
70-M 332 NORML ODES ANLYSIS OF GUN VIBRTIONS BY THE UNIFORM 1/1
SEGMENT METI400(U) RMY ARMAMENT RESEARCH DEVELOPMENT
RNP ENGINEERING CENTER UAT. R G GAS NOV 67

UNCLARSSIFIED ARCC-TR-9?633 F/0 1916 Mmm[mh,7hh
mEohhEmhhhhhEE



Hill- .I2 2

L.5 2S

%u 
l IF

-L" -
w w w W W W W W V V V --

., e : .; j + ' , . . ] , -.. .,W 
V , j . . . ;.Y7 

V W '. -, i 7. . . . , , . . , ; , . - , . ; . . e V .

. --. * . . . . v . . , . "" -."". . . " " "" " " ,. ' " % '% % % . 5"" '



FILE. Cup~)Iv

AD

C') TECHNICAL REPORT ARCCB-TR-8 7033

00.

NORMAL MODES ANAL YSIS OF
I GUN VIBRATIONS BY THE

UNIFORM SEGMENT METHOD

RONALD G. GAST

SDEC 2 9 18
NOVEMBER 1987

US ARMY ARMAMENT RESEARCH, DEVELOPMENT
AND ENGINEERING CENTER

CLOSE COMBAT ARMAMENTS CENTER

WATER VLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

6- 7



DISCLAIMER

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other authorized

documents.

The use of trade name(s) and/or manufacturer(s) does not constitute

an official indorsement or approval.
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Industrial Security Manual, Section 11-19 or DoD 5200.1-R, Information
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prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is
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BACKGROUND

At the Fourth U.S. Army Symposium on Gun Dynamics, which convened in May

1985, the author, in collaboration with H. J. Sneck, submitted a paper (ref 1)

in which a method for modelling the flexural vibrations of a tank gun using the

normal modes technique was proposed and developed. In this report, a number of

shortcomings in both the model and analysis techniques are cited and will be

reviewed briefly.

The first and most striking model shortcoming lies in the use of an axially

prismatic beam as representative of the gun tube knowing full well that a gun

possessing a prismatic barrel does not exist. The reason for the choice,

however, lies in the fact that although guns are axially non-uniform, their

deviation from the prismatic condition is small when compared to their overall

length. For example, when viewed from a distance, any gun appears to be of uni-

form cross section. A less important reason for this choice was the ease in

which this type of model could be developed. For the prismatic case, a single

four-term mode shape equation results for each natural frequency considered.

The second involves the choice of support conditions. In this initial

effort, the supports were modelled as linear, bi-directional springs rigidly

attached to the breech end (origin of axial coordinate) of the beam. One spring

resisted the transverse displacement, while the second restrained the rotational

motion of the breech end. This type of support model is not exact, but rather

an approximation of what actually exists on fielded weapons. In addition, sup-

ports possessing no clearance are not feasible from an assembly or operational

standpoint and those possessing linear response properties regarding force/

deflection are not likely.

References are listed at the end of this report.
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The third model shortcoming involves the use of the Euer-Bernoul,4 beam

equation without a strong claim regarding its applicability for gun/beam. type

structures. It was chosen based upon the results of an order of magnitLde study

on the equation's coefficients for the model of a gun system similar to the M60.

A more viable approach comparing the results of a modelling effort using alter-

native equations would be a better means of justification.

A fourth condition involves the identified excitation sources (driving

loads) developed into the model. There were five sources which included recoil

inertia, pressure curvature, projectile trajectory, projectile rotational imbal-

ance, and eccentricity. These, by far, are the most important loading sources,

however, a more versatile model employing additional sources would be more

realistic.

All of the above areas are addressed in the current analysis. This report

highlights the detailed improvements which have been developed into the current

computer model dedicated to gun vibration analysis. The routines are available

and running on Benet Laboratories VM/SP Operating System.

FORMULATION OF THE CANNON BEAM DYNAMICS MODEL

General Modelling Equation and Solution Proposal

Beam dynamics as applied to gun tubes is represented in Figure 1 where the

beam structure shown possesses axially varying geometric properties inferring

that both bending and inertial resistance are functions of position. The trans- .

verse cross section is cylindrical and axisymmetric, and in its static state,

the axis assumes in-plane curvature due to the beam's weight, environmental con-

dition, and the result of manufacturing processes. The features drawn in

a.!
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phantom represent the additional mass of the breech, bore evacuator, and muzzle

brake. Four types of forces and/or moments are represented and appropriately

placed upon the structure.

CANNON/BEAM LOADING SCHEMATIC

TYPE 3 TYPE 2 TYPE 4

TYPE I

Figure 1. Cannon/beam loading schematic.

