
PHOTOGRAPH THIS SHEET

LEVEL INVENTORY

00 z ,- .FW /- r - *7 -./7 7
DOCUMENT IDENTIFICATION

t eias ammdo -*v'

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRA&I

DTIC TAB

UNANNOUNCED IDTIC
JUSTIFICATION 'ELECTE0

.FFEB 0 9 1988

BY
DISTRIBUTION
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL ________________

DATE ACCESSIONED

__ _ _ _ _ _ _ _ _ _ QU)ALITY

DISTRIBUTION STAMP

_DATE RETURNED

2 05 09fT

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY DE USED UNTIEDTIC cLpcnr 70A STOCK IS EXHAUSTED.



A"WAL-TR-87-1177

SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

0 Allen Newell, Paul S. Rosenbloom and John E. Laird

Carnegie-Mellon University
I Computer Science Department

Pittsburgh, PA 15213-3890

December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543



NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER RICHARD C. JONES.

Project Engineer Ch, Advanced Systems Research Gp

Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFTAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPOT DCUMNTATON AGEForm Approved
REPOT DCUMETATON PGE0MB No. 0704: V 788

Ia. REPORT SECURITY CLASSIFICATIO~N lb. RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2 b. DECLASSIFICATION i DOWNGRADING SCHEDULEisul itd

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-87-1 177
CMU-CS-86-171_________________ ______

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Crei-elnUniversity (if applicable) Air Force Wright Aeronautical Laboratories
Caregi-MelonAFAL/AAAT-3

6c. AuL)ESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

* Computer Science Dept Wright-Patterson AFB OH 45433-6543
* Pittsburgh PA 15213-3890

Ba. NAME OF FUNDING /SPONSORING j8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION .(if applicable) F33615-84-K-1520

8'c. AD D RE SS (City, Sta te, a nd ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK ~ WORK UNIT
ELEMENT NO. NO. NO, ACCESSION NO.

161101E 4976 00 01
11. TITLE (include Security Classification)

Soar: An Architecture for General Intelligence

12. PERSONAL AUTHOR(S)

Allen Newell, 'Paul S. Rosenbloom, John E_ Laird
13a. TYPE OF REPORT 13b. TIME COVERED p14. DATE OF REPORT (Year, Month, Day) 11.PGE COUNT

Interim IFROM _ ___TO 3 987 December
16. SUPPLEMENTARY NOTATION

17. COSArI CODES 18, SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

ffFIELD 
GROUP 

SUB-GROUP

zz'I-F
19. ABSTRACT (Continue on reverse If necessary and identify by block number)

I-le, ultimazte goal ()f work in cognitive architcctUrc is to pfmvide tie fouindationl for a system

capable of genecral initelligecnt behav ior. 'Ihalt is, tie goal1 is to provide tie underlyig structurc that

%Vould enable a systemi to performn the full range of cognpitivle tasks. ellPlOy thle ruill range or

prohleim-sol \illg meithiods :111( represenitationlS appropriate for dhe tasks, and learni about all Ispects

of the tajsks and its perforilanTce onl them. InI this article w e presenit Soar, anl implemented

Proposal for soch xn ar1citcture. Wec clescribc itS organ1izational- prIinlcileIs, tI)e stem as CLr

royntly, imlumenlC~teCli.nd dIcmlonStraiws Of its capabilities.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
fUNCLASSIFIED/UNLIMITED CJ SAME AS RPT. 0 DTIC USERS Unclassified

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b rELEHQN (/n lue Area Code) I22. OFFC M0O
Chahira M. Hopper e53s55/b I AFUAL/ AM-

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified



Table of Contents
1. Prcvicw 3

1.1. Uniform task representation by problem spaces 4
1.2. Any decision can be an object of goal-oriented attention 6
1.3. Uniform representation of all long-term knowledge by a production system 6
1.4. Knowledge to control search expressed by preferences 8
1.5. All goals arise to cope with impasses 8
1.6. Continuous monitoring of goal termination 8
1.7. The basic problem-solving methods arise directly from knowledge of the task 9
1.8. Continuous learning by experience through chunking 9

2. The Soar Architecture 10
2.1. The Architecture for Problem Solving 10
2.2. The Working Memory 12
2.3. The Processing Structure 15

2.3.1. The elaboration phase 17
2.3.2. The decision procedure 18
2.3.3. Implementing the eight puzzle 23

2.4. Impasses and Subgoals 27
2.5. Default Knowledge for Subgoals 29
2.6. Chunking' 33

2.6.1. The chunking mechanism 34
2.6.2. An example of chunk creation 37

3. Discussion 40
3.1. Combining knowledge and problem solving 40
3.2. Weak Methods. 43
3.3. Learning 46

3.3.1. Caching, within-trial transfer and across-trial transfer 46
3.3.2. Learning in an expert-system task 51
3.3.3. Chunking, generality, and representation 53

4. Conclusion 57
References 59

V



List of Figures
Figure 1: Summary of Soar performance scope. 3
Figure 1-1: The structure of problem-spacc search for the eight puzzle. 5
Figure 1-2: The trce of subgoals and thei., problem spaces. 7
Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.) 11

Figure 2-2: Architectural structure of Soar. 12
Figure 2-3: Snapshot of fragment of working memory. 13
Figure 2-4: Working memory representation of the structure in Figure 2-3. 15
Figure 2-5: Graphic representation of an eight puzzle state. 16
Figure 2-6: A sequence of decision cycles. 17
Figure 2-7: The encoding of preferences. . 20
Figure 2-8: The semantics of preferences. 21
Figure 2-9: Productions that set up the eight puzzle. 24
Figure 2-10: Production for creating eight puzzle operator instantiations. 25
Figure 2-11: Productions for applying eight puzzle operator instantiations. 25
Figure 2-12: Search-control productions for the eight puzzle. 25

Figure 2-13: Trace of initial eight puzzle problem solving. 26

Figure 2-14: The subgoal structure for the eight puzzle. 31

Figure 2-15: A trace of steepest ascent hill climbing. 33

Figure 2-16: Partial production trace of an eight-puzzle evaluation subgoal. 37

Figure 2-17: Production built by chunking the evaluation subgoal. 39

Figure 3-1: Task problem spaces for the extended version of Ri-Soar [75]. 41

Figure 3-2: Task operators for the extended version of Ri-Soar [75]. 42

Figure 3-3: Performance of the extended version of Ri-Soar (without learning). 44

Figure 3-4: Weak methods, as patterns of behavior. 47

Figure 3-5: Structure of weak methods realized in Soar [29]. 48

Figure 3-6: Learning in the eight puzzle [33]. 49

Figure 3-7: Across-task transfer in the eight puzzle [33]. 50

Figure 3-8: Learning in RI-Soar. 51

Figure 3-9: Performance of the extended version of Ri-Soar (with bottom-up learning) [75]. 52

Figure 3-10: Transfer possible with macro-operators in the eight puzzle. 56

vi



PAGE I

Soar: An Architecture for General Intelligencel

Soar is an architecture for a system that is to be capable of general intelligence. Soar is to be able to: (1)

work on the full range of tasks, from highly routine to extrcmcly difficult open-ended problems; (2) employ

the full range of problem-solving methods and representations required for these tasks, and (3) learn about all

aspects of the tasks and its performance on them. Soar has existed since mid 1982 as an experimental software

system (in Ops5 and Lisp), initially as Soar 1 [31, 32], then as Soar 2 [29, 35], and currently as Soar 4 [30]. Soar

realizes the capabilities of a general intelligence only in part, with significant aspects still missing. But enough

has been attained to make worthwhile an exposition of the current system.

Soar is one of many artificial intelligence (Al) systems that have attempted to provide an appropriate

organization for intelligent action. It is to be compared with other organizations that have been put forth,

especially recent ones: MRS [221: Eurisko [38, 39]; blackboard architectures [4, 16, 24, 56], Pam/Pandora

[79] and Nasl [40]. Soar is also to be compared with machine learning systems that involve some form of

problem solving [10, 15, 37, 45, 46]. Especially important are existing systems that engage in some significant

form of both problem solving and learning, such as: ACT* [2]; and Repair theory [8], embodied in a system

called Sierra [77]. ACT* and Repair theory are both psychological theories of human cognition. Soar, whose

antecedents have layed a strong role in cognitive theories, is also intended as the basis for a psychological

theory, but this aspect is not yet well developed and i not discussed further.

Soar has its direct roots in a continuous line of research that starts back in 1956 with the Logic Theorist

[53] and list processing (the IPLs) [55]. The line goes through GPS [17, 54], the general theory of human

problem solving [511 and the development of production systems, PSG [48], Psanls [66] and the Ops series [20,

21]. Its roots include the emergence of the concept of cognitive architecture [48], the Instructable Production

System project [67, 68] and the extension of the concept of problem spaces to routine behavior [49]. They also

include research on cognitive skill and it acquisition [11, 35, 50, 63]. Soar is the current culmination of all this

work along the dimension of architectures for intelligence.

Soar's behavior has already been studied over a range of tasks and methods (Figure 1), which sample its

intended range, though unsystematically. Soar has been run on most of the standard Al toy problems [29, 31].

These tasks elicit knowledge-lean, goal-oricnted behavior. Soar has been run on a small number of routine,

essentially algorithmic, tasks, such as matching forms to objects, doing elementary syllogisms, and searching

for a root of a quadratic equation. Soar has been run on knowledge-intensive tasks that are typical of current

expert systems. The tactic has been to do the same task as an existing Al expert system, using the same

lWe would like to thank Dvid Steier and Danny Bobrow for their helpful comments on earlier drafts or this article, and Randy

Gobbel for assistance in the final preparation ofthe manuscript.
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knowledge. The main eftbrt has been RI-Soar [65], which showed how Soar would realize a classical expert

system, RI, which configures Vax and PDP-11 computers at Digital Equipment Corporation [3, 411. RI is a

large system and Ri-Soar was only carried far enough in its detailed coverage (about 25% of the functionality

of RI) to make clear that it could be extended to full coverage if the effort warranted [75]. In addition, Soar

versions of other substantial systems are operational although not complete: Neomycin [13], which itself is a

reworking of the classical expert system, Mycin [71]: and Designer [26], an Al system for designing al-

gorithms. Soar has also been given some tasks that have played important roles in tie development of

artificial intelligence: natural-language parsing, concept learning, and predicate-calculus theorem proving. In

each case the performance and knowledge of an existing system has been adopted as a target in order to learn

as much as possible by comparison: Dypar [6], Version Spaces [44] and Resolution [60]. These have so far

been small demonstration systems, developing them to full-scale performance hzn not seemed profitable.

A variety of different representations for tasks and methods can be realized within Soar's architecturally

given procedural and declarative representations. Essentially all the familiar weak methods [47] have been

realized with Soar and used on several tasks [31]. In larger tasks, such as R1-Soar, different weak methods

occur in different subparts of the task. Alternative decompositions of a task into subtasks [75] and alternative

basic representations of a task have also been explored [31], but not intensively.

Soar has a general mechanism for learning from experience [33, 36] which applies to any task it performs.

Thus, it can improve its performance in all of the tasks listed. Detailed studies of its learning behavior have

been done on several tasks of varying characteristics of size and task-type (games, puzzles, expert-system

tasks). This single learning mechanism produces a range of learning phenomena, such as improvement in

related tasks (across-task transfer)- improvement even within the learning trial (within-trial transfer); and the

acquisition of new heuristics, operator implementations and macro-operators.

Several basic mechanisms of cognition have not yet been demonstrated with Soar. Potentially, each such

mechanism could force the modification of the architecture, although we expect most of them to be realized

without major extension. Some of the most important missing aspects are deliberate planning, as developed

in artificial-intelligence systems [69]; the automatic acquisition of new tasks [23]; the creation of new task

representations [1, 27]; extension to additional types of learning (e.g., by analysis, instruction, example,

reading); and the ability to recover from errors in learning (which in Soar occurs by overgeneralization [34]).

It is useful to list these lacunae, not just to indicate present limitations on Soar, but to establish the intended

scope of the system. Soar is to operate throughout the entire spectrum of cognitive tasks.

The first section of this paper gives a preview of the features of Soar. The second section describes the Soar

architecture in detail. nie third section discusses some examples in order to make clear Soar's structure and

operation. The final section concludes with a list of the principal hypotheses underlying the design of Soar.
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Small, knowledge-lean tasks (typical Al toy tasks):
Blocks world, eight puzzle, eight queens, labeling line drawings (constraint satisfaction),
magic squares, missionaries and cannibals, monkey and bananas, picnic problem,
robot location-finding, three wizards problem, tic-tac-toc, Tower of Hanoi,
water-jug task

Small routine tasks:
Expression unification, root finding, sequence extrapolation, syllogisms, Wason verification task

Knowledge-intensive expert-system tasks:
RI-Soar: 3300 rule industrial expert system (25% coverage)
Neomycin: Revision of Mycin (initial version)
Designer: Designs algorithms (initial version)

Miscellaneous Al tasks:
Dypar-Soar: Natural language parsing program (small demo)
Version-spaces: Concept formation (small demo)
Resolution theorem-prover (small demo)

Multiple weak methods with variations, most used in multiple small tasks:
Generate and test, AND/OR search, hill climbing (simple and steepest-ascent), means-ends analysis,
operator subgoaling, hypothesize and match, breadth-first search, depth-first search,
heuristic search, best-first search. A*, progressive deepening (simple and modified),
B* (progressive deepening), minimax (simple and depth-bounded), alpha-beta, iterative deepening, B*

Multiple organizations and task representations:
Fight puzzle, Picnic problem, RI-Soar

Learning:
Learns on all tasks it performs by a uniform method (chunking)

Detailed studies on eight puzzle, Ri-Soar, tic-tac-toe, Korf macro-operators
Types of learning:

Improvement with practice, within-task transfer, across-task transfer, strategy acquisition,
operator implementation, macro-operators, explanation-based generalization

Major aspects still missing:
Deliberate planning, automatic task acquisition, creating representations, varieties of learning,
recovering from ovcrgeneralization, interaction with external task environment

Figure 1: Summary of Soar performance scope.

1. Preview
In common with the mainstream of problem-solving and reasoning systems in Al, Soar has an explicit

symbolic representation of its tasks, which it manipulates by symbolic processes. It encodes its knowledge of

the task environment in symbolic structures and attempts to use this knowledge to guide its behavior. It has a

general scheme of goals and subgoals for representing what the system wants to achieve, and for controlling

its behavior.
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Beyond these basic communalitics, Soar embodies mechanisms and organizational principles that express

distinctive hypotheses about the nature of the architecture for intelligence. Thcse hypotheses arc shared by

other systems to varying extents, but taken together they determine Soar's unique position in the space of

possible architectures. We preview here these main distinctive characteristics of Soar. "11ie full details of all

these features will be given in the next section on the architecture.

1.1. Uniform task representation by problem spaces

In Soar, every task of attaining a goal is formulated as finding a desired state in a problem space (a space.

with a set of operators that apply to a current state to yield a new state) [49]. Hence, all tasks uke the form of

heuristic search. Routine procedures arise, in this scheme, when enough knowledge is available to provide

complete search control, i.e., to determine the correct operator to be taken at each step. In Al. problem spaces

are commonly used for genuine problem solving [18, 51, 57, 58, 59, 721, but procedural representations arc

commonly used for routine behavior. For instance, problem-space operators are typically realized by Lisp

code. In Soar, on the other hand, complex operators are implemented by problem spaces (though sufficiently

simple operators can be realized directly by rules). The adoption of the problem space as the fundamental

organization for all goal-oriented symbolic activity (called the Problem Space Hypothesis [49]) is a principal

feature of Soar.

