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THE EFFECTS OF OPTICAL SMOOTHING TECHNIQUES ON
FILAMENTATION IN LASER PLASMAS

I. Introduction

The production of uniform laser illumination has been a fundamental concern in the laser-fusion
community for many years. The quality of the laser-plasma coupling and symmetry of the pellet
implosion are dependent on the illumination uniformity. Illumination uniformity analysis can be
divided naturally into large and small scale categories. Large scale illumination uniformity is
primarily determined by the gross intensity profile of the incident laser beams, the inter-beam energy
balance, and the geometry of the targeting on the pellet. This aspect of the uniformity problem has
been previously addressed, and the results indicate that the gross uniformity can probably be
controlled to within tolerable limits .  The detailed structure of the individual laser beam is
responsible for small scale nonuniformities, and is more difficult to suppress or control. The laser-
plasma filamentation instability is seeded by these small scale nonuniformities and tends to increase
the nonuniformity, exacerbating the problem.

The filamentation instability is a nonlinear optical effect that has been studied for many years.'
.Filamentation is caused by perturbations or nonuniformities in light that produce local changes in the
dielectric constant, or index of refraction, of a medium. If the change in the dielectric constant is
positive in regions of higher intensity, a focusing lens is produced there. This increases the
perturbation and starts the instability. The instability will saturate when the focusing tendency of
the intensity hot spot is balanced by diffraction, but at this point the filament intensity may be
orders of magnitude higher than the initial perturbation.

In laser plasmas, there are a variety of mechanisms that give rise to in intensity-dependent
dielectric constant and produce filamentation. Among these are ponderomotive force effects , plasma
heating or thermal effects , and relativistic effects. The ponderomotive and thermal effects change
the dielectric constant by expelling the plasma density from the high intensity region; these
mechanisms are active in laser-fusion plasmas. The relativistic mechanism affects the dielectric
constant via the increase in electron mass from the relativistic quiver velocity in the electromagnetic
wave; this is generally unimportant at the intensity ranges used in laser fusion applications.

Intensity hot spots caused by filamentation of the laser can seriously degrade the laser-plasma
coupling, and may affect the ablation pressure uniformity. The high intensity filaments can inluuc
other harmful laser-plasma instabilities, such as stimulated Raman scattering or two plasmon decay.
Since filamentation has one of the lowest instability thresholds, and produces conditions favorable for
other instabilities, it effectively lowers the thresholds and increases the growth rates of these other
instabilities. These instabilities degrade the coupling quality by producing superthermal electrons
which can preheat the fuel and spoil the gain. The enhancement of secondary instabilities also

obscures our understanding of the underlying physics of the laser-plasma interaction: since
filamentation is itself hard to measure directly, it is even more difficult to diagnose the effect of
filarnentation on other phenomena. There is also the concern that the laser filaments may produce
ablation pressure nonuniformities which seed or drive the Rayleigh-Taylor instability in the imploding
pellet.

To avoid the flamentation instability, as well as to provide some control over the gross laser
beam profile, new optical smoothin techniques have been developed. One of these is the induceI
spatial incoherence (ISI) method ; another is the random phase screen (RPS) method. 0 11

Experimental results wsing these techniques are incomplete and are still under investigation. The ISI
results to date are favorable I; diagnostics of most laser-plasma instabilities (e.g., 2w"o, Raman
scatter, SBS scatter) show significant reductions when compared to results with an unsmoothed Otrn.

The RPS method has also shown some reduction in *Wo /2 emission when used in .phner:c-.
1.illumination geometry. o
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The implementation of each of these optical smoothing methods involves trade-offs. The RPS
technique requires fast focusing optics to work effectively, but can be implemented with only minor
modifications to existing lasers. ISI promises to be a more robust smoothing technique, but requires
a broadband laser (Aw/ii - 0.1%). Glass lasers can be converted to run broadband at 1.06#m and
0.53jm laser wavelengths; for short wavelengths, the KrF laser is an excellent candidate for ISI.14

Evaluation of these optical smoothing techniques requires information on how the filamentation
instability is modified by the incident laser beam structure. Experimental data on filamentation has
been sparse or nonexistent because of difficulties in controlling and diagnosing both the laser intensity
structure and the plasma conditions, and theoretical techniques are insufficient to handle the
complexity and nonlinearity inherent in the problem. Computational techniques are also severely
tested, especially when modelling ISI or RPS. Both ISI and RPS require resolution of a large range
of scalelengths (typically from less than one to a few hundred laser wavelengths). This requires large
computational meshes, and the resolution constraints invalidate the use of well developed ray-tracing
computational methods, which ignore diffractive effects that are important at the small scales.

We will analyse the limitations of optical control techniques and compare these smoothing
methods with traditional (unsmoothed) high-power lasers. The paper is organised as follows: in
section II, we describe the construction of a two dimensional, time dependent, laser-plasma
propagation code that includes both ponderomotive and thermal filamentation mechanisms. A steady
state version of this code is also developed to treat problems without inherent time dependence.
Next, a general analytic perturbation formalism of filamentation is presented in section III, and is
extended to account for filamentation of incoherent ISI laser light. Finally, section IV presents the
resulti of the numerical codes for a variety of laser beam profiles, and compares these results to the
analytic predictions.

We will show that there is a qualitative difference between thermal and ponderomotive
filamentation: filaments created by the thermal mechanism tend to bunch together and cause greater
nonuniforutity than ponderomotive filaments, which interact less. This clustering can result in a
different saturation mechanism for thermal filamentation. We also find that the RPS optical
smoothing method is dependent upon the use of fast optics (F/# 5), and that the ISI method is
capable of suppressing filamentation effects and providing smooth time-averaged intensity distributions
using moderate laser bandwidth. In spite of the smoothing effects, ISI can also produce noticeably
enhanced intensities in the plasma. In laboratory conditions, however, ISI is shown to suppress
filamentation effects more completely than RPS or generic laser beams. At longer laser wavelengths
filamentation occurs readily, and optical smoothing techniques suppress, but do not eliminate, the
filamentation tendency. The best results for all optical methods are found with short-wavelength
(X0 0.25pm) laser-irradiated plasmas, where high absorption helps to reduce filamentation. In these
plasms, the ISI technique can completely eliminate filamentation.

4



fl. Governing Equations and Numerical Description.
In this section, we will develop the basis of the numerical scheme and discuss the relevant

physics involved. We first derive the equations describing the laser light propagating in a plasma in
which the dielectric constant has been perturbed; then we derive the equations describing the
perturbation of the dielectric constant caused by changes in the plasma density responding to the
laser light. We will treat two mechanisms responsible for plasma density changes. The first is the
ponderomotive force, which directly expels the plasma from regions of high laser intensity. The
second is thermal conduction dominated plasma heating, which creates temperature (and thus pressure)
gradients and also forces the plasma out of high intensity regions.

The numerical algorithms that handle the governing equations will also be outlined in this
section. Two versions of this code have been created. The first is time-dependent and is used
primarily for the ISI calculations. The other model solves the equations in a quasi-steady state
approximation, and is used to calculate filamentation effects when the incident light is stationary in
time.

The analysis in this paper uses a two-dimensional (2D) cartesian description of the interaction.
The spatial growth rates and amplification wavenumber-spectrum are very similar in two and three
dimensions, as we will show in section III. The 2D numerical analysis also reduces computational
memory and time constraints to manageable levels, and allows a large region of parameter space to
be covered by using many simulations. Cartesian rather than cylindrical geometry is needed to study
fidaentation in 2D, since cylindrical geometry artificially favors on-axiws focusing and cannot equitably. .. . . 16,17
treat the random-phasing required in optical smoothing simulatlons . The main difference
between the 2D calculations and three-dimensional (3D) calculations c, ccurs in the peak intensity
values: 3D filaments can typically reach much higher peak intensities. However, rapidly varying
intensity profiles may restrain large peak intensities in 3D: preliminary results of 3D simulations of
ISI show that the light energy distribution is comparable to 2D simulations. i
A. Light Propagation

The laser propagation and filamentation will be described by the parabolic wave approximation
to the Maxwell wave equation. Starting with the Maxwell equations, we assume that the divergence
of the electric field is small (k9Ve/E<<k2 ), and set VOE=O. The electric field is separated into
fast and slow space-time scales wih the substitution: E(x,zt) = 1/21'l(x,z,t)exp{-ifk0 dz + iw 0t}-c.c.'.

,s,t) is the wave envelope of the electric field, k (z) is the (real) laser wavenumber
(ko(z)=w 2 1Eo(z) C ), o is the real part of the unperturbed plasma dielectric constant (E i601 o% I oror oi'and E r(z)=1-n (z)/n., where n(z) is the unperturbed plasma electron density, and n is the piasma
critical densityl. ('he subscript 'o' appended to a variable means that it is evaluated at the
background or unperturbed state.) If the wave envelope '/(x,z,t) varies slowly with respect to the
laser wavelength and frequency, the M&xwel wave equation reduces to the parabolic wave equation:

2

{2ik 7 2~ 1 = 0 (E(z'x, t)-E Z)) ia-k3 4 (2. 1'
C

"2 ' 9 .

where Ez,x,t)= I-WP(z,x,t)/ J -iw (z,x,t)V .(z,x,t)/0 is the fully perturbed plasma dielectric constant;
W =47e'n /m is the electron plasma frequency, and V ei is the electron-ion collision frequency. (The
tune derivative (34/3t) can be formally eliminated by transforming to the frame moving with the
pulse group velocity .... , with the variable substitution t'=t-s/v . In practice, one can simply ignore
the time derivative term if the transit time of the propagation region iS much smaller than any
characteristic time for .:hanges in the dielectric constant.) We normalize all spatial coordinates 'y
the laser vacuum wavelength, Xo, and define the transformation using the spatially norrnaiized
coordinates):
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inhomogeneity. Redefining the variable in the z direction as 17=fidz'/k(z'), we arrive at the J4
parabolic wave equation in canonical form: F

(41ri - V1) 2 = 2 &(7'X't) (2.3)

where 6C=e(7,xt)-E(z) is the change in the plasma dielectric constant induced by the laser EM field.
The effect of the plasma on the propagating field is concentrated in this term. For the cases of
interest here, this induced change is entirely due to changes in the plasma density (6E=
(n() n(n/,x,t))/ne), and is found by solving the equations governing the plasma response to the laser.

The parabolic wave equation (2.3) is solved numerically on a mesh in x-z(7) space, with time
treated as an independent parameter. The numerical algorithm consists of a split-step fast-Fourier-
transform (FFT) technique . To accommodate the Fourier transform technique, the computational
mesh is periodic and equally spaced in the transverse (x) direction.

