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An interval representation (or simply representation) R of a graph G is a collection of finite

sets {R(v) : v e V(G)) of closed bounded intervals so that it +-+ v if and only if there exist eu E

R(u), Ov e R(v) with 1, r Ov # 0. The size of a representation is the number of intervals in the

entire collection.

The total interval number of G is the size of the smallest represention of G and is denoted

I(G). This thesis studies I(G) by proving best possible upper bounds for several classes of graphs.

For some of the classes, the bounds are in terms of the number of vertices and for some of the classes,

the bounds are in terms of the number of edges. The main result is that for planar graphs, I(G) S

2n(G) - 3.
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I INTRODUCTION AND PRELIMINARY RESULTS

1. Introduction

A graph G is a set of elements V(G), called vertices and a multiset E(G) of unordered pairs of

vertices, called edges. If u and v are the vertices of the edge e, then this relation is denoted by u +-+

v, which can be read as "u is adjacent to v."

A multiple interval representation (or simply representation) R of a graph G is a collection

{R(u) : u e V] of finite sets of closed bounded intervals of the real line so that u *-+ v if and only if

there exists Ou e R(u), Ov e R(v) with Ou n Ov * 0. Unless otherwise specified, "interval" is as-

sumed to mean "interval of the real line." We will use R to mean either the representation or the entire

collection of intervals. The size of R is the number of intervals in the entire collection and is denoted

LRI. The total interval number of G is the minimum size of a represention of G and is denoted

I(G). We will assume, without affecting I, that no two endpoints of intervals in any representation

coincide and that no intervals corresponding to the same vertex have a non-empty intersection.

N ,Below we give two representations of a graph. We will use the coloring of the edges in Figure

1 1. 1 (a) and the coloring of the intervals in Figure 1. 1. 1(b) in §1.6.

U X

NiW V__V-
- W V Y U v W u V w

Figure 1.1.1(a): G Figure 1.1.1(b): R Figure 1.1.1(c)

I In §1.3, we will show that 1(G) a 7 and so both representations are optimal. We will make further

use of this example in §1.6 and §1l.3.

This thesis discusses the total interval number. In particular, we find upper bounds on I for vari-

I ous classes of graphs. There are two types of upper bounds. The first is in terms of the number of

vertices and the second is in terms of the number of edges.

There are five remaining divisions of §1. In §1.2. we introduce some standard graph theoretic

, "- terms and results that are not specifically related to the study of the total interval number. These are

well known to most graph theorists and are included to make the thesis accessible to any mathemati-

cian. in J 1.3, we give a brief background of the total interval number. In particular, we introduce the

".- , . € • , : .- - .- -'""- % , r, ' ". . ' %



related parameter, interval number. In §1.4 and §1.5, we summarize the results that are proved in §II

and §11I and relate these results to the analogous results for the interval number. Many of the defini-

tions that are given in §1.2 are required for §1.3, §L4, and §1.5. In §L6, we give additional terms and

results. These are less standard and more intimately related to the study off than the terms of §1.2.

They are included in §1 because they are important for almost all of §11 and §1I.

2. Standard Definitions

Most of these definitions are found in [6]. For a graph G, let n(G) denote the number of vertices

and m(G) denote the number of edges of G. If e = (u,v} is an edge, then we say that e joins u and

v, u is adjacent to v, e is incident to both u and v, and the endpoints of e are u and v. If e' =

(u.v'}, then we say that e and e' are incident. Furthermore, we will use (u,v) and uv interchange-

ably to denote e. If there is no edge of the form uu and no two edges have the same pair of endpoints,

then the graph is called simple. If we wish to emphasize that a graph is not necessarily simple, then

we call it a multigraph. If the edge uv is repeated, then we call uv a multiple edge. Most of the

graphs in this thesis are simple, and we consider I only for simple graphs. An isolated vertex is one

that appears in no edge. Note that isolated vertices do not affect the total interval number. In particu-

lar, the total interval number of any graph that has no edge is zero.

The trivial graph is the graph that consists of one vertex and no edge [6 p. 3]. A subgraph H of

G is a graph for which V(G) ; V(H) and E(G) 2 E(H). A vertex-induced (or simply induced)

subgraph H of G is a subgraph for which E(H) = (e e E(G) : V(H) 2 e), i.e., all edges of G that

have both endpoints in V(H). An independent set of vertices is a set of vertices whose induced

subgraph has no edge.

A walk is a finite non-null sequence <ul,.....uk> of vertices such that for I < i 5 k - I, ui 4

Ui1 [6 p. 12]. The ends of a walk <u1, ... ,U/k> are ul and Uk. A walk is closed if its ends are equal.

A trail is a walk <U1,....uk> for which i *j implies that fui,Ui+l) # {uj,uj+I). The set of ver-

tices of a trail <ul,.. .,u-> is the set (ui : i = 1,...,k}. Note that these are not necessarily distinct.

The set of edges of a trail <u1,....uk> is the set (uuuil: i = 1... .%' - I I and these are distinct.

Since we consider only simple graphs, a trail is specified equally well by its sequence of vertices or

* t edges, so we may consider either of these or the subgraph consisting of both to be the trail. A sub-



trail of <uj,...,uk> is a trail <u1,ui+, ... ,u+i'> where 1 I and I + 1':5 k. The length of a trail

< 1 u. .,uk> is k - 1, the number of edges in the trail.

A path is a trail <Ut 1,... Uk> for which all vertices are distinct. The distance in a graph G be-

"-" tween two vertices u and v is the length of the shortest path in G between u and v. A cycle is a trail

<uO, - .,u. I> for which uo = uk- I and, other than this, all vertices of the trail are distinct. To reflect

the cyclic structure, we will use (uoul...Uk.l) for a cycle whose trail notation is <u1,....,uk.1>. Thus,

if u, v, and w are distinct vertices, then <u,v,w,u> means the same as (uvw). The graph that consists

entirely of a single cycle with k edges is denoted Ck. A chord of the cycle (uoul.. .uk.1) is an edge

ulut" where 0 1l < 1l'5 k - 1 and II -l l(mod p).

A Hamiltonian cycle is a cycle that contains every vertex, and a graph is Hamiltonian if it

contains such a cycle. A Hamiltonian path is a path that contains every vertex.

If <u, ... ,Uk> and <uk,uk+1 . .... Uk+1> are two trails, then the concatenation of these two trails is

the trail <u1, ... ,uk,uk+ ,... ,uk+> [6, p. 12]. If T 1 and T2 are two trails, then we write T1T2 to denote

atheir concatenation.

If G is a graph, V' is a subset of V(G), and E" is a subset of E(G), then the graph G - V' is the

graph obtained by deleting the vertices of V and any edge incident to any vertex of V', and G - E is

S the graph obtained by deleting E'. IfV'= (u), then we refer to G - {u) by G - it, and ifE'= (e),

then we refer to to G - {e} by G - e.

A graph G is connected if, for any u,v e V, there exists a path <ut,.. .,uk> such that u = Ul and

v = ut. If G is connected but G - u (G - e) is not connected, then u (e) is a cut-vertex (cut-

edge). Cut-edges of a connected graph are precisely those edges that are not in any cycle. A block

of a graph is a maximal induced subgraph with no cut-vertex; note that it is possible that the only block

of G is G itself.

2If u is a cut-vertex, then let the vertex-sets of G - u be Vl,...,Vp and define the u-components [6

p. 119] to be the subgraphs induced by V1 u (u]I, V ( u [u),..., and Vp u.

A graph whose vertices are pairwise adjacent is called a complete graph or a clique and, if it

has ?z vertices, is denoted K,.

We say that two sets intersect if their intersection is non-empty. If (Si) is a collection of sets,

lf= KIiMuiu
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then the intersection graph that corresponds to (Si), is the graph with vertices (Si n and edges

given by vi +-+ vj if and only if Si n Sj * 0. If the Si's are the vertex-sets of the blocks of the graph

G, then the resulting intersection graph is called the block graph of G [5 p. 6] and is denoted B(G).

Every block of a block graph is a complete graph [5, p. 46] and from this it follows that there is a

unique shortest path between any two vertices of a block graph.

A neighbor of a vertex u is a vertex v for which u - v. The set of neighbors of u is denoted

N(u). The valence or degree of a vertex u is the number of edges that are incident to u and is de-

noted d(u). If necessary, we will write NG(u) or dG(u) to emphasize which graph is under considera-

tion. This notation is particularly useful when there are subgraphs that are of interest. If all of the

vertices of a graph (or multigraph) have the same degree, then it is called regular, and if this degree is

0k, then it is called k-regular.

Suppose that G is connected and ot is the number of vertices that are of odd degree. It is well

known that a is even and, if a 2t 1, then the edges can be papititioned into a/2 trails and no fewer. [6

p. 53]. If no vertex is of odd degree, then there is a trail that contains all of the edges and starts and

ends at the same vertex. In this case, G is called Eulerian and the trail is called an Euler Tour [6 p.

51].

A leaf is a vertex of degree one and a leaf-edge is an edge that is incident to a leaf. A bivalent

vertex is a vertex of degree two. A triangle is a set of three vertices that are pairwise adjacent.

An independent set of vertices is a set of vertices that is pairwise non-adjacent. A bipartite

graph is a graph G for which V can be partitioned into two independent sets, called its partite sets.

A complete bipartite graph is a bipartite graph with partite sets V" and V" and for which u e V'

and u' E V" imply that u is adjacent to u'. A complete bipartite graph with partite sets that have sizes

p and q is denoted Kpq, and KIq is called a star with q edges.

A forest is a cycle free graph and a tree is a connected forest. It is easy to see by induction that if

G is a tree with n vertices, then it has n - I edges. We emphasize that the definitions of leaf and leaf-

edge apply to any graph and not just to trees. However, it is true that any tree with at least two vertices

has at least two leaves, and that the only trees that have exacdy two leaves are paths. A peripheral

vertex of a tree G is a leaf that is part of a maximum length path. A branchpoint is a vertex with de-

~.* *~ --*~ *~. ~ - ~*r*.'
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gree at least three.

If, for any subset V' of V, where IV1 < k, G - V' is connected, then we say that G is

k-connected. If, for any subset E' of E, where IE1 < k, G - E' is connected, then we say that G is

k-edge-connected. The connectivity of G, denoted ic(G), is defined to be the maximum k such

that G is k-connected if G * K2 , and 1 if G = K2 . The edge-connectivity of G, denoted Kc'(G), is

the maximum k such that G is k-edge-connected. The minimum of the vertex degrees is denoted &G).

It is easy to show that K < ic' _< 5 (6 p. 43]. If 5(G) a 2, then we say that G is leafless. We also

define A(G) to be the degree of a vertex with maximum degree.

A graph is often drawn by associating a point in R2 with each vertex and, for each edge uv, draw-

ing a continuous curve between u and v. A planar graph is a graph that can be drawn in R2 in such

a way that no pair of edges intersects except at a vertex. Such a drawing is called an embedding. A

plane graph is a planar graph, together with a fixed embedding; we identify the points and curves of

the embedding with vertices and edges of the graph. A face of a plane graph is a maximal connected

rA region of the plane that does not intersect any edge or vertex. The boundary of any face consists of

edges and vertices and we say that these are incident to the face. We will identify a face F with the

graph induced by the edges that are incident to F. For a plane graph G, let b(G) be the number of

faces. It is easy to use induction on the number of edges of G to prove Euler's formula, which

states that if G is connected, then n(G) - m(G) + 6G) = 2. The degree of a face is the number of

edges that are incident to the face, where cut-edges are counted twice. The following examples illus-

I- trate this idea.

'SI", i12
Figure 1.2.1(a): G Figure 1.2.1(b): H

Both faces of G are of degree three. The unbounded face of H is of degree five and the bounded face

is of degree three.

For any plane graph, a cut-edge belongs to only one face and will be counted twice when comput-

ing the degree of that face. Other edges belong to two faces and will be counted once each when cor-

. ..
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puting the degrees of these faces. By adding up the degrees of the faces, each edge is counted twice

and so r -- i=2, wheref, is the number of faces of degree i.

The dual of a plane graph G is the graph G* defined as follows [6 p. 1401. Corresponding to

each face F of G is a vertex F* of G*. If e r E(G) is incident to two faces F1 and F2 , then there is a

corresponding edge between Ff and Ff. If e is a cut-edge, then it is only incident to one face F and

there is a corresponding edge {F*,F* e E(G*). Note that the dual might not be simple.

A planar graph having an embedding in which all of the vertices lie on a single face is called out-

erplanar. An outerplanar graph with no cut-vertex is either K2 or a cycle with some non-crossing

chords.

We subdivide an edge uv if we replace it by a new vertex w and new edges uw and wv. We

contract an edge uv by replacing u, v, and their incident edges by a new vertex w with N(w) =

NG(u) u NG(v) - I u,v. If G is a graph with an edge e, then we use G e e to denote the graph G

with the edge e contracted.

3. History

A graph G is an interval graph if it is the intersection graph of (Sil}i , where each Si is an

interval. In other words, an interval graph is simply a graph whose total interval number equals its

number of non-isolated vertices. The total interval number is one of several parameters used to gener-

alize the concept of an interval graph. ,

Interval graphs and multiple interval representations arise in many "natural" contexts. Writing

,* about genetics, Benzer [3] discussed systems of intersecting intervals in a genetics context but did not

"" discuss the resulting graph. Other applications for interval representations include scheduling and

avoiding interference in a cellular phone system. Hajos [14] wrote about them in a mathematical con-

text. A thorough treatment of multiple interval representations, including applications, is given by

Roberts [21].

There are several well-known characterizations of interval graphs, one of which we will find use-

* ful. An asteroidal triple is a set of three vertices x, y, and : with the following property: For any

two vertices of Ix.y.:}. there exists a path having no vertex adjacent to the remaining vertex of

* Lx.y.: 1. A triangulated graph is one for which any cycle with at least four edges has a chord.
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Theorem 1.3.1 [4]. A graph is an interval graph if and only if it is triangulated and has no aster-

Soidal triple.

This theorem often allows us to deduce that some graphs are not interval graphs. For example, the

graph of Figure 1.1.1 has an asteroidal triple (x,y,z) and so it is not an interval graph. Since the graph

has six vertices, its total interval number must therefore be at least seven and the representations of

. Figures 1.1. 1 show that it is at most seven.

It is not surprising that most graphs are not interval graphs. Given a graph G, we would like to

measure how close G is to being an interval graph. Differing criteria of "close" lead to different graph

parameters. For example, the boxicity is defined as the minimum k such that G is the intersection

graph of k-dimensional real intervals. More closely related to the topic of this thesis is the interval

number, i(G) of a graph G, which is defined as the smallest number of real intervals that must be as-
-T signed to some vertex in order to obtain a multiple interval representation of G. This is expressed be-

low.

i(G) = min(max(IR(v)l: v e V(G)) : R is a represention of G) (I.3.1)

Note the fundamental relationship 1:5 ni, to which we shall return shortly.

The history of the interval number is much longer than that of the total interval number. The first

!results on i appeared in 1979, when Trotter and Harary [15] computed i for trees and complete bipartite

graphs. Although the notion of total interval number is suggested in several papers (e.g. [ 13]) on in-

terval number, the first paper dealing with total interval number, by Andreae and Aigner [2], will not

appear until 1988. In the past decade, many results on i that are analogous to the results of this thesis

on I have been established. In §1.4 and §1.5, we shall state what our results are and compare them

• - with these results for i.

4. The Total Interval Number and the Number of Vertices

In §I, we will compare I to n for various classes of graphs. For each class, we will find an upper

bound on I in terms of n and give examples to show that the bound is best possible. We have not yet

given definitions for all of these clases. A Husimi tree is a graph for which every block is a clique.

A cactus is a graph for which every edge is in at most one cycle and it is dense if every edge is in

I'7

- 'f ,,
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exactly one cycle.

The classes and bounds are given in Table 1.4.1. For comparison, we include the analogous re-

suits for ni in the same table.

max (I(G) max(n(G)i(G)•
Class n(G) = n] Reference n(G) = n) Reference

Trees [2], §11.1 2n [15]

Dense Cacti I- 4 §U1.2 2n [23]

Cacti 18n - 12 §II.2t 2n [23]
3n - 4

Husimi trees 3 §11.3 2n §1.4
Outerplanar Graphs 3- 2- §1.4* 2n [23]

Planar Graphs 2n - 3 §11.5 #  3n (23]
n2 +4n__I

S. Simple Graphs 4 §11.6# nF [10], [1]
.11n - 4

is conjectured in [2].
#Triangle-free case proved, general case conjectured. and extremal examples given in [2].

Table 1.4.1

Our results for trees are more extensive than for other classes where we just obtain the upper

bound. We obtain an algorithm for constructing an optimal representation and we also characterize

those trees for which the contraction of any edge reduces the total interval number by two.

It is of interest to note that the only classes of graphs for which no extremnal graph is triangle-free

are dense cacti and Husimi trees; for the other classes, it is sufficient to consider triangle-free graphs to

show that the results are best possible.

The sequence of classes in Table 1.4.1 is, except for Husimi trees, an ascending sequence of

classes. For any n, there are additional graphs to consider at each step of the sequence and so the

bounds grow with the classes. Husimi trees is included as another way of generalizing trees.G s(1po ve tree boun way generrizinmpees

Griggs [10] proved the bound on i for simple graphs and used K~n2 rnp1 to show that it is best

possible. Andreae [1] showed uniqueness for this extremal graph when the number of vertices is di-

visible by four, and later showed that this graph is also the unique triangle-free extremal graph when

considering 1 [2]. He also obtained bounds for i in terms of the maximum size c) of a clique in trian-

[*. g.aulated maphs. Comparing I with ca has not yet been tried and it may be a rich topic. The reason for
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this is that co limits the number of intervals that can overlap at a certain point and so it limits the number

jof edges that a fixed number of intervals can represent. Using this idea, it is not hard to derive the

bound I + wo/2 and this would be a good place to start an investigation.to-
The cacti and outerplanar results for ni are corollaries of the proof for planar graphs. We complete

. the comments on Table 1.4.1 by showing that if G is a Husimi tree, then i(G) < 2.

Theorem 1.4.1. If G is a Husimi tree, then there is a representation R that assigns at most two

intervals to each cut-vertex and exactly one interval to each other vertex.

Proof. Let y be the number of cut-vertices; we use induction on y. If y = 0, then G is a clique

and we can assign [0,1] to each vertex.

If y Z 1, then pick a cut-vertex u such that, except for at most one u-component of G, all

u-components of G are cliques. If all u-components are cliques, then choose one of the u-components

* 1 and call it G'. Otherwise, let G' be the u-component that is not a clique. Note that u is not a cut-vertex

. of G'. Let G" be the union of rest of the u-components An example is given below.

P.X.

G G' G"
Figure 1.4.2: Gray areas represeent cliques.

:

By induction, G' has a representation R' that assigns only one vertex to u. We can then represent

the edges that are not in G' by using one interval for for each vertex in G". Using the above example

to demonstrate this, the representation for G" would be as below.

. U

Figure 1.4.3

;6 We close §1.4 with a discussion of I in terms of n for random gmphs, which were introduced bv
Erdds and Rdnvi [8] and are treated in the book by Palmer [21]. We define a probability model for

each n by considering all 22) labelled graphs on n vertices to be equally likely. If the probability in

6 - - -
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this model that a graph has property P approaches one as n approaches infinity, then we say that

almost all graphs have property P. Let lg(n) denote log2(n).
n2  n2

We know that almost all graphs satisfy 7 5 n i 5 = . The lower bound was obtained by* 4g(n) 2g(n)

Erd6s and West [9], and Scheinerman [25] recendy proved the upper bound. Both bounds hold for I

as well. The upper bound holds because 1 < ni. We follow the method of the Erd6s-West proof on i

to establish the lower bound.

Suppose that the vertex-set is (ui : i = 1 n) and that we have a representation with p intervals.

Let 4j,.....p be the ascending sequence of endpoints of the intervals. For i = 1,...,2p, let vi be the

vertex corresponding to the interval with an endpoint at 4i. Call <vl ....v > the derived sequence of
"is,

4'. vertices. Because no vertex has two intervals that intersect each other, the odd occurrences of any

0 vertex in the derived sequence of vertices correspond to left endpoints and the even occurrences corre-

spond to right endpoints of intervals. Because the sizes of the intersections of intervals is immaterial,

two representations with the same derived sequence of vertices represent the same graph. Since there

are at most n2P different derived sequences of vertices, we can represent only nP graphs.

Hence, to represent all graphs with at least n vertices, we need to choose p such that n4 't 2 .(9)
Taking the logarithm base 2 of both sides, we get p > ( and we denote the right side as n). If

q(n) < h(n) - e for some fixed small F_ then the proportion of graphs with n vertices that we can

represent with q(n) intervals is at most n-2 and this approaches zero as n gets large. Hence the

* probability of a graph having total interval number of q(n) or less goes to zero and we now have

shown the first inequality.

Although f 5 ni. and Table 1.4.1 suggests that, for sparse graphs, I and ni are far apart. we be-

lieve that the difference is small for most graphs. In particular, we believe that, for any e > 0, P(I1 -

nil > nae) -+ 0 as n - *. This means that, for almost all graphs, there exists a minimum representa-

bion :hat assigns about i intervals to each vertex.

5. The Total Interval Number and the Number of Edges

In §II, we will compare I with m for various classes of graphs. For some of these classes, we will

* gve upper bounds on I in terms of m and give examples to show that the bound is best possible. For



other classes, we can only give examples to show how big I can be for fLxed m. The classes and

bounds are given in Table 1.5. 1.

maxI(G)
Class m(G) = m) Reference

, Arbitrary 2m §11. 1
Connected 5m + 211.1
8 2. " connected 9m+19m+ I=" 8 §11.2
8a k. for2 k 3, connected §11.2

k2 fr2-connected l-in §11.3

3-connected 9 §11.3

4-connected m + 1 §11.3

2-edge-connected lOi §11.3
3-edge-connected §1.3

* 4-edge-connected m + I [2] §1.6
S . "Constructions show only that I can be greater than (I + E)m for some E > 0.

Table 1.5.1

The nature of this collection of classes is quite different from the collection of Table 1.4.1. For

fixed n, the larger classes of Table 1.4.1 allow more edges. When we fix the number of edges, we
% -.

..,. again want a chain of classes to study, but it is not clear what classes yield interesting bounds. The

impetus for such a study came from considering a question raised by Andreae and Aigner [2]; what is

the maximum total interval number for a connected graph with m edges? We will obtain a solution

that, in terms of Table 1.4.1. seems quite surprising: If m a 2(mod 4,), then the unique connected
Sgraph with a maximum total interval number is a tree.

For a tree G, 8(G) = K¢(G) = )K'(G) = 1. Therefore we studied the effects of the parameters 5, K,.

... ~ and )e. By raising these parameters, we forbid the extremal example and thus obtain other interesting

classes to study. Raising these parameters also decreases the classes and so it is not surprising that the

upper bound for IrN decreases. Our results are not quite as complete for these classes as they are for

the classes of Table 1.4. 1. For some values of these parameters. we simply use examples to obtain a

a lower bound on the upper bound and we do not claim that these examples are extremal.

4 . The bound I V m - I for 4-edge-connected graphs was noted by Andreae and Aigner [2]. by cit-

ing a resuit of Jaeger [17. In §I.6. we will show that, for triangle-free graphs, I(G) a m(G, -

AM I
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" and, for any complete bipartite graph G, I(G) = m(G) + 1. Thus, K'(G) a 3 is the last interesting

question for connectivity classes. The examples referred to in Table 1.5.1 show that there is no such

trivial bound for other connectivity classes.

N ' It is more difficult to compare bounds on I with bounds on i when the bounds are in terms of m

than when they are in terms of n. Spinrad, Vijayan, and West [91 proved that i(G) 5 I + -m(G)12,

with equality for triangle-free regular graphs. This result is hard to relate to I. However comparison is

, easier when we focus on a local vertex property. Griggs and West [15] proved that i(G) S

F12 and we can compare ni to I here. Suppose that k is odd and that G is k-regular so that

n = 2m/k). The above bound then gives us ni: nk/_2 + n/2 = m + n/2. We will soon see that 1:<

im + n/2 and so these bounds agree for this class of graphs.

6. Fundamental Ideas for the Study of the Total Interval Number

An edge uv is twice subdivided if it is subdivided and then one of the new edges is subdivided.

A penultimate vertex of a tree is one for which all but at most one of its neighbors is a leaf (if all of

its neighbors are leaves, then it is the central vertex of a star).

If F is a face and no vertex incident to F is a cut-vertex, then the edges that are incident to F are the

edges of a cycle. If this is the case, then we will refer to the face by citing the cycle. If we have such a

face F = (u0 ..... Uk.l), then we say that it is a k-gon and that ui and uj are I steps apart on F where I

v is the distance on F between ui and uj. Note that a plane graph with no cut-vertex is one that is either a

single edge or one for which every face is a cycle. Note that the vertices of any 3-gon form a triangle

- but that some triangles are not the vertex-sets of any 3-gon.

If R is a set of intervals, cL is the leftmost endpoint of any interval in R, and 3 is the rightmost

endpoint of any interval in R, then let F(R) = [a,5]. We say that R is contiguous if F(R) = Q (
O."

6"  c R). A maximal contiguous subset of R(V) is called a component of R. If 0 6 R(u), then we

I, , say that 0 is a u-interval. If 6 is a u-interval and some subinterval 6" of ( intersects no other member

of R(V). then both 6 and u are called displayed and 0' is called a displayed part of 6. Note that

we can place a small interval within 6' without changing the fact that 6 is displayed.

We order the intervals in R(V) by left endvoints. If the left endpoint of 61 is to the left of 9-, then

we say that 01 is earlier than 0'. An interval that overlaps k - I earlier intervals is called a
A W
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depth-k interval. The earliest interval is necessarily a depth-I interval. Note that since the intervals

of representations have distinct endpoints, there is a gap of positive length between the left endpoint of

a depth-I interval and all earlier intervals. We say that a depth-k interval introduces the k - I edges

that are accounted for by its intersecting earlier intervals. For example, if a u-interval intersects an ear-

lier v-interval and an earlier w-interval, then we say that the u-interval introduces both uv and uw. If

no edge is introduced more than once, then the representation is irredundant. A component of a

-, representation R is a maximal real interval, every point of which is in some member of R.

Let rk(R) be the number of depth-k intervals in R. Note that R has exactly rI components. In an

irredundant represention, each depth-k interval corresponds to k - 1 edges and so m =

-n- X (k - 1 )rk. Therefore small irredundant representations will have relatively few intervals of

small depth and relatively many intervals of large depth.

It is nevertheless often useful to restrict ourselves to representions with no intervals of large depth.

A depth-k representation is a representation with no interval of depth more than k. For a graph G,

let Ik(G) be the minimum size of a depth-k represention of G.

We are most often interested in depth-2 representations and the corresponding parameter 12. Note

that, for triangle-free graphs, all representations are depth-2 and therefore 12 = 1.

Depth-2 representations are intimately connected with trail covers. A trail visits (ends at) a ver-

tex u if u is in (an end of) the trail. A trail covers an edge if it visits one of the ends. A trail cover

of G is a collection of edge-disjoint trails in such a way that every edge of G is covered by at least one

trail. The minimum number of trails in a trail cover of G is called the trail cover number t(G). A

tral cover with a minimum number of trails is called optimal. If there exists a trail T such that (T] is

a trail cover, then we call T a covering trail. A trail cover visits (ends at) u if some member of

visits (ends at) u.