Figure 1-1 provides a schematic view of the important components of a problem-space search for the eight

puzzle. The lower, triangular portion of the figure represents the search in the eight puzzle problem space,

while the upper, rectangular portion represents the knowledge involved in the definition and control of the

search. In the eight puzzle, there are eight numbered tiles and one space on a three-by-three board. The

states are different configurations of the tiles on the board. The operators are the movements of an adjacent

tile into the space (up, down, left and right). In the figure, the states are represented by schematic boards and

the operators are represented by arrows.

Problem-space search occurs in the attempt to attain a goal. In the eight puzzle the goal is a desired state

representing a specific configuration of the tiles - the darkened board at the right of the figure. In other

tasks, such as chess, where checkmate is the goal, there are many disparate desired states, which may then be

represented by a test procedure. Whenever a new goal is encountered in solving a problem, the problem

solver begins at some initial state in the new problem space. For the eight puzzle, the initial state is just a

particular configuration of the tiles. The problem-space search results from the problem solver's application

of operators in an attempt to find a way of moving from its initial state to one of its desired states.

Only the current position (in Figure 1-1, it is the board pointed to by the downward arrow from the

knowledge box) exists on the physical board, and Soar can generate new states only by applying the operators.
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Task
Implementation

+

Search-control
Knowledge

TS S W S6

S47

Eight Puzzle

Figure 1-1: The structure of problcm-spacc search for the eight puzzle.

Likewise, the states in a problem space, except the current state and possibly a few remembered states, do not

preexist as data structures in the problem solver, so they must be generated by applying operators to states

that do exist.
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1.2. Any decision can be an object of goal-oriented attention

All decisions ita Soar relate to searching a problem space (selection of operators, selection of states, etc.).

The box in Figure 1-1 represents the knowledge that can be immcdiately brought to bear to make the

decisions in a particular space. However, a subgoal can be set up to make any decision for which the

immediate knowledge is insufficient. For instance, looking back to state S1, three moves were possible:

moving a tile adjacent to the blank left, right or down. If the knowledge was not available to select which

move to try, then a subgoal to select the operator would have been set up. Or, if the operator to move a tile

left had been selected, but it was not known immediately how to perform that operator, then a subgoal would

have been set up to do that. (The moves in the eight puzzle are too simple to require this, but many operators

arc more complex, e.g., an operator to factor a polynomial in an algebraic task.) Or, if the left operator had

been applied and Soar attempted to evaluate the result, but the evaluation was too complicated to compute

directly, then a subgoal would have been set up to obtain the evaluation. Or, to take just one more example, if

Soar had attempted to apply an operator that was illegal at state S1, say to move tile I to the position of tile 2,

then. it could have set up a subgoal to satisfy the preconditions of the operator (that the position of tile 2 be

blank).

In short, a subgoal can be set p for any problematic decision, a property we call uniersal subgoaling.

Since setting up a goal means that a search can be conducted for whatever information is needed to make the

decision, Soar can be described as having no fixed bodies of knowledge to make any'dccision (as in writing a

specific Lisp function to evaluate a position or select among operators). The ability to search in subgoals also

implies that further subgoals can be set up within existing subgoals so that the behavior of Soar involves a tree

of subgoals and problem spaces (Figure 1-2). Because many of these subgoals address how to make control

decisions, this implies that Soar can reflect [73] on its own problem-solving behavior, and do this to arbitrary

levels [64].

1.3. Uniform representation of all long-term knowledge by a production system

There is only a single memory organization for all long-term knowledge, namely, a production system [9,

14, 25, 42, 78]. Thus, the boxes in Figures 1-1 and 1-2 are filled in with a uniform production system.

Productions deliver control knowledge, as when a production action rejects an operator that leads back to the

prior position. Productions also provide procedural knowledge for simple operators, such as the eight-puzzle

moves, which can be accomplished by two productions, one to create the new state and put the changes in

place and one to copy the unchanged tiles. (As noted above, more complex operators are realized by

operating in an implementation problem space.) The data structures examinable by productions - that is,

the pieces of knowledge in declarative form - are all in the production system's short-term working memory.

However. the long-term storage of this knowledge is in productions which have actions that generate the data

structures.
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Long-term

Task-implementation and search-control knowledge

Implementation

operroperator opt operator

Figuel " : T t c seleubgoals and t i selpa on

Figure 1-2: The tree of subgoals and their problem spaces.
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Soar employs a specialized production system (a modified version of Ops5 [20]). All satisfied productiohs

are fired In parallel, without conflict resolution. Productions can only add data elements to working memory.

All modification and removal of data elements is'accomplished by tie architecture.

1.4. Knowledge to control search expressed by preferences

Search-control knowledge is brought to bear by the additive accumulation (via production firings) of data

elements in working memory. One type of data element, the preference, represents knowledge about h16w

Soar should behave in its current situation (as defined by a current goal, problem space, state and operator).

For instance, the rejection of the move that simply returns to the prior state (in the example above) is encoded

as a rejection preference on the operator. The preferences admit only a few concepts: acceptability, rejection,

better (best, worse and worst), and indifferent. The architecture contains a fixed decision procedure for

interpreting the set of accumulated preferences to determine the next action. This fixed procedure is simply

the embodiment of the semantics of these basic preference concepts and contains no task-dependent

knowledge.

1.5. All goals arise to cope with impasses
Difficulties arise, ultimately, from a lack of knowledge about what to do next (including of course

knowledge that problems cannot be solved). In the immediate context of behaving, difficulties arise when

problem solving cannot continue - when it reaches an impasse. Impasses are detectable by the architecture,

because the fixed decision procedure concludes successfully only when the knowledge of how to proceed is

adequate. The procedure fails otherwise (i.e., it detects an impasse). At this point the architecture creates a

goal for overcoming the impasse. For example, each of the subgoals in Figure 1-2 is evoked because some

impasse occurs: the lack of sufficient preferences between the three task operators creates a tie impasse: the

failure of the productions in the task problem space to carry out the selected task operator leads to a

no-change impasse; and so on.

In Soar, goals are created only in response to impasses. Although there are only a small set of architec-

turally distinct impasses (four), this suffices to generate all the types of subgoals. Thus, all goals arise from the

architecture. This principle of operation, called automatic subgoaling, is the most novel feature of the Soar

architecture, and it provides the ba'sis for many other features.

1.6. Continuous monitoring of goal termination

The architecture continuously monitors for the termination of all active goals in the goal hierarchy. Upon

detection, Soar proceeds immediately from the point of termination. For instance, in trying to break a tie

between two operators in the eight puzzle, a subgoal will be set up to evaluate the operators. If in examining
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the first operator a preference is crcated that rejects it, then the decision at the higher level can, and will, be

made immediately. The second operator will be selected and applied, cutting off the rest of the evaluation

and comparison process. All of the working-memory elements local to the terminated goals are automatically

removed.

Immediate and automatic response to the termination of any active goal is rarely used in Al systems because

of its expense. Its (efficient) realization in Soar depends strongly on automatic subgoaling.

1.7. The basic problem-solving iethods arise directly from knowledge of the task

Soar realizes the so-called weak methods, such as hill climbing, means-ends analysis, alpha-beta search, etc.,

by adding search-control productions that express, in isolation, knowledge about the task (i.e., about the

problem space and the desired states). The structure of Soar is such that there is no need for this knowledge

to be organized in separate procedural representations for each weak method (with a selection process to

determine which one to apply). For example, if knowledge exists about how to evaluate the states in a task,

and the consequences of evaluation functions are understood (prefer operators that lead to states with higher

evaluations), then Soar exhibits a form of hill climbing. This general capability is another novel feature of

Soar.

1.8. Continuous learning by experience through chunking

Soar learns continuously by automatically and permanently caching the results of its subgoals as produc-

tions. Thus, consider the tie-impasse between the three task operators in Figure 1-2, which leads to a subgoal

to break that tie. The ultimate result of the problem solving in this subgoal is a preference (or preferences)

that resolves the tie impasse in the top space and terminates the subgoal. Then a production is automatically

created that will deliver that preference (or preferences) again in relevantly similar situations. If the system

ever again reaches a similar situation, no impasse will occur (hence no subgoal and no problem solving in a

subspace) because the appropriate preferences will be generated immediately.

This mechanism is directly related to the phenomenon called clunking in human cognition [631, whence its
name. Structurally, chunking is a limited form of practice learning. However, its effects turn out to be

wide-ranging. Because learning is closely tied to the goal scheme and universal subgoaling - which provide

an extremely fine-grained, uniformly structured, and comprehensive decomposition of tasks on which the

learning can work - Soar learns both operator implementations and search control. In addition, the com-

bination of the fine-grained task decomposition with an ability to abstract away all but the relevant features

allows Soar to exhibit significant transfer of learning to new situations, both within the same task and between

similar tasks. This ability to combine learning and problem solving has produced-the most striking ex-

perimental results so far in Soar [33, 36, 621.
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2. The Soar Architecture
In this section we describe the Soar architecture systematically from scratch, depending on the preview

primarily to have established the central role of problem spaces and production systems. We will continue to

use the eight puzzle as the example throughout.

2.1. The Architecture for Problem Solving

Soar is a problem-solving architecture, rather than just an architecture for symbolic manipulation within

which problem solving can be realized by appropriate control. This is possible because Soar accomplishes -ll

of its tasks in problem spaces.

To realize a task as search in a problem space requires a fixed set of task- implementation functions, involv-

ing the retrieval or generation of: (1) problem spaces, (2) problem-space operators, (3) an initial state

representing the current situation, and (4) new states that result from applying operators to existing states. To

control the search requires a fixed set of search-control functions, involving the selection of: (1) a problem

space, (2) a state from those directly available, and (3) an operator to apply to the state. Together, the task

implementation and search-control functions are sufficient for problem-space search to occur. The quality

and efficiency of the problem solving will depend on the nature of the selection functions.

The task-implementation and search-control functions are'usually interleaved. Task implementation

generates (or retrieves) new problem spaces, states and operators; and then search control selects among the

alternatives generated. Together they completely determine problem-solving behavior in a problem space.

Thus, as Figure 2-1 shows, the behavior of Soar on the eight puzzle can be described as a seq'ence of such

acts. Other important functions must be performed for a complete system: goal creation, goal selection, goal

termination, memory management and learning. None of these are included in Soar's search-control or

task-implementation acts. Instead, they are handled automatically by the architecture, and hence are not

objects of volition for Soar. They are described at the appropriate places below.

The deliberative acts of search-control together with the knowledge for implementing the task are the locus

of intelligence in Soar. As indicated earlier in Figure 1-1, search-control and task-implementation knowledge

is brought to bear on each step of the search. Depending on how much searTh-control knowledge the

problem solver has and how effectively it is employed, the search in the problem space will be narrow and

focused, or broad and random. If focused enough, the behavior is routine.

Figure 2-2 shows a block diagram of the architecture iat... .nerates problem-space search behavior. There

is a working memory that holds the complete processing state for problem solving in Soar. This has three

components: (1) a context stack that specifies the hierarchy of active goals, problem spaces, states and
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[Retrieve the eight-puzzle problem space]
Select eight-puzzle as probl'em space
[Generate Si as the initial state]
Select Si as state
[Retrieve the operators Down, Left, Right]
Select Down as operator
[Apply. operator (generate S2)]
Select Left as operator
[Apply operator (generate S3)]
Select Right as operator
[Apply operator (generate S4)]
Select S2 as state
[Retrieve the operators Down, Left, Right]
Select Down as operator
[Apply operator (generate $5)]
Select Left as operator
[Apply operator (generate S6)]
Select Right as operator
[Apply operator (generate S7)]
Select S7 as state

Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.)

operators; (2) objects, such as goals and states (and their subobject )" and (3) preferences that encode the

procedural search-control knowledge. The processing structure has two parts. One is the production memory,

which is a set of productions that can examine any part of working memory, add new objects and preferences,

and augment existing objects, but cannot modify the context stack. The second is a fixed decision procedure

that examines the preferences and the context stack, and changes the context stack. The productions and the

decision procedure combine to implement the search-control functions. Two other fixed mechanisms are

shown in the figure: a working-memory manager that deletes elements from working memory, and a chunking

mechanism that adds new productions.

Soar is embedded within Lisp. It includes a modified version of the Ops5 production system language plus

additional Lisp code f6r the decision procedure, chunking, the working-memory manager, and other Soar-

specific features. The Ops5 matcher has been modified to significantly improve the efficiency determining

satisfied productions [70]. The total amount of Lisp code involved, measured in terms of the size of the source

code, is approximately 255 kilobytes- 70 kilobytes of unmodified Ops5 code, 30 kilobytes of modified Ops5

code, and 155 kilobytes of Soar code. Soar runs in CommonLisp, FranzLisp, Interlisp and ZetaLisp on most

of the appropriate hardware (Unix Vax, VMS Vax, Xerox D-machines, Symbolics 3600s, TI Explorers, IBM

RTPCs, Apollo and Sun workstations).
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Production Memory

figre Objects Working-Memory
Working Memory Manager

Decision
P rocedu re

Figure 2-2: Architectural structure of Soar.

2.2. The Working Memory

Working memory consists of. a context stack, a set of objects linked to the context stack, and preferences.

Figure 2-3 shows a graphic depiction of a small part of working memory during problem solving on the eight

puz7,le. The context stack contains the hierarchy of active contexts (the boxed structures). Each context

contains four slots, one for each of the different roles: goal, problem space, state and operator. Each slot can

be occupied either by an object or by the symbol undecided, the latter* meaning that no object has been

selected for that slot. The object playing the role of the goal in a context is the current goal for that context;

the object playing the role of the problem-space is the current problem space for that context and so on. The
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top context contains the highest goal in the hierarchy. The goal in each context below the top context is a

subgoal of the context above it. In the figure, G1 is the current goal of the top context, P1 is the current

problem space. Si is the current state, and the current operator is undecided. In the lower context, 02 is the

current goal (and a subgoal of G). Each context has only one goal for the duration of its existence, so the

context stack doubles as the goal stack.

binding

operator desired /biding
preferences G1 D 1

P1 EIGHT.PUZZLE
0 1binding > cell C1 cell

03 binding  \ tile name
undecided B2 Ti 1

B3 C2

Item

01
/item 02O
/item 02

//role >0

OPERATOR
supergoal impasse

G2 jTIE
name

P2 >SELECTION
undecided

undecided

Figure 2-3: Snapshot of fragment of working memory.

The basic representation is objcct-centercd. An object, such as a goal or a state, consists of a symbol, called

its identifier, and a set of augmentations. An augmentation is a labeled relation (the attribute) between the

object (the identifier) and another symbol (the value), i.e., an identifier-attribute-value triple. In the figure,

01 is augmented with a desired state, D1, which is itself an object that has its own augmentations

(augmentations are directional, so G1 is not in an augmentation of D1, even though D1 is in an augmentation

of 01). The attribute symbol may also be specified as the identifier of an object. Typically, however,

situations are characterized by a small fixed set of attribute symbols - here, impasse, name, operator,

binding, item, and role - that play no other role than to provide discriminating information. An object may
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have any number of augmentations, and the set of augmentations may change over timc.2

A preference is a more complex data structure with a specific collection of eight architccturally-defincd

relations between objects. Three preferences are shown in the figure, one each for objects 01, 02, and 03.