The equation which completely describes the transverse motion of this beam

system according to Thomson (ref 2) and others (refs 3-6), is:

N
w Elw Jw

(Ely")"+ - y - (J + + (----)Y' = [ Epi(x,t,y,y',y",y ) +
g gkAG gkAg i=I

3 , El--- 0i(x't-y'Y''Y"'Y ) k- - Pi (x,t,y,y',y",y')] w (1)

kAG kAg

where

E = Young's Modulus of material

I = transverse moment of inertia

J = pitch moment of inertia

G = modulus of elasticity in shear
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A = area of beam's cross section

k = shape factor of cross section

w = weight per unit length of beam

pi a i-th forcing function (total of N)

g = gravity acceleration

x = axial coordinate (independent space variable)

t = time (independent time variable)

y = transverse displacement (dependent space variable)

= time derivative

= space derivative 
%

This equation is commonly referred to as the Timoshenko equation. For a pris-

matic beam, the second differential operation on the first term could be placed

within the brackets since the bending resistance becomes constant. The second

term deals with the translational inertia of a beam segment, while the remaining

two terms model rotatory inertia and shear deformation effects. All terms are

on a per length basis. The right side of the equation contains the represent-

ative driving and reaction loads.

Reduced forms of this equation are used when the geometry causes some of

the coefficients to be relatively insignificant. Other special cases arise for

the analysis of prismatic beams for which all geometric properties are constant

in space rendering all dependent variable coefficients constant. This allows

for a closed-form solution to the homogeneous equation as will be addressed

later. For 'thin' structures, terms involving rotatory inertia become small,

thus modifying the coefficient of the third term and completely eliminating the

fourth term. For 'long' structures, bending dominates shear, thus both terms

three and four may be eliminated without loss of modelling accuracy. In this
J.
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simpler form, the Timoshenko equation reduces to the Euler-Bernoulli equation,

which upon the stipulation of constant cross-sectional properties, becomes

N
w

EIy life + - Y = [Pi(x,t,y,y',y",y')] - w (2)
g

i=l

The solution technique for the proposed model in its full or any of the

truncated forms is the same. The homogeneous equation will be solved by the

separation of variables technique yielding the normal modes of vibration of a

free-free beam structure. The model equation will be reassembled using the mode

shape vectors, and upon invocation of the appropriate orthogonality principle, a

system of ordinary differential equations (O.D.E.'s) containing time varying

amplitude coefficients will result. There will be one equation for each mode

shape considered. Due to the nature of the loadings, this system of O.D.E.'s is

coupled; therefore, numerical matrix procedures will be needed to arrive at the

total solution.

Assessing the Significance of Shear and Rotatory Inertia

The Timoshenko equation represents the most complete form of beam analysis

available. For certain types of beam structures, the combined effect of shear

deflection and rotatory inertia contributes little to the results while their

inclusion is costly in terms of solution complexity. Since this modelling

effort is to be applied to a certain class of structures, namely large caliber

cannon tubes, these effects may be judiciously neglected in favor of the less

complex Euler-Bernoulli model. The reason for this will be developed in the

following comparative analysis of a uniform 'thin' beam.

Consider the free vibrations of an unrestrained prismatic beam. The

Timoshenko equation (1) becomes

0
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w EIw Jw
Ely.. + - y - (J +  .... + (--- -)y = 0 (3)

g gkAG gkAG

Following the method used by Bozich (ref 4) and identifying the parameters

suggested by Kruzlewski (ref 7), this equation may be reformulated in a dimen-

sionless form.

1 d4y d2y
... ... ) + (KR2+Ks2 ) - (1 - KB2KR2KS )y = 0 (4)
KB dz' dz2

where

w
KB 2 Z = L --- (5a)

gEl

1 El
Ks2 = (5b)

L2 kAG

1 Jg W1
KR=2  (5c)K L w

with w being a vibration frequency. These three coefficients represent the

contributions of bending, shear, and rotatory inertia, respectively. Equation

(4) represents the non-dimensional form of the Timoshenko model which reduces to

the Euler-Bernoulli version by simply setting KS and KR to zero. 0

In terms of the non-dimensional coordinate z, the analytical solution to

the equation is

y(x,t) = (C1 cos az + C2 sin az + C3 cosh Az + C4 sinh Az)cos wt (6) 0

where

/+ (KR2+Ks2) + V(KR2-KSR) + 4/KB2 %

a=KB2 (7a)

/- (KR2+KS2 ) + V(KR2-KS2) + 4/KB,=K B /(7b)

-------- 28 ----------------- -- - -'b
S2
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These equations are valid when the terms within the outer radical remain posi-

tive. By applying free-free boundary conditions and normalizing the mode shapes

with respect to C1 , the following characteristic equation for the natural

frequencies may be derived:

2(1-cos a cosh A) + (- ) sin a sinh : 0 (8)

This equation, which is essentially a function of w, has an infinite number of

roots. It may be solved to any desired accuracy for a finite number of them by

standard root finding techniques. A set of computer routines for solving this

uniform beam frequency equation was written for the assessment analysis. The

effect of shear deflection and rotatory inertia may be included or neglected in

order that an evaluation of their effects may be made. The equation coef-

ficients evaluated for each frequency are

C1 = 1 (9a)

A cos a - coshAC2 - ------------------ ) (9b)
a sinh A - (A/a)sin a

a
C3 = ( )2 (9c)

a
C4 =(-)C2  (9d)

These coefficients and their respective natural frequencies are used to evaluate

and plot mode shapes as a function of the dimensionless coordinate z. The

results, as calculated by the Timoshenko and Euler-Bernoulli models for a given

structure, may then be compared to determine whether the shear deflection and

rotatory inertia effects are significant for the class of beams to be analyzed.

