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Abstract

The following is a valid model for an important class of scheduling and
routing problems. A salesman who travels between pairs of cities at a cost
depending only on the pair, gets a prize in every city that he visits and
pays a penalty to every city that he fails to visit, wishes to minimize his
travel costs and penalties, while visiting enough cities to collect a
prescribed amount of prize money. We call this problem the Prize
Collecting Traveling Salesman Problem (PCTSP).

This paper discusses structural properties of the PCTS polytope, the
convex hull of solutions to the PCTSP. In particular, it identifies several
families of facet defining inequalities for this polytope. Some of these
inequalities are related to facets of the ordinary TS polytope, others to
facets of the knapsack polytope. They can be used in algorithms for the
PCTSP either as cutting planes or as ingredients of a Lagrangean

optimand.
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1. Introduction

A number of scheduling and routing problems can be formulated as
the following generalization of the traveling salesman problem.

A traveling salesman who gets a prize wy in every city k that he
visits and pays a penalty pg for every city ¢ that he fails to visit, and
who travels between cities i and j at cost c,;, wants to minimize the
sum of hias travel costs and penalties, while including in his tour enough
cities to collect a prescribed amount w, of prize money.

If we let y; be 1 if city i is included in the tour and 0 otherwise,
and let x be the incidence vector of the tour, then our problem can be

formulated on a complete directed graph G' = (N, A) as

(1.1%) min ¥ I iyt D1l -yy)
tzn jen—-{1} 1N '

subject to

2 x”—y,=0 1=1,.,n
(1.2?) Jen—(1}

I X -y;4 =0 J =1, s D

1en={}} H !
(1.3%) Lwyy 2w,
1N

(1.4°) Yy ¢ {o, 1}’ iz N; Xyy & {0, 1}, (i, Jj) s A
(1.5%) @ (y, x) is a cycle.

Here G’(y, x) is the subgraph of G’ whose nodes and arcs are those
defined by y and x, respectively, and by cycle we mean a closed
directed path. '

It is convenient to complement the variables y;, i ¢ N, i.e. introduce
n new variables x,;, = 1 - y,, i ¢ N, to be interpreted as representing

the loops (arce whose head and tail are identical) of a graph




G = (N, A v 0) obtained from G' by endowing every node with a loop

(0 is the set of lucps). The incidence vector (y, x) ¢ {0, 1}"’ of nodes
and arcs of G’ is then replaced by the incidence vector x & {0, 1}r? of
loops and arcs of G. If we define c¢;; :=py, i ¢ N, and U := § wy - w,,

1zN
the problem can be restated as

n n
(1.1) min z 2 Cin|J
=1 =
n
28|J=1 i'—'l, eeay N
=
(1.2)
Iy xy =1 Jj=1, , N
1=
n
(1.3) z WXy s U
t=1
(1.4) x1jz{0, 1} i, =1, ..., n
(1.5) G(x) has exactly one cycle of length > 2.

Here G(x) is the subgraph of G with node set N and loop-and-
arc-set defined by x. Notice that the lower bounding constraint on the
weighted sum of nodes to be included into the cycle of G'(y, x) has now
become an upper bounding constraint on the weighted sum of loops of
G(x). Notice also that for U < min w; our problem becomes a TSP.

A typical solution to a PCTSP on 5 nodes is shown in Figure 1.

We formulated this problem in the spring of 1985 as a model for
scheduling the daily operation of a steel rolling mill, and called it the
Prize Collecting Traveling Salesman Problem (PCTSP). A rolling mill
produces steel sheet from slabs by hot or cold rolling. For reasons
that have to do with the wear and tear of the rolls as well as other
factors, the sequence in which various orders are processed is esaential.

Scheduling a round consists of choosing from an inventory of slabs




asgigned to orders, a collection that sgatisfies a lower bound on total
weight, and ordering it into an appropriate sequence. Since the choice
of slabs for the round limits the options available for their sequencing,
the two tasks must be solved jointly. The PCTSP as a model captures
the essential features of this problem. It served as the basis for an
approach that was implemented in 1985 - 1986 by Balas and Martin [12]
into a software package for scheduling steel rolling mills. The package
uses a combination of several heuristics to find near-optimal solutions to
a PCTSP and organize them into rounds, i.e. daily schedules.

G(x)

Figure 1.

