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COHERENT LASER RADAR SYSTEM THEORY

Abstract

Coherent laser radars for tactical sensor applications are under

development at a number of laboratories, based on the mid-infrared

technology of CO2 lasers and HgCdTe photodetectors. Under U.S. Army

Research Office Contract DAAG29-84-K-0095, a program of research was

pursued to advance the system theory of such radars, and to corroborate

these advances through experiments performed using the test bed coherent

laser radars of the MIT Lincoln Laboratory Opto-Radar Systems Group.

Toward those ends, fundamental results were derived for the transverse

and longitudinal correlation scales of speckle targets observed via

heterodyne detection, and pixel-level statistics were derived and

experimentally verified for 2-D pulsed imager radars that use peak-

detection pre-processors. In addition, a multipixel multidimensional

target detection theory was established whose quasi-optimal processors

coincide with some ad-hoc designs already in use, and whose perfor-

mance analysis provides unprecedented insights into the tradeoffs

between radar system parameters and target-detection capability.

Work was also begun on the theory of unconventional laser radar

imagers, e.g., synthetic aperture systems, and on target-tracking

theory for extended speckle objects.
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I. Research Summary

The development of laser technology offers new alternatives for the

problems of target detection and imaging. Indeed, coherent laser radars based

on the mid-infrared technology of CO2 lasers and HgCdTe photodetectors are

under development at a number of laboratories [1]- [5]. The performance of

such systems is strongly affected by the speckle patterns that are produced

by target roughness on wavelength scales [6), [7]. This document is the final

report on a research program to develop a quantitative system theory for such

radars through a combination of analysis and experiment. The central issues

for this program were the impact of laser speckle on fundamental pixel sta-

tistics [8] -[10] and on the design and performance of multipixel target

detection processors [11] -[13]. In both cases, emphasis was placed on multi-

dimensional, e.g., range and intensity, measurements. Moreover, the funda-

mental pixel statistics, which served as the foundation for the detection

analysis, were experimentally verified [9, [10] under a collaboration

arrangement with the Opto-Radar Systems Group of the MIT Lincoln Laboratory

using one of their test bed CO2 laser radars [1]. Finally, preliminary

analyses were begun in the areas of unconventional laser radar imaging [14]

and laser radar tracking theory [15], and laser reflectometer measurements

[16] were used to support theory from [17]. In what follows, we shall sum-

marize the principal results that were obtained in the preceding problem

areas.

Speckle Statistics [8]:.

In order to understand the impact of speckle fluctuations on the full

panoply of coherent laser radar measurements, we derived the transverse and

longitudinal degrees of coherence for speckle targets observed via heterodyne

detection. This work elucidated hitherto unidentified interactions between

'f -1'N~z 11 iii~e Ir ' w -P6 I
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various measurement-configuration parameters that affect speckle-target corre-

lation scales, and hence laser radar performance.

Pcak-Detection Pixel Statistics [91, (10]:

In 2-0 pulsed imager and 2-D Doppler imager radars, the intermediate

frequency return signals are generally filtered, envelope detected, thresholded,

and peak detected in a pre-processor subsystem [1], [18]. We have analyzed and

experimentally verified the resulting pixel statistics produced with such

systems by speckle targets, and have quantified the associated dropout and

anomaly effects in range and Doppler measurements.

Multlpixel Multidimensional Detection Theory [11] -[13]:

We have addressed the somewhat idealized problem in which a 2-D pulsed

imager laser radar is used to detect the presence of an extended statistically-

uniform speckle target embedded in a statistically-uniform extended speckle

background when the target location and target contrast are unknown. Quasi-

optimum intensity-only, range-only, and joint range-intensity processors were

derived, and receiver operating characteristics were computed for the intensity-

only and range-only cases. This work is important because it builds from the

correct pixel statistics found in (9], [10], and because the intensity-only and .

range-only processors coincide with ad hoc approaches already in use. The

work's greatest significance, however, lies in its quantitative performance

predictions, which permit assessing tradeoffs between radar system parameters,

e.g., spatial resolution, range resolution, etc., and target detection

performance.