The preferences in the figure do not show their full structure (shown later in Figure 2-7), only the context in

which they are applicable (any context containing problem space P1 and state Si).

The actual representation of objects in working memory is shown in Figure 2-4.3 Working memory is a set

attempting to add an existing element does not change working memory. Each element in working

memory represents a single augmentation. To simplify the description of objects, we group together all

augmentations of the same object into a single expression. For example, the first line of Figure 2-4 contains a

single expression for the four augmentations of goal G1. The first component of an object is a class name that
distinguishes different types of objects. For example, goal, desired, problem-space, and state are the class

names of the first four objects in Figure 2-4. Class names do not play a semantic role in Soar, although they

allow the underlying matcher to be more efficient. Following the class-name is the identifier of the object.

The goal has the current goal as its identifier. Following the identifier is an unordered list of attribute-value

pairs, each attribute being prefaced by an up-arrow (t). An object may have more than one value for a single

attribute, as does state S1 in Figure 2-4, yielding a simple representation of sets.

The basic attribute-value representation in Soar leaves open how to represent task states. As we shall see

later, the representation plays a key role in determining the generality of learning in Soar. The generality is

maximized when those aspects of a state that are functionally independent are represented independently. In

the eight puzzle, both the structure of the board and the actual tiles do not change from state to state in the

real world. Only the location of a tile on the board changes, so the representation should allow a tile's location

to change without changing the structure of the board or the tiles. Figure 2-5 contains a detailed graphic

example of one representation of a state in the eight puzzle that captures this structure. The state it represents

is shown in the lower left-hand corner. The board in the eight puzzle is represented by nine cells (the 3x3

square at the bottom of the figure), one for each of the possible locations for the tiles. Each cell is connected
via augmentations of type cell to its neighboring cells (only a few labels in the center are actually filled in). In

addition, there are nine tiles (the horizontal sequence of objects just above the cells), named 1-8, and blank

(represented by a small box in the figure). The connections between the tiles and cells are specified by objects

called bindings. A given state, such as S1 at the top of the figure, consists of a set of nine bindings (the

2The extent or the memory structure is necessarily limited by the physical resources or the problem solver, but currently this is

a.sumcd not to be a problem and mechanisms have not been created to deal with it.

3Some ba ic notation and structure is inherited from Ops5.
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(goal Gi tproblem-space Pi tstate Si toperator undecided tdesired Di)
(desired D1 tbinding DBI tbindlng DB2 ...)

(problem-space P1 tname eight-puzzle)
(state Si tbinding BI B2 B3 ...)
(binding 81 tcell Ci ttile Ti)
(cell CI tcell C2 ... )

(tile Ti tname 1)
(binding B2 tcell C2 ... )
(cell C2 tcell Ci ...)
(binding B3 .,.)

(preference tobject 01 trole operator tvalue acceptable
tproblem-space P1 tstate Si)

(preference tobject 02 trole operator tvalue acceptable
tproblem-space P1 tstate Si)

(preference tobject 03 trole operator tvalue acceptable
tproblem-space P1 tstate Si)

(operator 01 ...)
(operator 02 ... )
(operator 03 ...)

(goal G2 tproblem-space P2 tstate undecided toperator undecided
tsupergoal GI trole operator timpasse tie
titem 03 titem 02 titem 01)

(problem-space P2 tname selection)

Figure 2-4: Working memory representation of the structure in Figure 2-3.

horizontal sequence of objects above the tiles). Each binding points to a tile and a cell, each tile points to its

value; and each cell points to its adjacent cells. Eight puzzle operators manipulate only the bindings, the

representation of the cells and tiles does not change.

Working memory can be modified by: (1) productions, (2) the decision procedure, and (3) the working-

memory manager. Each of these components has a specific function. Productions only add augmentations

and preferences to working memory. The decision procedure only modifies the context stack. The working-

memory manager only removes irrelevant contexts and objects from working memory.

2.3. The Processing Structure

The processing structure implements the functions required for search in a problem space - bringing to

bear task-implementation knowledge to generate objects, and bringing to bear search-control knowledge to

select between alternative objects. The search-control functions are all realized by a single generic control act:

the replacement of an object in a slot by another object from the working memory. The representation of a

problem is changed by replacing the current problem space with a new problem space. Returning to a prior

state is accomplished by replacing the current state with a preexisting one in working memory. An operator is

selected by replacing the current operator (often undecided) with the new one. A step in the problem space

occurs when the current operator is applied to the current state to produce a new state, which is then selected

to replace the current state in the context.
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1 2 3 B4 65 6 67 B8 8rTIL TILE TIL TILE TILE TIL TIL TL TILE

Ti T2 T3 T4 .T5 TO T7 TB TO

CEELL

7 a5

Figure 2-5: Graphic reprcsentation of an eight puzzle state.

A replacement can take place anywhere in the context stack, e.g., a new state can replace the state in any of

the contexts in the stack, not just the lowest or most immediate context but any highcr one as well. When an

object in a slot is replaced, all of the slots below it in the context arc reinitialized to undecided. Each lower

slot depends on the values of the higher slots for its validity: a problem space is set up in response to a goal; a

state functions only as part of a problem space; and an operator is to be applied at a state. Each context below

the one where the replacement took place is terminated because it depends on the contents of the changed

context for its existence (recall that lower contexts contain subgoals ofrhigher contexts).

The replacement ofrcontext objects is driven by the decision cycle. Figure 2-6 shows three cycles, with the
first one expanded out to reveal some of the inner structure. Each cycle involves' two distinct parts. First,

during the elaboration phase, new objects, new augmentations of old objects, and preferences are added to

working memory. Then the decision procedure examines the accumulated preferences and the context stack,

and either it replaces an existing object in some slot. i.e., in one of'the roles of'a context in the context stack, or

it creates a subgoal in response to an impasse.
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DECISION I DECISION 2 DECISION 3

Elaboration Decl on
4, Phase 4, Proc ure 4 4 4 , , , ,

Gather
Preferences

Quiescence 4 Replace
Interpret -> Context

Preferences Object

Impasse

Create
Subgoal

Figure 2-6: A sequence of decision cycles.

2.3.1. The elaboration phase

Based on the current contents of working memory, the elaboration phase adds new objects, augmentations
of existing objects, and preferences. Elaborations are generated in parallel (shown by the vertical columns of
arrows in Figure 2-6) but may still require multiple steps for completion (shown by the horizontal sequences
of elaborations in the figure) because information generated during one step may allow other elaborations to
be made on subsequent steps. This is a monotonic process (working-memory elements are not deleted or
modified) that continues until quiescence is reached because there are no more elaborations to be generated.4

Tie monotonic nature of the elaboration phase assures that no synchronization problems will occur during
the parallel generation of elaborations. However, because this is only syntactic monotonicity - data struc-
tures are not modified or deleted - it leaves open whether semantic conflicts or non-monotonicity will occur.

The elaboration phase is encoded in Soar as productions of the form:
IfCandC2 and... and Cm then add A, A2 ... An

The C are conditi6ns that examine the context stack and the rest of the working memory, while the A, are
actions that add augmentations or preferences to memory. Condition patterns are based on constants, vari-
ables, negations, pattern-ands, and disjunctions of constants (according to the conventions of OpsS
productions). Any object in working memory can be accessed as long as there exists a chain of augmentations

4In practice, the elaboration phase reaches quiescence quickly (less than ten cycles), however, if quiescence is not reached after a
prespecifled numbr ofiterations (typically 100). the elaboration phase terminates and the decision procedure is entered.
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and preferences from the context stack to the object. An augmentation can be a link in the chain if its

identifier appears either in a context or in a previously linked augmentation or preference. A preference can

be a link in the chain if all the identifiers in its context fields (defined in Section 2.3.2N appear in the chain.

This property of linked access plays an important role in working-mcmory management, subgoal termination,

and chunking, by allowing the architecture to determine which augmentations and preferences are accessible

from a context, independent of the specific knowledge encoded in elaborations.

A production is successfully instantiated if the conjunction of its conditions is satisfied with a consistent

binding of variables. There can be any number of concurrently successful instantiations of a production. All

successful instantiations of all productions fire concurrently (simulated) during the elaboration phase. The

only conflict-resolution principle in Soar is refractory inhibition - an instantiation of a production is fired

only once. Rather than having control exerted at the level of productions by conflict resolution, control is

exerted at the level of problem solving (by the decision procedure).

2.3.2. The decision procedure

The decision procedure is executed when the elaboration phase reaches quiescence. It determines which

slot in the context stack should have its content replaced, and by which object. This is accomplished by

processing the context stack from the oldest context to the newest (ie.. from the highest goal to the lowest

one). Within each context, the roles are considered in turn, sta-ting with the problem space and continuing

through the state and operator in oider. The process terminates when a slot is found for which action is

required. Making a change to a higher slot results in the lower slots being reinitialized to undecided, thus

making the processing of lower slots irrelevant.

This ordering on the set of slots in the context stack defines a fixed desirability ordering between changes

for different slots: it is always more desirable to make a change higher up. The pr'ocessing for each slot is

driven by the knowledge symbolized in the preferences in working memory at the end of the elaboration

phase. Each preference is a statement about the selection of an object for a slot (or set of slots). Three

primitive concepts are available to make preference statements: 5

acceptability: A choice is to be considered.

rejection: A choice is not to be made.

desirability: A choice is better than (worse than, indifferent to) a reference choice.

5 Mere is an additional preference type that allows the statement that two choices ror an opcrator slot can be explored in parallel. This
is a special option to explore parallel processing where multiple slots are created for paralle! operators.' For more details. see the Soar
manual [30].
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Together, the acceptability and rejection preferences determine the objects from which a selection will be
made, and the desirability prefrces partially order these objects. The result of processing the slot, if

succssfil, is a single object that is: new (not currently selected foi that slot); acceptable; not rejected; and

more desirable than any othr choice that is likewise new, acceptable and not rejected.

A preference encodes a statement about the selection of an object for a slot into a set of attributes and

values, as shown in Figure 2-7. The object is specified by the value of the object attribute. The slot is

specified by the combination of a role and a context. The role is either the problem space, the state or the

operator: a goal cannot be specified as a role in a preference because goals are determined by the architecture

and not by deliberate decisions. The context is specified by the contents of its four roles: goal, problem space,

state and operator. A class of contexts can be specified by leaving unspecified the contents of one or more of

the roles. For example, if only the problem space and state roles are specified, the preference will be relevant

for all goals with the given problem space and state.

The desirability of the object for the slot is specified by the value attribute of a preference, which takes one

of seven alternatives. Acceptable and reject cover their corresponding concepts: the others - best, better,

indifferent, worse, and worst - cover the ordering by desirability. All assertions about ordering locate the

given object relative to a reference object for the same slot. Since the reference object always concerns the

same slot, it is only necessary to spec ify the object. For better, worse, and some indifferent preferences, the

reference object is another object that is being considered for the slot, and it is given by the reference attribute

of the. preference. For best, worst, and the remaining indifferent preferences, the reference object is an

abstract anchor point, hence is implicit and need not be given. Consider an example where there are two

eight-puzzle operators, named up and left, being considered for state S1 in goal 01. If the identifier for the

eight-puzzle problem space is P1, and the identifiers for up and left are 01 and 02, then the following

preference says that up is better than left:
(preference tobject 01 trole operator tvalue better treference 02

tgoal GI tproblem-space P1 tstate Si)

The decision procedure computes the best choice for a slot based on the preferences in working memory

and the semantics of the preference concepts, as given in Figure 2-8. The preference scheme of Figure 2-8 is a

modification of the straightforward application of the concepts of acceptability, rejection and desirability.

The modifications arise from two sources. The first is independence. The elabdration phase consists of the

contributions of independently firing individual productions, eoch expressing an independent source of

knowledge. There is no joint constraint on what each asserts. These separate expressions must be combined,

and the only way to do so is to conjoin them. Independence implies that one choice can be (and often is) both

acceptable and rejected. For a decision to be possible with such preferences, rejection can not be

I
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Attribute

Object The object that is to occupy the slot

Role The role the object is to occupy
(problem space, state, or operator)

Goal
Slot

Problem space
Context in which the preference applies

State (A set of contexts can be specified)

Operator

Value acceptable The object is a candidate for the given role

reject The object is not to be selected

best The object is as good as any object can be

better The object is better than the reference object

indifferent The object is indifferent to the reference object
if there is one, otherwise the object is indifferent
to all other indifferent objects

worse The object is worse.than the reference object
(the inverse of better)

worst The object is as bad as any object can be

(the inverse of best)

Reference The reference object for order comparison

Figure 2-7: The encoding of preferences.

-,acceptable, which would lead to a logical contradiction. Instead, rejection overrides acceptable by eliminat-

ing the choice from.consideration. Independence also implies that one choice can be both better and worse

than another. This requires admitting conflicts of desirability between choices. Thus, the desirability order is

quite weak, being transitive, but not irreflexive or antisymmetric, and dominates must be distinguished from

simply better- namely, domination implies better without conflict. The possibility of conflicts modifies the

notion of the maximal subset of a set to be those elements that no other element dominates. For example, in

the set of {x, y} if(x > y) and (y > x) then the maximal subset contains both x and y.

The second source of modifications to the decision procedure is incompleteness. The elaboration phase will

deliver some collection of preferences. These can be silent on any particular fact, e.g., they may assert that x is

better than y, and that y is rejected. but say nothing about whether x is acceptable or not, or rejected or not.

Indeed, an unmentioned object could be better than any that are mentioned. No constraint on completeness
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Primitive predicates and~functions on objects, x, yO z,
current The object that currently occupies the slot
acceptable(x) x is acceptable
reject(x) x is rejected
(x > Y) x is better than y
(X < y) x is worse than y (same as y > x)
(X - y) x is indifferent to-y
(X >> Y) x dominates y z (x > y) and -n(y > x)

Reference anchors
indifferent(x) Vy [indifferent(y) (x - y)]
best(x) Vy [best(y) -(x - y)] A E-'best(y) A -,(y > X) (x > Y)]
worst(x) Vy [worst(y) =*(x - y)] A [-nworst(y) A -,(y < x) = (x < y)]

Basic properties
Desirability (x > y) is transitive, but not complete or antisymmetric
Indifference is an equivalence relationship and substitutes aver >

(x > y) and (y - z) implies (x >'z)
Indifference does not substitute in acceptable, reject, best, and worst.

acceptable(x) and (x - y) does not imply acceptable(y),
reject(x) and (x - y) does no imply reject(y), etc.

Default assumption
All preference statements that are not explicitly mentioned and not

implied by transitivity or substitution are not assumed to be true

Intermediate definitions
considered-choices = (xeobjects I acceptable(x) A -ireject(x)}
maximal(X) = (xeX I Vy -i(y >> x)}
maximal-choices = maximal(considered-choices)
empty(X) = -3e
mutually-indifferent(X) a*Vx~yeX (x _' y)
random(X) = choose one element of X randomly
select(X) = if currenteX then current else random(X)

Final choice
empty(maximal -choices) A -nreject(current) =*final-choice(current)
mutual ly-indif ferent(maximal -choices) A -'empty (maximal -cho ices)

Sfinal -choice(select(maximal-choices))

Impasse
empty(maximal-clioices) A reject(current) =*impasse
-imutually-indifferent(maximal-choices) -impasse(maximal-choices)

Figure 2-8: The semantics of preferences.
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can hold, since Soar can be in any state of incomplete knowledge. Thus, for the decision procedure to get a

result, assumptions must be made to close the world logically. The assumptions all flow from the principle

that positive knowledge is required to state a preference - to state that an object is acceptable, rejected or has

some desirability relation. Hence, no such assertion should be made by default. Thus, objects are not

acceptable unless explicitly acceptable: are not rejected unless explicitly rejected, and are not ordered in a

specific way unless explicitly ordered. To do otherwise without explicit support is to rob the explicit state-

ments of assertional power.

