Case iii. The number of vertices in members of = are 2, 4, 7, 10, and 12. Adding any one of these
' ::::Z - numbers 1o itself or any other member of the set does not give something that is 5(mod 13), hence
j_) N Gix & 7. Now apply Lemma [1.2.27 with k = 3.
n i: o
N Case iv. Itis only for this case that we chose T such that G and G2 are triangle-free. Let G* be the
o = graph induced by V(G1)w V(G2) U luz}. If the theorem is false, then G* # ['. Let &f =f(G) -
1 4
P = 11G3). Note that Af2 18(n(G*) - 1) - 13/(G*). Moreover, it is easy to use the triangle and the na-
Laf ) .
~"% : 3 —- .
:?; wre of the tmangle-free members of = to show that /(G*) = m(G*). For example, the candidate for
B ”| -
S L
SO G shown in Figure I1.2.17(a) has the representation of Figure I1.2.17(b).
+ ) . '._
\f-l ‘{.
e
l.-. -'
o
» o’
-’J o
- ) )
. Vi V3 “42
' Uy Va i W
o a7 AN =
b Figure [1.2.17(a) Figure [1.2.17(b)
'\"
’) K Now forj = 1,2, G, is a triangle-free member of =. Therefore. each G; is either K or a set of
WY -
NN edge-disjoint C4's.
ALY s
‘SN Because G3 e =, we know that fiG3)2 -5. If Gy = K2 then, unless G2 = C4. Af 2 5 and
'Yy G120, If Gy =K~ and G~ = Cy, then Af = 4 and. to avoid f{G) 2 0, G2 must be Cy. But then
e~ A
'\" ) . . 3 . —
-::Z-‘ G = Z1satvpe | operation applied to K> and so is in =.
I.\--
L2 - . . - f 1}
e Hence. each of {G .G~} is a set of Cy's. If there are four or more Cy4's between G and Ga, then
N
Q_i A 23and fiG)20. If the theorem is taise. then it is not true that each of {G,G2]) consists of one
* . -
s )
i:: - Ci. Hence we mayv assume that there are exactly three Cy's between (G1.G2}and we may assume that
ey
i - . — . c .
- (< 1y one of the three graphs in Figure [1.2.18. We then have A= 3. Hence f/G) < -4and G315
N
! - one of the zraphs of Figure [1.2.19.
s Bv inspection. we now can select anyv of the three graphs of Figure I1.2.18 to be G 1. either of the
A&J‘ >,
v . . : :
% ’ rapns of Figure [1.2.19 to be Gz, and any vertex of Gz to be 2, and the resulting & will be a type !
d a
20y A
.
»
R A et




operation applied to a member of =. 4

Figure 11.2.18

Figure 11.2.19

This completes the proof of Theorem I1.2.1' and hence of Theorem [1.2.1. We now sketch the

proot of the analogous result concerning dense cacti.

Theorem 11.2.28. If G is a dense cactus that is not in Z, then /(G) S'Ln/s@_i .

Furthermore, for any n. there exists a cactus G, with n vertices for which /(G,) =1 3 J. and _,1
"

so the result is best possible. ™
Proof. Note that tvpe 1 operations applied to C4 show that it is best possible. Furthermore, E

this ame the wiangle-free case is simple: a slight modification of the proof of Lemma I1.2.13 vields the

bound for mangle-free dense cacd since such graphs are Eulerian. ﬁ
The proof of the general case is by induction on the number of tmangles. Select a triangle T such

that Gt and G- are triangle-free. Eliminate the possibility of (sav) G| being mivial by comparing it to

the zraph with one of the edges 10 G subdivided: even if depth-3 intervals are allowed. the bivalent j

vertices of the 4-cvele will torce a trail through it and the adjustments of the representation is straight-

‘orward. Y
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Since G and G2 are wiangle-free, we may argue as in Lemma I1.2.13 to show that both are a col-
lection of 4-cvcles. Since there are two or more 4-cycles between G and G2, it is easy to represent
G1 w G> w T with sufficiently few intervals so that, together with an optimal representation of G -

ViGy) - VIGa), we have a representation for G with the correct number of intervals. 4

3. Husimi Trees

The goal of §11.3 is to prove Theorem il.3.1.

L—”)-L:—il Furthermore, for any

Theorem I1.3.1. If G is a Husimi tree with 2 4, then / <
n 2 4. there exists a Husimi tree G for which I(G) = L‘T“J and so the result is best possible.
The sun with n vertices is a graph that consists of a clique {uy,...,.us}, an independent set
{V1.---.Vn2}, and the additional edges {u;v; : i = 1,...,n/2}. We denote this S, . We now show
thatif n 2 4, then [(S,) >—3n—- thereby showing that Theorem 11.3.1 is best possible. The basis

case, Sy, is trivial.

3 and that

Now suppose that, for all even n” < n, I(S,’) # Assume that /(S,) < 3’!.,'

-

R is an optimal representation of S,. Let V' =V - {uy,v1) and V" = (uy,vy}. Partition R(V) into
R’ R", where R’ is the set of intervals corresponding to members of V'’ and R" is the set of
‘ntervals corresponding to members ot V™. Note that the graph induced by V’is a sun with n - 2

rtices and, by inducton, IR >i(—"—-)—4 Therefore IR"1 < 2 and so «1 and v| have just one
interval each. By symmertry, we can argue that for any { = 1,...,n/2, u; and v; have just one interval
each. But this contradicts the fact that the graph induced by {uy,u2,43,v1,v2,v3} is not an interval
graph (see Figure [.1.1).

To show that the bound of Theorem II.3.1 i3 best possible for n = 2k + 1, subdivide a leaf-edge
of Say.

We now focus on the upper bound. We first show that the bound hoids for suns by giving an in-

-

. R . n-4d . ) )
terval representation of S, with——=— intervals. Start with the & + 2 intervals listed below.

uy - interval (0.6). a ur - interval (3.9)
vy - interval (1.2). a va - interval (7.8
Fori= 3.....k. au, - interval (4,3

This introduces each edge in the clique and the edges incident 10wy and ur. We then use 2k - 2/ in-
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tervals to represent the remaining & - 2 edges. An example with n = 8 1s given below.

Wy W2
et 42, g
Al
Vi w2 V3 vy

V3 Vi L
U3 ua u ux 4

Figure I1.3.1

<
(]

We call this the standard representation of the sun.
We now prove the bound by induction on n(G). The basis, n(G) = 4, is trivial. Suppose that G

is a Husimt ree with n vertces and, if 4 < n’ < nand G’ is a Hustmi tree with n’ vertices, then
-~ ’
o 3n" -4 . .. .
(G} £ 3 . If G is a block, then it is a clique and /(G ) = n. Hence we may assume that there

exIsts a cut-vertex u.

If u is such that there are three or more u-components, then éither G =K 3 oritis possible to
zroup the vertices of G into V' and V" such that VA V" = {u], VO V"=V, iV121V"12 3, and
there are no edges with one endpoint in V” and the other in V. Using the fact that any 3-vertex graph
has a wtal interval number of at most three and the induction hypothesis. we can use the union of op-

dmul representations for the graphs induced by V' and V" to get a representation of G that has at most

n -4

—— intervals. Hence we may assume that there are exactly two w-components. If both

tya

u-components have at least four vertices, or if one has three and the other has at least four, then we can
aguin represent them independently within the required number of intervals. If both have three, then
we can simply use inspection.

Hence we may assume that, for every cut-vertex u, there are exactly two u-components, one of
which has only two vertices. Let u be a cut-vertex and let the two u-components be A and uv. The
vertex i 1s in only one block of 4; call it B and recall that B must be a clique. If B contains a cut-ver-
tex 4’ of G. then the u'-components must be 1'v’ and 4 - v- U uv. This is illustrated in Figure

[1.3.2, where B = Ks.
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By symmetrv, we almost have a sun; some of the independent vertices might be missing. Select «;
and 2 so that they do have neighboring independent vertces, and follow the standard representation
of the sun, omitting the pairs that correspond to edges that are in the sun but not in G; if there are £

members of the clique and ¢ members of the independent set, where 2 < g < &, then this representa-
2) < 3(k -% q) -4

tion has kK + 2 + 2(q - intervals. A

4. Outerplanar Graphs
We now resume our ascending chain of classes. The goal of §11.4 is to prove Theorem [1.4.1.

Theorem IL.4.1. If G is an outerplanar graph with at least three vertices, then /(G) <
L 3n( G ) -

and so the result is best possible.

We assume a plane embedding for which the face with n vertices is unbounded. The bound is
achieved by any 2-connected outerplanar graph for which the unbounded face is a cycle and either ev-
ery bounded face is a 4-gon or all but one bounded face is a 4-gon and the remaining bounded face is a
5-gon [2]. For these graphs,t=1land m = —;——J - 1. Since they are triangle-free, [ = /> =
1+ 7 |_ . _i 1) and we have proved that Theorem I1.4.1 is best possible.

We now concentrate on 2-connected outerplanar graphs. If such a graph has no 3-gons, then it is
intuitve that it has no more edges than the graphs of the previous paragraph. It is easy to use Euler's

formula to establish this. We state this as a lemma and omit the proof.

.2
Lemma IL.4.2. If G is a 2-connected triangle-free outerplanar graph, then 1 + m < |- 3", =1 a

- Now we establish Theorem II.4.1 for 2-connected outerplanar graphs. We follow Andreae and
"~ Aigner's proof. The technique is to find a miangle-free subgraph G and construct a representation for
G that has | + m(G’) intervals.
-\
~
- Lemma II.4.3.{2] I[f Gisa 2-connected outerplanar graph, then we can color the edges red and
o olue in such a way that the following holds:
L. .
() The outside edges are red.
(i1) Everv mangle has at least one biue edge.
(111) For everv blue edge e. there exists a man«rlc D, that consists of ¢ and two red edges.
Furthermore. these D,’s are pairwise edge - disjoint.
w
4
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Y Proof. We give a slightly different proof than Andreae and Aigner. A peripheral face is a

\ face with exactly one chord. If e is an edge that is in two faces, one of which is F, then let O(e,F) be ﬁ
N the other face. )

a) -
N Color the outside edges red. If no peripheral face is a triangle, then color the chord e of some pe- i
) ripheral face F red. discard E(F) - e, and proceed by induction. gi
N o
k. If a peripheral face F is a triangle, then color its chord e blue and consider F’ = Ofe,F). If an edge -
el -
‘ of F’is a chord of a peripheral triangle, then color it blue. If not, then color it red. Again proceed by a
\ inducdon, this time applying induction once for each red chord. a

'h

' We give an example of this coloring in Figure [1.4.1. We shade the D,’s and use dark thick lines :
:; to indicate blue edges and thick gray lines to indicate red edges. A thin edge is one that is not vet col- ﬂ

! ored.

-‘ S
- »
A ./3
S ;

. ~

( -

<

: ) / -

: | 3

" Figure 11.4.1(a) Figure .4.1(b) Figure [1.4.1(c) B
3

: 3
% L} o
" oA

] Figure I1.4.1(d) Figure I1.4.1(e) Figure IL.4.1(D
_ y In Figure I1.4.1(a), we have the original graph and. because of Lemma I[1.4.3(i). we color the out- 3
,, side edges “‘red”. In Figure [1.4.1(b), the *blue” edge is forced and we can color another edge “red.” i.?
’ [n Figure [1.4.1(c), we first color the “red” chord and then the blue chord.

: This brings us to Figure [1.4.1(d). We have one more blue edge, shown in Figure I.4.1(e). and ::3
:.;: ‘ve¢ show the entire coioring in rigure I1.4.1(f). {abeiling the vertices for future use. -
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Theorem I1.4.4. If G is a 2-connected outerplanar graph, then /(G) < - 3'3' 2 J.

Proof. Color the edges as in Lemma I1.4.3. Let S be the set of red edges. We construct an rep-
resentation with at most 1 + iS! intervals. Since S is triangle-free this will be at most 1_3—-'-12—'-2_1
intervals.

Let the vertex 1 be some vertex with degree at least 3 and number the vertices 1,...,n by following
the outside face. Start the representation by using the canonical representation of the path 1,..., n and
insert a small I-interval into the displayed part of the n-interval. This uses n + 1 intervals and repre-
sents the n edges on the outside face. We call these the outside intervals.

Each edge (including the red chords) is part of at most one D,. We will represent each chord by
first representing the edges in each D, and then representing the chords that are not in any D,. Note
that no chord is considered twice (by Lemma I1.4.3(iii) of the coloring).

Fori=1.2,or3.calla D, type i if it has exactly i edges that are chords of G. Note that type i
D¢'s have exactly i - 1 red chords (by Lemma I1.4.3(i),(ii1)). We now show how to add i - 1 inter-

vals for each type ( De.

For a type i D,, extend the outside intervals corresponding to the high-degree vertices undl they
intersect.

For a type i1 D, let ij be the outside edge and & be the intersection of the two chords. Take a & -
interval and place it within the intersection of the outside i-interval and j-interval.

For a type iii D ijk, take an i-interval and a j-interval and place them in the displayed part of the
outside k-interval.

Now represent each edge ij that was in no D, by placing an i-interval inside of the outside j - inter-
val. We have used at most IS! + | (the * + 1” coming from the n + 1 outside intervals representing
the n outside edges) intervals. &

We give an example of the above construction by using the coloring of the edges that is in Figure

)

[I.3.1¢f). The representation is given in Figure [1.4.2.

-~
L)

&4

1
FE 7 9 1 L
1 1 A R 10 12

Figure II1.4.2

The displaved otal interval number (we demand that every vertex has a displaved part) can be

higher: For exampie. the total interval number of a 4-cycle with a chord is five, but this graph has no
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displaved representation with five intervals.

We now present the proof for general outerplanar graphs. It uses the construction of the proof of
Theorem I1.4.4. Suppose that G is an outerplanar graph. Add edges to the given outerplanar graph
undl it is 2-connected and then use the representation of Theorem I1.4.4. We will be done if we can
show that we can remove an arbitrary set of intersections from the representation without increasing
the number of intervals.

Consider an outside overlap, say between k and £ + | with an interval, say an i-interval placed in-
side of it. This was placed there because (k,k + 1,i) is a type 2 D,. Note that there cannot also be
some j-interval inside of the overlap since the D,'s are edge-disjoint.

To remove the edge {k.k + 1}, shorten k and & + 1, making sure that i still overlaps the k-interval
and the (k + 1)-interval. To remove the edge {i.k}, simply move i over to the displayed part of the

(k + 1)-interval and one can similarly remove the edge {i.k + 1}. To remove {k,k + 1} and {i,k},
shorten the k-interval until it no longer overlaps the (k + 1)-interval and make sure that i now overlaps
just the (k + 1)-interval. To remove {i,k} and (i,k + 1}, simply remove the i-interval. To remove
all three edges. remove the i-interval and shorten the £-interval until it no longer overlaps the

(t + 1j-interval.

Now consider an overlap between a k-interval and a (k + 2)-interval with a (k + 1)-interval in the
overlap. The same argument shows that any set of adjacencies can be removed. Again we must use
the disjointness of the D,'s to ensure that there are not two intervals inside of the overlap.

Now consider a displayed part of an outside interval, say a &-interval. A j-interval placed on the
displayed part of the outside k-interval is easy to deal with: remove it. If there are two intervals, say an
i-interval and a j-interval on top of each other and the k-interval, then it's harder. Note that these were
placed there because of a tvpe 3 D, and so we can place any 2 of {i,j.k} on the third. To remove ex-
acdy 1 edge. say (iy). place k on the displaved parts of i and j. To remove two edges. so that, sav
anly (i) remains, place an i-interval on j's outside interval. To remove all 3 intervals, simply remove
hoth i and ;. These latter two cases acruaily save at least one interval.

The tinal case is if an outside overlap has no interval inside of it and we must remove that edge.

Simply shorten one of the intervals until there is no overiap. a
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5. Planar Graphs

The goal of §I1.5 is to prove the following theorem.

Theorem IL.5.1. If G is a planar graph and n(G) 2 3, then /(G € 2n(G) - 3. Furthermore, for
any n, there exists a planar graph G with n vertices for which /(G) = 2n - 3 and so the result is best

possible.

This is the main result of the thesis. Andreae and Aigner [2] showed that theorem I1.5.1 holds for
riangle-free graphs and that it is best possible. We enlarge upon their proof that it is best possible.

Given n, let G be a plane graph with n vertices, such that all faces of G are of degree four; we must
show that I(G) 2 2n - 3. From 2m(G) = 4¢(G) and Euler's formula, we obtain m(G)=2n-4. If
G has no tiangle, then I2(G) = I(G) and, since #(G) 2 1, it follows that /(G) 2 2n - 3. Hence it is
sufficient to show that G has no triangle.

Suppose that G has a triangle C and let H be the graph induced by the vertices of C, together with
the vertices that are inside of C. By the definition of G, all bounded faces of H are of degree four and
therefore. all but one face of H is of degree four. We then have 2m(H) = 4(¢(H) - 1) + 3 and this is
impossible since the left side is even and the right side is odd. Hence Theorem II1.5.1 is best possible.