In this paper we study the structural properties of PCTSP; in
particular, we identify several families of facet iriducing inequalities for
the PCTS polytope, the convex hull of solutions to PCTSP. Some of
these facets are related to facets of the common TS polytope, others to
facets of the knapsack polytope. The facets tliat we describe can be
used in an algorithm for the PCTSP either as cutting planes appended
to a linear programming relaxation to be solved by the simplex method,

as done for the symmetric TSP by Padberg and Hong ([11); or as




inequalities taken into the objective function of a Lagrangean dual with
appropriate multipliers, as done for the asymmetric TSP by Balas and
Christofides {3]. Either approach requires of course some procedure for
identifying inequalities violated by a given solution to the relaxed
problem, and although we see no major difficulties in adapting to our
case the corresponding procedures developed for the TSP, this task is
not addressed in the present paper.

An early version of our results was presented at the April 1986
ORSA/TIMS meeting in Los Angeles [2].

As a way to investigate the structure of the PCTS polytope, we will

examine a family of interrelated polytopes that form a hierarchy:

AP := conv { x ¢ {0, 1}»" | x satisfies (1.2) }
KP := conv { x =« (0, 1}"2 | x satisfies (1.3) }
P, := conv { x ¢ AP | x satisfies (1.5) }
KAP := AP n KP

= conv { x t AP | x satisfies (1.3) }
P¥ := P, n KAP

conv { x ¢ AP | x satisfies {(1.5) and (1.3) }

The first member of the family, AP, is the assignment polytope, i.e.
the convex hull of incidence vectors of all spanning unions of
(directed) cycles (where loops are considered cycles of length one).
This is known to be a "friendly" polytope, in that

Al:’={le1"3 | x > 0 and x satisfies (1.2) }

The next polytope, KP, is the 0-1 knapsack polytope defined by the

constraint (1.3) on the loop variables x,;, i ¢ N, with the arc variables

Xy unconstrained (except for the 0-1 condition). Although this polytope




has exponentially many facets, a lot is known about its structure.

The polytope P, ia obtained from AP by rentriéting the set of
assignments (spanning unions of cycleas) to those having exactly one
cycle of length greater than one. This polytope will be our starting
point for investigating the family of facet defining inequalities related to
the well known subtour elimination constraints of the TS polytope. Its
study is the subject of Section 2.

The polytope KAP is obtained from the assignment polytope by
imposing the knapsack constraint (1.3). The resulting structure, which
we call the Knapsack-Constrained Assignment Polytope, provides us with
a starting point for examining the family of facets related to those of
the 0 - 1 knapsack polytope. Thia is the subject of Section 3.

* The next polytope, P¥, is the PCTS polytope itself. Its study, based
on the results of Sections 2 and 3, is the subject of Section 4.
The hierarchical relations between these polytopes are hlustrated in

Figure 2, where S 2 T represents the inclusion S > T,

AP —————>p

N

Figure 2
We will sometimes be interested in looking at what is known as the
monotonized version of the above polytopes. For instance, ﬁ, the
monotonization of KAP, is obtained from KAP be replacing the = in (1.2)

by < . The monotonization of the other polytopes is defined in the same




manner.

We recall that given an arbitrary polytope P, a face of P is the
intersection of P with some of its supporting hyperplanes. If dim P
denotes the dimension of P, a facet of P is a face of dimension
dim P - 1. An inequality ax ¢ «, is said to be vaiid for P if it is
satisfied by all x s+ P; and facet defining for P if P n {x | ax = «,} is a

facet of P.

2. The Polylope P,
We now turn to the polytope
P, := conv { x ¢ {0, 1}n? | x satisfies (1.2) and (1.5)}.

For every x ¢ P,, G(x) has exactly one cycle of length > 2. To
distinguish this cycle from the loops (which are cycles of length 1) we
will refer to it as the long cycle of G(x).

Proposition 2.1 dim P, = (n-1)3.

Proof. The constiraint set defining P, has n? variables and 2n
explicitly given equationas that form a system of rank 2n - 1. Thus
dim P, { n? - 2n + 1 = (n-1)2. We will show that this bound is tight be
exhibiting (n-1)? + 1 affinely independent points x z P,.

For x;y = 0, 1 ¢ N, P, becomes the traveling salesman polytope on
G, whose dimension is known (see Grotschel and Padberg [6]) to be the
same as that of the corresponding assignment polytope, i.e. n(n - 1) -
2n + 1 = n? - 3n + 1; hence there exists a set of n? - 3n + 2 affinely
independent points x ¢ P, such that xf; = 0 for all i ¢ N. Take an
additional n points x* ¢z P,, one for each s ¢z N, such that x$, = 1 for
izsand xy; =0 for i £ N - (8). Such points obviously exist (for each

such x®, the long cycle of G(x®) contains all nodes except s), and




together with the points x" they form an affinely independent set of
cardinality n? - 3n + 2 + n = (n-1)? + 1.}

Next we identify a class of facet defining inequalities for P, which
are related to the subtour elimination constraints for the traveling
salesman polytope. If not otherwise stated, we assume that n > 3.