Note, however, that this assumption does allow for the existence of preferences implied by the explicit

preferences and their semantics. For example, two objects are indifferent if either there is a binary
indifferent-preference containing them, there is a transitive set of binary indifferent-preferences containing

both of them, they are both in unary indifferent-preferences, they are both in best-preferences, or they are

both in worst-preferences.

The first step in processing the preferences for a slot is to determine the set of choices to be considered.

These are objects that are acceptable (there are acceptable-preferences for them) and are not rejected (there

are no reject-preferences for them). Dominance is then determined by the best, better, worst, and worse

preferences. An object dominates another if it is better than the other (or the other is worse) and the latter
object is not better than the former object. A best choice dominates all other non-best choices, except those

that are explicitly better than it through a better-preference or worst-preference. A worst choice is dominated

by all other non-worst choices, except those that are explicitly worse than it through a better or worst
preference. -The maximal-choices are those that are not dominated by any other objects.

Once the set of maximal-choices is computed, the decision procedure determines the final choice for the

slot. The current choice acts as a default so that a given slot will change only if the current choice is displaced

by another choice. Whenever there are no maximal-choices for a slot, the current choice is maintained, unless

the current choice is rejected. If the set of maximal-choices are mutually indifferent - that is, all pairs of

elements in the set are mutually indifferent - then the final choicc is one of the elements of the set. The

default is to not change the current choice, so if the current choice is an element of the set, then it is chosen;

otherwise, one element is chosen at random.6 The random selection is justified because there is positive

knowledge, in the form of preferences, that explicitly states that it does not matter which of the mutually

indifferent objects is selected.

If the decision procedure determines that the value of the slot should be changed - that is, there is a final

61n place ora random selection, there is an option in Soar to allow the user to ,elect from the st ofindifferent choices.
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thoice different from the current object in the slot - the change is installed, all of the lower slots are

reinitialized to undecided, and the elaboration phase of the next decision cycle ensues. If the current choice is

maintained, then the, decision procedure corsiders the next slot lower in the hierarchy. If either there is no

'final choice, or all of the slots have been exhausted, then the decision procedure fails and an inpasse occurs.

In Soar, four impasse situations are distinguished:

1. Tie: This impasse arises when there are multiple maximal-choices that are not mutually indif-

ferent and do riot conflict. These are competitors for the same slot for which insufficient
knowledge (expressed as preferences) exists to discriminate among them.

2. Conflict: This impasse arises when there are conflicting choices in the set of maximal choices.

3. No-change: This impasse arises when the current value of every slot is maintained.

4. Rejection: This impasse arises when the current choice is rejected and there are no maximal

choices: that is, there are no viable choices for the slot. This situation typically occurs when all of

the alternatives have been tried and found wanting.

The rules at the bottom of Figure 2-8 cover all but the third of these, which involves cross-slot considerations

not currently dealt with by the preference semantics. These four conditions are mutually exclusive, so at most

one impasse will arise from executing the decision procedure. The response to an impasse in Soar is to set up

a subgoal in which the impasse can be resolved.

2.3.3. Implementing the eight puzzle

Making use of the processing structure so far described - and postponing the discussion of impasses and

subgoals until Section 2.4 - it is possible to describe the implementation of the eight puzzle in Soar. This

implementation consists of both task-implementation knowledge and search-control knowledge. Such

knowledge is eventually to be acquired by Soar from the external world in some representation and converted

to internal forms, but until such an acquisition mechanism is developed, knowledge is simply posited of Soar,

encoded into problem spaces and search control, and incorporated directly into the production memory.

Figures 2-9, 2-10, and 2-11 list the productions that encode the knowledge to implement the eight puzzle

task. 8 Figure 2-9 contains the productions that set up things up so that problem solving can begin, and detect

when the goal has been achieved. For this example we assume that initially the current goal is to be

augmented with the name solve-eight-puzzle, a description of the initial state, and a description of the desired

state. The problem space is selected based on the description of the goal. In this case, production

select-eight-puzzle-problem-space is sensitive to the name of the goal and suggests eight-puzzle as the

7The term was first used in this sense in Repair theory [8]: we had originally used the term difficulty [29].

8These descriptions ofthe productions are an abstraction or the actual Soar productions, which are given in the Soar manual [30].
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problem space. The initial state is determined by the current goal and the problem space. Production

define-Initial-state translates the description of the initial state in the goal to be a state in the eight-puzzle

problem space, Similarly, define-final-statc translates the description of the desired state to be a state in the

eight-puzzle problem space. By providing different initial or desired states, different eight puzzle problems

can be attempted. Production detect-eight-puzzle-success compares the current state, tile by tile and cell by

cell to the desired state. If they match, the goal has been achieved.

select-eight-puzzle-space:
If the current goal is solve-eight-puzzle, then make an acceptable-preference for eight-puzzle as the current problem
space.

defneinitial'state:
If the current problem space is eight-puzzle, then create a state In this problem space based on the description in the
goal and make an acceptable-preference for this state.

defnne-flnal-state:
If the current problem space is eight-puzzle then augment the goal with a desired state in this problem space based
on the description in the goal.

detect-eight-puzzle-success:
If the current problem space is eight-puzzle and the current state matches the desired state of the current goal in
each cell, then mark the state with success.

Figure 2-9: Productions that set up the eight puzzle.

The final aspect of the task definition is the implementation of the operators. For a given problem, many

different realizations of essentially the same problem space may be possible. For the eight puzzle, there could

be twenty-four operators, one for each pair of adjacent cells between which a tile could be moved. In such an

implementation, all operators could be made acceptable for each state, followed by the rejection of those that

cannot apply (because the blank is not in the appropriate place). Alternatively, only those operators that are

applicable to a state could be made acceptable. Another implementation could have four operators, one for

each direction in which tiles can be moved into the blank cell: up, down, left, and right. Those operators that

do not apply to a state could be rejected.

In our implementation of the eight puzzle, there is a single general operator for moving a tile adjacent to the

blank cell into the blank cell. For a given state, an instance of this operator is created for each of the adjacent

cells. We will refer to these instantiated operators by. the direction they move their associated tile: up, down,

left and right. To create the operator instantiations requires a single production, shown in Figure 2-10. Each

operator is represented in working memory as an object that is augmented with the cell containing the blank

and one of the cells adjacent to the blank. When an instantiated operator is created, an acceptable-preference

is also created for it in the context containing the eight-puzzle problem space and the state for which the

instantiated operator was created. Since operators are created only if they can apply, an additional production

that rejects inapplicable operators is not required.

An operator is applied when it is selected by the decision procedure for an operator role - selecting an
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instanllate, operator:
If the current problem space is eight-puzzle and the current state has a tile in a cell adjacent to the blank's coll, then
create an acceptable-preference for a newly created operator that will move the tile into the blank's cell.

Figure 2-10: Production for creating eight puzzle operator instantiations.

operator produces a context in which productions associated with the operator can execute (they contain a

condition that tests that the operator is selected). Whatever happens while a given operator occupies an

operator role comprises the attempt to apply that operator. Operator productions are just elaboration produc-

dons, used for operator application rather than for search control. They can create a new state by linking it to

the current context (as the object of an acceptable-preference), and then augmenting it. To apply an instan-

dated operator in the eight puzzle requires the two productions shown in Figure 2-11. When the operator is

selected for an operator slot, production create-new-state will apply and create a new state with the tile and

blank in their swapped cells. The production copy-unchanged-binding copies pointers to the unchanged

bindings between iles and cells.

create-new-state:
If the current problem space is eight-puzzle, then create an acceptable-preference for a newly created state, and
augment the new state with bindings that have switched the tiles from the current state that are changed by the
current operator.

copy-unchanged-binding:
If the current problem space is eight-puzzle and there is an acceptable-preference for a new state, then copy from
the current state each binding that is unchanged by the current operator.

Figure 2-11: Productions for applying eight puzzle operator instantiations.

The seven productions so far described comprise the task-implementation knowledge for the eight puzzle.

With no additional productions, Soar will start to solve the problem, though in an unfocused manner. Given

enough time it will search until a solution is found.9 To make the behavior a bit more focused, search-control

knowledge can be added that guides the selection of operators. Two simple search-control productions are

shown in Figure 2-12. Avoid-undo will avoid operators that move a tile back to its prior cell.

Mea-operator-select is a means-ends-analysis heuristic that prefers the selection of an operator if it moves a

tile into its desired cell. This is not a fool-proof heuristic rule, and will sometimes lead Soar to make an

incorrect move.

avoid-undo:
If the current problem space is eight-puzzle, then create a worst-preference for the operator that will move the tile
that was moved by the operator that created the current state.

Mea-operalor-selection:
If the current problem space is eight-puzzle and an operator will move a file into its cell in the desired state, then
make a best-preference for that operator.

Figure 2-12: Search-control productions for the eight puzzle.

9The default search is depth-first where the choices between competing operators are made randomly, Infinite loops do not arise
because the choices are made non-deermilnistically.
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Figure 2-13 contains a trace of the initial behavior using these nine productions (the top of the figure shows

the states and operator Involved in this trace). The trace is divided up into the activity occurring during each

of the first five decision cycles (plus an initialization cycle). Within each cycle, the activity is marked

according to whether it took place within the elaboration phase (E), or as a result of the decision procedure
procedure (D). The steps within the elaboration phase are also marked: for example, line 4.1E represents

activity occurring during the first step of the elaboration phase of the fourth decision cycle. Each line that is

part of the elaboration phase represents a single production firing. Included in these lines are the
production's name and a description of what it does. When more than one production is marked the same, as

in 4.2E it means that they fire in parallel during the single elaboration step.
S1 S2 D1

283 down 283 1 23
1 64 ) 1 4 8 4

7 5 7 65 76 5

CceProductionAw

D G1 is the current goal GI is-already augmented with solve-eight-puzzle

1E select-eight-puzzle-space Make an acceptable-preference for eight-puzzle

ID Select eight-puzzle as problem space

2E define-final-state Augment goal with the desired state (D1)
2E define-initial-state Make an acceptable-preference for S1
20 Select S1 as state

3.1E instantiate-operator Create 01 (down) and an acceptable-preference for it
3.1E instantiate-operator Create 02 (right) and an acceptable-preference for it
3.1E instantiate-operator Create 03 (left) and an acceptable-preference for it
3.2E mea-operator-selection (01-down) Make a best-preference for down
3D Select 01 (down) as operator

4.IE create-new-state Make an acceptable-preference for S2, swap bindings
4.2E copy-unchanged-binding Copy over unmodified bindings
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-bin' n
4.2E copy-unchanged-binh,'A-
40 Select S2 as state

5E instantiate-operator Create 0' (down) and an acceptable-preference for it
5E instantiate-operator Create 05 (right) and an acceptable-preference for it
5E instantiate-operator Create 06 (left) and an acceptable-preference for it
5E instantiate-operator Create 07 (up) and an acceptable-preference for it
SE Avoid-undo (07-up) Make a worst-preference for up
6D Tie impasse, create subgoal

Figure 2-13: Trace of initial eight puzzle problem solving.

The trace starts where the current goal (called G1) is the only object defined. In the first cycle, the goal is
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augmented with an acceptable-preference for eight~puzzle for the problem-space role. The decision proce-

dure then selects eight-puzzle as the current problem space. In cycle 2, the initial state, Si, is created with an

acceptable-preference for the state role, and the problem space is augmented with its cperators. At the end of

cycle 2, the decision procedure selects Si as the current state. In cycle 3, operator instances, with correspond-

ing acceptable-preferences, are created for all of the tiles that can move into the blank cell. Production

mca-operator-selection makes operator 01 (down) a best choice, resulting in its being selected as the current

operator. In cycle 4, the operator is applied. First, production create-new-state creates the preference for a

new state (S2) and augments it with the swapped bindings, and then production copy-unchanged fills in the

rest of the structure of the new state. Next, state S2 is selected as the current state and operator instances are

created - with corresponding acceptable-preferences - for all of the tiles that can move into the cell that

now contains the blank. On the next decision cycle (cycle 5), none of the operators dominate the others, and

an impasse occurs.

2.4. Impasses and Subgoals
When attempting to make progress in attaining a goal, the knowledge directly available in the problem

space (encoded in Soar as productions) may be inadequate to lead to a successful choice by the decision

procedure. Such a situation occurred in the last decision cycle of the eight puzzle example in Figure 2-13.

The knowledge dir6ctly available about the eight puzzle was incomplete -. it did not specify which of the

operators under consideration should be selected. In general, impasses occur because of incomplete or

inconsistent information. Incomplete information may yield a rejection, tie, or no-change impasse, while

inconsistent information yields a conflict impasse.

When an impasse occurs, returning to the elaboration phase cannot deliver additional knowledge that might

remove the impasse, for elaboration has already 'run to quiescence. Instead, a subgoal and a new context is

created for each impasse. By responding to an impasse with the creation of a subgoal, Soar is able to

deliberately search for more information that can lead to the resolution of the impasse. All types of

knowledge, task-implementation and search-control, can be encoded in the problem space for a subgoal.

If a tie impasse between objects for the same slot arises, the problem solving to select the best object will

usually result in the. creation of one or more desirability preferences, making the subgoal a locus of search-

control knowledge for selecting among those objects. A tie impasse between two objects can be resolved in a

number of ways: one object is found to lead to the goal, so a best preference is created; one object is found to

be better than the other, so a better preference is created; no difference is found between the objects, so an

indifferent preference is created: or one object is found to lead away from the goal, so a worst preference is

created. A number of different problem solving strategies can be used to generate these outcomes, including:

further elaboration of the tied objects (or the other objects in the context) so that a detailed comparison can be
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made; look-ahead scarches to determine the effects or choosing the competing- objects; and analogical map-

pings to other situations where the choice is clear.

If a no-change impasse arises with the operator slot filled, the problem solving in the resulting subgoal will

usually involve operator implementation, terminating when an acceptable-preference is generated for a new

state in the parent problem space. Similarly, subgoals can create problem spaces or initial states when the

required knowledge is more easily encoded as a goal to be achieved through problem-space search, rather

than as a set of elaboration productions.

When the impasse occurs during the fifth decision cycle of the eight-puzzle example in Figure 2-13, the

following goal and context are added to working memory.
(goal G2 tsupergoal G1 timpasse tie tchoices multiple trole operator

titem 04 05 06
tproblem-space undecided tstate undecided toperator undecided)

The subgoal is simply a new symbol augmented with: the supergoal (which links the new goal and context

into the context stack); the type of impasse; whether the impasse arose because there were no choices or

multiple choices in the maximal-choices set: the role where the impasse arose; the objects involved in conflicts

or ties (the items); and the problem-space, state, and operator slots (initialized to undecided). This infor-

mation provides an initial definition of the subgoal by defining the conditions that caused it to be generated

and the new context. In the following elaboration phase, the subgoal can be elaborated with a suggested

problem space, an initial state, a desired state or even path constraints. If the situation is not sufficiently

elaborated so that a problem space and initial state can be selected, inother impasse ensues and a further

subgoal is created to handle it.

Impasses are resolved by the addition of preferences that change the results of the decision procedure.