Suppose that T <U 1.. .Uk> is a trail. We define the canonical representation of T to be the

-. depth-2 represention that has k intervals, each of which is displayed. with left endpoints in the order

Ul..k. We illustrate this in Figure 1.6.1. Note that the representation is contiguous.

If R I and R- are representations for the graphs G and H. then the representation RI ' R- of G

H Is def-ined by shifting he intervals of R2 so that no member of R I intersects any member of R-, and
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then taking the union of RI and R2.
U2_

U1.. U3 L. . . Uk

. SinceFigure 1.6.1

.Since the theme of the thesis is to minimize the number of intervals, the operati-n of making one

interval from two is quite desirable. If R is a representation, 01, 02 e R(u), 01 = [a,p3], 02 =

a < 03 < y< 8, and [0,y] intersects no member of R(V), then we can replace 01 and 02 by [0c,8] to

obtain a smaller representation. We call this operation a splice.

Theorem 1.6.1. For any graph G, 12(G) = m(G) + :(G). Furthermore, any minimum depth-2

represention has exactly r components.

Proof. We first show that 12(G) S m(G) + t(G). Suppose that T is an optimal trail covering

so that I7 = r. Let R' be the union of the canonical representations of the trails in 7. Then for each

edge uv that is not in any T e T, at least one of its vertices, say u, is in some T e T and there is a

displayed u-interval 0 in R'. Place a small v-interval inside a displayed part of 0. Having done this

for all such edges, call the resulting representation R.

Everv interval in R introduces exactly one edge except for the intervals corresponding to the first

vertices of each trail. Hence 12(G) : IRI = r(G) + m(G).

% The reverse inequality is essentially proved by reversing the above construction. Suppose that R is

an optimal depth-2 represention. Because R is depth-2, any non-empty intersection of intervals can be

eliminated by shortening or removing intervals without affecting other intersections. Hence we may

assume that R is irredundant.

Remove the intervals that are not displayed and consider the set R of remaining intervals. Because

R is irredundant, R' is a union of canonical representations for a set T of edge-disjoint trails with each0.
depth- I interval corresponding to the first vertex of a member of 7. Hence 17 = rl(R') = rtiR).

Each edge in G is either an edge of some member of ' or it is introduced by a non-displayed inter-

val placed within the displayed part of an interval corresponding to some vertex of a member of -

Hence 7is a trail cover.

%~p, _ We still must show that 7 = [2 G - m(Gj. Since R is optmal. this is the same as showing that

2 - R1 - mvG). Since R is irredundant. :here is a one-to-one correspondence beiveen depth-: inter-
N1
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vals and edges. Hence m(G) = r2(R) = LRI - r1 (R) = IRI - I71.*

Consider the graph G and representation R of Figure 1. 1.1. The optimal trail cover is marked on G

with a thick gray line (t = 1) and the corresponding R' of the above proof is marked with thick gray

intervals. As a more abstract example, we can partition the edges into n12 trails (fewer unless every

vertex is of odd degree), and so 1 5 m + n/2; this result was of interest in §1.5.

The previous lemma shows that m + ( is an upper bound on I since m + t = 1-2 >1. Since the pa-

rameter t is conceptually easy to deal with, finding bounds on r is very important when studying !. We

now present a few fundamental tools for doing this.

The edge-set (vertex-set) of a trail cover is defined to be the union of the edge-sets (vertex-

sets) of the constituent trails. An edge e (vertex u) is vital if, for every trail cover T with edge-set S1

(vertex-set T), there is a set S2 of edges (T2 of vertices) that contains e (contains u) such that there

exists a trail cover T' with edge-set S1 U S2 (vertex-set T1 Q T 2) and IT1 = 171.

When trying to find an optimal trail cover, one can start by assuming that all vital edges are in the

edge-set, and then augment or merge trails.

Lemma 1.6.2.

(i) The neighbor of a leaf is vital.
'ii) If u <-+ v and d(u) = d(v) = 2, then uv is vital.
iii) If u - v, w 4 v, and u # w, then we may subdivide vw and delete uv without de-

creasing the trail cover number.
(iv) If N(v) = (u,w}, u # w, x .-+ u, y ,-. v, and v (x,y), then we may subdivide ux and

wv and remove fuv,vw} without decreasing the trail cover number.

Proof. The first two assertions are trivial.

For iii), let G' be the graph that results from applying (iii) to G and let the new edges be ux and

xw. Note that, for any trail cover of G', there is a corresponding trail cover of G that is obtained by

contracting the edge ux and replacing any subtrail <u~,w> by <u,w>.

To cover the edge icx in G', some trail T must visit either u or x. If T visits u, then we can use the

b corres-ond-nz :rail cover in G. If T Visits x. then the trail contains either the edge ux or xw. In either

case. we may assume that T continues to w or x. and so we may assume that both u and w are visited.
"°

Th erefore the corresponding trail cover in G contains u and so e is zovered.
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For (iv), we simply repeat the argument of (iii) one more time.,

We call the operation of Lemma I.6.2(iii) a snip and the operation of Lemma 1.6.2(iv) a double

snip.

We now use the characterization of 12 that is given in Theorem 1.6.1 to show that computing I is

NP-complete. It is well-known [11] that the problem of determining if there exists a Hamiltonian path

for triangle-free 3-regular planar graphs is NP-complete. Given such a graph G, replace each vertex as

shown in Figure 1.6.2, and call the resulting graph K(G).

Figure 1.6.2

Lemma 1.6.3. A 3-regular planar graph G has a Hamiltonian path if and only if t(K(G)) = I.

Proof. Let H be the seven-vertex replacement of each vertex in G. If t(K(G)) = 1, then let T be

* a covering trail. Because of the edges within each copy of H, T must enter each copy of H, and be-

cause there are only three edges from a copy of H to the rest of the graph, T can pass through H at

most once. During this visit of H, it is possible for T to visit every vertex of H and so we may assume

that T visits each copy of H exactly once. Contracting the edges of T that are within each copy of H
4.

gives a path through G that visits each vertex exactly once and we have a Hamiltonian path of G.

* Conversely. if G has a Hamiltonian path, then, instead of passing through a vertex u of G, we can

have the path touch each vertex of the copy of H that replaced u and get a covering path for K(Ga).,

Theorem 1.6.4. The decision problem I < m + 1 is NP-complete.

0 Proof. We restrict our class of graphs to the class that arises from replacing every vertex of a

3-regular planar graph with H as in Lemma 1.6.3. Such graphs are triangle-free and therefore, for this

% class. 1 < m - I if and only if there is a covering trail. By Lemma 1.6.3, a fast algorithm for testing

coverabiiiry by one trail would vie!d a fast algorithm for deciding whether a 3-regular planar r-aph has

a Haultonian path. Hence we have reduced the problem of deciding whether a 3-regular planar cgaph

has a Hamiltonian path to deciding whether 1 5 m - 1.
0

N N
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The decision problem I !S m + I is in NP since, given a graph G, a non-deterministic algorithm

can gess a set of n(G) + I intervals and verify in polynomial time that this is an interval representa-

tion of G.4
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II. THE TOTAL INTERVAL NUMBER AND THE NUMBER OF VERTICES

1. Trees

The first main result of §1I. 1 is a proof of the correctness of an algorithm for finding a minimum

trail cover. Since trees are triangle-free, I = 12 = m + t and so this algorithm yields an algorithm for

computing the total interval number of trees. The second main result of §11.1 is a characterization of

trees for which the contraction of any edge decreases the a-ail cover number. Note that the contraction

of any edge of any tree does not increase the trail cover number. We will use this characterization to

give a new proof of the upper bound on the total interval number of trees and to show that if n

3 (mod 4), then there is a unique extremal graph.

We now start on the first main result. Suppose that G is a tree and that u e V(G). A vertex u is

partially useful (useful) if some optimal trail cover ends at u (contains <u>). Note that a useful

vertex is a partially useful vertex. Relative to a vertex u, we need to define two kinds of optimal trail

covers. The definitions of these kinds depend on whether u is useful, partially useful but not useful,

or not partially useful. A trail cover is partially u-optimal or u-optimal as described in the

follo%,ing table:

then a trail cover 2 is a then a trail cover 2 is a
If u is: partially u-optimal trail cover if T is: u-optimal trail cover if ' is:

useful optimal and ends at u. optimal and contains <u>.
partially useful optimal and ends at u. optimal and ends at u.
not partially useful optimal. optimal.

Table 11. 1. 1

Note that a u-optimal trail cover is a partially u-optimal trail cover.

Fix G and some u e V(G). The algorithm that we describe will find a u-optimal trail cover of G.
0."

Let Nlu) = (Il . ud). For each i. let Gi be the component of G - L, that contains ui. Let:

= ((-....-d) : --; is a partially ui-optimal trail cover of Gi) (II.1.1)

If 7 is a tral cover of G. then deleting u and all edges incident to u from each T tE 7 that contains

:t results in a set _of trails for which each trail is within one Gi. Let = {T : V(Gi Z V(T) . It

;s easy to see that -7 is a trail cover of G. Let A-) = -'.

O1

S . ,, ., *... .. -•



19

Theorem 11.1.1. If 7is u-optimal, then A(T) e C.

1 Proof. Let (7j,.. .,72) = A(7). If the theorem is false, then we may assume that 71 is not a

partially ul-optimal trail cover of G 1. We now construct a trail cover U that will demonstrate that 7 is

not u-optimal. Let 71 = IT e 7: V(G 1)2 V(T)) and let U1 be a partially ul-optimal trail cover of

G1.

Case i. No member of --contains uul and hence 71 = 71. Suppose that Iil < 1711. Let U' =

1 + U1 j. Then 1:l < 1I7 and, since 7 is optimal, U' is not a trail cover of G. But the only

possible edge that is not covered by U' is uul. This implies that T does not visit u. But then U =

U' (<u>) is a trail cover of G, IUI 5 171, and U ends at u, so 7 cannot be u-optimal.

Hence we may assume that lI = 1711. Since 721 is not partially ul-optimal, 7i does not end at ul

and Yj does end at uI. Let U' be the member of U1 that ends at uI. Extend U' to u and call the

resulting trail U. Let U1 = Uj - U' + U and let U'= -- 71 + U1 . If 7 ends at u, then the

corresponding trail can be concatenated with U to obtain a smaller trail cover U1. If 7 does not end at

it, then let U1 = Y'. In each case U demonstrates that 7is not u-optimal. This completes Case i.

Case ii. There exists T e 7 such that E(T) ; Iuui}. Let T" be the trail induced by the vertices of

T that are not in V(G1). Note that T' ends at u. Since 71 ends at ul and is not partially U-optimal.

Y'jI < I7i1. Let Y'= '- 7' - T+ T'+ 7.j. Note that IU'1=I Mand U'isa trail cover of G.

If T ends at u, then T" = < u>, 2" does not contain < u>, and ,' does contain < u>. Hence?

is not u-optimal.

If T does not end at u. then there are two cases. If -' ends at it. then, in U', concatenate the mem-

* ber other than T' of .' that ends at u with T' and call the resulting trail cover U. Because of the con-

*catenation, !'I < 17I. If 7 does not end at u. then let Y = Y'. Since T' ends at u. U ends at u.

In either case, the existence of U7 proves that 7' is not partially u-optimal and hence is not

:t-optimal. A

We now demonstrate that both types of optimality are necessary by giving two examples. In

Fiure 11.12a), we have a zraph with aparriallv u-optimal trail cover (indicated with thick --rav lines).

If %e remove u tfrom the trail cover, then we are left with a non-optimal trail cover for Gi. In Figure

Ii
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11. 1.2(b), we have a u-optimal trail cover, but if we remove u, then the resulting trail cover of G2 is

only partially u2-optimal and not u2-optimal.

IU It U2 U

U1

Figure II. 1.2(a) Figure II.1.2(b)

If we adopt the convention that the trail <u> has two ends at u, then the optimality, u-optimality,

and partial u-optimality of a trail cover are all determined by the number of and placement of the trail

cover's ends For example, if two trails intersect at some vertex u, then which continuations from u

are assigned to which trails is irrelevant for our purposes. Henceforth, we will ignore these distinc-

dons and simply consider them to be the same trail cover.

*The algorithm for finding a i-optimal trail cover is essentially the reverse of the removal of u from

'a u-optimal trail cover. It takes as input a member of C and gives as output a trail cover of G.

Algorithm 11.1.2. Suppose that (T ,...,7,d) r C. If d = 0 (i.e. G = K1), then T= 0.

Othenvise, use the following algorithm.

a. Let :71 = "71 U ... k 7d
b. Extend any member of U1 that ends at any ui to u. Call the resulting set of trails :,".
c. If .12 does not vist u (i.e., there were no extensions in step b.) and some 71 does not visit

ui, then let U3 = U3 , <u>. Otherwise, let U3 = U2.
-" d. If two members of U3 end at u, then concatenate them to form one trail. Repeat this until at

most one trail ends at u. Call the resulting set of trails 7.

It is clear that if 7 is u-optimal, then applying Algorithm 11. 1.2 to A(T) produces .7. a u-optimal

trail cover of G. Our next goal is to show that we can start with any member of S and apply

Algorithm 11. 1.2 to obtain a u-optimal trail cover. The following lemma is phrased in terms of u and G

but its first application is for each ui,G i combination.

Lemma 11.1.3. Suppose that some partially u-optimal trail cover 7of G visits but does not end at

u. Then every partially u-optimal trail cover of G visits but does not end at u.

P roof. Suppose that 7 and 7' are partially ii-optimal trail covers of G, with 7 visiting but not

ending at u. and not visiting u. Since -does not end at u, no optimal zail cover ends at it and the

Ot
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.., set of optimal trail covers is the same as the set of partially u-optimal trail covers which is the same a

the set of u-optimal trail covers. Hence 7 and 7 are u-optimal.

We apply Theorem 11. 1.1 to each of 7' and 7. The number of trails produced by removing u from

7 is 171 since 7 does not visit u. But the number of trails produced by removing u from 7 is at least
17 + 1 since -1 visits but does not end at u. This is impossible since Theorem 11. 1.1 shows that thesc

numbers must be the same.*

Theorem 11.1.4. If ( d'1..... d) e C, then applying Algorithm [U.1.2 to (7T' .....?d) produces a

u-optimal trail cover of G.

Proof. Let 7Tbe a u-optimal trail cover and (Tj.... 7" ) =A(7). By Theorem 11.I, each

7 is a partially ui-optimal trail cover of Gi and so 7. ends at ui if and only if 7i does. If, for at least

one i, 7, ends at ui, then the result is straightforward.

If no 7i ends at ui, then the only way that the theorem can fail is if, for some i, 7 visits ui and 7'i

does not. (If this happens, then Algorithm 11.1.2 applied to (71,..., d) will produce the trail < u> in

step c). But this is impossible by Lemma 11. 1.3.,

It is clear that r(K1 ) = 0 and so the only partially u-optimal trail cover of Ki is the empty set of

trails. Furthermore, Algorithm 11. 1.2 produces a u-optimal trail cover of G and therefore a partially

u-optimal trail cover. We now have the following recursive algorithm for finding a u-optimal trail

cover of G.

Algorithm 11.1.3.

a. If G = K 1, then 7 = 0. Otherwise, go to step b.
b. a) For each i, apply this algorithm to Gi to obtain a ui-optimal trail cover -i of Gi.

b) Apply Algorithm II. 1.2 to (7'1..d) to get 7.

Bv modifvine Algorithm 1. 1.5 slightly. we obtain an algorithm for computing the trail cover

, 0,-" " ':! number without storing the crails. For a tree G and a vertex u, let _-be a ui-optimal trail cover of G.
- Define Ui1u.G) as follows:

St,", .G) = 0 if --does not visit u.
u.' G . = 1 if? visits U but does not end at :.

'.u(.G) = if- ends at as but does not contain <,>.

"j,,t.G' = 3 if -contains <:i>.
@A

• ,
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By Lemma 1.1.3 and the definitions of u-optimal, the value of t(u,G) is independent of the choice

of the u-optimal trail coverT. Defined, (ul,...,ud}, and {GI,...,Gd) as before. Forj = 0, 1, 2, and

3, let ajc(u,G) = 1(i •'u(ui,Gi) =j]) and P(G) = a3(G) + ocL(G). Algorithm 1H.1.6 computes r(G),

-u(u,G), aO(u,G),..., a3(u,G), and P(u,G).

Algorithm 11.1.6.

a. If G = Ki, then u(u,G) = t(G) = 0. Otherwise, go to step b.
b. a) For i = 1...,d, apply this algorithm to (ui,Gi) to obtain t(Gi) and

u(ui,Gi). Use these to compute ao(u,G),..., a3(u,G), and 0(u,G).
b) t( Gi) - L1(u,G)/2J.b) Let t'= 0t=d

c) If P(u,G) = 0 and a2(u,G) < d, then t(G) = 1 + t' and u(u,G) = 4.J'd) If 0(u,G) -- 0 and a2(u,G) = d, then t(G) = t" and -u(u,G) -- 1.

e) If 1(uG) > 0 and 1 is even, then "(G) = t' and v(uG) = 2.

f) If 1(u,G) is odd, then t(G) = r' and u(u,G) = 3.

We now concentrate on the second main result of §II.1. Recall that the result of contracting e E

E(G) is denoted G e e. An edge e is contractible if t(G * e) = t(G) and a tree is critical if it has

no contractible edge. A critical tree G is k-critical if t(G) = k. Let 'Ok be the set of k-critical trees.
p.

* The next lemma is a collection of simple observations.

Lemma 11.1.7.

(i) If e is incident to a penultimate vertex and e is not a leaf-edge, then e is vital.
(ii) If an optimal trail cover of a tree G contains intersecting trails <Ut ..... up,u,...> and

<...,u,w ,...,Wq>, then some optimal trail cover contains the trail

<Ul,... .,Up,U,W1,.... W q>.4

Note that Lemma I. 1.7(ii) is not necessarily true of graphs with cycles.

Lemma 11.1.8. Each non-leaf neighbor of a penultimate vertex is not useful.

0 Proof. Let u be a penultimate vertex in a tree and let v be its non-leaf neighbor. Suppose that

7 is a trail cover that contains <v>. The leaf edges that are incident to u must be covered and this re-

quires another trail T. Replacing T and <v> by <uv> produces a trail cover that is smaller than 7 and

so 7 is ,not optimal.^

Lemma 11.1.9. In a critical tree every penultimate vertex u is bivalent.

Proof. Let G be a tree containing a penultimate vertex u. and let G' be the tree obtained from G
St



by contracting all but one leaf-edge incident to u. Note that u is still a penultimate vertex in G' and so

there is an optimal trail cover 7 of G' that ends at u. Then 7 is also a trail cover of G. Hence G is not

critical. ,

We now consider 2-colored graphs, i.e., graphs in which each vertex is assigned black or white.

If G is 2-colored. then we define an augmentation of G at u to be a larger 2-colored graph obtained
as follows. Add a path <wj,.....w5> on five new vertices, making w3 white and w !, wz, w4, and w5

black. Then if iu is black, add an edge uw3 and if it is white, identify it with w3. These operations are

illustrated in Figures 11.1.3(a) and Figure 11.1.3(b).

U --* u I w_2 _ w 3t '"

W1  Wi , W4~ w5  w
3 a w5... w

Figure I. 1.3(a) Figure 11.1.3(b)

We say that H is an augmentation of G if, for some u r V(G), H is the augmentation of G at u.

Let ---1 = (K2), where both vertices are black. Let Hk be the augmentations of the members of.' k-l.
We list-"-"1.--:7", and : 3 below.

Figure 11. 1.4

Let H be the union of the s.

Theorem 11.1.10. If G r k". then reG) = k, each white vertex of G is partially useful but not

useful. and each black vertex of G is useful.

Proof. We use induction on k. For k = 1. the claim is clear. Suppose that k > I and that G is

an augmentation of G'= -"- at :- . We %ill apply Algorithm 11. 1.6 to G at w3.

Suppose that u is black. The w 3 has three neighbors and the subtrees of algorithm I. 1.6 are G'

rooted at 't and :-,o copies of K- By :he induc:ton hypothesis. us is useful in G'. and so "jtu.G') = 3.

'Since . . J= , '*a. _ = . 'A ,rta 3.G) = 2 (i.e.. w; is partially useful) and

:t (3 = :G', 'rei r-, .or.:-hm ' ,

T -ho,.at h', c . , ,r ' C, . note that. by inducnon, v is aseful in G'anu

t:.0 e ev: , ..i: ..'n.,u> <.> Le, - - < Since

3 . * %- . . .

• -'£ _, ... -'...-."%-,- -. ... .. - .. "''..--. ." '..-. .- ". ..". .-.".". .- -. .""-.-.-.".""".-""7'""- .''
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t(G) = tG') + 1 = 17, 7 is optimal.

We can use a similar argument to show that the white vertices of G' are partially useful in G and no

edge of G' is contractible. We now show that each white vertex v of G' is not useful. Suppose that?

is a trail cover that contains <v>. Let 7" be the subset of trails of 7 that intersect G'; 171 > t(G') + I

since <v> is not useful in G'. Moreover, since there is only one edge from G' to the rest of the graph,

at most one member of -1 can visit (Wl,W2,W3,wv4,w5 and it must visit u. Such a trail cannot cover
.'.

both Wl-W2 and w4w5 and hence 7' must contain a trail that does not intersect G'. Hence 17 2! t(G') +

2 and is therefore not optimal.

We must show that no new edge is contractible and that each new black vertex is useful. To show

that wi or w2 is useful, or that wjw-2 or w'2w3 is not contractible, extend the w,-optimal trail cover of

w4w5 and the u-optimal trail cover of G' in Algorithm 11. 1.6. A similar argument works to show that

w and w5 are useful, and that wlw'2 and wvvw3 are not contractible. To show that uw is not con-

Stractible. let 7- be an optimal trail cover of G' that contains <u>. Now contract uw3 and replace <u>

by <w-,u.w4>; we now have a trail cover of G that has t(G') trails and so uw-, is not contractible.

Now suppose that u is white in G'. From Algorithm 11.1.6, we obtain P3u,G) = 5(u.G') - 2 and

so :G,) = tUG') + 1 and w¢u,G) = 2. Moreover, since u is white in G. u(u,G') = 2 and there is an

optimal trail cover 7 of G' that contains a trail T that ends at u. Extending T to w- or wI shows that

,%""ws and w4 are useful and that uwt and wjw5 are not contractible. A similar argument shows that wl

and w- are useful, and that uw% and wlw2 are not contractible. By starting with the trail <w2,u.w>.

we see that every vertex in G' is partially useful, black vertices of G' are useful, and edges of G' are

not contractible. We must still show that no white vertex of G' is useful.

We already know that u is not useful. Let v be a white vertex of G' that is not equal to it. Let .. be

a trail cover of G' that contains <v>. Let , be the set of trails of.- that intersect G'. 171 >: :G') I

since <v> is not useful in G'. If there are two members of 71 that visit { Wl,W',w4,w 5 }, then one

must visit w- and one must visit w4. We can redistribute the edges of the two trails so that one of

them is <w-,.;.wV.> and the other does not visit ;v.w-,wa.w5 call zhis trail cover D'. Note that

" - <w2,u.,,t>1 contains <v> and visits u. Hence it is a trail cover of G' and. since v is iot useful

in G', -. (<wr.u.wv±>I > tuG') - I and 1 _> rMG') + 2 and is therefore not optimal.A
0j

'p%
Z-~ %-- Y -. p *ZAA
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Theorem 11.1.11. For any k a 1, 'k = - ' k.

Proof. From the previous theorem, we only need to show that --k Q Gk. We use induction

on k. It is easy to verify the theorem for k = 1. Assume that the theorem holds for 1....Jk - 1.

Suppose that G e 9k, IU and u are the leaves on a path of maximum length, and that U +-* vI.

Since vI is penultimate, it is bivalent and we can define w by N(vI) = (ul,w). Let w' be the neigh-

bor of w besides vI that is on the path between ul and u. If d(w) = 2, then the edge uivI is con-

tractible. If w is adjacent to any leaf, then that leaf edge is conLractible. Hence d(w) > 3 and, except

for w', every neighbor of w is penultimate (or else u would have a vertex at greater distance that Ul).

Since all penultimate vertices in any critical tree are bivalent, we have the situation illustrated below.

Figure 11. 1.5

Let r dtw) - 1; the vertex w has the " penultimate and bivalent neighbors vl,.... '

S.If = 2, then, by two applications of Lemma 11. 1.7(i) and one application of Lemma II. 1.7(i),

we have one trail T that covers the edges that are incident to w, v I, and v- . Let G' be the graph ob-

tained by deleting these edges from G. Since G is k-critical. G' must be (k - 1)-critical and, by

" induction, G' r .'k-1.

We now show that w' is black. Suppose that w' is white. Contract the edge wv' in G. The trail

T now contains the vertex w'. By Theorem 1I.I.10, w' is not useful in G' and therefore the fact that T

visits w' does not affect the number of trails that are still required to cover E(G'). Hence eG .
ww') = I + r(G') = k, contradicting the criticality of G. Hence w' is black in G' and G is an aug-

mentation of G' at w'.

If ; is odd. then u applications of Lemma 11.1.7(i), followed by- applications of Lemma

-II.1.7 ii) results in -"--- trails and an additional trail T that we may assume is vw. The construction

of Lemma II. 1.7 does not forbid extending T to w'. Therefore. the edge ww' is contractible,

conradictng the criticality of G. Hence : cannot be odd.

-. . -. ,-...,.-f 'N
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-If ' is even and at least four, then let G'= G - (vl,V2). By two applications of Lemma 11.1.7(i)

and one applica'tion of Lemma 11.1.7(60, we obtain one trail <vj,w,v2> that covers E(G) - E(G').

Repeating this procedure, we may assume that there is another trail <v3,Wv4>, making the fact that w

has already been visited meaningless. Hence we can safely ignore the fact that the first trail visits w

and so G' O -k-I and, by induction, G' .11k-1. By Lemma 11.1.8, w is not useful in G'. By in-

duction, w must be white and so G is an augmentation of G' at w. *

Corollary 11.1.12. For any tree G with at least three vertices, lG) 5-j------

Furthermore, for anv n, there exists a tree G. such that 1(G,) = 5n -3 .J and so the result is best. 4
possible.

Proof. Letf(G) = n'G) - 4t(G) + 1. It suffices to show thatf 2t 0 for all trees. Suppose that

G is such thatf is minimized. If the contraction of an edge does not decrease the trail cover number.

then it decreasesf and so we may assume that no edge is contractible. Hence G - k = k for some
k. But then G is created by a sequence of augmentations from K2.Each augmentation from a black

vertex increases t by one, n by five. and hence f by one. Each augmentation from a white vertex in-

creases r by one, n by four, and hence does not affectf. To minimizef, we therefore use as few aug-

mentations from black vertices as possible.

The first augmentation must come from a black vertex because initially, there are no white vertices.

However the remainin- augmentations can come from the one white vertex. This construction yields

graphs with minimum values off and this value is zero. This establishes the lower bound onf and the

sequence of graphs constructed this way shows that it is best possible.*

Let _? be the set of graphs indicated in Figure 11. 1.6. The above proof shows that members of?-y5n 3
are the only graphs for which f = 0 and therefore, the only graphs for which I (note that

,"4

there are no "floor" marks in this statement).

i '

Figure 11.1.6

4"J ejk



2. Cacti and Dense Cacti

We will define a finite set 7 of exceptional cacti. The goal of §1.2 is to prove Theorem 11.2. 1.