Theorem 2.2 For all S ¢ N, 2 < |S}| ¢ n - 1, and all k ¢ S,
¢ 2 N\ S, the inequality

(2.1) I I xy+ I oxg-xeegls| -1
128 jes—{1} tzs—{k}

is valid for P,. Further, for Isl < n -2, (2.1) defines a facet of P,.

Proof. If x violates (2.1), then the long cycle of G(x) has its node
set in S and contains node k, while node ¢ ¢ N \ S has no loop in G(x);
hence x # P,. This proves the validity of (2.1) for P,.

To prove that for |s| < n -2 (2.1) is facet defining, let n > 4 and
let - 5, be the traveling salesman polytope associated with P,, 1i.e.
Py :=P,n {x | x4y =0, i z N}. The inequality obtained from (2.1) by
setting x,;, = 0, i ¢ N, i.e. the subtour elimination inequality asso-
ciated with S, is known (see Grotschel [6]) to be facet defining for ﬁo
if 2¢|s|l ¢n- 2. Since dim l;,, = n(n-1) - 2n + 1, there are
n? - 3n + 1 affinely independent points x" ¢ P, with x{, = 0 for all
i ¢ N, satisfying (2.1) as equality.

Next consider |S| - 1 points x* & P,y one for each 8 ¢ S - (k}, such
that the only loop of G(x3) is at node s, and all remaining nodes belong
to the long cycle. Then x§, = 1, xf, = 0 for all i ¢ N - {s}, and x5 =1
for exactly |S| ~ 2 pairs i, j ¢ S - {8}, i # j, i.e. x® satisfies (2.1) with

equality. Such x* obviously exisis for each 8 z S.




Further, consider n - 1 - |S| points xt ¢ P,, one for each
t « N\ (S v (8)), such that the only loop of G(xt) is at node t and all
remaining nodes belong to the long cycle. Then x{, = 1, xt; = 0 for all
is N = {t}, and xy5 = 1 for exactly S| - 1 pairs i, j ¢ S, i # j, i.e. xt
satisfies (2.1} with equality. Again, such xt clearly exists for each
t 2 N\ (S v {¢}).

Finally, we need two more points, for the indices k and ¢. Let xk
be such that x¥f; = 1 for i ¢+ S, xf;, =0 for i «t N\ S, and N \ S is the
node set of the cycle of G(xk); and let x! be such that x{; = 1 for
iz N\S, xf, =0 foric S, and S is the node set of the cycle of G(xH.
Clearly, x¥, x¢ = P, and both vectors satisfy (2.1) as equality.

It is now easy to see that the matrix whose rows are the vectors x8,
s £8S - (kj, xt, t ¢ N\ (S v (8)), xt and x%, is of the form (V, T),
where T is n x n, with columns corresponding to the variables x,;,
iz N, and T is lower f.riangular up to row and column permutations. If
W is the matrix whose rows are the n? = 3n + 1 affinely independent
points of 130 considered at the beginning of this proof, then the matrix
whose rows are the extensionsa xr of these points to P,, plus the

s

vectors x8%, xt, xk, x%, is of the form

_lwo
where W is of rank n? - 3n + 1 and T is of rank n. Clearly X is of
rank (n-1)2, which proves that (2.1) defines a facet of P,.|
Corollary 2.3. For all S ¢ N, 2 < |S| ¢ n -1 and all k =z S,

4 ¢t N\ S, the inequality

(2.2) T T oXyp + X + xee 21
1es §EN\S

is valid for P,. Further, for | si < n ~ 2 (2.2) defines a facet of P,.




Proof. (2.2) can be obtained by subtracting from (2.1) the equations
n
Ixyy=1, izs.}

From the above Theorem and Corollary, we now have an equivalent
expression for P,:

Corollary 2.4

x satisfies (2.1) for all S ¢ N, 2 < |s] <n -1,
P,= conv | x z AP
and all k£S5, ¢4 £t N\ S

Proof. From Theorem 2.2 and Corollary 2.3, condition (1.5) implies
(2.1) and (2.2) for all S ¢ N, 2 |S| { n - 1. To see the converse,
suppose x ¢t AP violates (1.5), i.e. G(x) has at least two cycles of length
> 2, with node sets S, and S,, respectively. Then x violates (2.1) and
(2.2) for S = S, and ¢ = S,.|

Sometimes the consiraints of PCTSP are amended with the
requirement that a certain node, say 1, be included into the long cycle
of G(x). This is equivalent to adding the condition x,, = 0 to the
constraint set. In this case the above inequalities can be strengthened.