Target Reflectivity Measurements [16]:

We performed a series of reflectivity measurements on a variety of cal-

ibration plates and spheres using an incoherent 10.6 um wavelength reflec- i
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tometer. Reflectometer data for the plates were found to be in close agree-

ment with measurements collected with the MIT Lincoln Laboratory 2-D pulsed

imager laser radar test bed, as expected from theory [17].

Unconventional Laser Radar Imaging [14]:

We have been developing system theory results for laser radar versions

of l-D and 2-D synthetic aperture radars (SARs) and range-Doppler (RD) imagers.

In both cases our focus has been to understand the combined effects of target

speckle and local-oscillator shot noise on system performance. The effects

of atmospheric turbulence and laser frequency instability are also being

treated.

Laser Radar Tracking Theory [15]:

We have begun developing a theory for laser radar tracking of extended

speckle targets. Thus far, we have solved the track-while-image problem in

which an intensity centroid estimate from the nth image frame is used as the

observation equation for a Kalman-filter tracker. The updated target position

estimate obtained from this tracker is then used to set the radar's optical

axis for the (n + l) st image frame.
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APPENDIX

Nultipixel, multidime*nAional laser radar system performance
iartin B. Mark

Department of Electrical Engineering
United States Air Force Academy, Colorado 60840

Jeffrey H. Shapiro

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

The superb angular, range, and Doppler resolutions of coherent laser radars have led
developers to design imaging radars in multiple measurement dimensions. Designing
processors to detect targets in the images generally proceeds in an ad hoc fashion and it
is difficult to predict the performance of the resulting processors. This paper proposes
simplified statistical models for the target, radar, and signals then uses classical
detection theory to derive quasi-optimal processors which take advantage of the multipixel,
multidimensional nature of the image. The target model is of a radar looking down at a
vertical target against a uniform, sloping background. The paper also presents the
receiver operating characteristics (ROCs) for the resulting generalized likelihood ratio
test (GIRT) processors. The receivers may use any combination of intensity, range, and
Doppler measurements. The target reflectivity, range, and angular location are unknown and
the background reflectivity is also unknown. The forms of the quasi-optimal receivers
provide analytical confirmation of the principles used in many ad hoc processors. The ROCs
not only give bounds on the performance of any ad hoc processors and prove the range-only
processors are usually superior to the intensity-only processors, but go on to predict how
much better and under what conditions. The ROCs also predict how performance changes as a
function of resolution in one or several measurement dimensions.

Introduction

The advent of laser sources with high stability, spectral purity, and sufficient power
has allgwd 3 system designers to translate much of microwave radar theory to the optical
regime. ' ' Because the spatial resolution obtainable at optical and infrared (IR)
wavelengths is on the order of microradians, most researchers have opted for building and
analyzing systems which perform a raster scan of the target and build an image of the
target much like a television image. These radars are capable of building intensiy,
range, or Doppler images or using any combination of these measurement dimensions.
Although there has :engnmch work on analyzing the statistics of the target returns on a
single pixel basis,''' most of the work on processing the multipixel images has rested
on ad hoc processors or parallel results f ro~naplications in the fields of robotics,
machine vision, and artificial intelligence. I Although these approaches to image
processing have produced useful processors, they ignore the underlying statistical nature
of the image and it is very difficult to predict the processor's performance or how the
performance might change as various system parameters change. This work extend 2 models and
single pixel probability density functions (pdfs) introduced in earlier studies to
construct pdfs for the multipixel, multidimensional image data. These density functions
(and the results which follow) are suitable for radars which measure target and background
reflected i45ensity, range, velocity (Doppler shift), or any combination of these
parameters. (This paper, however, deals only with intensity and range.) The models are
slightly simplified, but still allow for unknown target angular location, range, and
reflectivity and unknown background reflectivity. Generalized likelihood ratio test (GLRT)
processors and their performance measures, including receiver operating characteristics
(ROCs), are derived for the binary hypothesis testing problem. From the ROCs it is
possible to predict the impact on system performance from changing the various system
parameters like radar optics aperture, radar power, range resolution, and Doppler
resolution, to name only a few. These ROCs define the fundamental limits to the
performance of any processor imposed by the statistics of the signals. They are
particularly useful as benchmarks for comparing real processors. The GLRT processors
provide analytical confirmation of some of the processing principles used in many ad hoc
approaches.
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Tarelt ad radar Models