Theorem 11.2.1. If G is a cactus that is not in Z, then l(G) - Furthermore, for
13 -

" any n, there exists a cactus G. with n vertices for which I(Gn) =L 1813 12 ], and so the result is

I[ best possible.

LetftG) = 18nG) - 13(G) - 12. Theorem 11.2.1 can be restated in the following more conve-

nienrt form.

Theorem 11.2.1'. If G is a cactus that is not in .E, thenf(G) > 0. Furthermore, for any n, there

exists a cactus G, with n vertices for which 0 -f(Gn) < 13, and so the result is best possible.

* After defining .3, we will construct an infinite sequence of cacti that shows that Theorem 11.2.1' is

best possible. We will then prove Theorem 11.2. 1' for triangle-free cacti and then use this result to

prove Theorem 11.2. ' for arbitrary cacti.

We first define an infinite set .' of graphs, a finite subset of which will be the exceptional subset

. :. .,. The set 7' is built by starting with the two small graphs K2 and C4 ; f(K 2 ) = -2 andf(C4 ) = -5.

We then define two enlargement procedures. Each procedure will increasef but by such a small

amount that we can apply the procedures a few times and still have a negative value off.

The enlargement procedures depend on the graphs F1 and F2 shown below.

61 VIA2 1
V, Lm 

*

V3 V4 j
Figure 11.2.1 Ft

* For i = 1,2, an i-operation on a graph G is the identification of u e V(Fi) with some v e

* - V(G). Examples of these operations appear below.

4
I

.

VV
Fig-ure 11.2.2 G FaG) l"tG

zG6i

a . ,.' - ' . ... , . , . , . ,- .- . ,., h , ',', , ,,.



The vertices and edges added to the graph during the operations are called new and the rest of the

vertices and edges are called old.

Lemma 11.2.2. If H is any graph obtained by a 1-operation from a graph G, then f(H) =f(G) + 1.

Proof. Since n(H) = n(G) + 8, it is easy to verify that the lemma is true if and only if I(H) =

iG) - 11. The representation below shows that I(F) !5 11 and so, by representing G and F1 sepa-

rately. we see that I(H) < I(G) + 11.

.Se.____ w I w w

___1_ V 1 ______

Figure H.2.3

-, We must show that IH) > I(G) + 11. Suppose that R is a represenrion of H. Partition the inter-

* vals of R into RIQR2 where RI = '{R(u) "u is old) and R 2 = uIR(u) "u is new). Since the

.: graph induced by the new vertices is triangle-free, we can use Lemma 1.6.1 to show that LR-,I 2! 10 and

that, if R-I = 10, then R - is contiguous. Since RI is a represention of G, IR11 >_ I(G). Therefore.

IRI = R I I + 'R2, > I(G) + 10 and equality exists only if LRII = I(G) and R 2 is contiguous.

Hence we may assume that R2 is contiguous and that it corresponds to a single covering trail of the

g-aph that is induced by the new vertices. Any such trail must contain the edge vlv and this edge can

,be neither the first nor the last edge of the trail. Therefore, any interval of RI that intersects both a

v1-interval and a wl-interval must either intersect no other interval or at least one other member of R-.

In particular, if some u-interval 0 intersects both a vl-interval and a wl-interval then, since u is not

* adjacent to any other new vertex, 0 must not intersect any other interval. But then the removal of 0

leaves a represention of G. Hence IRII I(G) + I and IRt > I(G) + 11.

If two different u-intervals 01 and 6- intersect members of R-, then. since R, is contiguous, re-

. moving R, and splicing 01 to 6, results in a representation of G with IRII-I intervals. Hence !R112

R.1G) - 1 and IR!>I(G) '- l

Lemma 11.2.3. If H is any graph obtained by a 2-operation from a graph G. then f(H) _f(G, 2.

Proof. Since neH) = n(G) - 3, it is easy to verify that the lemma is -ue if and only if IH; >

.(G) - 4. Suppose that R is a represention of H. We partition R as in Lemma 11.2.2 and use the sarmn

. arzuments to show that hH) < I(G) - 3 implies that IR11 = 1(G and R-I = 3.
0"
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If it is possible to remove the intervals of R2 and rearrange the components of RI so that there are

tr to u-intervais 61 and 02. with no other interval between them, then 01 and &2 can be spliced together

to obtain a represention of G that has fewer intervals than R1. But then L1, > lRG and IRI a I(G) +

* 4. Since u is the only old vertex with an interval that intersects any member of R2 , only one u-interval

intersects any member of R2.But there must be at leastfive intervals involved in the representation of

trhe ne%, edges. Since there is only one u interval involved, we must have iR21 2t 4 and LRI -e I(G) +

4.-

Let 3" be the set of graphs that can be built from (K2,C4 } by a sequence of 1-operations and

,. 2-operations.

'- Lemma 1.2.4. For any G e '. aG) = 1.

P roof. Neither operation changes the number of vertices that are of odd degree. Since K2 has

.. only two vertices of odd degree and C4 has none, each member of ' has at most two vertices of odd

de zree and ail of the edges can be traversed with a single rail.,

For G =- 3 and i e 1,2), let ki'G) be the number of i-operations applied to a member of

*K,C4 :o obtain G. We say that G has base K2 (C.&) if G is the result of 1-operations and

-oerations applied to K- (C..).

Corollary 11.2.5. Suppose that G e 3' If G has base B. thenf(G) =f(Bi + kj(G) 2k:_ G).

Proof. Lemmas [1.2.2 and 11.2.3 show that 1-operaions and 2-operations increase the total

,nterval number by at least eleven and four. Lemma 11.2.4 shows that, when restricted to members of

they increase it by at most eleven and four. The rest is simple arithmetic. ,*

We define 3 to be those members of 3' that are obtained by one of the following.
,W•4

Start with K2 and apply up to one 1-operation.
i. Start with Ca and applv one of the following.

a. To 2-operations
b. One 2-operation and up to two I -operations
b. Zero 2-operarions and up to four 1-operanons

Lo

Te order of the operarons in :ia.. :i.b.. and ii.c. is irrelevant. By Corollary 11.2.5. the ;et £ is

, rec:Nelv hose members of 3' for w hich r< (. .Af:ereszabiishuw the best possible assertion of
Theorem 112. . '. e wi2 shoW chat the members or _ are the ,nA cac:: fcr vhich r< 0.

"I"
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To prove that Theorem 11.2. V is best possible. we need to construct a sequence of cacti for which

w.e can find a suitably large lower bound. This bound will be established by actually computing I for

the members of the sequence.

There are two types of subgraphs that are particularly useful when computing the total interval

number of triangle-free cacti. A cluster of a non-Eulerian subgraph is a maximal induced subgraph C

that satisfies the following:

i. n(C, > 2
ii. C is Eulerian.
iii. Exactly one component of G - E(C) is non-trivial.

'p p If C is a cluster, then let D(C) be the non-trivial component of G - E(C). There is exactly one

vertex of V(C) that is also in D(C) and this vertex is called the base of the cluster. If C is a cluster

* with base u and ND(C)(u) = (v), then C is called an appendage and v is called the neighbor of C.

* Examples appear in Figures II.2.4(a) and II.2.4(b).

.?.

U-U

.... .Figure II.2.-,ta} Figure II.2.-4(b)

For each graph. the circled vertices induce clusters with base u. In Figure 11.2.4(b), this cluster is an

appendage with neighbor v. Note that v is also the base of a (different) cluster and its neighbor is u.

The next lemma and its corollary are the keys to computing t for cacti.

Lemma 11.2.6. There exists an optimal trail cover - such that. for each cluster C, there exists

T-- 7 such that some subtrail of TC is an Euler tour of C.

Proo t'. Let --be a trail cover. Fix some cluster C and let it be the base of C. Because some

-de of C is not incident to :u. some trail must contain a vertex of C other than it. If such a trail con-

:ainN ,u. then It is an entering trail and if it does not contain u, then it is an interior trail.
p t

4. If :here is no enternng trail, t.hen remove all interior trails and add a trail that is an Euler tour. Now,
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suppose that there is at least one entering trail. We first remove all interior trails. Each entering trail T

contains at least one subtrail that starts and ends at u and whose edge-set is a subset of E(C). We re-

move the edges of these subtrails from the edge-set of T, leaving us with a set of edges of a trail T' that

contains i and covers all of the edges outside of C that T does Repeat this for every entering trail.

Now select some trail U that contains u. If U = <u>, then replace U with an Euler tour of C.

Otherwise. there is a subtrail <u.v> of U. Replace this by an Euler tour of C concatenated with

For each case, the number of trails does not increase. Repeat this procedure for each cluster.,

Corollary 11.2.7. Let G be a cactus. Then there is an optimal trail cover 7" such that, for each ap-

pendage C with base u and neighbor v, some TC e 7' has an end at u. In particular, a lower bound on

r is half of the number of appendages.

P roof. Consider the optimal trail cover of Lemma 11.2.6. Because there is only one edge inci-

dent to u and not in 7(C), both ends of the trail cannot be outside of V(C). *

In Figure 11.2.5, there are thirteen graphs (Gi : i = 1. 13); one for each congruence class

modulo thirteen.

Let G' be the graph in Figure 11.2.6.

I* W,

4,.. V

U

Figure 11.2.6: G'

We will construct graphs by identifying a vertex of Gj with copies of G'. The next lemma shows that

each copy of G' increases the trail cover number by one.

Lemma 11.2.8. Let Gi.r be the =-raoh obtained by identifying the vertex u of r copies of G' with the

verex : of G.. Let :i.r = r - I if i r 13 and r -2 if i = 13. Then t(G 1 .,) = ti.r.

Proof. To establish (G, r, ti... note that the number of vertices that are of odd de-tee show s

iat ',e ,:an parnzrion (and not mere[" cover the edges into ti-r Tails.
U-

-' '-..".-'--."--'.'-.,-'-?" ""-- -.', ,- - .-.. - ,--- -,<Z'.% i , "& -..::'. .i,: .,.?;,',,4 - , :
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0Fgure 11.2.5

Let G = Gi... We will show that r(G) 2t i,, We will do this by finding a subset U of V for which

L,2i ,r.- I and there exists some optimal trail cover' Tthat ends at each member of U. Note that each

vertex labelled v or v in Figure 11.2.5 is the base of an appendage. Therefore, by Corollary 11.2.6, we

may put each of these vertices into U. We will be done if we can find 2r more vertices to include in U

and this will be accomplished if we can find two vertices from each copy of G in G.

Fix some copy of G' and assume that it is labelled as in Figure 11.2.6. Consider the appendage

with base u'. By Corollary 11.2.6. we have an end at the base of this appendage. If this copy of G'

does not have another end, then this trail must c ,ntinue out of the appendage to v and. by symmetry.,

4. we may assume that it continues to w.

After removing the edges traversed so far. v is a leaf of the remaining graph. If some trail contains

v. then it has an end at v, providing the second end within G'. If not. then the edge w'v is not in any
0,

'a I . lll . .l~ " ) lil l " 
11

l il'' l l~" " ' '" "" . . . ....""' "" """' ' J ' " " ") " " 
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- trail and can be removed when searching for an optimal trail cover. The left 4-cycle is then an ap-

dpendage and we may assume that some trail has an end at w' since no trail can traverse the edge w'

twice. Hence each copy of G' contains two ends of trails. 4

The reader may wonder why attaching copies of G' to the triangle-free members of E does not in-

crease the trail cover number. The reasoning of the above argument breaks down since each triangle-

- free member of S has no appendage and hence the first copy of G' does not increase the trail cover

- number, Subsequent copies do increase t by one.

Corollary 11.2.9. Theorem 1.2.1' is best possible.

*,* * Proof. By using the fact that t(Gi) = 1 if i # 13 and 2 if i -- 13, we have 0 <f(Gi) < 13.

From the previous theorem, we have tir+l = ti + 1. It is clear that m(Gi,r+i) = m(Gir) + 17 and,

O since Gin is triangle-free, that I(Gir+l) = 18 + I(Gi,r). Moreover it is immediate that n(Gir+i) =

" <" n(Gir) + 13. From these facts and the definition off, we havef(Gi,r+1) =f(Gi,r).*

We now present the proof of the upper bound for triangle-free graphs. We seek to find triangle-

free cacti with minimum values off and showy that, for cacti not in E, this minimum is zero.

If G is a cactus and some operation on G results in a cactus H, then we define An = n(G) - n(H),

Am = m(G) - m(H), At = t(G) - t(H), AI = I(G) - I(H), and Af = f(G) - f(H). Note that Af=

I SAn-I 3A1 and AI = Am + At. These difference operators allow us to focus on hypothetical

graphs with negative values off. It may seem more natural to define the difference operaters to be the

negative of what they are; the choice of sign is made to make the most critical part of the proof more

-" natural.

A triangle-free cactus G is abnormal if G e Z andf(G) < 0. Our goal is to prove that there are

no abnormal cacti. The following lemma follows immediately from the definitions and simple arith-

metic.

Lemma 11.2.10 Suppose that G is an abnormal graph and H is the result of some operation on G.

If H is a non-exceptional triangle-free cactus and Af _ 0, then H is abnormal.,

Bv Lemma 11.2.10, it is sufficient to establish the following three properties for an operation in or-

- .. der to prove that it preserves abnormality. We continue to use the convention that G is the graph being

,ji* . * . ... _............... .
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operated on and H is the result of the operation.

If G is abnormal, then H is a triangle-free cactus. (11.2.1)
If H r 2, then G is normal. (11.2.2)
Af > 0 (11.2.3)

For the operations that we will discuss, (11.2.1) will always be easy to establish because the

, ?operation will be defined to ensure it. A tedious but simple inspection will be necessary to establish

11.2.2). For Jhis, it is convenient to have the triangle-free members of 3 listed explicitly. There are

only six and they, are shown below.

U1

Figure 11.2.7

We will work out the details for establishing (11.2.2) only for the first operation.

The key step in establishing (11.2.3) is to bound LV by some appropriate constant. We do this by

transforming an optimal trail cover for H into a trail cover for G. It is because of this transformation

tnat we define the difference operators as we do.

There are two abnormality preserving operations A and A' (defined in Lemmas 11.2.11 and

112.12) that increase the number of vertices. We will assume that these operations are performed until

they cannot be performed any more. It is easy to see that this process terminates in a finite number of

steps.

There are then ten operations {A": i 1 .... 0}, each of which preserves abnormality and

decreases the number of vertices. But each of these operations could result in a graph on which A or

*"" .A' could operate. Therefore we define ten "companion" operations [Ai : i = 1,10), each of

which preserves abnormality, decreases the number of vertices, and leaves a graph on which neither A

and ,A' can operate.

* Lemma 11.2.11. Ifu E V and.V(u) = (v, then let A(G) be the gaph obtained from G by

addinz two new vertices ul and a, and the edzes {Utl.UILL2.1L2V. Then A preserves abnormality.

?.4e

'..
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Proof. It is clear thatA satisfies (1.2.).

For (11.2.3), let H = AtGi. Let a be the minimum size of trail covers of G - u that visit v. It is

easy to see that tG) = t(H) = a. Hence At = 0 and A1 =,Am. Since Am = -3 and An = -2, we

have 18An - 13,/- = 3 > 0 and (11.2.3) is established.

For (11.2.2), note that if H is exceptional, then, by inspection, we have the candidates for the pairs

" G.H) that are listed below.

'.2 G U U)

H . .V

~Figure 1.2.8

For each candidate for G that is not exceptional, it is easy to verify that r(G) = I andflG) _ O.*

Lemma .1_.1 through 1.2.20 similar to Lemma 1.2.11. For each operation, we must verify

*properties (11.2.1) and (1.2.2). These are always straightforward so the proofs will concentrate on the

verification of (1I.2.3).

•.. Lemma 11.2.12. If u and v are bivalent and adjacent to each other, and no 41-cycle contains uv,

then let H = A'(G) be the graph obtained from G by contracting uv to form the new vertex u', and

adding vertices {v',vl,v2) and edges {u'v', V'Vl,VlV2,V2U'}. Then A' preserves abnormality.

-"P roof. The restriction concerning a 4t-cycle ensures that H is triangle-free. It is easy to verify

(11.2.1) and (1I.2.2) (the same candidates for H exist as for Lemma II.2.11). For (11.2.3), note that At

- is again zero since uv is vital by Lemma 1.6.2(ii). Then the same calculations used in Lemma 11.2.11

Hen,.2'orh. we restrict ourselves to triangle-free cacti for which neither,4 nor 4' applies. Let '

be:he abnormal ti-anglze-free cacti for which neither A nor A' applies.

i~n the proofs of the following lemmas. we will assume that H is the result of the operation beingz

-' V2 ---.- .& .,. ?
VIE: -, 1,u-E
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discussed.

Lemma 11.2.13. If C is a cluster with base u, and C is not a 4-cycle, then let Aj(G) be the graph

obtained from G by removing V(C) - u and making u the base of a new cluster that is a 4-cycle.

Then Ai preserves abnormality.

Proof. Properties (11.2.1) and (11.2.2) are easy to verify.

For (11.2.3), Lemma 11.2.2 guarantees that At = 0 and therefore that A[ = Am. Now let atk be the
number of k-cycles in C. By hypothesis, (n-1)+ ,k 1. 

Since each k-cycle in C increases the number of vertices by k - 1 and the number of edges by k,

we have the following identities.

n(C) T ( - I)ak + 1 and m(C) =X kak

An = ( - l)ak - 3 and Am = ~kck -

Af = 18An - 13LV = 2a4 -2 + 5 5kak -

Note that each summand in the final formula of .Lfis nonnegative. If .: - 1, then n5 ak >_ 1.

n 55kaIk - 18 ak > 7, and Af>_ 5. If a4 2, then 2a4 - 2 >t 2 and Af>2t 2. Either way, (11.2.3)

is established.*

Lemma 11.2.14. If C1 is an appendage with neighbor u and C2 is a cluster with base u, then let

A.(G) be the graph obtained from G by removing V(C 2) - (u). Then Ai preserves abnormality.

Proof. Properties (11.2.1) and (11.2.2) are easy to verify.

* From Lemma 11.2.13, both C1 and C2 are 4-cycles. By Lemma 11.2.2 and corollary I.2.3,

teH)=r(G). Hence At=0,Am=4, WI=4,An=3, and 18An- 13A1=2>0.4

Lemma 11.2.15. If C1 and C2 are appendages that have a common neighbor u, then let .A(G) be

the graph obtained from G by removing V(C) U V(C 2) Then Aj preserves abnormality.

Proof. Properties (11.2.1) and (11.2.2) are easy to verify.

Suppose that we have an optimal trail cover for H. By using one additional trail to cover the edges

of the appendages and the edges from u to the appendages, we see that At < 1 (Note that if H E 3.

then At =0). Since Am = 10. we have _! 11. Since An = S. we have ISAn - 13AI>(18)8) -

.
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For the next two lemmas, properties (11.2.1) and (11.2.2) are easy to verify and property (U.2.3)

folows directly from calculations and the easily venfied fact that Ar = 0.

Lemma 11.2.16. Suppose that C is a cluster with base ul, and some ul e Nul) - V(C) is biva-

" lent. Let Aj'G) = G - (V(C) - uI). Then AS preserves abnormalitv.*

I. Lemma 11.2.17. Suppose that C1 and C2 are clusters with bases ul and u2, Ul + u2, and each

u, has exactly two neighbors that are not in its cluster. Let A (G) = G - (V(C 2) - (u2} ). Then A4

preserves abnormality. A

IN The next three lemmas deal with appendages. The operations and proofs are almost identical to

each other. Therefore we summarize the operations in Figure HI.2.9. Lemmas 11.2.18, 11.2.19, and

1.2.20 deal with the configurations shown in Figures 11.2.9(a), 11.2.9(b), and 1.2.9(c). For all three

configurations, the corresponding operation results in Figure II.2.9(d).

-I .V 11 V' V1 VI V

U,2

.- 1  
-1 

U1WW

Figure I1.2.9(a) Figure 11.2.9(b) Figure 1.2.9(c) Ag, A-, or A -- Figure 1.2.9(d)

We write out the proof only for Lemma H.2.18. The other proofs are similar.

'. £ Lemma I.2.18. Suppose that C is an appendage with base ul and neighbor vj, N(vj) =

{uj,wl,v'}, Ntv-')= (Vl,W2I and vjv2 is not part of a 4-cycle or a 5-cycle. Let ,A(G) = G -

• (C( j {v1,v2 }) (. I {lW21. Then A4 preserves abnormality.

P roof. Properties (11.2.1) and (1I.2.2) are easy to verify. Note that the restriction concerning

4-cycles and 5-cycles included ensure that A6(G) contains no triangles. For (H.2.3), arithmetic shows

that it is sufficient to establish that At < 1.
Let e = wlw:" and let 7' be an optimal trail cover of H. If e e E(G) or if no trail in - contains e,

, then use and add a trail that covers E(C) and the path <ivj,vjv-, v-> thus showing that At < 1. If

sorne T s contains e. then adjust 7 bv the following:

"N!
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i. Remove e, resulting in two trails T1 and T1, where T1 ends at Wl and 72 ends at w-. ,
ii. Extend T1 to VI, then ul, and then an Euler tour of C.
iii. Extend T2 to v,.

We have replaced T by I T1 4T'), again establishing that At :5 1.4

For Lemmas 11.2.19 and 11.2.20, it is sufficient to show that At < 1 in order to establish (11.2.3).

The adjustment of T in the last part of the proof can easily be modified to do this. We state these lem-

mas without additional proof.

Lemma 11.2.19. Suppose that C is an appendage with base ul and neighbor v1, C is a cluster

wxith base v-,, v1 * v2, N(vl) = (ul,wl,v2}, N(v2) - V(C') = {vl,w2), and v1v2 is not part of a

--cycle or a 5-cycle. Let AI(G) = G - (V(C) k V(C')) u IwIw2). Then A-l preserves

abnormality.,*

Lemma 11.2.20. Suppose C is a an appendage with base ul and neighbor vl, C' is an appendage

with base u, and neighbor v2 , vl I-+ v,2, N(v1 ) u [Ul,wl,v2}, N(v2) - V(C') = {Vl,w2}, and VIv2.

is not part of a 4-cycle or a 5-cycle. Let A (G) = G - (V(C) Q V(C') u ( v 1 ,v2 ) u { Wlw2}.

Then M4 preserves abnormality.*

For each of i = 1 .. ,8, let Ai be defined as A' followed by applications of A orA' until neither A
,.

nor A' applies. We state the following lemma without proof. At this point. the only assertion that

needs verification is that the number of vertices decreases. For each of the eight cases, this is easy to

verifv.

4 Lemma 11.2.21. For each i = 1.....8, if G e C and G is abnormal, then Ai(G) ( C, Ai(G) is

abnormal, and n(A;(G) < n(G).4

Now assume that G is such that none of (Ai: i = 1,...,81 applies. We will define two more op-

erations A4 and A ib that also preserve abnormality and decrease the number of vertices, and then

modify them as we modified A1,.... 48 to form A9 and A10.
-,e

Recall that everv block is either a single edge or a cycle. We call these types of blocks edge-

blocks and cycle-blocks respectively. If there is at most one edge-block, then we can traverse thc

." entire zraph with just one trail and. by the argument of Lemma I1.2.1. G is normal. Hence we may

assume that there are at least two edge-blocks.
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" Lemma 11.2.22. There exists a cycle 8 in G and a vertex w in (9 such that E) has the following

, property':

With the exception of w, every vertex u of ( satisfies exactly one of the following conditions.
(i) d(u) = 2
(ii) d(u) = 3 and u is the neighbor of an appendage. (11.2.4)
(iii) d(u) = 4 and u is the base of a cluster that is not e.

Furthermore, some vertex of e other than w is the neighbor of an appendage.

P roof. Let B(G) be the block graph of G. Let e and e' be maximally distant edge-blocks.

Since e is not part of any cycle, it is a cut-edge. LetX and Y be the two components of G - e, where

e' E(Y). Define u and v by e = uv, u e X, and v e Y. Let X' be the block that is on the mini-

mum path in B(G) between e and e' and is adjacent to e.

If X has an edge-block e", then e' and e" are a greater distance from each other in B(G) than e and

e' are, a contradiction. Hence, X is Eulerian. Since G has no leaves, n(X) _> 2 and it follows that X

is a cluster and therefore a 4-cycle.

If there is an edge-block e" = u'v, where u # u, then e" is also a maximum distance from e' and

so the same argument shows that u' is the base of a 4-cycle cluster. But then we have a configuration

on which A3 could act. Therefore the only blocks that contain v are e, X', and perhaps some other

S cycle-blocks. Let H be the graph induced by the union of the vertices of these other cycle-blocks.

If H contains a vertex x of some edge-block g, and x # v, then g is farther from e' than e, a con-

tradiction. Therefore H is a cluster and we have a configuration on which A2 can act, a contradiction.

Therefore, the only blocks that contain v are e and X'.

If X' is an edge-block, then we have a configuration on which A6 can act. Therefore, X' is a cy-

cle-block. Let () be the cycle corresponding to the block X'. Let X" be the block that is not e, is on

Lhe minimum path between e and e'. and shares a vertex w with X' (See Figure 11.2. 10).

*, -Now suppose that v e V(8) and y * w. Let Z be the union of the y-components that do not

I, contain E E)). If Z contains exactly one cut-edge g', then, either y satisfies (ii) or else g' is farther

from e" :han e is. a contradiction. If Z contains more than one cut-edge. then either we have a

S;onfiguration on which A2 can ac: or we again have an edge-block that is farther from e' than e is.

* - Hence Z is Eulenan and is therefore a cluster, and (iii) holds for y.,A
I,



40

. e'-
.5X1

tLe

Figure HI.2.10

We continue with the assumption that none of A, A', A 1,...,A8 applies. We now define the two

operations A§ and A [0, one of which will apply.

Define 8 and w as in Lemma H.2.22. Let ul and u2 be members of 8 that are not equal to w. We

4. summarize the restrictions on the pair (ul,u2) from Lemmas 1.2.11 to H.2.20 in the following table.

0 Operation that inhibits Resulting
U2 this configuration possible lengths for E

bivalent bivalent A" 4
bivalent base of cluster A4 None
bivalent neighbor of appendage A6 4,5
base of cluster base of cluster A 5 None
base of cluster neighbor of appendage A7 4,5

neighbor of
appendage neighbor of appendage A4 -. 5

Table H.2.11

Let A§(G) = G - (V(G")-{w}). Define Ai'O(G) by the following. Start by applying .A1(G). Then

add a 4-cycle that consists of new vertices and edges and a new edge between w and one of the ver-

tices of the 4-cycle. Examples of these two operations are given below.

w w

" S

Figure 11.2.12 G -- A4(G) G - A 'o(G)

Let Z be the union of the vertex-sets of the clusters that have bases or neighbors in V(e) - (w)

*and let G' be the graph that is induced by - t.) V(E). We see from Table U.2.11 that we are restricted

to our candidates for G'. A partial list of the candidates for G' is listed in Figures 11.2.13. Each can-

didate that is not listed is a rivial modification of one that appears: e.g.. one can place a cluster suchit
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that its base is anm' vertex that is already on a Mril and simply increase -Af Note also that there must be

at least one appendage.

The caption of each candidate gives the operation that is to be applied, as well as bounds on the

values of the difference operators. In the diagram of the candidate, we show a partial taifl cover that

q verifies the claim for At. Note that, for graphs on which we wish to apply A ib. we get a "free" trail as

Iong as it starts or ends at w.