The periodicity of the mesh affects the manner in which the initial laser field is numerically
constructed. The focusing optics separate the incident laser beam into many individual beamlets,
which are focused onto a target where they overlap one another. In the code, these overlapped
beanilets are approximated as plane waves incident on the plasma at different angles; this is a good
approximation in the center of the focal spot. For a high-power laser without optical smoothing,

these beanlets correspond to light from different sections of the beam, and they will be be slightly
incoherent with respect to one another (depending upon the degree of aberration in the beam). In
the case of the ISI and RPS smoothing techniques, these beamlets axe incoherent with respect to one
another, and correspond to the light coming from different echelon steps or phase shift regions of the
random phase screen.

The incident wave field is constructed on the Fourier transformed plasma mesh which has the
spacing Ak =2r/X ,,, where X is the length of the mesh in the x direction. Each beamlet has
a unique wavenumer k A: the wavenumber of the i-th plane-wave beamlet incident at angle 9. has a
k component k .---k sn.. The angles 0. are given by the relation i-1tan-- (d[i--Nb)'/21/!),

wiere d is the width of the echelon step, pha3e shift area, or spatial coherence distance; / is the
focal length of the lens, and i varies from I to Nb (Nb is the number of beamlets used). For
moderate-to-large F/# optics, 9 is small and tanO.=sin9.=6.. The modes corresponding to the J

na.x I L
individual bearlets are then assigned to the nearest point on the k-space transform mesh; the mesh
spacing Ak =27/X of the Fourier transformed mesh corresponds to an spatial angular resolution
AO=) a/X . The real and imaginary parts of the electric field of each ben.mlet at wavenumber k.,
are then added to the value at the assigned mesh point. In general, the electric field at each k

mesh point at s=O is independently assigned a random amplitude or phase (or both) depending 'upon
the type of beam being simulated. For ISI simulations, the phases of each beamlet are chosen to be
uniformly random and their amplitudes are selected with a Gaussian probability distribution. For
RPS and other lasers, we typically use constant amplitude but uniformly random-phased modes.
(More detail on the construction of laser profiles is given in section IV). The laser electric fleid
E(x,s=,to) is then found by inverse Fourier transforming this distribution. For the ISI simulation,
this process is repeated again after every interval tc to produce a new randomly generated E field.
B. Plasma Response

The nonlinear change in the dielectric constant, iY(x,z,t, O), is found by solving for the
plasma density Using a one-fluid plasma model. The calculation is greatly sinmpiified by ignoring
fluid coupling to itself along the direction of propagation of the laser (z axis). This approximation is
valid when the plasma gradients along the z-axis axe much smaller than gradients perpendicular to
the s-axis, and is consistent with the slowly-varying-envelope approximation used previously .or 'he
laser electric field. The approximation also ignores fluid flow &long the laser nxis (which is typically
supersonic in the underdense regions of laser-fusion plasmas-. The effect )f flow on filamentti'n
has been considered elsewhere and can be ignored if the flow grndients %re -mail %nd the fhni ,',w
velocity is not too supersonic. The presence of counterpropagating a.xial supersonic flow rv!luces the
amount of filanentation growth, so the results presented here may overesttmate fliamentaLion.

The continuity and momentum equations for 'he quasi-neutral ne-fuii nasma In "h,- :r-,n
of the laser ponderomotive force -r, !inemrize'l, Lnd ,:ombinei to giv- Iriven ion- %c )iit;c v,

10
equation for the -lectron -ensity



-L , 2V n(e 2C2 , a2 * (2.4)

at2 ii-~ s~~ I) ne I s + apn em ihsbe

where a=Ze 2 /4m m.W2 and C2=(ZT +T.)/m., and a phenomenological damping term / has been•e 1 0 3 s e 1. I

included. This equation describes the plasma responding as an ion-acoustic wave driven by
temperature (pressure) gradients (first term on the right) and the ponderomotive force (second term).
The variable ln(n ) preserves the correct nonlinear isothermal steady state behavior, and ensures
positivity of the density in the transient regimes. The term V Iln(n )V.C is ignored, as it is
second order in the perturbation. For all of the cases considered in this paper, the condition
5 ne'n <<1 is valid; typical values of 6n,/n in the time-dependent calculations are less than -5~5%.
(For I[ laser light, hot-spots shift randomlyoon the order of the coherence time (~psec), which is
faster than than the density can respond. Intense ISI filaments are not precluded, though, since even
shallow density channels can produce substantial refraction over long propagation distances. For long
pulse non-ISI lasers, quasi-steady state density equilibration can occur, and a different, nonlinear
steady-state formulation for the electron density is used. This algorithm will be described later.)

The ion temperature is assumed to be constant in time, since the ion-electron energy
equilibration time is typically on the order of nanoseconds in these plasmas, and this is much longer
than time-scales of interest. The background ion and electron temperatures are assumed to be equal.
(The model and results are insensitive to the ratio of background electron-to-ion temperatures, and in

any case the results can be easily renormalized to account for different ratios.) The perturbed
electron temperature is then found by solving the relevant energy balance equation:

33 t T = - -+ S(n,T) (2.5)

Q is the electron thermal heat flux - V IT , S is the Joule heating source given by X ', de(T)
is the electron thermal conductivity (including any flux-limiting effects), and xb(n,,Te) is the inverse
brensstra~hlung absorption coefficient. Compression effects and electron-ion energy coupLing are ignored
since they are much smaller than the terms* included in (2.5) for the cases studied here.

The equations (2.4) and (2.5) can be put into a form that depend on dimensionless quantities
describing the magnitudes of relevant physical phenomena. We define:

ponderomotive pressure
7p =

plasma thermal pressure

e 2 v 2 x 200933 X2  m- 11014W
2 1 2 0 0 9 3 3

4m eo(1+) 4(1+) VTe (1+) T [keV]4e 0 eoZ e0o

(2.6a)

thermal conduction transit time across laser wavelength dimensions

7T1 ion-acoustic transit time across laser wavelength dimensions

C n c (no.n) / n A ri1i/2 .

3 so eo Q .3X0 0e C7 T1 - 2 - 135X0- _2 F )co 0 1 kcv0 0:M

eo L
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Iw m P l Rn P

inverse bremmstrahlung heating rate

thermal conduction cooling rate across laser wavelength dimensions

b 2 8.9x10-9 n.
7T2 W2 P.T T5 [keV] F- O(Z) c

o e0 e0 e 0

where A and Z are the plasma ion mass and charge, InA is the Coloumb logarithm, and
O(Z)=(Z+.24)/(1+.24Z). 2 5 The subscript 'o' again refers to evaluation of the variable at an
unperturbed or initial value.

7,2 is the scaling constant of the steady-state temperature perturbation in the plasma, which
is the active force in the thermal filamentation mechanism. The sensitive dependence upon plasma
temperature is due to the temperature dependencies of the electron-ion collision frequency (-T,3 /2 )

~ 5/2• -and electron thermal conductivity (-T_ ). As the temperature rises, both the decreasing collision

frequency and increasing thermal conduction act together to smooth temperature gradients and quench
the mechanism. For this reason thermal filamentation is more important in cooler dense plasmas,
such as those created by short wavelength (X<0.5#am) irradiation. The ponderomotive force, on the
other hand, is more important in long wavelength laser irradiation of plasmas (7.-1 Xo/To) because
of its explicit dependency on laser wavelength.

Another important difference between these two types of filamentation is the mechanism by
which they couple the laser light to the lasma. The ponderomotive force is almost instantaneously
felt by the plasma (on times of order W_ ), and is stronger for hot spots with shorter scalelengths.
In contrast, the thermal forces in the plasma require the establishment of temperature gradients. The
temperature distribution is created on a characteristic time scale that is longer for larger scalelengths

(*"Un 2/Pe), so the force is transmitted more slowly for large scale filaments. At shorter
scakelengths, the force is suppressed by the diffusive thermal conduction smoothing. Thus, thermal
forces are greatest at large scalelengths and long times, a opposed to ponderomotive forces which are
greatest at short 3calelengths at all times. These characteristics are the basis of the qualitative
differences in the two filamentation mechanisms.

Using the quantities (2.6), the plasma response equations (2.4) and (2.5) can be re-written as:

V2- jal(-) =+(2.7)et (lFt I+1/Z) i p1I
S2

2a7T1 n e  a-tI 4T'7T2 1  (2.8)

Again, the spatial coordinate x is normalized to the laser wavelength X and the time is normalized
to X /Co, the ion-acoustic transit time across a laser wavelength. Tie overbar indicates that the
variatle is normalized with respect to its initial or unperturbed value, e.g., n n(xzt)/no (z ) and
I =I(xst)/I(z=O)

In the computer code, the plasma variables n (x,Z,t), 3ne(x, z ,t)3t, and T (x,z,t) are defined on
the same (x,z} mesh as the laser electric field. The numerical algorithm for the hydrodynamics of

eqn. (2.7) uses a combination of FFTs and an analytic solution. Assuming relatively small variations
in the sound speed in x, the driven ion-acoustic wave equation can be Fourier transformed to yield:

[t2 qX at X (li./Z)"

where q is the ratio of the imaginary to re-i frequency of the ion acou-tic wav,! Y!I
analysis presented here, q :s generally taken to be 1/2, in %cc ird.nc:r with thc !i1nlin'It .1.: I
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damping for Te =Ti). For the purposes of the calculation, the driving terms are assumed to be
approximately constant over the time step used in the code (on the order of a picosecond). The
solution to (2.9) for a source that is constant from to to t0 +-r is then found analyticaly:

la(n[k 't +ij) e-X q/ ( nnt] + -q- [ln~n~t.]) + ] ,
X 0 at20

(1n(nt])+G]cosXT] - G(2.10)

where - (1-q 2 /4)1/ 2 k and G= O * ,t This result is inverse
Fourier transformed numerically to yield the plasma density at the advanced time t -7-.

The plasma energy balance eqn. (2.8) is solved with a three-point predictor-corrector method
and is subject to the same periodic boundary conditions imposed by the Fourier treatment of the
laser light and plasma density calculations. This can cause problems, since the net energy deposited
by inverse bremmstralung at a given axial position cannot be lost either by heat flow out of the
system or conversion to axial plasma kinetic energy. Under these circumstances, the plasma at any
given axial position will continually gain energy (temperature) as the interaction progresses, in
contrast to the real system which will reach a quasi-steady equilibrium with laser energy converted to
plasma blowoff and target acceleration. To avoid this unphysical behavior, the spatially averaged
energy gain (472 fdx'7T2 (X',t')I x',t')/X ) is subtracted from the source term of eon. (2.S) to keep
the mean temperature constant. This is equivalent to assuming that the energy losses (to axial
conduction or flow) are independent of the coordinate x.