Mmxv imo__he__i teat ta

his Work is emeerned with the iesiem of deciding whether oc not tlre is a target in
a give volume of soan. This is tie binary hypothesis testing problem t the radar makes
MmoasGmtS (reeives target returns) over a volume of sPaCe and uses the measurements to
deeide whether there is a target in the volume (hypotnesis a is true) or there is no
targe ti tmhe volume (hypothesis so is true). Figure I pictires the problem for a volume
defined by the angular uncertainty a and range uncertainty L . ?he cedar makes
measureemts is the volume by raster scanning the radar beam 1ttern across the target
regiem defined by the angular uncertainty ilz. The radar must discriminate between target
and background while it does not know the tirget°s range, angular location, or
reflectivity.

IF simia mariel

The laser redar model will be of a compact, monostatic, coherent laser radar. The radar
beam pattern is raster scanned across an uncertainty region au which my contain a target.
Ihe lasor transmits a scte of pulses so the coceived signal, after heterodyning, is a
series of either target oc background returns (depending on which is illuminated) plus
local ocillator (LO) abet noise. Bach target oc background return forms one picture
element (pixel) Of the resulting raster scanned image. we masume pixels ace essentially
nom-overlapping and, hence, independent, we will consider only purely speckle reflectors
in this work. for a angling radar, the pulses will be assumed to be short duration,
transform limited wavefocms which do not resolve any range variations within a pixel. We
follow the heterodyne detector with a filter whose impulse response is matched to the
transmitted wavefoc. The neat step is to square and peak detect the filter output. The
peak detector outputs are then two random variables, , the intensity of the peak, and to,
the maximum likelihood (M,) estimate of the reflector rane. These outputs are our
measured data and their pdfs are known. This pre-pcocessor structure thshown in Figure 2.
This structure follows that used in many system currently under study, ' so the results
ace easily compared with data from real systems.

Soetrv mla"

Figure 3 shows the meal for the laser and target geometry. The radar is above and
looking down on the target which is vertical to the ground. The target angular subtense is
greater than a radar beam width, so the target is resolved in angle space. We will call U
the number of pixels on the target. All target pixels will occur at about the same range
since the target is vertical, however, the background pixels will appear to slope away from
the radar. Further, if we know the radar's height above the ground and its pointing angle,
we can calculate the range to the background if it is reasonably smooth. Our model will
assume this range is known. This model is particularly well suited for an airborne radar
looking for targets on the ground.

If we know the target size (angular extent) and shape, we can tile the radar field of
regard with N target shapes as in Figure 4. We will call one observation of the radar
field of regard (NM pixels) a frame and each target shape (W pixels) a subf raM. We will
henceforth assume the targets align with the subframe boundaries (the subframe contains
either an entice target or no part of a target) so the subfraMetare independent (have no
pixels in come). Later research has relaxed this assumption.

sisale pixel density functions

In order to derive the optimal processors, we need to know the density functions for the
masurements. Sim the pixels are all independent, we need to find the density function
for a single pixel. From this density we can generate multiptel density functions easil 
The single pixel density functions for this receiver structure have been published before °

and are repeated below. Understanding the density and the resulting processors, however,
relies on understanding the operation of the peak detector as well.

We can model the operation of the peak detector by dividing the range uncertainty L
into Q bins of width equal to the radar range resolution. The output of the square laV
envelope detector is approximately constant over a bin tine and the bins are approximately
independent. For any one bin, the intensity output is an exponential random variable with
mean I if there is no reflector at that range or mean CVR+l if there is a reflector at that
range (whtge CPR is the usual speckle target radar carrier-to-noise ratio for the
reflector ). Figure S shows the range bin model with the Q bins separated into On bins
known to contain the background pixels and Q potential target range bins. The target
falls in bin 0 and the background falls in tin Q%, The peak detector selects the largest
of the 0 intensity random variables and declares his as the reflector intensity and the

11 . 1 111
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a8o0iated range value as the reflector range for the pixel in question. If this procedure
selects the wrong bin, we say an anomaly has occurred as pictured in Figure 5.