Fiur H.2 I' )(a Fiu 1.2 3() iue1..3c

An= I A 14 n 3 m4 n 13 Am 17
t -OIAf2 >-3 t=0 f A 51ff -

Fiure 11.2.13() Figur e II..13(b) e Fiure r1.2.13()

w w w

ti N\ U\IV

AS I A. NtIA! fZ t51-f-

Fiure 1.2.1(d Fiwrer IT11.2.3(e Fiure T1.2.13()
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COM .4q

At A 23 At"6 Iv~ 3f 8*r5I f

W. '

Ai AiOA
~nAn 20mAm 25 12rn1 A=An= 10A

AtS1f 2 A 9 1:5f = 2 1f
Figre11 FigureFiur 11.2.13(k) Figure 11.2.13(n)

A~~ ~ ~ wantetdosadsml eiiain fpoete 1..1 n 1..)aeoitd

For~~~~~~~~~~~~~~~ i '.r1,ltA eAflowdb plctoso n/o 'ni ete o 'p

plies.~~~~~~~ Wesaetefllwn em iu ro.Teol seto ntelmata edute

verfictin i th lst-ne

Le m 122. Fr ahi=1..10 fGi boml3 - ,te A()i boml

Figurent ha o o cnai 1 1(See Figure [11.2.1(n)

Agin; = h n .tis clad simpl vernIfic+ins of pr.opriesr= (11.2.1 and (1.2.2) ae oiete ap

Force by =(j 9 or1,lt G J' olwdb plctin fAadoA ntlnihr oA p

Lemma 11.2.23. Ifo eac j, . 0 fC sanra and G ar ditict then 15(G isij abnormal,

ThscmlePh roof ofThoem1.21 and henc Theomam 1epe.2.aton for Gi n kadlt Riangle-freeat.

V a
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and 02 be the ui-interval and uj-interval of RI whose intersection represents uju1, and let 8 = n1 r

0-. Since uiu1 is in no cycle within Gi, and hence no triangle, no other interval of R1 intersects 6.

Place a small uk-interval within 8.4

G3

T

U U0

-U°

Figure 11.2.14
Let 7 = {G nG) - 5tmod 13)) = {G :f(G) = O(mod 13)). IfG e F, thenf(G) >_ 0 im-

plies thatf(G) , 1. Since G e 3 implies thatf(G)(mod 13) ( -5,-4,-3,-2,-1), F-' Z= 0.

" Now suppose that G is a cactus with at least one triangle T, G e 3, and that Theorem 11.2.1'

holds for all cacti with fewer vertices or fewer edges than G. Choose T = (ulu2u3) so that G1 and G2

are triangle-free. We will be finished proving Theorem 11.2.1' if we can prove thatfiG) _ 0.

,. The next two lemmas do not use the fact that G1 and G-, are triangle-free.

p Lemma 11.2.25. For i E ( 1.23), n = I implies thatf f 0.

Proof. Without loss of generality, let i = 1. Suppose that ni = 1. Let H = G - U2u3. Since

-' no member of 3 has a cut-edge that is incident to a bivalent vertex, H e 3 and since H is smaller than

G.f(H) >_ 0. In an optimal representation R' of H, we must have one of the configurations of Figure

- 12.15(a).

_._ UU 1
'-" U'N 111-4'£

" ' , . . . /d /£, •

Figure II.2. 15(a) Figure 1.2.151b)

We :an adjust the representations as shown in Figure 1I.2.15(b) to obtain a representation for G

%ith the same size. This proves that ItG 1_ I(H) and therefore that fG> _>JH) > 0.,
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Lemma 11.2.26. For i *j, i, e (1,2,3), fAi ) < 0 implies that fiG) >. 0.

Proof. Since Gij is smaller than G, the hypothesis f(Gij) < 0 is the same as GO e 3. Note

that uiuj is a cut-edge of Gij and its deletion leaves the two graphs Gi and Gj. The only members of ---

that have cut-edges are shown below.

Figure 11.2.16

For either of these graphs, the deletion of the (only) cut-edge leaves a graph with two components,

at least one of which has only one vertex. Hence if Gjj e 3, then either ni = 1 or nj= 1. The result

now follows from Lemma 11.2.25.4

The following is the most heavily used lemma of this part of the proof.

Lemma 11.2.27. Suppose that i,j, and k are distinct.f(Gij) O,f(Gk) > 0, and F Z [Gij,Gk}.

Then f(G) 2 0.

Proof. By definition, f(G) = 18(ni + nj + nk) - 131(G) - 12. By Lemma 11.2.1, -131(G) 2t

-13UI(Gi) + I(G) + 1), from which we have fiG) > [18(ni + nj) - 13lhGij) - 121+ [18nk -

131Gk) - 12] - 1 =f(Gij) -f(Gk) - 1. By the hypotheses, we havef(Gii) +f(Gk) > 1.,

We now show that f(G) > 0. By Lemma 11.2.26, we may assume that for all ij 6 1.2.3),

, i "-j,fi'Gii) > 0. We will consider the following four cases.

.i. G 1, G2, G3 e 3
Ii. GG2

ii. G 1, G2 e E, G3 e
% iv. GI. G2, Ge

The arguments of the first three cases do not use the fact that GI and G2 are triangle-free and so

any other case can be reduced to one of these four cases by permuting GI, G2 , and G,.

Case . If. for some k. Gk z 7. then apply Lemma 11.2.26. Otherwise. note that ntGl-',

I O mod I3, and -o G,, - .*. We can now apply Lemma 11.2.27 with k = 3.

Case :i. If G, E- F then apply Lemma 11.2.26 with k = 2. Hence we may assume that G, -.
Ot""
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Since G I .e implies that nl 5mod 13), and n, 5(mod 13), we have (n + n2) 5 (mod 13)

and Gt 2  z" Since G- e 3. we can again apply Lemma 11.2.27 with k = 3.

Case iii. The number of vertices in members of 3 are 2, 4, 7, 10, and 12. Adding any one of these

- numbers to itself or any other member of the set does not give something that is 5(mod 13), hence

G 12 e . Now apply Lemma 11.2.27 with k = 3.

Case iv. It is only for this case that we chose T such that GI and G2 are triangle-free. Let G* be the

graph induced by V(GI) V(G 2) '- 1u3). If the theorem is false, then G"! * F Let Af=f(G) -

. f(G3). Note that Af _ 18(n(G*) - 1) - 131(G*). Moreover, it is easy to use the triangle and the na-

ture of the triangle-free members of 3 to show that I(G*) = m(G*). For example, the candidate for

•, G" shown in Figure II.2.17(a) has the representation of Figure 11.2.17(b).

T

j , " U 1  V.1,3 -7 v'l U W u -

Fiaure 11.2.17(a) Figure 11.2.17(b)

Now for} = 1,2. G, is a triangle-free member of Therefore, each Gj is either K, or a set of

edge-disjoint Ct's.

Because G3 6 3. we know that f(G 3) -5. If G1 = K- then, unless G2 = C., Af _ 5 and

, 'rG 0. IfGi = K- and G- = C4, then Af= 4 and. to avoidf(G) 0, G2 must be C4 . But then

-x': G e _7 is a type 1 operation applied to K- and so is in:.

Hence. each of G 1,G2} is a set of C.1's. If there are four or more C,&'s between G1 and G2, then

4f 5 andf G) 2! 0. If the theorem is false. then it is not true that each of (G 1,G2) consists of one

-,-, . Ci. Hence we may assume that there are exacdv three Ca's between (G1 ,G2 Jand we may assume that

k+ " , G < .is one of the three zraphs in Figure IT.2.18. We then have if= 3. HenceftGt) < -4 and G3 Is

"-* ,one of :ne raphs of Figure 1. -,,

" B.,,yection. we now can select any of :he tree graphs of Figure 11.2.18 to be G,:. either of the

.ft +'! • _+-aphis of Figure 1I.2.1!9 to be GC., and any+ vertex of Gs to be :'3, and the resulting G will be a type I*+ • . ..
I . Q ,?+2 ' . .- P- d¢+" 'x , , €-

a
- "

-' . .."'. """'+ -.:" " - -".. -'..-"-.. -. '- +i. .) '-. -- + .".-)'""- +_ .. ,_ _
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operation applied to a member of .4

U 3

T U.) U.3

UU- T T i

Figure 11.2.18

I

Fieure 11.2.19

,* This completes the proof of Theorem 11.2. ' and hence of Theorem 1.2. 1. We now sketch the

proof of the analogous result concerning dense cacti.

Theorem 11.2.28. If G is a dense cactus that is not in , then 1(G) 5 1 InG -4.

with ~ ~ ~ u n4etcsfo h n
Fur-thermore, for any n. there exists a cactus Gn with n vertices for which l(Gn) = L - i. and

so the result is best possible.

Proof. Note that type 1 operations applied to C4 show that it is best possible. Furthermore,

this time the triangle-free case is simple: a slight modification of the proof of Lemma 11.2.13 yields the

* bound for mnana-le-free dense cacti since such graphs are Eulerian.
I

The proof of the general case is by induction on the number of tiangles. Select a tiangle T such

that G1 and G- are triangle-free. Eliminate the possibility of (say) GI being tivial by comparing it to

the -'aph ,,ith one of the edges to G1 subdivided: even if depth-3 intervals are allowed, the bivalent

ve7ices of the -L-cvcle ,il1 force a trail through it and the adjustments of the representation is straight-

"or'ard.
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Since G1 and G2 are triangle-free, we may argue as in Lemma 11.2.13 to show that both are a col-

lection of 4-cycles. Since there are two or more 4-cycles between GI and G2, it is easy to represent

G1  G2  T with sufficiently few intervals so that, together with an optimal representation of G -

V(Gi) - V'YG-), we have a representation for G with the correct number of intervals.*

3. Husimi Trees

The goal of §11.3 is to prove Theorem 11.3.1.

Theorem 11.3.1. If G is a Husimi tree with n 2 4, then 1 L - J. Furthermore, for any

n _ 4. there exists a Husimi tree G for which I(G) = . and so the result is best possible.

The sun with n vertices is a graph that consists of a clique {Ul .... unp , an independent set

-{vI-.v/2), and the additional edges (iv i : i = 1.n/2}. We denote this Sn . We now show

3n- 4that if n -2 4, then I(Sn) > 2 thereby showing that Theorem 11.3.1 is best possible. The basis

case, S4 , is trivial.

Now suppose that, for all even n' < n, I(Sn') 2! 3- . Assume that I(Sn) < 3n -4 and that

R is an optimal representation of S,. Let V' = V - {U,v) and V" = (u,v 1 ). Partition R(V) into

R' R", where R' is the set of intervals corresponding to members of V' and R" is the set of

intervals corresponding to members of V'. Note that the graph induced by V" is a sun with n - 2
3n - 2) - 4vertices and, by induction, IR' > ., . Therefore IRI 2 and so uI and vI have just one

interval each. By symmet-', we can argue that for any i = 1 .... n12, ui and vi have just one interval

each. But this contradicts the fact that the graph induced by {ul,U2,u3,vl,v2,v3} is not an interval

graph (see Figure 1.1.1).

To show that the bound of Theorem II.3. 1 is best possible for n = 2k + 1, subdivide a leaf-edge

Of S2k.

We now focus on the upper bound. We first show that the bound holds for suns by giving an in-
_n - ,.

ten'al representation of S, with , intervals. Start with the k + 2 intervals listed below.

U- - interval (0.6). a Lt- - interval (3.9)
v, - interval ( 1.2). a v- - interval (7.S)
For i = 3.....k% a u, - inter/al 14.5)

-i-s introduces each edge in the clique and the edges inc-dent :o til and Lt-. We then use 2k- 2
i in-

.# -



ter.als to represent the remaining k - 2 edges. An example with n 8 8 is given below.

ZV 4  _. u0 v v.
V13 U4 V1 it3 tU4 Ul v? u3 u154

Figure 11.3.1

We call this the standard representation of the sun.

We now prove the bound by induction on n(G). The basis, n(G) = 4, is trivial. Suppose that G

is a Husimi tree with n vertices and, if 4 n'S -n and G' is a Husimi tree with n' vertices, then

3n' 4
I(G') ., If G is a block, then it is a clique and I(G) = n. Hence we may assume that there

exists a cut-vertex u.

If u is such that there are three or more u-components, then either G = K1,3 or it is possible to

.roup the vertices of G into V and V" such that V' - V" = (ij, V V" = V, iV'i _> iV"I 2t 3, and

there are no edges with one endpoint in V' and the other in V"'. Using the fact that any 3-vertex graph ,

has a total interval number of at most three and the induction hypothesis, we can use the union of op-

..al representations for the gaphs induced by V and V" to get a representaion of G that has at most

,- , in-er-vals. Hence we may assume that there are exactly two u-components. Ifboth

'-components have at least four vertices, or if one has three and the other has at least four, then we can

-4

again represent them independently within the required number of intervals. If both have three, then

, ,we can simply use inspection.

Hence we may assume that, for every cut-vertex u, there are exactly two ,u-components, one of

%%hich has only two vertices. Let is be a cut-vertex and let the two i-components be A and uv. The

venex u is in only one block of .A4 call it B and recall that B must be a clique. If B contains a cut-ver-

:ex ' 5 of G. then the it'-components must be u'v and .4 - v' .u uv. This is illustrated in Figure 24I
11. 3. 2, wxhere B = Ki.

. V, I

a ~~F"1ure I.. ,
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By symmetry, we almost have a sun; some of the independent vertices might be missing. Select ul

and L12 so that they do have neighboring independent vertices, and follow the standard representation

of the sun, omitting the pairs that correspond to edges that are in the sun but not in G; if there are k

"* members of the clique and q members of the independent set, where 2 < q < k, then this representa-

tion has k + 2 + 2(q - 2) 3(k2q)- 4 intervals.4

4. Outerplanar Graphs

- We now resume our ascending chain of classes. The goal of §11.4 is to prove Theorem 11.4.1.

Theorem 11.4.1. If G is an outerplanar graph with at least three vertices, then I(G) <_

L 3n( G) -2 J. Furthermore, for any n, there exists an outerplanar graph for which I= 3n j

and so the result is best possible.

We assume a plane embedding for which the face with n vertices is unbounded. The bound is

achieved by any 2-connected outerplanar graph for which the unbounded face is a cycle and either ev-

~ erv bounded face is a 4-gon or all but one bounded face is a 4-gon and the remaining bounded face is a

5-gon [2]. For these graphs, r = I and m = J - 1. Since they are triangle-free, I = I, =

3n - j- 1 L -, -2 - 1) and we have proved that Theorem 11.4.1 is best possible.

We now concentrate on 2-connected outerplanar graphs. If such a graph has no 3-gons, then it is

intuitive that it has no more edges than the graphs of the previous paragraph. It is easy to use Euler's

formula to establish this. We state this as a lemma and omit the proof.

Lemma 11.4.2. If G is a 2-connected triangle-free outerplanar graph, then 1 + m <5 3n- 2 j.

Now we establish Theorem 11.4.1 for 2-connected outerplanar graphs. We follow Andreae and

Aigner's proof. The technique is to find a triangle-free subgraph G' and construct a representation for

G that has I - m(G') intervals.

Lemma 11.4.3421 If G is a 2-connected outerplanar graph, then we can color the edges red and

blue in such a way that the following holds:

( i) The outside edges are red.
. ii) Everv mangle has at least one blue edge.

-ii) For eve,-v blue edge e. there exists a triangle De that consists of e and two red edges.
Furthermore. these De's are pairvise edge - disjoint.

.4
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Proof. We ive a slightly different proof than Andreae and Aigner. A peripheral face is a

face with exactly one chord. If e is an edge that is in two faces, one of which is F, then let O(eF) be

the other face.

Color the outside edges red. If no peripheral face is a triangle, then color the chord e of some pe-

ripheral face F red, discard E(F) - e, and proceed by induction.

If a peripheral face F is a triangle, then color its chord e blue and consider F' = O(e,F). If an edge

of F' is a chord of a peripheral triangle, then color it blue. If not, then color it red. Again proceed by

induction, this time applying induction once for each red chord. ,

We give an example of this coloring in Figure II.4.1. We shade the De's and use dark thick lines

to indicate blue edges and thick gray lines to indicate red edges. A thin edge is one that is not vet col-

ored.

Figure II.4.1(a) Figure 1.4.1(b) Figure 11.4.1(c)
1

I ~ 5
7 6

4 Figure II...1(d) Figure 11.4.1 (e) Figure 11.4.1 (f)

In Fiaure 11.4. 1 (a). we have the original graph and. because of Lemma 11.4.3(i). we color the out- ..

side edzes "red". In Figure 11.4.1(b), the "blue" edge is forced and we can color another edge "red."

In Figure 1I.-t. 1(c), we first color the "red" chord and then the blue chord.

This brinzs us to Figure 1.4.1(d). We have one more blue edge, shown in Figure 1.t1(e. and

'.e show the entire coioring in FiEure 1.I.fl. iabellina the vertices for future use.

X/'
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Theorem 11.4.4. If G is a 2-connected outerplanar graph, then I(G) 5 L . J

Proof. Color the edges as in Lemma II.4.3. Let S be the set of red edges. We construct an rep-

resentation with at most I + ISI intervals. Since S is triangle-free this will be at most L 3n- 2

intervals.

Let the vertex 1 be some vertex with degree at least 3 and number the vertices 1,...,n by following

-1 the outside face. Start the representation by using the canonical representation of the path 1.... n and

insert a small 1-interval into the displayed part of the n-interval. This uses n + I intervals and repre-

sents the n edges on the outside face. We call these the outside intervals..-7
Each edge (including the red chords) is part of at most one De. We will represent each chord by

first representing the edges in each De and then representing the chords that are not in any De. Note

Il that no chord is considered twice (by Lemma II.4.3(iii) of the coloring).

For i = 1. 2, or 3. call a De type i if it has exactly i edges that are chords of G. Note that type i

De's have exactly i - 1 red chords (by Lemma II.4.3(i),(iii)). We now show how to add i - I inter-

vals for each type i De.

For a type i De, extend the outside intervals corresponding to the high-degree vertices until they
intersect.

For a type ii De. let ij be the outside edge and k be the intersection of the two chords. Take a k -
interval and place it within the intersection of the outside i-interval and j-interval.

For a type iii De ijk, take an i-interval and a j-interval and place them in the displayed part of the
outside k-interval.

Now represent each edge ij that was in no De by placing an i-interval inside of the outside j - inter-

E val. We have used at most ISI + 1 (the" + 1" coming from the n + 1 outside intervals representing

- the n outside edzes) intervals.*

S,.We give an example of the above construction by using the coloring of the edges that is in Figure
11.4. 1(f). The representation is given in Figure .4.2.

10 11

Figure II.a.2

• The displayed total interval number twe demand that every vertex has a displayed part can be

hiher: For txampie. the total interval number of a -1--cycle with a chord is five. but this graph has no

"KI



52
'a

displayed representation with five intervals.

We now present the proof for general outerplanar graphs. It uses the construction of the proof of

Theorem I.4.4. Suppose that G is an outerplanar graph. Add edges to the given outerplanar graph

until it is 2-connected and then use the representation of Theorem 11.4.4. We will be done if we can

show that we can remove an arbitrary set of intersections from the representation without increasing

,.. the number of intervals.

Consider an outside overlap, say between k and k + I with an interval, say an i-interval placed in-

side of it. This was placed there because (k,k + 1,i) is a type 2 De. Note that there cannot also be

' .. some j-interval inside of the overlap since the De's are edge-disjoint.

VTo remove the edge (k.k + 1 ), shorten k and k + 1, making sure that i still overlaps the k-interval

* and the (k + 1)-interval. To remove the edge {i,k}, simply move i over to the displayed part of the

(k + 1)-interval and one can similarly remove the edge (i,k + 1). To remove {k,k + 1 ) and (i,k),

shorten the k-interval until it no longer overlaps the (k + 1)-interval and make sure that i now overlaps

just the (k + 1)-interval. To remove {i,k] and (i,k + 1), simply remove the i-interval. To remove

all three edges. remove the i-interval and shorten the k-interval until it no longer overlaps the

-" (k + 1)-interval.

Now consider an overlap between a k-interval and a (k + 2)-interval with a (k + 1)-interval in the

overlap. The same argument shows that any set of adjacencies can be removed. Again we must use

the disjointness of the De's to ensure that there are not two intervals inside of the overlap.

Now consider a displayed part of an outside interval, say a k-interval. A j-interval placed on the

S-.-- displayed part of the outside k-interval is easy to deal with: remove it. If there are two intervals, say an

i-interval and aj-interval on top of each other and the k-interval, then it's harder. Note that these were

placed there because of a type 3 De and so we can place any 2 of (ij.k) on the third. To remove ex-

actdv 1 edge. say (ij). place k on the displayed parts of i andj. To remove two edges, so that, say

.nly (ij) remains, place an i-interval on j's outside interval. To remove all 3 intervals, simply remove

noth and j. These latter two cases actually save at least one interval.

The final case is if an outside overlap has no interval inside of it and we must remove that edge.

0' Si=hy shorten one of :he Intervals until there is no overlap..&

A Dd NLL/
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5. Planar Graphs

The goal of §Hl.5 is to prove the following theorem.

Theorem 11.5.1. If G is a planar graph and n(G) 2t 3, then I(G) < 2n(G) - 3. Furthermore, for

any n, there exists a planar graph G with n vertices for which I(G) = 2n - 3 and so the result is best

*possible.

This is the main result of the thesis. Andreae and Aigner [2] showed that theorem 11.5.1 holts for

triangle-free graphs and that it is best possible. We enlarge upon their proof that it is best possible.

Given n, let G be a plane graph with n vertices, such that all faces of G are of degree four;, we must

show that I(G) > 2n - 3. From 2re(G) = 40(G) and Euler's formula, we obtain m(G) = 2n - 4. If

G has no triangle, then 12(G) = I(G) and, since t(G) _ 1, it follows that I(G) > 2n - 3. Hence it is

sufficient to show that G has no triangle.

Suppose that G has a triangle C and let H be the graph induced by the vertices of C, together with

the vertices that are inside of C. By the definition of G, all bounded faces of H are of degree four and

therefore. all but one face of H is of degree four. We then have 2m(H) = 4(0(H) - 1) + 3 and this is

impossible since the left side is even and the right side is odd. Hence Theorem 11.5.1 is best possible.

Since blocks are graphs, we can apply terms that refer to graphs equally well to blocks. For ex-

ample, a planar block is a planar graph with no cut-vertex and a plane block is a planar block, together

with some planar embedding. We prove Theorem 11.5.1 by induction on the number of vertices; the

basis step, n = 3, is trivial. We now present the induction step if G has a cut-vertex u. If every

, i u-component has two vertices, then G is a star and 1(G) = n(G). Otherwise, let .4 be a u-component

with at least three vertices: by induction. I(A) < 2n(A) - 3. Let B be the graph induced by the

non-isolated vertices of G - E(A). Note that n(G) -n(A) + n(B) - I and 1(G) -[(,A) [(B). If

n(B) = 2, then J(B = 2 and 1(G) 5 2n(A) - 3 + 2 =2n(G) - 3. If n(B)> 3 then. by induction.

[,B <2m8) - 3 and so 1(G) < 2nrA) - 3 + 2nB - 3 = 2ntG) -4. We must still deal wIth the in-

ducnon step if G is a block. Hence, it suffices to show:

Lemma 11.5.2. If G is a planar block and ,G > . then I(G) _ 2nG) - 3.

We first reduce the probiem of proving Lemma 11.5.2 to that of proving "Tneore-m 1.5.5 and then

%
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spend all but the last paragraph of §11.5 proving Theorem 11.5.5.

For a plane graph G, letfi(G) be the number of i-gons, and , (G) be the number of bounded

i-gons. Let XIG) be the degree of the unbounded face and 3(G) be the set of bounded faces. Note

that if i # X(G), then f(G) = fi(G), and that fAiG) = fx(G) - 1.

If e is incident to two bounded faces F and F', then F', the face "opposite" e from F, is de-

noted O(eF). If e is incident to the unbounded face and some bounded face F, then O(e) = F.

A plane graph G is a proper supergraph of a plane graph G' if G is obtained from the embed-

ding of G' by adding a non-empty set of chords of bounded faces without introducing any 3-gon. For

example, the graph in Figure II.5.1(b) is a proper supergraph of the graph in Figure 11.5. 1(a).

0Figure 11.5.1(a) Figure 11.5.1(b)

Note that adding a chord to a 4-gon or 5-gon will introduce a 3-gon and therefore will not produce a

proper supergraph. It is clear that a plane graph has no proper supergraph if and only each of its

bounded faces is of degree at most five.

A proper representation R is a representation that has the following properties.

i. R is irredundant.
ii. k>_ 4 rk(R)=0
iii. Each depth-3 interval introduces two edges that are incident to the same 3-gon.

If R is a proper representation of G, then, by properties i. and ii. above, m(G) = r2(R) + 2r3rR).

* Let I7G) be the size of the smallest proper representation of G.

Lemma 11.5.3. If G is a proper supergraph of G', then I'(G') 1 I'(G).

Proof. Let ptG.G') = 1E(G) - E(G')I: we show by induction on p that E(G) - E(G') can be

deleted from G without increasing I'. The basis step, p = 0, is trivial. Now suppose that G and G'

are given and that the lemma holds for all pairs H and H' for which !E(H) - E(H')l < pfG,G') and

suppose that uv c- E(G) - E(G'). Let G" = G' w uv. By induction. I'(G") < I'(G).

Let R be an optimal proper representation of G". Without loss of generality. we may assume that

some v-interval 0, introduces tiv bv intersecting an earlier u-interval 0.

If the only interval that 6., intersects is 8 a, then remove 9.

%0
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Now assume that there exists w e V(G) - {ul and that some w-interval 6w intersects 6,. If 0,,

also intersects 6,, then either 0 v or 6,,w is a depth-3 interval. By property iii. of proper representations.

V the two edges introduced by the depth-3 interval must be incident to a 3-gon. Note that uv is not inci-

dent to any 3-gon. If 0, is a depth-3 interval, then vw and vu are two edges of the 3-gon (uvw) and

similarly, if 1% is a depth-3 interval, then wu and wv are two edges of the 3-gon (uvw). But this con-

tradict the fact that uv is in no 3-gon. Hence if Ov intersects some 8w, then 0U m =.. 0. To avoid

>. the introduction of the edge uv in R, move the left endpoint of 0, until it is to the right of the right

endpoint of 0u.

"" In either case, the resulting representation of G' has no more than [RI intervals and so I(G')

P G") _ I(G).#.

In §11.5, we will deal exclusively with proper representations; we will prove that I(G) < 2n(G) -

3. Hence from Lemma 11.5.3, we may assume that:

i _> 6fj'- 0 (11.5.1)
0} We define the perimeter of a plane graph G to be the vertex-set of the unbounded face and denote

- it P(G). A contiguous subset of the perimeter is the set of vertices of some path, all of whose edges

are incident to the unbounded face. A section of a graph is an induced subgraph with no cut-vertex.

S.. For example, a block is a maximal section. In the figures of §11.5, each straight line segment

indicates a single edge, each arc indicates a contiguous subset of the perimeter. each white area in-

dicates a single face, and each shaded area indicates a section. Each figure represents the class of
0
J "- graphs determined by the lines, curves, white areas, and shaded areas.

-- . We now sketch a proof that Theorem [1.5.1 holds for graphs without 3--ons. This case motivates

0* many of the ideas of the proof of the general case.