When an impasse is resolved, allowing problem solving to proceed in the context, the subgoal created for the

impasse has completed its task and can be terminated. For example, if there is a subgoal for a tie impasse at

the operator role, it will be terminated when a new preference is added to working memory that either rejects

all but one of the competing operators, makes one a best choice, makes one better than all the others, etc. The

subgoal will also be terminated if new preferences change the state or problem-space roles in the context,

because the contents of the operator role depends on the values of these higher roles. If there is a subgoal

created for a no-change impasse at the operator role - usually because of an inability to implement the

operator directly by rules in the problem space.- it can be resolved by establishing a preference for a new

state, most likely the one generated from the application of the operator to the current state.

In general, any change to the context at the affected role or above will lead to the termination of the
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subgoal. Likewise, a change-in any, of the contexts above a subgoal will lead to the termination of the subgoal

because its depends on the higher contexts for its existence. Resolution of an impasse terminates all goals

below it.

When a subgoal, is terminated, many working-memory elements are no longer of any use since they were

created solely for internal processing in the subgoal. The working-memory manager removes these useless

working-memory elements from terminated subgoals in essentially the same way that a garbage collector in

Lisp removes inaccessible CONS cells. Only the results of the subgoal are retained - those objects and

preferences in working memory that meet the criteria of linked access to the unterminated contexts, as

defined in Section 2.3.1. The context of the subgoal is itself inaccessible from supergoals - its supergoal link

is one-way - so it is removed.

The architecture defines the concept of goal termination, not the concept of goal success or failure. There

are many reasons why a goal should disappear and many ways in which this can be reflected in the

preferences. For instance, the ordinary (successful) way for a subgoal implementing an operator to terminate

is to create the new result state and preferences that enable it to be selected (hence leading to the operator role

becoming undecided). But sometimes it is appropriate to terminate the subgoal (with failure) by rejecting the

operator or selecting a prior state, so that the operator is never successfully applied.

Automatic subgoal termination at any level of the hierarchy is a highly desirable, but generally expensive,

feature of goal systems. In Soar, the implementation of this feature is not expensive. Because the architecture

creates all goals, it has both the knowledge and the organization necessary to terminate them. The decision

procedure iterates through all contexts from the top, and within each context, through the different roles:

problem space, state and operator. Almost always, no new preferences are available to challenge the current

choices. If new preferences do exist, then the standard analysis of the preferences ensues, possibly deter-

mining a new choice. If everything remains the same, the procedure continues with the next lower slot; if the

value of a slot changes then all lower goals are terminated. The housekeeping costs of termination, which is

the removal of irrelevant objects from the working memory, is independent of how subgoal termination

occurs.

2.5. Default Knowledge for Subgoals

An architecture provides a frame within which goal-oriented action takes place. What action occurs

depends on the knowledge that the system has. Soar has a basic complement of task-independent knowledge

about its own operation and about the attainment of goals within it that may be taken as an adjunct to the

architecture. A total of fifty-two productions embody this knowledge. With it, Soar exhibits reasonable

default behavior; without it (or other task knowledge), Soar can flounder and fall iito an infinitely deep series
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of impasses. We describe here the default knowledge and how it is'rcprcsentcd. All of this knowledge can be

over-ridden by additional knowledge that adds other prefcrences.

Common search-control knowledge. During the problem solving in a problem space, scarch-control rules

are available for three common situations that require the creation of preferences.

1. Backup from a failed state. If there is a reject-preference for.the current state, an acceptable-
preference is created for the previous state. This implements an elementary form of backtracking.

2. Make all operators acceptable. If there are a fixed set of operators that can apply in a problem
space, they should be candidates for every state. This is accomplished by creating acceptable-
preferences for those operators that are directly linked to the problem space.

3. No operator retry. Given the deterministic nature of Soar, an operator will create the same result
whenever it is applied to the same state. Therefore, once an operator has created a result for a state
in some context, a preference is created to reject that operator whenever that state is the current
state for a context with the same problem space and goal.

Diagnose impasses. When an impasse occurs, the architecture creates a new goal and context that provide

some specific information about the nature of the impasse. From there, the situation must be diagnosed by

search-control knowledge to initiate the appropriate problem-solving behavior. In general this will be task-

dependent, conditional on the knowledge embedded in the entire stack of active contexts. For situations in

which such task-dependent knowledge does not exist, default knowledge exists to determine what to do.

1. Tie impasse. Assume that additional knowledge or reasoning is required to discriminate the items
that caused the tie. The selection problem space (described below) is made acceptable to work on
this problem. A worst-preference is also generated for the problem space, so that any other
proposed problem space will be preferred.

2. Conflict impasse. Assume that additional knowledge or reasoning is required to resolve the
conflict and reject some of the items that caused the conflict. 'Ihe selection problem space is also
the appropriate space and it is made acceptable (and worst) for the problem space role.r0

3. No-change impasse.

a. For goal, problem space and state roles. Assume that the next higher object in the context is
responsible for the impasse, and that a new path can be attempted if the higher object is
rejected. Thus, the default action is to create a reject-preference for the next higher object in
the context or supercontext. The default action is tak*cn only if a problem space is not
selected for the subgoal that was generated because of the impasse. This allows the default
action to be overriden through problem solving in a problem space selected for the no-
change impasse. If there is a no-change impasse for the top goal, problem solving is halted
bgcausc there is no higher object to reject and no further progress is possible.

10'There has been little experience with conflict subgoals so far. Thus. little confidence can be placed in thc treatment of conflicts and
they will not be di.scussed further.
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b. For operator role. Such ain Impasse can occur for multiple reasons. The operator could be
too complex to be performed directly by productions, thus needing a subspace to implement
It, or it could be incompletely specified, thus needing to be instantiated. Both of these
require task-specific problem spcaces and no appropriate default action based on them is
available. A third possibility is that the operator is inapplicable to the given state, but that it
would apply to some other state. This dot.s admit a domain-independent response, namely
attempting to find a state in the same problem space to which the operator will apply
(operator subgoaling). This is taken as the appropriate default response.

4. Rejection impasse. The assumption is the same as for (nonoperator) no-change subgoals: the
higher object is responsible and progress can be made by rejecting it. If there is a rejection
impasse for the top problem space, problem solving is halted because there is no higher object.

The selection problem space. This space -is used to resolve tics and conflicts. The states of the selection

space contain the candidate objects from the supercontext (the items associated with the subgoal). Figure 2-14

shows the subgoal structure that arises in the eight puzzle when there is no direct search-control knowledge to

select between operators (such as the mea-operator-selection production). Initially, the problem solver is at

the upper-left state and must select an operator. If search control is unable to uniquely determine the next

operator to apply, a tie impasse arises and a subgoal is created to do the selection. In that subgoal, the

selection problem space is used.
'initial desired
state state

task goal d 1

Jeight puzzle 
8 4

Lproblem space 7 6.5

,' wdown~left
down>right

• left=right •

operator tie evaluate-object evaluate-object evaluate-objec t

subgoal .****,, (down) (left) (ri ht

selection ......

problem space

down=1 / left=-1 right=-1

evlutindown - left 'right \

evaluation

subgoal 2 8 3 2 8 3 2 8 3 2 8 3 2 8 3 2 8 3

leightpuzzle 1 6 4 1 4 1 6 4 1 6 4 1 6 4 - 1 6 4

problem space 7 5 76 5 7 5 7 5 7 5 7 5

Figure 2-14: The subgoal structure for the eight puzzle.
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'he one operator in the selection space, evaluate-object, is a general operator that is instantiated with each

tying (or conflicting) object: that is, a unique evaluate-object operator is created for each instantiation. Each

state in the selection space is a set of evaluations produced by evaluate-object operators (the contents of these

states is not shown in the figure). In the figure, an evaluate-object operator is created for each of the tied

operators: down, left, and right. Each evaluate-object operator produces an evaluation that allows the crea-

don of preferences involving the objects being evaluated. This requires task-specific knowledge, so either

productions must exist that evaluate the contending objects, or a subgoal will be created to perform this

evaluation (see below for a default strategy for such an evaluation). Indifferent-preferences are created for all

of the evaluate-objcct operators so that a selection between them can be made without an infinite regression

of tie impasses. If all of the evaluate-object operators are rejected, but still no selection can be made, problem
solving in the selection problem space will have failed to achieve the goal of resolving the impasse. When this

happens, default knowledge (encoded as productions) exists that makes all of the tied alternatives indifferent

(or, correspondingly, rejects all of the conflicting alternatives). This allows problem solving to continue.

The evaluation subgoal. In the selection problem space, each evaluate-object operator must evaluate the
item with which it is instantiated. Task-dependcnt knowledge may be available to do this. If not, a no-change

impasse will occur, leading to a subgoal to implement the operator. One task-independent evaluation tech-

nique is lookahead- try out the item temporarily to gather information. This serves as the default. For this,

productions reconstruct the task context (i.e., the supercontext that lead to the tie), making acceptable-

preferences for the objects selected in the context and augmenting the new goal with information from the

original goal. In Figure 2-14, the original task problem space and state are selected for the evaluation

subgoals. Once the task context has been reconstructed, the item being evaluated - the down operator - is

selected (it receives a best-preference in the evaluation subgoal). This allows the object to be tried out and

possibly ah evaluation to be produced based on progress made toward the goal.

When knowledge is available to evaluate the states in the task space, the new state produced in the evalua-

don subgoal will receive an evaluation, and that value can be backed up to serve as the evaluation for the

down operator in this situation. One simple eight-puzzle evaluation is to compute the number of tiles that are

changed relative to the locations in the desired state. A value of I is assigned if the moved tile is out of

position in the original state and in position in the result state. A value of 0 is assigned if the moved tile is out

of position in both states. A value of-1 is assigned if the moved tile is in position in the original state and out

of position in the result state. When an evaluation has been computed for down, the evaluation subgoal

terminates, and then the whole process is repeated for the other two operators (left and right). These

evaluations can be used to generate prcferenccs among the competing operators. Since down creates a state

with a better evaluation than the other operators, bctter-preferences (signified by > in the figure) are created
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for down. An indlferent-preference (signified by = in the figiure) is also created for left and right bccause

they have equal evaluations, The preferences for down lead to its selection in the original task goal and

prohlem space, terminating the tie subgoal.. At this point down is reapplied to the initial state, the result is

selected and the process continues.

Figure 2-15 shows, in a state-space representation, two steps of the search that occurs within the eight puzzle

problem space. The distinctive pattern of moves in Figure 2-15 is that of steepest-ascent hill climbing, where

the state being selected at each step is the best at that level according to the evaluation function. These states

were generated in the attempt to solve many different subgoals, rather than from the adoption of a coor-

dinated method of hill climbing in the original task space. Other types of search arise in a similar way. If no

knowledge to evaluate states is available except when the goal is achieved, a depth-first search arises. If it is

known that every other move is made by an opponent in a two-player game, a mini-max search emerges. The

emergence of methods directly from knowledge in Soar is discussed further in Section 3.2.

7 5

down l ft right

283 2 83 283

1 4 =+1 =6 -1 1 6 4 =-1

765 75 75

down I ft right

2 3 2 83 283
1 8 4 0 1 4 =0 14 =-1

765 765 765

Figure 2-15: A trace of steepest ascent hill climbing.

2.6. Chunking

Chunking is a learning scheme for organizing and remembering ongoing experience automatically on a

continuing basis. It has been much studied in psychology [7, 12, 43, 50] and it was developed into an explicit

learning mechanism within a production-system. architecture in prior work [35, 61, 63]. The current chunking

scheme in Soar is directly adapted from this latter work. As defined there, it was a process that acquired

chunks that generated the results of a goal, given the goal and its parameters. The parameters of a goal were
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defined to be those aspects of the system existing prior to the goal's creation that were examined during the

processing of the goal. Each chunk was represented as a set of three productions, one that encoded the

parameters of a goal, one that connected this encoding in the presence of the goal to (chunked) results, and

one that decoded the results. Learnirig was bottom-up: chunks were built only for terminal goals - goals for
which there were no subgoals that had not already been chunked. These chunks improved task performance

by substituting efficient productions for complex goal processing. This mechanism was shown to work for a

set of simple perceptual-motor skills based on fixed goal hierarchies [61] and it exhibited the power-law speed

improvement characteristic of human practice [501. Currently, 5oar does away with one feature of this

chunking scheme, the three-production chunks, and allows greater flexibility on a second, the bottom-up

nature of chunking. In Soar, singlc-production chunks are built for either terminal subgoals or for every

subgoal, depending on the user's option.

The power of chunking in Soar stems from Soar's ability to generate goals automatically for problems in

any aspect of its. problem-solving behavior: a goal to select among alternatives leads to the creation of a

chunk-production that will later control search; a goal to apply an operator to a state leads to the creation of a

chunk-production that directly implements the operator. The occasions of subgoals are exactly the conditions
where Soar requires learning, since a subgoal is created if and only if the available knowledge is insufficient

for the next step in problem solving. The subgoal is created to find the necessary knowledge and the

chunking mechanism stores away the knowledge so that under similar circumstances in the future, the

knowledge will be available. Actually, Soar learns what is necessary to avoid the impasse that led to the

subgoal, so that henceforth a subgoal will be unnecessary, as opposed to learning to supply results after the

subgoal has been created. As search-control knowledge is added through chunking, performance improves

via a reduction in the amount of search. If enough knowledge is added, there is no search; what is left is an

efficient algorithm for a task. In addition to reducing search within a single problem space, chunks can

completely eliminate the search of entire subspaces whose function is to make a search-control decision or

perform a task-implementation function (such as applying an operator or determining the initial state of the

task).

2.6.1. The chunking mechanism

A chunk production summarizes the processing in a subgoal. The actions generate those working memory

elements that eliminated the impasse responsible for the subgoal (and thus terminated the subgoal). The

conditions test those aspects of the current task that were relevant to those actions being performed. The

chunk is created when the subgoal terminates - that is when all of the requisite information is available. The

chunk's actions are based on the results of the subgoal - those working-memory elements created in the

subgoal (or its subgoals) that are accessible from a supergoal. An augmentation is a result if' its identifier

either existed before the subgoal was created, or is in another result. A preference is a result if all of its



'T i1 SOAR ARCIITlIV' URIE PAGE 35

specifled context objects (goal, problem space, state and operator) either existed befoie the subgoal was

created, or are in another result.

The chunk's condition's arc based on a dependency analysis of traces of the productions that fired during the

subgoal. The traces are accumulated during the processing of the subgoal, and then used for condition

determination at subgoal termination time. Each trace contains the working-memory elements that the

production matched (condition elements) and those it generated (action elements).11 Only productions that

actually add something to working memory have their traces saved. Productions that just monitor the state

(that is, only do output) do not affect what is learned, nor do productions that attempt to add working-

memory elements that already exist (recall that working memory is a set).

Once a trace is created it needs to be stored on a list associated with the goal in which the production fired.

However, determining the appropriate goal is problematic in Soar because elaborations can execute in parallel

for any of the goals in the stack. The solution comes from examining the contexts tested by the production.

The lowest goal in the hierarchy that is matched by conditions of the production is taken to be the one

affected by the production firing. The production will affect the chunks created for that goal and possibly, as

we shall see shortly, the higher goals. Because the production firing is independent of the lower goals - it

would have fired whether they existed or not - it will'have no effect on the chunks built for those goals.