The resulting marginal statistics el2:

p. x) - (1-e~ a s ) (0-1) ( 1 -X)Q'.te-X u(x) + ae.x (l-'x) Q-1 u(x) (1)I '

Pr(Q-q) - (-P ) 6qQ + A (1-6q 0 )

where a a (CUR l)"1, random variable a is the bin where the peak occurred, Q is the bin
actually containing the target or background reflector (where i - t or b), aAd PA is the
probability of an anomaly given by:

PA a r(Q) r..) - a( log(Q) - 1/2Q + 0.577 ] (3)
r (Q+a)(3

where r() is the gamma function. The approximation is valid for large CNR values. 14

These results are specifically for the ranging radar. However, it is possible to tow
an exact duality between all the ranging radar results and those for a Doppler radar. it
is also possible to demonstrate an exact1,uality with a range and Doppler radar if it has
an ambiguity function which is unimodal. Henceforth, all results are for the ranging
radar with the appropriate analogies to Doppler systems understood.

Binary detection receivers

With pixel statistics in hand, we can derive the optimal receiver for choosing between
the two hypotheses H and H.* We will use the Neyman-Pearson criterion which constrains
Pt, the probability 8f fals8 alarm, tote less than or equal to a specified valj and
mnimizes PN# the probability of miss. The result is a likelihood ratio test

27RIH (ijH1 ) H 1,

A((i) ) (4)

where the superscript (f) emphasizes the data vector F and the likelihood ratio ()) are
the measurement data and the likelihood function for the entire frame. Since all pixels
give independent measurements (minimal beam overlap) and the target is entirely in one
subframe, the frame density function is simply the product of the subframe density
functions which are, in turn, the product of the pixel density functions. The threshold A
is chosen to seat the PF constraint with equality.

Unknown carameters

The density functions introduced in the last section depend on unknown, non-random
parameters like the target or background range bin, Q . We elimilite the unknown
parameters by using the generalized likelihood ratio &est (GLRT):

m~x{2ijH1VrHl#A)1 H,
() A 1A5)

q mtx{2uIjjO'X(riHO,;)1 f

where X is the unknown parameter vector. -rot our problems, the unknown parameters are m
the actual subfcame containing the target; Q , the actual target range bin numberl and 68th
target and background CURs8 CURRT and CNR B , respectively.

Introducing the GLRT here is a crucial step in the development. The unknown parameters
involve the multipixel nature of the target and allow us to extend single pixel statistical
analyses to the multipixel case.

we can make additional simplifications to the frame likelihood ratio. Since subframes
do not overlap and the target is always aligned with a subfrase (by assumption) we can
separate the frame density function into subfrase density functions which only differ,
under hypotheses U and H , for the one subfram m . We can further simplify the density
functions because the unkhon parameter vector A c intains some elements which affect the
density under hypothesis a O but not under *l and vice versa. This fact allows us to make a
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simplification for large values of N (the number of subframes per frame). The result is:

Af max (A )}(6)q <m<N m 91M(6

g - i f~c (gina_ )

(S)" "io'A" )
Am -IIS)H) Al~ (' (a)jA0 7

where the (a) superscript inliyates a subframe quantity and the m subscript is still a sub-
fr inindex. (Hypothesis H " indicates a target present in this subframe and hypothesis
ar indicates no target Uh this subframe). The Vectors A0 and A 1 are the portions of the* praseter vectorA affecting the density under hypotheses H0 and R1 , respectively. The
indicates an ML estimate of the parameter subvector.

Bec@ie of the form of Equation (6) it is elly to shoy the frame level statistics Pp M
and PM depend on the subfraae statistics P. and PN in a simple fashion:

]p f) Pr( AM A IH 0

-1 ti P(S) 1M(8)

Nf =P Pr( A(s) > X I H0 S)
F gui 0

Pm) Pr( AM <A H1N g

P(S PMi5  I - F)/ (9)

• ()- Pr(() Am I H o(s )

g 1 .

where the approximations are valid for the usual P. s)<<l case.

These equations have important physical interpretations. The false alarm probability
rises linearly as the number of subframes (the angular search area) increases. The miss
probability is approximately independent of the search area. A detection occurs if any
subframe statistic clears the threshold, even if it is not the correct subframe. The
probability of detection on the wrong subframe is qua, small, however, since this is
basically a subframe false alarm with probability PF

intensi ty-only processors

First consider the processor which uses only the measured, peak detected intensity for
each pixel. Because of the peak detector the pdf for t is complicated and it is difficult
to derive an exact optimal processor. To derive the processor, we used a Central Limit
Theorem approximation to the density. This gives an eminently reasonable processor as we
shall shortly see. To analyze the processor performance, there are bettli approximations
to the tails of the density function (based on modified Chernoff bounds) which give more
accurate results than the Central Limit Theorem.