A harmonic-mean flux-limited formalism is used for the heat flux:

X e IV IT eI-I+ feTV ee lie(.1

is the Spitzer electron thermal conduction coefficient of the plasma and f is a phenomenological
flux-limiter. Anomalous flux limiting in laser plasmas has been implied by indirect experimentai
measurements of axial heat flow in the region between the critical density and the abiat;on 3urface.
However, the magnitude of flux limiting in transverse heat transport in the underdense region
speculative at best. The semi-classical value f=0.1 is used here simply to ensure that the heat -lux
stays within physically allowed bounds26 . In most of the calculations presented here (and in all of
the IS1 calculations) the heat flux is much smaller than this limit, so the results are insensitive tc

the flux-limiter.
For time independent problems (i.e., laser-plasma interactions with non-ISI lasers and puise

lengths long compared to hydro times), the calculation of the plasma density is simplified. The
solution of the steady-state momentum balance equation for time-independent sources O (x,z) and
Te(xt) is

C x, C) ¢2 (x, z)

S

where C' is a constant of integration given by the definition of averag, ien5itv" C'=

n X rlxC "(x')exp(-77 7.'C'V 7. ?). The temperature T --,'. ". oiin'i by it .tiv,. -olt:g max' x " .dx'
ot eqn. (?.3) with arbitrsiy time teps, performed -ntit'he o'i:ion :-nver ~a' . he 7tt
solutions for T,(x.:) and n.(xz) atre then iterated lternately to obtain a -onvergnt ctiv-i .ae

solution for both.
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M. Analytic Formulation of Filsmentation
Before proceeding with the computational analysis of filamentation, we present an analytic

treatment of filamentation that is based upon the perturbation solution of the complete Maxweil's
wave equation. The formalism is developed in general terms, then applied to the ponderomotive and
thermal filamentation mechanisms separately. The general formalism is also heuristically extended to
include spatially and temporally incoherent ISI light. Results for both ponderomotive and thermal
flaamentation of ISI light are also presented. In section IV, we will then compare results of the
computational and analytic treatments of filamentation.
A. Basic theory of Filamentation

The formalism used here to describe the scaling of thresholds and growth rates of filamentation
is well established27 '2 5 . Perturbations of plane waves in homogeneous plasmas are analyzed using the
exact Maxwell's wave equation for the electric field and an expansion of the dielectri _onant in"
terms of the perturbed laser intensity, e(<(E+t-E 2 >)-e +e'E6E. Choosing - E-t-k zi.
and assuming the perturbed field 6E has the form A 0 exp[i(w 0 t-k z)+k z-+(k x-k y)j where2< 2 2.. Y "
k <kx+ky, one finds a general dispersion relation for both ponderomotive an thermal mechanisms:

(k 2+k) 2 -[ -(ko2- k )- (k 2 2 4k 2 k2  (3.1
o x y g

where 5=e( ,k_,I+6)/[cI/I]; 6 =(n/n )7 for the ponderomotive mechanisn and
6 )= (n/ne) 7 , Ikx+ kyI for the thermal mechanism. fFor notaional convenience, we define k as a.
wavenumber normalized by the laser vacuum wavenumber; i.e., kj=kjc/W ). We have assumed 5E
parallel to E as th is the fastest growing configuration. For the one dimensional case we .e"
k =0, kx=k, and assume that the two dimensional case is confined to k =k =k./ 2"; then the
general expression for the instability threshold in N transverse dimensions (where i=1 or 2) is:

k I 1 ' 1 1(3.2)
0

For any interaction strength (6E), there will be some range of unstable perturbation wavelengths of
the incident light intensity. There remains the questions as to whether this range is relevant
(contained in the interaction region), sad if so, whether the perturbations have room to grow within
the propagation region. The spatial growth rate has a maximum at a value kmax determined by the
a root of the equation:

(1q -) ma-+o]+ ( Le -m (3.) -
0 0

-2
where 66' is differentiation of 56 with respect to (ki) . For the ponderomotive mechanism ,
and for the thermal mechanism 6E'= (n/n)7T 2. Using these relations in (3.3) yields the fastest
growing modes and their associated growth rates for the thermal and ponderomotive cases. Th'ie
results are shown in Table 1; they will be compared to numerical solutions later.

Although the fastest growing thermal mode has an infinite wavelength, the growth rate is
approximately constant for kl<<1, which is generally the region of interest. Thus, for thcr.ai
filamentatign, most modes grow at the same rate. In contrast, the ponderomotive grzwth rate is ~", ,
for small kI. If the ponderomotive force is strong enongh, there is some value of at w"nic. : :1'

ponderomotive and thermal growth rates are equal. This point occurs for filaments rf i iz,,
( )1 2 Ponderomotive filamentation is dominant for -iarne,..- rnal.~r 'ha:i i 0i:"

wnile thermal ::lamentation is .nore ;mportant fnr the ': r er ::.t:nen'3,. Tai Ilx ,,. t3 , '-,'
whereby the thermal "and ponderomotive meciani~m3 can conupic: large wav-length mOd1es C,(.ll i "i
focus to due thermai filramentat:on, then !-rn.ne i0mm -t.,'i V)V D ,lnr,1t:ve :arunta ' "

'ilament becomes ,rn,.il .n1olign.
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B. IS! and filamentation.
The ISI optical smoothing technique leads to rapid, random fluctuations in the laser intensity.

If we average these fluctuations over a time tavg , then the fluctuations compared to the mean are

proportional to (tc/t )192, where tc is the cohierence time of the laser.9  Since the characteristic
plasma h~drodynamic response time is much longer than the typical laser coherence time, the plasma

dielectric constant will respond to the time-averaged intensity. As a simple way to account for this.

we will substitute this time-averaged intensity perturbation (Io[tc /t 1/2 for the background
intensity (I.) in the formulas for the dielectric response, using a suitab e value for tav.g After this
substitution, the filamentation formulas given in the last section will be re-derived.

This analysis ignores some effects which may contribute to the suppression or enhancement of

filamentation. For instance, the stochastic-like fluctuations in the density will increase the light

scattering and counteract filamentation. 2 8  On the other hand, the time average of the intensity

fluctuation is treated linearly, although the interaction is itself nonlinear; this underestimates the

filamentation. It is implicitly assumed that corrections due to these effects are small.

The averaging time t is taken to be the characteristic time for the filamentation mechanismavg
to change the dielectric constant appreciably over the transverse dimensions of the filament, . For

the ponderomotive mechanism this averaging time is the ion-acoustic transit time of the fiament.

*XI/C . For the thermal mechanism, the averaging time is the larger of the ion-acoustic transit time

and tiethermal conduction transit time, neXi/Xe. The ion-acoustic transit time is larger when the

ratio 7.TX I/X (see eqn (2.6bi) is less than one. This ratio is largest for cooler, short wavelength
pl ms 0 1/[T 2 X ]) and large filaments. In a worst case (X =0.25,0m in a CH plasma with
T A=1keV, n nc=0.25) the ion-acoustic time is the dominant averaging time for X, 350-.hm. Since

this worst-case value of 350pim is larger than almost all filaments studied here, we will use .he

acoustic transit time as the averaging time for both thermal and ponderomotive filamentation.

The filamentation analysis presented in section III.A is now repeated, except that the

background dielectric constant depends upon the time averaged intensity perturbation level, instead of

the plane wave intensity. Thus, we substitute 10(t /t )1/2 (with t =i /C ), for I in thein_ c* avL.. avg .1 .o .

expressions for the dielectric change, ft, given in section fI.A. For the ponderomotive mechanism

this substitution gives:

E _ r1/ 2 f [k /2p n g=p- [L:'

and:

1 in 1/2 /P 4n 7PTC [k~s/

where we have defined a normalized coherence time as:

t C C / 1/2 tC(psec)Ss ~ 31 [(1+'/" T , (k e V) )

0 0

For the thermal mechanism,

nE 1/2~ k]-3/2t n 7T'c [k]
C

and

.- -. - -.• j .. - .



N n 1/2r- 1/2
4 n 7 T2-c (ki]

C

Using these equations in eqns (3.1)-(3.3) gives the relations for ISI filamentation found in Table U.
These results will be compared to results of the numerical simulations in the next section.
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IV. Analysis and Discussion
In this section, we use the code described in section 11 to simulate filamentation behavior of

different laser beam profiles. We proceed in a carefully structured manner, beginning with simple,
well-characterized problems having known solutions. Complexity is added to the interaction a step at
a time, gradually building up to simulations of realistic laser beams propagating in laboratory-type
laser-plasmas. As we proceed, unique characteristics of the newly added features are identified and
discussed. The analytic results of section III are also compared to these simulations, and the
limitations of the analysis are addressed.

We begin with the simplest case of filamentation: the propagation of a Gaussian laser beam in
a homogeneous, nonabsorbing, medium. Analytic solutions of this model for ponderomotive and
thermal filamentation are developed in the appendix, and are compared to the numerical solutions.
This comparison exposes the limitations of analytic methods for even the simplest cases of
filamentation, and illustrates the physics that distinguishes the two types of filamentation. Next, the
beam profile made more complex while the plasma remains simple: we consider generic and optically
smoothed RPS and ISI laser beams. These more realistic beams are composed of randomly phased
perturbations of different wavelengths, and introduce the possibility of nonlinear mode coupling.
Finally, we add inhomogeneity and absorption to the plasma model, and consider laboratory plasmas
relevant to ICF experiments.

Throughout this analysis, we will use two basic parameters to measure filamentation effects: the
filament focal length and the focal intensity maximum. These quantities are useful filamentation
measures for two reasons: first, these parameters can be directly compared to the analytic theory.
Secondly, the focal length gives the minimum size of a plasma in which filamentation effects may be
observed, while the maximum intensity quantifies the impact of filamentation on other nonlinear
processes.

The filament focal length and intensity maximum are not easily defined except in the simplest
of cases. In these simple cases, the propagation of a single-peaked incident intensity profile, the first
intensity maximum in the propagation direction corresponds to the focus of the filament. In more
complex beam profiles, however, there may be (and usually are) many intensity maxima along the
propagation distance, of varying degrees of magnitude. The usual practice here is to identify the
focus at the first intensity maximum encountered along the propagation direction; further, it is
supposed that this first maximum is due to focusing of the fastest growing mode. In some cases,
however, intensity maximums further along in the propagation may be considerably more intense than
the first. In this case, more than one focal length or intensity maximum can be defined.