Since blocks are graphs, we can apply terms that refer to graphs equally well to blocks. For ex-
ample, a planar block is a planar graph with no cut-vertex and a plane block is a planar block, together
with some planar embedding. We prove Theorem [1.5.1 by inducton on the number of vertices; the
basis step, n = 3, 1s trivial. We now present the induction step if G has a cut-vertex u. If every

u-component has two vertices, then G is a star and /(G) = n(G). Otherwise, let A be a u-component

with at least three vertices: by induction. /{A) <2n(A) - 3. Let B be the graph induced by the

non-isolated vertices of G - E(A). Note that &(G) =nfA)+ n(B)-1and (G)< (A, +[(B). If

ntB)=2 thenliBy=2and I(G) < 2n(A) -3+ 2=2n(G)- 3. If n(B) 2 3 then. by induction.

[(B)<2mB)-3andso [1G) < 2nA) -3+ 2nB)-3=2n(G) -3 We must still deal with the in-

duction step if G 13 a block. Hence, it suffices to show:

Lemma II.5.2. If G is a planar block and nG 2 3. then I(G) < 2n(G) - 3.

We rirst reduce the probiem of proving Lemma I1.3.2 to that of proving Theorem [1.5.5 and then
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spend all but the last paragraph of §I1.5 proving Theorem I1.5.5.

For a plane graph G, let fi(G) be the number of i-gons, and f(G) be the number of bounded
i~gons. Let AG) be the degree of the unbounded face and 3(G) be the set of bounded faces. Note
that if i # M(G), then f(G) = fi(G), and that f /G, = faG) - 1.

If e is incident to two bounded faces F and F’, then F’, the face “opposite” e from F, is de-
noted Ofe.F). If e is incident to the unbounded face and some bounded face F, then Ore) =

A plane graph G is a proper supergraph of a plane graph G’ if G is obtained from the embed-
ding of G’ by adding a non-empty set of chords of bounded faces without inroducing any 3-gon. For

example, the graph in Figure I1.5.1(b) is a proper supergraph of the graph in Figure I1.5.1(a).

Figure I.5.1(a) Figure I.5.1(b)

Note that adding a chord to a 4-gon or 5-gon will introduce a 3-gon and therefore will not produce a
proper supergraph. It is clear that a plane graph has no proper supergraph if and only each of its
ocunded faces is of degree at most five.

A proper representation R is a representation that has the following properties.

i. R is irredundant.
1i. k24=>r(R)=0
1. Each depth-3 interval introduces two edges that are incident to the same 3-gon.

If R is a proper representation of G, then, by properties i. and ii. above. m(G) = r2(R) + 2r3(R).

Let /'/G ) be the size of the smallest proper representation of G.
Lemma [I1.5.3. If G is a proper supergraph of G’, then /(G’) < (G).

Proof. Let p(G.G’) =E(G) - E(G’)\. we show by induction on p that E(G) - E(G’) can be
deleted from G without increasing I”. The basis step, p = 0, is trivial. Now suppose that G and G’
are given and that the lemma holds for all pairs H and H' for which |E(H) - E(H') < p(G.G’) and
suppose that uv € E(G) - E(G’). Let G” = G’ U uv. By induction, I1G") < I'(G).

Let R be an optimal proper representadon of G”. Without loss of generality. we may assume that
some v-interval 8, inroduces «v by intersecing an earlier u-interval 8.

If the only interval that 8, intersects is 8, then remove 8,.

-------
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SO Now assume that there exists we V(G) - {u} and that some w-interval 8,, intersects 8,. If 8,,
; 'i-:‘
i‘ E also intersects 8y, then either 6, or 6,, is a depth-3 interval. By prcperty iii. of proper representatons,
_;*._‘.‘ the two edges introduced by the depth-3 interval must be incident to a 3-gon. Note that uv is not inci-

n" LY

) \I ._*s . .
! ,:',,: N dent to any 3-gon. If O, is a depth-3 interval, then vw and vu are two edges of the 3-gon (uvw) and
o : |
'.‘37 ( similarly, if 6, is a depth-3 interval, then wu and wv are two edges of the 3-gon (uvw). But this con-
RN : . . en :
{t R tradict the fact that uv is in no 3-gon. Hence if 0, intersects some 6, then 6, ~ 0,, = @. To avoid
Y
b the introducton of the edge uv in R, move the left endpoint of 8, undl it is to the right of the right
I. '
‘.!: - e X
( endpoint of 6.
G In either case, the resulting representation of G’ has no more than [R! intervals and so /(G’) <
SN IG")<SI(G).»
'J‘.-, ';.

- In $IL.5, we will deal exclusively with proper representations; we will prove that I'(G) < 2n(G) -

1e

3. Hence trom Lemma I1.5.3, we may assume that:

SR i2 6= ff=0 (I1.5.1)

: : ) We define the perimeter of a plane graph G to be the vertex-set of the unbounded face and denote

\ :L:: it P1G). A contiguous subset of the perimeter is the set of vertices of some path, all of whose edges
:-I:: ' | are incident to the unbounded face. A section of a graph is an induced subgraph with no cut-vertex.
b, i For example, a block is a maximal section. In the figures of §II.5, each straight line segment

:’ indicates a single edge, each arc indicates a contiguous subset of the perimeter. each white area in-

. .,“_j' dicates a single face. and each shaded area indicates a section. Each figure represents the class of

‘ S ‘, graphs determined by the lines, curves, white areas. and shaded areas.

o

‘ We now sketch a proof that Theorem I1.5.1 holds tor graphs without 3-gons. This case motvates
f: = many of the ideas of the proof of the general case.

! ; :5 Let G be a plane block satisfies (I1.5.1). Using Euler's formula and 2m(G) = a(G) + i(G) -

N

‘ ";: - 3131G). we obwin 2n(G) - 32m(G) -~ 1. Since I(G) <m(G) + G\, it is sufficient to prove that

‘ ;“ "" there 1s a covering wail T of G. We do this by induction on the number of faces.

We sirengthen the inducton hypothesis and prove that T can start at any vertex « on the unbounded

‘ace and end at any vertex v on the unbounded face. Lete = uu’ be an edge on the unbounded face




o
l_‘ ‘: !_";." .

ery
B AR

3

P,

PAE

L/
1

5
4

LSRR PR SR AT oty

56

and let F = O(e). If the only vertices of F that are on the unbounded face are « and «’, then we can
remove ¢ and apply induction. Otherwise, there are several cases. The most difficult case is shown in

Figure 11.5.2.

’

Figure I1.5.2

Suppose that v e P(A1). Let T begin with <u,u’>. Since the induction hypothesis applies to each
Aj, we can extend T to cover A4 and end at w3. We then similarly extend T through A3, A3, and A,
covering these sections, and ending at v.

Similar methods work unless v € P(A3). In this case, we consider F' = O(waws,F) (see Figure

[1.5.3). We will consider only the case that F*is a 5-gon and all of its vertices are in P(G).

Figure [1.5.3

We must reat the possibilities of v lying in each of the gray sections of A3 as separate cases. We
show each case and the corresponding trails in Figure I11.5.4.

For graphs with 3-gons, it is possible that /2 > 2n - 3 (e.g., a 4-gon with a chord). Therefore we
cannot restrict ourselves to depth-2 representations and we must use depth-3 intervals. We will still
use the idea of starting and ending on the unbounded face and. as in Figure I1.5.4. we will find
“routes’ from u to v through some sections.

Let G be a plane graph. From 2m(Gi=a(G)+ 3£(G) + HiiG) ~ 574 G)and niG) - m(G) +
I - 3(G) - fiGy - fi(G) = 2, we obtain:
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20G)-3=1+mG- LG BG MG -3 (I1.5.2)
Our goal is to find a representation R with 2n(G) - 3 2 IRI. By (I1.5.3), this is equivalent to

finding a representation R for which:
2+ 2m(G)-f(G)+ f5(G)+(MG)-3)-2R120 (I1.5.3)
We will usually not be interested in the contribution of the unbounded face to the left side of
(I1.5.4); we define the profit p/R) and obtain the following:
p(R)=2+2m(G) - f35(G) + f5(G) - 2IRI (11.5.4a)
2002n(G) -3)-1R)=p(R) + (MG) - 4) (I1.5.4b)
If R is a proper representation, then
P(R)= 2-2ri(R) + 2r3(R) - fi(G) + fi(G) (IL.5.4¢)

We call R profitable if p(R) 2 0.

Figure 11.5.4

If G is a plane graph and R is a representation of G, then from (I1.5.5a) and 2m(G) = 38(Gi +
14751Gy = 3fiG) ~ (G, we see that the parity of each of the following quandties is the same:

1. The number of odd bounded taces
L The profitof R
L. The degree of the outside face

We define the parity €/G) of a plane graph G as tollows: If the quantities above are even. then
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€/G) =0 (and G is even), otherwise €/G) = 1 (and G is odd). Consider the following examples:

’

u u u u’
Figure I1.5.5(a): Gy Figure I[1.5.5(b): G>

We have &Gy - uu’)=€(G1)and (G2 - uu') = 1 - e(G2). Note that if Gy is even, then an even

number of blocks of G - uu’ are odd, and if G2 is even, then exactly one block of G» - uu’ is odd.

Lemma II.5.4. If R is a profitable representation of G and A(G) 2 3, then IR € 2n(G) - 3.
Proof. From (I1.5.5b), the result is immediate if A(G) 2 4. If A(G) = 3, then since €/G) = 1

and p(R) 2 0, we have p(R) 2 1 and the result again follows. a

Bv Lemma [I.5.4, in order to prove Lemma I1.5.2 (and hence Theorem [1.5.1). it suffices to show
that there exists a profitable representation for any planar block that sadsfies (I1.5.1).

We must prove some technical results beyond this and we need several definitions to state them.
Let R be a representation of a graph G. If 8 = [.B] is an interval, then -8 = [-B.-a]. Let the re-
verse of R be {-8 : 8 € R(V)) and denote it R. If there exists a depth-1 u-interval in R (in R), then
we say that R starts (ends) at «. Note that R can start and end at several vertices. If R (R) starts at u
and the corresponding depth-1 u-interval in R (ﬁ) 1s immediately followed in R (ﬁ) by a depth-2
i'-interval, then R starts (ends) at the edge wuu'.

Suppose that « and v are vertices and that ¢ and e’ are edges. A representation that starts at 4 and
ends at v is a u.v-representation and, if profitable, is denoted bv u.G — v. A representation that
starts at « and ends at the edge ¢ is a u.e-representation and, if profitable. is denoted by u.G — e.
We use analogous definitions and notation for other combinartions of u, v, e, and ¢’.

Suppose that G is a plane block and that e € E(G). Let R be a proper representation of G - ¢.
The ¢-profit of R. p'fe.R), is defined by:

ple.Ri=2ry(R)-2Zri(R)+ f5(C) - K(G). (11.5.6)

[f R 1s a representation of G - e that siarts at « and ends atv. and pe.R) 2 (), then it is denoted
w.G? — v,

To see why we include ail of ZrG in this definition. and not just 2(G - ¢). consider Figure

-------
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[1.5.6(a). In Figure I1.5.6(b), we look more closely at B. In this example, the face £ thatis in (B}

and contains e 1s a 3-gon.

Figure 1I1.5.6(a) Figure I1.5.6(b)

Suppose that we have a representation R of A and a representation R"of B - . SinceR=R U
R’ s an uredundant representadon of G, we would like to be able to compute the protit of R from the
profits of R and R’. Note also that 3(G) is partitioned into 3(A) U 3(B). Although F & 2(B - e),
the profit of a representation of G must take into account the contribution of F. The most convenient
way of doing this that allows some combining of R and R’ is to assign the contribution of F to the
profit of R". This violates the definition of profit (since R’is a representation of B - e and not B) so
we use the term e-protit. Additonal details concerning the combining of profits and representadons
appear in later parts of the proof.

Suppose that G is an odd plane block and not a 3-gon. If u € P(G) and the only faces that are
incident to u are the unbounded face and one bounded 3-gon, then u is called troublesome. Let T(G)

be the set of woublesome vertices of G. For example, in Figure [1.5.7, T(G) = {u]}.

u

Figure [1.5.7: G
Since our graphs have no multiple edges. A(G) = 3 implies that T(G) = O. If G is an even block or a
3-gon, then we define T/G) 0 be the empty set. Note that it is impossible to have two adjacent mem-
bers of 7/G). In pardcular, if u and «’ are one step apart on the unbounded face, then at least one of
{uad'} isnotin TG,
We have now detined most of the terms in Theorem [1.5.5 (below). The terms “‘u-admissable™.

“almost profitable”. and “difficult miple” are quite technical and we defer their detinitions unal the

proot of the theorem.
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Theorem II.5.5. Suppose that G is a plane graph, and that e = wu’ and e’ = u'u” are edges of

the unbounded face. Then we have the following:

(1) If G is an odd block, then G has a profitable u,v-representation unless u =v e 7(G).
(i) If G is an even block, then G has a profitable e,v-representation.

(ii)  If G is an even block, then G has a profitable e,e’-representation.

(iv)  If G is u-admissable and v = 4, then G has a profitable u,v-representation.

(V) If G is an odd block and v e {u'.u"}, then, unless v=u'€ T/G), G has a profitable
e.v-representation.

(Vi) If G is an even block, A(G) 24, and v e {u’u"}, then there exists a u.v-representation
of G - e for which the e-profit is nonnegative.

(vit) If G is an odd block and (e’,e,v) is not a difficult triple, then G has an almost profitable
e,v¢€ -representation.

Most of the rest of §I1.5 is devoted to proving Theorem I1.5.5. The proof is by induction on the
number of edges. We will use (e.g.) (i) to refer to Theorem I1.5.5(1), or to point out that we are ap-
plving the induction hypothesis Theorem [1.5.5(i) to a smaller graph: the context will make the mean-
ing of this notation clear.

The cridcal conclusions of Theorem I1.5.5 are (i) and (i1); these show that profitable representa-
dons for planar blocks exist. Note that. since an e,v-representation is also a u,v-representation. (i1)
implies that if G is an even block, then there exists a profitable u,v-representation of G. We will fre-
quently use this analogue and refer to it simply as (ii).

By considering the reverses of the representations of (ii), (v), and (vi), we immediatelyv obtain:

titly)  If G is an even block, then G has a profitable v,e-representation.

(viy If Gisanodd block and ve {u’,u”}, then, unless v=u'e T(G). G has a profitable
v.e-representation.

(viy) If G is an even block, A(G) 2 4, and v € {u’.1"}, then there exists a u”.u-representation
of G - ¢ for which the e-profit is nonnegative.

We will use these as we would use any of the other induction hypotheses and refer to them as (ii),
(v, and (vig),

[f R is a representation. then the components can be permuted or reversed without affecting the size
of R. Theretore. if R starts or ends at u. then there is a representation R’ such that 'Rl = 'R tand

nence Ry = peR') and the tirstinterval of R'is a u-interval. This is usetui ‘or combining represen-

-ations ot subgraphs ot G to get a representation of G.
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Lemma II.5.6. Suppose that G is a plane graph with the two blocks A and B, u e P(A),ve
P(B), and V(A) N ViB) = {w}. Suppose also that R\ is a profitable u,w-repre<entation of A and R»
is a profitable w,v-representation of B. Then there exists a profitable u,v-representation R of G.
Proof. The hypotheses concerning G are illustrated below.
0
Figure 11.5.8

Bv permuting the components of Ry and R2 and shifting all of the intervals of R3, we may assume

% 01 % w %
Ri R>

Let R"=Ry U Rs. Notethat f(G) = f{({A) + fi(B) and rifR’) = ri(R1) + ri(R3). From the

that R} and R» is as below.

Figure I1.5.9:

definition of p. we have p(R’) = p(R)) + p(R2) - 2. Since p(R}) and p(R») are both nonnegative,
DIR") 2 -2,

Now let 6 be the w-interval of R) that corresponds to R} ending at w, and let 64 be the w-interval
of R> that corresponds to Ra starting at w. Splice 81 and 8- together to form the new interval 6. Call
this representation R: it is irredundant and, from IRl = IR7 - 1 and (I1.5.4b), we have p(R) =p(R) +

J20.a

Putting the two notations tfor R and R together and suppressing the second w results in the nota-
tion u.A — w.B — v for describing the profitable u,v-representation of Lemma I1.5.6.

A vanaton of Lemma I1.5.6 is the idea of splicing together the two intervals that correspond 10 an
edge. Suppose that A and B are sections of G, E(G) = E(A) U E(B) and E(A) " E(B) = {uu’}.
Also. suppose that Ry is a profitable w..'u"-representation of A and that R- is a profitable

a4’ v-representation of B. As before. we may assume that R and Rz are as below.
y” uw’
% 0’ u’ %
R R~

LetR"=R; _ R: Note that R' is notr a proper representation of G since it is not irredundant.