Theorem 2.5. For all S © N, 2 £ |S| < n -1, such that 1 ¢ S, and
all ¢ ¢ N \ S, the inequality

(2.3) 2 E x,1+2x”—xu$|8|—1
fes jzs—{1} ies

0} and, if |S‘ < n - 2, facet defining for

is valid for P, n {x | x,,

0}.

P, n {x | X113

For all S€N, 2 < ]S| ¢<n-1, such that 1 ¢ N \ S, and all k = S,
the inequality
(2.4) )y I xy+ I oxy¢lsl-n
res jes—{1} 1z5—{x}




is valid for P, n {x | X1 = 0} and, if |S| < n - 2, facet defining for
P, n {x | x,, = OL

Proof. Let x ¢ P, n {x | X, =0l and let 1 ¢ S. If S contains the
long cycle of G(x), then x4 = 1 and (2.3) is satisfied. Otherwise at
most |S| ~ 1 of the variables x; g iy J ¢ S, can be positive, and again
(2.3) is satisfied.

Now let 1 z N\ S. Then the node set of the long cycle of G(x) is
not contained in S, hence the left hand side of (2.4) is at most ISI ~ 1.
This proves the validity of (2.3) and (2.4) under the stated conditions.

To show that (2.3) and (2.4), when valid, are facet defining if ISI <
n - 2, we assume |S| { n - 2 and proceed as in the proof of Theorem
2.2. In that proof, we exhibited (n - 1)? affinely independent points
x ¢ P, that satisfy (2.1) with equality; let their set be 2. If we leave
aside for the moment the last two points exhibited, x* and x‘, all but
one of the points in 2 - (x%, x%} lie in P, n {x i X311 = 0} and satisfy
with equality both (2.3) and (2.4), the one exceplion being x% for s = 1.
Discarding x! leaves a set Z - {x!, x¥, x!} of (n - 1)2 - 3 affinely
independent points x ¢ P, n [x | X;: = 0}, two less than needed (since
dim P, 0 {x | x,, =0} = (n - 1)2 = 1),

Now let 1 ¢ S. Then the point x¢ ¢ Z lies in P, n {x \ X;1 = 0) and
satisfies (2.3) with equality. To obtain the last missing point, consider
X% ¢ P, such that the only loop of G(X¥) is at node k and all remaining
nodes belong to the long cycle (note that k # 1 ip the definition of 2Z).
Then X* z P, n (x | x,, = 0} and X* satisfies (2.3) with equality.
Furthermore, the (n - 1)2 - 1 points in (Z - (x!, xk}) v {%X) are affinely

independent. Thus (2.3) defines a facet of P, n (x | x,1 = 0},

10




Similarly, if 1 ¢ N \' S, the point x* z Z lies in P, n {x | x,, = 0}
and satisfies (2.4) with equality. Let x¢ : P, be such that the only loop
of G(x%) is at node ¢ and all the other nodes belong to the long cycle
(note that ¢ # 1 in the definition of 2). Then X ¢ P, n {x | x,, = 0}
and x! satisfies (2.4) with equality. Again, the points in Z - {x}, x4) v
{£) are affinely independent, hence (2.4) defines a facet of P, n
(x| x,, = 0}

As in the case of (2.1), the inequalities (2.3) and (2.4) have their
cutset-related alternative form:

Corollary 2.6 The inequalities (2.3) and (2.4) are equivalent to

(2.5) I I %y +txee 21
1zS JEN\S

and

(2.6) 2 z xu + Ak 2_ 1
125 JEN\S

respectively.

3. The Polytope KAP
Next we turn to the Knapsack-Constrained Assignment Polytope
KAP := {x ¢ {0, 1}n" | x satisfies (1.2) and (1.3)}.
Define
Ry :={izN| w > U}
the set of those nodes that cannot have their loop in G(x) if x is to
satisfy (1.3). Clearly, for any x ¢ KAP, x4; = 0 for all i ¢+ Ry, hence
dim KAP < dim AP - |Ry].
Proposition 3.1. dim KAP = (n-1)2 - |Ryl.
Proof. One can exhibit the required number of affinely independent

pointas in KAP in the same way as in the proof of Proposition 2.1}

11




Since KAP ¢ KP, all valid inequalities for the knapsack polytope KP
are valid for KAP. The question we address next, is whether the
inequalities that define facets of the knapsack polytope also define
facets of the corresponding Knapsack-Constrained Assignment Polytope
or its monotonization.