Applying the Central Limjs Theorem approximation, performing the required algebra, and
simplifying the expression, the final log likelihood ratio for the quasi-optimal
intensity-only processor is:

log A a max {lo A(S)
q 1<m<l 9ui

N . (10)

a max M(I n I I 'b

where I is the measured intensity for the n-th pixel in the i-th subframe, and ub is the
UL estilte of the background mean intensity under hypothesis HO:

I - . .. f~ ! I.
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The processor in Equation (10) ha4a reassuring form. It says we make an estimate of
the average background intensity and.compare it to the average intensity of each subframe.
The subframe whose intensity is most different from the background is declared the target
subframe if the difference is greater than the threshold. If the difference is less than
the threshold, we declare U s no target present. In other words, the processor searches
for target-to-background invensity contrast. This is exactly what intuition tells us to do
and what many researchers have done with their ad hoc processors.

Ranae-only processor

now consider a processor which uses only the range bin information, %, the measured
bin number where the peak intensity occurred. For this processor we use the single pixel
range statistics given earlier, introduce the multipixel statistics by using pixel
independence, and make GLRT processors by separating the unknown parameters under
hypotheses No and Ul. The approximate generalized likelihood ratio which results is:

A - max{" }- max ( jm -k ) (12)
g <m<M gm inM <nM

A N
where: jm max { . } and km  (13)

Here Q is the (known) range bin number for'the background in pixel m, n; q., is the
peak dete"Brr output bin number for pixel m, n, and 0 is the presumed target Tinge bin
number for the m-th subframe. in words, k is the numlr of times the peak detector found
the peak intensity occurred at the correctackground range in the m-th subframe. Random
variable j is the number of times the peak detector found the intensity peak at the
presumed tIrget range bin in the m-th subframe. The presumed target range bin, for a
particular subframe, is the potential target range bin which the peak detector chooses more
often than any other potential target range bin for that subframe.

Physically, Equation (12) says the processor determines whether the presumed target
range bin or the known background range bin was selected more often by the peak detector
for each subframe. The more often the presqiqd target bin is selected, relative to the
background bins, the larger the statistic Ax-. If the maximum of these statistics over
all N subframes exceeds the threshold, the pFBcessor declares H * target present. In
other words, the processor looks for the range measurements to iggregate or clump in either
the known background range bins (if no target is present) or one of the Q potential
target range bins (if a target is present). Colloquially put, the process~r searches for
range contrast. In particular, owing to the nature of the Figure 3 geometry, this range
contrast can also be called verticality.

Receiver performance results

It is possible, at least in theory, to find performance measures for the processors just
derived by integratin 4 the pdfs over the proper ranges, set by the detection threshold, to
get P and P values. In practice it is difficult or impossible to carry out these
integrations except numerically or with approximation techniques. In this work we carried
out the discrete range-only processor analyses numerically and the continuous jqtilsity-
only processors analyses using approximations derived from the Chernoff bounds

Parameter interdenendences

The processor equations contain many parameters: N, the number of subframes per frame,
N, the number of pixels per subframei Q, the number of range bins per pixel; CYR , the
target CNRJ CUR,, the CYR of the background pixels; and the contrast rati lf CNIt/CNRit.
Some of these prameters depend on each other through the radar equation, so we cann~t
change them without accounting for the effect on other parameters (most notably, the CURS).
It is important to understand these relationships because we want to compare cdars with
different resolution capabilities imaging the sane target and background environment. If
we do not account for these parameter interdependences, the comparisons are not valid.

For simplicity, we examine the radar equation with a, the atsujeric extinction, a 0,
and optical efficiency, 1 * I, so the radar equation reduces to :

Wfiaal WM lul



J2 9CUR - i-t or b) (14)2
hv ff BL.2

where n is the detector quantum efficiency, hv is the optical photon energy, 0 is the
speckle reflector diffuse reflectivit (which ?s constant), P is the transmittir peak
power, B is the matched filter bandwidth, A is the radar optTcs area, and L, is the
reflector range. The subscript i can be eilher t, for the target, or b, for the
background.