In the following discussion, we make the following definitions for notational convenience: the
maximum value of a distribution I(x,z,t) over all values of the variable x is denoted as MAX{I}X,
while the first maximum of the distribution in the direction of the variable z (i.e., where dI/dz=o
and d 2 I/ds2 <0 for the smallest value of z) is denoted MAXI{I}s. Also, the filamentation focal
length is sometimes abbreviated as I
A. Filamentation in Homogeneous, Ifonabsorbing Plasmas: Gaussian filaments

The accuracy of theoretical approximations and predictions is evaluated using the laser-plasma
propagation code previously described. For the purposes of the calculation and comparison, we begin
by using a nonabsorbing and homogeneous plasma. Nonabsorbing means that the laser energy is not
depleted as it propagates through the plasma; however, the laser is allowed to heat the plasma to
produce the thermal and pressure gradients needed for thermal filamentation. Homogeneity refers only
to the background plasma; again, the laser is allowed to produce the inhomogeneity needed for
filamentation. Although unrealistic in some ways, this plasma model provides a good test-bed for
basic filamentation phenomena; it shows the qualitative filamentation behavior, and allows us to
compare the calculations to the non-absorbing, homogenous plasma theory of section III. The first
order effects of absorption and inhoinogeneity only alter the quantitative behavior of filamentation.
Absorption counteracts fdaamentation to first order by decreasing the growth rate by the amount -. )
inhomogeneity, on the other hand, causes local variations in the strength .)f the focusing :orces.
Inclusion of these factors is considered in section IV.B, which addresses laboratory plasmas.

We begin by considering the focusing of a Gaussian filament in ".he steady state limit. Thc
numerical results can then be compared directly to approximate solutions f "he '.h :y--tte.. t:f:',,

propagation equation (2.3). The ferivation and resuits of this G aiusian noneie :or "he oond.r,)mt.ot.
%nd thermal mechanisms -re given in the %ppendix to this paper: th,- -caiing and mag nituie ):



focal lengths found there are the same or similar to the results given in Table I. The Gaussian
model also predicts peak intensities reached during self-focusing. We compare the calculations to the
results of this model for the cases of ponderomotive and thermal filamentation separately.

As a frst example, we calculate the intensity as a function of the distance of propagation into
the plasma for a case where only the ponderomotive force is active (fig. 1). The initial radius of the
filament is a =20X, and the interaction strength is 7 =5XI0 "3 (this is 40 times the threshold value).
The model and calculation results are comparable: the focal length (3500) lies within -10% of the
predicted result (315X ), implying that the Gaussian model is fairly accurate in determining focal

.lengths; this agrees witl previous findings3 '2 9 . However, the predicted focal intensity is much larger
than we find with the code. In part this is due to the sensitivity of the model's peak intensity to
the focal spot radius: small changes in the radius give rise to large changes in the peak intensity
when the focal spot radius is small (MAX(I} x"/width). In reality, the filament is not constrained
to stay Gaussian, and the peak intensity is not so sensitive to the filament radius. (The inability of
the Gaussian model to account for saturation effects in the dielectric response is not important here,
as the maximum dielectric change in the simulation is 40.5%).

After the first focus, the filament usually behaves quite differently from the model; propagation
can be periodic, although it usually has a more complex periodicity than predicted. The behavior
appears to depend on the power level of the filament. Looking at the long distance behavior of the
simulation just described (fig. 2b, 40X threshold power), we observe the beam breaking up into two
off-axis filaments which focus twice independently, and then combining again to form a single
filament. The behavior is repeated again, but each time the central single filament is degraded in
power;, the periodicity is only approximate since the original Gaussian is not reproduced. At higher
powers (fig. 2c, 450X threshold), the beam breaks into many filaments, which spray outward from the
region of the first focus; in contrast a lower power example (fig. 2a, 1OX threshold) exhibits the
simple oscillation predicted by the model, although the oscillation is slowly damped by light escaping
the filament. In general, the number of filaments formed after the filrst focus is an increasing
function of the incident beam power

The scaling behavior of the spatial growth rate compares favorably with the model. Fig. 'a
plots the focal distance as a function of 7 for ponderomotively focused Gaussian filaments with
initial I/e radius a =40X . (The focal distance is defined as the distance from the beginning of the
propagation in the pluma to the point where the intensity reaches its first maximum.1 A linear
least-squares fit through the data points yields the empirical dependence Ia/-= 7 , which is

copral to th prdce 5ddo h apn
comparable to the predicted dependence / (from the appendix and table I). Calculations
performed for filaments with a Gaussian 1/e intensity radius a =20X also exhibit this scaling.

0 2
The peak focal intensities are very weakly dependent upon 7 a /X , the theoretical controlling

a 0'0parlmeter, an4 are much smaller than predicted (fig. 3b . Again, the approxi'mation

E(E E)ze +e'E E in the model is not violated even for the largest values of 7 a/X". This
indicates tiat deviations from the Gaussian constant-shape nsatz are the failure mode in the model.
The deviations occur because the expansion E(x)=E(x=0)+.5$ x2 used in the Gaussian model is
substantially violated in the simulation.

These calculations were repeated using only the thermal filamentation mechanism; the results
are shown in fig. 4. The initial filament radius is again a =40X , and the interaction strength
parameter varies from --2 5X10" to 5X10 "5 . The behavior here is not as simple as in the
ponderomotive case. At ow powers the focal length varies as -r matching quite closely the
scaling of the predicted values, although the magnitude of the focal length is consistently '20% larger
than the predicted value. Also, the maximum intensities are 50%-65% lower than predicted, though
they show the correct scaling with the filament intensity.

Contrary to expectation, as the interaction strength increases to high values (7Tr _4XI0), the
focal length increases and the focal intensity decreases. Closer examination of the simulation reveals
the cause of this curious behavior, at high intensities, the temperature proFiLle hecomes flat-topped and
sharp-sided (fig. 5). The electron thermal conductivity is a strong power of the temperature. so 'he
hot region (high conductivity) is smooth, and the cold region (low conductivity) has steep2
temperature gradients. The density profile is shaped like the temperature profile (,n ,-5T>., go the
ilament refract primarily at the edge. The light refracted at this iharp edge is -cracted .nto ,rgc
angles, and the resulting interference of this light with the main body of the fliamcnt :-.ates i,

frequency intensity str-ucture. This itructure increases the net d'fra!ctive force )f ,he .fiament anii
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counteracts the focusing tendency of the density channel; thus the focusing is reduced. The deliberate
creation of high frequency structure on the incident light has been suggested as a filamentation
suppression mechanism 0 , and is also the basis of the RPS illumination technique. Here, however,
the structure is created by the laser-plama interaction itself.

The sharp-sided, flat-topped temperature profiles are dependent on the boundary conditions of
the code. The largest wavelength temperature perturbation is limited to the size of the numerical
mesh, which is only a few times larger than the filament. Normally, this is of little consequence: if
there is moderate heating, the conductivity is approximately constant and the Fourier spectra of the
temperature has the same spectral range as the source. When the heating is strong however,
significant energy is transferred into both longer and shorter wavelength modes due to the
nonlinearities in the electron thermal conductivitj and collision frequency: This energy cannot be put
into modes larger than the mesh size, so it is forced into the numerically resolvable spectrum, in
modes with shorter wavelengths. These amplified short wavelength modes can then be further
enhanced by the temperature steepening associated with the nonlinear conductivity. Although these
particular results presented here are due in some part to the computational constraints, the profile
steepening effect is a well-known phenomenon in nonlinear heat transport. The defocusing effect for
strong thermal filamentation exists, but the quantitative threshold calculated here is dependent on the
actual boundary conditions of the system, and is not universal. As the size of the system increases
(relative to the heated region), the defocusing threshold will tend to increase.

The results of Gaussian beam filamentation show the limitations of the analysis for ideal
filaments in simple plasmas. Ponderomotive filamentation focal length scaling with intensity agrees
well with theory, but the predictions of the peak focal intensity are very inaccurate. In addition, the
propagation behavior is different than predicted; as the interaction gets stronger, more filaments are
formed as the beam breaks up after the first focus. Calculations and predictions of thermal
fila.mentation agree fairly well in scaling and magnitude, but only at lower powers. At higher
powers, nonlinear temperature variations cause focusing effects to weaken. Aware of these constraints
and behaviors, we are prepared to examine filamentation occurring with more complex laser
illumination profiles.
B. Filamentation in Homogeneous, Nonabsorbing Plasmas: Complex Laser Beams.

In this section we investigate the behavior of realistic illumination profiles in simple plasmas.
Three different laser beam types are considered here: the typical or generic laser beam, the RPS laser
beam, and the ISI laser beam. In part (i), these profiles are defined and their characteristic features
are discussed. Then, in parts (ii) through (iv), each profile is considered in turn, with the results of
the filamentation simulations presented. The qualitative features of these simulations are discussed
and the quantitative results are compared to theory.

i. Definition and Construction of Comnlex Laser Beams.
We will first consider a 'generic" laser intensity profile, representing a typical, high-power laser

beam. These profiles are determined by many installation-dependent (and time-dependent) parameters.

Imperfections of the optical system design or components, optical misalignment, or temperature
fluctuations present in the optical components during a specific shot, can cause unique aberrations in
the output beam. In gain-saturated lasers, the aberration structure is preferentially in the phase of
the laser electric field. Further aggravating the problem, the desired focal spot size for large scale-
length laser-plasma interactions is much larger than the diffraction-limited spot size, and quasi-near
field intensity distributions must be used. In the quasi-near field, even small amounts of aberration
show up as significant structure in the intensity profile. Laser intensity profiles are sometimes
characterized by their peak-to-valley intensity ratio; 3:1 to 10:1 are not uncommon values for this
parameter.

In this study, a variety of generic laser profiles with different root-mean-squ are standard
deviations are used (a 2 -[dx(I(x)-I )'/I(x) dx). The peak-to-average intensity difference is -4
times the value of a so typicafvalues of a are in the range of 0.25 to 1.0; -LT .5 is

rrs In t rms
often used as the representative value. In the code, these profiles are constructed 'y : i)ing
randomly phased electric field fluctuations onto a DC (k =0) electric field term. Electric fieid
fluctuations of all wavelength; (excepting the DC term) hxve the same amplitudc. ,ind 3p-nt::
wavenumber spectrum (from 1k, 1=1,'X to I,'F, in increments of IX , recx-l .)iY Vay ing .Xhe 0 piu e rl i,,t :l C n i:,, i,:dimensions are scaled to ,X - 0m :,.mplitude relative to D

different values of am. 1.,i3 construction gives two different character:itic r:npii :
rm- .
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Fourier intensity spectrum (fig. 6a). If the magnitude of the DC electric field term is A0 , and the
magnitude of the finite wavenumber E field variations is all then the intensity, profile has Fourier
amplitlides that are of order -2A a+a and a,2 for the wavenumber ranges 1k /=(l/X - m :I/2F)
and lk 11={1/2F:1/F) respectively. (Tie notation {a:b} denotes the range of vlues from a to b.)
For small values of armsi a1<<A , and the larger wavenumber range is of considerably smaller
amplitude than the shorter wavenumber range. (In fig. 6a, witbl F/20 optics and a plasma .mnesh
length 400X wide, these wavenumber ranges correspond to Ik 1 i {0.0025:0.025} and i 1=
{0.025:0.05), respectively.)