Facets of the 0 - 1 knapsack polytope have been extensively studied
(we refer the reader to Balas [1], Hammer, Johnson and Peled ([7),
Wolsey [13], and Balas and Zemel [4]). The best known family of facets
of the knapsack polytope KP is defined by inequalities of the form

(3.1) L xyy + I ayxqy < ISl - 1.
izs fEN\S

where «; > 0 is integer, i ¢t N, and where S € N is a minimal cover for
the knapsack inequality (1.3), i.e.

(3.2) Tw >U
ieT

holde for T = S but fails to hold for T = S - {i} for any i = S.

Let KAP denote the monotonization of KAP, as defined in Section 1.

Theorem 3.2 Suppose the inequality (3.1) defines a facet of KP.
Then (3.1) defines a facet of KAP if and only if «; > 0 for at least one
it N\ S.

Proof. It is well known (see Padberg [10], Nemhauser and
Trotter [9]) that, given the assumptions, there exist nonnegative
integers £, (i, j) z A, called lifting coefficients, such that the
inequality

(3.3) z X4y * z X4y + 2 z ﬂngqj $ IS' -1
128 1ZN\$ 1eN Jen—{1}

defines a facet of KAP. The lifting coefficients can be calculated by

solving a sequence of integer programs, one for each coefficient.

12
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Different lifting sequences may give rise to different coefficient values,
but a given coefficient attains its highest value when it is first in the
lifting sequence. Let ”J denote the value obtained for 8, i when B, i is
calculated before all other coefficients. We will prove the Theorem by
showing that ﬂ}j = 0 for all (i, j) ¢ A if and only if «; > 0 for at least
one i t N\ S,

According to the lifting Theorem outlined above, ﬁ}j = ISI -1 -

zy 4, where

L wixe, < U
kEN
z”=max Ex"+ z XXk x“=x“=0
kEs kEN\S
Xy & {0:1}1 kzN- {isJ}

If «ay = 0 for all k ¢ N\ S, then for any pair i, j ¢ S, zgy = ISI -
2, hence ﬂ}j > 0. On the other hand, if "‘k*Z 1 for some k*z N \ S, then
for any pair i, j ¢ N, 2,5 = Is| - 1 and thus B}, = o.]

In the next section we will prove a stronger result (Theorem 4.7)
which implies the following:

Theorem 3.3 Suppose (3.1) defines a facet of KP and «; = 0 for at
least one i ¢t N\ S. Then (3.1) defines a facet of KAP if and only if

«; > 0 for at least one i ¢ N \ S.

4. The Polytope P*
Next we turn to P¥, the PCTS polytope itself. Since P¥ is contained
in each of the polytopes discussed in Sections 2 and 3, the inequalities
of those sections are all valid for P¥. As we shall see, however, some of

these inequalities can be strengthened.

13
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First we eatablish the dimension of P¥. Since P¥ < KAP, dim P¥ ¢
(n=-1)2 - |Ry|, where, a8 in Section 3,
IRyl =i e N | wy > U}
Proposition 4.1 dim P¥ = (n-1)2 - |Ryl.
Proof. One can exhibit the required number of affinely independent
points x ¢ P¥ the same way as in the proof of Proposition 2.1.}
In the sequel we will agsume that |Ru| = 0, i.e. dim P¥ = (n-1)2.
Theorem 4.2 For S ¢ N, 2 < |S| < n - 1, the inequality
(4.1) I I xy+Ix<lsl-n
1es jes~{1} ies

is valid for P¥ if and only if

(4-2) 2 Wy > U
1eY

holds for both T = S and T = N \ S.

Furthermore, if ‘Sl { n - 2 and (4.1) is valid for P¥, then (4.1) is
facet defining for P¥,

Proof. ¥ : P¥ violates (4.1) if and only if S either contains the
node met of the long cycle of G(X), or containe no node of that cycle
(i.e. X¥;;, =1, i s S). 1In the first case, (4.2) is violated for T = N \ §,
while in the second (4.2) is violated for T = S. This proves the first
statement.

Now suppose |S| < n -2 and (4.1) is valid. Then, as argued in the
proof of Theorem 2.2, there are (n-1)2 - n = n? -~ 3n + 1 affinely
independent points x s P¥, with xf, = 0, i = i, .sy N, which satisfy
(4.1) with equality. Also, for each k = N, there exists x* ¢ P* with

xf, =1, xf, 2 0, i ¢ N - (k}, and such that xk satisfies (4.1) with

14




equality. These two sets of points together clearly form a set of (n-1)?
affinely independent points in P¥.|

Theorem 4.3. For S € N, 2 < |S| < n -1, and for all k =z S, thée
inequality

(4.3) I I %3+ I ox¢lsl-
1zs jes—{i} 1es—{«k}

is valid for P¥ if and only if (4.2) holds for T = N \ S.