Let G be a plane block satisfies (11.5.1). Using Euler's formula and 2mGi = X(G) + f4(G) -

">.'; G). we obtain 2n(G) - 3 > m(G) - 1. Since 1(G) ! m(G)+ rG), it is sufficient to prove that

* ,here is a covering trail T of G. We do this by induction on the number of faces.

\We1 s:renu,.hen the induction hypothesis and prove that T can start at any vertex u on the unbounded

"ace and end at any vertex v on the unbounded face. Let e = uu' be an edgze on the unbounded face

0'

% % %
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and let F = O(e). If the only vertices of F that are on the unbounded face are u and u', then we can

remove e and apply induction. Otherwise, there are several cases. The most difficult case is shown in

Figure 11.5.2.

A3

Figure 11.5.2

Suppose that v e P(A I). Let T begin with <uu>. Since the induction hypothesis applies to each

Ai, we can extend T to cover A4 and end at w3. We then similarly extend T through A3, A2, and A1,

covering these sections, and ending at v.

Similar methods work unless v e P(A). In this case, we consider F = O(wIw3 ,F) (see Figure

1.5.3). We will consider only the case that Fis a 5-gon and all of its vertices are in P(G).

A.'A-

it U

Figure [1.5.3

We must treat the possibilities of v lying in each of the gray sections of A3 as separate cases. We

show each case and the corresponding trails in Figure 11.5.4.

For graphs with 3-gons, it is possible that 12 > 2n - 3 (e.g., a 4-gon with a chord). Therefore we

cannot restrict ourselves to depth-2 representations and we must use depth-3 intervals. We will still

use the idea of starting and ending on the unbounded face and. as in Figure 11.5.4. we will find

..routes- from u to v through some sections.

Let G be a plane graph. From 2rmGi = &('G) -, iG) + 4fU(G) - 5ffiG) and n(G) - m(G,

11%,P P .,
; 'L -.- ; , 1.,,, ~~b~ ic - 'iG -. 1G9 ~G ="w ban

A.
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2n#'G) - 3 = I + mIG) - G XG- (11.5.2),

Our goal is to find a representation R with 2n('G) - 3 1RI. By (11.5.3), this is equ valent to

* finding a representation R for which:

2 mG .()+fp)+((G )-2R :0(153
We will usually not be interested in the contribution of the unbounded face to the left side of

(11.5.4). we define the prorit p('R) and obtain the following:

p(R) = 2 + 2muG) -f (Gj + f (G) - 21RI (II.5.4a)
2((2n(G) - 3) - IRI) = p(R) + (X(G) - 4) (11.5 .4 b)

* If R is a proper representation, then
p(R) =2 - 2rl(R) + 2r3(R) -JB(G) +f (G) (11.5 .4c)

_ We call R proritable if p(R) 0.

U itU U

U U U U

Figure 11.5.4

If G is a plane grTaph and R is a representation of G, then from (I1L5.5a) and 2m(G) =3f,(G) +

-I4'9 G f f ,G/ , uG)h. we see that the parity of each of the following quantities is the same:

I- The number of odd bounded faces
Th 'e profit of R

* ui. The degee of the outside face

WVe defi-ne :ne parity E G) of a planegmzrah G as follows: If the quantities above are even, then

.... ' %*P , J . V % -
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Et = 0 (and G is even), otherwise E(G) = 1 (and G is odd). Consider the following examples: %

U it' U U

,,. Figure II.5.5(a): GI Figure II.5.5(b): G2

We have .(GI - uu') = (GI) and E(G2 - uu') = I - (G-). Note that if G I is even, then an even

number of blocks of G1 - uu" are odd, and if G2 is even. then exactly one block of G-2 - uu' is odd.

Lemma 11.5.4. If R is a profitable representation of G and XG) 3, then RI 2n(G) - 3.

Proof. From (II.5.5b), the result is immediate if X(G) > 4. If X(G) = 3, then since EsG) = I

and p(R) 0, we have p(R) > 1 and the result again follows.*

By Lemma 11.5.4, in order to prove Lemma 11.5.2 (and hence Theorem 11.5.1). it suffices to show

that there exists a profitable representation for any planar block that satisfies (11.5.1).

We must prove some technical results beyond this and we need several definitions to state them.

* Let R be a representation of a graph G. If 0 = [a.3] is an interval, then -0 = [-P.-a]. Let the re-

verse of R be {-6 : 8 r R(V)) and denote it §. If there exists a depth-I u-interval in R (in k), then

-. we say that R starts (ends) at u. Note that R can start and end at several vertices. If R (/) starts at it

and the corresponding depth-i u-interval in R (§) is immediatelv followed in R (k) by a depth-2

Li -interval, then R starts (ends) at the edge uu'.

444 Suppose that it and v are vertices and that e and e' are edges. A representation that starts at ui and

ends at v is a u.v-representation and, if profitable, is denoted by u.G -+ v. A representation that

starts at i, and ends at the edge e is a u.e-representation and, if profitable, is denoted by u,G -- e.

We use analogous definitions and notation for other combinations of i, v. e. and e'.
4'.

Suppose that G is a plane block and that e r E(G). Let R be a proper representation of G - e.

The e-profit of R. p(e.R), is defined by:

p'(e.R) = r,(R) - ri(R) +1"(G) - (G). (11.5.6)

If R is a representation of G - e that starts at u and ends at v. and p(e.R) _ 0. then it is denoted

Li.Gt -V .

To see why we include all of 2'G in this defini:ion. and not lust '(G - e). consider Figure

4'. ,4
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,H.5.6 a). In Figure 11.5.6(b), we look more closely at B. In this example, the face F that is in 3(B)

and contains e is a 3-gon.

A e B A e

Figure U.5.6(a) Figure II.5.6(b)

": Suppose that we have a representation R of A and a representation R'of B - e. Since R = R J

. R' is an uredundant representation of G, we would like to be able to compute the profit of R from the

profits of R and R'. Note also that 3(G) is partitioned into 3(A) u 3(B). Although F e 2(B - e),

the profit of a representation of G must take into account the contribution of F. The most convenient

way of doing this that allows some combining of R and R' is to assign the contribution of F to the

profit of R'. This violates the definition of profit (since R' is a representation of B - e and not B) so

kve use the term e-profit. Additional details concerning the combining of profits and representations

appear in later parts of the proof.

Suppose that G is an odd plane block and not a 3-gon. If u e P(G) and the only faces that are

incident to ,s are the unbounded face and one bounded 3-gon, then u is called troublesome. Let T(G)

be the set of troublesome vertices of G. For example, in Figure 11.5.7, T(G) = { UL).

Figure 11.5.7: G

Since our graphs have no multiple edges. V(G) = 3 implies that T(G) = 0. If G is an even block or a

I-gon, then we define T(G) to be the empty set. Note that it is impossible to have two adjacent mem-

bers of TfG). In particular, if u and u'are one step apart on the unbounded face, then at least one of

(u.u} is not in T(G).

We have now defined most of the terms in Theorem 11.5.5 (below). The terms "u-admissable".

"'a/most profitable-. and "difficult tiple" are quite technical and we defer their definitions un-il the

" proof of the theorem.

,%
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60

Theorem 11.5.5. Suppose that G is a plane graph, and that e = ,u and e' = u'u" are edges of

the unbounded face. Then we have the following:

(0 If G is an odd block, then G has a profitable u,v-representation unless u = v e T(G).
(ii) If G is an even block, then G has a profitable e,v-representation.
(iii) If G is an even block, then G has a profitable e,e-representation.
(iv) If G is u-admissable and v * u, then G has a profitable u,v-representation.
(v) If G is an odd block and v E I uu"), then, unless v = u're PTG), G has a profitable

e.v-representation.
- vi) If G is an even block, X(G) Z: 4, and v c (u',u"}, then there exists a u.v-representation

of G - e for which the e-profit is nonnegative.
(vii) If G is an odd block and (e',e,v) is not a difficult triple, then G has an almost profitable

e,ve -representation.

Most of the rest of §11.5 is devoted to proving Theorem 11.5.5. The proof is by induction on the

number of edges. We will use (e.g.) (i) to refer to Theorem 11.5.5(i), or to point out that we are ap-

plying the induction hypothesis Theorem 11.5.5(i) to a smaller graph: the context will make the mean-

iniz of this notation clear.

The critical conclusions of Theorem 11.5.5 are (i) and (ii); these show that profitable representa-

tions for planar blocks exist. Note that. since an e,v-representation is also a u,v- representation. (ii)

implies that if G is an even block, then there exists a profitable u,v-representation of G. We will fre-

quently use this analogue and refer to it simply as (ii).

By considering the reverses of the representations of (ii), (v), and (vi), we immediately obtain:

(iir) If G is an even block, then G has a profitable v,e-representation.
(vr) If G is an odd block and v e {u',u"}, then, unless v = u" e T(G). G has a profitable

.- v,e-representation.
O(ir) If G is an even block, X(G) 4, and v r (u',u"}, then there exists a u",u-representation

of G - e for which the e-profit is nonnegative.

We will use these as we would use any of the other induction hypotheses and refer to them as Cir),

(v,), and (vir).

If R is a representation. then the components can be permuted or reversed without affecting the size

of R. Therefore. if R starts or ends at it. then there is a representation R' such that 'RI = !R'i (and

- henceR; = n(R'i) and the first interval of R' is a u-inte,'al. This is usefui 'or combining represen-

.ations of subgraphs of G to get a represenation of G.

0;
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Lemma 11.5.6. Suppose that G is a plane graph with the two blocks A and B, u e P(A), v e

P B), and V(A) (-) V(B) = {w}. Suppose also that RI is a profitable u,w-repre-entation of A and R2

is a profitable w,v-representation of B. Then there exists a profitable u,v-representation R of G.

Proof. The hypotheses concerning G are illustrated below.

U

Figure 11.5.8

By permuting the components of RI and R2 and shifting all of the intervals of R2 , we may assume

that R1 and R, is as below.

Figure 11.5.9: R1  R2

Let R'= R1 j R-,. Note that J'(G) = f(A) + fi(B) and ri(R') = ri(R1) + ri(R2). From the

" definition of p, we have p(R') = pR 1 ) + p(R2) - 2. Since p(R1 ) and p(R2) are both nonnegative,

pIR') >_ -2.

Now let 61 be the w-interval of RI that corresponds to R1 ending at w, and let 0, be the w-interval

of R, that corresponds to R- starting at w. Splice 01 and 0, together to form the new interval 0. Call

! this representation R: it is irredundant and, from IRI = IRI - 1 and (II.5.4b), we have p(R) = p(R) +

, " 2 >_ 0.,

Puttina the two notations for RI and R2 together and suppressing the second w results in the nota-

tion uA -- w.B --+ v for describing the profitable uv-representation of Lemma 11.5.6.

A variation of Lemma 11.5.6 is the idea of splicing together the two intervals that correspond to an

edge. Suppose that .A and B are sections of G, E(G) = E(A) E(B) and E(A) r- E(B) = {uu'}.

Also, suppose that RI is a profitable u.u'u"-representation of A and that R2 is a profitable

- .v-representation of B. As before. we may assume that R1 and R2 are as below.

Fi .ure [.5. 10: Ri R-

L R' = R - R-, Note :hat R" 's not a proper representation of G since it is not irredundant.

Ho~kever. lf x.! siice :ozether the a'-intevals and .he ut"-intervals. then the resulting representation i.%-

.t* . . . . . . . . . . ****-~~
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irredundant and profitable. We denote it uA -4 u'u",B -4 v.

Of course it is possible to use a sequence of splices. In particular, suppose that G has the follow-

ing characteristics:

i. The blocks of G are {Ai : i = 1_.,k).

ii. u e A
iii. For i = 1,...,k - 1, V(Ai) n V(Ai+I) = wi
iv. v e P(Ak)
v. (wi = 1,...,k - 11 are distinct.
vi. j e {i - 1,i + 1 } V(Ai) - V(Aj)= 0

vii. u,AI --+ w, (wi,A i+i "+ Il : i = 1,...,k - 1, and wk-l,Ak -- v exist.

Then it is possible to construct a profitable u,v-representation for G by repeatedly applying Lemma

11.5.6. An example that satisfies conditions i. through vi. for k = 3 is given below.

U

Figure 11.5.11

We call a sequence of splices as above a march. We also use the term march if we start at an edge

of the first block or if we end at an edge of the last block.

The representations asserted by Theorem II.5.5 are constructed as follows: A plane block is di-

vided Lnto sections, induction is applied to each section, and the resulting representations are spliced
together. From Lemma 11.5.6, we can compute the profit of such a representation if we know the

profits of the constituent representations.

* We use the following abbreviations concerning profitable representations of a section that consists

of a single edge e = uu':
u.U -, u is abbreviated u(u')
u.uau -, is abbreviated it -* u,
uuUU" - it is abbreviated uu' -+ U
,l. lil, is abbreviated u - uu,

We illustrate the description of a representation that is constructed by splicing together several sec-

0 fons. includina some that are single edges. Suppose that we have zhe followinz situation:

m' is a cut-edge of G
T he two components of G - e are A and B.
There exists a profitable v.u-representation of.A and a profitable ', -representation of B,
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" Then v,A t u -. u'.B ww' - w is a profitable v,w-representation of G.

The first interval is always a depth-I interval and it contributes -2 to the profit. This is offset by

, the constant in the definition of profit. For any other depth- I interval, there must be some part of the

* representation that "creates" a profit of two if the representation is to be profitable. Recall that each

5-gon contributes one to the profit, a profitable representation of an odd block contributes one, and a

depth-3 interval contributes two. "Spending" some current or future profit from these sources on a

new depth-I interval is a common tactic and we therefore use the term "buy at v" to mean -start a new

component of the representation with a depth- I v-interval." Unless otherwise specified, a contribu-

tion is understood to mean a contribution of one to the profit and a negative contribution is

understood to mean a negative contribution of one to the profit.

4 Consider the following example.

B
W 1  WIN

A 11C
F

U U

Figure 11.5.12: G

Suppose that we wish to show the existence of u.G --- v and we know only that v e P(G). Suppose

Salso that E(,-i = I and that u.4 -+ Wv, wlB -v w2, and w2,C -- u' all exist. Then the representa-

i ton R' = "au'),4 - B -W w-,C - it' has a profit of at least one because of uA --, wl. But

there is also a contribution to p(R') from the bounded 5-gon F and this has not yet been considered.

Hence p(R') 2 and we can "afford" to buy at v; let R be the union of R' and a single isolated

,-inteval. Then p(R) = p(R') - 2 _ 0 and R ends at v. Hence R is a profitable representation that

ends at v. The stratez, of marching through a sequence of sections to end at any vertex with enough4

su-nus profit to buy at v is called march and buy. It occurs in the proof of every induction step of

T'eorem 1.5.5.

Phe m.ost nowerful induction hvnotheses of Theorem [1.5.5 are (f). (ii), and (v). But (I) and (v)

ire ..e"kened bv the resmction concerning TiG,. These resncrions are necessary as shown by the

-7'.,." or Fi'.z'ure 1.o.5.: ;f :here exists a profitable ii.-representatien 'R. then. from (TT.5.4b). 'RI <

d
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6 and R starts at it and ends at u'. It is easy to verify that there is no such representation.

Even with this restriction, (i) and (v) are quite powerful because it is often possible to eliminate the

possibility of u r T(G). For example, we have already noted that it is impossible for two consecutive

members of the unbounded face to be in T(G). The following lemma is also useful.

Lemma 1.5.7. Suppose that G is a plane block, u, is', u" e P(G), uu' and u'" are edges of the

. unbounded face, H = G - it', and v e {u',u"). Suppose that H has a cut-vertex. Let A be the

*-2 block of H that contains the edge u'u" and let w be the cut-vertex of H that is in P(A).

Then v = w implies that X(A) <4 and hence T(A) = 0.

Before presenting the proof of this lemma, we give a pair of examples that illustrate both the simple

nature of the lemma and how it makes the exclusion of 6-gons so convenient. In Figure II.5.13(a).

*.iF) = 5 and k(A) = 4. Contrast this with Figure II.5.13(b). !n this graph, F is a 6-gon, XVA) = 5,

and the conclusion of the lemma is false.

U"Ul

Figure 11.5.13(a) Figure 11.5.13(b)

Proof of Lemma 11.5.7. Let F- O(uu'). Since v w. V(F) z P(A) and. from &tF) 5 5

and " V(F) - P(A), it follows that V(A) !5 4.

• -This lemma is used repeatedly. We note its use the first time we use it and thereafter use it tacitly.

The proof of Theorem 11.5.5 is by induction on the number of edges. The basis case for (i). (V),

and (vii) is the 3-gon. The basis case for (ii) and (iii) is a single edge. For (iv), the basis case is the

--gon and for (vi). the basis case is the graph that consists of two incident edges. These are all trivial.

- Now suppose that G is given and that Theorem 11.5.5 holds for all plane graphs with fewer edges than

G. We will assume that u' is counterclockwise from it and u" is counterclockwise from u'. Most

steps ale justified by ii, (ii). (v), or '' and we will not mention these justifications explicilv.

Since nothing is proved until the induction step 'or each of the parts is established, we use the

. vmol -L instead of 4 to indicate the end of the induction steD for one of the assertions.

"6 -' . , .~ i'g . ' " '/' ' "" € .'- " ' " " " '" " " " " .' " ° ', " " " € " ".3 / ' ' e €
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We first present the induction step of (vi). Let F = O(e) and H -G - e. If X(F) > 4, then march

through the blocks of H to end at v. using Lemma 11.5.7. Note that the face F has a nonnegative effect

on p.

Now suppose that .(F) = 3 so that e(H) = 1. If H is a block, then use u,H - v. This provides

a contribution to p that offsets the negative contribution of F.

If H is not a block, then define w by F = (uwu')_ Since H is not 2-connected, w e P(G) and H

has two blocks A and B, where u e V(A) and '(- V(B). This is illustrated in Figure 11.5.14.

U U

Figure 11.5.14

.. Since Ei(H) = 1, exactly one of (AB) is odd. Use uA - wB - v. This march yields a contribu-

tion as it goes through the odd block (whether A or B) and this offsets the negative contribution of F. 4

We now concentrate on (iv). If G is a plane graph and u e P(G), then G is u-admissabie if G

has exactly two blocks A and B, u r P(i), A is even, u is adjacent to the cut-vertex t', and
i:' TB). The situation is illustrated below.

(A" (e)
U

B

Figure 11.5.15: u' i T(B)

We now present the induction step of (iv)_ If A is a single edge. then use u - W'and then ti) or

(ii). Hence L(A) >4. If v E P(B). then use uA ---+ u'B - v. Hence v E P(A,- iu'). LetF =

Oie) and H = A -e.

Suppose :hat X.iF) = 5. Since ,A -s even, at least one block of H is odd. Start with wua,') and

march through the blocks of the remaining graph. Positive contributions to the profit are from F and at

*- - east one biock of H and we have enough profit to buv at v. This is our first example of march and

).' buy.
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Suppose that %(F) = 4. If two blocks of H are odd, then we can again march and buy. Hence we

may assume that all blocks of H are even. Number the blocks {Ai and cut-vertices ( wi} of H by

moving clockwise from u around P(A); u e P(AI), V(Aj) n V(A 2 ) = (wl , V(A 2 ) r) V(A 3) =

-iv{), etc.. Note that H has at most three blocks.

If v E P(A 1), then start with u u'.B - u' and then march back to v. If H has at least two

blocks and v e P(Aa), then use u,AI -- it - u',B --+ u', and then march back to v. If H has three

blocks and v r P(A3) - {w21, then all four vertices ofF are members of P(A). This is illustrated

below.

A 2 (e,
W I

-.4 A

F (e)

U U

B

Figure 11.5.16

In particular, w- i'. Hence we may use uwu'),Aj Wl ,A2 IVw and (iv).

,%" Suppose that %(F) = 3: define w by F = (uwu'). If w e P(A), then H is an odd block and, since

v = u', we can use u -- u',B -* u',H - v. If IV e P(A), then let A I be the block of H that con-

t rains u and A- be the block of H that contains u'. Since A is even and F is odd, exactly one Ai is odd.

If c- PeA 1 ) - (w}, then use u -+ u',B -- u'.A: -4 w,AI .- v. Hence v e P(A-) - (i'}.

* If u r T(A 1 ). then w e T(.A1) and E(A,) = 0 so we may use u -- u'B u' and (iv). If

it e T(AI), then use u.4 1 - is - u',B u'A4, - v.46

We now concentrate on (ii). Let F = O(e) and H = G - e.

If JF) = 5, or X(F) = 4 and two blocks of H are odd, then use e - u and then march and buy.

4,, In the former case, one of the blocks of H must be odd since E(H) = 1.

Now suppose that "(F) = -1 and that all blocks are even. Label the blocks {AIand cut-vertices

'X.iI of H bv moving clockwise from :u around PA.; u c- A 1. V(A 1, -' .4), = w. V(A:) f-

-. . = wa. trc.. If v = PI.4 1), then start with e - u' and march from us' back to v. Otherwise,

use e - - wl and then (ii' or (iM.S ,.-., , ,. -'''' ''-- -''''' . .'.¢ ' ' - " , 1
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Now suppose that X(F) = 3. define w by F = (uwu'). If w e P(G), then use either e -4 u or

e --* u'. followed by u.H --+ v or u',H -+ v. If w E P(G), then H has two blocks .4 and B. where

u r P(A) and u E P(B). By symmetry, we may assume that A is even and B is odd If v E P(A),

* then use e - u',B -- w,A -- v and if v r P(B) - Iw}, then use e --* uA - w,B --+ v..

Before presenting the induction step of the next assertion of Theorem 11.5.5, we illustrate (ii) by

presenting the induction step of (i) for the case u e T(G). This will be our first explicit use of a

depth-3 interval.

Suppose that u E T(G). Let H = G - u. Start with the depth-I u-interval and then place depth-2

and depth-3 intervals corresponding to the other vertices of O(e). Extend these latter intervals and then

use (ii) on H to finish with eH -+ v; since G is odd and 3H) = 2(G) - (F}. H is an even block and

(ii) is indeed applicable. The depth-3 interval contributes two to p and the 3-gon subtracts one. Hence

the representation has a profit of one.46

We now concentrate on (vii). If R is a representation of G - e' and p'(e'.R) > -1. then R is called

almost profitable. This term will appear only if there is a missing edge e', R starts at an edge e,

• - and R ends at the vertex v. For such a situation, an almost profitable representation is denoted

e,Ge -L+ v.

We say that (e'.ev) is a difficult triple if either of the following situations holds:

%i. a. O(e') = (Lswxu'), w e P(G), and x e P(G)
5. A is the block of G-e" that contains e. and B is the block that contains u'.

c. eA) = 1 and (A) = 0

" d. vE P(A)- {x)
1i. a. Ofe') = (u'wu") and w e P(G)

b. .4 is the block of G - e' that contains e, and B is the block that contains it'.
c. rtA) = E(B) = 0
d. v = P(B - vl

Therefore. (vii) states that, except for the situations illustrated in Figures 11.5.17(a) and 11.5.17(b).

e.G e  Z_- V ex:sts.
L

We now present the induc-ion step of ivii'. Let F = Oe') and H = G - e'. No matter what F is.
V

starr a c!ockvise march from e throuzh the blocks of H. T'ie hope is that after the march. we wlil have

enougnh prortt :o buv at ,- note tat :he statement of %,ii) *""es" us some additional profit.

I."' ' 'd' l~' ~ ~ w I&.lm.., ~ l w" i i .. ... I
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Id '' Figure 1.5.17(a) Figure 11.5. 17(b)

!!7; . ,Suppose that the f'irst b lock of the proposed march is even. Then march through all of the blocks,

;'- either ending at v or buying at v after the march. The only rime that this tactic is too "'expensive" is the

i second difficult triple.

; .' Therefore we will assume that the first block of the proposed march is odd. In this case, the fact

, that the representation starts at an edge forces us to justify the first step of the march with (v) rather

• ~than (i). If the fir'st cur-vertex is only one step away on the unbounded face of the first block of the

i : proposed march, then the march can be completed and there will be enough profit to buy at v.

'"....'"Now suppose that the first cur-vertex is at least two steps away on the unbounded face of the first
~section. This cannot happen if X(F') =3.

"-".., If XtF') = 5 , then we can finish the representation of the first block and then buy at some vertex
to march through the remaining graph. There is a positive contribution from each of F', the f'irst odd

.' block, and some other odd block (whose existence is inevitable by parity). These allow us enough to

,.. buy a second depth- I interval at v.

,..- If X(F) = 4. then if H is a block, use e,H .--- x for some x E P(H) and then buy at v. If v is not

* in the same block as u', then we have the first difficult triple. Otherwise, finish the first block at some

t..€, .. vertex and then buy at the cur-vertex of H or at u' to finish the second block at v..v,
p,.,/

,..--,e, VWe now develop ideas involving the detailed use of depth-3 intervals. Until now, we have made

, almost no explicit mention of them. The rest of the induction steps require us to examine them more

i::.:,closely.

":" Sutx~ose that R is a representation. Each depth-3 interval represents two edges from one 3-con.

~The corresponding _3-gons are called positive and the other 3-gons negative. Each positive 3-con

,....increases r3 by one and corresponds to an inc'ease of one m In this sense, it contrbutes one to

,.".. ,R,. Each negative S-con corresponds to an increase of one in i and therefore cont, butes negative

',

B B

A5* (o 1 w ~ (e). A (e) (e)$~%.I.t
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. one to p(R).

If a 3-gon (.x'yz) is positive, then all three vertices must have intervals that intersect at some point ,

of the real line. Since our representations are irredundant, this is the last place where an x-interval and

a y-interval intersect. Suppose that O(.xy',(.ryz)) is also a bounded 3-gon (xyz') and that, prior to , no

edge of (,v_:') had been introduced. If (xy:') is to be positive, then we must immediately extend the

x-interval and the y-interval and place a depth-3 z'-interval that intersects the other two and whose left

- -endpoint is greater than the right endpoint of the z-interval.

One consequence of this is that if (xy'z) is also a bounded 3-gon and, prior to x, no edge of (.x'z)

had been introduced, then at least one of {(.xyz'),(.xy'z)} will be negative. This leads us to the concept

of paths of positive 3-gons. If. in the plane dual, there is a path of 3-gons, then we can make each of

them positive as long as each of the other faces adjacent (in the plane dual) to the 3-gons on the path is

of degree at least four or is negative. When we use such a path, we denote it by separating the positive

'3-zons by arrows. This is actually just shorthand for considering the 3-gons as sections and explicitly

stating the shared edges.

The following two examples illustrate how we combine paths of positive 3-gons with the induction

hypotheses of Theorem 11.5.5 to establish the existence of profitable representations.

Consider G1 and G2 below. For each graph, E(A) = I, E(B) =0, v c P(A). and we wish to

find a profitable u.v-representation for the entire graph.

',V

- IV

.- F-

iB e)"b I- B (e)

Fizure 11.5. 8(a): G, Figure 11.5.18(b): G-

For G ,. start by using (vr) to justify ,tA xw. Since this removes tu. Ff is nezative. Continue

xith the path of positive 3-gons F - F * Fl. Since (T) = 4. T contributes nothing to p and so

h .-. the use of the edze wu' does not cost anvthing. Finish by using (ii) to justify u'.B - u'. There are

:our conmbutions :o :he ?)roht . one ne,_atve con rbunon. and 3 is neutral. Hence %e can buv at v.