Figure {1.3.10:

However. if 've spiice rogether the w'-intervals and the «-intervals. then the resulting representation is

BT A e - LTI R ST L R . TR
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uredundant and profitable. We denote it 4,4 — w'u".B — v.
Of course it is possible to use a sequence of splices. In particular, suppose that G has the follow-
ing characteristics:

1. The blocks of G are {A;:i= 1,...,k}.

1. ue Aj

1. Fori= 1,....k- 1, V(A;)) " V(4;41) = w;
iv. ve PlAy)

V. {w;:i=1,..,k-1} are distinct.
vii  je li- Li+ 1} =2 V(A)nV(A))=0
vil. u,Ar = wi, {(wi,Adjs1 = wist 2= 1,..k - 1}, and wg.1.4r = v exist.

Then it is possible to construct a profitable ,v-representation for G by repeatedly applyving Lemma

[1.5.6. An example that satisfies conditions i. through vi. for k = 3 is given below.

Figure I1.5.11

We call a sequence of splices as above a march. We also use the term march if we start at an edge
of the tirst block or if we end at an edge of the last block.

The representations asserted by Theorem II.5.5 are constructed as follows: A plane block is di-
vided into sections, inducdon is applied to each section, and the resulting representations are spliced
together. From Lemma I1.5.6, we can compute the profit of such a representation if we know the
protits of the constituent representations.

We use the following abbreviations concerning profitable representations of a section that consists

of a single edge ¢ = uu”:

uun - u 1s abbreviated ulu')
U~ u’ 1s abbreviated U—u’
wu'uu - ou is abbreviated ue' — u
w,uil’ - is abbreviated u—= uu’

We illustrate the descripdon of a representation that is constructed by splicing together several sec-
tions. including some that are single edges. Suppose that we have the following situation:

ai’ is a cut-edge of G
The two components of G - e are A and B.
There exists a protitable v.u-representation of A and a profitable «'w .« -representation or 5.
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Then v,.4 = u — ' B = ww' — w is a profitable v,w-representation of G.

The first interval is always a depth-1 interval and it contributes -2 to the profit. This is offset by
the constant 1n the definition of profit. For any other depth-1 interval, there must be some part of the
representation that *‘creates” a profit of two if the representation is to be profitable. Recall that each
5-gon contributes one to the profit, a profitable representation of an odd block contributes one, and a
depth-3 interval contmibutes two. “Spending” some current or future profit from these sources on a
new depth-1 interval is a common tactic and we therefore use the term “buy at v” to mean “'start a new
component of the representation with a depth-1 v-interval.” Unless otherwise specified, a contribu-
tion is understood to mean a conuibution of one to the profit and a negative contribution is
understood to mean a negative contribution of one to the profit.

Consider the following example.

Figure I.5.12: G

Suppose that we wish to show the existence of u.G — v and we know only that ve P(G). Suppose
aiso that €&/4) = 1 and that uA — wi. w B — w2, and w2,C — u’ all exist. Then the representa-
ton R =ulu')A = wi.B — w>,C — u’ has a profit of at least one because of u.4 — wy. But
there is also a contribution to p/R’) trom the bounded 5-gon F and this has not vet been considered.
Hence prR’) 2 2 and we can “afford”™ to buy at v; let R be the union of R" and a single isolated
v-interval. Then pR) =p(R’) - 220 and R ends at v. Hence R is a profitable representation that
erds at v. The strategy of marching through a sequence of sections to ead at any vertex with enough
surplus protit to buy at v is called march and buy. [t occurs in the proot of every induction step of
Treorem [1.3.5

The most powertul induction hyvpotheses of Theorem I1.2.5 are (i), (i), and (v). But (i) and (v)

are aeckened oy the resmicion conceming 7/G). These restrictons are necessary as shown by the

M

zragh of Ficure [1.3.6.; it there exists a profitable w.u-representation 'Rl then. from (11.5 4(hy), 'Rl <
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6 and R starts at « and ends at &”. It is easy to verify that there is no such representation.
Even with this restriction, (1) and (v) are quite powertful because it is often possible to eliminate the
possibility of u e T(G). For example, we have alreadv noted that it is impossible for two consecutive

members of the unbounded face to be in T(G). The following lemma is also useful.

Lemma II.5.7. Suppose that G is a plane block, u, «’, " € P(G), uu’ and u'n” are edges of the
unbounded face, H =G - uu’, and v € {u’.u"}. Suppose that A has a cut-vertex. Let A be the
block of H that contains the edge «'u” and let w be the cut-vertex of / that is in P(A).

Then v = w implies that A(A) < 4 and hence T(A) =@

Before presenting the proof of this lemma, we give a pair of examples that illustrate both the simple
nature of the lemma and how it makes the exclusion of 6-gons so convenient. In Figure I1.5.13(a).
AMF)=35and ArA) = 4. Contrast this with Figure 11.5.13(b). n this graph, F is a 6-gon, A(A) = 3,

and the conclusion of the lemma is false.

u’ w”
u w’ u u’
Figure I1.5.13(a) Figure I1.5.13(b)

Proof of Lemma II.5.7. Let F = O(uu’). Sincev=w,V(F)2 P(A) and. from A/F) < 5

and w = VIF) - P(A), it follows that A(A) < 1.4

This lemma is used repeatedly. We note its use the first time we use it and thereafter use it tacitlv.

The preof of Theorem [1.5.5 is by induction on the number of edges. The basis case tor (i). (v),

and (vit) is the 3-gon. The basis case for (ii) and (iii) is a single edge. For (iv). the basis case is the

1-gon and for (vi), the basis case is the graph that consists of two incident edges. These are all tnivial.

-

Now suppose that G is given and that Theorem I[.5.5 holds for all plane graphs with fewer edges than
G. We will assume that ' is counterclockwise from u and «” is counterclockwise from u’. Most

steps are justified by (1), (1), (v), or 1) and we will not mention these justifications explicitly.

\ s

Since nothing is proved undl the induction step for each of the parts is established. we use the .

svmbol & instead of & to indicate the end of the induction step for one of the assertions.

do k
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: R We first present the induction step of (vi). Let F =Ore)and H =G - e. If A(F) 2 4, then march
‘ i through the blocks of H to end at v, using Lemma I1.5.7. Note that the face F has a nonnegative effect
. | on p.

: - Now suppose that A(F) = 3 so that e(H) = 1. If H is a block, then use u,H — v. This provides
. n a contribution to p that offsets the negadve conrribution of F.

': 4 If H is not a block, then define w by F = (uwu’). Since H is not 2-connected, w e P(G) and H
E ‘{ has two blocks 4 and B, where u e Vid)and «’e V(B). This is illustrated in Figure I1.5.14.

!

p

- u u’

. Figure I1.5.14

Since €(H) = 1, exactly one of {A.B} is odd. Use u,A = w.B — v. This march yields a contribu-

uon as it goes through the odd block (whether A or B) and this offsets the negative contribution of F.&

We now concentrate on (iv). If G is a plane graph and u € P(G), then G is u-admissable if G

has exactly two blocks A and B, u € P(Aa), A is even, « is adjacent to the cut-vertex u’, and

“b
b

* .

@ € T/B). The situation is illustrated below.

-
[ 4

-

‘uf el o
‘

Figure I1.5.15: u' e T(B)

' We now present the inducton step of (iv). If A is a single edge. then use u — «’ and then (i) or

(if). Hence AtA)24. Ifve PiB). thenuse uA — ' B —> v. Henceve PrA,- {u'). Let F =

v ;_:;f Oteyand H=A - e.
Z Suppose that 2.4 F) = 3. Since A is even. at least one block of A is odd. Start with uru’) and
; '::' march through the blocks of the remaining graph. Positive contributions to the protit are trom £ and at
A «east one biock of A and we have 2nough prorit to ouy at v. This is our tirst example of march and
i Suv.
) )
[
b.
R o A R R R AN AT T R N
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Suppose that A(F) = 4. If two blocks of H are odd, then we can again march and buy. Hence we
may assume that all blocks of H are even. Number the blocks {A;}and cut-vertices {w;} of H by
moving clockwise from u around P(A); u € P(Ay), VIA1) N V(As) = {wy]), V(A2) N V(A3) =
{wn}, etc.. Note that H has at most three blocks.

If ve P(Ay), then start with ¥ — «'.B — u’ and then march back to v. If H has at least two
blocks and v € PrA»1), then use u.Ay = u — u’' B = ', and then march back to v. If H has three
blocks and v e P(A3) - {wa}, then all four vertices of F are members of P(Aj. This is illustrated

below.

Figure I1.5.16

In particular, w2 <> «’. Hence we may use u(u’).A1 = wi,42 = w2 and (iv).

Suppose that A(F) = 3: define w by F = (uwu’). If w & P(A), then H is an odd block and. since
vy, wecanuse u = u'B - u' H—-v. lf we P(A), then let A; be the block of A that con-
tins « and A- be the block of A that contains «’. Since A is even and F is odd, exactly one 4; is odd.
[tve PlAy)- [w), thenuse u = u'.B — u'Ar» > wd| — v. Hence ve P(A~)- {u').

Ifue T(Ay). thenwe T(4)) and €(42) =0 so we may use u = u'.B — u’ and (iv). If

r

'y ¥ «
PR R

St

o el PRy

ue T(Ay), thenuse uA] = U= u'B — u' A - v.a

We now concentrate on (ii). Let F=0fe)and H=G - e.

IfA(Fj=3,0r AF) =4 and two blocks of H are odd, then use ¢ — u and then march and buy.

In the former case, one of the blocks of H must be odd since e(H) = 1.

4
K AIAGL IAAN

oy

Now suppose that A/F) = 4 and that all blocks are even. Label the blocks {A;}and cut-vertices

(i) of H by moving clockwise from u around P ue AL VA A VA = wi V4 A

-~

Vidy=wa, ete.. If ve Prdq). thea siart with ¢ — ' and march from «” back to v. Otherwise,

- -

use ¢ — u.d; — wq and then (i) or (iv).
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Now suppose that A(F) = 3. define w by F = (uwu’). If w & P(G), then use either ¢ — u or
e — u', followed by uH = voru H — v. If we P(G), then H has two blocks 4 and B. where
ue Pta)and u' € P(B). By symmetry, we may assume that 4 is even and Bisodd. Ifve P(A),

thenuse e > u'.B - wA —-vandifve P(B)- {w)},thenusee > u,A > wbhB > v.&

Before presenting the induction step of the next assertion of Theorem I1.5.5, we illustrate (ii) by
presenting the induction step of (i) for the case u € T(G). This will be our first explicit use of a
depth-3 interval.

Suppose that u € T(G). Let H = G - u. Start with the depth-1 u-interval and then place depth-2
and depth-3 intervals corresponding to the other vertices of Ofej. Extend these latter intervals and then
use (ii) on H to finish with e,H — v; since G is odd and 3(H) = 2(G) - {F}. H is an even block and
(1) is indeed applicable. The depth-3 interval contributes two to p and the 3-gon subtracts one. Hence

the representation has a profit of one.&

We now concentrate on (vii). If R is a representation of G - ¢’ and p(e’.R) 2 -1, then R is called
almost profitable. This term will appear only if there is a missing edge ¢’, R starts at an edge e,
and R ends at the vertex v. For such a situation, an almost profitable representation is denoted
e.G¢ > v.

We say that (e’.e.v) is a difficult triple if either of the following situations holds:

1. a. O(é') =(u'wxu"),we P(G),and xe P(G)
b. A is the block of G-¢’ that contains e. and B is the block that contains .
c. €&fA)=1landefAd)=0
d. ve PIA)- [x}

. a. Ofe'l=(u'wu”)and we P(G)
b. A is the block of G - ¢’ that contains e, and B is the block that contains .
c. eA)=¢€18)=0
d. ve P(B)- {w)

Theretore. (vii) states that, except for the situations illustrated in Figures I1.5.17(a) and [L.3.17(b).
¢.G€ > v exists.

We now present the inducaon step of (vit). Let F=0re’jand H =G - ¢’. No matter what F is.
swrt a clockwise march {rom ¢ through the blocks of A. The hope is that arter the march. we wiil have

2nough profit to buy at v note that the starement of (vil) "zives” us seme additonal profit.,
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> Figure I11.5.17(a) Figure I11.5.17(b)
L
“#
“a Suppose that the first block of the proposed march is even. Then march through all of the blocks,
S
';Z: either ending at v or buying at v after the march. The only tme that this tactic is too “expensive” is the
o
i"‘ second difficult triple.
\
o Therefore we will assume that the first block of the proposed march is odd. In this case, the fact
', that the representation starts at an edge forces us to justify the first step of the march with (v) rather
W
' than (1). If the first cut-vertex is only one step away on the unbounded face of the first block of the
:.'4 9
S proposed march, then the march can be completed and there will be enough profit to buy at v.
"_f-:: Now suppose that the first cut-vertex is at least two steps away on the unbounded face of the first
Fig
. 3% . . P ’
{ section. This cannot happen if A(F°) = 3.
~:;I; If .F’') =3, then we can finish the representadon of the first block and then buy at some vertex
. I.-
oo to march through the remaining graph. There is a positive contribution trom each of F, the first odd
1A
9] block. and some other odd block (whose existence is inevitable by parity). These allow us enough to
R
s .
K.~ buy a second depth-1 interval at v.
L . . . . . . .
N If A(F) = 4, then if H is a block. use e.H — x for some x € P(H} and then buy at v. If v is not
~
o
.,,, in the same block as «’, then we have the first difficult triple. Otherwise, finish the first block at some
¥,
‘)
K, vertex and then buy at the cut-vertex of 4 or at «” to finish the second block atv.&
B
> We now develop ideas involving the detailed use of depth-3 intervals. Until now, we have made
:’- almost no explicit menton of them. The rest of the induction steps require us to examine them more
L}
..':)\
closely.
':,: Suppose that R is a representation. Each depth-3 interval represents two edges from one 3-gon.
The corresponding 2-gons are called positive and the other 3-gons negative. Each positive 3-gon
e,
" increases r3 by one and corresponds to an increase of one in 4. In this sense. it contributes one 0
()%«
o . ~ - . . . . .
P p(R,. Each negzative 2-gon corresponds to an increase of one in £ and therefore contibutes negative
L
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one to p(R).

If a 3-gon (xyz) is positive, then all three vertices must have intervals that intersect at some point S
of the real line. Since our representations are irredundant, this is the last place where an x-interval and
a v-interval intersect. Suppose that O(xy,(xyz)) is also a bounded 3-gon (xyz’) and that, prior to &, no
edge of (xy:z’) had been introduced. If (xyz’) is to be positive, then we must immediately extend the
x-interval and the y-interval and place a depth-3 --interval thart intersects the other two and whose left
endpoint 1s greater than the right endpoint of the z-interval.

One consequence of this is that if (xy’z) is also a bounded 3-gon and, prior to x, no edge of (xy'z)
hid been introduced, then at least one of {(xyz’),(xy'z)} will be negative. This leads us to the concept
of paths of positive 3-gons. If, in the plane dual, there is a path of 3-gons, then we can make each of
them positive as long as each of the other faces adjacent (in the plane dual) to the 3-gons on the path is
of degree at least four or is negauve. When we use such a path, we denote it by separating the positve
3-gons by arrows. This is actually just shorthand for considering the 3-gons as sectons and explicitly
stating the shared edges. '

The tollowing two examples illustrate how we combine paths of positive 3-gons with the induction
hypotheses of Theorem I1.5.5 to establish the existence of profitable representations.

Consider G and G2 below. For each graph, e(A) =1,€&B) =0,ve P(A). and we wish to

find a profitable u.v-representation for the endre graph.

v

u w’

Figure I1.3.18(2): G,

Figure I1.5.18(b): G-

For G1. start by using (v,) to justifv u.A — xw. Since this removes wx, Fi is negatve. Continue
with the path of positive 3-gons F' — F — Fy. Since A(Ti = 4. T contributes nothing to p and so
the use of the edge wu' does not cost anvthing. Finish by using (ii) to justify «'.B — . There are

four conmbunions o the drofit . one negative contribution. and 3 is neuzal. Hence we can buv at v.
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We describe the entire procedure by "uAd = wx,F' = F = Fy > «’'.B — u’ and buy at v.”

For G, it is actually possible to start with the edge wu’. Start with uu’ — u’, making F| negatve.
Continue with u'.8 — u'.,F2 = F = F’ = wx. Again, T can be safely ignored but this time F3 is
negative. Since no edge of F{ has been removed, we can combine F with the odd section A to form
an even section and then use (ii) to justify wx,A U F{ — v. There are three positive contributions,
two negative ones, and A W Fj and B are neutral. The entire procedure is described by “uu’ —

A2

WB=-uwFr->F oS F =xwF{UA - v

We now present the induction step of (iii). Let F=0(e)and H=G - e.