Furthermore, if ISI < n - 2 and (4.3) is valid for P¥, then (4.3) is
facet defining for P¥ if and only if (4.2) does not hold for T = S.

Proof. If x ¢ P* violates (4.3) for some S and k z S, then S
contains the long cycle of G(x), and that cycle contains node k; i.e. x;;
=1,iz N\ S, and x,, = 0. But then (4.2) does not hold for T = N \ S.
Conversely, if (4.2) does not hold for T = N \ S, then any x ¢ P¥ such
that x;; = 1,1 ¢ N\ S, and x,, = 0, violates (4.3) for the given S and
k ¢ S. This proves the first statement.

Suppose now that |S| ¢ n - 2 and (4.3) is valid for P*. If (4.2)
holds for T = S, then (4.1) is also valid and hence (4.3) cannot be facet
defining. On the other hand, if (4.2) does not hold for T = S, one can
exhibit (n-1)2 affinely independent points x = P¥ that satisfy (4.3) as
equality. The first (n-1)2 - n such points x* ¢ P¥, gll of which have
x5, =0, i ¢ N, exist as a consequence of the fact that the traveling
salesman polytope on n nodes is (n?-3n+l)~dimensional. For the
remaining n points, one for each 8 ¢ N, one can proceed as follows. For
8¢S - (k) and 8 ¢t N\ S, choose x* ¢ P¥ guch that xg, = 1, x§, = O
for all i ¥ s; and for 8 = k, choose x* ¢ P¥ guch that x}; = 1fori ¢ S,
x$, =0 for i £ N\ S. These n vectors x* are the rows of a matrix

whose last n columns form a lower triangular submatrix, up to row and
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column permutations; and so together with the n? - 3n + 1 vectors xr
they form a (n-1)2 x n? matrix of full row rank.|

Corollary 4.4. For S € N, 2 < |S| < n - 2, if (4.2) does not hold
with T = N \ S, then for every k ¢ S and ¢ ¢ N \ S, the inequality

(2.1) ) I x5+ I %y -xee & Is] - 1
1es jes—{1} 1zs~{x}

defines a facet of P%,

Proof. If (4.2) does not hold with T = N \ S, the argument used to
prove that (2.1) defines a facet of P, (Theorem 2.2) carries over to the
case of P*.l

From Corollaries 4.4 and 2.4, condition (1.5) in the definition of P¥
can be replaced by the system (2.1), i.e. an equivalent expression for
P¥ is

x satisfies (1.2), (1.3) and
P* = conv { x ¢ {0, 1}»*| (2.1) for all Sc N, 2< |S] <n -1
and all Xk 2 S, ¢+ £t N\ §

The inequalities, (2.1), (4.3) and (4.1) can be viewed as
extensions of the subtour elimination inequalities for the traveling
salesman polytope to the PCTS polytope. The conditions under which
these extensions are valid (and facet defining) are increasingly
astringent as we move from (2.1) to (4.3) and (4.1), as each inequality in
the sequence strictly dominates its predecessors.

As in the case of the TS polytope, where the subtour elimination
inequalities have an equivalent form related to cutsets, the inequalities
(4.1), (4.3) and (2.1) for the PCTS polytope hx;ve an alternative

cutset-related form:
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Corollary 4.5. The inequalities

(4.4) I I x521,
izs jeN\s

(4.5) T %y txe2l
izs jeN\s

and

(2.2) DR TR TRE TIPS
izs jewn\s

are equivalent to (4.1), (4.3) and (2.1), respectively: for given S (and
possibly k ¢ S, ¢ ¢+ N\ S), a member of the triplet (4.4), (4.5), {2.2) is
valid (facet defining) for P¥ if and only if the corresponding member of
the triplet (4.1), (4.3), (2.1) is valid (facet defining).

Proof. For any S ¢ N, each of the inequalities (4.4), (4.5) and (2.2)
can be obtained by subtracting the equations 21"'1 =1,1i¢ S, from the
corresponding inequality (4.1), (4.3) or (2.1).]

If the constraints of P* include the condition x,, = 0, then the
above inequalities can be sirengthened, as in the case of P,. Note that,
as in the case of P,, dim P¥ n (x| X311 = 0} = (n=1)2 - 1.