7
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In order to assess the effect of shear and rotatcr irert4a on canncr-

vibrations, three uniform cross section pipe structures resemt>ing contemporary

tank cannons were analyzed using this technique. The results of this analysis

are contained in Figure 2 where the percent error (with respect to the full

Timoshenko equation) is plotted against mode number for the three structures

analyzed. The results indicate that both of the simpler models predict fre-

quency values which are higher than those which the Timoshenko equation would

yield. The 'thicker' structures are less accurate when the Euler-Bernoulli

equation is used, however, the inclusion of rotatory inertia in the Timoshenko

equation contributes very little for any of the structures. At an outer

diameter of 8 inches, a 7.5 percent error in frequency would occur in the sixth

mode using the simplest formulation, while only 1.5 percent error would result

using the complex equation without rotatory inertia.

ERROR ESTIMATES IN FREQUENCY CALCULATIONS FOR UNIFORM BEAMS
PERCENT ERROR VS MODE NUMBERa|

ALL4 DMODELS go 8 OD "

_________ _ 6" OD .

4.,4

allZ.

8" OD 2

US

0 0
TIMOSHENKO W/OUT ROTATORY INERTIA

2 4 5 6
MODE NUMBER(

o, 0

Figure 2. Error in frequency calculations for uniform beams.
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A comparison of mode shapes for the sixth mode of the 8-inch beam is

plotted in Figure 3. The upper curve represents the shape using the Timoshenko

equation, while the lower is the same for the Euler-Bernoulli equation. As can

be seen, they are quite similar except at the end points where a deflection

error of -8.3 percent and a slope error of -0.75 percent results from the use of

the simpler equation. Although this appears to be quite substantial, these

error levels become less for the lower modes. Since mode shape contribution

diminishes with increasing mode number, these error estimates become relatively

unimportant to the overall transient response. In addition, a 220-inch long by

8-inch diameter 105-mm cannon is heftier than any fielded or developmental hard-

ware, therefore, the reported errors become upper bounds when actual cannons are

modelled. For these reasons, the Euler-Bernoulli formulation of the vibration

equation was selected for the remainder of this analysis.

MODE SHAPE COMPARISON 6TH MODE 8" OD BEAM
SHAPE VS LENGTH

2 TIMOSHENKO MODEL

EULER-gERNOULL I MODEL
2,2

70

" ' I I I

NORMALIZED LENGTH2U B U D

Figure 3. Mode shape comparison for uniform beam models.
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Modelling the Non-Prismatic Effect

It goes without saying that the inclusion of non-prismatic geometries

increases the complexity of this problem. The normal vibration functions for

the uniform beam were shown to be analytic for any of the model equations

chosen. This is a great advantage in solving transient problems where the modal

functions need to be differentiated for certain types of driving loads. (This

is especially true for gun tube loads as will be shown later.) If the modal

function is approximated by a set of tabular values (e.g., numeric tables from

finite element analysis), accurate differentiation is difficult, even when the

points are connected by approximating polynomials. Since the non-uniform nature

of a gun tube is consistent in that it is composed of cylindrical sections,

tapered sections, and step changes between sections, attempting to solve the

free vibration equation with a single analytical function may be impossible.

A number of approaches were found during the research phase of the study

(refs 9-16). Each of these authors attempted to resolve the problem of

modelling the flexural dynamics of a non-prismatic beam. All, however, fell

short of expectations in terms of fulfilling the need for analytically

expressible mode shape functions differentiable through the second order.

Canned finite element routines were ruled out early due to the lack of ver-

satility in their ability to model loads which are functions of the dependent

variable. In regard to their employment for determining the mode shapes, the

only way a continuous analytical function could be achieved was through a least

squares or spline fit using the normal modes displacement information. This was

unattractive since it is well known that modal displacements approach sinusoidal

shapes for beams with mild non-uniformities. Any method developed for struc-

tures of this type should attempt to exploit this property.