If A(F) =35 (so that H has at least one odd block) or A(F) = 4 and H has two odd blocks, then
start with e —  and march clockwise to the last cut-vertex of H. Note that if H is a block, then this
march is vacuous. Then use (ii;) or (v;) to determine a vertex at which a depth-1 interval can be bought
in order toend ate’. If A(F) =4 and H has no odd blocks, then again start with e — u but this time
march through the blocks of H to €', using (ii;) for the last block of H.

Hence we may assume that A(F) = 3; define w by F = (uu'w).

Suppose that w & P(G) sothat H is a block. If u"e T(H), thenusee — u' ,H - ¢’ Ifu'e
T(H), then Ore’) = (u'wu"). UseeF - uw,G-u" - u" - e’

Now suppose that w € P(G) so that 4 has two blocks. Let A be the block of A that contains u
and B be the block that contains ¢’. Start with ¢ — «.4 — w. Then use induction (iiy) or (v;) to fin-
ish with w8 — ¢’ 4

The induction steps. (i) and (v), are far more difficult to establish. Comparing (i) and (v) with (i),
we see that odd blocks are much more ditficult to deal with. Not only are the proofs harder. but the
resulis seem to be weaker. For example, it would be nice if, as in (i), we could “start at an edge and

end anywhere™ with odd blocks. But the examples below show that this is not possible.

i u’ u u’
Figure [1.2.19¢a): G, Figure I1.3.19b). G-
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: There 1s no e,v-representation for Gy and. if v is any of the three circled vertices in G, then there
“ ts no e.v-representation for Go.

There is an intuitive basis for suspecting that odd blocks are more difficult to deal with. A prot-
- 1table representation of an even block gains nothing whereas a profitable representation of an odd block
; gains one. In essence, both the amount of work and the reward of odd blocks is greater than that of
even blocks.
i To keep things more compact, we will also reuse labels; it is understood that the definition of a la-
be! nullifies any previous use of that label.
,. We now present the induction step of (v). Let H =G - e and F = Ore).
If A(F) 2 4, then start with e — u and march through the blocks of H to v. Hence A(F) = 3; de-
e

fine w by F = (uwu').
fwe P(G), then H has two blocks A and B, where u e P(A),u' € P(B),and we P(A) N

PiB). Since AM(F)=3and G is odd, H is even and so €(A) = €(B). Ife(A) = 1, then use ¢ —

o

ud - wB —v. Ifeld) =0, then use e.F = uw,.A = wB4»¥ — v. The last step is justified bv
(vi: and 1t 1s both unnecessarv and unavailable if u' e T/G) (i.e., w = u™.

Hence w & P(G). We have the following.

X
.
.

w0 A

u u'

_ Figure I1.5.20

<.

-’-

’ LetFi=0miwF)and H=G - {e.u'w]). Ler A be the block of H that contains w and B be the

- biock of A that contains i’

Suppose that A¢F )2 4. Start with e.F — :ov. If €1.4) = 1, then continue with uw.1 — x. for

.-

” : g

A \ome \. anc buy atetther v (1f A s a block) or the cut-vertex berween 4 and the next block to march o

o B.encing at v [f /4 = 0. then simply march from ww through the blocks of H to v.

- - - - P - .

Hence mF )= 3 define x by Fy = rwwxy, Ifx= PiGh thenuse ¢.F — uw.d — 1.8 — v

&“ vy - 1 :

S Hence x & P'G). We have the situation helow.

¢

)
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A u u’
Figure [1.5.21

Let F» = O(uw,F) . Note that if u’ € F» then, to avoid multiple edges, A(F3) = 5 and u«’ is two
steps awav from both u and won Fa. Let H = G - {e,uw]}. Let A be the block of H that contains u
and B be the block of A that contains w. Note that £(B) 2 E(F) and hence &/8) 2 3. Moreover, the
existence of Fy precludes the possibility of u’ € T(B).

Supppose that A(F2) = 3. If u' € F1, then start with e,F — u'w,B — u’, march back to u
through the blocks of the remaining graph, and buy atv. If u’ € F3, use ¢,F — u'w.B — v, and
then buy at « to start a march through the blocks of the remaining graph.

Now suppose that A(F2) = 4; define y and = by F2 = (uyzw). If xe Fa, thenx=yorx=2:z If
x=yv, then P(B) = (wx.z}. Usee,F 5o wB - x,G-E(F)-E(B)— v. If x=2z, then stant
with e.fF — F| — x«’, march through the the blocks of the remaining graph, and then buy at v.

E Hence x € F». Use e.,F — u and march through the blocks of the remaining graph to v.
Hence arF») = 3: define y by F2 = fuyw).

If v=x,thenuse e,f = F| — xu’and (ii). If v & P(G), then use ¢.F = u'w,G - {e.uw} =

o

* " . -~ . . . g

f.‘f- v. justifving the last step by (v) and the existence of £ (to preclude the possibility of u"e T(G -

s,

f:,:-; {e.uw ).

'.-.- Hence ve P(G). Let A be the block of G - £(F) that contains u and B be the block of G - E(F)
N that contains w. We have the situation below.

: o

l'\-

L

u q
Figure [1.5.22

e Note that €Ay =8y lferd) =1 thenuse ¢e.f — 4 — v B — v Henceerd,=eB1=0. Let
4

Fi=0Orwy Faor LatH=B o Fp-{wy]. Sincee'Bi=0.etFy)y=1land Z(H)=ZiB)
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{F1} - {F3). it follows thaterH)=1-¢e(F3).

Suppose that A(F3;2 4. If H is a block, thenuse e 5 ud U F> = vH - vunlessy=v =
u” and ArF3)=4. Inthis case A(H) =5 and it is possible fory=v=u"€ T(H) and we therefore
cannot apply (1) for the last step of the preceding procedure. For this case, use e.F —
wwH U F3 —>v.A —v. Hence H is not a block. Let C be the block of H that contains w.
Because of F1, AiC) 2 3. Let D be the block of H that shares the cut-vertex z with C.

Recall that ArF3) 2 4. First assume that ve P(C) and that eitherv#zorve T(C). Use e —
u.A U F2 — v and march to v through the blocks of H. Now if ve P(C), thenv=u"e P(D), and
PiF3)-y} 2 P(C). Hence M(C)<4and T(C)=@. Use e,F - u'w.C - w = yA — y and
then march to v. The last possibility for A(F3) 2 4 is thatv==ze T(C). Since A(C)2 5, we must
have v=:=u"and P(F3)- {y} 2 PIC) - {u’} and hence A(C) < A(F3). Since T(C) = D,
AMC)25 and A(F3)=5. Use ¢ = uA U Fa — y, march through the blocks of 4 and buy at v.

Hence A(F3) = 3: define z by F3 = (wyz). There are three cases: z=x, - € P(G)u {x}, and

> = Pr,). These are illustrated below.

I=X e PIG)u {x) e PIG)
Figure [1.5.23

If = x. then start with ¢ = w.d U F2 = yw. Ifv=u', then finish with yw.Fy — vx 8" —
Wiowr IEv =’ then finish with yw = w,Ff| = xu'B" = u”.

It :

i

PrGi o {x}. then, unless v = «” = v (which implies that A:8°) = 3), use ¢.F —

v A O Fy— v B — v [fv=u'=y. thenuse ef - u'wB UF |2 F;—=vd — .

v -
[

P henuse ef — w4 Fa— v.B'— 8" — v and march through the biocks

MIne TemaInIing ITLPN o vk
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To present the inducton step of (i), we define the level of u in Algorithm I1.5.8. This algorithm
- . . . . .4

! defines the level k, two sets {u;: i =0,....k} and {&': i = 0,...k} of vertices, two sets (F,;:i{ = B
] R
) l,....k} and {F/:i=1,....k} of faces, integers s and ¢, sets (w,:j=2,...5- 1), and {w;:/j =
- ,"
. .- 1} of vertices, faces F = (ugwaws,...,ws.1u’) and F' = (ugxaxs,....x..1w2), and a set Q of I
' vertces. -
i \..J

Algorithm IL35.8.
a. [nigalize: 9

f a) k=0, ug = u, and wg is the vertex in P that is clockwise from u.

' b) F=0(e)=(uwiw3...ws.1u’) and F' = O(uw2) = (Ux2X3...X;-.1w2) =
o) @Q=P(G) -

~ b. [FAF)=A(F)=3wre Q, x> Q, then: ﬁ
] a) Q = Q [ {W?.-tl}

5 by k=k+ 1, up=wr,yy=x2, Fy=F, and Fy = F’

- ) F =0(ueu' Fy);, define s, wa, w3,.... and w1 by F = (gwaws...ws.1u').

. d) F'=Oflugwr); define t, x2, x3,..., and x;.1 by F = (ugx2x3... X w)
. e) Repeat step b..

{ Three examples appear below. .
" 4
v tA
9 Wwa w =

(4 ug G :

D o F 0 "‘-'

N A A
. , >

» u u u u -

[ k=0 k=1 k=2
Figure I1.5.24 -
» -\,\

2 We need to find a profitable wu.v-representation for any ve PrG). We will find a profitable

ol ‘:';
representation for almost any ve Q. The basic tacticisto stant withu —m e.F{ = ... = Fy — w2

‘

: and continue {rom there d=pending upon where vis in Q, relative to £ and £ In this inigal part of the D)
proposed rcrocedure. each F; i1s positive and each F,' is negative so when we get 1o wiu’ . we are neither
inead nor ~ehind. Let G be the zraph that remains after this proposed start. After the proposed start. N

i we are starung the representauon of G at wew’. G'is a block. and P/G") = Q. An example of G and N
+ . i -J:
> (" apoears delow. i
[ -l
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» Figure [1.5.25(a): G Figure I1.5.25(b): G’
‘::fj By making alf of the F;’s positive, we have created a situation in which we must start at an edge
RN and this, as shown in Figure 11.5.20, is not always possible.
( . Hence we may not always use this tactic. However a case is “mostly” described by the placement
S Cat
J.P u.:' R . . .
\ﬁj ) of vin Q, relaave to F and F’. Suppose that we know every pertinent fact about v, F and F'. We will
o
S . . . .
"N describe procedures for each of the levels k =0, k = 1, etc., until we have a procedure that starts with
the edge e instead of just the verrex u. This is the last level that we need to consider. To see this, re-

]

call the graphs G and G» of Figures I1.5.18(») and I1.5.18(b).
Recall that for Gy, we have a protitable u,v-representation and for G3, we have a profitable

ww . v-representation. Now suppose that the level is £ 2 2, we need to find a profitable

J ‘ - u.-representation. and that we have the same situation concerning £ and v as in Figure [1.5.18:
:'.:: AF) =30 x2 = wg, MO(w'w,F)) = 4, etc.. Then we can start a representation with e.f| —
: L Fr— ... = Fi = urqu and conclude with the procedure of G». This is possible because the
E . procedure of Ga starts with the edge w.u’, and this is where the inital part of the representation cur-
‘ :..-: ) rentlv ends.
L.~ B Cases are organized by considering the level lasz. Let k& be the level. We will asume thatk =0
B and v to find a profitable u,v-representation that starts at e. If we succeed then, by the above para-
‘;: < sraph. we do not have to consider higher values of k. For most of the cases for which this is not pos-
.-- sitle. we can start atwif k =0 and at e if k = [. For the cases for which we cannot start at e if k = [,
h then we wiil be able to startatwif ke (0.1} andateif k = 2.
' .
’ We must resort to many cases and subcases. We name a subcase by a string of digits. The name
:j' of 1 subcase will describe where in the “ree of cases™ the subcase is. For example. Case 213 is the
A
.Eg “hird subcase of the tirst subcase of the second main case.
A
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Often there are some subcases that are so easily disposed of that they do not merit being considered
{ as separate cases. Following the definition of a subcase, there is often a paragraph or two that dis- 5
[ ¥
- poses of these preliminary cases.

LA IR

We now present the induction step of (i). Almost all of the rest of §I1.5 is spent on this.

N The first three main cases correspond to the different ways that Algorithm I1.5.8 can terminate be-

‘.I .
- ..

g cause of some “irregularity” of F (i.e., A(F) =5, MF) =4, and MF) = 3 with w2 € Q).

¥
-

P

[y

Let H=G - {uu’ i =0k} - {ujie1 :i=0,k-1}. Let A be the block of H that contains uy i

¢ let B be the block of H that contains «'. If there is a block of H that is not B and shares a cut-ver-

"..t’l
-

:ex with A, then call it C. Examples are given in Figures I11.5.26, 11.5.27, and I1.5.28.

u(')

vy

Figure 11.5.26: k=0 G

N '" LT,
& 13

ey
[S5 5o ]

L.

Figure I1.5.27: k=1 G

- lnaa,

’ .'..'4);'}.

Ficure [1.5.28:

Case 1 MFE)=3
Suppose that £ =0). If A has two odd blocks. then use e — «'. march and buyv. Hence we may
~me that all blocks of H are even. If A has at most two blocks. then we can start with ¢ and march N

« v o If H has atieast three blocks., then we can start with e — wore — «’ and use -

~ L - -« \
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marches or (iv) unless one of the following occurs:

1. The cut-vertices of H are {wa,wy} and ve {wa,wa}.
i1. The cut-vertices of H are {wa,w3,w4} and v = ws.

For k = Q, these are illustrated below. For either case, use u,A — u — u«’ and march to v.

’

123 u

Figure I1.5.29(a): v e {wa,ws} Figure I1.5.29(b): v=ws3

For k = 1, these two situations are illustrated below.

A
NN

u u
Figure [1.5.30(4): ve {wa,w4) Figure I1.5.30(b): v=w3
Start with e, F| = wuuy. If wo # u (as in both figures), then continue with wu,Fi U A — wa,
march through all of the blocks. and buy at v. If wa =1, then A = uyu{ (compare with Figure

[1.5.27). Continue with wuy,F{ — uui, march to u’, and buy at v.

Case 2 A(F) =

Suppose that £ = 0. It A has at most two blocks. then start with either e — u or e — u’ and
march from either u« or u” to v. Hence we may assume that A has exactly three blocks. If all three
blocks are odd, then start with ¢ — u and then march and buy. Hence exactly one of the three blocks
is odd. Itiseasy to startate and marchtovif ve PrC). Hence we may assume that ve P(C).

I A 1s odd. then B and C are even. Use ¢ — uA — w2 and (iv) unless v = w~. If v=w» and

wa 2 T(A), then use ¢ — u’. and march to v. The first case for which we must consider x = 1 is:

i wawi s Q, erdr=1,¢e8)=¢€(C)=0,wre Trd), and v = w»>
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A

If B is odd, then A and C are even. Use e = u'.B — w3 and (iv) unless v = w3. If v = w3 and

r

Ix ’ »

w3 & T(B), then use ¢ — u and march to v. The second case for which we must consider £ = 1 is:

LA
S hIL

e e mam o e~
4 P

ii. waws e Q,€A4)=0,eB)=1,€8C)=0,w3e T(B), and v= w3

T
v

s
T e

.
A, 40,00,

If C is odd, then A and B are even. If ve (wa,w3}, then start with e and march to v, finishing

- with either v.A — v or v.B — v. The third case for which we must consider k = 1 is:
07y 1. wawie€ Q,8(A)=¢(B)=0,eC)=1.and ve P(C)- {wr,w3}

For k =0, the three “hard” cases are shown below.

v
F
u’ u u’

v=wie T(A) v=w3e P(C)- {wa,w3} v=w3ye T(B)
Figure 11.5.31
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For the first case. note that u & 7(A). Then for all three hard cases, use 4.4 = « — '8 -

Pl ol A o
AL

w3, C = v,

A
2

Now suppose that k£ = 1. For the first case, we have the situation below.

-
oL
£ 4

Figure 11.5.32

e
3 -I ‘,‘ﬁ,-.‘ '.

P A

Usee = ufAUF])-wa=xu.F'> uy - uw'B—-wr, C—v,

h ]
P

M

For the second and third cases, first assume that wo = u{. Use e.F| = uu.Fi u A —

-
14
¥

I w2,C = w3.B = « and buy at v. If w2 = uf, then use ¢.F| = F{ — uu{.C - wi.B — u’ and

In buy at v.
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Case 3 AMFy=3andwre Q

Note that e(A) =€(B). Ifed) =1 and & = 0. then start with e = wore — «’ and march to v
unless v=ws e T(A) N T(B). In this case, use u,A = uwq,F — wau'.B — u’ and buy at v. If
gA)=1. k=1, andv=wre T(A) N T(B), then define w by w & wo,we P(A),and w =
up. Usee > ufA U Fi)-wr > uyw,(wwruy) = F - wru'.B — u’ and buy at v

[fetdA)=0,ve P(B),and k=0, thenuse ud UF > wau'B - v. Ife(A)=0,ve P(B).
k=1,and wr=uj, thenuse e,fF1 > F{ = uu{,B - v. Ife(A)=0,ve P(B), k=1, and wa =
uj. thenuse ¢,Fy = uuj,Fi VA - wrB > v

Hence €¢/A)=¢€(B)=0and ve P(A)- {wa}. Let A"=A - ygwn. Let Ay be the block of A’
that contains ug and A> be the block of A’ that contains w-. If there is a block of A’ that is not A» and
shares a cut-vertex with Ay, then call it A3. We give an example of these definitions in Figure [1.5.33.