Next we consider the random-phase-screen (RPS) illumination smoothing method. This is a
potentially attractive near-term method for beam control, since it can be used on existing laser
beams. The laser beam is passed through a simple random phase mask before it is focused down on
the target. This phase mask consists of a large number of discrete areas which randomly apply a
phase shift between 0 and 27 radians to the section of beam passing through it. (This is slightly
different than the current experimental version of RPS, where the randomly applied phase shifts are
either 0 or T.10,11) At the lens focal plane, this produces a high frequency, spatially incoherent
pattern with a smooth envelope determined by the diffraction pattern of the individual phase-shifting
areas. This is similar to the ISI method, but without the laser bandwidth: the structure in the RPS
method is stationary in time. In principle, if the spatial structure has a high maximum wavenumber

km", the filamentation growth rate will be suppressed (similar to the situation observed in section
I'.A with thermal filamentatioi). This principle can be quantified w.ing the relations in table I;
filamentation is stabilized when k I(2ne7/nc)"' 2 (ponderomotive) or kj(2ne7T2 /nc) 1 / 4 (thermal).
When there is appreciable energy in the high wavenumber modes, they diffract substantially over
distances smaller than the growth lengths of the unstable modes. If this small-scale diffraction causes
significant changes to the structure or phase of the larger unstable modes, filamentation may be
suppressed. Also, the presence of appreciable energy in these modes implies that there is less power
in the unstable modes, which contributes to stabilization.

The RPS technique generates an intensity profile that contains both larger amplitude and
higher wavenumber components than the generic profile. A typical profile (fig. 6) has higher peak
intensities and higher spatial frequencies than a corresponding generic profile. The wavenumber
spectrum of the RPS beam is controlled mainly by the F number of the lens: the highest
wavenumber component of the incident electric field has a wavenumber k -1/2F. The DC (kI=0)
electric field term is of the same order as the finite wovenumber (kj0) eLctric field amplitudes, so
the high and low wavennmber intensity ranges (1k I={l/X :1/2F} and 1k I={1/2F:I/F},-max j

respectively) will have amplitudes of the same order. SInce RPS requires fast optics mall Fl/,), the
largest wavenumber in these profiles is usually much larger than in the corresponding generic profile.
One of the purposes here is to bracket the acceptable F/# range for the RPS method.

Finally, we also simulate the induced-spatial-incoherence optical smoothing method. ISI in its
simplest form is produced by passing a broad-band laser beam through an echelon, or stepped
transmitting plate. Each echelon step, like the random-phase-screen, produces a phase shift by
imposing a time delay on the beam passing through. Unlike the RPS technique, the time delay of
each echelon step relative to any other step is longer than the laser coherence time, so that the
spatially incoherent structure produced at the focus completely changes on the time scale of the laser
coherence time. Since the coherence time ("lpsec) can be made much shorter than gross plasma
hydrodynamic response times (ml10ps), the plasma should respond hydrodynamically only to the time
average of the laser profile, which asymptotically approaches a smooth envelope function.

Of these three laser profile types, only [SI is inherently a time-dependent profile. For the
generic and RPS cases, the intensity profile is frozen in, and the plasma can reach a quasi-steady
equilibrium if the laser pulse is long enough (multi-nanoseconds). We have performed time-dependent
simulations using these stationary laser profiles, and they show close agreement with the steady state
simulations ater times on the order of a few X./C . (In other specific cases, it has been shown
that steady state laser profiles can result in inherently time-dependent behavior'". In our formalism,
the neglect of axial density coupling in eqns. (2.7) and (2.9) has ruled out the possibility of this
type of nonstationary behavior, so the issue is not addressed here. However, it leserves cloner
investigation in the future.)
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ii. Filamentation of Generic Laser Beams
We now consider the behavior of the generic laser beam in the homogeneous, nonabsorbin,,g

plasma where only the ponderomotive force is operative. Fig. 7 shows a typical result (7 p =1.3Xl0",
a =.5, and F/10 optics): in general, the hot spots behave like individual noninteracting filaments
si1Ilar to the Gaussian filament shown earlier. Interaction between filaments tends to occur only if
two hot spots happen to be initially close (distances on the order of their own diameter), or on an
initially intersecting path.

The behavior of the individual Fourier modes in this simulation can be compared directly to
perturbation theory. One might expect the comparison to be adequate up to the point where the
mode coupling is appreciable. Fig. 8 shows the low order Fourier mode amplitudes of the intensity
distribution, and compares them to the results found by applying the factor exp(k (kj)L) (ftom table
I) to the incident intensity distribution. In theory, the most unstable mole is at k 1 =0.025
(X.--40o); in the simulation this mode closely follows the predicted growth for z400X 9 , after which
it levels off and then decreases. Qther theoretically unstable modes grow at rates aifferent (and
generally less) than predicted. For k1 0.04, the modes are supposedly stable, yet significant energy
appears to b~e going into. these modes after propagation distances of 100-200 o . This shift of energy
from small k. to large kj is expected for filaments that focus and contract in size.

Although the individual modes do not behave as predicted due to mode coupling effects, the
focal length predictions are fairly accurate. Fig. 9 shows the variation of focal length and focal
intensity with 7 for simulations with F/20 and F/10 optics and arms=0.5 on a 400X wide mesh;

rm 0
the focus is defned at the point MAXI(MAX{I} } . There is close agreement between the focal
length prediction and simulation: the simulation results lie very near to the predicted values (from
table I) shown by the dotted line. (This is- partially fortuitous, since the formulas in table I are
independent of o . Although different values of a result in different focal lengths (e.g., smaller
a gives larger"If, the scaling of If with 7 is simr.) For smaller values of 7 l°7 - (table 1)
sice the fastest growing mode is represente4 in the incident intensity profile ( S /F). For7_,0.005, however, the fastest growing mode is limited by the smallest perturbation wavelength in

the incident spectrum: Xi=20X . In this range of 7 , the fastest growing mode is constant and the1 -0 50 p ..
focal length scales as If 7 p" (table I). In contrast to the focal length predictions, the intensity
maximum predictions are very inaccurate. Two regimes appear to have been reversed between theory
and simulation: at small 7 , we expect MAX{I}"constant (since 1 =7 k ,2 [see appendixi, andkmax,..1/ 2  inta weosrearpdy (icz~k 2 [e ped'i n
k, '- 12[table Ii), a instead we observe incrapdl increasing AI X{I . For 7 -o.005 we
expect RAX{I. ~ 7 (table I, using km xconstant), and we observe a constant or slightly declining
value of MAX{} 1 1 vwith increasing 7 :

In summary, the focal length predictions seem to apply better than expected for ponderomotive
filamentation of generic laser profiles composed of many modes. In contrast, the predictions of
intensity maxima are quite inaccurate in the same situation. The same tendencies were noted with
the Gaussian beam simulations (see fig. 3).

With the thermal filamentation mechanism acting alone on the generic laser profiles, we
observe a quaitatively different behavior: the filaments tend to attract one another over distances
much greater than their own dimensions (fig. 10: 7T'=L. 2 XIO , F/20, and 9"rn =0.5). The diffusive
electron thermal conduction produces temperature and density structures much larger than the hot
spots; the result is the development of large wavelength intensity modes, composed of many smailer
scale filaments. This large scale 'supermode" undergoes large scale periodic focusing and defocusing
when propagating over large distances. Since the most unstable mode is at k j =0, and the growth
length decreases monotonically as k|40, the dimension of this supermode is limited only by 'he size
of the physical system. The gross illumination symmetry can be affected by this filament clustering
behavior.

The applicability of the perturbation analysis to these type of profiles is assessed by exmining
a Fourier decomposition of the intensity profile (fig. 11). Simulation and theory agree that the
fastest growing mode is the smallest w&venumber Ai=k,0025) of -he system. The perioiicity e!vie:t
in the lowest order mode matches up with the gross periodicity of the ditrlbution as seen in "Ig. 1.
The theoretical period of this mode is -580X3, ibout 1:3Z of the -neasurcd per'odic-ty )f L5 0(A
The growth rates for other modes in the simuiation -ino tend to ne irnal'er hahn :r-.iit, . . .i",.
coupling effects axe evident &fter propagation iULa rLCfS )f 1, .- w h'nire,'i N into "he p .
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The observed filamentation parameter for thermal filamentation of generic beams are shown in
fig. 12 as a function of 7 Te, for beams with oG =0.5 and F/20 optics. The theoretical focal length
and MAX 1{MAX{I}_} vlues are shown wirTsthe dotted lines. The scalings observed in the
simulation match these fairly well, but the magnitude of the values indicate much less filamentation
than is predicted: the focal lengths are '3X larger, and the intensity maximums are -100X larger.
Although the intensity peaks are much smaller than predicted, there is a definite sensitivity to
interaction strength, in contrast to the ponderomotive mechanism.

iii. Filamentation of RPS Laser Beams
Next, we will consider the effect of the RPS optical smoothing method on filamentation. The

profile of the RPS beam, as noted earlier, differs from a severely aberrated generic laser beam mainly
in the'larger extent of the BPS wavenumber spectrum; this extent is determined by the F/# of the
focusing lens. Here, we vary the F/# of the RPS profile and measure the filamentation intensity'
increase. These are shown in fig. 13 for four cases: (a) ponderomotive mechanism only: 7 =1-3x 10,

.8
7 T2=0; (b) thermal mechanism only: 7 =0, 7 2 =1. 2 X1O ; (c) both mechanisms: 7 =P-3X10 ,

7 T2.2X10"6; and (d) no mechanisms: ?=7T2=0. There is a clear trend towards smaler intensity
maximums as the F/# decreases. For optics 5F/5, there is Little increase in the peak intensity
compared to the levels attained in free propagation (i.e., all filamentation turned off). The threshold
perturbation wavelengths for ponderomotive and thermal filamentation are about 3OX , and the
simulations were done on a mesh with a transverse length of 400X . Thus, as the F/# decreases

more energy is put into the filaiventAton-stabilized wavelength region, Xi<Z0XO. The amount of
energy in the -stable .odes (k .k =Threshold wavenumber) is given approximately by the17 2 •Th
expression (1-k [F/#)3, so diferent values of k change the magnitude of the filarDjRtation
suppression effect. Also, since ponderomotive filamentation tends to have larger values of k than
thermal filamentation, the RPS method should be more effective in suppressing ponderomotive
filamentation.

There are possible concerns with the RPS smoothing technique: first, the typical intensity
maximum is still of order 10 times the average intensity value, even for the fastest optics. Another
concern is that large laser-plasma interaction chambers and laser-fusion reactor designs require slow
optics ('F/20) in order to reduce damage to optics and rdinimize the surface area taken up b- optics
in the interaction chamber;, fast optics can not be used in these applications. There is a possibility,
however, that the many beams used in symmetrically illuminated reactor designs may provide the
effect of fast optics: since any area of the pellet will be illuminated by a large number of beams"
incident at large relative angles, the small F/# (-F/1) intensity distribution that is formed may
suppress filamentation.

iv. Filamentation of ISI Laser Beams
We now consider 1SI illumination incident on the homogeneous nonabsorbing plasma. Direct

comparison with the other methods is more difficult, since the inherent time dependence of ISI
irradiation complicates the measurement of filamentation. The observables, instead of possessing a
single value, are now represented by probability distribution functions of the independent variables z,
x, and t. As a result, filamentation parameters such as intensity peaks or focal distances can be
defined in many different ways which give different values; we often use more than one definition
when evaluating a parameter. (In the following, a time average of a distribution I(x,z,t) is denoted
by the brackets < >, defined as: <I(x,z)>= fdt'I(x,s,t')/fdt'.)