10



Upon conversing with and reviewing the work of Dr. Sneck (ref 17), a method

of dealing with the problem's non-prismatic nature was conceived. He suggested

that the tube be divided into two uniform segments of differing cross sections,

each of which is analyzed using the Euler-Bernoulli equation. By the separation

of variables technique (refs 2,3), the application of the appropriate boundary

conditions, and the enforcement of interfacial continuity at segment boundaries,

expressions involving trigonometric and hyperbolic terms for the mode shape

functions will result. Each segment will have its own set of mode dependent

coefficients. Continuity across segment boundaries will be accomplished by

equating boundary values of displacement, slope, bending moment, and shear as

calculated by each adjacent mode function. This method seemed ideal for the

problem at hand, and it was chosen contingent upon its adaptability to cannon

models where more than two segments would be needed. It was felt that any

number of segments could be handled by this method, hence, the term "Uniform

Segment Method" (USM) was coined.

The equation defining the mode shapes for a general case employing the USM

is

Oijlx)= Aij cosh aijx + Bij sinh aijx + Cij cos aijx + Dij sin aijx (10)

where:

i = segment number

j = mode shape number

x = normalized length (x/L)

A,B,C,D = mode shape coefficients

w
aij = argument coefficient [LV"wj(- (--)i) )

g El

By employing this segmented mode shape function and the well-known separation of

variables technique on the pure bending equation, the unknown coefficients and

11



frequency for each mode may be tracked. For a model utili7ing M sections, the

imposition of the free-free boundary conditions will yield tne following

equations relating bending moment and shear at the extrem'ties of the beam:

41,j(O) = 0 (11a)

OM j(1) = ( (11b)
Il

01 j(o) = 0 (11c)

O14j(l) = 0 (lid)

Continuity at the interfacial locations is preserved by equating the values of

displacement, slope, bending moment, and shear as calculated by adjacent mode

functions at the interfacial boundaries between segments. These conditions may

be written as follows:

¢i-l'j(Xi-1 )  = €ij(Xi-1) (12a)

*i-1,j(Xi-a) = *i,.j(Xi-j) (12b)

(EI)i_¢i1,j(xiI) = (EI)i,~(X 2 ) (12c)

(EI)i_i4i_=j(Xi_1)  (EI)i i,j(X i_1) (12d)

where:

i = segment number

Xk = normalized axial coordinate of segment k's right boundary

For a model containing M segments, there are 4M coefficients and one frequency

to be evaluated for each mode shape. By setting A1, j = 1 renders the system

deterministic for which unique solutions exist at each natural frequency. A set

of algebraic equations in the natural frequency (wj) and the 4M-1 unknown mode

shape coefficients is presented in matrix form in Figure 4. The system matrix

is shown to contain an orderly set of entries representing the boundary con-

ditions (B.C.) and matching conditions (M.C.). A 2X4 subarray beginning at

12
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global location 1,1 contains the terms for evaluating the B.C. at x = 0, whereas

a similar array ending at N,N (N=4M) represents the B.C. at x = 1. 'Walking'

along the main diagonal are M-1 subarrays 4X8 in size which represent the pres-

ervation of continuity across segment boundaries. The remaining terms in the

matrix are zero. The non-zero entries are functions of the segment properties,

boundary location, and the unknown natural vibration frequencies. Setting the

determinant equal to zero and solving for the roots of the resulting charac-

teristic equation produces values for these frequencies. At each frequency, a

reduced system is developed by setting A, j = 1, eliminating the first row, and

shifting the first column to the right side of the equation. The solution to

this linear system yields the remaining normalized mode shape coefficients.

N-SEGMENT UNIFORM PROPERTIES SYSTEM OF EQUATIONS

1 (2 X 4) Al1  0

3.C. of X= 19 11

M.C. of X=X I  Z R 0D

(4 X 8) A2 i

M.C. of X=X2 C11
(4 x 8)

Awl

Z E R 0 B.C. of X=L CMI

N X N SYSTEM MATRIX N X I
COEFFICIENT VECTOR

M = N/4
I - SEGMENT NUlER
I - MODE NUMBER

Figure 4. Uniform segment system of equations.
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Unlike finite element techniques, this method aoes r,:t reorre the

segmenting of uniform sections. Rather, they transform cri a one-to-one basis

from the real to the model plane, thus only a few segments are needed to accu-

rately represent gently varying non-uniformities. Additionally, the number of

modes available for calculation is not a function of the number of segments. In

finite elements, the mode shapes are defined by the disDlaced locations of the

model's nodes. There are not enough points available for an accurate represen- v

tation of the mode's shapes at higher natural frequencies. This is not the case

for the USM, since nodeless elements using trigonometric and hyperbolic terms in

the mode shape functions are employed.

To determine the accuracy of this method for free vibration modelling of

gun structures, the predictions from an established finite element code (ABAQUS

(ref 18)) for a typical gun tube (105-mm M68) were compared to the results

generated by the dedicated routines (MODE:) written by the .,hor in support of

this analysis. The gun and its modelling representations are shown in Figure 5.