Note that in our example, £ = 1 and x3 = uf so that Aj is a single edge.

Figure I1.5.33

Case31 MF )24

Suppose that k=0. If A(F) =5 orif A(F') = 4 and A’ has two odd blocks, then use e.F U
B — w», march and buy. If ve P(A;), then use e.F U B — w2 and march back to v. If \(F’) =
4. all blocks of A" are even, v & P(A}), and £ = 0, then use u.A| = u.F U B — w1, and then (ii)
or (iv).

Hence A(F’) = 4, all blocks of A" are even, v.& P(A]), and k > 0. We will start the remaining
procedures of Case 31 with e and therefore we may assume thatk = 1.
Case 311 x> = u{ (See Figure [[.5.33)

It x:= PiG, then Az exists. Thenifve Pra-j usee = uAs U F{ = u . Fo B —

wi2Ax— v, If ve Prdyy- {xz).thenuse ¢ = w' . F UB — wrds — X140 Fl = v,

T O T R N N B S Vo TOCTp Ty Fo ) '.(‘\I-‘_.I,.’, o o I EAT
IV AF i e S LOCOL ‘ b4 Calld W T Sy 4 A
4 i ot la '( NSV, 8, IO R A "' A Nn A .' » .. 5 0 .,"\' WY 's W '..“.' 0 !:%..~. o)

W O



-

- v .,

-» -

el el ¥ A

"r‘o

oy

~

Pt SO @K S Ty

A o SN

[MERT R

SERAA

s @ B e

..-._
- Sy
A @

*

- o »-
Tl

- .
-

S e
pt Pl

k"
>

b

B S 5% T N e R R T O e T N
Y,
24,7100, -.l X o

80

Ifxxe P(G),thenuse e = u' . FUB > wrA> UF{ - v.

Case 312 x2 = uj
Note that since /A1) =0, we cannot have x3 = uj. Hence we may use e,F| — uui, Ay v

F{ = u; = wa,B — w> and then (ii) or (iv).

Case32 A(F)=3

Suppose that k=0. Ifxp € P(G)orifxye P(G) andve P(Ay)- {x2], thenuse e.fF U B —
w2 and march to v. Hence we may assume that x2 € P(G)and v € P{A2). Note that A} # A2 and
£(A1)=1- g(Aa).

Ifue T(Ay), then x2 & T(A1) and €(A2) = 0 and we can therefore use ¢,F W B — w»a and (iv).
Ifue T(A1) and k = 0, then use u,A| = u,F UB = wy,A2 > v. Hencexne Q,ve
P(A-) i & T(A1), and k > 0. We will start the remairing procedures of Case 32 with e and so we

may assume that £ = 1. Therefore this summary reduces to:
xre P(G)u {ui{},ve P(A2),ur € T(A1),and k= 1.

Case 321 x2 = uf

If w: & T(A>), then define w by w & wa, w # uj, and w € P(A>). This is illustrated below.

Figure 11.5.34

If v wns, thenuse ¢,F1 = F 5 F" = (ujwwa) = ujw,A2 - wa = v and then buy at u’ to
finish with «’.B4"2 — wa. If v = w7, then use the above procedure except that it is immaterial
where the first sequence ends and, if A/B) = 2, then the second sequence is replaced by “buy atv.”

If wo& T(45), thenuse e.F| - F = F' = ujw2,42 = w2,B¥%2 — y’ and buy at v. The
last step before the purchase at v is unnecessary and unavailable if \(B) = 2.

Case 322 x> = yj
First assume that &rdy) = 1. Ifxs= Tr4)), thendefine xbyx < xs, x=uj.and x € P(A)).
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Usee o uAi U F{-x2 = xup(x2ux) > xouy,BUFUAYUF > v Ifvae T(A)) then,
since €/A42) = 0. we can use e.F) = uju'.F v B — w2 and (iv).

IferAy) =0, thenuse e.F1 = uuFi U A = Uy = wr,B8 = wir,A2 = v,

The remaining main cases correspond to terminating Algorithm I1.5.8 because F’is irregular. The
ways for this to happen are A(F') =5, A(F')=34 or A(F’) =3 and xo € Q. We will split the last one
into two cases and these will be defined later. Since F'is the reason that Algorithm II.5.8 terminated,
MF)=3and that wa & Q.

It is convenient at this time to let H, A, B and C denote graphs or sections other than what they did
during the first three cases. These graphs will play essentally the same role as their namesakes above.
Let H=G-{uu' :i=0k}- {ujuje1 :i=0k-1) - ugwn. Let A be the block of H that contains

[y

ui and B be the block of H that contains w2. We give an example of G and H below. In this example,

‘2-‘3
I u'

Figure 1I.5.35 G

= 1.

Case 4 AMF')=35

Suppose that £k = 0. If no x; is in P(G), then use e,F = wau',H — v for some y € P(G) and
then buy at v. Hence some x; &€ P(G). Let x be the cut-vertex in A thatis in B. If x = xy, then use
ef — w-u' B — x, march to u, and buy at v. Hence xy & P(G). If v e P(B) - {x}], then start
with ¢ — w(w2) and march to v. Otherwise use e.f = u'w2.B — v for some y € P(B), buy at u or
X, and march to v.
Case 3 AMF =4

Suppose that £ = 0. If no x; is in PG}, then use ¢.F — wru'H — v. Hence we mayv assume

that some x; £ P/G). Note that 4 has an even number of odd biocks.

Case 51 x3:= 2
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Suppose that k¥ = 0. If 4 has an odd block, then use e.F — w2u’.B — x3, march and buy.

Hence H has no odd blocks. Note that this means that x3 = u, for that would force A(A) = 3.

Case 511 x2e Q

Ifve P(A)and k = 0, then use ¢,F = wau'.B = x3,A = v. If ve P(B), and k = 0, then &

use uA > uBUF = v. Ifve P(B),and k=1, thenuse ¢,f; - uu1 . FIU A - uy -

wa,B = v,

Case 512 xre Q

Suppose that k =0. If v P(B), then use e,F — wau',B = x3 and (iv). We must consider

separate levels if ve P(B). If k=0and v# x3, thenuse A - x2,C = x3,BUF - v. Ifk=

/,"“;< 'Xs r'. I’, A

0 and v = x3, then use u,A = u,B U F = x3,C = x3. '

4

: Now suppose that £ = 1. All remaining procedures of Case 512 will start with e and therefore we a
" .
E; do not need to consider more levels. If x2 = uf, then unless v=x3e T(BuU F),use ¢ = u,A U
AN
'- F{ = x3,B U F — v. For this exceptional case, define x by x ¢ x3,x # w2, and x € P(B) and

- then use e — u'(uy).B - x3 = wax,(waxx3) = wa = uLF{ = uu{,A = v.
If x> # uf, then use e.F1 = uu,F{ U A = uy = w2 and then (iv).
Pl Case 32 x3¢€ Q

If x> € Q. then H has just the two blocksA and B and they have the same parity. Suppose that

“ay o
(Rt

giA)=land k=0. If ve PrA), then use e,F = wau'.B — v for some y € B. Then buy at u or

-

x~toendatv. Ifve P(A) thenuse e = w(wz).A = x2,8B = v.

'- Hence e/fA)=¢€(B)=0. If k=0and ve P(A), then use e.F = wau',B - x2,4 = v.

?_ The only remaining subcase of Case 52 (and Case 5)isx2€ Q,x3¢ Q,&A)=¢/8)=0, and N
‘ ve P(B)-{w>). If k=0, then use u,A = u.B U F — v. We will now need to consider k = 1

?, and. for some subcases, k = 2.

_. Suppose that k = 1. If x» # u{, then use e.F1 = uui,A W F{ = uy = w2,B = v. Hence we "
& K]

’

may assume that X2 = ig.
Note that A = ugx~ and that B is “most of the craph.”™ Let T = Ofug-jtf . F¢ ). Define ya, vi.... !

bv T =(ui.1y2vi... ). LetS = G-{ugi. = lk)-{ew.qug]. Let By be the block ot / that contains

- e
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u-1, B2 be the block of J that contains g, and if there is a block of J that is not equal to B and shares
a cut-vertex with B\, call it Bz. We use the notations B}, B2, and B3 since we are breaking up B.

These ideas are iliustrated below. For this example, A(T) = 4.

Figure 11.5.36 G

Case 521 AMT)24, k21

All algorithms of Case 521 start with € and so we do not need to consider higher values of &.

If we start with e — w.F{ — uu{, we have a current profit of zero, the remaining graph is a
block. and we are starting at an edge of its unbounded face. Hence we need only consider the
subcases of Cases 1 and 2 for which we needed to consider values of & other than 0. For £ =0, all of
these subcases’ solutions started with “u,4 — u — u".” If we replace that by e = u.B81 = uF{ =
ui, we have the same situation. Hence we can always start with e.

We give an example of these parallel problems below.

v=wye T(B) v=vie T(BrxU F)
Figure I1.5.37

Recall that the procedure for the first graph of Figure [1.3.37 isud = u = wW'B = ws.C = v. In
its place. we use ¢ = uB| = u.F{ — ui.Brv F - y3,B3 — v for the second graph of Figure
[1.5.37.

The reader might wonder why this approach does not work if &/T) = 3 (Case 522 below). The
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reason is that in the procedures of the first two main cases, the edge uu’ is not part of a 3-gon and so is *
accounted for by «u — «’ or uf(u’). These can be replaced by w,F{ — uj or u,F{ — u. Comparing
these two algorithms, one can say that uu’ of the first two main cases is “similar” to Fj of Case 521.
Butif A(F) = 3, then uu’ might be represented as part of a 3-gon and there is no convenient way of

transforming such an procedure to one for Case 522 and gaining a unit of profit from Fj.

Case 322 AMT)=3,k21

Suppose that £k = 1. If va = uj and v # u, then start with e = w.F{ - T — wujuj. The
remaining graph is an even block and so we can start from the edge (gu| and end at v. If v» = ugand
v=u, thenuse ¢,F| = F{ = uy = wa,J-u = uj > u. If ya =1, then uu’ is a multiple edge. If
va = X3, then use eF1 = F{ » T > ux3.J-u{ > wa = uq and buy at v. If v = wa, then the
penmeter of B2 is {ujx3ua). We illustrate this below; note that we had to contort our diagram

extensively to maintain the straight lines for edges.

- -~ - ' ____“=r - S ==

Figure 11.5.38: ya2 = w2
Use e,f1 = F{ =2 uju1.Br U F' > wa,By = v.
If v2 is some “interior” point that has not been mentioned (i.e.. B{ = B>). then use ¢.F| = F{ —

Uy — wa2,B2» = v. Hence va e Q- {ug}. This is illustrated below for k=1 and k£ = 2.

te
)

u u
Figure [1.5.29 k=1 k=2
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We now resume the assumption that k = 1. If ve P(By), then unless v=ya € T(Bq), use
eF1 = Fi > uy = wirBry—>y1,Bi—=v. Ify,e T(B)), then we can use ¢ — u,B| =
wF{ = w1 ,Br» F — vforanyve P(Ba).

Hence ve P(B2)- {y2]}.

If&(B1)=1, then use e = u,F{ = u,B) = ya. What's left is an odd block and we are starting
at the vertex v7, a vertex that we do not need to worry about ending at.

Hence €(By) = 0.

If k£ = 1, then start with 4,B14¥2 — y2. Again we are left with an odd block and we are starting
at y2. Note that the first step of the algorithm is justified since A(B1) 2 4 and this is known because
v2 = ug. If k=2, note that y2 # uj. Start with e,F| - uu1.B} U F{ = v2. Again we are left with
an odd block and we are starting at y».

We are left to consider A(F’) =3. Recall that H =G - {uu’: i =0k} - {ujutjsy i = 0,k -
1} - igwa, A is the block of A that contains ug, and that B is the block of H that contains wa. It is

convenient to immediately split this case into the two cases x2 = i and x2 = u.

Case 6 AMF') =3 and x2 #
Suppose that £ = 0. Note that x2 = u’ since we have no multiple edges. Hence A(B) 2 3. If
€ PrA). then unless v=x1e T(A), use e.F = wau'B — 13,4 — v.
For this exceptional case, if x = 0, then use u,A - u,F UB — v. Ifk=1, then use e,F| —

uuy,Fi v A = x2u,F U Ba — v. Note that the step “uui.F{ W A — xauy” is our first use of

*" (ii1).
\ Hence ve P(B)- {x2}. Note thaterdj=1-¢(B).
-;:: [tk =0and &/4) = 0. then start with u,A%%2, - x>. The remaining graph is a block and we are
b row starting at the vertex x2. If £ = 0 and €(4) = 1, then start with u.A — x3. Exactly the same sit-
g uation as before now exists.
;2 If k=1 and &/A) = 0. then start with e.F] = uujF{ U A — u; = war. The remaining graph
is an odd block but we are now starting at a ventex that we do not need to be able to end at. If & = 1
::: and €A = 1. then start with ¢.F| — uu,F{ v A — x2up.F' = x>w~. We are now starting at the
v
5.
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edze x2wa but the remaining graph is even.
Case 7 AMF') =3 and x> = i
Suppose that k= 0. If v = u, then use e,F = wau',G - u = uj — u. Otherwise, we apply
(vii) after e,f = F’ — ugw» unless (u'wa,waig),v) is a difficult triple of G - u.
Hence we have a difficult miple. This is the most difficult part of the proof. We will now fre-
quently redefine A, A, B, and C. We classify difficult triples as type i. or type ii.. Type i. difficult

triples are the ones that have a 4-gon (see the derinition of difficult triple).

Case 71  Ditficult miple type i.
We must resort to considering levels £ =0, 1, and 2. Define sections A and B, as well as the

vertex v that they have in common as in Figures I1.5.40(a), I1.5.40(b), and I1.5.40(c).

v

v
N

k=12

Figure [1.5.40(a) Figure 11.5.40(b) Figure I1.5.40(c)

If £ =0, then use w(1§).F = w'.B - y,4 > v. If k=1, then use u,A = xawaf{ = F =
Fi—>uwB —>yandbuyatv: Ifk=2 thenusee > u',B > u'F = Fr— F3 — uu3,A U
F{ = v.

Case 72 Difficult miple type ii.
We immediately separate into cases for levels 0. 1, and 2 and we define H, A. and B for each of

these. In fact we make very sporadic use of the fact that (u'w~.w~ig,v) is a difficult triple of G -

Case 721 k=0
Let T = (wau'v) = O/wzu'.F). Because F and F’ are symmetric with respect to «, we may as-

sume that 7' = Onwgwa,F') is a 3-gon (wgwav’). Let H = G -E(F) -E(F’) and let A. 8. and C be the

LY
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o blocks of H that contain gy’, y'w?, and yu' respectively. Except A, each of these concepts is illus-
L ! trated below.

.

=

. »

-

o
g v Figure I1.5.41

R~

‘ {: Since both (u'wa,w2uj,v) and (ujwa,wou’,v) are difficult triples of G - u, A and C are even and
';' . ve PiB)-{yy'). LetT" = O(y'wa,T’).

S
" # If AM(T") 24, then start with e.Ff = F' = ujwa,A U T’ — y". Then march through the blocks
& ;:'. of B -y'w2toy. This is possible since y is in the last block of the march and either y is not equal to

' the cut-vertex between the last two blocks or the outside face of the last block has length at most four
r. .
{ i by Lemma I1.5.7. The march, together with T" will gain one more. Finish with y,C — ' and buy at
.; - V.

! If A(T") = 3, then define y" by T" = (y'way”). If y* & P(B), then start with ¢ = u.F' —

. ugw2,4 O T — v'. What's left is an odd block and, since v # v’, we can finish atv. If y" =y,

; thenuse e » W' TUC 5w, F =5 ugw2,AUT = vy B-wir— v,

- Hence we may assume that y” € P(B) - (y’}. Let By be the block of B - way’ that contains y°
{ - and B be the block of B8 - way’ that contains y. Note that €(B|) = €/B2). This is illustrated below:

& l').‘

I

'0

s

(

4o

g Figure [1.5.42

\ - IferByy=1.thenuse e = u' T U C = wavBav" By = vV.AUT = wyws,F = u and buy
o at v,
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IfeB1)=0and A= gy, thenusee > W ,CUT 5wy Br o wiv' T" 5T = F' >
1j,AUY" — v’ B1¥¥" — v” and buy at v. The last step is unnecessary and unavailable if A(By) = 1.

Ife(B1)=0and A =ugy’, thenuse e,F =5 F' =5 T = wav' ,T" U By = y'.BaY'W2
»,C = 1’ and buy at v
Case 722 k=1

For this case, we ignore almost everything that we now know about the graph and pursue an en-
drely different line that involves a different difficult miple.