An example of ISI with only the ponderomotive force acting is shown in fig. 14. The
interaction parameters are 7 =0.0051, 7 =3.2, and ne/ncr..=0.5; the incident lens is F'00, and 10
echelon steps are resolved on the 200X c wide calculationaf mesh. Fig. 14(c) shows the intensity
distribution <I(x,s)> averaged over 84 coherence times. Little intensity magnification is seen: the
peak average intensity (,MAX{<I(x,z)>} ) is only -1.5 times the incident peak average intensity
(MAX<I(x,s=0)>}x= 1.281o). One o the most noticeable changes in the intensity is the
development of high wavenumbers in the spatial structure sa it propagates into the plasma. P!ots of
the instantaneous irradiation at 42 and 34t c exhibit high intensity filaments (peak intensimties as ar "-
s 12XI ) in the plasma. These filamentary structures move about rapidly in the plasma anr

0
produce a much smoother time-averaged distribution. This is favorable for hydrodynamic or *,the:
long-time scale processes which will respond only to the smoothed average intensity ,litr::Htln
However, many laser-plasma parametric instabilities (e.g., SRS, SBS, 2W etc." have growth :.me5 "n
the order of the laser coherence time -,nd may :,spond to :he rapidly Jfrting ;ntenlIsty !r::., "
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magnitude of the differences in these two distributions is seen by comparing the time-averaged
intensity maxima in the plasma, <MA.X{I(z,x,t)} >, to the maxima of the time-averaged intensity,
MAX(<(x,z)>}x (fig. 15a). The averaged intensity madra show the long term existence of these
spikes; the average maximum intensity is -101 , compared to the average incident maximum of 3.81 .

Another measure of the importance of the instantaneous filaments is given by the intensity
probability distribution at a given point in the plasma. The (-..ie averaged) incident intensity
probability distribution is9 p (I/I )= exp(-I/I ); filsnentation effects cause enhancement of the higherlo O

intensity portion of this tribation as the laser propagates into the plasma. When this
enhancement occurs, it is useful to know how much energy resides in filaments; it could then be
possible to estimate how much energy is available to drive other plasma instabilities. The energy
redistribution is found by integrating the first moment of the intensity probability distribution
function to determine how much energy is at or above a certain intensity. We call this the
integrated energy distribution function (IEDF), and define it here as:

IEDF (I/I1a) Efo dX p () jdx Xp 1 (X)

The incident distribution function is: IEDF(I/I ,z=0)=(1+1/I )exp(-I/I,). The change in this
distribution is shown as a function of the propagation distance in fig. 15b, where the high intensity
enhancement due to r'lament formation is evident. The total amount of energy in the high intensity
region is significant: -5% of the energy appears at intensities greater than -91 in the bulk of the
plasma. In contrast, at z=0, -0.1% of the energy is at intensities greater than 91o .

The density variations responsible for the filaments observed in the instantaneous intensity
distributions are relatively small, MAXI 6 n /n I} <5% (fig. 16). These shallow density channelse 0 .1 Z-
produce filaments because the phase shifts are integrated over several hundred X propagation
distances. This is particularly true in these homogeneous nonabsorbing plasmas, since tie coupling is
high over the entire propagation region. In contrast, the high coupling regions in laboratory plasmas
are much smaller in size, and occur after most of the propagation (and most of the absorption) has
taken place; we find in the next section that laboratory plasmas generally do not give rise to the
magnitude of filanentation seen in these simple plasma.s.

The results of this particular simulation can be compared to the theory. Using Table II, we
find that the fastest growing mode for 7 T1/2=9. XI0-3 and n/n =0.5 is X.1 0X . This mode isp c CI
close to the minimum intensity wavelengtl generated by the F/20 optics (20Xo). fhe characteristic
growth length (k ) of this fastest growing mode is X -1800X (Table I), and corresponds to a focal
length 1 !-,20X 6appendix). There are several ways oA'" measuring a time-averaged focal length in the
simulation, o? which three are used here: (I.) the position of highest time-averaged maximum
intensity (If at MAX(<MAX(I} >}_); (2.) the position of highest maximum time-averaged intensity
(I at MAX{.<>} ); and 3.)zthe time-averaged position of maximum intensity (If at
<AX{I}x>). (1.)"and (2.) can be found directly from fig. 15(a), the third is calculated during
the simulation. These values are: (i.) 2000; (2.) 162.5X o; and (3.) 242X0o, respectively. All are
somewhat less than the predicted value; this suggests that the averaging done by the plasma is
nonlinear, as it responds more to the intensity peaks in the distribution than the time averaged
values.

As a more general test of thc ISI theory, we examine a larger range of parameters, and
calculate the scaling behavior. Many ISI ponderomotive filamentation runs have been made with93
different values of both interaction strength and coherence time." 7 and r were independently• ., 4 ,, -2 . , . . P
varied in the ranges 5X1O <7 -'2.x10 and .05<r <3.2. Ul simulations shown in fig. 17 were done• p C
with 40 echelon steps, F/20 optics, and n/nc=0.5 on a mesh 2o0X ( across; the results are not
sensitive to F,' (for F10) or mesh size. The focal lengths (using the three methods of
determination mentioned previously) are shown as a function of the theoretical scaling parameter
7 - The lotted line is the focal length range expected from theory, a letermined by the fae.
growing mode ,ccirri in the incident radiation. At the lower powers, the fastest growing moi,

varies as ~ 7 , I ta. -4/ (t.able II). .%t higher intensities, the fastest growing mode in table II lhv -
wavelength srnaier th.n anY in -t.ie incident pect.r'im (X m =20X o ,- ihouii be the f.st t.t" " 'n m in 1 ,- "
.4r'Jwirng :flo,: .i" .wiJ lengths it higher powivrs h'old t.en ar,.s The. a xp i: . 3
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closer to, the 1. 1/ 2 11/ 2 variation throughout; a least squares fit using all of the points gives
' 7Tpr1)2 0 . This scaling suggests that the dominant fastest growing wavelength (XmaX ) is

constant.of7T/
The averaged maximum intensities are plotted as a function of 7 T"/ in fig. 17(b). There is

a distinct separation of these averaged values: the time averaged maximum values, <MAX{I) >, are
always much larger than the maximum time averaged values, MAX{<I>}x. There seems to e little
consistent variation in the latte a the interaction strength is increased, whereas the values of
<MAX{I} > increase a. _7 .12

Thermal filamentation calculations were also done using ISI illumination in these simple
plasmas. An example is shown in detail in fig. 18; this particular simulation is performed with F/20
optics, *rc=0.53, n/nc=0.5, 7T2,=2X10", and .lTi=3.8XI04 . Even with incoherent illumination, the
characteristic signature of thermal filamentation is apparent in the instantaneous intensity
distributions: the filaments attract one another, forming large modes composed of high wavenumber
structure. Again, this is asociated with large-scale density and temperature fluctuations (fig. 19).
As in the ponderomotive mechanism, the time averaging smearm out most of the structure seen in the
snapshots; however, significant structure in both high and low-wavenumber modes can still be seen in
the time average, especially in the lowest order modes.

Once again the time-averaged distribution is much smoother than the instantaneous
distributions suggest; the averaged maximum intensity <MAX{I}x> is significantly larger than the
maximum averaged intensity MA4X{<I>} (fig. 20a). The energy distribution looks very similar to
the ponderomotively driven case (fig. 20b; cf. fig. 15b); the integrated energy distribution function
reveals that -5% of the laser energy is at intensities greater than 1010, comparable to the
ponderomotive example.

In fig. 21 the theoretical predictions are compared with a wide variety of runs at different
intensities and coherence times. 7 T2 and r were independently varied in the ranges
2.5X10 7 <T <5X10 - and 0.5<-r <5.4. All of tte simulations included the theoretical fastest
growin mor in the incident intensity spectrum, so the growth length should scale as
7 /21-7. The agreement between theory and calculation is better than expected in both

scalig and magnitude. There is a large scatter in the peak intensity values MAX 1 {MAX{<I>} }
for small values of 7 T because the focusing is very mild; these intensities are only a ?ew
percent greater than tie incident peak (fig. 21b). Such peaks are probably due to statistical
scattering of the light, not filamentation. The expected separation between the values of
M AX{<I>- and <MAX{I1 > is observed, and a slight dependence on the interaction strength
(_7T2' 1/ M 5 ) is noted.

Tlese simulations of ISI in simple plasmas show that the ISI filamentation formulas in table I
are only moderately accurate. The focal length predictions fit the observed thermal filamentation
behavior (fig. 21a) better than the observed ponderomotive filamentation behavior (fig. 17a). This
can be explained by noting that thermal filaments experience longer time-averaging than
ponderomotive filaments. The ponderomotively unstable filaments are smaller in size (so the
averaging time X/C s is smaller) than the thermally unstable modes. Since they are averaged less,
ponderomotively riven perturbations have a larger statistical deviation. Some perturbation modes
(that happen to be larger than average) will grow faster, and produce shorter focal lengths, than
predicted. This is the behavior seen with the ponderomotive simulations in Fig. I7a. Thus, it is
reasonable to expect our ISI filamentation theory to model thermal Filamentation more accurately than
ponderomotive filamentation.
C. Filamentation of Comrlex Laser Beams in Laboratory Plazmas

We conclude the analysis with a treatment of filamentation in more realistic (i.e., absorbing
and irnhomogeneous) plasmas, in particular those that are produced in ICF research laboratories or
foreseen for ICF applications. We cannot attempt an exhaustive description, as there is a huge range
of conditions encountered in these laboratory plasmas; instead, we concentrate on examples of pla-mas
that are generated by moderately high power laser light at wavelengths of 1.063m, O.534;m, ani
0.25#m. These wavelengths correspond to Nd-glass lasers, frequency-doubled Nd-glass lasers, and KrF
or Nd-glas frequency-quadrupled lasers, respectively. For the 1.06 and ).5Z3im cases, plasma pr'i ii
were generated by the NRL FAST2D hydrocode to simulate neir-term ia.-tar.et eperirnent.i
the two-dimensional density and temperature distributions are aver i n the tran-v'r:, iirccj
produce the one-dimensional density and temperature profiles ised in 'h(- . ,) 25Jm "
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96plasma profile was generated by the NRL FAST1D hydrocode 4 in a simulation of a few-megaioule
KrF-driven reactor-sized pellet . The first two plasmas have scalelengths on the order of 10"X,
while the last is a plasma with a scalelength on the order of 10 . These density and temperature
profiles, along with the associated laser parameters, are shown in Rig. 22. In all of the calculations
presented here, the laser light is propagated in the region from 0.Oln . to 0.5Sn .; propagation to
higher density is limited by the assumptions underlying the validity o the parabolic wave equation.
The filamentation coupling is high in the region between 0.01 and 0.5n crit, but the propagation
distance is small, and the absorption is relatively high (especially for the shorter wavelength plasma.).
Thus, little additional filamentation should occur in this higher density region.