The M68 gun tube is 210 inches long containing two tapered and three
p.

cylindrical sections. The physical schematic is shown in the top sketch in

Figure 5. This finite element model (FEM) was comprised of 54 equally-spaced

nodes with two degrees of freedom (dof) per node and 53 prismatic beam elements.

The sketch in the middle of the figure indicates the element density in each

physical section of the structure. On the lower sketch of the same figure,

segmentation of the USM model is shown. Only six segments of four dof each were

used for a total of 24 dof. The natural frequencies and mode shapes for the

first six vibration modes were calculated using both the Timoshenko and Euler

equations for the FEM. In the USM analysis, only the Euler equation is

employed.

14
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105mm M68 GUN: COMPARISON OF ANALYTICAL MODELS

GUN SCHEMATIC: 210 INCHES LONG (NUMBER OF INCHES)

L 15 -- 8 - 1 - 17 - 2

FINITE ELEMENT MODEL: 108 D 0 F (NUMBER OF ELEMENTS)

UNIFORM SEGMENT MODEL: 24 D 0 F (NUMBER OF SEGMENTS)

Figure 5. 105-mm M68 Gun: Comparison of analytical models.

The results of the analysis are shown in Figures 6 and 7. In Figure 6 a

comparison among the frequency calculations is presented in the form of a bar

graph. The abscissa contains the first six mode numbers, while the ordinate is

labelled with the Logl0 value of the frequency. As is indicated, the FEM using

the Timoshenko equation produces the lowest values for all six frequencies,

while the USM produces the highest. The differences in the extremes are between

six and ten percent with the greatest discrepancy occurring at the highest mode

number.

15



105mm M68 GUN: NATURAL FREQUENCY ESTIMATES

4.0- LOG10  FREQUENCY V OENME
TIMOSHENKO EON. (FEW-10a DOF)

EULER EON. (FEM-lol DOF)
- EULER EON. (USM--24 0017)

4-,-

S 3.5-

2.5

2.01

IST MDE 2ND MODE 3RD MODE 4TH MODE 5TH MODE 6TH MODE

Figure 6. 105-mm M68 Gun: Natural frequency estimates.

105mm W68 GUN: MODE SHAPE COMPARISONS
NORMALIZED SHAPE OF 6TH MODE

~ 2.0 EULER EON. (USM-24 DOr)

0.0

.0

0 EULEK EON. (FEM-lOB DOF

NORMAL IZED AXIAL LOCATION (-

Figure 7. 105-mm M68 Gun: Mode shape comparison.
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In Figure 7 the normalized mode shape plots for the sixth mode, as calcu-

lated by each of the models, is shown. The sinusoidal nature of the mode shape

is evident on all three plots, while the subtle differences in displacement

magnitude at the extreme end are perceptively indiscernible. Numerically, the

magnitude of the displacement for the USM calculation is approximately ten per-

cent higher than either of the other two FEM's. Overall, these results verify

the worth of the USM in modelling mildly discontinuous beam structures. If

greater accuracy is desired, more segments could be used for the tapered por-

tions of the structure.

Modelling Initial Curvature

It is a generally accepted fact that the initial shape of the gun tube has

a significant effect upon its dynamic response and shot accuracy. This depend-

ence has been shown experimentally (Elder (ref 19)) as well as analytically

(Simkins (ref 20), Warken (ref 21)). Four prominent causes of static gun/beam

curvature, which are part of the proposed model, are

1. Gravity droop

2. Thermal droop

3. Manufacturing tolerances

4. Non-structural weight (breech, etc.)

To implement these effects, an independent set of routines (INIT:) was

developed to generate the initial conditions for the gun/beam. These routines

accept the geometry from the normal modes analysis, adding two resilient sup-

ports, point loads simulating non-structural mass, and distributed loads repre-

senting each segment's weight. The deflection response of the supports may

include clearance and non-linear elasticity. Initially, the rigid body solution

for the gun/beam is solved. This yields support reactions, deflections, and the

17
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initial slope of the gun's axis. In the next p . tion, the static benir, of the

gun/beam due to weight and external mass is deterrined b" numerical integration

of the Euler-Bernoulli equation applied to the static case. The support reac-

tions are redefined as external loads and their axial locatic-ns as points of

zero bending deflection. This type of modelling is straightforward and well

documented in structural mechanics literature (ref 22). Thermal response and

manufacturing induced curvature are currently imported into this model via tabu-

lar files developed by empirical data or external analysis. The total vertical

deflection is calculated by superimposing the individual responses and

generating tabular files which will be used as data in the transient analysis.