Use e,F1 = F{ = F’ — ujw- and then (vii) unless (uwj,ujws,v) is a difficult triple of G -
uy-e. LetT = O(uui,F{). Let H=G - uy - {uui,e}.A be the block of H that contains «, and B be
the block of H that contains 1. Let y be the cut-vertex between A and B. Note thatv e P/B) - {y}.

If MT) = 4, then start with 4,4 — y. The rest of the graph is a block and we are starting at the
vertex v.

If MT)=3,thenuse u.A - u,F{ = F|{ - F = u'w2.B — v,

Case 723 k=2

For this case, we will use a sequence of up to three difficult tiples to “box in” v until we have
identified enough of the graph to write down procedures for the remaining cases.

We start by using eF| = F2 — F3 — F’ — wau3 and (vii) unless (w3, uswn,v) is a ditficult
mipleof G- E(Fy)-us. LetT = Ofupd,F3). Let H=G - E(F1) - u> - uj18, A be the block of H
that contains uy. and B be the block of A that contains is. Let v be the cut-vertex between A and B.

Note that ve P(B)- {y}. Examples corresponding to the types of difficult tripies are shown below.

v v

Figure I1.5.43

famTr=3and v=uf, thenuse efF] = F{ =» nuf B UF3UF UF —v. IfxT)=4 and
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v = uj.thenuse e.F)] = uu{, A UF{ > vBUF;UF UF > v. IfNT)=3andy =y,

then use the same procedure. Hence we may assume that A(T) = 3 and y = j. This is shown be-

low.

=
/]

Figure 11.5.44

We know from the definition of case 72 that (u'wa,w2u5,v) is a type ii. difficult triple of G - u2 -
E(Fy). LetT' = O(u'wy,F). Again we redefine A and B. At this point, it is simpler to appeal to
diagrams for the definitions of the face T and the sections A and B. These definitions, together with

the definition of the vertex z are given in Figure I1.5.45.

Figure I1.5.45

Note that ve& P(A), as indicated in Figure [[.5.45 and AM(T")=3. Use e, = u'B' >
W.F = F' = F3 =5 T — ujus and (vii) unless (wad,usug,v) is a difficult triple of A. Theretore,

we have either Figure I1.5.46(a) or Figure I1.5.46(b), again using the diagrams to define A;. 4>, and

-
-

At this point, v has exhausted all of its hiding places. Note that :"must be in P17 ~ecuu-¢
relative positions of v and =" and the fact that v € P(G). For etther case. start an o f

A= W F 2 F'—= F3 =5 T - wiuy. For Figure [1.5 460, fimish woen 1

“and buy at v. For Figure [1.5.46(b), {imsh with :du{ — + &
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Figure I1.5.46(a) Figure I1.5.46(b)

We have now established each of the induction steps of Theorem [1.5.5 and have therefore com-

pleted the proofs of Theorem I1.5.5, Lemma I1.5.2, and Theorem I1.5.1. 4

As another application of profitable representations, we now show how they can be used for
proving the bound for 2-connected outerplanar graphs (See Theorem 11.4.4). Suppose that G is
2-connected and outerplanar and let R be a profitable representation. From (IL.5.5b) and A(G) =
n(G), we have 2((2a(G) - 3) - IRl) = p(R) + n - 4 and, because n is odd implies that p(R) 2 1, we
also have 2n(G)- 3 - IR12 L2922 | or IRI< 20(G) - 3- Ta(G21- 2) <L3n(GY2] - 1.

6. Connected Graphs
In §I1.6, we establish bounds on / and /3 for connected graphs in terms of n. In particuiar, we

prove the following theorem.

Theorem II.6.1. For any connected graph G with n vertices, where n 2 4, we have the follow-
ing:

@ I G = K yaina7 then (G) =Ln2a]+ 1. If G e (K4.Ks), then [3(G) = Ln%/a] + 1.

(i) IfGe {KeK5.K 1 in1)s then I3(G) <Ln?/al.
Moreover, for any n 2 4, there exists a graph G'with n vertices for which /(G’) =|.n2/4] and so (ii)
is best possible.

Proof.  For the first assertion of (i), it is clear that # K, w22 = 1. Since Ko o i1y is -
angle-free. (K. \in 17pnt) = 12(Ki pp fgny = m = 1 =Lni2 w21+ 1= Ln2id)] = 1. The second
assertion of (i) be verified directly.

By removing one edge {from K /2 o7 WE ODtain a graph that demonstrates the fast statement in

LR IR

T T T 0
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% the theorem.
ﬁ For (ii), we use induction on n. Because of the nature of the proof, we must verify n = 4 and
n =5 for our basis case and we do this by finding representations for each graph with four or five
0
5_:: vertices.
L Now suppose that G = Kl_n/?. 2] and that n 26. If G € {K¢,K7), then we use one of the rep-
g resentations in Figure 11.6.2
¥ 1 4 ]
% 2 2 &
3 ] el
v Figure I11.6.2(a)
Y
1l 4 3 7 4
% 2 6 S
\ 3 2 1 7
. Figure I1.6.2(b)
Y
- IfGe (K4.K5.K6.K7.K pj2 )i n21}> then, there is an edge uv such that G - {u,v) e
6 (K4.K5,K\ (p.2)72 1 (n-2)21) 2nd, by induction, (I3(G - {u,v}) <l (n f’“ 1=Lln2/4]-(n-1). Let
H=G - {uv}]. We will be done if we can prove:
g I3(G)<I3(H) +(n-1) (11.6.1)
g Let R" be an optimal depth-3 representation for A and let w and x be the vertices that correspond to

the first two intervals of R". The situation is depicted below.
o X

<
<
X
W

S Figure I1.6.3: R’
o
We adjust R’ to form a representation R” of H U {uz:ze Ng(u)} v {(vz:z€ Ngiv)}. Seven
: cases and the corresponding adjustments are shown in Figure I1.6.4. Any other case can be reduced to
:‘: one of the above seven by exchanging the roles of 4 and v and/or of w and x.
_ i For each possible representation R”. IR"I < IR1+ 3 = [3(H) + 3. Moreover, there is a displaved
o 'i"s u-interval 8y, a displayed v-interval 8,. and an intersection 8, of some u-interval and some v-interal
Zg? ‘ that intersects no other interval. For each v & {u.,v.wx], place a small y-interval inside 8,, 6., or
¢
E::, Ko Bu4v, depending on whether ¥ is adjacent to u but not v, v is adjacent to v but not u. or v is adjacent to
e
' " both «and v. If v is not adjacent to either u or v. then do not add any y-interval. Call the resulting

" O o 2 5] 0 O y " O, ) .l AU €71 “".‘(. T . ....‘ J ‘0.“...". ".fl
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representation R. By this construction, RIS (I3(H)+ 3)+n-4=13(H) +(n-1). Hence, we

have established (I1.6.1).4

v '
vV )%
I v u 7]
W w w
U W, U X U w, il e Xx U W, 0o X
Ve W, Ve X ‘ Ve w,veéebx Ve w,ved X
Y X y
w,ooou X U
w w
U w uex U w, uehx
Ve w,veé x Ve w,ve x
v v X
A A
w w
U w,uehx ued w uex
Ve w,ved X Ve w,veh x
Figure I1.6.4
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III. THE TOTAL INTERVAL NUMBER AND THE NUMBER OF EDGES

e B Y

1. Preliminary Results

In §111, we consider bounds on the total interval number in terms of the number of edges of a

PR

: graph. For all classes in §III for which we establish a best possible upper bound, there exist triangle-

free extremal graphs. Therefore, /2 is very important and we will rely heavily on trail covers.

When there are no restrictions on the graphs, it is easy to see that, given m, the only graph with m
edges that requires one trail per edge is m copies of K2. Hence, for all graphs,/ </2<2mand [ =
2m only for m copies of K3.

We now establish the bound for connected graphs. Recall the set P of graphs of §II.1. Itis clear
‘ that if G € P, then I(G) = -§L€:)L2- .

Theorem IIL.1.1. If G is connected, m(G) > 1, and G € P, then [2(G) <

BT &3 G

Sm(G) +2
—_—

e

Proof. Let G be a connected graph that is not in P. If G is a tree, then the result follows from

L S B S

~

Corollary II.1.12 and the remarks following it. Hence we may assume that G has a cycle. If it has

two or more cycles, then choose any edge that is in a cycle and snip (Lemma 1.6.2(iii)) it. The number

L4
€

xS

of cvcles decreases, the number of edges remains the same, and the trail cover number does not de-

crease. Hence we may assume that G has exactly one cycle C and that if we snip any edge of the cy-

g

cle, we obtain a member of 2. For example, if m(G) = 10, then G must be one of the graphs below.

TN TN

Figure IIL.1.1

- Gy @

e LA

- e

. )
For such graphs, we have t=1 + m4 6 and hence /> = 5”:1 =< 5m4+ 2 ..

We can modify the proofs of Corollary I1.1.12 and Theorem II1.1.1 to show that, given m, the

only graphs with m edges for which [ = 5”34' 1 are trees that arise from subdividing one edge of

-
..S:r.‘

the member of # that has m - 1 edges, or are wees tormed by two augmentations at black vertices and

m- 11 ) . .
I augmentations at white vertices.
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2. Classes Defined by Minimum Degree
In §II1.2, we show how placing a lower bound on & tends to decrease the maximum value of //m.
The proof of the best possible bound seems quite difficult for § 2 d for d 2 3. We will concentrate on

requiring 8 2 2, where we have a complete solution.

Theorem IIL.2.1. If Gis nota 4-cycle, a 5-cycle, or a 6-cvcle, and §G) 2 2, then I(G) <

_T__9m(G) x1l Furthermore, for any m 2 8, there exists a graph G with m edges for which /(G) =

L 9—”"%”—” and so the result is best possible.

Let fiG) =9m(G) - 8/(G) + 1. We will prove an equivalent version of Theorem II1.2.1 that we
call Theorem II1.2.1".

Theorem III.2.1'. If G is not a 4-cycle, a 5-cycle, or a 6-cycle, and &(G) 2 2, then f(G) 2 0.
Furthermore, for any m 2 8, there exists a graph G with m edges for which 0 <f/G) < 8 and so the
result is best possible.

We first give the extremal graphs that show that Theorem [II.1.1' is best possible. A (1,3)-tree is
a tree for which each vertex is of degree 1 or 3. Let G’ be a(1,3)-tree, n; be the number of leaves,
and n3 be the number of branchpoints. Since m(G') = nj(G) + n3(G) - 1, there are ny leaf-edges and
n3 - 1 edges between branchpoints. Hence if we add isolated 4-cycles at each leaf and twice subdivide
the edges between the vertices of degree 3, we get a graph G that satisfies:

m(G)=3(n3(G)- 1)+ 5n1(G) (II1.2.1)

The trail cover number of G is the same as the trail partition number and this is half the number of
odd vertices. Hence we have:

Gy = ALUG) > nC) (I11.2.2)

Counting the edges of G' by m(G) =w and also m(G) = ni(G) + n3(G) - 1, we get:

n(G)-n3G)=2 (I1.2.3)
Combining (II1.2.1), (ITL.2.2), and (II1.2.3), we see that 8¢(G) - 1 = m(G). Subdividing anv

edge up to seven times gives graphs in the other residue classes of eight for which the bound of

Theorem III.2.1" is sharp.

h L)
ot sttt s




P T N N O v T YT T T TORrY R

95

Most of the rest of §I11.2 is devoted to establishing the upper bound of Theorem II1.2.1'. For any

graph G we color the edges and define the cut-graph K(G) as follows. Color all cut-edges red and

the other edges blue. Let G, (Gp) be the subgraph of G that is induced by the red (blue) edges. Let

K(G) be the intersection graph of the vertex sets of the components of G, and Gp. We will soon see

that a red component and a blue component intersect in at most one vertex. Therefore it doesn't matter

™ if we define K(G) as a simple graph (as we have) or if we define an edge for each member of the

2 intersection between sets.

= For X e V(K(G)), we will use “X’ to refer to either the vertex in K(G) or the subgraph of G that
E“: is induced by the vertices of X. If X & Y in K(G), then select ¢(X.Y) e V(X) N V(Y). If we

want to distinguish which graph we are considering when applying g, we will use a subscript
(e.2.9G).

For the reader that is familiar with other intersection graphs (e.g. the block cut-vertex tree), the
proof that K(G) is a tree is routine. We write it out here.

If X corresponds to a red (blue) component, then color X red (blue). This coloring of the cut-

|~ R €5

graph is called the canonical coloring. A coloring of any graph is called proper if X & Y imples

» 'r
P

LY
‘“3 that X and Y are different colors.
! Lemma III.2.2. For any graph G, K(G) is a tree.

Proof. Itisclear that K(G) is connected. We must show that it has no cycle. - We first show

o4

that the canonical coloring is proper. If X «> Y and X and Y are the same color, then there exists

-
1

ve V(X) N V(Y). Since components of the same color do not intersect, X and Y must have differ-

*
ent colors
:E, Next, we show that if X is red, then X is a tree. Red edges are precisely those that are in no cy<le
, of G, and deleting the blue edges cannot introduce any cycles. Hence X has no cycles and. since it is
¥ connected. X must be a tree.

Now suppose that K(G) has a cycle. Here we specifically allow multiple edges to correspond to

==

some intersection with at least two vertices. Suppose that C = (X,... X,.1) is the smallest cycle in

==

KiG). Since the canonical coloring is proper. we may assume that X is red and both X and X.; are

a blue. Note that. since we have not eliminated the possibility of multiple edges. it is possible that X| =

I NN (N A B T MM Y IR TN ML) O f SLX AN B ¥, D N R R S N N OO OB DO OO XS
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Xi-1 (e, k= 1),

For what follows, take all subscripts modulo k. Choose xj € q(XX;+1). If x;=xj, and j > i,
then (Xo,....XiXj+1,....Xk-1) is @ smaller cycle than C, and so we may assume that the x;'s are dis-
gnct.

Let P; be a path within X between x; and x;4;. Itis clear that PgPy,...,Pr.1 is a cycle within G.
But since xg # x1, Py is a set of red edges, each of which is in a cycle. Each of these edges is there-

fore not a cut-edge, contradicting the definition of a red edge. o

We assume the canonical coloring of the edges for the rest of §II1.2. A cycle C with exacty one

branchpoint u is called a pendant cycle and u is called the base of C. Let F be the set of graphs G

that satisfy:
i. 3G)=z22
ii. G is connected.
iii. G has no pendant 3-cycle whose base is of degree three.
iv. mG)27

Let f(G) =9m(G) - 812(G) + 1. Note that f(G) =m(G) - 8¢(G) + 1 and that f(G) > 0 if and
only if 8G)>m(G) + 1.
For a graph G, let nN(G) = 2m(G) - n(G). Most of the proof of the upper bound is an inductive

argument on N that shows G < ~ implies that f{G) 2 0.

Lemma III.2.3. Let G be a graph with minimum value of n(G) such that G € = and 84G) >

m(G) + 1. Then G has the following properties:

(1) If uv € E(G), and u and v are branchpoints. then uv is red.
(i1 If w,vwe E(G), d(v) =2, and both u and w are branchpoints. then uv and vw are both
red.

(1)  If u, v, and w are bivalent and u & v & w, then u«, v, and w are the bivalent members of
an isolated 4-cycle whose base is of degree 3.
fiv)  If C is a pendant cycle with base u, then C is a 4-cycle and dfu) = 3.

Proof. (i)and (ii): From Lemma 1.6.2(iii),(iv), snipping and double snipping do not de-
crease the mail cover number. Both operations leave m unchanged. increase n and hence decrease 1.
Therefore, if the result of either operation is a member of 7, then that would contradict the minimality

of G. By the hypotheses. both operations do not create a leaf or a pendant 3-cycle and hence they
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must disconnect the graph. Hence, uv (in (i)) and both uv and vw (in (ii)) must be cut-edges.

(iif): Let H =G e uv; by Lemma 1.6.2(i), «(H) = t(G) and simple arithmetic shows that

NH)=n(G)-1. Hence He &. If m(H) <7, then G is a 7-cycle and f(G) = 0. The only other
property of * that H can violate is iii. and, if this is the case, then u, v, and w are as asserted.

(iv): By (iii), we may assume that C is a pendant 3-cycle (uvw) and, by property iii. of F,
d(u) 2 4. Let H be the graph that results from removing w and then snipping uv. Note that i(H) =
1G)and N(H) <n(G). Itis clear that H satisfies the first three properties of F and, if m(H) < 7, that

f(G)=0. Hence H € F, contradicting the minimality of G.s.

Let 7” be the set of graphs G in F with minimal n(G) such that f(G) < 0; we will show that F* =
0. fGe 7, Lhc.n, by Lemma I1.2.3(iv), every pendant cycle is a 4-cycle whose base is of degree
three. We strip the pendant cycles (leaving the bases) from such a graph G to obtain the reduced
graph G’. By the leaflessness of graphs in F, it is easy to retrieve G from G, G has a pendant
d-cycle at a vertex uof G’ if and only if uis aleaf of G'. Let E'= (G': G & F’}. To prove
Theorem II1.2.1', we will show that £’ is empty.