When the subgoal terminates, the results of the subgoal are factored into independent subgroups, where

two results are considered dependent if they are linked together or they both have links to a third result

object. Each subgroup forms the basis for the actions of one production, and the conditions of each produc-

tion are determined by an independent dependency analysis. The effect of factoring the result is to produce

more productions, with fewer conditions and actions in each, and thus more generality than if a single

production was created that had all of the actions together. For each set of results, the dependency-analysis

procedure starts by finding those traces that have one of the results as an action element. The condition

elements of these traces are then divided up into those that existed prior to the creation of the subgoal and

those that were created in the subgoal. Those created prior to the subgoal become conditions of the chunk.

The others are then recursively analyzed as if they were results, to determine the pre-subgoal elements that

were responsible for their creation.

Earlier versions of chunking in Soar [36] implicitly embodied the assumption that problem solving was

perfect - if a rule fired in a subgoal, then that rule must be relevant to the generation of the subgoal's results.

1ir there is a condition that tests ror the absence of a working-memory element, a copy of that negated condition is saved in the trace
with Its variables instantlated from the values bound elsewhere In the production.
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The conditions of a chunk were based on the working-memory elements matched by all of the productions

that fired in the subgoal. When the assumption was violated, as it was when the processing involved searches

down paths that led to failure, overly specific chunks were created. By working backward from the results,

the dependency analysis includes only those working-memory elements that were matched by the productions

that actually led to the creation of the results. Working-memory elements that are examined by productions,

but that turn out to be irrelevant, are not included.

A generalization process allows the chunk to a-p ,,, a, &ULU ,. ituat" i which there arc objects with the

same descriptions, but possibly different identifiers. Once the set of chunk-productions is determined, they

are generalized by replacing the identifiers in the working-memory elements with variables. Each identifier

serves to tie together the augmentations of an object, and serves as a pointer to the object, but carries no

meaning of its own - in fact, a new identifier is generated each time an object is created. Constant symbols

- those that are not used as the identifiers of objects - are not modified by this variablization process, only

the identifiers. All instances of the same identifier are replaced by the same variable. Different identifiers are

replaced by different variables which are forced to match distinct identifiers. This scheme may sometimes be

in error, creating productions that will not match when two elements just. happen to have the same (or

different) identifiers, but it always errs by being too constraining.

The final step in the chunk creation process is to perform a pair of optimizations on the chunk productioas.

The first optimization simplifies productions learned for the implementation of a complex operator. As part

of creating the new state, much of the substructure of the prior state may be copied over to the new state. The

chunk for this subgoal will have a separate condition, with an associated action, for each of the substructures

copied. The chunk thus ends up with many condition-action pairs that are identical except for the names of

the variables. If such a production were used in Soar during a new situation, a huge number of instantiations

would be created, one for every permutation of the objects to be copied. The optimization eliminates this

problem by removing the conditions that copy substructure from the original production. For each type of

substructure being copied, a new production is created which includes a single condition-action pair that will

copy substructures of that type. Since all of the actions are additive, no orderering of the actions has to be

maintained and the resulting set of rules will copy all of the substructure in parallel.

The second optimization is to order the production conditions in an attempt to make the matcher faster.

Each condition acts like a query - returning all of the working-memory elements that match the condition -

and the overall match process returns all of the production instantiations that match the conjunctive queries

specified by the condition sides of the productions. The efficiency of such a match process is heavily

dependent on the order of the queries [74]. By automatically ordering the conditions in Soar, tie number of
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intermediate instantiations of a production is greatly reduced and the overall efficiency improved. 12

2.6.2. An example of chunk creation

Figure 2-16 shows a trace of the productions that contribute to a chunk built for the evaluation subgoal in

the eight-puzzle example discussed in Section 2.5. The first six decision cycles lead up to the subgoal that

implements evaluate-object(down) (evaluate the eight-puzzle operator down). G1 is the initial goal, G2 is the

subgoal to eliminate a tie between operators, and G3 is the subgoal to implement evaluate-object(down).

Included in this trace are the names of those productions fired during subgoal G3 that provide traces used by

the dependency analysis. Listed for each of these rule firings are the condition elements that existed prior to

the goal, and which therefore become the basis of the chunk's conditions; and the action elements that are

linked to preexisting structure, and which therefore become the basis of the actions of the chunk.
Cycle
0 G: G1 [Solve the eight puzzle]
1 P: P1 [Eight-Puzzle]
2 S: Si
3 G: G2 (Tie impasse, operators (01[down] 02[left] 03[right]))
4 P: P2 [Selection]
5 S: SS1
6 0: 04 [evaluate-object[01[down)))
7 G: G3 (No-change impasse, operator)
eval*select-role-operator ;wm elements tested to

(goal G2 toperator 04) ;establish the context
(operator 04 fname evaluate-object tdestred Dl. ;in which operator 01[down]

trole operator tsuperoperator 01 ;can be evaluated
tsuperproblem-space P1 tsuperstate Si)

8 P: P1 [Eight-Puzzle]
9 S: S1
10 0: 01 [down]
create-new-state

(problem-space P1 tname eight-puzzle) ;wm elements tested to
(operator 01 tname move-tile tadjacent-cell CI) ;apply operator.that moves
(state S1 tbinding BI tbinding B2) ;the tile in C1 into the
(binding BI ttile T1 tcell C2) ;cell with the blank (C2)
(tile TI tname blank) ;T1 is the blank
(binding B2 ttile T2 tcell CI) ;T2 is the tile in cell C1

11 S: S2
eval*state-plus-one
(problem-space P1 tname eight-puzzle) ;wm elements tested to
(operator 04 tname evaluate-object ;create evaluation for

tdesired D1 tevaluation El) ;state based on detecting
(desired DI tbin'ing DB1) ;that.the operator
(binding DB1 tcell C2 ttile T2) ;has moved a tile into
(cell C2 tcell Ci) ;its desired position

(evaluation El tvalue 1) ;the result/action

12 0: 05 [evaluate-object[02[left]]

Figure 2-16: Partial production trace of an eight-puzzle evaluation subgoal.

12The details of the reordering algorithm are not important here, except that the most recent version (Sept. 86), by Dan Scales and

John Laird, is almost as eflective as ordering by hand.
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Once the evaluation subgoal is generated, the production eval*select-role-operator fires and crcatc

acceptable-preferences for the original task problem space (P1), the original task state (Si), and the operator

being evaluated (01). The production also augments goal 03 with the task goal's desirrd state (DI). Many of

the production's conditions match working-memory elements that are a part of the definition of the

evaluate-object operator, and thus existed prior to the creation of subgoal 03. These test that the subgoal is to

implement the evaluate-object operator, and they access identifiers of super-objects so that the identifiers can

be included in the preferences generated by the actions of the production. Following the selection of P1 and

S1. a production instantiation fires to generate a best-preference for operator 01 for this specific goal,

problem space, and state. This production firing is not shown because it does not add new conditions to the

chunk.

The problem solving continues with the selection of 01 and the generation of a new state (S2). The

unchanged bindings are copied by a rule that is not shown because it does not affect the subgoal's result. S2 is

selected and then evaluated by production eval*state-plus-one, which augments object El with the value of

the evaluation. This augmentation is a result of the subgoal because object El is linked to the state in the

parent context. Immediately afterwards, in the same elaboration phase, a production generates a reject-

preference for operator 04, the evaluate-object operator. This production has no effect on the chunk built for

subgoal 03 because it looks only at higher contexts. Once the reject-preference is created, operator 04 is

rejected, another operator is selected, the no-change impasse is eliminated, subgoal 03 is terminated, and a

chunk is built.

Only certain of the augmentations of the objects are included in the chunk; namely, those that played an

explicit role in attaining the result. For instance, only portions of the state (S1) and the desired state (D1) are

included. Even in the substrucure of the state, such as binding B2, its tile (T2) has only its identifier saved,

and not its value (6). because the actual value was never tested. The critical aspect to be tested in the chunk is

that the tile appears as a tile-augmentation of both bindings B2 and DBl (a binding in the desired state, Dl).

The exact value of the tile is never tested in the subgoal, so it is not included in the chunk. The conditions

created from these working-memory elements will test: that a tile (in this case T2) in the current state (S1) is

in a cell adjacent to the cell containing the blank; and that the cell containing the blank is the cell in which the

tile appears in the desired state. In other words, the chunk fires whenever the evaluate-object operator is

selected in the selection problem space and the operator being evaluated will move a tile into place.

The action of the chunk is to create an evaluation of 1. This value is used to create preferences by compar-

ing it to the values produced by evaluating other operators. The other evaluation values arise when a tile is

neither moved into nor out of its desired cell (0), or when a tile is move out of its desired cell (-1). Symbolic

values could have been used in place of the numeric ones. as long as there are additional productions to

compare the values and create appropriate preferences.
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Figure 2-17 contains the one-production chink built for this example in the format used as input to Soar,
which is similar to that used for Ops5 productions. Each production is a list, consisting of' a name, the

condkions, the symbol "-->", and the actions. Each condition is a template to be matched against working-

memory elements. Symbols in a production of the form "<...>" (e.g., <Gl>) are variables, all others are

constants. The actions are templates for the generation of working-memory elements. In building the chunk,
all identifiers from the original working-memory elements have been replaced by variables. The constants in

thie working-memory elements, those symbols that have no further augmentations (evaluate-object,

eight-puzzle, blank), remain as constants in the conditions. Identifier variablization is also responsible for the

additional negation predicates in the specification of objects <Si> and <B2>, such as { <> <BI> <B2> } in

object <S1>. This is a conjunctive test that succeeds only if <B2> can be bound to a value that is not equal to

the value bound to <BI>, thus forcing the objects that are bound to the two variables to be different.

(sp p0038
(goal <G2> toperator <04>)
(operator <04> tname evaluate-object trole operator

tsuperproblem-space <P1> tsuperstate <Si>
1tsuperoperator <01> tevaluation <El> tdesired <Dl>)

(problem-space <P1> tname eight-puzzle)
(operator <01> tadjacent-cell <Cl>)
(state <Si> tbinding <B1> tbinding ( <> <Bi> <B2.> })
(binding <Bi> ttile <Ti> tcell <C2>)
(tile <Ti> tname blank)
(binding <B2> tcell { <0 <C2> <Ci> } tt ile ( > <Ti> <T2> })
(cell <C2> 1cell <Ci>)
(desired <Dl> tbinding <DBI>)
(binding <DB1> "cell <C2> ttile <T2>)

-- >

(evaluation <El> tvalue 1))

Figure 2-17: Production built by chunking the evaluation subgoal.
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3. DiscussiOn
The Soar architecture has been fully described in the previous section. However, the consequences of an

architecture are hardly apparent on surface examination. The collection of tasks that Soar has accomplished,

exhibited in Figure 1, provides some useful information about viability and scope. However, simplythat Soar

can perform these tasks - that the requisite additional knowledge'can be added - is not entirely surprising.

The mechanisms in Soar are variants of mechanisms that have emerged as successful over the history of Al

research. Soar's accomplishing these tasks does provide answers to other questions as well. We take up some

of these here. This discussion also attempts to ensure that Soar's mechanisms and their operation are clear.

We limit ourselves to aspects that will shed light on the architecture. The details of Soar's behavior on specific

tasks can be found in the references.

The first question we take up is what Soar is like when it runs a real task consisting of multiple aspects with

varying degrees of knowledge. The second question is how Soar embodies the weak methods, which form the

foundation of intelligent action. The third question involves learning by chunking.

3.1. Combining knowledge and problem solving

R1 is a well-known large knowledge-intensive expert system - consisting of 3300 rules plus a data base of

over 7000 component descriptions, circa 1984 - used at Digital Equipment Corporation to configure Vax and
PDP-11 computers [3, 41]. Ri-Soar is an implementation in Soar of a system that exhibits about 25% of the

functionality of R1, using the same knowledge as obtained from Ri's Ops5 rules [65, 75]. This is a big enough

fraction of R1 to assure that extension to a complete version would be straightforward, if desired.13 The part

covered includes the most involved activity of the system, namely, the assignment of modules to backplanes,

taking into account requirements for power, cabling, etc.

RI-Soar was created by designing a set of problem spaces for the appropriate subpart of the configuration

task. The problem spaces were added to the basic Soar system (the architecture plus the default knowledge,

as described in the previous section). No task-dependent search-control knowledge was included. The

resulting system was capable of accomplishing the configuration subtask, although with substantial search.

Ri-Soar's behavior was initially explored by adding various amounts of search control and by turning chunk-

ing on and off. Later experiments were run with variations in the problem spaces and their organization.

Thus, Ri-Soar is a family of systems, used to explore how to combine knowledge and problem solving.

In the eight puzzle there was a single operator which was realized entirely by productions within a single

problem space. However, the configuration task is considerably more complicated. In an extended version of

13Indeed. a revision orRl Is underway at DEC that drdws on the problem structure developed for R1-Soar [76].
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Ri-Soar [75], which covered about 25% of R1 (compared to about 16% in the initial version' [65]), there were

thirty-four operators. Twenty-six of the operators could be realized directly by productions, but eight were

complex enough to require implementation in additional problem spaces. Figure 3-1 shows the nine task

spaces used in the extended version of R1-Soar. This structure, which looks like a typical task-subtask

hierarchy, is generated by the implementation of complex operators. In operation, of course, specific in-

stances of these problem spaces were created, along with instances of the selection problem space. Thus,

Figure 3-1 represents the logical structure, not the dynamic subgoal hierarchy.

Initialize Order Unibus Priority

Configure Cabinet

Configure System Configure CPU Configure Box

Configure 1
Backplane

Configure Unibus

L-> Configure Module

Figure 3 1: Task problem spaces for the extended version of R1-Soar [75].

The total set of task operators is given in Figure 3-2. Many operators are generic and have instantiations, a

feature.of the operator in the eight-puzzle task as well. However, in RI-Soar, some of the instantiations of the

same operator have quite distinct character. Two problem spaces, configure-cpu and configure-unibus, make

use of the same generic operators (although they instantiate them differently), such as configured-cabinet.

This accounts for Figure 3-1 not being a pure hierarchy, with both configure-cpu and configure-unibus

linking to the same four subspaces.

The task decomposition used by R1-Soar is very different than the one used by R1. Soar is a problem

solver capable of working in lean spaces by extensive search. R1 is a knowledge-intensive shallow expert

system, in which as much direct recognition and as little search as possible is done. It is built around a very

large pre-established subtask hierarchy (some 321 subtasks, circa 1984) plus a database containing t'mplates
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PROBLEM-SPACE OPERA TOR
configure-system Initialize order

configure CPU
configure unibus

instance a place modules in sequence
instance a maximum module placement

show output
initialize-order get component data from database

assign unibus-module priority numbers
unibus-priority sequence unibus modules

configure-cpu configure cabinet
instance a cpu cabinet

configure box
instance a cpu box

configure backplane
instance a cpu backplane

configure module
instance a maximum module placement

unused component
go to previous slot

configure-unibus configure cabinet
instance a unibus cabinet
instance - empty cabinet

configure box
instancev unibus box
instance a empty box

configure backplane
instance v unibus backplane
instance a empty backplane
instance - unibus repeater
instance - special backplane

configure module
instance place modules in sequence
Instance a maximum module placement

unused component
remove backplane

Instance - replace backplane with repeater
instance a put backplane in next box

configure-cabinet configure cabinet
add component to order

configure-box configure box
next cabinet
install unibus repeateradd component to order

configure-backplane configure backplane
next section
next box
install unibus repeater
add component to order

configure-module configure module in special backplane
configure module with one board
configure module with more than one board
next slot

Figure 3-2: Task operators for the extended version of Ri-Soar [75].

for the variety of components available. Ri-Soar was given a set of basic spaces that corresponded closely to

the physical manipulations used in configuring computers. The component templates are encoded as rules

that implement the operator that adds components to the order. It thus has an appropriate physical model in

terms of which to do basic reasoning about the task.