S" 1 "",€ - - - " " . . . . .* .-. .". .". ... . . ... ".". .-.-" " " " •- ' " *"... ','. .. '.,'.

F',",","...'.", .","." -. ":.:..-. . "". '": " " .. . \ .'... .... ..- "-... "..."" ": ; ,:; ' ' . '.
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"-" We describe the entire procedure by "'u.A - wx,F' -> F -- F1 -i u',B u' and buy at v."

For G2, it is actually possible to start with the edge uu'. Start with uu' u', making F1 negative.

Continue with u'.B -4 U',F2 -* F -+ F' --4 wx. Again, T can be safely ignored but this time F4 is

-" negative. Since no edge of Ff has been removed, we can combine Ff with the odd section A to form

an even section and then use (ii) to justify wxA u Fj -) v. There are three positive contributions,

two negative ones, and A u Ff and B are neutral. The entire procedure is described by "uu' --

u',B -+ u'.F-'-- F - F - xw,Fj u A - v.."

We now present the induction step of (iii). Let F = O(e) and H = G - e.

*-" If X(F) = 5 (so that H has at least one odd block) or X(F) = 4 and H has two odd blocks, then

start with e -4 u and march clockwise to the last cut-vertex of H. Note that if H is a block, then this

S:march is vacuous. Then use (iir) or (vr) to determine a vertex at which a depth-I interval can be bought

* in order to end at e'. If VF) = 4 and H has no odd blocks, then again start with e -- iu but this time

march through the blocks of H to e', using (iir) for the last block of H.

Hence we may assume that (F) = 3; define w by F = (uu'w).

Suppose that w e P(G) so that H is a block. If ii' T(H), then use e -> u ',H -4 e'. If is' e

T(H), then O(e') = (u'wu"). Use e,F -4 uw,G - u' -+ u" - e'.

Now suppose that w e P(G) so that H has two blocks. Let A be the block of H that contains u

and B be the block that contains e'. Start with e --- u. u- w. Then use induction (iir. or (vr) to fin-

ish with w,B -* e'.46

The induction steps. (i) and (v), are far more difficult to establish. Comparing (i) and (v) with (i),

" ,e see :hat odd blocks are much more difficult to deal with. Not only are the proofs harder, but the

results seem to be weaker. For example, it would be nice if, as in (ii), we could "start at an edge and
S

end anywhere" with odd blocks. But the examples below show that this is not possible.

1'," lL 
lL

% Fizure 11.5.19(ai: G 1  Fi,,ure II.5.19(bi: G-

6%

...............................................
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There is no ev-representation for G1 and, if v is any of the three circled vertices in G2, then there

is no ev-representation for G2 .

There is an intuitive basis for suspecting that odd blocks are more difficult to deal with. A prot-

liable representation of an even block gains nothing whereas a profitable representation of an odd block

gains one. In essence, both the amount of work and the reward of odd blocks is greater than that of

.. even blocks.

To keep things more compact, we will also reuse labels; it is understood that the definition of a la-

bel nullifies any previous use of that label.

We now present the induction step of (v). Let H = G - e and F = O(e).

If (F, > 4, then start with e -+ is and march through the blocks of H to v. Hence F) = 3 de-

fine w by F = (uwu').

SIf" ; e P(G), then H has two blocks A and B, where it e P(A), u' E P(B), and w r P(A) r)

Pt B,. Since k.F) = 3 and G is odd, H is even and so E(A) = e B). If E(A) = 1, then use e

u .A --) wB -4 v. If E(A) = 0, then use e,F -* uw,A -+ wBu'9 .- v. The last step is justified by

(vi: and it is both unnecessary and unavailable if u' e T(G) (i.e., w = is").

Hence w e P(G),. We have the following.

(e

U i

Fi-ure 11.5.20

SLet F1 = Ou'w.F) and H = G - (e.,'w}. Let A be the block of H that contains w and B be the

biock of H that contains u'.

Suppose that .(F)> .4. Start with eF ----, :w. If A) = 1. then continue with uw.A --* x, for

,ome .t. and buy at either v (if H is a block) or zhe cut-vertex between A and the next block to march to

B. ending ,,t v, If E(.hA = 0. then simply march from uw through the blocks of H to v.

H-ience .F,)= 3: define x bvF; = u'wtl. If X- P;G, then use e.F uwA -1 ,2

Hence .- e PIG,. We have the situation below.

% Hne.
• r.
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i iU

Figure 11.5.21

Let F2 = O(uw,F) . Note that if u' e F2 then, to avoid multiple edges, V(F2) = 5 and u' is two

steps away from both u and w on F2. Let H = G - (e,uiv}. Let A be the block of H that contains it

and B be the block of H that contains w. Note that E(B) ; E(F1) and hence dB) -2 3. Moreover, the

existence of F1 precludes the possibility of u' E T(B).

Supppose that X(F2 ) = 5. If u" e F2 , then start with eF - u'wB -+ u', march back to u

through the blocks of the remaining graph, and buy at v. If u' e F 2, use eF -- ,'wB - v, and

* then buy at u to start a march through the blocks of the remaining graph.

Now suppose that X(F',) = 4; define y and : by F, = (uyzw). If x G F1, then x = v orx = .. If

..'-. x = y. then P(B) = tw-x,:}. Use eF -- w.B --) x,G - E(F) - E(B) --+ v. Ifx =:, then start

with e.F --+ F, --+ xu', march through the the blocks of the remaining graph, and then buy at v.

Hence x e F-i. Use eF ---+ u and march through the blocks of the remaining graph to v.

Hence tF2} = 3: define y by F, = (zuyw).

If v = x, then use eF --+ F1 ---. xu' and (ii). If Y e P(G), then use e.F --+ u'w,G - {e.uw} -+

v. ustifyin g the last step by (v) and the existence of F1 (to preclude the possibility of U e TG -

-' .," { e.zsi ]

* Hence v c P(G). Let ,A be the block of G - EF) that contains u and B be the block of G - E(F)

that contains w. We have the situation below.

V

A .4

'"-"" Ficure 1.5 2

Note that £:.'. = E_(B. tf Et.A) = I. then use e.F -. 4-- 3 -- v.. Hence E(.A = E(B = 0. Lc:

1F1

F F O v.F,. LetH = B F, - Sw'., Sine. ', = 0. E(F, I and .31H) = .+B,

'
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.. I -IF 3}. it follows that E(H) = 1 E(F3).

Suppose that iF3)>2!4. IfH is a block, then usee --- u.A oF2-- v,H v unlessy=v 

u" and kiF 3 ) = 4. In this case k(H) = 5 and it is possible for y = v = i" E T(H) and we therefore

cannot apply (i) for the last step of the preceding procedure. For this case, use e,.F

u'w.H w F 3 -- v-4 -+ v. Hence H is not a block. Let C be the block of H that contains w.

Because ofF 1, ?cC) 2:3. LetD be the block of H that shares the cut-vertex : with C.

Recall that kXeF3) - 4. First assume that v e P(C) and that either v * z or v i T(C). Use e

, u.4 F2 --+ v and march to v through the blocks of H. Now if v e P(C), then v = u" r P(D), and

P(F3 )- {y) QP(C). Hence X(C)<4 and T(C)=0. Use e,F - u'w.C -- w y,A - y and

then march to v. The last possibility for k(F3) _ 4 is that v = e T(C). Since ;(C) > 5, we must

have v = - =u" and P(F 3) - (y} P(C) - {u') and hence X(C) < X(F 3 ). Since T(C) # 0,

, C) 5 and XkF3 ) -5. Use e - u.4 F-) -> y, march through the blocks of H and buy at v.

Hence kiF 3 ) = 3: define Z by F 3 = (wy'). There are three cases: : = x, : i P(G) o {x}, and

- - PIG). These are illustrated below.

",- "x xx

F3 F,

FF F
A (e It~ A (e) A ''

:-P(G) {x} e P(G)

Figure 11.5.23

If-= . then start with e u.A F vw. If v = u, then finish with vw.F, - vx.B'

*:, t. If v = u". then finish with wv - w,F 1  xu',B" -+ t".

If- P'G -, tx). then. unless v = = v (which implies that i3') = 5J, use e.F

.z~v A F - - .B ' - v If v = = v , th1en use e .F -- . a ' w B " . F 1 , F 3--, .---

* :P G. :hen 'se e.F - A'v.A Y F - v.3' - :.B" - v and march throuzh :he biocks

':r' 7CM,1inmc1" -7pn 'o ,,J

.,? . . . " . . .,
.....................................................................................................-..-..-..---..-..... .- ',;-"-'< 5-
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To present the induction step of (i), we define the level of u in Algorithm 11.5.8. This algorithm

defines the level k, two sets (Uj i 0,..k) and 4uj: i = 0,.. .k) of vertices, two sets (Fi i

1,..k) and {F/': i = 1,..,k) of faces, integers s and r, sets (vvj j = 2,. .. ,s - 1). and {Wj :j=

2,..t - I1) of vertices, faces F = (UkW'v1w3,-...,ivs.ju') and F = (ukx2X3,. ..,xt-jw2), and a set Q of

vertices.

.Algorithm 11.5.8.

a. Initialize:
a) k =0, uO = it, and u65 is the vertex in P that is clockwise from u.
b) F = (e) = (Uw'w3 ... ws-ju') and F' = 0(uw2) = (uXIX3 ... x..w2))
c) Q=P(G)

b. If X(F) = X(F') = 3.w-, e Q,x, 15 Q, then:

a) Q =Q k- IW"j (w')
b) k k + 1, uk= W" Ili= x2, Fk =F. and F = F'
c) F =O(uku'.Fk); define s, w,,, W3-..and wj- by F =(Iukw'-W3 .. slu
d) F' = O(Ukw2); define t. x--, xt3,..., and xi-I by F= (UkX-1x3... .Xi- Iw2)
e ) Repeat step b..

7-u-ee examples appear below.U

F't

Fj F0  
F F

F 1 F
U U

k= k=lI k=2
Fizure 11.5.:4

We -,e-d to flind a profitable ii.v-representation for any v r= P(G). We will find a profitable

representacion for almost any v e Q. The basic tactic is to start with u -- eli- ..- Fk-Uk

-id cont~nue f*rom there de-pending upon where v is in Q, relative to F and F. [n this initial par of the

proposed -'rocedure. each F. is positive and each Fi is negative so when we get to Uku'. we are neithier

-ahead nor '-ehind. Let G' be the graph that remains after this proposed start. After the proposed start.

,.,.e are ,tartinz the representation of C' at uk&u'. G' is a block, and P'G') n . An example of G and

Ga caears hlelow.

% I'.
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1F1

• ., lU ttU

I Figure II.5.25(a): G Figure 11.5.25(b): G'

By making all of the Fi's positive, we have created a situation in which we must start at an edge

and this, as shown in Figure 11.5.20, is not always possible.

Hence we may not always use this tactic. However a case is "mostly" described by the placement

of v in Q, relative to F and F'. Suppose that we know every pertinent fact about v, F and F'. We will

describe procedures for each of the levels k = 0, k = 1, etc., until we have a procedure that starts with

the edge e instead of just the vertex u. This is the last level that we need to consider. To see this, re-

call the graphs GI and G2 of Figures II.5.18(-) and 11.5.18(b).

Recall that for G 1 , we have a profitable uv-representation and for G2, we have a profitable

iu ,,/-representation. Now suppose that the level is k > 2, we need to find a profitable

"- : .- representation. and that we have the same situation concerning F and v as in Figure 11.5.18:

,.{ F') 3. x2 = u, k(O(u'w,F)) = 4, etc.. Then we can start a representation with e.F1 --

F . Fk_1 --* uk.lU and conclude with the procedure of G-. This is possible because the

procedure of G- starts with the edge Uk.lu, and this is where the initial part of the representation cur-

'entlv ends.

Cases are organized by considering the level [ast. Let k be the level. We will asume that k = 0

and try to find a profitable uv-representation that starts at e. If we succeed then, by the above para-

graph. we do not have to consider higher values of k. For most of the cases for which this is not pos-

s;-le. we can start at u if k = 0 and at e if k = I. For the cases for which we cannot start at e if k = 1.

-hen we wijl be able to start at u if k E (0,1 and ate if k = 2.

We must resort to many cases and subcases. We name a subcase by a string of digits. The name

or i ;ubcase will desc7:be where in dhe 'ee of cases" the subcase is. For example. Case 2 13 is the

" "" "'- hc, a~e of :he first subcase of the second main case.

. .- A"..
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Often there are some subcases that are so easily disposed of that they do not merit being considered

as separate cases. Following the definition of a subcase, there is often a paragraph or two that dis-

poses of these preliminary cases.

We now present the induction step of (i). Almost all of the rest of § 11.5 is spent on this.:1

The first three main cases correspond to the different ways that Algorithm 11.5.8 can terminne be-

cause of some -irrezularity" of F (i.e., VF) = 5, X(F) = 4, and X(F) = 3 with w- r= Q).

L : H = G - (iiia' :I = O,k) - (uujL~+ : i = O,k- -l1. Let A be the block of H that contains Uk

and let B be the block of H that contains it'. If there is a block of H that is not B and shares a cut-ver-

:ex with A. then call it C. Examples are given in Figures 11.5.26, 11.5.27, and 11.5.28.

B

U U'

Fivaure 11.5.26: k =0 G H

F11

U U It U'tY

Fiaure 11.5.27: k =I G H

C
v3"' w 4 W4 3 .

Uj u'l

F'

it i U

Fiaure rI.5.28: k I G H

Case I AJF) =5

~u rose zhat k = 0. If H has two odd blck-s, then use e u', march and buy. Hence we may

me:aE a1 locks of H are even. If H has at mnost two blocks, then we can start with e and march

rIf H- has at least three blocks, then we can start with e it or e s' and use

A . . '%.'ri
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marches or (iv) unless one of the following occurs:
U i. The cut-vertices of H are {w2,w4l and v r w2,w4}.

ii. The cut--vertices of H are (w2,w3,w41 and v = W3.

For k = 0, these are illustrated below. For either case, use uA - u - u and march to v.

Cw (e)f)

A 3 W4 B A 2W

e) F (e) e e

U it it Ut

Figure II.5.29(a): v C (W2,w4} Figure 11.5.29(b): v = w3

For k = 1, these two situations are illustrated below.

CC ()

v; 3 W4

I~j U 1  F(e)

it U

Figure II.5.30(a): v E [w2,w4} Figure II.5.30(b): v = w3

Start with e,F 1 -* uul. If w) # ui (as in both figures), then continue with iUU1,Fj t A -,

march through all of the blocks, and buy at v. If w2 = uji, then A = ujuj (compare with Figure

II.5.27). Continue with uui,Fj -- uuf, march to u', and buy at v.

Case2 VF) = 4

Suppose that k = 0. If H has at most two blocks, then start with either e - u or e - u' and

march from either u or u' to v. Hence we may assume that H has exactlv three blocks. If all three

blocks are odd, then start with e -- u and then march and buy. Hence exactly one of the three blocks

is odd. It is easy to start at e and march to v if v e P(C). Hence we may assume that v r P(C).

If A is odd, then B and C are even. Use e -- u.-A w and (iv) unless v = w-. If v =w2 and

-E T(A), then use e -- u'. and march to v. The first case for which we must consider k = I is:

w, Q, (A)= 1. 3)= (= C= 0, iv- T(A), and v =w

IiV

1..V?
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If B is odd, then A and C are even. Use e .u',B V- w and (iv) unless v = w3. If v = w3 and

3 T(B), then use e -- u and march to v. The second case for which we must consider k = I is:

- ii. wV2,W3 6 Q, £(A) = 0, E(B) = 1, E(C) = 0, W3 e T(B), and v = w3

If C is odd, then A and B are even. If v e (w2,w3, then start with e and march to v, finishing

with either v,A - v or v.B - v. The third case for which we must consider k = I is:

iii. W2,W3 E Q, E(A) = E(B) = 0, E(C) = 1. and v e P(C) - {w2,w3)

V.V
m For k = 0, the three "hard" cases are shown below.

C~(e)0

(e) w3

(e)(e) F (e) (e) F

V =W2 E T(A) v = w 3 r P(C)- {w2,w3) v = w 3 E T(B)
Figure f.5.31

For the first case, note that u 1 T(A). Then for all three hard cases, use u.A -- u - u',B -

w3,C -4 V.

Now suppose that k - 1. For the first case, we have the situation below.

,.

V..

A - ,

,-..-:Figure 1I.5.3 2

,;.-Use e - u,(A .. Fj) - w -' X2Ul,F U l~ "-- u'.B - w 3, C --. v.

'W%.

,,%-For the second and third cases, first assume that w2 = uf. Use e.Fi - uui,Ff w .4 -

'- 'i w,C -. w3.B - u' and buy at v.. If w .l, then use e.F1 - Fj - uj.C - w- .B - U' and

- buy at 'v.

- sr,--* -(e)

F4.,- '

P-~ "I", C
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. Case 3 XcF= 3and w, r Q

Note that e(A = E(B). If EA) = 1 and k = 0, then start with e i uor e -4 u' and march to v

unless v = w- ( T(A) n T(B). In this case, use u,4 -. uw 2 ,F -+ wiu',B --+ ' and buy at v. If
) = 1,k= 1, and v= w2 T(A) r T(B), then define w by w - w2, wE P(A), andw

tu1. Use e - u,(A ki Fj) - wi -> ulW,(wW2u1) --+ F - w2u',B -" i' and buy at v

If E A) =0. v e P(B), and k = 0, then use uA tj F -+ w-'u',B --) v. If E(A) = O,v e P(B),

k= 1, and w = ui, then usee,Fl -4F -- uuiB -4 v. IfE(A) = O,v e P(B), k= 1, and w2, #

uij. then use e,Fl - uuj,Fj u A -. w2,B - v.

Hence E(A) = ;(B) = 0 and v r P(A) - (w2}. Let A' = A - ukw2. Let A1 be the block of A'

that contains uk and Ai be the block of A' that contains w-. If there is a block of A' that is not A- and

shares a cut-vertex with A1, then call it A3. We give an example of these definitions in Figure [1.5.33.

Note that in our example, k = land x-, = ui so that A 1 is a single edge.

Aj

) Case 31 ?JF') > 4

~~Suppose that k = 0. If X(F') = 5 or if X.(F') = 4 and A' has two odd blocks, then use e,F u.,

I '.B--. w2, march and buy. If v P(A i),then use e,F uB.-. w2 and march back to v. If X.(F') =

* - 4. all blocks of A' are even, v P(Aj), and k = 0, then use u,A41 - u.F B -.- w' , and then iii)

Sor(iv.

,. Hence LJF') = 4, all blocks of A' are even, v P(A I), and k >0. We will start the remaining

' procedures of Case 31 with e and therefore we may assume that k = 1.

II

Case ~ ~ ~ ~ ~ igr 11.5.33s SeFiue 15.3

Sups htk=0 If kf F' P5k ohe if exiPts T n 'hstw d lcshen i '~P: use eF UuA uFf t 1 F~

B -- w,,mrh u. If v e MA 1, x ) then use e ;.F u B - wnadmrhbc ov fXP

4.albok fA r vn PA1,adk=0 hnueu4I-p . - v, n hn(i

or Ov).
HeceX()= . l bocsofA'ae vev er P(A~J 1)-n .W il tr h ean
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If x- e P(G), then use e - u',F t-) B -4 w-,A2 Q Fj - v.

Case 312 x- # ui

Note that since E(Ai) = 0, we cannot have x3 = uf. Hence we may use e,F I  m Uul,Al Q

Fj -- Ul w2,.B w, and then (ii) or (iv).

Case 32 X(F') = 3

Suppose that k = 0. If x2 e P(G) or if x2 e P(G) and v r P(A1) - {x2), then use e.F U B --

w- and march to v. Hence we may assume that x2 e P(G) and v r P(A2). Note that A 1 * A2 and

E (Al) = 1 - E(A2).

If u e T(A1 ), then x2 e T(A 1) and E(A2) = 0 and we can therefore use e,F t. B -+ w2 and (iv).

If u e T(A ) and k = 0, then use u,AI - u,F Q B - w2,A2 -- v. Hence x2 r Q, vE

. P(A2),uk e T(AI), and k > 0. We will start the remaining procedures of Case 32 with e and so we

may assume that k = 1. Therefore this summary reduces to:

x- r P(G) f {u'), v e P(A,), ul E T(Aj), and k= 1.

*.. Case 321 x2 = iii

If e T(A,), then define w by w - w2 , w # uf, and w e P(Ai,). This is illustrated below.

.9B

(e)- FW F'

-.9--" Figure 11.5.34

*.. If v w-, then use e,Fi - F -- F' - (ujww2) - ujw,A2 - w2 -4 v and then buy at u' to

• finish with u'.B"'2 -- w2. If v = w-, then use the above procedure except that it is immaterial

. where the first sequence ends and, if X.B) = 2, then the second sequence is replaced by "buy at v.'

If T(A',), then use e.Fl -4 F - F' - L4w2,A2 -- w-.Bu'lv2 -+ u' and buy at v. The

A last step before the purchase at v is unnecessary and unavailable if X(B) = 2.

Case -"'2 x: e it

First assume that E(A1) = 1. If X2 = T(A 1 ). then define x byx ,-.. x2, x = :ul, and x e P(A 1).* j
'I.
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Use e -.* uA1 t Ff - x- -- xuj,(x2ujx) "- xlul,B j F A, u F' -- v. If r, e T(A 1 ) then,

since E(A2) = 0, we can use e.Fj -* Ulu',F v B -* w2 and (iv).

If EtA 1 = 0, then use e.FI - ui .Ff AI - it --+ w2,B -+ w2,A2 "- v.
The remaining main cases correspond to terminating Algorithm 11.5.8 because F' is irregular. The

ways for this to happen are X(F') = 5, X(F') = 4 or X(F') = 3 and x2 e Q. We will split the last one

into two cases and these will be defined later. Since F' is the reason that Algorithm 11.5.8 terminated,

S F= 3 and that w, e Q.

It is convenient at this time to let H, A, B and C denote graphs or sections other than what they did

during the first three cases. These graphs will play essentially the same role as their namesakes above.

Let H = G-{ uiu': i = O.kl - {uiui1 : i = Ok - 1) - ukw2. Let A be the block of H that contains

uk and B be the block of H that contains w'2. We give an example of G and H below. In this example,

k= 1.
X 2 C" x.3  x, C x 3

i -t
, Figure 11.5.35 G H

Case 4 AtJF') = 5

Suppose that k = 0. If no xi is in P(G), then use e,F -. w-'u',H -+ y for some y e P(G) and

then buy at v. Hence some xi e P(G). Let x be the cut-vertex in H that is in B. If x = x4, then use

e.F -) w'u'.B -- x, march to u, and buy at v. Hence x,4 P(G). If v r P(B) - (x, then start

with e -i~ Ww) and march to v. Otherwise use e.F -i t'w 2 ,B y y for some N! e P(B), buy at it or

- x, and march to v.

- Case 5 .(F')=-

Suppose that k = 0. If no xi is in P(G), then use eF "- wt'.H v. Hence we may assume

hat some xi P(G). Note that H has an even number of odd biocks.

, Case 51 xS Q

l.
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Suppose that k = 0. If H has an odd block, then use eF --+ w-u',B -- x3, march and buy.

Hence H has no odd blocks. Note that this means that x3 # 16, for that would force V.A) = 3.

Case 511 x- e Q

If v r P(A) and k =0, then use e,F --> wv2u',B -+ x 3 ,A -4 v. If v c P(B), and k = 0, then

use u,A -4 zsB u F --+ v. If v e P(B), and k = 1, then use e,F 1 -4 UUl,Fi u A -> il .

-. wV ,B - v.

Case512 x2r Q

Suppose that k -0. If v e P(B), then use eF - w'2u',B - x3 and (iv). We must consider

separate levels if v G P(B). If k = 0 and v # x3, then use uA --+ x2,C -* x3,B u F -4 v. Ifk =

0 and v = x 3, then use u,A -- u,B u F -+x3,C --* x3.

Now suppose that k = 1. All remaining procedures of Case 512 will start with e and therefore we

-. do not need to consider more levels. If x2 = U, then unless v = x3 e T(B u F), use e -+ uA U

Fj -- x3,B F -4 v. For this exceptional case, define x by x *4 x3, x # w2, and x e P(B) and

then use e . u(tul).B - x3 - w:X,(w'xx.3) W- w-- tl 1,Fj --uuf,A -+ v.

If xi # Li,, then use e.F1 -. iul,Ff w .4 Ul --- w., and then (iv).

Case 52 x3 E Q

If x2 e Q, then H has just the two blocksA and B and they have the same parity. Suppose that

' A) = 1 and k = 0. If v e P(A), then use e,F -+ wu',B --+ y for some y r B. Then buy at it or

x- to end at v. If v e P(A), then use e - u(w2),A -* x2,B -.- v.

1-r IHence (A) = E(B) = 0. If k = 0 and v e P(A), then use eF - w~u',B -+ x2,A -+ v.

The only remaining subcase of Case 52 (and Case 5) is x2 e Q, x3 - Q, (A) = e(B) = 0, and

Sv r P(B)-(w-. Ifk = 0, then use uA --- u,B u F --> v. We will now need to consider k = I

and. for some subcases, k = 2.

Suppose that k = 1. If x2 * u, then use e.F1 -> uUi,.4 u Fj - ul - w2,B - v. Hence we

may assume that x2-" .

Note zhat A = ukx- and that B is "most of the graph.'" Let T = O0k-its,Fi ). Define y-, v-,....

%', by T =T. Let J = G- (ui: i. = l.k)- fe.lik.ik-J. Let B1 be the block of]I that contains

6
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Lu k-1, B2 be the block of] that contains z , and if there is a block of J that is not equal to Bl and shares

a cut-vertex with B1, call it B3. We use the notations BI, B 2, and B3 since we are breaking up B.

These ideas are illustrated below. For this example, X(T) = 4."X-%

2 Bi~ RU' U t

Figure 11.5.36 G i

Case 521 X(T) > 4, k > 1

All algorithms of Case 521 start with e and so we do not need to consider higher values of k.

* ""If we start with e -- u.Fj -- uuj, we have a current profit of zero, the remaining graph is a

block, and we are starting at an edge of its unbounded face. Hence we need only consider the5
subcases of Cases I and 2 for which we needed to consider values of k other than 0. For k -0, all of

these subcases' solutions started with "u,A -- is --+ u'." If we replace that by e -+ u,B --. u.Ff --

Iti, we have the same situation. Hence we can always start with e.

We give an example of these parallel problems below.

ISX U

v= w c T(B) v=y3 c T(B= j F
Figure 11.5.37

Recall that he procedure for the first graph of Figure 11.5.37 is uA - u - u'.B - w.,.C - v. In

its place. we use e - u.Bt -- u.Fj - uj.B2 ' F - y3,B3 --+ v for the second graph of Figure

11.5.37.

The reader might wonder why this approach does no[ work if kjT) = 3 iCase 522 below). The

LE



reason is that in the procedures of the first two main cases, the edge uu' is not part of a 3-n anCoi

accounted for by it -- u' or u(u'). These can be replaced by u,Fj -4 uf or u,Fj --- it. Comparing

these two algorithms, one can say that utu' of the first two main cases is "simidlar" to Ff of Case 521.

But if WIF) = 3, then uu might be represented as part of a 3-gon and there is no convenient way of

transforming such an procedure to one for Case 522 and gaining a unit of profit from Fj.