If we change A , the radar aperture area, we will change N, the number of pixels on the

target. Both P , the radar peak transmitted power, and B, the radar bandwidth, are related
to Q, the number of range bins per pixel, and also whether the laser itself is peak power
limited or average power limited.

(max)(mxIf we define a CUR at maximum radar aperture, ARm , and maximum bandwidth, B(max):

CNR(0 ) " (( %) max) PT
- hvo ) _ ( T (i - t or b) (15)

we can find equations for CNRi at various N and Q values for peak (PT) and average (PAV)
power limited lasers:

CNR(0 ) 0 (max) N limited

CNR - 01 (i- t orb) (16)1 TN ()
CUR !0) N : PAV limited

The value Q(max) exists because if 1git too large, we would violate the assumption of
a ilt? unresolved target. The value N simply represents the maximum aperture size,

.. , for any given system design.

In all the calculations that follow, we set N(max) a 40 pixels, Q(Max) a 10,000 bins,

and K a 1000. (Changing radar parameters does not affect K.)

Intensity-only processor

First we will examine the intensity-only processor, Equation (10), dependence on target
CUR then look at the dependence on Q and N. In each case we plot P, as a function of the
one variable of interest and keep all the others constant. Figure 1 plots P versus CUR
for N - 10 (part a) and N a 20 (part b). In each case 1 plot is showl for cfntrast rati&s
of c * +5 dB and +10 dB and for two PF values, P. - 10" and P. - 10- . N and Q are
constant at N a 1000 and Q a 10.

There are two important aspects to these plots which bear explaining. First, as CUR
gets large, the P approaches a non-zero asymptote. This occurs because we approach th&
speckle limited parformance regime. At high CNRt values there is essentially no LO shot
noise to contend with and performance is limited by the speckle induced fluctuations in
target and background intensities. Second, for large positive contrasts, the performance
improves. For negative contrasts, even large ones, the performance is very poor. For the
no contrast case it is easy to understand why the processor can do no better than to guess:
it is looking for contrast and there is none. The poorer performance at large negative
contrasts than at large positive contrasts is a result of the asymmetry of the density
functions for the intensities under the two hypotheses. For negative contrasts, the target
mean intensity is lower than the background mean intensity. However, the speckle induced
fluctuations in the background measurements often give intensities less than the background
man and closer to the target mean intensity. This makes the two virtually impossible to
distinguish at realistically low PF values.

Figure 7a shown P as a function of Q, the number of range bins, for a constant average
pawer laser while Figure 7b shows the same information for a constant peak power st0 er. In
each case plots are for twovalues of N, 10 and 20,pixels, and two values of CNR , 16
and 20 dl, with fixed values of K * 1000, P a 10 ", and C a +10 dB. The figures
incorporate the CYR corrections for changing N and Q values.

For the constant peak laser power model, the performance falls at high Q values since

the CUR depends on Q. As Q increases, the CUR drops until it moves away from the speckle
limited performance regime. The weak Q dependence in the constant average laser power



model performance is due to the weak dependence of anomaly probability PA# on Q shown in
Equation (3). As Q increases, the probability of anomaly also increases slowly which
causes a drop in performance.

Figure # plots P versus K" the u1mber of pixels per subframe, for a constant average
power laser, while Fgq95 8b plots tab same quantities for a constant peak power laser.
The pis are for CUR'' values of f* and 20 dl and Q values of 10 and 1000 bins. Again,
P - 10 and N a 100b subframes. Th1 3Pjte account for the CUR variations with N and Q.
lfo. the form of the Chernoff bounds, * we expect the performance to improve
exponentially for increasing U values and the figures bear this out. The differences in
the two plots are due to the differences in performance for changing Q values between the
two laser models. These effects we have just discussed above.

lanee-onlv processor

Now we examine the range-only processor of Equation (12). We will examine the same
variables we did for the intensity-only processor. Figure 9 plots P versus CUR, for N *

10 (pert a) and K a 20 (part b). Three contrast ratios are shown anlr two P valse, while
O a 10 and N a 1000 are constant. Here the performance improves as CUR gets larger and
does not bottom out at a non-zero asymptotic value. As CUR gets largef, P goes to zero
and there are no anomalies to confuse the processor, so it San perform acbitrarily well.
We also notice for a fixed CUR , performance gets poorer as contrast increases. This
occurs because as C increases tor a fixed Cri, CUR must decrease. As CU% decreases, the
processor has more difficulty distinguishing ie bakg round and performance falls off.