Corollary 4.6. For all S ¢ N, 2 < |S] < n -1, such that 1 ¢ S, the

inequalitiea

(4.1) I I xy+Ixgclsl-1
1es jes—{1} 158

and

(4.4) I I x321
1zs jEN\S

are valid for P* n {x | x,, = 0} if and only if

(4.2) Tw>U
iz7

holds with T = N \ S.
Further, if |S| ¢ n - 2 and the inequalities (4.1), (4.4) are valid,

then they are facet defining for P* n {x | x,, = 0).
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Proof. Analogous to the proof of Theorem 4.1. Since x,; = 0 is now
a constraint, (4.2) need not hold for T = S in order for (4.1) to be
valid. The argument used to show that (4.1) is facet defining for P¥
when valid (and when |S| < n - 2), carries over to P¥ n {x | x,, = 0},
gince all but one of the n? - 3n + 1 affinely independent points
exhibited satisfy x,, = ¢.l

Corollary 4.7. For all S ¢ N, 2 < |{S| < n - 1, such that 1 = S, and

all ¢ ¢t N \ S, the inequalities

(2.3) z Doy +Ixyy -xee & Is|] -1
1zs jes-{1} tzs

and

(2.5) I I xgy+txee21
izs jZN\s

are valid for P¥ n (x | x,, = 0}. Further, if [S| < n ~ 2 and (4.2) does
not hold with T = N \ S, then (2.3) and (2.5) are facet defining for P* n
{x | x,, = 0).

For all S <N, 2<|S| <n-1, such that 1 z N\ S, and all k = S,

the inequalities

(2.4) I L xg+ Lox,clsl-1
tes jes—{4} tes—{u}

and

(2.6) X I oxyg+x 21
128 JEN\s

are valid for P* n (x | x,, = 0}, and if |S] < n - 2, facet defining for
P*n (x| x,, = OM

Proof. The wvalidity of (2.3), (2.5) and (2.4), (2.6) follows from
Theorem 2.5 and Corollary 2.6, respectively, in view of P¥ € P,. The
fact that, when valid, these inequalities are facet defining if lS, {£n=2
(and, in the case of (2,3) and (2.5), if (4.2) does not hold with T =
N \ 8), follows from the proof of Theorem 2.5 which carries over to this

case with only one change: the point z% ¢ 2 used in that proof lies in
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P¥ n (x l X;: = 0} only if (4.2) does not hold for T = N \ S. Hence the
condition concerning (4.2) in the above Corollary.]

Next we turn to inequalities that come from the Knapsack-
Constrained Assignment polytope.

Theorem 4.8. Suppose the inequality
3.1) Ixy + Daxgy <Isl -1,

158 127
where «; > 0 is integer, i ¢ T, defines a facet of KP, and N \ (S v
T) £ ¢. Then (3.1) defines a facet of P¥ if and only if T # .

Proof. From Theorem 3.2, (3.1) defines a facet of KAP if and only
if T # ¢. The argument used in the proof of that Theorem carries over
without change to the case of P*. Hence (3.1) is facet defining for
P¥ if and only if T # #.

Assume now that T # ¢. Consider the equation

(3.1’) 2 Xy + z XRyXgy = |Sl -1
(X2 1 187

and define
F:= P¥ n (x |x satisfies (3.1%)}.

We will prove that F is a facet of P¥, i.e. that dim F = dim P¥ - 1,
by showing that for any inequality 7x ¢ 7, valid for P*¥ and such that
7x = y, for all x ¢ F, the equation yx = 7, is a linear combination of the
equations (1.2) and (3.1'); i.e., that there exist multipliers A\;, u;, i z N,

and n,, such that

Ay o+ opy ififgjori=jeN\(SuT
(4.6) 71y =

k""‘“'l“'ﬂ",, ifi=‘leUT
and
(4.7 7o = L Ay + my) + (IS] - )n,.

feN
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Consider first (i, j) ¢t A, i.e. i # j. Let n £t N\ (S v T) and define

Ayt

Yin = Tans i=1], ..., n
(4.8)
By i Tngs j=1, ..., n

We claim that for all i # jor i = jzt N\ (S§vT),

(4.9) YT
= Yin * Tny T Yan-

For i=n, j=1, wynand for j = n,i=1 .., n this is clearly
true. Now let i # n ¥ j # i, and consider x ¢ F such that x;§ = x, = 1
for a given k ¢ N\ (S v T). Such x exists for every k £ N \ (S v T).
Define x’ by x{j = x = 0, x{, = x¢y = 1, and x4 = xpq for all other p, q.
If C is the arc set of the long cycle of G(x), then (C - {(i, j)} v {(i, k),
{(k, j)} is again the arc set of a cycle; thus G(x’) has exactly one long
cycle, and since the set of its loops is strictly contained in that of G(x),
x’ also satisfies the knapsack constraint (1.3). Hence x’' =z P¥. Further
since x satisfies (3.1’), so does x’, i.e. x>’ ¢ F. By assumption, we then
have yx = 7, = 7yx’, and hence 7;; + 7kx = 7y« + 7Yxj. Since this
argument is valid for every k : N \ (S v T), we have

(4.10) iy T Yixk t Yuy - 7 forall k ¢ N\ (S v T).

n (4.10) becomes (4.9) and thus proves our claim.