In each plasma there is a range of perturbation wavelengths over which either the
ponderomotive or thermal mechanism dominates. Thermal filamentation dominates at larger scales,
ponderomotive at the shorter scales. As not d in section III.A, these regions are delineated by the
characteristic wavelength X 1/X =(7 /7T 2 )1 2 . As the laser wavelength decreases (with constant
intensity), the relevant plasma Xensity increases and the plasma temperature decreases slightly (due to
the higher plasma heat capacity). Thus, with smaller laser wavelength, the ponderomotive
contribution decreases (7 X 2 ), the thermal contribution increases (7IT, -T-), and thermal
filamentat)on dominates over a wider range of wavelengths. In addition, the absorption rate
(d,%ne T ) of the plasma increases as the laser wavelength decreases. The higher absorption raises
the filamentation threshold and lowers the growth rate, since the filament must now grow faster than
it is absorbed. We find that absorption can effectively suppress filacmentation in shorter wavelength
plasmas.

The 1.06/im laser-plasma absorbs little laser light in the region 0.Oin . to 0.5n and the
ponderomotive mechanism is strong (7 0.016, 7T ,2X10' at n/n . =0.25T. The pouferomotive..~p 72 t . .
mechanism dominates the thermal mechanism for X1; 270X , which includes most of the range of 'he
simulations. This plasma efficiently filaments laser light, including incident light that is very
uniform. Fig. 23a shows simulation results for generic laser profiles with different incident 0" 'ms
incident beams with perturbation levels a 0.05 begin to filament. Since most high-power laser
beams have a >>0.05, this implies thatr iumentation is a common event at this laser wavelength.
Using a random-phase screen with 80 phase shift sections and F/5 optics does not improve matters
significantly: filaments with peak intensities 4251 are sti" observed.

When ISI is applied at 1.08,9m with 1' 20.25 (t =Ipsec, or Al/wW-0.00Z), filamentation i5
appreciably, but not completely, suppressed compae fig. 24b to fig. 23a). The instantaneous
intensity distributions (fig. 24a), the time averaged intensity maximums (<1MAX{1} >, fig. 24b), and
the integrated energy distribution (fig. 24c) all show evidence of instantaneous riLament formation.
The integrated energy distribution reveals constantly increasing levels of energy at ail intensity leveis;
although the beam begins with less than 5X10 2 % of its energy above 1010, at n/nc=0.3, more than
2% of its energy is above 101 . The structure of these instantaneous filaments (fig. 24a) reflects the0

dominance of the ponderomotive filamentation mechanism. The time averaged intensity distribution
(averaged over 250Tc (fig. 24d) is much smoother, since the filaments move about and do not
concentrate in a single area. Residual fluctuations left on the incident profile show little growth
compared to generic beams (MAX{<I>} ,Z<21 in fig. "4d; cf. fig. 2*.a where MAX(-I>} 10-
401o). 1 .,

Filamentation is less dominant in the plasma created with the 0.53/Lm wavelength laser.
Although a significant fraction of the incident light gets to 0.5n crit , and the plasma is 60%0 larger
than the plasma at 1.08/Am, the smaller laser wavelength reduces the ponderomotive force eifect
(7p=0.005 7 at u/n Cri. =0. 2 5 ). Thermal filamentation is stronger ('T-9X10"), and should dominace
ponderomotive effectis for filaments with I,.8 o , With generic laser profiles (fig. 23b), we find that
filamentation begins to occur when & moderate fluctuation level (a 7 ).. is incident,
fluctuation level is well within the typical range. The RPS method with F 5 optics suppre-:ses
filamentatiotA somewhat, reducing .ilament intensities to %bout 12 times the average intensity sq":ar
symbols, fig. 23b).

When ISI is applied to the 0.5Z.;4m pina with T = t.2. p~ec. ,r AW -.
suppresses filamentation about as well as the I.Q81zm case (fig. "'"5: ."iZ. -&
smaller interaction strength is ,Cr irt ly the ong r intpr-,Ctin r:' In 0 1 11r,, ,i : '.
wavelengths) in -his plasma. klhugh thermi filamn:ation ii itron r n.h13
of ' he intensity iitriwitions s gg-t s .hat; L,! .. .-. ... . r. tl :1 . .
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Finally, we consider filamentation in the 0.25/4m laser wavelength plasma. At n / n  =0.25,
the ponderomotive mechanism (7T '8.8X1 4 ) dominates the thermal filamentation mechanism
(7 2 3.7X 10 ) for filament sizes X p 15X0^. Thermal filamentation is actually less important here

is smaller (Z=1 as opposed to Z=5.5) and the temperature is
slightly greater (due to a higher intensity and longer pulse length). This example is also different
from the other two cases because it has a much longer plasma scalelength, as would be generated in
a direct-drive laser-fusion reactor. The large scalelength presents a worse-case test for filamentation
at this wavelength, since it provides a longer gain path for the unstable modes. Counteracting this
effect is the higher absorption efficiency of short-wavelength laser plasmas. The amount of
filamentation in these plasmas will be determined by which one of these two opposing effects is
dominant.

Generic laser beams filament in this 0.25/#m plasma when the incident perturbation level :s
greater than 'rn-0.2 (fig. 23c). The MAX{I},z vs. ar curve is similar to the curves from 'he
longer laser wavelength interactions, except that the prni intensities are smaller. These smailer
intensities are due primarily to the higher absorption rate. The RPS method with F/5 optics does
not appear to significantly affect the frdamentation tendency (see the square symbols in fig. 23c); peak
filament intensities Z12I are still observed.

ISI is significantly more effective at suppressing fi'lamentation in this 0.2514m plasma than it is
at the longer laser wavelengths. Applying ISI with TC = 1 (tc =0.9psec, or AW/dw-9X10- 4 ) eliminates
filamentation over both short and long time averages (figs. 26a and 26d). The integrated energy
distribution (fig. 26c) and MAX{I}x curves (fig. 26b) show steadily decreasing energy leveI3 at all
intensities as the beam propagates into the plasma. In addition, the ratio MAX{<I>}- ,W
NIIN(<I>}x)/<I v (z)> (fig. 26b) shows that the nonuniformity level is not increasing as the laser
propagates. "?he high absorptivity of the plasma appears to dominate any filamentatio".
enhancements due to the longer plasma scalelength.
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V. Conclusions
We have examined ponderomotive and thermal fila.mentation mechanisms for Gaussian, ISI,

RPS, and generic (typical) laser bearms in laser-produced plasmas. Time-dependent and steady-state

laser-plasma propagation codes have been constructed to simulate fiaamentation under these conditions.
A standard theoretical formulation of filamentation was presented and extended to account for
incoherent light, such as that found in ISI laser ',eams. The predictions of this analysis were then

compared to the results of the laser-plasma propagation codes. First, a simple plasma (homogeneous
and non-absorbing) was used to study quantitative aspects of filamentation, and to compare the
results to the theory. Then, simulations were done with realistic laboratory plasmas to determine the

importance of filamentation in more complex experimental environments.

There is a distinctive behavior that differentiates the ponderomotive and thermal-conduction
dominated filamentation mechanisms. In general, ponderomotively-driven filaments interact locally
through interference effects of the light waves; these filaments tend to be independent from one

another. In thermally-driven filamentation, the high plasma conductivity creates long-scale density

gradients that cause light filaments to attract one another at large distances. This attraction
mechanism decreases the spatial coherence of the beam, increases the width of the perturbation
wavenumber spectru-m, and can reduce or stabilize further large-scale self focusing. At high powers,

the effect is enhanced by the nonlinear behavior of the temperature profile.
Simulations of Gaussian laser beams show the limitations of the theoretical analysis. The

ponderomotive focal length predictions agree quite well with the theoretical predictions, but the
behavior of the light in and after the first focus can differ markedly from the predictions. Gaussian

beams undergoing thermal filamentation agree with theoretical predictions only at lower intensities; at

higher intensities the focal length increases rather than decreases, and the peak intensities decrease
rather than increase. Both of these effects are due to the stabilization effects of the nonlinear
temperature profile. In both the ponderomotive and thermal filamentation cases, peak intensities

found in the simulations fall far short of their predicted values.
There are significant discrepancies between the perturbation theory and the simulations for the

generic and RPS smoothed laser beams: the fastest-growing mode is often different than predicted,

and the growth rates for most longer wavelength unstable modes are lower than predicted. The
supposedly stable higher wavenumber modes grow, apparently due to nonlinear mode-mode coupling.
In spite of these discrepancies, comparisons of the results to the theoretical focal length scaling !aws

* show rough agreement. Comparisons to the peak intensity scaling laws are again poor. The RPS

optical control technique is able to suppress filamentation under some plasma conditions, but requires
relatively fast !ocusing optics ( F/5).

The ISI smoothing technique is first simulated in homogenous, nonabsorbing plasmas. Time
averages on the order of a hundred coherence times show relatively smooth laser illumination, but

there can be a simultaneous increase in the proportion of laser energy at the higher intensities. This
has important implications for nonlinear interactions that respond to the light on times of order of
the laser coherence time (-psec). Scaling studies of the ISI focal lengths show agreement between

theory and calculations. In contrast, the maximum intensity levels in the plasma are found to be
relatively insensitive to the interaction strength, in disagreement with our theoretical predictions.

Simulations using near-term laboratory plasmas demonstrate that filamentation tends to be

much stronger at longer laser wavelengths (i.e., X =1.061Lm and O.53Zum). Ponderomotive

filamentation is dominant at 1.08 gm, and is exacerbateA by the relatively small underdense-plasma
absorption. Generic beams of high quality and RPS-srnoothed beams both filament rapidly
(producing filament intensities -. S-.*O times the average). ISI also shows some evidence of enhanced
energy at higher intensity in the 1.06jpm laser-plasma. The strong filamentation tendency exhibited
by 'he , O6~m wavelength interaction (also at 0.52i1m) underscores the importance of filsrnentation in

near-term laser-plasma experiments: the laser-plasma interactions at these longer laser wavelengths are

probably dominatedl by fil mentation Pffects.