Problem Closure: The Total Dynamic Response

Application of OrthoQonality

Having a piecewise functional representation for the mode shapes and an

approximating polynomial equation for initial deflection, closure to the problem

7
involves solving particular forms of Eq. (2). Recalling:

N

EIy.. + -y = pi(x,t,y,y',y",y',) - w (2)
g i=l 

0

is the equation for a uniform beam. The dependent variable (y) contains both

static and dynamic terms. By separating the dependent variable thusly, this

equation may be recast and rewritten on a per segment basis as follows:fil
I

wk a2
(EI)k *kiqi+ys + kiqi+y =

M "

Pm(x,t,y,y ,y,Y",Y') - Wk(Y) (13)
m=j
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where:

= i-th mode shape

= total number of modes

k = k-th uniform segment

K = total number of segments

m = m-th applied load

M = total applied loads

(EI)k = bending resistance of k-th segment

wk = weight/length of k-th segment

'ki = i-th mode shape of k-th segment

qi i-th modal amplitude

Pm(X,t,...) = m-th applied load function

Wk(y) = static mass load applied to k-th segment

Ys = static deflection curve

Since the modal amplitudes are time-dependent only and the static deflec-

tion is space-dependent only, the above equation may be separated as follows:

I I M

(EI)k ( kiqi) + _- ( Ckiqi) : Pm(X,t,... ) (14a)

i=1 i=1 m=1

(EI)k Ys = Wk(Y) (14b)

The solution to Eq. (14a) yields the dynamic response with respect to the

initial shape of the beam. The solution to the second equation is the static

deflection. Superposition of these leads to the total dynamic response with

respect to a global inertial coordinate system. Since Eq. (14b) has already

been solved (last section), the solution to Eq. (14a) will close the problem.
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VTrWP~rM nP, PI r X~rX-1U- " ~rx-V9 m~, WN'_w.-w -w- -W --w

By the nature of the segment mode shape functncris

....Qki :( i(5

which leads to

1 FM
' f + El) k(-)1 q  Pm(X,t.... (16)
I I L r!

Recalling a parameter from Eq. (10) and employing current notation

ki = LVWi (g[ i! k

which upon substitution yields

I .

z *ki[qi 
+ wieqi] = g Pm(X,t (17)

For non-dissipative boundary conditions, the orthogonality of the mode

shapes with respect to the weight function w(x)/g leads to the following:

KwXk I wk

0 NOi -dx : XkO ikj dx=

k=1

0 for i j (18a)

Gi for i : j (18b)

where

xkO = axial location of lower boundary of segment k

xkl = axial location of upper boundary of segment k

Note: Xkl = X(k+1)0

w(x) = structural weight distribution

20
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By multiplying Eq. (17) by -S-- Oi, integrating over the length and
g

applying Eq. (18), the following ordinary differential for modal amplitudes

results:

M K

qi + wi2qi = 6 Xk0 Pm(xt .... )(ki dx (19)

m=1 k=1

The solution to this equation yields a vector of modal amplitudes used to

calculate the dynamic displacement, velocities, and slopes. These equations are

as follows:
I

Yd(x) Z qi(t)q¢i(x) (20a)

i=I

I

Yd(x) = qi(t)4i(x) (20b)

i=1

I

y'(x) Z qi(t)qi'(x) (20c)

where

Qi(x) = 4ki(xk) segment mode shape

Representation of the Forcing Functions

Previous analyses and test results indicate that static droop dominates the

overall curvature. Dynamic response is shown to be a displacement perturbation

about the static shape. The maximum displacement levels are an order of magni-

tude less than the static muzzle deflection. Since the loading functions unique

to gun dynamics are dependent upon a gun's overall shape, so is the dynamic

response. Recalling the functional form for these load functions
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Pm(X,ty,y',y,Y,y,y)t

from Eq. (14a), the following expression from Eq. (19)

M K
1_ Xkl- Pro(x t, ,'')¢Ki dx ,'

Gi XkO ..
m=I k=1

must be evaluated for each load function considered. These load functions and

evaluations will now be presented and discussed.

1. Recoil inertial load. An inertia couple develops within any segment k

during recoil which is expressible as

P1 (t,x,y') = - ar(t)[(-x)y')' (21)
g

where

ar(t) = recoil acceleration

I = total length of gun

y = total transverse displacement (static and dynamic)

Details of the derivation may be found in Reference 20. Evaluation of the

expression

1_ ff wk
G g- ar(t)[(i-x)Y']'4ki dx

upon the substitution of

I0

Y = Okjqj + ys (22)

j=1

and normalizing with respect to tube length yields the following:

%.P
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Pl ' ' Xkl

- f PI(x,t,y')4ki dx = KI(t)iwklkjl(l-x)( Z kjqj+ys)]_
j=1

I

- If I Wk~ki(l-x)( *kjqj + ys)]dxj (23)

j=1

where
ar(t)

K1(t) = gri

x = x/1

2. Pressure curvature load. Due to the nature of curvature within real

bodies, diametrically opposite bore 'surfaces' possess differing 'areas'. A

pressure load acting within this confined chamber will tend to straighten the

chamber because the area of the concave 'surface' is greater than its convex

counterpart. The expression for this load function (ref 20) is

P2 (x,t,y") = -ABPB(t)y"fH(xp(t) - x)I (24)

where

AB = bore area of tube

PB(t) = propellant gas pressure

xp(t) = projectile location

H(xp-x) = step function

Upon substitution from Eq. (22), the evaluation of the normalized integral

yields

- I
J- P2(x,t,Y")Oki dx = K2 (t) 1 xp [Oki kjqj + OkiYs]dx (25)

j=1
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where e'