Case 522 X(T) =3, k I

Suppose that k = 1. If y, = itj and v # it, then start with e -+ u.Ff -- T --* uijuj. The

remaining graph is an even block and so we can start from the edge ij and end at v. If y-, = i&5 and

v = it, then use e,Fl --+ Ff --+ ul --+ w,.J-u --- u6r - It. If y, it', then uu' is a multiple edge. If

- = xi, then use e,Fl -- Ff - T --+ Ux3,J-ui --+ wv- -+4 ul and buy at v. If y-, = wv', then the

0 perimeter of B, is (I4X3w-1). We illustrate this below; note that we had to contort our diagaramn

* extensively to maintain the straight lines for edges.

-4.)

.'.'

.4 FF
U UU

Figure 11.5.38: Y2 w-

0- Use e,F 1 - Fj ii ul,B, F- w-,B I + v

If v-' is some "interior" point that has not been mentioned (i.e.. BI B'). then use e.Fj - F-

it i-,B v. Hence y, re Q - f uk} This is illustrated below for k I and k =2.

V ..

VFiw-re 11.5.39 Lk 1 k=
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" We now resume the assumption that k = 1. If v e P(B1), then unless v = Y2 c T(B 1), use

e.F 1 -+ Fj -+ i --t w,B2 - v2,BI -- v. Ify2 E T(B1 ), then we can use e -+ u,B 1 --

tu,Fj ulB2 t- F - v for any v r P(B2).

Hence v e P(B2 )- (Y21.

If E(Bi) = 1, then use e --+ uFi - u,Bl -- Y2. What's left is an odd block and we are starting

at the vertex v-, a vertex that we do not need to worry about ending at.

Hence E(B1) = 0.

Ifk = 1, then start with u,B "Y2 - v-Y. Again we are left with an odd block and we are starting

at Y2. Note that the first step of the algorithm is justified since )(B1 ) _> 4 and this is known because

Y2 u6. If k = 2, note that Y2 # ui. Start with e,Fl -- uui.Bi I Fj -*Y2. Again we are left with

an odd block and we are starting at y-.

We are left to consider X(F') = 3. Recall that H = G - {uiu': i = 0,k} - {uiui+1 • i = O,k -

11 - ukw 2, A is the block of H that contains Uk, and that B is the block of H that contains w-'. It is

convenient to immediately split this case into the two cases x2 * ze and x2 = 1,4.

Case 6 X.(F') = 3 and x- * uk

Suppose that k = 0. Note that x2 u' since we have no multiple edges. Hence X(B) 2t 3. If

v PA). then unless v = x c T(A), use e.F -+ w-u',B -- x-2,A --+ v.

For this exceptional case, if k = 0, then use uA -+ uF u B ---) v. If k = 1, then use e,F1 I-

uit ,Fi ' A - x2u1,F' j 82 B, v. Note that the step "u 1,Fj .. A x 2U" is our first use of

~(iii).

Hence v e P(B) - {xi). Note that (A) = I - E(B).

If k = 0 and E(A) = 0. then start with u,A"x2, -4-.> x2. The remaining graph is a block and we are

now starting at the vertex x-. If k = 0 and E(.A) = 1, then start with u.A -.x2. Exactly the same sit-

uation as before now exists.

If k = I and E(A) = 0. then start with e.F 1 .- ulFj u A --* ul -+ w2. The remaining gaph

is an odd block but we are now starting at a ve'tex that we do not need to be able to end at. If k = I

and VA. = 1. then start with e.F1 -- uul,Fj v.. A - x2u 1 .F' -- x',w'. We are now startin, at the

t
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edge xw, but the remaining graph is even.

Case 7 X(F') = 3 and x =4

Suppose that k = 0. If v = i. then use e,F --. v-'u',G - it -t or - u. Otherwise, we apply

(vii) after e,F -4 F' - u~wy, unless (u'w:2u.,1,v) is a difficult triple of G - u.

Hence we have a difficult triple. This is the most difficult part of the proof. We will now fre-

1'* quently redefine H, A. B, and C. We classify difficult triples as type i. or type ii.. Type i. difficult

triples are the ones that have a 4-gon (see the definition of difficult triple).

Case 71 Difficult triple type i.

We must resort to considering levels k = 0, 1, and 2. Define sections A and B, as well as the

vertex v that they have in common as in Figures 11.5.40(a), II.5.40(b), and II.5.40(c).
- V

V
V

A (o) A (e) F

F (e F B j -

U, U

k= 0 k= 1 k= 2
Figure II.5.40(a) Figure II.5.40(b) Figure II.5.40(c)

If k = 0, then use u(idj),F --+ u'.B - y,A -+ v. If k = 1, then use uA -- x-wiFf -+ F

F I-*u'B -y and buy at v: If k =2, then use e u',B u',F -F2--F- 4 u lu,A u

F -v.

-.- Case 72 Difficult aiple type ii.
We immediately separate into cases for levels 0. 1, and 2 and we define H, A. and B for each of

these. In fact we make very sporadic use of the fact that (u'w2,w-sac,v) is a difficult triple of G -

.0. Case 721 k=0

Let T = tw'u'v) = O(w'tt'.F). Because F and F' are symmetric with respect to u. we may as-

sume that T' = Outaw2,F') is a 3-gon 'tavv'). Let H = G -E(F) -E(F',) and !et A. B. and C be the

0L
..............
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blocks of H that contain i~jv' y 'w, anid yu' respectively. Except H, each of these concepts is illus-

crated below.

p~ C FFT C

Figure 11.5.41

Since both (u'w2,wiu6,v) and (ujw2,w,_u',v) are difficult triples of G - it, A and C are even and

v E P1B) - {y,y'). Let T' = O(y'sv,,T').

4 If XT7) : 4, then start with e.F --+ F' - zK~w-,A u T'--+ y'. Then march through the blocks

p. of-vB -, toyv. This is possible since y is in the last block of the march and either y is not equal to

the cut-vertex between the last two blocks or the outside face of the last block has length at most four

by Lemma 11.5.7. The march, together with T" will ain one more. Finish with v,C -+ W'and buy at

V

If AJtT) = 3, then define y" by T" = (v'w~y"). If y" e P(B), then start with e .- 4 u,F' -4

itw-,A j T' -- v'. What's left is an odd block and, since v # y', we can finish at v. If y" = y

,hen use e --+ i'.T u C --- w,,F' --+ u0w2,A u TF --+ v',B - w-, -+ v.

'2Hence we may assume that y" r= P(B) - {y'). Let B1 be the block of B - way' that contains y'

and B: be the block of B - w-v' that contains y. Note that E(BI) E (B,). This is illustrated below:

L(e Fr (e..4

-If E'B 1) =1. then use e Wu'. C .vyB y"Bj v'.A uT' '.u~w-,F'-'. U4 and buy,

at 1.

.... ...
I2
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If E(Bi) = 0 and A - uv', then use e -- t',C T -- w'v,B, -. w-)v",T" -- T' - F- .-. %. a -

z,&A U ' -+ y'.B iYY" - v" and buy at v. The last step is unnecessary and unavailable if X(B1)

Ife(B1) = 0 and A = u6y', then use e,F - F - T'-- w2y',T" u B1  y",B y, 'w2 -'
,.':"':':y,C -- it' and buy at v

Case 722 k= 1

For this case, we ignore almost everything that we now know about the graph and pursue an en-
'a.'.'

tirely different line that involves a different difficult triple.

Use e,F1 - Ff --+F' P- ujw' and then (vii) unless (uuj,ujw2,v) is a difficult triple of G -

t- e. Let T = O(uuj,Fj). Let H = G - Ul - {uuj,e),A be the block of H that contains u, and B be

" the block of H that contains 14. Let y be the cut-vertex between A and B. Note that v 6 P(B) - {y 1.

0 If X(T) = 4, then start with u,A -4 y. The rest of the graph is a block and we are starting at the
'aP

vertex y.

If X(T) = 3, then use u.A u u,Ff F - F u'w-,B --+ v.

Case 723 k = 2

For this case, we will use a sequence of up to three difficult triples to "box in" v until we have

identified enough of the graph to write down procedures for the remaining cases.

We start by using eal --+ F2 -> F4 F-- w2u4 and (vii) unless (ujlt,uw2,v) is a difficult

triple of G - E(F1) - u2. Let T = O(uIu-,F). Let H = G - E(Fi - u I ti, A be the block of H

that contains Ul. and B be the block of H that contains it. Let y be the cut-vertex between A and B.

Note that v e P(B) - [y}. Examples corresponding to the types of difficult triples are shown below.

V V

0till

U1 4

O... F,
e)' u.IF1 )1 0

F1 ~F 1 (e

It U U it'

Figure 11.5.43

If .aT = 4 and y = , then use e.l - Fj - uuf,B ' F4 u F' , F - v. lf T) and

*1
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it henuseeF uuA Fj yB jFi P j F v.If X(T)=3 and iti,

then use the same procedure. Hence we may assume that X(T) =3 and y 1 4. This is shown be-

low.

U

FiueF154

we hve ithe Fiure 1.546(a orFigi r 11.5.44aai sngtedigas odfieA. : n

We At o fris piths ehiutedoan of iashidinghplaces. Note thatisat be i diffcul trpl f U

dgream pos h eiitions andan the fact'n th setin A and) For eThease denta on, togehe wit

th F'iito of~ the verte Tr givenin FrF~r 11..4.5.6,:iiA

V A(e

and uy a v.For igur II.5.4b~,Fihr with5.45

Noeta4 () sidctdi irue1..5adXT)3 s ~ iB

it~~~~~~~~~~~~ F F' *-. *F4 -* T --- ittjad(i)uls -.jui i ifcl rpeo .Teeoe

we av eihe Fiur II5.6(a o Fiui 1..b) agi usn th * gmstodfn n
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v ZZ

. T U2 T

Figure 11.5.46(a) Figure I.5.46(b)

~We have now established each of the induction steps of Theorem 1I.5.5 and have therefore corn-

! pleted the proofs of Theorem I1.5.5, Lemma 11.5.2, and Theorem 1I.5.1.,b

.. As another application of profitable representations, we now show how they can be used for

0, proving hebudfr2cnctdouterplanar graphs (See Thoem1.4.4). Suppose that G is

• 2-connected and outerplanar and let R be a profitable representation. From (II.5.5b) and X.(G) =

* naG), we have 2((2n(G) - 3) - IRI) = p(R) + n - 4 and, because n is odd implies that p(R) _ 1, we
-also have 2n(G) -3- IRI >L[. n(G I or IRI < 2n(G) - 3 - (Fn(G)/2"]- 2) <_ L.3n('G)/21 - 1.

''6. Connected Graphs
~In §I11.6, we establish bounds on I and 13 for connected graphs in terms of n. In particular, we

,-. prove the tollowing theorem.

-',.- Theorem 11.6.1. For any connected graph G with n vertices, where n _ 4, we have the follow-

'J.J
: (i) lfG=Kt~1 2n/ 2 ;/2,,thenl1(G)-= .n2/4iJ+ 1. If G [K4 ,Ks}, thenl13 (G) = .n2/4J + 1.

.ii If G {K4,KsK 1Fgur } then 13(G) < L.n2I4J.

0. WMoreover, for any n 4, there exists a graph G'with n vertices for which a(G) = Ln2I4i and so (ii)

! ! is best possible.

4, Proof. For the first assertion of (i), it is clear that t(K~npj-n/2 ) = 1. Since Kf,_n2ffn/21 is tri-
angle-free. prKonj n/2) = The (K, = m 1 = Lni2JFn/21 + 1 = Ln-/4. 1. The second

assertion of n) be verified directly.

By removing one edge from -,<n2 , we obtain a g rSaph that demonstrates the last statement in

5'. '5 ', - . .



the theorem. 
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0For (ii), we use induction on n. Because of the nature of the proof, we must verify n = 4 and

n = 5 for our basis case and we do this by finding representations for each graph with four or five

vertices.

Now suppose that G # KLnnj,n and that n >_6. If G e {K6 ,K7 ), then we use one of the rep-

resentations in Figure 11.6.2

3
Figure 1.6.2(a)

4 7 4

Figure 1I.6.2(b)

S--If G e (K4,Ks,K6,K,KLn/2j,fn/ 21}, then, there is an edge uv such that G - fu,v} e

{K4,K5,Kl(n.2),jf(n. 2)/21) and, by induction, {13(G - (u,v)) < L J = Ln2/4J - (n - 1). Let

H = G - {u,vl. We will be done if we can prove:

13(G) -131H) + (n - 1) (11.6.1)

Let R' be an optimal depth-3 representation for H and let w and x be the vertices that correspond to

the first two intervals of R'. The situation is depicted below.

VIV

Figure 11.6.3: R'

We adjust R' to form a representation R" ofH u {uz: z e NG(U)}U {vz : z e NG(V). Seven

cases and the corresponding adjustments are shown in Figure 1.6.4. Any other case can be reduced to

one of the above seven by exchanging the roles of u and v and/or of w and x.

For each possible representation R". IR"! < IR1 + 3 = 13(H) + 3. Moreover, there is a displayed

u-interval eu, a displayed v-interval 6v. and an intersection 0v of some u-interval and some v-interal

that intersects no other interval. For each vE {u,v,w,.r., place a small y-interval inside 0, 0,, or

-' Or, depending on whether y is adjacent to u but not v, y is adjacent to v but not u. or y is adjacent to

both u and v. If v is not adjacent to either u or v. then do not add any v-interval. Call the resulting

111 P", *''1:' 11,~~* 1 1
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representation R. By this construction, IRI S (13(H) + 3) + n - 4 = 13(H) + (n - 1). Hence, we

have established (11.6.1).,*

V

IV W W

U4 -W, U -. X U - W, U4- X U <-4 W, U .. X

V IV4, V<X +-* V W ,V '.x V 4 jW,V 4 x

- -..>w v-->* x vv-. wV</> 4*Wv4-*X <-.>
V x V

V WW, +-w4 x u +/+ w, u +-+ x

V 4-.- -- x v4 wVv -/ x

v <-/-w, v -/-x V<-..W, V +4x

Figure 11.6.4

'.5'

J.(

0."

o ..,

4'-
3' °

3'o-

o!

.e
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III. THE TOTAL INTERVAL NUMBER AND THE NUMBER OF EDGES

1. Preliminary Results

In §III, we consider bounds on the total interval number in terms of the number of edges of a

graph. For all classes in §III for which we establish a best possible upper bound, there exist triangle-

free extremal graphs. Therefore, 12 is very important and we will rely heavily on trail covers.

When there are no restrictions on the graphs, it is easy to see that, given m, the only graph with m

edges that requires one trail per edge is m copies of K2. Hence, for all graphs, I < 12 2m and 12 =

Im only for m copies of K2.

We now establish the bound for connected graphs. Recall the set P of graphs of §11.1. It is clear

5re(GG) + 2that if Ge ? ,then I(G) - -mG 4

Theorem If G is connected, m(G) > 1, and G E P then 12(G) < 4

Proof. Let G be a connected graph that is not in?. If G is a tree, then the result follows from

" Corollary 1. 1. 12 and the remarks following it. Hence we may assume that G has a cycle. If it has

two or more cycles, then choose any edge that is in a cycle and snip (Lemma 1.6.2(iii)) it. The number

of cycles decreases, the number of edges remains the same, and the trail cover number does not de-

crease. Hence we may assume that G has exactly one cycle C and that if we snip any edge of the cy-

c!e, we obtain a member of P. For example, if m(G) = 10, then G must be one of the graphs below.

F scFigure 11. 1.1

For such graphs, we have t = 1+ m-6 and hence 1i2- 5m
4 - 4 4 "

We can modify the proofs of Corollary 11.1.12 and Theorem 111.1. I to show that, given m, the
5m +I

ony graphs with m edes for which I - 4 are trees that arise from subdividing one edge of

the member of ? that has m - I edges, or are trees formed by two augmentations at black vertices and

4 augmentations at white vertices.

N .
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2. Classes Defined by Minimum Degree

In §II.2, we show how placing a lower bound on 8 tends to decrease the maximum value of I/r.

The proof of the best possible bound seems quite difficult for 8 _> d for d > 3. We will concentrate on

requiring 8 :2, where we have a complete solution.

Theorem 111.2.1. If G is not a 4-cycle, a 5-cycle, or a 6-cycle, and 8(G) > 2, then I(G) <
9re(G)G Furthermore, for any m > 8, there exists a graph G with m edges for which 1(G) =

L 9m(G) + 1 J and so the result is best possible.

Letf(G) = 9m(G) - 81(G) + 1. We will prove an equivalent version of Theorem 111.2.1 that we

call Theorem M1.2.1'.

Theorem 111.2.1'. If G is not a 4-cycle, a 5-cycle, or a 6-cycle, and 8(G) _. 2, thenf(G) z_ 0.

Furthermore, for any m a 8, there exists a graph G with m edges for which 0 <f(G) < 8 and so the

,!1, result is best possible.

We first give the extremal graphs that show that Theorem 111.1.l' is best possible. A (1,3)-tree is

a tree for which each vertex is of degree I or 3. Let G' be a (1,3)-tree, nj be the number of leaves.

and n3 be the number of branchpoints. Since m(G') = nl(G) + n3(G) - 1, there are nj leaf-edges and

n3 -1 edges between branchpoints. Hence if we add isolated 4-cycles at each leaf and twice subdivide

the edges between the vertices of degree 3, we get a graph G that satisfies:

r(G) = 3(n3(G) - 1) + 5nl(G) (111.2.1)

The trail cover number of G is the same as the trail partition number and this is half the number of

odd vertices. Hence we have:

t(G) = nG) nG) (111.2.21)

Counting the edges of G' by m(G) = - -, and also r(G) = nl(G) + n3(G) - I, we get:

ni(G) - n3(G) = 2 (1II.2.3)

Combining (111.2.1), (111.2.2), and (111.2.3), we see that 8t(G) - I = re(G). Subdividing any

edge up to seven times gives _graphs in the other residue classes of eight for which the bound of

Theorem 111.2.1' is sharp.
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Most of the rest of §I1.2 is devoted to establishing the upper bound of Theorem 111.2. 1'. For any

S graph G we color the edges and define the cut-graph K(G) as follows. Color all cut-edges red and

the other edges blue. Let G, (Gb) be the subgraph of G that is induced by the red (blue) edges. Let

K(G) be the intersection graph of the vertex sets of the components of Gr and Gb. We will soon see

that a red component and a blue component intersect in at most one vertex. Therefore it doesn't matter

" if we define K(G) as a simple graph (as we have) or if we define an edge for each member of the

intersection between sets.

For X e V(K(G)), we will use "X" to refer to either the vertex in K(G) or the subgraph of G that

is induced by the vertices of X. If X +-+ Y in K(G), then select q(X,Y) e V(X) t- V(Y). If we

want to distinguish which graph we are considering when applying q, we will use a subscript

(e.g.qG').

For the reader that is familiar with other intersection graphs (e.g. the block cut-vertex tree), the

proof that K(G) is a tree is routine. We write it out here.

If X corresponds to a red (blue) component, then color X red (blue). This coloring of the cut-

gmraph is called the canonical coloring. A coloring of any graph is called proper if X 4 Y imples

that X and Y are different colors.

Lemma 111.2.2. For any graph G, K(G) is a tree.

Proof. It is clear that K(G) is connected. We must show that it has no cycle. We first show

that the canonical coloring is proper. If X +-+ Y and X and Y are the same color, then there exists

v r V(X) n V(Y). Since components of the same color do not intersect, X and Y must have differ-

ent colors
pNext, we show that if X is red, then X is a tree. Red edges are precisely those that are in no cycle

of G, and deleting the blue edges cannot introduce any cycles. Hence X has no cycles and. since it is

connected. X must be a tree.

Now suppose that K(G) has a cycle. Here we specifically allow multiple edges to correspond to

some intersection with at least two vertices. Suppose that C = (X0, . .. Xk- ) is the smallest cycle in

K(G). Since the canonical coloring is proper. we may assume that X0 is red and both XI and Xk I are

blue. Note that. since we have not eliminated the possibility of multiple edges. it is possible that X-
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Xk.1 (i.e., k = 1).

For what follows, take all subscripts modulo k. Choose xi e q(XiXi+1). If xi = xj, andj > i,

then (Xo,. ...,Xi~j+1, ... ,Xk-) is a smaller cycle than C, and so we may assume that the xi's are dis-

tinct.

Let Pi be a path within Xi between xi and Xi+1. It is clear that PoP, ... ,Pk- is a cycle within G.

But since xo # xj, PO is a set of red edges, each of which is in a cycle. Each of these edges is there-

fore not a cut-edge, contradicting the definition of a red edge.4

We assume the canonical coloring of the edges for the rest of §III.2. A cycle C with exactly one

branchpoint u is called a pendant cycle and u is called the base of C. Let F be the set of graphs G

that satisfy:

i. S(G) 2t 2
ii. G is connected.
iii. G has no pendant 3-cycle whose base is of degree three.
iv. m(G) >7

Letf(G) = 9m(G) - 812(G) + 1. Note thatf(G) = m(G) - 8t(G) + 1 and thatf(G) > 0 if and

only if St(G) > m(G) + 1.

For a gmph G, let rl(G) = 2m(G) - n(G). Most of the proof of the upper bound is an inductive

argument on r" that shows G e F implies thatf(G) a 0.

Lemma 111.2.3. Let G be a graph with minimum value of rI(G) such that G r ." and 8tdG) >

m(G) + 1. Then G has the following properties:

(i) If uv e E(G), and u and v are branchpoints. then uv is red.
(ii) If uv,vw E E(G), d(v) = 2, and both u and w are branchpoints. then uv and vw are both

red.
(iii) If u, v, and w are bivalent and u *-* v - w, then u, v, and w are the bivalent members of

an isolated 4-cycle whose base is of degree 3.
iv) If C is a pendant cycle with base u. then C is a 4-cycle and d(u) = 3.

Proof. (i) and (ii): From Lemma 1.6.2(iii),(iv), snipping and double snipping do not de-

crease the trail cover number. Both operations leave m unchanged. increase n and hence decrease r.

Therefore. if the result of either operation is a member of F, then that would contradict the minimalitv

of G. By the hypotheses. both operations do not create a leaf or a pendant 3-cycle and hence they0't
. . . . . .I,. " " '. . ' '" "" " .; " " " i " " " ' '
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must disconnect the graph. Hence, uv (in (i)) and both uv and vw (in (ii)) must be cut-edges.

(iii): Let H = G * itv; by Lemma 1.6.2(ii), t(H) = t(G) and simple arithmetic shows that

rI(H) = rl(G) - 1. Hence H e F. If m(H) < 7, then G is a 7-cycle and f(G) = 0. The only other

property of F that H can violate is iii. and, if this is the case, then u, v, and w are as asserted.

(iv): By (iii), we may assume that C is a pendant 3-cycle (uvw) and, by property iii. of F,

d(u) 2t 4. Let H be the graph that results from removing w and then snipping uv. Note that t(H) =

ttG) and 1(H) < TI(G). It is clear that H satisfies the first three properties ofF and, if m(H) < 7, that

f(G) = 0. Hence H e F, contradicting the minimality of G. ,.

Let F' be the set of graphs G in F with minimal Tr(G) such thatf(G) < 0; we will show that F' =

0. If G e F', then, by Lemma II.2.3(iv), every pendant cycle is a 4-cycle whose base is of degree

three. We strip the pendant cycles (leaving the bases) from such a graph G to obtain the reduced

graph G'. By the leaflessness of graphs in F, it is easy to retrieve G from GI G has a pendant

4-cycle at a vertex u of G'if and only if u is a leaf of G'. Let E'= (G': G e F']. To prove

Theorem 111.2. 1', we will show that E' is empty.

For any G' 1 7'. the canonical coloring is inherited from the corresponding G 6 F'; the edge in-

cident to a pendant cycle is red and stripping the pendant cycles merely deletes a component of Gb that

S is a blue leaf of K(G).

A staple graph is a graph that is obtained from some multigraph H. called an underlying

multigraph by twice subdividing each edge. It is easy to show that, unless G = C3k for some k,

there is a unique underlying multigraph. For a staple graph G with underlying multigraph H, we call

the vertices created during the subdivisions of the members of E(H) new vertices and the other ver-

rices old. We will not need to refer explicitly to the underlying mulrigraph; we will simply refer to

new and old vertices. By considering the edges incident to new vertices, it is easy to see that the trail

cover problem of a staple graph is the same as the problem of partitioning the edges into trails and the

answer to this problem is half the number of vertices with odd degree.

- * w~*
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Lemma II.2.4 Let Y be a component of G6. Then

(i) Y is a staple graph.
(ii) The only vertices of Y that are in some component of G; are old vertices.
(iii) 8(Y) > 2

Proof. From Lemma 111.2.3, we see that the only blue edges of G' are paths <u,v,wx>

where it and x are branchpoints and v and w are bivalent. Hence Y is a staple graph and the only ver-

tices of Y that are in some component of G; are branchpoints of G'. Hence (i) and (ii) are proved. V

We now prove (iii). Suppose that x e V(X) n V(Y), (and hence X is red), and dy(x) = 1.

Define y by xy e E(Y). Then -y is in some cycle of G' but that cycle must include at least one edge

of X since, except for y, all neighbors (in G') of x are in V(X). This contradicts the definition of a red

edge.,

Lemma 111.2.5. Suppose that G' e 3' and, in the canonical coloring of K(G'), X is a red leaf.

Then X is a single edge.

P roof. In K(G'), X has exactly one neighbor Y, or X is the only vertex of K(G'). In the first

case, let w = q(XY) and in the second case, let w be a peripheral vertex of X. In either case, let it be

at a maximum distance (in X) from w. Note that u has only one neighbor v and, if the lemma is false,

then v # w. Furthermore, v has only one non-leaf neighbor V.

Suppose that dG(v) = 2. Let G" be the graph obtained from G by contracting the edge uv. Since

G" is connected and the contraction of uv does not introduce any leaves or pendant 3-cycle, it follows

that if G" e F, then m(G") < 7 and so m(G) = 7. But then G has a leaf and hence G" r= F.

Because of the pendant 4-cycle containing u, it is clear that t(G") = t(G). Moreover, it is easy to ver-

ifv chatf(G") =f(G) - 1 and rl(G") = Tl(G) - 1, contradicting the minimality of G.

Now suppose that dG(v) > 3 so that v has at least three leaf neighbors u,u', and u" in G'. Let G"

be the graph obtained from G by removing u, u', and the pendant 4-cycles containing u and u'. It is

easy to verify that G" E -. By using one trail to cover E(G) - E(G"), we see that r(G) < aG") + I

and sof(G") <f(G) - 2. Then tG") = Tr(G) - I contradicts the minimality of G.

Finally suppose that dGev) = 3 so that NGtV) = fuu',v'), where it and u' are leaves in G'. If

dG(v'i 2! 2. then we can mimic the above argument to get the result, this time using the trail to cover

e
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vv'. Hence we may assume that NG"(v') = {v,v") and we have the situation illustrated below.

IV"

IV'

V
U

Figure 111.2.1

Now let G* be the graph obtained from G" by adding vertices x and x', and edges so that

(v'v"'') is a 4-cycle. Note that it is a pendant cycle of G* and that its base is v". This is illustrated

below.

.2

V

Vt

V9

Figure III 2.2(a): G Figure III' 2_(b): G*

It is again easy to verify that G* = .7. Since TI(G) i(G) - 9, the minimality of G shows that

there exists a trail cover 7" of G* such that 817"'1 - 1 5 m(G*). Moreover, it is clear that we may as-

sume some trail T* e 7 traverses the new 4-cycle. If we remove this 4-cycle from 7"*, then we do

not increase the number of trails and the edge v"v 'is covered. Hence we have a trail cover 7" of G"

and 171 = 17"1. Then 7= 7" ' {T) is a trail cover of G, it follows thatf(G*) <f(G) and so

S fOG) > 0.,*

Theorem 111.2.6 If G e -, then f'(G) 2t 0.