For any G’ € Z’, the canonical coloring is inherited from the corresponding G € 7" the edge in-
cident to a pendant cycle is red and stripping the pendant cycles merely deletes a component of Gy that
is a blue leaf of K(G).

A staple graph is a graph that is obtained from some multigraph . called an underiying
muitigraph by twice subdividing each edge. It is easy to show that, unless G = C3; for some &,
there is 4 unique underlying multigraph. For a staple graph G with underlying muldgraph H, we call
the vertices created during the subdivisions of the members of E(H) new vertices and the other ver-
tices old. We will not need to refer explicitly to the underlying multigraph; we will simply refer to
new and old vertices. By considering the edges incident to new vertices, it is easy to see that the trail
cover problem of a staple graph is the same as the problem of partitioning the edges into trails and the

answer to this problem is half the number of vertices with odd degree.
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: Lemma II.2.4 LetY be a component of G5. Then v

’ (i)  Yisa staple graph. 3
R (i)  The only vertices of Y that are in some component of G; are old vertices.

. (i) &Y)z2 3
: Proof. From Lemma II1.2.3, we see that the only blue edges of G’ are paths <u,v,w.x> )y

q where u and x are branchpoints and v and w are bivalent. Hence Y is a staple graph and the only ver- , )
%, tices of Y that are in some component of G are branchpoints of G’. Hence (i) and (ii) are proved. o
3 We now prove (iii). Suppose that x € V(X) N V(Y), (and hence X is red), and dy(x) = 1.

?' Define y by xy € E(Y). Then xy is in some cycle of G’ but that cycle must include at least one edge ‘
ﬁ of X since, except for y, all neighbors (in G*) of x are in V(X). This contradicts the definition of a red \

': edge. s 3
- Lemma IIL2.5. Suppose that G’ € =’ and, in the canonical coloring of K(G’), X is a red leaf. v
3 Then X is a single edge. |
;’ Proof. In K(G’), X has exactly one neighbor Y, or X is the only vertex of K(G"). In the first 3
:, case, let w = g(XY) and in the second case, let w be a peripheral vertex of X. In either case, let u be

35
[

at a maximum distance (in X) from w. Note that « has only one neighbor v and, if the lemma is false,

then v # w. Furthermore, v has only one non-leaf neighbor v".

:: Suppose that dg(v) = 2. Let G” be the graph obtained from G by contracting the edge uv. Since i
i‘l G" is connected and the contraction of uv does not introduce any leaves or pendant 3-cycle, it follows 3
(‘: thatif G" e F, then m(G”) <7 and som(G) =7. But then G has a leaf and hence G" € 7.
' Because of the pendant 4-cycle containing u, it is clear that #G") = #G). Moreover, it is easy to ver- :
ify that f1G”) = f(G) - 1 and n(G") = n(G) - 1, conwradicting the minimality of G. :
! Now suppose that dg(v) > 3 so that v has at least three leaf neighbors u.u’, and u” in G’. Let G~ .
‘ be the graph obtained from G by removing «, u’, and the pendant 4-cycles containing u and u’. Itis ‘
. easy to verify that G”" € . By using one trail to cover E(G) - E(G"), we see that (G) < tG") + | V.
and so f/G") < f(G) - 2. Thenn(G")=n(G) - | contradicts the minimality of G.
' Finallv suppose that dg(v) = 3 so that Ngrv) = {w.u'v’'}, where i and «’ are leaves in G*. If ‘_'_
‘EE dg(v') 2 2. then we can mimic the above argument to get the result, this time using the trail o cover 7
q
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vv’. Hence we may assume that Ng"(v’) = {v,v"} and we have the situation illustrated below.

Figure II1.2.1
Now let G* be the graph obtained from G” by adding vertices x and x’, and edges so that
(v'v'xx’)is a 4-cycle. Note that it is a pendant cycle of G* and that its base is v”. This is illustrated

below.

Figure II1 2.2(a): G Figure III 2.2(b): G*

[t is again easy to verify that G* € =. Since 1/(G) = n(G) - 9, the minimality of G shows that
there exists a trail cover 7* of G* such that 8IT* - 1 S m(G*). Moreover, it is clear that we may as-
sume some trail T* € T* raverses the new 4-cycle. If we remove this 4-cycle from T*, then we do
not increase the number of trails and the edge v"v’is covered. Hence we have a trail cover 7" of G”
and 17" = I7*I. Then T=T" U (T} is a trail cover of G, it follows that f(G*) < f(G) and so

f1G)>0.a
Theorem II1.2.6 IfG e 7, then f(G)2 0.
Proof. Suppose not: let G € 7 and the corresponding G’ € =’ be as constructed earlier. By

Lemma lI1.2.5, we may assume that each red leaf of K(G’) corresponds t0 a single edge. This elimi-

nates the possibility that K¢G'} is a single red vertex. If K(G’) has a peripheral red leaf. then let Y be
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its neighbor; otherwise let Y be a peripheral blue leaf. Y has at most one non-leaf neighbor. If Y has a
non-leaf neighbor, then call it W, let w = g(YW), and let Q be the component of G - E(W) that con-
tains Y. If Y has no non-leaf neighbor, then choose w € V(Y) arbirrarily and let Q = G. Let R be the
collection of red edgs that correspond to the leaf neighbors of Y (R may be empty). Note that Q con-
tains Y, together with R and the pendant 4-cycles. In Figure I1.2.3, we illustrate the situation. In that
figure, we have put a leaf-edge of G’ incident to w to emphasize that such edges and their corre-

sponding pendant 4-cycles do not belong to Q.
Ve O

Figure I11.2.3: G (Note:Y is a staple graph.)

Now fix some underlying multigraph A of Y. Let n1 be the number of odd vertices in 4 and n» be
the number of even vertices in H. Let ny = ny) + n17, where n1 is the number of odd vertices in H
that are incident to members of R. Let ny = n31 + n2a, where n2; is the number of even vertices in 4

that are incident to members of R. Since H has no vertices of degree one, and m(Y) = 3m(H),

3ny +2ny . .
mY)23 -J;,-—‘- Since each red edge and corresponding pendant 4-cycle has five edges, we
have:
. 3nyp + 20y L
miQ)2 3 =122+ 5(npy + n2y) (I11.2.4)

Now we count the odd vertices of Q. Each member of R provides one from the base of the corre-
sponding pendant 4-cvcle, each even verntex ot ¥ that is incident to an edge of R provides one. and
cach odd vertex of ( - R that is not incident to any edge of R provides one. Dividing by two to com-
pute the number of trails necessary o partition the edges gives:

It ny=-np =0,
[fny=-nayy>0.

then 1rQ) = 1.

then :1Q) € ny/2 = ny. (IL2.5

Note that 2 cannot be a4 6-cycle since G has no pendan: 6-cvcle and hence myY) 29, Let Thea
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trail partition of Q. From m(Q) 2 9, (111.2.4), (1I1.2.5), and np 2 n23, we have #(Q) < 8m(Q). Let
Q' be the graph induced by the vertices of the non-trivial component of G - E(H).

If f(Q°) 20, then we can cover Q' and Q separately and show that £(G) 2 0. Hence we have
f(Q’) <0 and, by the minimality of G, that Q' e F. It then follows that either m(Q’) < 7 or else
Q)< 2.

Suppose that m(Q’) < 7. Forsome T € T, T visits w, we can route T through Q° and have T
cover £(Q’) before contnuing. Therefore i(G) = t(Q). But it then quickly follows that f(G) > 0,
contradicting G € .~

Hence &Q°) = 1 and Ng(w) = {w’}. First assume that dg(w) is odd. Then in T, a trail T ends
at w and so can be extended to w’ and, if necessary, beyond to a branch point; call the resulting set of
mails 7. Note that I71 = IT"l. Remove the edges of 7" from Q' to form Q". If f(Q") 2 0, then we
can take a trail cover 7" of Q”, together with 7 and get a trail cover of G with sufficienty few trails.
If f1Q") <0, then, by the minimality of G, Q" & F and it is easy to show that this implies that
m(Q") <7. Butthen T can be extended to cover Q" and again we have a trail cover of G with suffi-
ciently few trails.

Hence we may assume that dp(w) is even. '

We will again cover Q and Q' separately. Define Q" to be the graph obtained from Q’ bv adding
two vertices and edges so that w and w’ are part of a 4-cvcle. Itis clear that Q") = 1 Q”).
Furthermore, it is again easy to eliminate the possibility of Q” € F and so we may assume that
8e0Q”)-1<m(Q”). From Q)< n1/2 + na1, m(Q) 29n1/2 + 8n21 + 3n32 + Snyq, and 22 2 1,
we have 8:¢ Q) <m(Q)- 3. Since 8¢/Q°)=8¢Q")<m(Q")+ 1 =m(Q’) + 3, we have 8#G) <
1Q)+8UQ)sm(Q') +3+m(Q)-3=m(G)<m(G) + 1, again contradicting f(G) < 0.4

We are now ready to prove Theorem II1.2.1. We verify directly that if m(G) <7 and G &
{C1.C5,Cs), then f{G) 2 0. From Theorem III.2.6, we may assume that G has a pendant 3-cvcle
whose base s of degree three. Repiace each of these 3-cycles with a pendant 4-cycle with the same

base to obtain the graph H. By Theorem [11.2.6, A has a depth-2 representation R such that IRl <

OmiH) - 1 o .
—_ For every pendant 4-cycle (uvwx) with base u, we may assume that R contains a

configuration as in Figure [I1.2.4(a). For each such cvcle that must be replaced by a 3-cvcle (ivw) to
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&
?;':: return to G, we modify R as in Figure II1.2.4(b).
‘g:!f U
?._.‘r i W i 14
e 2 I —
, Figure I11.2.4(a) Figure II1.2.4(b)
o
:’15' This saves one edge and two intervals. Hence, if there are k such 3-cycles, then /(G) <
S 9(m(G)8+ LILR 2k = 9—"’—(6—3):—1- 7k/8. This completes the proofs of Theorem II1.2.1' and
o
::‘ Theorem I11.2.1.
o
H Theorem IIL.2.7. If Gisa graph, and &G) 2 2, then [(G) € 5m(G)/4. Furthermore, for any
L) * .
3;.",0 . m 2 8, there exists a graph G with m edges for which /{G) = 5m(G)/4 and so the result is best possi-
A
’::t‘. ; ble.
(B Proof. We establish best possible first. If m =0(mod 4), then let G be m/4 copies of Ca.
e
oo For other residue classes, subdivide edges of one of the Cy's.
" Let v G) = I(G)/m(G); we must prove that & < 5/4. Let G be a graph that maximizes //m. Let
¢ -
{ B(G)=max{alH): H is a component of G}. We have a/G) < B(G), with equality if and only if,
oo
( ,-;J for every component H of G, o(H) = «(G). Hence we may assume that the components of G are
"“‘:’ identical. Let H be a component of G.
(X
'_'); From Theorem II1.2.1, if m(H) > 6, then a(H) < 8/7. If m(H) < 6, then we can verify directly
R
X j that the maximum value of o is achieved uniquely by Cy.A
s
5_:; We finish §111.2 by showing that for any positive integer d. there exists €4 > 0 and an infinite se-
e
{ 'y quence of graphs with & = d for which/ > (1 + €4)m. This is of interest because it is not true for the
AN
LS
'\: two other connectivity parameters; if K'2 4, then/<m + 1.
O
LVl
Mok Given d and r, let G4, be the graph formed by the following procedure. Start with r disjoint copies
o -
R of K44, each with one distinguished vertex. Add a new vertex u and edges from u to each of the dis-
h _'.'_‘." +
Lo tinguished vertices. We have Gg.,) = L r, 1 | and m(Gdy) = r(d? + 1). Simple arithmetic then
a'. -f‘ﬂ' -
. shows that. for any r, we can use g4 = W_U For this construction, we can say that it takes
X -(d« =+
:5 d 21d? = 1) edges to force an additional trail. We do not claim that this is the minimum but we do
A
:$. " believe that the number of edges necessary to force new trails grows quadratically with d.
R
®¢
0;. W
2
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3. Classes Defined by Connectivity Parameters
In §I11.3, we resolve the extremal problem for /(G) in terms of m(G) for some connectivity
classes. We consider edge-connectivity x and the vertex-connectivity x. In particular, we prove the

following.

Theorem IIL3.1. If G is a graph with x'(G) 2 2 and m(G) 2 9, then [5(G) < L10m(G)/9].
Furthermore, for any m 2 9, there exists a 2-edge-connected graph with m edges for which I =

L10m/9] and so the result is best possible.

The examples that we will use to show that Theorem II1.3.1 is best possible are 2-connected,

which yields:

Corollary III.3.2. If G is a graph with x(G) 22 and m(G) 29, then [>(G) < L10m(G)19..
Furthermore, for any m 2 9, there exists a 2-connected graph with m edges for which / = 10m/9

and so the result is best possible.

In Theorem OI.3.1 and Corollary II1.3.2, the upper bound is for the parameter I3 whereas the
“best possible” clause is in terms of /. Therefore the statements are slightly stronger than if they were
completely in terms of [ or /». It is easy to show that if G is a graph for which m(G) <9 but G has a
triangle, then /(G) < 10m(G)/9.

As mentioned earlier, Andreae and Aigner showed that if X' 24, then/<m + 1. We will con-
wrast that with x = 5 by showing that there exists € > 0 and an infinite set of 3-connected graphs for
which 1> (1 + €)m.

We now begin the discussion of Theorem III.1.1. Phrasing it in terms of trail covers, we want to
show that //G) < m(G)/9 for 2-edge-connected graphs, and we want to construct triangle-free

2-connected graphs for which ¢ ={m/9].

We first establish that Theorem III.1.1 is best possible and at the same time eliminate staple graphs
from consideration for violating the upper bound.

Let G be a 2-connected staple graph and let G’ be the underlving multigraph of G. Let n; be the
number of vertices of G’ that have degree i. Then m(G) = %-z;lin,- and /(G) = ’E‘Z i is odg/i- Since

G is 2-connected. n) = 0 and it quickly follows that ¢/m is maximized when n3 = n(G’). In this case,

‘|5
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B t=m/9.
e
' Therefore, the staple graph of any 3-regular 2-connected multigraph shows that Theorem O1.3.1 is
;{.“, best possible; these are the only staple graphs achieving the bound and none exceeds it. An example
"-'_?I: appears below.
N
. ’Q
b
WX
'fee
K
¢ G’ G
R Figure I11.3.1
"ol
;;s N These graphs are all 2-connected, and therefore Corollary III.3.2 follows from Theorem II1.3.1.
0
:::.f Subdividing any edge of such a graph gives the best possible result for graphs of other residue classes
@
2 of nine. Furthermore, we may now exclude staple graphs when considering the upper bound.
!
; ‘;z A unit is a maximal induced 2-edge-connected subgraph. A trivial unit is one with no edge, a non-
WL trivial unit is one with at least one edge, a small unit is a non-trivial unit with at most eight edges, and a
‘;' large unit is one with at least nine edges. An interunit edge is an edge whose endpoints are in different
i :
o units.
>
"
ey Note that units are vertex disjoint. Moreover, there is at most one interunit edge between any two
::::'.: units.
K
:..s For a graph G, the unit graph U(G) is defined by V(U(G)) is the set of units and, for X,Y
C"".
oY VIU), X « Y if and only if there is an interunit edge between X and Y.
1 Lemma I.33.  For a connected graph G, U(G) is a tree.
;é Proof. Since G is connected, U is connected. If XY € E(U(G)) is in some cycle, then the vertex-
. sets corresponding o the units of this cycle form an induced 2-edge-connected graph, contradicting the
o
y :* fact that each of these vertex-sets induces a maximal 2-edge-connected subgraph. a
B
Y
::: We will prove Theorem III.3.1 inductively. As in §II1.2, we let \(G) = 2m(G) - n(G). Let 7 be
KONt
’-' the family of graphs with minimal n(G) among the 2-edge-connected graphs for which #G) > |
Z |
. ‘-$ m(G )9, i.e., 7 is the set of “n-minimal” counterexamples. We will establish properties of graphs in
: E 7 and eventually show that 7 = Q.
o~
R
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Note that if A is a 2-edge-connected graph with at most eight edges, then t(H) = 1. Hence, if H is
2-edge-connected, then m(H) < m(G), and t(H) = t(G), then G cannot be a minimal member of ~.
An edge uv is a link if both of its vertices are bivalent. In a staple graph, every edge is either a link

or it is incident to a link.

LemmaIll34. If G e ~, then G has the following properties:

6)) G has no incident links.
(1) G has no pendant cycle.

(i) Forany e e E(G), G - e is not 2-edge-connected.

(ivy Ifue Vandd(u)=2,then G- uis not 2-edge-connected.
(v)  Gis not a staple graph.
(vi) G has an edge that is neither a link nor is incident to a link.