Figure 10 plots P_ versus Q for constant average laser power (pert a) and constant peak
laser poaer (pert b). For the constant average power laser, the performance increases as Q
increases for a while then starts to fall slowly. This is a result of two competing
factors. As Q increases, the probability of getting anomalies (which occur in random bins)
to clump together well enough to masquerade as a target falls. This improves performance.
However, as Q increases, P also increases appcoxiately logarithmically as shown in
Equation (3). This causes performance to fall. For the constant pcak power laser, the
increase in CUR- as Q falls overwhelmas the weaker Q dependence in PA. Performance improves
quickly as Q de7reases.

Per forMance comar sons

There are many ways to present the performance data and the number of variables we have
available makes it difficult to present more than a small portion of the data at one time.
Figure 11 shows a way to present the data that could be particularly useful to a system
engineer. in this plot we select specified values for PF and P at a certain CUR and 4.
Then we check to see if the range-only or intensity-only processor meets the perfarmance
criteria for various N and Q values. These plots then indicate the minimum combinations of
angular and range resolutions required to meet the performance specifications.

Figure 11, for the constant average laser power model, shows the more significant impact
of laser aperture size, A , (reflected in the U value) on performance relative to the range
resolution parameter Q. Isnerally the processor either meets requirements for a given N or
not, regardless of 0. Figure lla is f95)relatively high performance requirements: PD
99.90 at P * 10- and fairly low CUR values. At 16 d3, we find the point U - 20
pixels, Q 1 10 bins where the intensily-only prcocessor out-performs the range-only
processor. At higher Q values, ) 300, the intensity-only processor fails, but(5e range-
only processor satisfies the requirements for Q , 30. If we increase the CUR t by only 4
dl, we can met requirements with either processor as long as U > 20.

in Figure Ilb we relex the performance requirements somewhat to PD - 95% at PT a 10-3,
but we reduce the contrast to only S dl. Here the intensity-only processors need at least
N a 30 pixels to met the relaxed requirements because they perform so poorly at low
contrasts. The jeqge-only processors perform well enough, however, that for a 4 dt
increase ins CUR , we can cut angular resolution in half, from U a 20 pixels to N a 10,
pixels and tilX meet requirements.

Figure 12 is a presentation identical to Figure 11, but now for a laser of constant peak
poer. Here the processors both perform better at low Q values and poorer at high Q values
because the CUR rises for smaller Q values, as shown in Equation (16). Now it is possible
for the range-only processor to meet the performance criteria at lower angular resolution
(i values) than before because of the increased CUR at low Q values.

In this paper we have seen how it is possible to derive nearly optimal processors for
the binary hypothesis testing problem and use the statistics to find the performance of the
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processors. We found the quasi-optimal procesuors are such like those researchers have
used on an ad hoc basil . Al though this paper presented only the ranging radar results,
exact dualities exit which apply the results directly to radars measuring intensity,
range, Doppler* or any combination ot, these three. The processors were derived from
realistic models assuming numerous ujknown parameters: target range# target angular
position, target reflectivi ty, and bckg round reflectivity. Since it is Possible to
predict the performance of these processors analytically, we were able to show how
performance varies as a function of target six*, angular resolution or radar aperture,
range resolution, target-to-background contrast* and overall CUR. A few case studies were
presented as examples. These results make it possible for a system engineer to select
appropriate design criteria for a laser radar and predict how changes in one parameter
interact with other parameters. They are also useful because they demonstrate the limits
to system performance dictated by the noise and speckle statistics. These results are
useful as benchmarks against which other processors, even ad hoc ones, can be measured.
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PEAK DETECTOR OPERATION
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Figure 5. Range-bin model for peak Figure 6 (a). Intensity-only processor miss
detection. probability, P14 vs. target