The use of basic spaces in the initial version of Rl-Soar was deliberate, to demonstrate that a general
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problem solver (Soar) could operate in knowledge-intensive mode- and could also mix search-intensivc and

knowledge-intensive modes as appropriate, dropping back to search whenever the task demanded it (and not

by predesign). To do this, Soar was given only the task-implementation knowledge - the basic spaces,

desired states, and path constraints - without heuristic search control. Expertise was then to be given by

adding search control. Thus, in one small configuration task the base system (no domain-dependent search

control at all) took 1731 decision cycles to solve the task, a version with a small amount of search control took

243 cycles; and a version with a large amount of search control (equal to that in the original R1) took 150

cycles [651.14 One surprise in this experiment was how little search control was involved in moving to the

knowledge-intensive versions. Thus, the base system contained a total of 232 rules (for basic Soar plus the

configuration task), only two productions were added for the small amount of search control; and only 8

more productions for the large amount of search control (for a total of 242). Thus, there is no correspondence

at all between the number of productions of R1 and the productions of Ri-Soar.

The version of Ri-Soar described in Figures 3-1 and 3-2 extended the coverage of the system beyond the

*initial version and modified the problem spaces to allow it to run larger orders more efficiently. The

previously separate rules for proposing and checking the legality of an operator (using acceptable and reject

preferences) were combined into a single rule that only made the operator acceptable when it was legal. Also,

additional domain-dependent search-control productions were added (a total of 27 productions for the nine

spaces). These changes converted Ri-Soar to a system somewhat more like the original R1. Figure 3-3 shows

the performance of this system on a set of 15 typical orders. This figure gives a brief description of the size of

the order (Components) and the number of decision cycles taken to complete the order (Decisions). From

the performance figures we see that the times range from one to three minutes and reflect the amount of work

that has to be done to process the order, rather than any search (approximately 60 decisions + 7

decisions/component). The extended version of Ri-Soar pretty much knows what needs to be done. These

times are somewhat slower than the current versi6n of R1 (about a factor of 1.5, taking into account the speed

differences of the Ops5 systems involved). This is encouraging for an experimental system, and more recent

improvements to Soar have improved its performance by a factor of 3 [70].

3.2. Weak Methods

Viewed as behavior, problem-solving methods are coordinated patterns of operator applications that attempt

to attain a goal. Viewed as behavioral specifications, they are typically given as bodies of code that can control

behavior for the duration of the method, where a selection process determines which method to use for a

14Thcse runs took about 29. 4 and 2.5 minutes respectively on a Symbolics 3600 running at approximately one decision cycle per
second. Each decision cycle comprises about 8 production firings spread over two cycles of the elaboration phase (because of the parallel
firing of rules).



PAGE 44 SOAR: AN ARCIIrI'ECI'URE FOR GENERAL, IN'EI,GENCE

Tasks
TI T2 T3 T4 T6 T6 T7 T8 T9 TIO Tll T12 T13 T14 TI

Components 5 6 2 7 5 8 2 3 6 6 15 2 11 7 9

Decisions 88 78 78 196 94 100 70 74 88 90 173 78 124 123 129

Figure 3-3: Performance of the extended version of RI-Soar (without learning).

given attempt. In Soar, methods are specified as a collection of search-control productions within a set of

related problem spaces - a given task problem space and its subspaces. Analogously to a code body, such a

collection can be coordinated by making the search-control productions conditional on the method name

(plus perhaps other names for relevant subparts), where method selection occurs by establishing the method

name in working memory as part of a goal or state. Thus, methods in Soar can be handled according to the

standard scheme of selecting among pre-established specifications.

Method behavior may also emerge as the result of problem solving being guided by the appropriate

knowledge, even though that knowledge has not been fashioned into a deliberate method (however specified).

Behind every useful method is knowledge about the task that justifies the method as a good (or at least

possible) way to attain the goal. As bodies of code, methods are simply the result of utilizing that knowledge

at some prior design time, in an act of program synthesis. The act of program synthesis brings together the

relevant knowledge and packages it in such a way that it can be directly applied to produce behavior. What

normally prevents going directly from knowledge to action at behavior time is the difficulty of program

synthesis. However, under special conditions direct action may be possible, hence avoiding the task of

program synthesis into a stored method, and avoiding the pre-choice of which knowledge is relevant for the

task. Instead, whatever knowledge is relevant at the time of behavior is brought to bear to control behavior.

Although no prepackaged method is being used, the behavior of the system follows the pattern of actions that

characterize the method.

This is the situation with Soar in respect to the weak methods15 - methods such as depth-first search, hill

climbing, and means-ends analysis. This situation arises both because of the nature of the weak methods and

because of the nature of Soar. First, the weak methods involve relatively little knowledge about the task [47].

Thus, the generation of behavior is correspondingly simple. Second, all the standard weak methods are built

on heuristic search. Thus, realizing their behavior within Soar, which is based on problem spaces, is relatively

straightforward. In addition, search control in Soar is realized in a production system with an additive

elaboration phase and no built-in conflict resolution. Thus, new search control can be added without regard

to the existing search control, with the guarantee that it will get considered. Of course, the relevant total

15We have callcd this a universal weak method, on the anzalogy that Soar behaves according to any weak method, given the appropriate
knowledge about the task (31].
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search-control knowledge does interact in the decision procedure, but according to a relatively clean seman-

tics that permits clear establishment of the role of each bit of added knowledge.

Our previous example of steepest ascent hill climbing in Figure 2-15 provides an illustration of these three

factors. First, the central knowledge for hill climbing is simply that newly generated states can be compared

to each other. The comparison may itself be complex to compute, but its role in the method is simple.

Second, the other aspects of hill climbing, such as the existence of operators, the need to select one, etc., are

implicit in the problem-space structure of Soar. They do not need to be specified. Third, the knowledge to

climb the hill can be incorporated simply by search-control productions that add preferences for the operators

that produce better states. No other control is necessary and hence complex program synthesis is not re-

quired. In short, Soar can be induced to hill climb simply by providing it the knowledge of a specific function

that permits states to be compared plus the knowledge that an operator that generates a better state is to be

preferred.

Methods require two types of knowledge. The first is about aspects of objects or behavior. Examples are

the position of the blank square in the eight puzzle or the number of moves taken since the blank was in the

center. Such knowledge says nothing about how a system should behave. The second type of knowledge

provides the linkage from such objective descriptions to appropriate action of the system. For the weak

methods in Soar this takes the especially simple form of single productions that have objective task descrip-

tions as conditions and produce preferences for behavior as actions. No other coordinative productions are

required, such as cuing off the name of the method or explicitly asserting that one action should follow

another as in a sequential program. Sometimes several control productions are involved in producing the

behavior of a weak method, but each are independent, providing links between some aspect of task structure

and preferences for action. For instance a depth-limited lookahead has one production that deals with the

evaluation preferences and one that deals with enforcing the depth constraint. Soar would produce ap-

propriate (though different) behavior with any combination of these productions. Another important deter-

miner of a method may be specialized task structure, rather than any deliberate responses encoded in search

control. As a simple instance, if a problem space has only one operator, which generates new states that are

candidates for attaining the task, then generate-and-test behavior is produced, without any search control in

addition to that defining the task.

The methods listed in Figure 3-4 constitute the aggregate that have been realized in the various versions of

Soar, mostly in Soar 1 [31] and Soar 2 [29], where deliberate explorations of the universal weak method were

conducted. The purpose of these explorations was to demonstrate that each of the weak methods could be

realized in Soar. Most of the weak methods were realized in a general form so that it was clear that the

method could be used for any task for which the appropriate knowledge was available. For a few weak
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methods, such as analogy by implicit generalization and simple abstraction planning, the method was realized

for a single task, and more general forms ar, -urrenly under investigation.

The descriptions of the weak methods in Figure 3-4 are extremely abbreviated, dispensing with the operat-

ing environment, initial and terminating conditions, side constraints, and degenerate cases. All these things

arc part of a full specification and sometimes require additional (independent) control productions. Figure

3-5 shows graphically the structural relationships among the weak methods implemented in Soar 2 [29]. The

common task structure and knowledge forms the trunk of a tree, with branches occurring when there is

different task structure or knowledge available, making each leaf in the tree a different weak method. Each of

the additions as one goes down the tree are independent control productions.

These simple schemes are more than just a neat way to specify some methods. The weak methods play a

central role in attaining intelligence, being used whenever the situation becomes knowledge lean. This occurs

in all situations of last resort, where the prior knowledge, however great, has finally been used up without

attaining the task. This also occurs in all new problem spaces, which are necessarily knowledge lean. The

weak methods are also the essential drivers of knowledge acquisition. Chunking necessarily implies that there

exists some way to attain goals before the knowledge has been successfully assimilated (i.e., before it has been

chunked). The weak methods provide this way. Finally, there is no need to learn the weak methods

themselves as packaged specifications of behavior. The task descriptions involved must be acquired and the

linkage of the task descriptions to actions. But these linkages are single isolated productions. Once this

happens, behavior follows automatically. Thus, this is a particularly simple acquisition framework that avoids

any independent stage of program synthesis.

3.3. Learning

The operation of the chunking mechanism was described in detail in the previous section. We present here

a picture of the sort of learning that chunking provides, as it has emerged in the explorations to date. We

have no indication yet about where the limits of chunking lie in terms of its being a general learning

mechanism [36].

3.3.1. Caching, within-trial transfer and across-trial transfer

Figure 3-6 provides a demonstration of the .basic effects of chunking, using the eight puzzle [33]. The

left-hand column (no learning) show the moves made in solving the eight puzzle without learning, using the

representation and heuristics described in the prior section (the evaluation function was used rather than the

mea-operator-selection heuristic). As described in Figures 2-14 and 2-15, Soar repeatedly gets a tie impasse

between the available moves, goes into the selection problem space, evaluates each move in an incarnation of

the task space, chooses the best alternative, and moves forward. Figure 3-6 shows only the moves made in the
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Slcuristlsearch,'Select and/or reject candidate operators and/or states.
Avoid Duplication. Produce only one version ora state. (Extend: an essentially Identical state.)

Operator Subgoaling. If an operator does not apply to the current state, find a state where it does.

Match, Put two patterns containing variables Into correspondence and bind variables to their correspondents.

Hypothesize and Match. Generate possible hypothesis forms and match them to the exemplars.

And-Or heuristic search. Makes all moves at and-states and selects moves at or-states until goal is attained.

Waltz Constraint Propagation. Repeatedly propagate the restrictions in range produced by applying constraints in variables with finite
ranges.

Means-Ends Analysis. Make a move that reduces the difference between the current state and the desired state.

Generate and Test. Generate candidate solutions and test each for success: terminate when round.
Breadth-First Search. Make a move from a state with untried operators at the least depth.

Depth-First Search. Make a move from a state with untried operators at the greatest depth.

Lookahead. Consider all terminal states to max-depth.

Simple lill Climbing. Make a move that increases a given value.

Steepest Ascent Hill Climbing. Make a move that increases a given value most from the state.

Progressive Deepening. Repeatedly move depth-first until new information is obtained, then return to initial state for repeat.

Modified Progressive Deepening. Progressive Deepening with consideration of all moves at each state before extension.

BO (Progressive Deepening). Progressive Deepening with optimistic and pessimistic values at each state (not a proof procedure).

Mini-Max. Make moves of each player until can select the best move for each player.

Depth-Bounded Mini-Max. Mini-Max with max-depth bound.

Alpha-Beta. Depth-Bounded Mini-Max, without lines of pla.y that cannot be better than already examined moves.

Ordered Alpha-Beta. Alpha-Beta with the moves tried in a heuristic order.

Iterative Deepening. Repeat ordered Alpha-Beta with increasing depth bound (from 1 to max-depth), with each ordering improved.

B* (Mini-Max). Analogous to Alpha-Beta, with each state having optimistic and pessimistic values [5].

Branch and Bound. Heuristic search, without lines of search that cannot be better than already examined moves.

Best-First Search. Move from the state produced so far that has the highest value.

Modified Best-First Search. Best-First Search with one-step lookahead for each move.

A'. Best-First Search on the fiiinimum depth (or weighted depth).

Exhaustive Maximization. Generate all candidate solutions and pick the best one.

Exhaustive Maximization with Cuto"s. Exhaustive Maximization without going down paths to candidate solutions that cannot be better
than the current best candidate.

Macro-Operators for Serially-Decomposable Goals [28]. Learn and use macro-operators that span regions where satisfied goals are
violated and reinstated.

Analogy by Implicit Generalization. Find a related problem, solve the related problem, and transfer the generalized solution path to the
original problem.

Simple Abstraction Planning. Analogy by Implicit Generalization in which the related problem s -in abstract version of the original
problem.

Figure 3-4: Weak methods, as patterns of behavior.
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Soar

Macro-operators Hypothesize

and Match
Means-Ends Analysis Constraint

Satisfaction
Operator Subgoallng Depth-F irst Generate Breadth-First

and Test

Unification

Progressive Steepes t Ascent Simple Hill Climbing
Deepening Hill Climbing

B* (Progressive Deepening) Mini -Max

Depth-Bounded
Mini-Max

Alpha-Beta

V Iterative Deepening'

BO (Mini-Max)

Figure 3-5: Structure of weak methods realized in Soar [29].

task space, coalescing the various incarnations of it. Each state, except for the initial and desired states, is

shown as a black square. The move made to reach the state is shown as a single letter (either Left, Right, -UP,

or Down). Soar explores 20 states in all to solve this problem.

The second column (with learning) has chunking turned on. Although Soar starts out examining the same

states as in the run without learning (L, U and R in each of the first two levels), it soon deviates. The

chunking that occurs in the early part of the task already becomes effective in the later part. This is

within-trial transfer. It answers one basic question about chunking - whether it will provide any transfer at

all to new situations, or only simple practice effects. Not only is there transfer, but it occurs on the initial

performance - a total of 15 states is examined, compared to 20 without learning. Thus, with Soar, no rigid
behavioral separation is possible between performance and learning - learning becomes integral to every

performance.
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1" 6s131 11613 1 1 161311 8314 1 6314 1 637,
274 2 74 2 7

8 5 8 5 8 5

R D L R D L D

R D L R D L D

R L R R

U U UJ

UJ L U L U

L L L

D L D D

R D L D D

R L R R

23 23 3
8 14 8 14 81 4
7 65 7 65 7 65

No Learning With Learning After Learning

Figure 3-6: Learning in the eight puzzle [33].

If Soar is run again after it has completed its with-learning trial, column 3 (after learning) results. All of the

chunkc to be learned in this task have been learned during the one with-learning trial, so Soar always knows

which move to make. This is the direct effect of practice - the use of results cached during earlier trials. The

number of states examined (10) now reflects the demands of the task, not the demands of finding the solution.

This improvement depends on the original evaluation fuinction being an accurate measure of progress to the

goal. Chunking eliminates the necessity for the look-ahead search, but the path Soar takes to the goal will still

be determined by the evaluation function cached in the chunks.

Figure 3-7 shows across-task transfer in the Eight Puzzle. The first column (task 1, no learning) is the same
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trace as the first column in Figure 3-6. In the second column (taik 2, during learning) Soar has been started

over from scratch and run on an entirely different eight-puzzle task - the initial and final positions are

different from those of task 1, as are all the intermediate positions. This is preparation for the third column

(task 1. after learning about task 2 but without any learning during task 1), where Soar shows across-task

transfer. If the learning on task 2 had no effect, then this column would have been identical to the original

one on task 1 (first column), whereas it takes only 16 states rather than 20.