Proof. For (i) through (iv), we modify G to obtain a graph that contradicts the minimality of G.
For (i), if e and e’ are incident links, then contract e. This decreases m but not ¢. For (ii), if G has a
pendant cycle C, then subdivide one of the edges that is incident to the base but not in C and remove
C, leaving its base. This decreases m without decreasing ¢. For (iii), snip e, and for (iv), double snip
the edges incident to «.

We have already shown (v) and (vi) is just a restatement of the fact that G is not a staple graph.4

We stated before that in a staple graph, every edge is cither a link or it is incident to a link. It is
easy to see that the reverse is almost true; if a graph has this property and satisfies Lemma II1.3.4(1)

then the branchpoints on any trail must occur exactly three apart, and & is a staple graph.

Lemma III35. IfG e Fand e e E(G), then U(G - ¢) is a path whose ends are units containing
the endpoint of e.

Proof. Let G" =G - e. By Theorem II1.3.4(iii), G is not 2-edge-connected and so U(G’) is non-
mivial. Since G is 2-edge-connected, G’ is connected and, by Lemma I11.3.3, U(G’) is a tree. If we
add edges to G’ to make it 2-edge-connected, then we will need an endpoint of one edge to be in each
unit that corresponds to a leaf of G". Since G’ U e is 2-edge-connected, e has an endpoint in each leaf
of UrG’). Hence there must be only two leaves of U(G’) and U(G’) is a path whose ends correspond

t0 units containing the endpoints of . 4
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v D
] . .. X
y Lemma IIl.3.6. If G € 7, then there exists e € E(G) such that G - e has at least two non-trivial :
Ll

? units.

L)

:": Proof. We first show that if G - e has at most one non-trivial unit, then e is a link or is incident to

;3 alink. LetG'=G - e and e =uv. Since G - e is not 2-edge-connected, A # B. By hypothesis, at '

q

v

most one of A and B is non-trivial. Let A be the unit of G’ that contains 4 and B be the unit of G’ that

contains v. If both A and B are non-trivial, then we are done. If they are both trivial, then uv is a link

T8
[

and again we are done. Hence we may assume that A is wrivial and B is not.

..-v
u

LRI
CA

' Since U(G’) is a path with one of the endpoints A = {u}, u has cnly two neighbors in G, one of

which is v; call the other one w. Let C be the unit of G’ that contains w. If C = B, then d(u) = 2 and y
) ' G - u is 2-edge-connected, violating Lemma IT1.3.4(iv). Hence C = B. If C is non-trivial, then B

‘ and C are two non-trivial units of G. If C is trivial, then e is incident to the link uw.

‘:_'. Now if the lemma is false then, for every e, G - e has at most one non-trivial unit and, by the p
above, every edge is a link or is incident to a link. But this violates Lemma II1.3.4(vi). &

,'. Now fix G € 7, and let e be an edge of G such that G - e has at least two non-trivial units. From

S Lemma [I1.3.5, G looks like a “cycle” of non-trivial units of G - e, where the “edges” are paths. We

o iilustrate this below; each gray circle represents a non-trivial unit.

K :
]
g

:: i
2 - .
by “Figure 1113. !
g:. We call the paths between the non-trivial units bridges. From Lemma III.3.4(i), bridges can have

0 Y length one, two, or three; we call these short, medium, and long bndges respecuvely. We call the

X endpoints of the bridges terminals. ;
'.. Let x be the number of non-trivial units of G - e. For what follows, do all arithmetic moduio «.

” Label the units Aq,...4.) and bridges Bq,....By.1 so that. for any (. the bridge B; is between units 4, 1

¢.{,.,'., :

-
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and A;+1. Suppose that B; has p; vertices and label these u; J» where j=0,....p; so thatujp € V(A)),
uiy € Wjj+1, and ujp; € V(Ajs+1). Note that 1 5p; < 3.

From Lemma I11.3.4(iii), no cycle has a chord. In particular, no unit of G - ¢ has a cycle that has

achord. With this restriction, we illustrate all possible small units in Figures I11.3.3.
Figure I11.3.3(a)

SRORI 4

Figure I1.3.3(b)

Figure I1.3.3(c)

Lemma ITL3.7. If A is a unitof G - e, then either A is large or A = Cg with terminals at opposite
vertces.

Proof. If A appears in Figure 1I1.3.3(a), then no matter what the terminals of A are, it is possible
to cover all edges of A with a trail that starts at one terminal and ends at the other. Form G’ by

replacing the bridges on either side of the A, together with A itself by a long bridge. This does not -

decrease r and it does decrease m. By the minimality of G, we can eliminate all of the graphs of Figure

v
2

[I1.3.3(a) from consideration as units of G. We can use the same argument if A = Cg and the termi-

s

nals are not opposite.

If A = Cg and the terminals are opposite, then every trail cover of G ends within A; i.e., it is im-

§

possible to cover the edges with a single tail that starts at u and ends at v. Now suppose that A ap-
pears in Figure II1.3.3(b). Replace A by Cg with opposite terminals and call the resulting graph G,
By the muinimality of G, «G’) < m(G’)/9. Replace the mail 7 (in G) that starts within the 6-cycle by a
trail tin G) that starts at an appropriate vertex within A, visits every vertex of A and leaves at the same

ierminal that 7 does. This demonstrates that #G°) 2 4 G), contradicting the minimality of G. a
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If A; is a small unit of G - e, and A;.] and A+ are both large units of G - ¢, then we say that A; is
an isolated small unit of G - e.

We now group edges into packets. The edges of some of the long bridges will be in no packet but
each of the other edges will be in exactly one packet. Furthermore, no packet will contain edges from
two different large units of G - e.

We start by describing the cores of the packets. The cores are subsets of packets that determine the
packets and there is one core for each packet. Each large unit is the core of one packet. If A, is
large, Aj,....Aip are small, and A;4+y+ is large, then E(A;) U E(Bj) w E(Aj41) is the core of one
packet, E(Ai42) U E(Bis2) U E(A;+3) is the core of one packet, etc.. The last core from these v + 1
units contains three units and two bridges if v +1 is odd and two units and one bridge if v + 1 is
even. If a small unit is isolated but one of the incident bridges is long, then the unit and the long
bridge form the core of a packet.

One characteristic of packets that will be needed is that they contain at least nine edges. The pack-
ets that have been defined so far comfortably sadsfy this requirement and we call them ample. The
remaining packets are created from some of the isolated small units and we must work harder to ensure
that they contain nine edges. We call these packets scant.

If A; is an isolated small unit, neither 8.1 nor B; is long, and at least one of {B;.1,8;} is medium,
then we make a scant packet from the medium bridge, A;, and the edge incident to A; from the other
bridge.

We now assign most of the remaining edges to ample packets. These edges are called supple-
mentary. If A; is a unit whose edges are not assigned to any packet, then it is an isolated small unit,
both B;.; and B; are short, and both A;. and A; are large. Assign E£(B;.1) U E(A;) U E(B)) to the
packet that contains A;.;. If uv is part of a short or medium bridge, and uv has not been assigned to
any packet, then at least one of {u,v} is in an ample packet. If u is in an ample packet A4, then assign
uv to A. Otherwise, assign uv to the packet containing v.

This completes the assignment of edges to packets and hence the definition of packets. The defin-
don is not precise since there is more than one way of assigning edges to packets: we will just assume

that some assignment that agrees with the above rules is given. The boundary points of a packet are
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the vertices of the packet that are farthest counterclockwise and clockwise in the cycle of units.
Suppose that 4 is some packet. For some i, A contains all of the edges of 4; and none of the edges of
Aj.1. We define the low boundary point to be u;.1 j where j = min{q : uj.1 4 € V(A)}. For some i,
A contains all of the edges of A; and none of the edges of A;+1. We define the high boundary point to
be u;j where j = max(q : ujq € V(A)}. The spans are the paths (some of them have no edges and
some of them have three edges) between the packets. We call the spans of length three great.

In Figure II1.3.4, we give an example of a cycle of units. The large circles represent large units
and the small circles represent small units. Our choice of packets is designated by the polygons. The
polvgon corresponding to the only scant packet is white and the polygons corresponding to the ample
packets are light gray. The boundary points of the packets are designated with large dots.

Theorem II1.3.8. If A is an ample packet and m(4) 2 9, thent(A) S m(A)/9.

Proof. If the core of A consists of one (resp. two, three) small units, then it has at least nine (resp.
thirteen. twentyv) edges and can be covered with one (resp. one, two) trails in such a way that these
rails contain both boundary points of the packets. Therefore, if A has any supplementary edges, then
they are immediately covered.

If A contains a large unit 4, then there are two possible sources of supplementary edges. Suppose
that we have eight supplementary edges from a small unit and two short bridges. This is depicted in
Figure II1.3.5(a).

— W
Figure III.3.5(a): A Figure II1.3.5(b): A*

Note that m(A*) = m(4) and A* is 2-edge-connected. By the minimality of G. A® can be

covered with m(£")/9 mails. Moreover, since it is impossible to cover the new edges with a trail that
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starts and ends at u, we are forced to start a trail T within the graph induced by the new edges. We
may assume that T continues to « and then (if necessary) into A. Replace T by a trail in A that starts at
v, goes around the 6-cycle and then follows the subtrail of T that is in A. Thus we have a trail cover of
4 that has at most m(4)/9 trails.

Suppose now that A has a supplementary edge uv from a short or medium bridge, and that uv is

incident to a large unit A, as in Figure 111.3.6(a).

2/
Figure I11.3.6(a): A Figure II1.3.6(b): A*

We subdivide an edge uw where w # v and remove uv to obtain A*. By the minimality of G and
the 2-edge-connectedness of A*, ((A*) S m(A*)/9 = m(A)/9 and, from the “snipping lemma”
(Lemma 1.6.2(1i1)) we have (A) < 1(A*).

We can combine these two techniques to get a trail cover of A with the required number of trails

If there are no great spans. then every edge is in some packet and we can apply Theorem I11.3.8 t0
each packet, take the union of the resulting trail covers, and obtin #(G) S m(G)/9. We need a lemma

to deal with great spans.

Lemma [I13.9.  Suppose that Gy,...,G;.; are graphs with disjoint vertex-sets, and that, for each j,
<u;,v;,wj,x;,> is a trail within G; and v; and w; are bivalent. Let H = u/:loG,- and H'=H - {ujv; :
J=0,..r- 1}V {vije1:j=0,...4 - 1}. Then t(H') < t(H).

Proof. Note that o(H) = 2,-;'0’(51)- From Lemma 1.6.2(ii), for each j, there is an optimal trail
cover 7 of G; that contains a trail T; that has a subtrail <u;,v;,wj,x;,>. When we remove each u;v;,
the total number of trails increases by at most r (fewer if some T; is closed).

Now if we can take two ends u and v of different trails and make the trails into one mail by adding
the edge uv to one trail and then concarenate these trails, we decrease the number of trails by one. We
do this 7 - 1 times by adding the edges {vjuis) : j=0.....r - 2}. The proof will be done if adding the

edge vr.1un also decreases the number of trails by one.
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If it does not. then v;.y and ug are in the same trail so that adding the edge v,.1u0 simply makes a
closed trail from an open trail. But if this is the case, then each T was a closed trail and removing the

edges u;v; did not increase the number of trails at all. Then in this case, ((H") St(H) - (r- 1).4

Suppose that there are r packets. For what follows, do all arithmetic modulo r. Label the packets
£9,...,Ar.1 50 that, for any j, there is a span C; between packets Ajand A;,1. Let u; be the high
boundary point of A; and x; be the low boundary point of A; so that C; is a path between «; and x4 .

If there are at least two long bridges, then let them be C| and Cs. Form the graph G’ as follows.
Delete the edges of C; and C;. Insert a path of length three between ) and x4, and another path of
length three between x7 and u;.

This graph has the same number of edges as G and it has two components Gi and G, each of
which has at least nine edges and is 2-edge-connected. By the minimality of G, for / = 1,2, there
exists a trail cover T of Gf with m(G/)/9 rails. We now apply Lemma [1.3.9 to Gi and G3 to obtain
tG) S m(Gi)9 + m(G3)9 = m(G)/9.

[f there is exactly one great span, then we must look more closely at the individual packets. Let

L mG)-3-3 0
pj=m(tj)(mod 9). By Theorem IIL.3.8, we can cover the packets with 5 rails

so that if 3 + X‘lej 29, we can use a single wrail for the great span and still have at most%—c-)

Tals.

If3+ Z;lpj <9, then, for each j. p; S 5 and we can add three edges to A; without increasing
the bound for covering A;. We can then discard the great span and insert paths of length three
berween the low and high terminals of each packet and apply Lemma II1.3.9. Then contract the newly
created great spans and we have a sufficiently smalil trail cover. This procedure is illustrated in Figure

[11.3.7.This completes the proof of Theorem [I1.3.1. 4

Two-edge-connected 3-regular staple graphs show that there exists € > 0 and an infinite set of
graphs such that //m 2 (1 + €). Since 4-edge-connected graphs have a Hamiltonian path, t = 1 for
these graphs and the same cannot be said for them. There are two intermediate classes. These are

3-edge-connected and 3-connected. We now describe examples to show that these are more like the

2-connected graphs.




[ VT U o B . A X - e WU v H
"' 0 - ) \ 1 X L) + g m“‘"“‘""“j

Kl Figure 111.3.7(a) Figure I11.3.7(b).

Figure I11.3.7(d)

Figure 111.3.7(c)
Since our ultimate focus is the :otal interval number and not just the trail cover number, we must
0. select sequences such that the graphs are triangle-free and so/ =m + ¢.
Recall that the Petersen graph, shown in Figure I11.3.8(a), is 3-connected, 3-regular, svymmetric,
and not Hamiltonian. Select one vertex u. Replace each vertex v # 4 with the graph H as in Figure
[.6.2. and call the resulting graph G".
.S‘ Now suppose that T covers G’ and starts and ends at u. Since there are only three edges from any

WY
9 copy of H to the rest of the graph. T cannot enter and leave a copy of A more than once. Because of

[ B
B
N

o~

T

o VTR I Ve W Uy Wy Ot P Ty g Iy Poy SO
A -..'.t..t IR e O KK AN Al ,..0:‘.0,.. oy



e o .

L}
~

Py
u(.'l.

SO LI

K
:a
5

[ ]
)
L)
‘

4/

A

oo
A
A.kd

L4

h

\\ -\ .~

1

S
o

e ¢y

Y™

113
the edges within the copy, T must enter it. By contracting all of the edges within each copy of H, and

contracting the corresponding edges of T, we get a Hamiltonian cycle of the Petersen grapk and this is
impossible.

2y

Figure I11.3.8(a) Flgurc III 3. 8(b)

Let Gy be the graph that consists of 2k - 1 copies of G’ with the vertices u identified. From the
above, no trail can enter a copy of G’, cover it, and leave it. If we try to use two trails to cover a copy
of G, then the second trail uses up the last edge in G’ that is incident to « on its way in and therefore it
must end inside the copy. We have now shown that there is at least one endpoint of some trail in each
copy and so we need at least £ trails to cover Gy.

Since m(H) =9, m(G’) = 15 +9-9. Then since m(Gy) = (2k - 1)m(G’), m(G) = 192k - 96
and we have a sequence of graphs for which //m 1—19—9_3;—-§g> 1 +1/192. We say that, in this
construction, it takes 192 edges to force another trail. We do not claim that this is the most efficient
use of edges for forcing additdonal trails.

We now discuss a construction of 3-connected graphs. Consider the Thomassen graph, shown in
Figure [I1.3.8(b). Replace each vertex by a copy of H, subdivide the three edges that are in no S-cycle
(drawn with thick gray lines), and call the resulting graph G'. Take 2k copies of G’ and call them
Hq,....H2,.1. Foreachi=0,...,2k - 1, let u;,v;, and w; be the three bivalent vertices. Taking all
subscripts modulo 2k, add edges {u;vi+1 :i=0,....,2k -1} and {ww;.:i=0,....,k- 1}. Call this
graph Gy; it is 2-connected. Moreover, it is 3-regular so m = 3n/2. Since n = 2k[18-7 + 3], we
have m = 387k.

We now show that each A has two endpoints of a mrails from any tail cover. If not, then we may

assumne that, for some trail cover. the left side of Gg has no endpoint. Since there are only three edges

into this half, it is impossible for two trails to enter and leave and therefore some trail T enters the lert
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half, covers all of its edges and leaves. If we take the portion of T that is in the left half, contract all of

' the edges of any copy of H, and then identify the three vertices marked x, x’, and x”, then we have a

&L

Hamiltonian cycle of the Petersen graph and this is impossible. Therefore, we have at least two end-

™ -~
I |

points in each H; and so we have at least 2k trails. Since G has 387k edges, we have a sequence of

| graphs for which //m = 3894k/387k 2 1 + 1/193.5. Here it takes 193.5 edges to force each trail, just

‘lel .

slightly more than it took for our 3-edge-connected construction.
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