carrier-to-noise ratio, CNR
for Nelb pixels per subframi,
M01000 subframes per frame, and
Q=10 range bins. Upper two
curves are for c*5 dB target
contrast; lower two curves are
for C-10 dB target contrast.
Dashed curves are for fa. se-
alarm probability PF-1l0 ;i
solid curves are for PFalO 3
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Figure 6 (b). Intenslity-only processor miss Figure 7 (a). Intensity-only processor miss
probability, F14, vs. target probability, PM, vs. number of
carr -ier-to-noise ratio, CNRt, range bins, Q, for constant-PAV
for U-20 pixels per subframe, laser model with MalOOO aub-
M-1000 subfraMes per frame, and frames per frame, Pp-10O0 false-
Q=lO range bins. Upper two alarm probability, and 4-10 dB
curves are for 405 dB target target contrast. Upper two
contrast; lower two curves are curves are for N-1.0 pixels per
for Col0 dB target contrast. subframe; lover curves are for
Dashed curves are for fa se- Nw20 pixel s per su~ ae. Dashed
alarm probability PF010 i_ curves are for CNRqT=20 dB;
solid curves are for P~,l 3 0ol, c1urves are for

F 11 I) a16 dB.
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Figure 8(b). Intensity-only processor Miss Figure 9 (a) . Rane-only processor miss proba-
probabliy, ' F, Vs. number of bility, PM, vs. target carrier-
SubfraMW Pixels, N, for to-noise ratio, CNRt, for HslO
onstan-PT laser model wih pixels per subira~me, M1000 sub-Ma1000.subrrames per frame, frames per frame, and QwI0 range

Pp-10-o false-alarm probability, bins. Rightmost two curves are
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Arrows indicate curves for middle two curves are for ;05 dBQ=10 and Q-1000 rane bins. target contrast; leftmost two
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Figure 9 (b). Range-only processor Miss Figure 10(a). Range-only processor miss prob-
probability, P;M, Vs. target ability, PM Vs. number of
carrier-to-noise ratio, CNRt, range bins, Q, for ConStant-PAV
for N-20 pixels per subfraae, laser model with N4100gb
11000 subfraMes per frame, frames per frame,Pp1
and Q-10 range bins. Rightmost false-alarm probability, and
two curves are for Cal0 dB tar- ;slO dB target contrast. Upper
get contrast; leftmost curve is two curves are for N-10 pixels
for 405 dB target contrast. per subt'rame; bottom curve Is
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alarm probability PpslN; Dashed curve is for CNRq -
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Figure 10 (b). Range-only processor miss prob-
obility, PM, Vs. number of range
bins, Q: for constant-PT laser
model with MaJ000 subrrames per
frame, PpU1O- false alarm prob-
ability, and Col0 dB target con-
trast. Leftmost two curves are
for NinlO pixels per subframe;
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Figure 11. (a) Target-detection performance trade-offs for conStant-PAV laser model with
1000 subframes. High-pejformance/high-contrast case: "R" - range-only

processor achieves PM !10- at P -10 -0 for c )10 dB target contrast;
"I" intenity-only processor acnieves P11I0 at pF -10-1 for -10 dB
target contrast.
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Figure 11. (b) Target-detection performance trade-offs for constafl-PAV laser model with
M-000 subframes. Low-performance/low-ontrast case: "R" - range-only
processor achieves PM • 0 "0 5 at PF a 10 for C - 5 dB target contrast;
"I" a Intensity-only processor achieves P1M0.05 at Pp - lo-3 for ; * 5 dB
target contrast.
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Figure 12. (a) Target-detection performance tradeoffs for constant-PT laser model with
M1-1000 subframes. gh-prformnce/hgh-contrast case: "R" a range-only
processor achieves PM 11 0 -  at Pp =10- for -0 dB target contrast;
"I" a intensity-only processor achieves PM _I0- at PF 10-6 for 1 0 dB
target contrast.
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Figure 12. (b) Target-detection performance trade-offs for constant-PT laser model with

M 01000 subframes. Low-performance/low-contrast case : "R" - range-only

processor achieves PM 1 0.05 at Pu.-10- 3 for c -5 IB target contrast;
"I" - intensity-only processor achieves PM< 0.05 at PF-1o 3 for
r =5 dB target :ontrast.
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