1 613 2 831 63

267416 2474

8 5 7 5 8 5

R D L R D L R D

R D L R D L R D L

R L R L R

U U U

U L U L U L

L 1 23L
8 4

D L 7615D

R D4 L R D L

R L R

2 3 231

8 14 81 4

7 65 76 5

No Learning With Learning After Learning

Task 1 Task 2 Task 1

Figure 3-7: Across-task transfer in the eight puzzle [33].

What Soar has learned in these runs is search control to choose moves, and rules which implement the

evaluate-object operators. The comparison based on the evaluation function is cached into productions that

create preferences based on direct comparisons between the current and desired states. In this example,
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chunking does not improve the evaluation function. If the evaluation function is imperfect, as it is in this
case, the imperfections are included in the chunks. Also in this example, no eight-puzzle operators have been

learned because the operator was already rzalized directly by productions in the task space. But if the
operator had required subspaces for implementation (as the evaluate-object operator in the selection problem

space did), it would have been learned as well.

3.3.2. Learning in an expert-system task
A striking feature of chunking is that it applies automatically to every task Soar performs, without modifica-

tion of Soar or any special additions. For example, the investigations that used Ri-Soar to show that general

problem-solving capability can be combined with domain expertise (by adding domain-dependent search
control to a basic task representation) became immediately a demonstration that the domain expertise can be
acquired automatically. Figure 3-8 shows that on the task mentioned above that took 1731 decision cycles
with no domain-dependent search control, a pattern of results emerged that followed exactly the pattern on

the eight puzzle [65].

Ri-Soar Decisions with Decisions Decisions
Version no learning with learning after learning

Base. 1731 485 72% [+59] 7

Partial [+2] 243 111 54% [+14] 7

Full [+8] 150 90 40% [+12] 7

Figure 3-8: Learning in Ri-Soar.

The first column of Figure 3-8 shows the effects of the manual addition of search control from none for the

basic version, to 2 productions for the partial version, to 8 more productions (for a total of 10 search control
productions) for the full version. This was the basic investigation, and no learning was involved. The second

column shows the effect on performance of running with chunking turned on - the number of decision
cycles, the percent improvement over the trial without learning, and the number of chunks learned. There is
within-task transfer, just as in the eight puzzle. As the system starts with more initial knowledge, the effect

diminishes (from 72% to 54% to 40%) but the effect is appreciable in all cases. Finally, the result of rerunning
the task after learning is complete is to reduce the task to its necessary processing steps (namely, 7). The
automatic acquisition of knowledge does involve the addition of many more productions than was involved in

the manual acquisition (shown in brackets in the second column), because the chunks are more specific than

the manually encoded rules.

The extensive test on the extended version of Ri-Soar yielded additional data on learning, as shown in the
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four right-hand columns of Figure 3-9. In these runs, chunking occurred from the bottom up, that is, chunks

were built for a goal only if no subgoals occurred. Enough runs with bottom-up chunking will yield the same

results as all-at-once chunking (which was used in both the eight puzzle and initial Ri-Soar cases). Bottom-up

chunking has the advantage of tending to create only the chunks that have a greater chance of being

repeatedly used. The higher up in the subgoal hierarchy (measured from the bottom, not the top), the more

specific a chunk becomes - it performs a larger proportion of the task - and the less chance it has to be

used [50]. Thus, in Ri-Soar all-at-once chunking will create many productions that will never be evoked

again in any but identical reruns of the same task. Figure 3-9 shows two passes of bottom-up chunking (Pass

2 and Pass 4), embedded in three passes with chunking turned off to assess the effects (Pass 1, Pass 3, and Pass

5), giving a total of 30 trials with chunking. The test mimics what would be expected in the real situation with

an expert system, namely that the chunk-productions accumulate throughout the entire series of 30 chunking

runs (and remain fixed during the learning-off passes).16

Pass I Pass 2 Pass 3 Pass 4 Pass 5

Before During After During After

TASK (learn off) (learn on) (learn off) (learn on) (learn off)

T1 88 88 6] 44 44 3] 9
T2 78 68 [ 4] 40 40 [ 3] 9
T3 78 78 6]. 38 38 3] 9
T4 196 174 [14] 113 113 ( 6] 58
T5 94 84 6] 48 48 3] 9
T6 100 85 3] 48 48 3] 9
T7 70 48 3] 38 38 3] 9
T8 74 59 3] 40 40 3] 9
T9 88 73 .3] 42 42 3] 9
TIO 90 75 3] 48 48 3] 9
Til 173 158 [10] 86 86 2 2] 48
T12 78 52 [3] 38 38 3] 9
T13 124 102 7] 58 58 3] 9
T14 123 108 ( 7] 67 67 [ 4] 28
715 129 109 5] 64 64 2] 28

Productions

Total: 314 397 [83] 397 444 [47] 444

Figure 3-9: Performance of the extended version of Ri-Soar (with bottom-up learning) [75].

The figure reveals several interesting features. First, there is a 14% average improvement during the first

learning pass. This is primarily due to within-trial transfer in each of the 15 tasks. There is only a small effect

due to across-task transfer, both positive and negative. Negative transfer comes about from overly-general

search-control chunks that guide the problem solving down the incorrect path. Recovery from the misguided

16Thus, the table Is not to be read as if it were 15 independent little learning experiments.
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search occu-s, but it takes time. On Pass 3, the assessment pass after the first learning, pass, there is a

substantial improvement, reflecting the full force of the cached chunks: an additional drop of 35% from the

orig.nal times, for a total savings of 49% of the original times. The second learning pass (Pass 4) leads to no

further within-task or across-task transfer - the times on this pass are identical to the times on the prior

assessment pass. But after this second learning pass is completed, the final assessment pass (Pass 5) shows

another large drop of 35% from the original times, yielding a total drop of 84% from the original times. All

* but four large tasks have reached their minimum (all at 9 steps). Thus the contribution of this second pass has

been entirely to cache results that then do not have to be performed on a rerun.

The details of this version of Ri-Soar and the test must be taken with caution, yet it confirms some

expectations. This extended version has substantial domain-dependent knowledge, so we would not expect as

much improvement as in the earlier version, even beyond the effect of using bottom-up chunking. Inves-

tigauon of the given productions in the light of the transfer results reveals that many of them test numerical

constants where they could have tested for inequality of two values, and the constant tests restricted their

cross-situational applicability. But even so, we see clearly that the transfer action comes from the lowest level

chunks (the first pass), which confirms theoretical expectations that they have the most generality. And, more

globally, learning and performance always go together in Soar in accomplishing any task.

3.3.3. Chunking, generality, and representation

Chunking is a learning scheme that integrates learning and performance. Fundamentally, it simply records

problem-solving experience. Viewed as knowledge acquisition, it combines the existing knowledge available

for problem solving with knowledge of results in a given problem space, and converts it into new knowledge

available for future problem solving. Thus it is strongly shaped by the knowledge available. This integration

is especially significant with respect to generalization - to the transfer of chunks to new situations (e.g., as

documented above). Generalization occurs in two ways in Soar chunking. One is variablization (replacing

identifiers with variables), which makes Soar respond identically to any objects with the same description

(attribute-value augmentations). This generalization mechanism is the minimum necessary to get learning at

all from chunking, for most identifiers will never occur again outside of the particular context in which they

were created (e.g., goals, states, operator instantiations).

The second way in which generalization occurs is implicit generalization. The conditions that enter into a

new chunk-production are based only on those working-memory elements that both existed prior to the

creation of the goal and affected the goal's results. This is simple abstraction - ignoring everything about a

situation except what has been determined at chunk-creation time to be relevant. It is enabled by the natural

abstraction of productions - that the conditions only respond to selected aspects of the objects available in

the working memory. If the conditions of a chunk do not test for a given aspect of a situation, then th.c chunk

will ignore whatever that aspect might be in some new situation.
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'A good example is provided by the implementation in Soar of Korfs technique for learning and using

macro- operators 128]. Korf showed that any problem that is serially decomposable - that is, when some

ordering of the subgoals exists in which each subgoal is dependent only on the preceding subgoals, and not on

the succeeding ones - can have a macro table defined for it. Each entry in the table is a macro-operator -- a

sequence of operators that can be treated as a single operator [19]. For the eight puzzle, a macro table can be

created if the goals are, in order: (1) place the space in its correct position- (2) place the space and the first tile

in their correct positions* (3) place the space, the first tile, and the second tile in their correct positions; etc.

Each goal depends only on the locations of the tiles already in position and on the location of the one new tile.

The macro table is a simple two dimensional structure in which each row represents a goal, and each column

represents the position of the new tile. Each macro-operator spec'fies a sequence of moves that can be made

to satisfy the goal, given the current position of the new tile (the positions of the previously placed tiles are

fixed). The macro table enables efficient solutions from any initial state of the problem to a particular goal

state.

Implementing this in Soar requires two problem spaces, one containing the normal eight-puzzle operators

(up, down, left, right), and one containing operators corresponding to the serially-decomposable goals, such as

place the space and the first tile in their correct positions [36]. Problem solving starts in this latter problem

space with the attempt to apply a series of the high-level operators. However, because these operators are too

complex to encode directly in productions, they are implemented by problem solving in the normal eight-

puzzle problem space.

Based on this problem solving, macro-operators are learned. Each of these macro-operators specifies the

sequence of eight-puzzle operators that need to be applied to solve a particular higher-level goal for a

particular position of the new tile. These macro-operators then lead to efficient solutions for a large class of

eight-puzzle problems, demonstrating how choosing the right problem solving decomposition can allow a

simple caching scheme to achieve a large degree of generality. The generality, which comes from using a

single goal in many differ,'nt situations, is possible only because of the implicit generalization that allows the

macro-operators to ignore the positions of all tiles not yet in place. If the identities of the not-yet-placed tiles

are not examined during problem solving, as they need not be, then the chunks will also not examine them.

The subgoal structure by itself does not tap all of the possible sources of generality in the eight puzzle. One

additional source of generality comes from transfer between macro-operators. Rather than a macro-operator

being encoded as a monolithic data structure that specifies each of the moves, it is represented in Soar as a set

of search-control rules that select the appropriate eight-puzzle operator at each state. These rules are general

enough to transfer across different macro-operators. Because of this transfer, only 112 productions are

required to encode all 35 of the macro-operators, rather than the 170 that would otherwise be required.
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One of the most important sources of generality is the representahion used for the task states. Stated

generally, if the representation is organized so that aspects that are relevant are factored cleanly from the parts

that are not (i.e.. are noise) then chunking can learn highly general concepts. Factoring implies both that the

aspects are encoded as distinct attributes and that the operators are sensitive only to the relevant attributes

and not to the irrelevant attributes. One representational possibility for the eight-puzzle state is a two-

dimensional array, where each array cell would contain the number of the tile that is located at the position on

the board specified by the array indices. Though this representation is logically adequate, it provides poor

support for learning general rules in Soar. For example, it is impossible to find out which tiles are next to the

blank cell without looking at the numbers on the tiles and the absolute positions of the tiles. It is thus

impossible, using just implicit generalization, to abstract away these irrelevant details. Though this is not a

good representation for the eight puzzle, the results presented in the previous paragraphs, which were based

on this representation, show that even it provides significant transfer.

By adopting a better representation that explicitly represents the relative orientation of the tiles and the

relationship between where the tile is and where it should be - the representation presented in Section 2.2 -

and adding an incremental goal test, the amount of sharing is increased to the point where only 61 produc-

tions are required to represent the entire macro table. Because the important relationships are represented

directly, and the absolute tile position and name are'represented independently of this information, the

chunks are invariant over tile identity as well as translation, rotation, and reflection of groups of tiles. The

chunks also transfer to different desired states and between macro-operators for different starting positions,

neither of which were possible in Korf's original implementation.

Figure 3-10 shows the most complex case of transfer. The top two boards are intermediate subgoals to be

achieved on the path to getting all eight tiles in place. Below them are possible initial states that the relevant

tiles might be in (all others are X's). A series of moves must be made to transform the initial state to the

corresponding desired intermediate subgoal. The arrow shows the path that the blank takes to move the next

tile into position. The paths for both problems are the same, except for a rotation. In Soar, the chunks

learned for the first subgoal transfer to the second subgoal, allowing it to be solved directly, without any

additional search.
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Different Intermediate Subgoals
Place Tile 3 Place Tile 5

1 2 3 1 2 3

X X * X 4

X X X X X 5

Symmetric Initial States

1 1 2 3

X x , ; X

X X 3 5 ;,4

Figure 3-10: Transfer possible with macro-operators in the eight puzzle.
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4. Conclusion
Soar embodies eleven basic hypotheses about the structure of an architecture for general intelligence:

1. Physicul symbol-system hypothesis: A general intelligence must be realized with a symbolic system
[52].

2. Goal-structure hypothesis: Control in a general intelligence is maintained by a symbolic goal
system.

3. Uniform elementary-representation hypothesis: There is a single elementary representation for
declarative knowledge.

4. Problem-space hypothesis: Problem spaces are the fundamental organizational unit of all goal-
directed behavior [49].

5. Production-system hypothesis: Production systems are the appropriate organization for encoding
all long-term knowledge.

6. Universal-subgoaling hypothesis: Any decision can be an object of goal-oriented attention.

7. Automatic-subgoaling hypothesis: All goals arise dynamically in response to impasses and are
generated automatically by the architecture.

8. Control-knowledge hypothesis: Any decision can be controlled by indefinite amounts of

knowledge, both domain dependent and independent.

9. Weak-method hypothesis: The weak methods form the basic methods of intelligence [47].

10. Weak-method emergence hypothesis: The weak methods arise directly from the system respond-
ing based on its knowledge of the task.,

11. Uniform-learning hypothesis: Goal-based chunking is the general learning mechanism.

These hypotheses have varying standing in current research in artificial intelligence. The first two, about

symbols and goals, are almost universally accepted for current Al systems of any scope. At the opposite end,

the weak-method emergence hypothesis is unique to Soar. The remaining hypotheses are familiar in Al, or at

least components of them are, but are rarely, if ever, taken to the limit as they are in Soar. Soar uses a

problem-space representation for all tasks, a goal-based chunking mechanism for all learning, and a produc-

tion system for all long-term memory. Many systems use production systems exclusively, but they are all pure
performance systems without learning, which does not test the use of productions for declarative memory.

Many aspects of the Soar architecture are not reflected in these eleven hypotheses. Some examples are:

automatic goal termination anywhere in the goal hierarchy; the structure of the decision cycle, with its parallel

elaboration phase: the language of preferences; the limitation of production actions to addition of working-

memory elements: the removal of working-mcm(try elements by the architecture; the restriction of produc-
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tion conditions to test only memory elements accessible through the context stack. There arc also details of

the mechanisms mentioned in the hypotheses- attribute-value triples, the form of conditions of productions,

etc. Some of these are quite important, but we do not yet know in Al how to describe architectures com-

pletely in functional terms or which features should be stipulated independently.

Much is still missing in the current version of Soar. Figure 1 pointed out several aspects that are under

active investigation. But others are not recorded there - the acquisition of declarative knowledge from the

external environment and the use of complex analogies to name a couple. Until Soar has acquired the

capabilities to do all of these aspects, there will be no assurance that the Soar architecture is complete or

stable.
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