ABPB(t) 4
K2 (t) =- -i

xp = Xp/i

3. Projectile trajectory load. The accelerating projectile, although of
.1

considerably less mass than the tube, can exert a significant trarsverse force

when it is confined to travel along a curved path. Simkins (ref 20) identified

this loading and derived the following expression:

P3(xt,y',y",) =- - y + 2*p y' (Pxpt)2'Y" g]

6 (Xp(t)-x) (26) 'p

where

wp = projectile weight/unit length

6(xp(t)-x) = Dirac delta function

Upon substitution of Eq. (22) and normalizing with respe-t to tube length,

the integral expression becomes

GI. f P3(x,t,y',y",y)Pki 6(xp(t)-x)dx =

-S

I I
K3*k(Xp 2 0j(Xplqj + 2xp 4j(xp)qj + ,

I S

(Xp)2{ coj(xp)qj + Ys(Xp)} + g) (27)

j=1

where
Wp

K3  Gig ig

Wp= projectile weight
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4. Projectile eccentricity. Wu (ref 23) has postulated the existence of a

couple exerted on the tube when the projectile propelling force does not pass

through the projectile's mass center which is expressible as

e

P4 (x,t) = ABPB(t)(I)6'(xp-x)sin(eo+2yrTXp) (28)
'p

where

ep = radial eccentricity of projectile

Ip = wheelbase of projectile

T a rifling twist (= 0 for smooth bore)

f 6'(Xp-x)dx = I

Upon substitution of Eq. (22) and normalizing, the integral expression

becomes

r M p 2'
-- J P4 (x,t)4ki dx = -K4 (t) - *ki(Xp) (29)

where
ABPB(t ) ep

K4 (t) Gi -- (Sp )sin(0+2rTXP)f

5. Projectile rotational load. As the projectile travels along a rifled

tube, its mass center rotates causing a centrifugal load on the bore. The ver-

tical component of this reaction is expressible as

P5 (x,t) = - -g [(2nTXp)6(xp-x) sin( 0o+2nTXp)

- (2nTrp)cos(Qo+2nTXp)J6(xp-x) (30)

where

xp = projectile axial velocity

Rp - projectile axial acceleration

T = rifling twist in revolutions per inch

25
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I

Upon substitution and normalization, as above, e integra- evalua-4or .

becomes

67 f P5(X,t)lki dx = K5 (t)d¢.(xp (31)
1 0

where

K5 (t) = Gig [(27TTXp)Sin(+2TX) - (2 7Xp)COS(qo+2nTXF)]

6. Stationary mass reaction. The stationary non-structural masses

(breech, bore evacuator, muzzle brake) cause transverse inertial loadings

expressible as

ws

P6 (x,t,Y) = - Y6(xs-x) (32)
g

where

ws =weight of stationary mass/length of mass

xS =axial location of mass

xs = Xs/I

The integral evaluation is

I

G P f P6(x,t,y)Pki dx = K64ki( s) 'KJ(Xs)qJ (33)

j=i

where

Ws
K6  

.

K6= Gig

s = weight of stationary mass

7. Stationary mass eccentricity. Should these masses possess vertical

eccentricity with respect to the bore axis, a couple will develop causing a load

expressible as

Ws es
p7 (x,t) - - ABPB(t)(-)6 s

26



where

WR = total recoiling weight

es = vertical eccentricity from bore axis (+ => above axis)

Is = wheelbase of eccentric mass

The integral evaluation of this load yields

1 , '

-:lf0 P7(X,t) ki dx = K70ki(xs) (35)Gi fo (5

where

%w
Ws

K7  - GiWR ABPB(t)(es)

8. Support reactions. The mounting supports may be characterized as non-

linear spring elements which react actively with the total displacement of the

tube. Initially, the support deflection balances the static loads. As the tube

vibrates, the displacements of the tube's support locations change. For a

general non-linear support spring, the reactive load may be expressed as

p8 (x,t,y) = Frn(Y)6(xrn-x) (36)

where

Frn(Y) = dynamic reaction force of n-th support (total reaction - static

reaction)

Xrn = axial location of n-th support

The integral equation is as follows:

1 - 37: f 0 P8(x,t,Y)Oki dx = K8(Y)O0ki(xrn)

where

Frn(Y)
K8 (y) = - i
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9. Bore eccentricity load. Should the gur! bcs a' : ote- c a'mettr ue

non-concentric, each differential segment of the beam. cor-triruites ar. 'ne'-:'P

couple about the axis which may be distributed in va-ying aegrees ov'er the full

length of the gun. The differential load per uni't length may be expressed as

follows:

P9 (x,t) = -wkar(t)e(xe)6'(xe-x) (38)

where

-FB

ar(t) R -- normalized acceler-atio

e(xe) =transverse eccentricity at xe

Since this is a differential load, its total contribution becomes

f Ip9(x,t)40kidx = -Kg(t)e(xe)4)1:xe)&x (39)

where
w kar (t )

K9 (t) - - -

Ax = differential length over which the eccentricity is distributed

The total load is the summation of the differential loads. When the formulation

is cast in a continuous form, the final value for the load becomes

fP9(x,t)Okidx= K9-------- i---- I - -f. e5 (x)q)(x)dxl (40)
'0 X 0  X 0  ri

ad

Modal Amplitude 0.O.E.'s and Numerical Solution Process

The algebraic rearrangement of the loading functions developed in the pre-

vious section results in a system of 0.D.E.'s in the amplitude vector qi(t).

The general equation is

M
(Mq1t)* Cq~t)+ Kqi(t) Z fmi(t) (41)

m= 1
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where N

[M] = inertia matrix of order I

CC] = Coriolis matrix of order I

[K) = stiffness matrix of order I

fmi(t) = i-th mode; m-th load driving force

The three matrices are fully populated unlike the case of a discrete

spring, mass, and damper system in which the inertia matrix is diagonal. For

the case concerning gun/beam dynamics, the projectile and stationary non-

structural masses cause coupling between mode shapes showing up as off-diagonal

terms in the inertia matrix. The Coriolis matrix is appropriately named because

its only contributing load is due to the moving projectile travelling along a

moving path created by the vibrating tube. A Coriolis force component results

from this interaction. Modal coupling is a characteristic of this load, there-

fore, matrix [C] is fully populated. The stiffness matrix [K] contains the

natural vibration frequencies (wi) along the main diagonal as well as other

contributions from recoil inertia, pressure curvature, and projectile trajectory

forces. Inclusion of these terms causes the matrix to be fully populated. ,-

The forcing functions on the right side of the equation are all time- 0

dependent in that the ballistic force, recoil inertia, or projectile location

and kinematic state are needed for their evaluation. The static slope is

required for recoil inertia load evaluation, whereas curvature is needed in the 0

pressure curvature and projectile trajectory loads. Point loads such as those

due to projectile location travel along the structure, while those due to the

stationary masses are fixed in the spatial coordinate. The support reactions

require an evaluation of the total deflection of the tube at their fixed loca-

tions with the reaction force being a function of the total displacement.
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From a solution standpoint, the problem is qute . ,'' due to the

inertia coupling, In order to solve the system cf eouat'ons usin: nume-ical

procedures, the matrix [M] must be triangularizec a-i e71m-ator pocess

(Gauss) with back substitution performed to arrive at a sclution to the modal

acceleration vector 4i(t). Rearrangement of Eq. (41) and introduction of a

discrete time step yields

M

[Mlqi(tn) = fmi(tn) EC]qi(tn) - [Kjqi(tn) (42)

m=I

where tn is any integration time. Initially,

to= 0 and qi(to) = q (to) =0 (43)

These conditions allow for the startup of the solution process. Equation

(42) is solved for i(tn) by back substitution into the triangularized inertia

matrix. The resultant acceleration vector is integrated to yield the velocity,

and finally the modal displacement vectors.

A predictor-corrector technique, based upon the Adams-Bashforth-Moulton

multi-step formulation (ref 24) adapted for systems of equations, was the

algorithm chosen for the integration process. A fixed time step with con-

vergence control and limited iteration steps is provided by the user through

computer input files. This multi-step method needs four starting values of the

function being integrated. These values are generated by using a Taylor series

approximation to the solution equation through the four initial time steps. The

predictor portion provides an initial solution for the modal velocity and .'.,

displacement amplitudes by using an integrating algorithm based upon the

Adams-Bashforth Four-Step Method. This is an explicit method requiring function

evaluations from four preceding time steps. The solution predicted is used in
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the corrector portion of the algorithm which is an implicit technique known as

the Adams-Moulton Three-Step Method. Iterations on the approximate solution

vector continue until convergence is assured based upon a criterion supplied by

the user. If the criterion cannot be met in the maximum number of iteration

steps, the computer routines report this occurrence allowing for user interven-

tion. Additionally, an error estimate including the number of iterations

attempted is available as output for each integration step. This is useful for

determining a suitable time step for a given analysis.

RESULTS AND DISCUSSION

At this time, these modelling routines are being debugged and tested

against the predictions from standard solutions and other independent analyses.

Subsequently, this modelling will be compared with experimental data (both field

and laboratory generated) to identify any inherent shortcomings. Parametric

studies addressing the projectile's exit vector (see Figure 7, Reference 1) and

its sensitivity to perturbations in the design and operational parameters of

fielded weapons will follow.
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