Proof. Suppose not: let G r F' and the corresponding G' --' be as constructed earlier. By

Lemma 111.2.5, we may assume that each red leaf of K(G') corresponds to a single edge. This elimi-

nates the possibility that K(G') is a single red vertex. If K(G') has a peripheral red leaf. then let Y be
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its neighbor, otherwise let Y be a peripheral blue leaf. Y has at most one non-leaf neighbor. If Y has a

non-leaf neighbor, then call it W, let w = q(YW), and let Q be the component of G - E(W) that con-

tains Y. If Y has no non-leaf neighbor, then choose w c V(Y) arbitrarily and let Q = G. Let R be the

collection of red edgs that correspond to the leaf neighbors of Y (R may be empty). Note that Q con-

tains Y, together with R and the pendant 4-cycles. In Figure 11.2.3, we illustrate the situation. In that

figure, we have put a leaf-edge of G' incident to w to emphasize that such edges and their corre-

sponding pendant 4-cycles do not belong to Q.

",.,

,:,IW

Figure 111.2.3: G (Note:Y is a staple graph.)4l
Now fix some underlying multigraph H of Y. Let nl be the number of odd vertices in H and n2 be

the number of even vertices in H. Let n =nil + n12, where nil is the number of odd vertices in H

that are incident to members of R. Let n2 = n21 + n--, where n21 is the number of even vertices in H

that are incident to members of R. Since H has no vertices of degree one, and m(Y) = 3r(H),
m Y)> 33n + 2n",,m(Y - Since each red edge and corresponding pendant 4-cycle has five edges, we

have:

3nl + 2n2 -. - 2 -) +  5(njIl + n-1) I ..4

Now we count the odd vertices of Q. Each member of R provides one from the base of the corre-

sponding pendant 4-cycle, each even vertex of Y that is incident to an edge of R provides one, and

each odd vertex of Q - R that is not incident to any edge of R provides one. Dividing by two to com-

A pute the number of trails necessary to oartition the edges gives:

If n - I > 0. then :(Q) < nli2 -he- 1. (111.2.5' I

Note that Q cannot be a 6-cycle since G has no pendant 6-cycle and hence m Y) _ 9. Let 7 be a

i -.
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trail partition of Q. From m(Q) > 9, (111.2.4), (111.2.5), and n2 -n21, we have t(Q) < 8(Q). Let

Q' be the graph induced by the vertices of the non-trivial component of G - E(H).

Iff(Q') >_ 0, then we can cover Q' and Q separately and show thatf(G) _ 0. Hence we have

f(Q') < 0 and, by the minimality of G, that Q' F. It then follows that either m(Q') < 7 or else

5(Q') < 2.

*.' Suppose that m(Q') < 7. For some T e 7, T visits w, we can route T through Q' and have T

cover E(Q') before continuing. Therefore r(G) = t(Q). But it then quickly follows thatf(G) > 0,

contradicting Ge F'.

Hence 5(Q') = 1 and NQ,(w) = {w'}. First assume that dQ(w) is odd. Then in 7, a trail T ends

at w and so can be extended to w' and, if necessary, beyond to a branch point; call the resulting set of

trails 7. Note that 171 = 1"I. Remove the edges of 7"' from Q' to form Q". Iff(Q") _ 0, then we

can take a trail cover 7' of Q", together with '7 and get a trail cover of G with sufficiently few trails.

If f(Q") < 0, then, by the minimality of G, Q" e F and it is easy to show that this implies that

mQ") <7. But then T can be extended to cover Q" and again we have a trail cover of G with suffi-

cientlv few trails.

Hence we may assume that dQ(w) is even.

We will again cover Q and Q' separately. Define Q" to be the graph obtained from Q' by adding

two vertices and edges so that w and w' are part of a 4-cycle. It is clear that r(Q') = t¢Q").

Furthermore, it is again easy to eliminate the possibility of Q" e . and so we may assume that

8t(Q") - 1 m(Q"). From t(Q) < ni/2 + ni1, m(Q) 2! 9n1/2 + 8nI + 3n22 + 5nil, and n22 > 1,

we have 8t(Q) < m(Q) - 3. Since St(Q') = St(Q") _ m(Q") + 1 = m(Q') + 3, we have St(G) <

8t(Q) + 8t(Q') < m(Q') + 3 + m(Q) -3 = m(G) < m(G) + 1, again contradicting f'(G) < 0. 4

We are now ready to prove Theorem 111.2.1'. We verify directly that if m(G) < 7 and G e

{C4 ,C5,C6 ), thenf(G) 0 0. From Theorem 111.2.6, we may assume that G has a pendant 3-cycle

whose base is of degree three. Replace each of these 3-cycles with a pendant 4-cycle with the same

base to obtain the g-raph H. By T'heorem 111.2.6, H has a depth-2 representation R such that IRI <
'.. 9m(H)- I8 m For evey pendant --cycle (uvwx) with base u, we may assume that R contains a

configuration as in Figure 111.2.4(a). For each such cycle that must be replaced by a 3-cycle (uvw) to

• K- -. -, -, .- a -, - * p - . . ."" - ' , '. . - . " ". " i" "
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return to G, we modify R as in Figure IT.2.4(b).

w UI V
itivI t Vt
V X IV

Figure III.2.4(a) Figure III.2.4(b)

This saves one edge and two intervals. Hence, if there are k such 3-cycles, then I(G) <
S9(m(G) + k) + 1 9m(G) + 1

8 + 1 ) - 7k/8. This completes the proofs of Theorem II.2.1' and

Theorem 111.2.1.

Theorem 111.2.7. If G is a graph, and 5(G) > 2, then I(G) < 5m(G)/4. Furthermore, for any

m > 8, there exists a graph G with m edges for which I(G) = 5r(G)14 and so the result is best possi-

ble.

0 Proof. We establish best possible first. If m 0(mod 4), then let G be m/4 copies of C4.

For other residue classes, subdivide edges of one of the C4's.

Let ou G) = lhG)/m(G); we must prove that ax < 5/4. Let G be a graph that maximizes 1/r. Let

OeG) = max~a(H) : H is a component of G). We have aIG):< PIG), with equality if and only if,

for every component H of G, a(H) = c(G). Hence we may assume that the components of G are

identical. Let H be a component of G.

From Theorem 111.2.1, if r(H) > 6, then ca(H) < 8/7. If m(H) < 6, then we can verify directly

that the maximum value of a is achieved uniquely by C4.,A

We finish §111.2 by showing that for any positive integer d. there exists Ed > 0 and an infinite se-

I quence of graphs with 5 = d for which I > (1 + Ed)m. This is of interest because it is not true for the

two other connectivity parameters, if K' > 4, then I < rn - 1.

Given d and r, let Gd,,. be the graph formed by the following procedure. Start with r disjoint copies

P..- of Kd.d, each with one distinguished vertex. Add a new vertex u and edges from u to each of the dis-

ringuished vertices. We have t(Gd.,r) = L .L and m(Gdr) = r(d2 + 1). Simple arithmetic then

shows that. for any r. we can use Ed = .For this construction, we can say that it takes

-t(12 -1) edges to force an additional trail. We do not claim that this is the minimum but we do

believe that the number of edges necessary to force new trails Zrows quadratically with d.

.. . ..e. .. ... ..
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3. Classes Defined by Connectivity Parameters

In §11.3, we resolve the extremal problem for I(G) in terms of rn(G) for some connectivity

classes. We consider edge-connectivity K and the vertex-connectivity r, In particular, we prove the

following.

Theorem 113.1. If G is a graph with '(G) > 2 and m(G) > 9, then 12 (G) < LlOm(G)/9j.

Furthermore, for any m >.9, there exists a 2-edge-connected graph with m edges for which I=

Llm9J and so the result is best possible.

The examples that we will use to show that Theorem II.3.1 is best possible are 2-connected,

which yields:

Corollary .3.2. If G is a graph with ic(G) > 2 and m(G) 9, then 12(G) < L1Om(G)19j.

Furthermore, for any m >-9, there exists a 2-connected graph with m edges for which I = L1Om/9J

and so the result is best possible.

In Theorem M1.3.1 and Corollary 11.3.2, the upper bound is for the parameter 12 whereas the

-"best possible" clause is in terms of1. Therefore the statements are slightly stronger than if they were

completely in terms of I or I2. It is easy to show that if G is a graph for which m(G) < 9 but G has a

! triangle, then I(G) < lOm(G)/9.

As mentioned earlier, Andreae and Aigner showed that if )e _ 4, then 15 m + 1. We will con-

trast that with K = 3 by showing that there exists e > 0 and an infinite set of 3-connected graphs for

which I > (1 + e)m.

We now begin the discussion of Theorem 111. 1. 1. Phrasing it in terms of trail covers, we want to

show that t(G) < m(G)i9 for 2-edge-connected graphs, and we want to construct triangle-free

2-connected graphs for which t = Lm/91.

We first establish that Theorem 111. 1.1 is best possible and at the same time eliminate staple graphs

from consideration for violating the upper bound.

Let G be a 2-connected staple graph and let G" be the underlying multigraph of G. Let ni be the
number of vertices of G' that have degree i. Then m(G) = ini and (G) = is odd

G is 2-connected. nl = 0 and it quickly follows that t/m is maximized when n3 = n(G'). In this case,

, t'
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r = m/9.

Therefore, the staple graph of any 3-regular 2-connected multigraph shows that Theorem 1.3.1 is

best possible; these are the only staple graphs achieving the bound and none exceeds it. An example

appears below.

G" G

Figure I.3.1

These graphs are all 2-connected, and therefore Corollary 111.3.2 follows from Theorem IIH.3. 1.

Subdividing any edge of such a graph gives the best possible result for graphs of other residue classes

of nine. Furthermore, we may now exclude staple graphs when considering the upper bound.

A unit is a maximal induced 2-edge-connected subgraph. A trivial unit is one with no edge, a non-

V trivial unit is one with at least one edge, a small unit is a non-trivial unit with at most eight edges, and a

large unit is one with at least nine edges. An interunit edge is an edge whose endpoints are in different

units.

Note that units are vertex disjoint. Moreover, there is at most one interunit edge between any two

units.

For a graph G, the unit graph U(G) is defined by V(U(G)) is the set of units and, for X,Y e

V(U), X +-+ Y if and only if there is an interunit edge between X and Y.

Lemma [M1.3.3. For a connected graph G, U(G) is a tree.

Proof. Since G is connected, U is connected. If XY e E(U(G)) is in some cycle, then the vertex-

sets corresponding to the units of this cycle form an induced 2-edge-connected graph, contradicting the

fact that each of these vertex-sets induces a maximal 2-edge-connected subgraph.*

V We will prove Theorem 111.3.1 inductively. As in §11.2, we let rl(G) = 2m(G) - n(G). Let 7 be

the family of graphs with minimal rl(G) among the 2-edge-connected graphs for which t(G) >

tn(G/9, i.e., -is the set of "Tl-minimal" counterexamples. We will establish properties of graphs in

, and eventually show that F _ 0.
Ot

I % % '-,' % " % % PI' '' " ". " % . . .. % '.e ' ' % e ,
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Note that if H is a 2-edge-connected graph with at most eight edges, then :(H) = 1. Hence, if H is

2-edge-connected, then m(H) < m(G), and t(H) = t(G), then G cannot be a minimal member of F.

An edge uv is a link if both of its vertices are bivalent. In a staple graph, every edge is either a link

or it is incident to a link.
,.

Lemma M-1,3.4. If G E F, then G has the following properties:

(i) G has no incident links.
(ii) G has no pendant cycle.
(iii) For any e e E(G), G - e is not 2-edge-connected.
(iv) If u E V and d(u) = 2, then G - u is not 2-edge-connected.
(v) G is not a staple graph.
(vi) G has an edge that is neither a link nor is incident to a link.

Proof. For (i) through (iv), we modify G to obtain a graph that contradicts the minimality of G.

For (i), if e and e' are incident links, then contract e. This decreases m but not r. For (ii), if G has a

pendant cycle C, then subdivide one of the edges that is incident to the base but not in C and remove

C, leaving its base. This decreases m without decreasing t. For (iii), snip e, and for (iv), double snip

the edges incident to u.

We have already shown (v) and (vi) is just a restatement of the fact that G is not a staple graph.,*

We stated before that in a staple graph, every edge is either a link or it is incident to a link. It is

easy to see that the reverse is almost true; if a graph has this property and satisfies Lemma 111.3.4(i)

then the branchpoints on any trail must occur exactly three apart, and G is a staple graph.

Lemma [M.3.5. If G s F and e e E(G), then U(G - e) is a path whose ends are units containing

the endpoint of e.

Proof. Let G' = G - e. By Theorem III.3.4(iii), G is not 2-edge-connected and so U(G') is non-

trivial. Since G is 2-edge-connected, G' is connected and, by Lemma 111.3.3, U(G') is a tree. If we

add edges to G' to make it 2-edge-connected, then we will need an endpoint of one edge to be in each

unit that corresponds to a leaf of G'. Since G'u e is 2-edge-connected, e has an endpoint in each leaf

of U(G'). Hence there must be only two leaves of U(G') and U(G') is a path whose ends correspond

,o units containing the endpoints of e. ,

.o
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Lemma MI.3.6. If G e F, then there exists e e E(G) such that G - e has at least two non-trivial

units.

Proof. We first show that if G - e has at most one non-trivial unit, then e is a link or is incident to

a link. Let G' = G - e and e = uv. Since G - e is not 2-edge-connected, A * B. By hypothesis, at

most one of A and B is non-trivial. Let A be the unit of G' that contains u and B be the unit of G' that

contains v. If both A and B are non-trivial, then we are done. If they are both trivial, then uv is a link

and again we are done. Hence we may assume that A is trivial and B is not.

Since U(G') is a path with one of the endpoints A = {u), u has cnly two neighbors in G, one of

which is v; call the other one w. Let C be the unit of G' that contains w. If C = B, then d(u) = 2 and

G - u is 2-edge-connected, violating Lemma tI.3.4(iv). Hence C * B. If C is non-trivial, then B

* and C are two non-trivial units of G. If C is trivial, then e is incident to the link uw.

Now if the lemma is false then, for every e, G - e has at most one non-trivial unit and, by the

above, every edge is a link or is incident to a link. But this violates Lemma II.3.4(vi). 4

Now fix G e F, and let e be an edge of G such that G - e has at least two non-trivial units. From

Lemma 11.3.5, G looks like a "cycle" of non-trivial units of G - e, where the "edges" are paths. We

illustrate this below; each gay circle represents a non-trivial unit.

Figure 111.3.2

We call the paths between the non-trivial units bridges. From Lemma 1TI.3.4(i), bridges can have

length one, two, or three; we call these short, medium, and long bridges respectively. We call the

endpoints of the bridges terminals.

Let k be the number of non-trivial units of G - e. For what follows, do all arithmetic modulo k.

Label the units .4, .. -4 k-I and bridges B0 ,....Bk-I so that. for any i. the bridge Bi is between units 4,

*
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and Ati. Suppose that Bi has pi vertices and label these ui,i, wherej 0,. ..,pi so that ui,O E V(Ai),

LLij * Ujj+j, and uipi e V(Ai+I). Note that I : pi 3.

From Lernma TII.3.4(iii), no cycle has a chord. In particular, no unit of G - e has a cycle that has

a chord. With this restriction, we illustrate all possible small units in Figures 111.3.3.

Figure III.3.3(a)

I.. Figure III.3.3(b)

Figure 11I.3.3(c)

Lemma 11L3.7. If A is a unit of G - e, then either A is large or A -C6 with terminals at opposite

vertices.

Proof. If A appears in Figure IT1.3.3(a), then no matter what the terminals of A are, it is possible

to cover all edges of A with a tail that starts at one terminal and ends at the other. Form G' by

replacing the bridges on either side of the A, together with A itself by a long bridge. This does not

decrease r and it does decrease m. By the minimality of G, we can eliminate all of the graphs of Figure

111.3.3(a) from consideration as units of G. We can use the same argument if A = C6 and the termi-

nals are not opposite.

If A = C6 and the terminals are opposite, then every trail cover of G ends within A; i.e., it is im-

possible to cover the edges with a single trail that starts at u and ends at v. Now suppose that A ap-

pears in Figure 111.3.3(b). Replace A by C6 with opposite terminals and call the resulting graph G'.

By the minimality of G, t(G) < m(G')9. Replace the trail T (in G') that starts within the 6-cycle by a

trail (in G) that starts at an appropriate vertex within A, visits every vertex of A and leaves at the same

Ce.,minal that T does. This demonstrates that a G') _ t(G), contradicting the minimality of G. ,
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If Ai is a small unit of G - e, and Ai..1 and Ai+1i are both large units of G - e, then we say that Ai is

an isolated small unit of G - e.

We now group edges into packets. The edges of some of the long bridges will be in no packet but

each of the other edges will be in exactly one packet. Furthermore, no packet will contain edges from

two different large units of G - e.

We start by describing the cores of the packets. The cores are subsets of packets that determine the

packets and there is one core for each packet. Each large unit is the core of one packet. IfAi-1I is

large, Ai,... ,Ai+, are small. and Ai+,,+l is large, then E(Ai) ti E(Bi) .j E(Ai+t) is the core of one

packet, E(Ai+2) u E(Bi+2) u E(Ai+3) is the core of one packet, etc.. The last core from these -J + 1

*" units contains three units and two bridges if u + 1 is odd and two units and one bridge if u + 1 is

even. If a small unit is isolated but one of the incident bridges is long, then the unit and the long

bridge form the core of a packet.

One characteristic of packets that will be needed is that they contain at least nine edges. The pack-

1 i ets that have been defined so far comfortably satisfy this requirement and we call them ample. The

remaining packets are created from some of the isolated small units and we must work harder to ensure

that they contain nine edges. We call these packets scant.

.,.-. If Ai is an isolated small unit, neither Bi.1 nor Bi is long, and at least one of (Bi.1,Bi} is medium,

.? '- -- then we make a scant packet from the medium bridge, Ai, and the edge incident to Ai from the other

4 bridge.

We now assign most of the remaining edges to ample packets. These edges are called supple-

%.04 mentary. If Ai is a unit whose edges are not assigned to any packet, then it is an isolated small unit,

both Bi-1 and Bi are short, and both Ai. 1 and Ai are large. Assign E(Bi.1) u E(Ai) u E(Si) to the

packet that contains Ai.l. If uv is part of a short or medium bridge, and uv has not been assigned to

any packet, then at least one of I u,v) is in an ample packet. If u is in an ample packet A, then assign

itv to A. Otherwise, assign uv to the packet containing v.

This completes the assignment of edges to packets and hence the definition of packets. The defim-

ion is not precise since there is more than one way of assigning edges to packets: we will just assume

I f 4 that some assignment that agrees with the above rules is given. The boundary points of a packet are
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the vertices of the packet that are farthest counterclockwise and clockwise in the cycle of units.

Suppose that A is some packet. For some i, A contains all of the edges of Ai and none of the edges of

A i-. We define the low boundary point to be ui. Ij where j = min{q : ui.1,q e V(A)). For some i,

A contains all of the edges of Ai and none of the edges of Ai+j. We define the high boundary point to

be uij wherej = max (q : Ui,q r V(A)). The spans are the paths (some of them have no edges and

some of them have three edges) between the packets. We call the spans of length three great.

In Figure I.3.4, we give an example of a cycle of units. The large circles represent large units

and the small circles represent small units. Our choice of packets is designated by the polygons. The

polygon corresponding to the only scant packet is white and the polygons corresponding to the ample

packets are light gray. The boundary points of the packets are designated with large dots.

Figure 111.3.5

- 2 Theorem M.3.8. If A is an ample packet and m(A) > 9, thent(A) < m(A)/9.

- Proof. If the core of A consists of one (resp. two, three) small units, then it has at least nine (resp.

thirteen. twenty) edges and can be covered with one (resp. one, two) trails in such a way that these

trails contain both boundary points of the packets. Therefore, if A has any supplementary edges, then

4 €they are immediately covered.

If A contains a large unit A, then there are two possible sources of supplementary edges. Suppose

that we have eight supplementary edges from a small unit and two short bridges. This is depicted in

Figure III.3.5(a).

Figure III.3.5(a): A Figure III.3.5(h): A*

SNote that mtA*) = m(A) and A* is 2-edge-connected. By the minimality of G. A* can be

covered with m(A')/9 trails. Moreover, since it is impossible to cover the new edges with a trail that

IF
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starts and ends at u, we are forced to start a trail T within the graph induced by the new edges. We

may assume that T continues to u and then (if necessary) into A. Replace T by a trail in A that starts at

v, goes around the 6-cycle and then follows the subtrail of T that is in A. Thus we have a trail cover of

A that has at most m(A)/9 trails.

Suppose now that A has a supplementary edge uv from a short or medium bridge, and that uv is

incident to a large unit A, as in Figure III.3.6(a).
W w

4 Figure 1.3.6(a): A Figure III.3.6(b): A*

We subdivide an edge uw where w # v and remove uv to obtain A*. By the minimality of G and

the 2-edge-connectedness of A*, t('A*) < m(A*)/9 = m(A)/9 and, from the "snipping lemma"

(Lemma 1.6.2(iii)) we have t(A) < (A*).

We can combine these two techniques to get a trail cover of A with the required number of trails

If there are no great spans. then every edge is in some packet and we can apply Theorem 111.3.8 to

each packet, take the union of the resulting trail covers, and obtain t(G) < m(G)/9. We need a lemma

to deal with great spans.

Lemma 1.3.9. Suppose that GO, ... ,.Gj. are graphs with disjoint vertex-sets, and that, for each j,

<uj,vj,wjcj,> is a trail within Gj and vj and wj are bivalent. Let H =- r-=oGi and H = H - fujvi"

j = 0.r- I) u vjuj+ 0 ... j- 1). Then t(H') ! t(H).

Proof. Note that t(H) = (Gj). From Lemma 1.6.(i), for each j, there is an optimal trail

* cover -J of Gj that contains a trail Tj that has a subtrail <uj,vj,wj,xj,>. When we remove each ujvj,

*' the total number of trails increases by at most r (fewer if some T is closed).

Now if we can take two ends u and v of different trails and make the trails into one trail by adding

the edge uv to one trail and then concatenate these trails, we decrease the number of trails by one. We

do this r - I times by adding the edges (viui 1 :j = .... r - 2). The proof will be done if adding the

edge yr. uo also decreases the number of trails by one.



If it does not. then vi. and uo are in the same trail so that adding the edge Vr.lUO simply makes a

Oclosed trail from an open trail. But if this is the case, then each T was a closed trail and removing the

edges ujvj did not increase the number of trails at all. Then in this case, t(H') < t(H) - (r- 1).

Suppose that there are r packets. For what follows, do all arithmetic modulo r. Label the packets

IA0.. so that, for any j, there is a span C between packets Aj and Aj+1 . Let uij be the high

boundary point of A1 and xj be the low boundary point of A, so that C is a path between uj andxj+1.

If there are at least two long bridges, then let them be C1 and Cs. Form the graph G' as follows.

Delete the edges of C1 and Cs. Insert a path of length three between ul and xs+j, and another path of

length three between x2 and us.

This graph has the same number of edges as G and it has two components Gj and G'2 , each of

which has at least nine edges and is 2-edge-connected. By the minimality of G, for I = 1,2, there

exists a trail cover T1 of G( with m(G9/9 trails. We now apply Lemma 11.3.9 to Gj and Gj to obtain

r(G) 5 m(Gj)/9 + m(G4)/9 = m(G)/9.

-.b If there is exactly one great span, then we must look more closely at the individual packets. Let

m(G)- 3- Y t a
" i mtAj)(mod 9). By Theorem 111.3.8, we can cover the packets with trails

kre{G)

so that if 3 + p> 9, we can use a single trail for the great span and still have at mos--

trails.

If 3 + Lp < 9, then, for each j, pj 5 5 and we can add three edges to Aj without increasing

the bound for covering Aj. We can then discard the great span and insert paths of length three

between the low and high terminals of each packet and apply Lemma M1.3.9. Then contract the newly

created great spans and we have a sufficiently small trail cover. This procedure is illustrated in Figure

1II.3.7.This completes the proof of Theorem M1.3.1.

• Two-edge-connected 3-regular staple graphs show that there exists e > 0 and an infinite set of

-Taphs such that l/m 2! (1 + e). Since 4-edge-connected graphs have a Hamiltonian path, r = 1 for

".these graphs and the same cannot be said for them. There are two intermediate classes. These are

3-edge-connected and 3-connected. We now describe examples to show that these are more like the

:-connected graphs.
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AA

Figure I1.3.7(a) Figure 11.3.7(b).
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- the edges within the copy, T must enter it. By contracting all of the edges within each copy of H, and

contracting the corresponding edges of T, we get a Hamiltonian cycle of the Petersen graph and this is

impossible.

Figure HII.3.8(a) Figure III.3.8(b)

Let Gk be the graph that consists of 2k - 1 copies of G' with the vertices u identified. From the

* above, no trail can enter a copy of G', cover it, and leave it. If we try to use two trails to cover a copy

of G, then the second trail uses up the last edge in G' that is incident to u on its way in and therefore it

"" must end inside the copy. We have now shown that there is at least one endpoint of some trail in each

copy and so we need at least k trails to cover Gk.

"". ,Since re(H) = 9, m(G') = 15 + 9.9. Then since m(Gk) = (2k - 1)m(G'), m(Gk) = 192k - 96
-,, -. 193k-96

and we have a sequence of graphs for which I/m =192k - 96 > 1 + 1/192. We say that, in this

construction, it takes 192 edges to force another trail. We do not claim that this is the most efficient

use of edges for forcing additional trails.

We now discuss a construction of 3-connected graphs. Consider the Thomassen graph, shown in

* • Figure IIH.3.8(b). Replace each vertex by a copy of H, subdivide the three edges that are in no 5-cycle

(drawn with thick gray lines), and call the resulting graph G'. Take 2k copies of G' and call them

H0,...,/'/- 1. For each i = 0,... 92k - 1, let ui,vi, and wi be the three bivalent vertices. Taking all

subscripts modulo 2k, add edges (uivi+ I i = 0,...,2k -1 ) and (wiwi+k: i = 0,...,k - 1 ). Call this

.graph Gk; it is 3-connected. Moreover, it is 3-regular so m = 3n/2. Since n = 2k[18.7 + 31, we

lhave m = 387k.

We now show that each Hi has two endpoints of a trails from any trail cover. If not, then we may

assume that, for some trail cover, the left side of Go has no endpoint. Since there are only three edges

into this half, it is impossible for two trails to enter and leave and therefore some trail T enters the left

6



114

.*. half, covers all of its edges and leaves. If we take the portion of T that is in the left half, contract all of

the edges of any copy of H, and then identify the three vertices marked x, x', and x", then we have a za

Hamiltonian cycle of the Petersen graph and this is impossible. Therefore, we have at least two end-

points in each Hi and so we have at least 2k trails. Since Gk has 387k edges, we have a sequence of

graphs for which I/m = 389k/387k > I + 1/193.5. Here it takes 193.5 edges to force each trail, just

slightly more than it took for our 3-edge-connected construction.

-I,-

J a,

?aa
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