,,..- .-..-



In reactor-sized plasmas at shorter laser wavelengths (Xo=0.25/1m), the increased absorption
reduces filmmentation for all types of laser beams. When filamentation occurs, maximum intensities
are -10-15 times the average incident intensity. RPS smoothed bea.rns do not reduce these maximum
intensity levels. However, the ISI smoothing technique or very clean beam profiles (orms .LI) can
eliminate fiaLmentation in short wavelength laser plasmas.
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Appendix
The quasi-optic equation (2.3) can be solved using the paraxial approximation, which consists

of expanding the nonlinear dielectric constant in the transverse variable and keeping only the first
order, quadratic terms3 . It is a well known that a beam that initially has a Gaussian intensity
profile and a constant or quadratically varying phase front remains Gaussian as it propagates through
a quadratically varying dielectric constant. We thus consider a Gaussian filament for consistency.
The electric field of the filament is written:

N/2

(X= o(X) [0(/) exp{-x212a()2 +i(00o(7) +0l ( I2)} (A.1)

where a('7) is the 1/e radius of the filament at distance 17, ao is the initial filament radius, N is the
number of transverse dimensions, and 0 and 0 are real. As written, the field conserves energy as
a(n) varies. Ierting (A. ) in equation (.3), using the praxi&l approximation 6( ,)- E( 7x=0)-
(afe(j,x=ol/afx 2ix (assume that E/ax is real), separating real and imaginary parts, and equating
like powers of x, we find the following equation for the filament radius a(q7):

4r2 d 2 a07) 1 4 2 ae (A. 2)d2 - ()3 x2

A.1 Ponderomotive Filamentation
For ponderomotive filamentation, aa( 7,x)l8x2 =a(neC',x)/n)/ax2  -n eo /nc7pa('7)'(ao/a(7))

where lp is evaluated at x=O. This leads to the equation:

2 nn N
4 r2 d aa(7) 4 2 7a (A. 3)

2 3 347d~7 ('7)a('7)lI+N

The filamentation threshold is determined when da(17)/dI7=O and d 2a(17,z=O)/d 72 =0 at q7'O. The
threshold filament radius is:

ToP - p) (A. 4)oP 27 (

This radius is independent of the dimension N, and agrees with table I if we define the effective
perturbation wavelength of the Gaussian distribution to be Xip(Gaussian) = 7V2a - 4.4a °
(assuming 2n/n7_ << N).

The csutipns are dependent upon N, and are straightforward when n/nc is independent of 17,
and ?=z//2 . For N=2, the solution of (A.3) is:

2 2 (1-4y (n/n)~ 2zi
a ( = a 2 0 (.5)

0

This predic.s that for filaments above threshold, the radius will go to zero at:

S/2 a1/2
Ire ' N- 2 1/ 2c' I  2 4r2n 2 -0 0

0 0 a-- o 7Da? -D -

C."



The collapse of the filament to zero radius at s=I occurs in this model because the dielectric
constant (previous to (A.3)) is approximated as directy proportional to the intensity. The induced 6
causes refractive forces that are always larger than diffractive forces, and the filament collapses to
zero radius and infinite peak intensity. In a real plasma, the induced C saturates at E=I, and
diffraction eventually overtakes the filamentation forces when the radius is of the order of X 9

Although the solution is technically invalid at s=I, the collapse is rapid enough that the solution is
valid close to Ip, and I1R is a good approximation to the focal distance in the real case. This
value is in agreement with table I if we use the previous definition of the Gaussian wavelength
(X lp=TV2a0 ), and define the Gaussian growth wavelength Xgp=21Ifp*

When N=1 the solution a(s) to (A.3) is:

1/2 41n Ca (Z) + 0)(Ca~z) .42pa(z) -13 0 c ICI +. Sn Cc + 1/j (A7

21rI/ 1/ 21' 2no 7p/2

27- / 2 2where: ZO -s= ; C S (1-2pa )/a; and M 4r (n/ )7 a

Pao=l is equivalent to the threshold condition given by (A.4). This displays a focal length given
by:

8r 4 a 4 (n/n c) 7 1/2 ra C 1/2

lfp =0 C ) P0 0 0 (.8ifp(Nr) = 2o2)3/ _ / 2 (.8) 

(8 Cnn p0 np

The approximation on the RHS of (A.8) is valid for filaments far over threshold: 8%2 (n/n )7 a2 >>1.
In this limit , I (N=1)=(7/48)lfp(N=2)- 1.llfp(N= 2 ), and matches table I if we 2efine
X gp-4.2Ir(N-1jF5.71fp(N=l). Like the perturbation analysis in section IT, this model predicts very
similar focal lengths for N=I and N=2.

The minimum filament radius, attained at lIP, is:

• -l

0 C

Thus, the maximum filament intensity (MAX{I} x/ = a o/amin) exhibits a linear dependence on the
incident filament intensity.

A.2 Thermal Filamentation
For the thermal conduction dominated filamentation mechanism, -he dielectric constant0 2'Nexpansion gives a(x)/ax= 3(n(e7'x)/n c)/  (n/n C)7T 2 (/()) . Substituting this in

(A.2) yields:

4r2 d2a() 4 4 /N i-NY -a(2) 3  (n/C)7T2 a () (A.9)

The filarnentation threshold is then:

Th 1r 3  -ja-T 1 a 7LT2(
C
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This agrees with table I if we define the effective perturbation wavelength as X lTrV2 aT, the same
relation as we have previously found. The solution a(17,7T.) for N=I can be found by-interating

eqn (A.9) twice. First it is helpful to define the transform variables u = (S (n/nc)7T2 oa) 'a(z)
and y = (8"r4(n/nC)7T2 a.)2/3s/274 o. Then (A.9) can be expremef4 in a canoni form:

2(y _ 1 _1 (A. 11)
dy2 U (y) 3

Integrating this twice, we find:

A• = fu(y) u du

U 0 [2(uo-U) (u-u+) (u-u)] 1/2

where:

U0 = 4n 41/3

-- 1+ [1+8u 3 1/2

- 4u2

0

This has the solution:

1/2

y= 1/ 2 u~ u -1/2 0~2~ 0

S -U 1/2 u -U
[2u0 u]_Euuu ; H(A-12)

*,e where F(O;p) and E(O;p) are elliptic integrals of the first and second kind, defined as:

,)

mI

;44'
F0;p)[

N0
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In the limit u >>1 (i.e., a >>1), eqn (A.12) can be simplified; using the limiting forms E(0;i)=,
Q I and 1 1/ d:liitn

Fw,)l(e[1L 1tn3n 1,adU=(U0. w id

The focus occurs where u(y)=u+ (this is the minimum radius achieved by the filament), atyf=(2uo)?/2 . Transforming bac~k, we find the focal length:

1/2

1.- 4 ,0 - (A.14)

This is again independent of the filament radius, and agrees with the sinusoidal perturbation result
(table I) if we define the Gaussian growth wavelength as X 9T =42 yXI. The maximum intensity,
which occurs at the focus, is:

ma U3/ 2122

-U -= 42 u
1 2

4 (A.15)
0 + C

a,|
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.4% Table I'
Steady State Filamentatior Parameters

Ponderomotive: Thermal:

* A. kj Threshold Perturbation Wavenumber:

k h2+1-1 kT)2 (R 1/2
hIP)-  (2-; + - (< a 7T2)

'..0

B. kg; Spatial Growth Rate:

2 1 kn1 -4 1/2e -~ 2 '2(2 -2 kgT 2- 2 I 7T[ Neo- k1 }i/

k (2A 7 N7 k_,
9P p j2 a o p 01 1l 11 kgT - ("a 7T11-

0 C

max
C. I , Fastest Growing Perturbation Wavenumber:

{ max
= 1 + iT =

D. k max; Fastest Spatial Growth Rate:
g

max= i n ~ 1/2 max= 2• -2 7p (o N n 7P) gT- 2E n 7T2J
,- C 0 c

max- in 7P

0
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Table II

ISI Filamentation Parameters

Ponderomotive: Thermal:

A. kTh; Threshold Perturbation Wavenumber:II

k Th ( R7r/ 2/3 k Th (2a 'T 2 /7
ip nC c J kiT cT2-c

B. kg; Spatial Growth Rate:

j2 7_ kr 1/2 k-/ 1/2- 1 j _ 2f: 1./2. " 7/ 1/2
kgp 2m Jl pc k 1 gT I. T2c

0 0

maxC. k, ; Fastest Growing Perturbation Wavenumber:

k ma 7 p lr /2 2/3 kax /2 2/7
1P - 4nl P J "IT - n4ca T2-c

D. kmax  Fastest Spatial Growth Rate:

kmax- 0.52 r 1/2 4/3ma_. 1/47
k Pn7prc k gP I

0 0

These results assume that a<<I, and (n/rc){7p,7T2 }1 < <

.. S*~... *~p .... ~-. N
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Fig. 23 Results of filamentation of the
generic profile lasers for laser wavelengths of
(a) 1.06pm; (b) 0.53/Am, and (c) 0.25pm
(using density, temperature profiles shown in
fig. 22), showing MAX(I}x vs. arm of the
incident beam. The open circles mark the
incident values of MAX{I(z=0)}x ; the solid
circles are the absolute maximum values of
the intensities reached in the plasmas,

MAX(I) . Also shown (square symbols) are
the resufts5 achieved using the RPS method
with F/5 optics (the solid square dienotes the
value of MAX{I} , the open qiare the

value of MAX{I(z"O)} .
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Fig. 24 IS! filamentation at 1.0811m la~ser
wavelength in laboratory plaas fig. 2a.

(a) Instantaneous intensity distribution at
250'r (b) time averaged intensity maximums
<MACX{I)> (solid line) and MAX(<I>} 1,
(dotted line): (c) contour plot of tha
integrated energy distribution function
(fraction of energy greater than a given
intensity 1/1I), IEDF(I/I *n/n~) and (d) time
averaged distribution .tcs>
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Fig. 25 IS filamentation at 0.53/im !&aer
wavelength in laboratory plasma fig. 22b.
(a) Instantaneous intensity distribution at
2507 ; (b) time averaged intensity ma.ximums
<MACX{JI > (solid line) and MAX{<I>j
(dotted linxe); (c) contour plot of the -

integrated energy distribution function
(fraction of energy greater than a given
intensity 1/1 ), IEDF(T/I ,n/n.); and (dl time
averaged distribution <I,,z>.
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Fig. 28 IS! filaxentation at O.514m laser

wavelength in laboratory plas rig. 22c.
(a) Instantaneous intensity distribution at

250r; (b) time averaged intensity maximums
<cMAX(I} > (solid l1ine) and MAX(<1>1.
(dotted line), and relative Peak-tO.-vailey
uniformity (M1,AX{<I>j-

c contour plotvof the integrated energy

distribution function (fraction of energy

re&Ler than a given intensity L
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,Iistribution <1Lx,s1>.
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