In particular, for k
Now let i = j £z N\ (SuT), If i = n, we are done; otherwise
consider x ¢ F such that x;; = x5¢ = 1 for some j # i # ¢. Such x
clearly exists. Define x’ by x/; = xj’g =0, x51 = xl¢ = 1 and x,;q = Xpgq
for all other p, q.
Then x’ ¢t F (for the same reasons as above), hence yx = yx' and
TR T B STRR A AV T Substituting from (4.10) for Tyt Ty and 7,4

with k = n then yields
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LA A LR AT Bl Y |

(7jn + Yot = Yan) ¥ (Yin * Tt - Tan)

- (7Jn + 7n‘ - 1n|’|)

Yin ¥ Tnt = 7on

which proves (4.9) for this case.

To prove that (4.6) also holds for i = j ¢ S u T, we define for all
it SuT
(4.11) my = {7y = Ay = B/ ay,
where for i ¢ S, «; = 1. We claim that all n; are equal, i.e. ny = =, for
alli z SuT.

Consider first two distinct nodes i, k ¢ S v T such that «f = «, = 1.
Let x ¢ F be such that x, =x“=xk¢=1,withi#j#k;¢t¢ifor
some j # ¢. Such x clearly exists. Define x’ by x/y = xj’k = % =0,
Xk = Xy = ®¢ =1 and x5, = Xpq for all other p, . Then x’ ¢ P and
from what we know about facets of the knapsack polytope (see, for
instance, [1]), if x satisfies (1.3) then so does x'. Thus x’ ¢ F, and
gince this implies yx = yx', we have

Yit t Yyt Tt F Vet Y50t T

Substituting for 7;; and 7, from (4.11) and for 7 . ity 7ji» Tt
from (4.9) then yields =y = m,.

Consider now two nodes i ¢ S, k ¢ T, such that «, = m for some
positive integer m > 2. The existence of such a, implies that |S| >
m+1. Let x £t F be such that x;; = 1 for m distinct indices i ¢ S,
namely i = i), ..y iy and x5, = X8 = 1 for some j # ¢. Such x clearly
exists. Define x’ by x1“1= ee. = x}m.: e = Xkt = 0, Xfy = "31, =
x3 1,5 -0 = "‘,,_,I,.: x{mg = 1, and xpq = Xpq for all other p, q.

If C is the long cycle of G(x), then (C - {(j, k), (k, &)} v {{(j, i),
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(i1 iz)s +esy (im ¢)} is again a cycle, and so x’ ¢ P,. Also, from the
theory of knapsack polytopes, if x satisfies (1.3) so does x’,
hence x’ ¢ P¥. Finally, since &gt .. by = o =m, if x
satisfies (3.1’) so does x'. Thus x’ ¢ F, and from yx = yx’ we have

Yigr, e F Y T Vet Tt T Ve P Y Py, e T e

Now substituting for 7,q from (4.11) if p = q (since all such p
belong to S v T) and from (4.9) if p # qQ we obtain
(my + Ay + By )+l 4 (-n,m+ J\im+ p,m) + (A + b))+ (Aetpe) =
(gt Apetpy) + (Xj+p“) + (X,l+p,z) + ...+ (k,m+p¢)

Since my = ... = LI after simplifying this yields mny = My or,
since oy = m and all #; with i z S are equal, whereas k ¢ T was chosen
arbitrarily,

ny =, =n, forallic$§, k ¢T.

This completes the proof of (4.8).

To prove (4.7), consider X ¢z F such that x;; = 1 for alli ¢ S - {k}
for some k z S, X,y =0 for all iz (N\ S) v {k}, and Xy 4,7 -ee T

X1, 1, for some cycle C = {(i,, 1a), ..., (ig—1s 1¢)s (ig, 1)} whose

node set is {i,, ..., ig} = (N \ 8) v {k}. Then

Yo 7YX
AT PR AR 71,‘1,*”85{“}711
= T (Ay4mg) + L +sg) + (IS] - Dy
iz (N\s)u{x} 185—{x}

=T (O, + )+ (sl - Dng.dl
{ZN

The last theorem of Section 3 (Theorem 3.3) is now a direct

consequence of Theorem 4.8.
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